COMPUTER SIMULATION

of a

POLICE EMERGENCY RESPONSE SYSTEM

Norbert Hauser
Gilbert R. Gordon
Julius Surkis

A Report Prepared for the United States Department of Justice Low Enforcement Administration

Grant No. 030

POLYTECHNIC INSTITUTE OF BROOKLYN
333 Jay Street

COMPUTER SIMULATION

$$
\begin{gathered}
\text { ofa } \\
\text { POLICE EMERGENCY RESPONSE SYSTEM }
\end{gathered}
$$

Norbert Hauser
Gilbert R. Gordon
Julius Surkis

A Report Prepared for the United States Department of Justice Law Enforcement Administration

Grant No. 030

POLYTECHNIC INSTITUTE OF BROOKLYN
333 Jay Street
Brooklyn, N.Y. 11201

In 1966, the Department of Justice's Office of Law Enforcement Assistance sponsored a project entitled "Formulation of a General Computer Model to Study the Operation of Police Departments" at the Polytechnic Institute of Brooklyn.

After exploring several areas, including the operation of a precinct, recruiting and personnel policies, and an overall approach to law enforcement in New York City, one critical function, communications and response was chosen for detailed analysis. Several computer models were developed, tested, and modified, resulting in three simulation programs described in this report.

Dr. Daniel J. Duffy developed the initial proposal in consultation with Justice Department and New York City Police Department personnel. He served as project director during the first year. In September 1967, Dr. Duffy left Brooklyn Polytechnic to become Vice President of Academic Affairs at New York State University's Maritime Academy. Dr. Norbert Hauser, senior researcher on the project became director, adding Messrs. Gilbert R. Gordon and Julius Surkis, both members of Polytechnic's teaching staff, to the group.

Messrs. Robert Roda and Michael Tirabassi, graduate students, each spent one year on the project collecting data, writing and testing computer programs. Mr. R. S. Shah also made major programming contributions on a part-time basis. Mr. Lawrence Parks, although not a member of the team, became interested in the subject and developed a model of the dynamics of crime prevention vs. criminal apprehension in partial fulfillment of his master's degree requirements.

The New York City Poice Department participated in this study by providing access to records, permission to observe and collect data, and by answering questions. Deputy Inspector Kanz and Captain Becker of the Communications Center, Deputy Inspector Lustig, 20th Precinct Commander, and Deputy Inspector Ravins, Planning Bureau Chief, consist-
ently offered friendly cooperation. Lieutenant Sherrid, who originally served as liason officer, became a consultant to the project after his retirement from the Police Department.

It is hoped that this report will be of use to law enforcement agencies throughout the country, not as a finished package which can be implemented immediately, but as an indication of how computer simulation car be used in resource allocation.

Brooklyn, N. Y.
September, 1969
Norbert Hauser
Gilbert R. Gordon
Julius Surkis

Page
CHAPTER I
INTRODUCTION I- 1
Models 2
Simulation 4
Alternatives to Simulation 5
Programming Languages 6
CHAPTER II
DESCRIPTION OF SYSTEM TO BE MODELED II- 1
Detailed System Description 3
Input Processing 3
Resource Assignment and Dispatching 3
Field Response and Disposition 4
CHAPTER III
MODEL DESCRIPTIONS III- 1
Model Development 1
Turret Board Model 2
Dispatching and Field Response Model 5
Preliminary Communication Center Model 12
Modeling Design 14
CHAPTER IV
data collection and analysis IV- 1
Actual Data Collection 1
Data From Records and Reports 2

