skip navigation

CrimeSolutions.gov

Add your conference to our Justice Events calendar

PUBLICATIONS

NCJRS Abstract

The document referenced below is part of the NCJRS Library collection.
To conduct further searches of the collection, visit the NCJRS Abstracts Database.

How to Obtain Documents
 
NCJ Number: NCJ 236434   Add to Shopping cart   Find in a Library
Title: Rapid STR Prescreening of Forensic Samples at the Crime Scene
Author(s): Micah Halpern ; Dr. John Gerdes ; Dr. Joan Habb ; Anahita Kiavand ; Dr. Jack Ballantyne ; Dr. Erin Hanson
Date Published: 2011
Page Count: 93
Sponsoring Agency: National Institute of Justice
US Department of Justice
Office of Justice Programs
United States of America
Grant Number: 2008-DN-BX-K012
Sale Source: National Institute of Justice/NCJRS
Box 6000
Rockville, MD 20849
United States of America

NCJRS Photocopy Services
Box 6000
Rockville, MD 20849-6000
United States of America
Document: PDF 
Type: Report (Study/Research)
Language: English
Country: United States of America
Annotation: This project’s goals were to continue development of a unique melt-based approach to STR (Short Tandem Repeat) genotyping (dpFRET); to integrate and test that approach for compatibility with existing microfluidic extraction, amplification, and melt subcircuits; and to determine applicability for forensic applications.
Abstract: The overall objective achieved by this project was the overcoming of difficulties associated with capillary- electrophoresis (CE)-based STR profiles that act as a barrier to rapid objective prescreening of probative samples at the crime scene. The achievement of project goals resulted in the simplification of converting laboratory protocols for portability, mainly by eliminating the many challenges associated with capillary electrophoresis (CE) size-based analysis. These challenges include biological/technological artifacts, added sample processing steps, and complex equipment demands required for portability. This project’s validation phase demonstrated some of the advantages impossible with CE-based protocols. These advantages include higher sensitivity (5-25 picograms); elimination of pre-quantification; minimal or no apparent biological artifacts; applicability to smaller amplicons impossible with current assays; the ability to detect microvariants (SNPs); and transfer compatibility to a microfluidic platform. Through development and testing of the optimized assay with a microfluidic platform, the project achieved sample extraction from blood, PCR amplification, and melt-based allele detection, using a microfluidic-based subcircuit design. It is the transfer of this approach to a fully integrated microfluidic lab-on-a-card format that will permit processing and analysis of samples in an enclosed environment, thereby minimizing the chances for cross-contamination and providing a means for post-analysis archiving of DNA extracts for follow-on laboratory testing of probative samples. The project demonstrated the successful generation of a classic CE profile 18 months after archiving extracted DNA. This validated approach produces a preliminary profile at the scene and enables laboratory analysis of the probative samples without the need for additional sample extraction. 4 tables, 55 figures, and 23 references
Main Term(s): Forensics/Forensic Sciences
Index Term(s): Evidence collection ; Suspect identification ; Crime Scene Investigation ; Crime scene ; Investigative techniques ; DNA fingerprinting ; NIJ final report
   
  To cite this abstract, use the following link:
https://www.ncjrs.gov/App/Publications/abstract.aspx?ID=258439

* A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's web site is provided.