skip navigation

Add your conference to our Justice Events calendar


Register for Latest Research

Stay Informed
Register with NCJRS to receive NCJRS's biweekly e-newsletter JUSTINFO and additional periodic emails from NCJRS and the NCJRS federal sponsors that highlight the latest research published or sponsored by the Office of Justice Programs.

NCJRS Abstract

The document referenced below is part of the NCJRS Library collection. To conduct further searches of the collection, visit the NCJRS Abstracts Database. See the Obtain Documents page for direction on how to access resources online, via mail, through interlibrary loans, or in a local library.

  NCJ Number: NCJ 240690   Add to Shopping cart   Find in a Library
  Title: Development of Synthetically Generated LEA Signatures to Generalize Probability of False Positive Identification Estimates
  Document URL: PDF 
  Author(s): Benjamin Bachrach ; Pan Gao ; Roger Xu ; Wei Wang ; Ajay Mishra ; Kaizhi Tang ; Guangfan Zhang
  Date Published: 01/2013
  Page Count: 72
  Annotation: This project developed a bullet data synthesis to generate Land Engraved Area (LEA) signatures by determining the characteristics of each brand and the details of each barrel.
  Abstract: This project was prompted by the nature of automated ballistics identification (ABI) systems, which require a large amount of data in order to evaluate performance. It is impractical to fire such a large number of bullets for this purpose. In order to address this circumstance, the current project developed a bullet data synthesis methodology for a class of guns based on a set of fired sample bullets. The results from the sample bullets can be used to generalize to a much larger population of firearms. The LEA signature is a one-dimensional signal computed from a digitized three-dimensional bullet surface. The LEA signature is used for bullet matching in ABI systems. The approach used in this project consists of a deterministic component and a random component. The deterministic component includes periodicities in a base curve profile, and the random component is best represented by the fractal model of an irregular curve. The parameters used in the generation of the base and fractal curves are obtained from signal analysis based on wavelet transformation. The details of this method are described in this report. An optimization procedure was applied to the synthesis process in order to ensure the matched and non-matched correlation distribution of the new synthesized dataset resemble that of the existing data of the same brand. Researchers also extended the data synthesis process from a one-dimensional LEA signature signal to a two-dimensional LEA image and further to a three-dimensional bullet surface. According to preliminary data synthesis results, newly generated LEAs for a brand show strong similarity to the LEAs in the same brand, but no similarity to different brands. 53 figures, 8 tables, and 20 references
  Main Term(s): Forensics/Forensic Sciences
  Index Term(s): Ballistics ; Firearms identification ; Automation ; Investigative techniques ; Firearm tracing ; NIJ final report ; NIJ grant-related documents
  Sponsoring Agency: National Institute of Justice (NIJ)
US Department of Justice
Office of Justice Programs
United States of America
  Grant Number: 2009-DN-BX-K236
  Sale Source: NCJRS Photocopy Services
Box 6000
Rockville, MD 20849-6000
United States of America
  Type: Report (Study/Research)
  Country: United States of America
  Language: English
  To cite this abstract, use the following link:

*A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's website is provided. Tell us how you use the NCJRS Library and Abstracts Database - send us your feedback.