CHAPTER V

MODEL EXPERIMENTATION V- 1
Turret Board Model 1
Response System Model 15
CHAPTER VI
dISCUSSION AND CONCLUSIONS VI- 1
APPENDIX A
COMPUTER PROGRAM - TURRET BOARD MODEL A- 1
Description 1
Block Diagram 4
Program Input and Output 7
APPENDIX B
COMPUTER PROGRAM - RESPONSE SYSTEM B- 1
Description 1
Block Diagram 23
Program Input and Output 32
APPENDIX C
COMPUTER PROGRAM - PRELIMINARY MODEL C- 1
Description 1
Block Diagram 5
Program Input and Output 10
Figure Page
1 Police Response System II- 2
2 New York City Police Response System II- 5
3
Input Processing III-4
5
Field Response and Disposition III- 967
4 Resource Assignment and Dispatching III- 8 4
Average Utilization of Turret 1 V- 3
Average Utilization of Turret 2 V-4
Number of Turret 2 Operators Busy 95% of Time V-5
Maximum Number of Busy Operators in Turret 2 v- 6
Sum of Maximum Number of Busy Operators in Turrets 1 and 2 v-7
Distribution of Time Spent in System by Emergency Calls5 Operators on Turret 120 Operators on Turret 2V- 8
Distribution of Time Spent in System by Emergency Calls
11 Operators on Turret 1
20 Operators on Turret 2v- 9
Distribution of Time Spent in System by Emergency Calls
18 Operators on Turret 1
20 Operators on Turret 2 V-10
Per Cent of Emergency Calls that Had to Wait 20 Operators on Turret 2 V-11
Per Cent of Emergency Calls That Had to Wait
Variable Number of Operators on Turret 1 and Turret 2 V-12
Mean Waiting Time for Emergency Calls that Waited V-13
Mean Waiting Time for Non-Emergency Ca11s V-14
Cumulative Distribution of Response Time for Various Resource Levels (Cars) V-16
Average Response Time for Various Resource Levels (Cars) $\mathrm{V}-17$
Average Response Time for Each Division V-18
Average Utilization of Dispatcher for Various Resource Leve1s (Cars) V-19
Average Waiting Time at Dispatcher v-20Figure
Cumulative Distribution of Response Time (Cars and Scooters) V -21 2324Average Response Time (Cars and ScootersV - 22
Average Response Time (Cars Only; Cars and Scooters) V -23
Average Response Time for Each Division V - 24
Average Utilization of Dispatcher V - 25
Average Waiting Time at Dispatcher V -26
Emergency Calls Conversation Time A- 4
Ambulance Calls Conversation Time A- 5
Non-Emergency Calls Conversation Time A- 6
Distribution of Non-Emergency Calls A- 7
Distribution of Emergency Calls (With and Without Ambulance) A- 8
Turret Board Model Block Diagram A- 9
Distribution of Calls by Location B- 5
Distribution of Calls by Request Type Division 1 B- 6
Division 2 B- 7
Division 3 B- 8
Division 4 B- 9
Division 5 B- 10
Division 6 B- 11
B- 12
43 Probability of Crime in ProgressB- 13
44 Mean Radio Reach Time B- 14
45 Mean Car (Scooter) Trave 1 Time B- 15
46 Probability of Arrest B- 16
47
Field Response Model Block Diagram B- 23
48 Preliminary Model Block Diagram C- 5

TABLES

Table Page
1 Distribution of calls - First Division IV- 4Second DivisionIV-48 Total Count By Boroughs
IV- 5
Third Division
IV- 5
Fourth Division
IV- 6
Fifth Division
IV- 6
Sixth Division
IV-7
All ManhattanIV-8
9 Statistical Report of Crime and Related Activities IV- 8
10 Monthly Emergency Calls IV-11
11 Breakdown of Crime Type Requests IV-13

CHAPTER I

INTRODUCTION

The urgency of studying police response systems was clearly demonstrated through the recent work done by the members of the Science and Technology Taskforce of the President's Commission on Law Enforcement and the Administration of Justice*. A study was conducted in Los Angeles observing the occurrence of incidents in two districts. The results showed that a decrease in police response time was correlated with increased probability of criminal apprehension.

A decrease in response time can be achieved by changes in the response system structure. This requires a thorough analysis of the response system. The resulting models can be used to evaluate various alternative policies within given constraints of limited funds, manpower, equipment, union agreements, political exigencies, etc. Alternatively, models may predict the degree of performance improvement resulting from increases in manpower, mechanization, redeployment of resources from one sector to another. Requests for additional funds supported by estimates of resulting benefits can be evaluated objectively and compared with competing requests.

The objective of the effort reported here is to describe and analyze the response system of an actual police department in a large urban area, New York City. Starting with the next chapter, this report is devoted to a detailed emergency response system, the logical structure of several computer simulation models, their implementation in the General Purpose Simulation System (GPSS), and a discussion of some simulation results. The remainder of this chapter will briefly describe the underlying concepts of modeling and simulation.

