skip navigation

Justinfo Subscribe to Stay Informed

Add your conference to our Justice Events calendar


NCJRS Abstract


Subscribe to Stay Informed
Want to be in the know? JUSTINFO is a biweekly e-newsletter containing information about new publications, events, training, funding opportunities, and Web-based resources available from the NCJRS Federal sponsors. Sign up to get JUSTINFO in your inbox.

The document referenced below is part of the NCJRS Library collection.
To conduct further searches of the collection, visit the NCJRS Abstracts Database.

How to Obtain Documents
NCJ Number: NCJ 239074     Find in a Library
Title: Taq Mutants Engineered for Forensics
  Document URL: PDF 
Author(s): Milko Kermekchiev, Ph.D.
Date Published: 04/2011
Page Count: 44
  Annotation: This study developed and applied novel genetically engineered mutants of Taq DNA polymerase, which is highly resistant to PCR inhibitors, in directing DNA analysis of forensic samples.
Abstract: In many cases, this approach can eliminate the need to purify DNA prior to PCR and decrease the time, lower the costs, and increase the efficiency of forensic DNA testing. This goal was achieved by meeting three objectives. First, researchers developed and optimized a protocol without the DNA extraction steps for direct PCR-based typing of the human STR loci from crude samples that contain blood and soil, using the researchers’ novel OmniTaq and Omni Klentaq enzymes. Second, they developed specific PCR enhancers to improve the detection sensitivity of crude samples. Third, they tested the resistance of OmniTaq and Omni Klentaq to PCR inhibitors derived from substances other than blood or soil, such as urine, semen, hair/melanin, tannins, indigo dye, bones, muscle tissue, saliva, and feces/bile salts; and they extended the application of the mutant enzymes to testing crude samples of these substances. Fourth, the researchers formulated and optimized blends of OmniTaq and Omni Klentaq with some members of the Y-family thermophilic polymerases with improved performance on damaged DNA. Preliminary tests found that the cold-sensitive hot-start mutant enzyme, CesiumTaq, performs well in STR typing, and the Omni Klentaq tends to generate more stutters; therefore preference was given to exploring CesiumTaq, along with OmniTaq enzyme. Comparative tests of direct STR typing with challenging crude samples showed that the researchers’ protocols outperformed the AmpFISTR Identifiler Plus kit and to some extent the PowerPlex 16 HS kit. 24 figures, 1 table, and 37 references
Main Term(s): Criminology
Index Term(s): Suspect identification ; Forensics/Forensic Sciences ; Investigative techniques ; DNA fingerprinting ; NIJ final report
Sponsoring Agency: National Institute of Justice (NIJ)
US Department of Justice
Office of Justice Programs
United States of America
Grant Number: 2008-DN-BX-K299
Sale Source: National Institute of Justice/NCJRS
Box 6000
Rockville, MD 20849
United States of America

NCJRS Photocopy Services
Box 6000
Rockville, MD 20849-6000
United States of America
Type: Report (Study/Research)
Country: United States of America
Language: English
  To cite this abstract, use the following link:

* A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's web site is provided.