skip navigation

Justinfo Subscribe to Stay Informed

Add your conference to our Justice Events calendar


NCJRS Abstract


Subscribe to Stay Informed
Want to be in the know? JUSTINFO is a biweekly e-newsletter containing information about new publications, events, training, funding opportunities, and Web-based resources available from the NCJRS Federal sponsors. Sign up to get JUSTINFO in your inbox.

The document referenced below is part of the NCJRS Library collection.
To conduct further searches of the collection, visit the NCJRS Abstracts Database.

How to Obtain Documents
NCJ Number: NCJ 237984   Add to Shopping cart   Find in a Library
Title: Exploring Soil Bacterial Communities for Forensic Applications: A Genomics Approach
  Document URL: PDF 
Author(s): Bo U. Pietraszkiewicz
Date Published: 2010
Page Count: 186
  Annotation: This study examined how the characteristics of soil can best be used in forensic applications.
Abstract: The DNA profiles of bacteria present in a soil sample enable forensic examiners to distinguish among soils from different locations. Although bacterial profiles can be produced using several molecular methods, terminal restriction fragment length polymorphism (T-RFLP) analysis has been used most often to produce forensically relevant profiles; however, the current report proposes an alternative to T-RFLP analysis, i.e., comprehensive restriction fragment length polymorphism analysis (C-RFLP). This typing method uses high performance liquid chromatography (HPLC) in order to separate and visualize unlabeled DNA fragments. Neither method, however, readily allows forensic scientists to extrapolate which types of bacteria are present in the soil sample in question. Knowing the molecular identity of a peak in a DNA profile (i.e., which bacterial group is responsible for the presence of observed peaks) provides an additional layer of potentially useful information. This study used 454 high throughput sequencing in order to survey 14 soil samples, cataloging the major and minor components to soil bacterial communities. From these DNA libraries, five bacterial groups were selected as candidates for group-specific bacterial typing. Researchers then determined the forensic potential of using such targeted analysis. DNA from soils was amplified by using group-specific primers, digested with a restriction enzyme, and resolved using HPLC. The data indicate that group-specific profiles can be produced and used for forensic comparison due to the sufficient genetic variability within groups tested. Ultimately, research on group-specific typing will assist in the development of a multiplex kit for use in crime labs nationwide. 31 figures, 22 tables, and 77 references
Main Term(s): Police policies and procedures
Index Term(s): Trace evidence ; Evidence identification and analysis ; Forensics/Forensic Sciences ; Investigative techniques ; DNA fingerprinting ; NIJ final report
Sponsoring Agency: National Institute of Justice (NIJ)
US Department of Justice
Office of Justice Programs
United States of America
Grant Number: 2009-IJ-CX-0021
Sale Source: National Institute of Justice/NCJRS
Box 6000
Rockville, MD 20849
United States of America

NCJRS Photocopy Services
Box 6000
Rockville, MD 20849-6000
United States of America
Type: Report (Study/Research)
Country: United States of America
Language: English
  To cite this abstract, use the following link:

* A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's web site is provided.