[^0]
Mode1s

A model is a representation of some process or "system." It may be concrete as, for example, a small scale model of a machine, or abstract as, for example, a set of equations describing the movement of an aircraft during landing. It may range from precise, quantitative, well thought out, tested and verified, to vague, intuitive, qualitative. It may be deterministic - change in temperature as gas is compressed, or stochastic - the odds of a certain event's occurrence under given circumstances. Since a model never incorporates all of the system's characteristics - if it did, it would no longer be a model but a replica - the all-purpose model does not and cannot exist. Instead, a model is designed to answer specific questions, make specific predictions, respond to specific inputs. Conclusions based on assumptions other than those within the model are unwarranted, and may actually be worse than unsubstantiated guesses.

It is important to realize that the use of models is not confined to scientists and engineers, but that all decisions in our daily lives are based on some kind of models. These may be intuitive, qualitative, and so deeply ingrained that we are not consciously aware of them. For example, a person driving an automobile does so with the aid of a fairly complex dynamic interactive model which programs his movements with relation to position, velocity and direction of vehicles and pedestrians on the road. The model may fail with disastrous consequences, for several reasons: (a) an important component - a car pulling out of a parking space - is left out, (b) a critical parameter - speed of an approaching vehicle while passing a truck - is wrongly estimated, (c) a component's behavior changes unexpectedly - a blowout causes a car to swerve, or (d) unexpected interactions - the swerving car causes other vehicles to change directions or speed suddenly. One reason for the relatively low number of road accidents is the human brain's ability to make rapid changes in its models. This is one important advantage man still has over the most sophisticated electronic device. A computer may execute or solve a model with far greater speed and accuracy than man, but - at least at the present state of knowledge - it cannot modify the structure of its models without human run model, it is essential to realize that its effectiveness depends on a thorough understanding of the structure, assumptions, accuracy, and pertinence of information that went into the model. Furthermore, the detailed description that follows is intended to encourage potential users to introduce changes which will make the model more representative of their particular situation. Under no circumstances should a decision maker expect to be able to "plug in" somebody else's model without prior critical examination.

Before leaving this subject, one more analogy may be useful. In searching for a fugitive suspect, police frequently construct a model, a sketch which hopefully reproduces some of the suspect's characteristic features. Such a model requires a combination of two types of inputs: (a) knowledge of the suspect's characteristics supplied by witness, and (b) skill to convert this knowledge into a sketch. Seldom, if ever, can one person meet both requirements. Instead, an interactive process of questioning, interpretation, tentative evaluation, revision, etc. takes place until the witness is satisfied.

Similar interactions take place between the analyst and the substantive expert in constructing a computer model of an existing or proposed system. The analyst may have an advantage over the artist by being able to observe personally an actual system, but the substantive expert should insist on "recognizing the sketch" before actually using a model. One purpose of this report is to demonstrate that, even though the computer requires specialized skills generally not found among top decision makers, computer models can be described in terms recognizable and subject to challenge by persons intimately familiar with the process being modeled. A significant byproduct of such interchange between analyst and decision maker is that it forces the latter to examine and explicitly state the assumptions underlying his own picture (model) of the system under consideration. Frequently this will give him new insights, which, in turn, may produce improvements without actually running the model on a computer in its present form.

Simulation involves the manipulation and observation of a model in a real or synthetic environment. Such a model ideally represents the essential characteristics, without frills or irrelevancies, of the system under investigation. In constrast with analytic models which are solved (exactly or approximately), simulation models are run. The analyst observes, gathers pertinent data, draws appropriate conclusions, introduces changes, and repeats this procedure until he has gained sufficient insight. The mass of data to be processed, and the desire to compress time, i.e. simulate years of operation in seconds or minutes, make a high speed computer an essential ingredient in most simulations.

Purposes of Simulation

Among the applications of simulation are:

1. Analysis of complex systems. This may involve:
a. estimation of parameters
b. observation of system behavior
c. exploration of effect of changes in structure, parameters, environment
d. sensitivity analyses

The system under. study may be
a. already in existence
b. partially operative
c. nonexistent

For example, the introduction of a computer into a communication system may be simulated and experimented with before the computer is available. In fact, such analysis will help determine whether a computer is necessary and, if so, what configuration will be most useful.
2. Demonstration. Complex systems which have been designed by

[^1]analytical and empirical methods can frequently be demonstrated to nontechnical personnel, management, or customers by simulation.
3. Training. Where training in the real system environment may be dangerous or costly, simulation may offer a realistic substitute. Examples are simulated airplane cockpits, radar networks, communcation systems, and war games.

