skip navigation

Add your conference to our Justice Events calendar


Register for Latest Research

Stay Informed
Register with NCJRS to receive NCJRS's biweekly e-newsletter JUSTINFO and additional periodic emails from NCJRS and the NCJRS federal sponsors that highlight the latest research published or sponsored by the Office of Justice Programs.

NCJRS Abstract

The document referenced below is part of the NCJRS Library collection. To conduct further searches of the collection, visit the NCJRS Abstracts Database. See the Obtain Documents page for direction on how to access resources online, via mail, through interlibrary loans, or in a local library.

  NCJ Number: NCJ 236431     Find in a Library
  Title: CODIS STR Template Enrichment by Affinity Bead Capture and Its Application in Forensic DNA Analysis
  Document URL: PDF 
  Author(s): Diane J. Rowold, Ph.D. ; Rachel E. Balsam, M.S. ; Michael C. Jablecki, Ph.D.
  Date Published: 2011
  Page Count: 39
  Annotation: This project’s objective was to adapt and explore a technical application as a potential front-end treatment of a forensic sample, particularly a DNA sample that is not currently amenable to conventional methods, so as to improve the probability that such samples could be evaluated with currently validated approaches.
  Abstract: This effort was occasioned by the fact that forensic investigations which involve sub-optimal evidentiary DNA samples are often hampered by incomplete and/or ambiguous Combined DNA Index System (CODIS) STR profiles that arise from low-template quantity, degradation (from age and exposure), mixed human source composition, and/or the presence of PCR inhibitors. This project developed a biotinylated oligonucleotide-streptavidin coated magnetic bead capture process that allows for the multiplex capture and PCR amplification of CODIS specific STR loci. Recovered DNA materials from highly degraded DNA samples or significantly fragmented DNA samples were assessed by a comparative analysis of the 13 established CODIS STR loci plus the amelogenin and D2S1338 STR loci. Head-to head comparisons at single to multiple loci were used to determine whether the process impacted fragment-length bias, two-contributor proportion analysis, and eukaryotic versus prokaryotic specificity. Initial results with a minimally optimized system/process indicate that despite the loss of sizeable quantities (from 30-70 percent) of the specific sequence, there were no locus dropouts, minimal allelic dropouts (less than 1 percent), and statistically relevant CODIS STR profiles were generated. In addition, PCR amplification/CE analysis of captured DNA samples did not introduce additional artifacts that might complicate CODIS STR analysis. The process was also successful at quantitatively extracting eukaryotic STR specific alleles from a five-fold excess prokaryotic background. 10 tables, 9 figures, and 29 references
  Main Term(s): Forensics/Forensic Sciences
  Index Term(s): Victim identification ; Suspect identification ; Investigative techniques ; DNA fingerprinting ; Databases ; NIJ final report
  Sponsoring Agency: National Institute of Justice (NIJ)
US Department of Justice
Office of Justice Programs
United States of America
  Grant Number: 2009-DN-BX-K181
  Sale Source: National Institute of Justice/NCJRS
Box 6000
Rockville, MD 20849
United States of America

NCJRS Photocopy Services
Box 6000
Rockville, MD 20849-6000
United States of America
  Type: Report (Study/Research)
  Country: United States of America
  Language: English
  To cite this abstract, use the following link:

*A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's website is provided. Tell us how you use the NCJRS Library and Abstracts Database - send us your feedback.