skip navigation

Add your conference to our Justice Events calendar


Register for Latest Research

Stay Informed
Register with NCJRS to receive NCJRS's biweekly e-newsletter JUSTINFO and additional periodic emails from NCJRS and the NCJRS federal sponsors that highlight the latest research published or sponsored by the Office of Justice Programs.

NCJRS Abstract

The document referenced below is part of the NCJRS Library collection. To conduct further searches of the collection, visit the NCJRS Abstracts Database. See the Obtain Documents page for direction on how to access resources online, via mail, through interlibrary loans, or in a local library.

  NCJ Number: NCJ 241105     Find in a Library
  Title: Screening and Confirmation of MicroRNA Markers for Forensic Body Fluid Identification
  Document URL: HTML PDF 
  Author(s): Zheng Wang ; Ji Zhang ; Haibo Luo ; Yi Ye ; Jing Yan ; Yiping Hou
  Journal: Forensic Science International: Genetics  Volume:7  Issue:1  Dated:January 2013  Pages:116 to 123
  Date Published: 01/2013
  Page Count: 8
  Annotation: MicroRNAs (miRNAs, ~22 nucleotides) are small, non-protein coding RNAs that regulate gene expression at the post-transcriptional level. MiRNAs can express in a tissue-specific manner, and have been introduced to forensic body fluid identification. This study employed the qPCR-array (TaqMan(®) Array Human MicroRNA Cards) to screen the body fluid-specific miRNAs.
  Abstract: Seven candidate miRNAs were identified as potentially body fluid-specific and could be used as forensically relevant body fluid markers: miR16 and miR486 for venous blood, miR888 and miR891a for semen, miR214 for menstrual blood, miR124a for vaginal secretions, and miR138-2 for saliva. The candidate miRNA markers were then validated via hydrolysis probes quantitative real-time polymerase chain reaction (TaqMan-qPCR). In addition, BestKeeper software was used to validate the expression stability of four genes, RNU44, RNU48, U6 and U6b, regularly used as reference genes (RGs) for studies involving forensic body fluids. The current study suggests that U6 could be used as a proper RG of miRNAs in forensic body fluid identification. The relative expression ratios (R) of miR486, miR888, miR214, miR16 and miR891a can differentiate the target body fluid from other body fluids that were tested in this study. The detection limit of TaqMan-qPCR of the five confirmed miRNA markers was 10pg of total RNA. The effect of time-wise degradation of blood stains and semen stains for 1 month under normal laboratory conditions was tested and did not significantly affect the detection results. Herein, this study proposes five body fluid-specific miRNAs for the forensic identification of venous blood, semen, and menstrual blood, of which miR486, miR888, and miR214 may be used as new markers for body fluid identification. Additional work remains necessary in search for suitable miRNA markers and stable RGs for forensic body fluid identification. (Published Abstract)
  Main Term(s): Forensics/Forensic Sciences
  Index Term(s): Victim identification ; Suspect identification ; Blood/body fluid analysis ; Investigative techniques ; DNA fingerprinting ; Foreign criminal justice research ; China
  Sponsoring Agency: National Natural Science Foundation of China
  Grant Number: 81072510
  Publisher URL: 
  Type: Report (Study/Research)
  Country: United States of America
  Language: English
  To cite this abstract, use the following link:

*A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's website is provided. Tell us how you use the NCJRS Library and Abstracts Database - send us your feedback.