Alternatives to Simulation

Broadly speaking, methods useful in system analysis and designed may be classified into three categories:

1. Analytical
2. Simulation
3. Experimentation on real system.

The methods are listed in order of increasing realism, ease of verification, testing, and understanding by management.

Unfortunately the order is also of decreasing power, generality, elegance, and efficiency.

Analytical methods, when applicable, are most powerful and efficient. They frequently indicate explicitly whether an optimal solution exists, whether it is unique, and may even lead us systematically to such solution. However, nature frequently has to be distorted beyond recognition to fit into a model amenable to analytical solution. Systems involving human interactions do not readily lend themselves to analytic approaches.*

Direct experimentation, at the other extreme, may be necessary because of the difficulty in abstracting a meaningful model of any kind. For example, while preliminary experiments in agricultural or medical research may be performed in the laboratory, tests on the real systems the land or the human body - are eventually necessary. This example illustrates two disadvantages of direct experimentation: time and danger.

[^2]In a police setting, the undesirability of extensive experimentation varying force sizes, radically changing assignments to precincts, shifts, trying different patrol routes and ratios of automobile to scooter to foot patrol - is obvious. Public safety depends too much on successful police operation to risk failure of an experiment. In addition, responses to circumstances that currently do not exist, but may reasonably be expected in the future - changes in population mix, crime patterns - as well as riots or other emergencies cannot be developed by direct experimentation. There is great need for a police "wind tunnel" that permits experimentation without risk, in a short time, under circumstances that do not exist now but may appear in the future.

Computer simulation provides such a vehicle, offering a combination of advantages (and disadvantages) of the other two approaches. In addition to permitting realistic models that need not conform to restrictive mathematical necessities it does not require an explicitly stated criterion function or "figure of merit." A decision maker may clearly prefer result A to result B without committing himself as to how many units of objective 1 he is willing to sacrifice for an additional unit of objective 2 .

In terms of experimentation, the analyst may hold every variable constant but the ones under consideration - a condition which can only be approximated in the laboratory, and which is unattainable in real life. In stochastic simulations, the seemingly impossible task of reproducing random events identically is accomplished by producing, according to definite rules, sequences of pseudo-random numbers which although perfectly predictable, exhibit almost every other characteristic of randomness.

Programming Languages

The great disadvantage of computer simulation used to be the tedium and cost of model development and verification. With standard procedureoriented languages such as FORTRAN or ALGOL, programming a simulation can be an overwhelming burden. This is particularly true for processes in which events take place parallel in time. Accounting for proper time sequencing, randomly fluctuating delays, processing times, waiting times
in service queues, etc., is not only difficult, but so tediuos as to discourage most analysts who are not also professional programmers. On the other hand, employment of a programmer inserts a source of distortion between the analyst and computer. In their desire to attain programming efficiency, programmers may unintentionally change the logic of a situation without the analyst's knowledge.

Several powerful simulation languages have recently been developed which allow the analyst to describe his problem or process model in a manner closely related to its logic. By far the most popular one is IBM's General Purpose Simulation System (GPSS)*, which is the language used in this report. This language automatically provided for all the accounting and housekeeping functions of a simulation, leaving the analyst free to concentrate on the problem being simulated.

The following chapters of this report include (1) a verbal description with diagrams of the system being modeled, (2) detailed verbal descriptions and logic diagrams of the various component models, (3) listings and sources of input data, (4) model experimentation results, (5) discussion of results, and (6) detailed descriptions and block diagrams of computer programs and computer printouts of programs and results of runs.

[^3]
CHAPTER 2

DESCRIPTION OF SYSTEM TO BE MODELED

System Structure

In the context of this study, the system is defined as the phase of police operations and resources that concerns itself with the response to requests for police assistance. It can be viewed as consisting of three interrelated subsystems:

1. Input Processing
2. Resource Assignment and Dispatching
3. Field Response and Disposition

The first two subsystems are sometimes referred to as the command and control subsystem. (Figure 1)

Input Processing

The input to the response system is initiated by the incidents that require police assistance. These are reported by various media:
a. by the police--using radio or telephone
b. by the public--using telephone
c. by alarm systems
d. by other departments--using telephone

The majority of requests for police assistance and service consists of telephone calls received at the Police Communications Center. The requests for assistance cover: felonies, misdemeanors, disturbances, ambulance calls, and other calls. The pertinent information on the request (time received, location, request type) is recorded. This requires accurate and efficient personne1. The data is then relayed to the second subsystem.

Resource Assignment and Dispatching

On the basis of data recorded on the request, a decision is made concerning the assignment of field resources. In most cases a patrol car is sent. The selection of a particular unit to respond to the request

POLICE RESPONSE SYSTEM
depends on the deployment and availability of resource units in the field. The unit closest to the request location is asked to respond.

Field Response and Disposition

The assigned unit proceeds to the designated location, attends to the matter at hand, and reports to the dispatcher via radio upon completion of its assignment.

DETAILED SYSTEM DESCRIPTION*

Input Processing

All telephone calls for police assistance come into the Police Communications Center in Lower Manhattan. The incoming calls are answered by two groups of operators. (Group I and Group II turret operators). Group I turret operators process only those calls that require police assistance.

If a Group I turret operator is available, he answers the call and determines whether it belongs in the emergency or non-emergency category. If it is an emergency call, he obtains the pertinent information on the request and records it on a CRD-7 form. A conveyor belt carries these forms to the dispatchers. If it is a non-emergency call (a complaint or a call requesting information), he transfers it to the Group II turret. Group II turret operators answer all non-emergency calls plus call which found the Group I operators busy. If both groups are busy, the call waits until a Group II turret operator becomes available. All calls which find the Group I turret operators busy are handled by the Group II operators ahead of non-emergency calls.

Resource Assignment and Dispatching

New York City is divided into police divisions each of which contains four to six contiguous precincts. Each precinct is divided into twelve to twenty sectors to which various field resource units are assigned. Each division has a dispatcher and one radio frequency at the Communications Center to contact and communicate with the field units of that division.

[^4]For efficiency and speed in communication, a master dispatcher is assigned to a group of divisions. He receives the CRD-7 form on the conveyor belt, determines division, precinct and sector of the request, and records it on the form. Then he hands the slip to the appropriate division dispatcher.

The dispatcher has a large map of his division in front of him with lights indicating field units in service. He attempts to reach an available field unit closest to the request location and relays the pertinent information to a police officer in that unit.

Field Response and Disposition

The assigned field unit travels to the requested location. The disposition of the case depends on the request characteristics. If the request concerns a felony, additional resources may be summoned, ambulances may be required; all these affect the disposition. If a suspected perpetrator is apprehended, an arrest is made, which increases the disposition time considerably. On the other hand, unfounded calls or minor disturbances may only require a very short disposition time.

After completing the disposition of the case, the field unit notifies the dispatcher that the assignment is complete and that the unit is back in service. Figure 2 summarizes the system description.

MODEL DESCRIPTIONS

Model Development

The initial model developed in this project concerned itself with the Communication Center as it existed prior to 1968. This model considers a single group of turret operators, no master dispatcher, only two dispatchers for all of Manhattan, and an ambulance dispatcher. It is included within this report since it represents the initial effort in the project. It may also be of interest to police departments with similar configurations.

The work on the initial model provided deeper insight into the operations of the police response system. It became evident that the resource assignment and the dispatching function were not independent of the field resource status. It was also clear that the field resource status had a major bearing on the overall response time of the police system. Thus, a more realistic view of the New York police response system could be accomplished by incorporating both the field resources and communication center functions.

In 1967, plans for reorganizing the Police Communication Center were released. They provided for the present set-up as described in the introductory section. It was decided to structure future models on the basis of the reorganized system.

From the experience gained in the initial phase, it became clear that the input processing could be viewed independently of the other two functions. Therefore, two separate models were developed:

1. The Turret Board Model (Input Processing)
2. The Dispatching-Field Resource Model (Resource Assignment and Dispatching - Field Response and Disposition)

This is a more efficient procedure than combining all three functions in one model. From a simulation point of view, since the output
from the Turret Board Model provides the input to the Field Response Model, the two models can be run independent of each other, saving appreciable computer time without compromising quality of results.

TURRET BOARD MODEL

Description

The model represents the operation of the input processing sector of the Communications Center. This sector can be viewed as an independent subsystem since it is unaffected by what happens in the two other sectors: resource assignment and dispatching, field response and disposition. For a given configuration of personnel at the turret boards and a given arrival rate of calls to the communication center, the model proceeds as follows:

Calls according to the specified arrival rate are generated. Each call is assigned a type (emergency, non-emergency) according to the given percentage distribution of emergency and non-emergency calls. The model then determines the availability of a Group I turret operator. If one is available, he responds to the call. Since the model has assigned the appropriate call type, (emergency, non-emergency) the Group I turret operator designated to answer the call responds accordingly:

If it is a non-emergency call, the operator spends a random amount of time, in accordance with a given distribution, to identify it as anemergency call. The model then releases the Group I turret operator and refers the call to the Group II turret operators.

If the call is an emergency, the Group I turret operator requires some amount of time to converse and record the pertinent information. The time spent is determined from the distribution specified in the model. The Group I turret operator is then released and the call processing is complete. If the model finds all Group I turret operators busy at the arrival of a call, the call is transferred to the Group II turret. Priority is assigned to these transferred calls so that they are answered before the identified non-emergency calls waiting for Group II response.

These two types of calls, the identified non-emergency calls and calls which found Group I operators busy, are handled by the Group II turret operators in the following manner:

The model checks the availability of Group II turret operators; if one is available, he answers the call. If it is an emergency call, he responds spending a random amount of time according to a specified distribution. At the completion of this time, the Group II turret operator is released and the processing on the call is complete. If the call is non-emergency, the Group II turret operator spends a random amount of time indicated by the distribution corresponding to the response required for non-emergency calls. When all Group II turret operators are busy, calls transferred to them must wait (queue). Calls that found Group I turret operators busy, will be handled ahead of identified non-emergency calls.

Al1 telephone conversations take a random amount of time. Each type, however, is distributed over a different range. Thus, the time required by a Group I turret operator to determine that a call is non-emergency will usually take less than that required by a Group II operator to dispose of such a call. The model, therefore, provides a specific time distribution, obtained from actual observations, for the duration of each type of cal1.

Figure 3 summarizes the model's logic.

The processing of calls in the above described manner is simulated over a period of time specified by the user. During the run, various statistics are gathered. These are useful in evaluating the performance of the system under the given input conditions. These are enumerated in the Basic Output section of this chapter.

Basic Input to the Model

The Turret Board Model of the Communication Center requires the following input information:

Figure 3
POLICE RESPONSE SYSTEM

1. The arrival distribution of calls
2. Time distribution to identify non-emergency calls
3. Time distribution to respond to non-emergency calls
4. Time distribution to process emergency calls
5. Percentage of emergency and non-emergency calls
6. Number of Group I and Group II turret board operators

Basic Output of the Model

The Turret Board Model of the Communications Center produces the following output:
I. For each group of Turret Operators:

1. The average number busy
2. Maximum number of operators busy
3. The average utilization (and idle time) of operators
4. Number of calls handled
5. Average call handling time
II. For incoming calls:
6. Total processing time distribution for emergency calls
7. Waiting time distribution for emergency calls transferred to Group II turret operators
8. Time until processing starts on non-emergency calls (including identification by Group I turret operators and waiting time at Group II).

Results of experimentation on this model are discussed in Chapter V. A detailed explanation of the GPSS program with flow charts and complete listing of code and computer printout of results, is in Appendix A.

DISPATCHING AND FIELD RESPONSE MODEL

Description

This model represents the selection, assignment, and dispatching of field resources, the field response after dispatching, and the final dis-
position of the request which initiated the call. While the model structure is general and applies to all of New York City, it was limited to the Borough of Manhattan in this particular version to conserve computer time.

Some of the significant assumptions defining the scope of the model are:

1. Every call for police assistance initiates the dispatch of a single unit of field resource.
2. Different resources are dispatched depending on the type of call.
3. Priority dispatching depends on the type of call and other characteristics.
4. There is no resource interchange between divisions.
5. Multiple resource dispatching is not provided for.

The model generates calls which are assigned an emergency, non-emergency status, and point of origin if the request is an emergency call. From this point on, only Manhattan emergency calls are considered. * The crime or request type characteristics are assigned from appropriate distributions. These characteristics describe whether the crime or request is inside or outside, in progress or past. Then the call goes through the turret boards, spending an amount of time selected from a distribution generated by the Turret Board Model described earlier. Serious crimes in progress are assigned priority in terms of handing. The information pertaining to the request is then taken to the appropriate master dispatcher by a conveyor belt, where it may have to wait. High priority requests are handled first. After processing by the master dispatcher, the request is forwarded to the dispatcher responsible for the division in which the request originated, where it waits until the dispatcher is able to attend to it. The dispatcher cannot complete the handing of a request if all field resources are busy. The time it takes for the dispatcher to reach a field unit by radio is also accounted for by the model. The model then

[^5]assigns the time it takes for the field unit to reach the scene of the request. If the crime was in progress when reported, the model decides whether or not an arrest is made. This arrest probability depends on the time it took the field resource to respond to the call. The model accumulates this elapsed time from the moment the call is initiated up to the arrival of the field unit at the scene. The disposition is then determined by taking into account the request type and whether or not an arrest was made. After dispositions the field unit reports back to the dispatcher.

The above-described procedures are summarized in Figures 4 and 5.
The model simulates the dispatching and field disposition of the Police Response System over a time span specified by the user during which various statistics are gathered to aid the user in evaluating the performance of the system. These are enumerated in the Basic Output section of of this chapter.

Figure 4

Figure 5

POLICE RESPONSE SYSTEM

FIELD RESPONSE AND DISPOSITION

Basic Input to the Model

The model requires the following distributions:

1. Time spent at the turret boards by an emergency call. (This distribution can be obtained from Table 2 of the Turret Board Mode1.)
2. Location and nature of call. (This input provides information concerning the breakdown of incoming calls as follows:)
> a. Non-emergency calls and Non-Manhattan emergency calls.
> b. Emergency calls from Manhattan Divisions (Six Divisions in Manhattan)

3. Type of Request

Given that the call is an emergency from a division in Manhattan, the frequency breakdown for various requests must be supplied:
a. murder, rape
b. felonious assault, robbery
c. burglary, grand larceny
d. grand larceny motor vehicles
e. ambulance request
f. misdemeanor
g. offense
h. non-crime request

Such a breakdown has to be supplied for each division.
4. Percent of time that request types (or crime types)
occur inside or outside.
5. Percentage of time that reported crimes are in progress or past (not applicable to ambulance calls and non-crime requests)
6. Mean radio reach time as a function of resource utilization (a relationship between the number of free field units and the time it takes to reach a unit is assumed)
7. The mean travel time of a field unit to the request location as a function of resource utilization
8. Resources assigned by request type.
9. Arrest probability expressed as a function of response
time
10. Mean disposition time expressed as a function of request type and arrest status

Basic Output of the Model
The following output statistics are produced:
I. For each dispatcher and master dispatcher:

1. Average utilization
2. Number of calls handled
3. Average time per call
II. For each group of field resources:
4. Average number in use
5. Average utilization (and idle time)
6. Number of calls using the resources
7. Average time in use per call
III. For all queues in the system:
8. Maximum contents
9. Average contents
10. Average time spent in queue
11. Average time spent in queue for those calls that had to wait
IV. For incoming calls:
12. Distribution of time to reach dispatcher
13. Distribution of time until dispatch. Separate tables by division and priority and a summary for all calls.
14. Distribution of time until scene reached (response time). Separate tables by division and priority and a summary for all calls.

4. Distribution of time until disposition completed (time spent in system). Separate tables by division and priority a summary for all calls.

Results of experimentation on this model are discussed in Chapter V. A detailed explanation of the GPSS program, with flow charts and complete listing of code and computer printout of results, is in Appendix B.

PRELIMINARY COMMUNICATION CENTER MODEL

Description

This model represents the Commications Center as it operated prior to the reorganization which took place during 1968. The Communications Center answered only calls from Manhattan. There was only one turret. In addition to answering calls and filling out forms for emergency calls, the turret operators were required to determine the precinct for the call, perform other clerical operations, and notify the precinct house of the call. There were no master dispatchers, and two dispatchers served all of Manhattan.

The model considers the turret board, the Manhattan North dispatcher and the ambulance dispatcher.

Calls are generated from an input distribution which include emergency, emergency with ambulance, and non-emergency calls. If a turret board operator is available, the call is handled, otherwise it waits.

Different telephone handling times are assumed for the three types of calls. Depending on the call type, the following procedures are performed:

If the call is an emergency, the call slip is sent to the dispatcher, and the turret operator spends time notifying the appropriate precinct and performs additional clerical work on the call.

If the call is an emergency with required ambulance, a copy of the call slip goes to the dispatcher and another copy is forwarded to the ambulance dispatcher. Then the turret operator proceeds to notify the appropriate precinct as in the emergency call case.

If the call is of the non-emergency type, no further operations are performed. The model only treats the Manhattan North patrol car dispatcher. However, the ambulance dispatcher handles calls for all Manhattan. The Manhattan North calls go to the dispatcher; if he is busy, they queue. The dispatcher (patrol car or ambulance) spends time reaching the appropriate resource. Then the patrol car spends time disposing of the case and reports back to the dispatcher. The same holds for the ambulance.

Basic Input to the Mode1:
The preliminary Commication Center Model requires the following distributions:

1. The arrival rate of calls
2. Telephone handing times for different types of calls
3. Time to notify precinct
4. Radio reach times for patrol car and ambulance dispatchers
5. Disposition times for patrol cars and ambulances
6. Report-back times
7. Percentage of call types

Basic Output of the Model
The model produces the following output statistics:
I. For the Turret Operators:

1. Average number of operators busy
2. Maximum number busy
3. Average utilization (and idle time) of operators
4. Number of calls handled
5. Average call handling time
II. For the Dispatchers:
6. Average utilization (and idle time)
7. Average call handling time
8. Average number of calls in queue
9. Average waiting time of calls
III. Distributions:
10. Time between call and dispatcher
11. Time between call and completion of dispostion

Results of experimentation on this model are discussed in Chapter V. A detailed explanation of the GPSS program, with flow charts and complete listing of code and computer printout of results, is in Appendix C.

MODELING DESIGN

The modeling of a complicated urban system must be motivated by significant aspects of the system that one wishes to emphasize. In this case, the variables of major interest were response times, and utilization of personnel and equipment. It is clear that the Police Response System can be viewed as a complex queueing system. GPSS was chosen as the simulation language, since it is designed to facilitate the construction of simulation models of such service systems.

The various elements of the system must be examined to determine their effect on the system variables of interest. The elements of the Police Response System are turret board operators, master dispatchers, dispatchers (each with a radio frequency for contacting field units assigned to his division), and field units of various types (cars, scooters). These elements affect various components of response time and these components must also be delineated.

The components of response are the following:

1. Time spent by the turret operator conversing and recording information.
2. Time for conveyor belt to carry information to master dispatcher.
3. Time master dispatcher spends determining precinct and sector.
4. Time to dispatch of field unit (radio reach time).
5. Time for field unit to travel to the scene of the complaint.

Two other time components for handling the request, although not components of response time, are important. These are:
6. Time for field unit to dispose of the request.
7. Time for field unit to report back to dispatcher.

The importance of these components will become clear in the course of the discussion. Of course, all waiting times for service elements constitute important time components, but these are inherent to any queueing simulation and need not be considered here.

Some of these time components can accurately be modeled as purely random variables whose distribution is specified in the model. This is the case for Items $1,2,3$, and 7 since their distributions are unaffected by other elements of the system.

The time required for the dispatcher to reach and dispatch a field unit was observed to be dependent upon the state of the system. If all field units are available, he need only contact the field unit assigned to the sector from which the request originated. As the number of the field units assigned to requests increases, the time required to locate a unit to respond to a request increases. This component was modeled as a family of distributions whose parameters varied as a function of field resource utilization. This dynamic interaction requires a more careful modeling of the field resource utilization and clarifies the need to consider Items 6 and 7 above. Since data on the specific nature of the distributions were unavailable and difficult to obtain, the family of distributions used in the model were exponential with the mean expressed as a function of field utilizations.

Similarly, the time to reach the scene is related to field resource utilization. The greater the number of field units assigned to requests, the greater the probability of a unit at a greater distance from the scene being assigned. Again data were unavailable and difficult to collect, and this component was also modeled as a family of exponential distributions with the mean expressed as a function of field resource utilization.

The need to model the field resource utilization requires a careful analysis of disposition times (Item 6). There are many factors which affect the time required to handle a request. The two most important factors are the type of request and whether or not an arrest is made. It was therefore important to model arrests. Studies have shown that one of the most important factors in whether or not an arrest is made, given a crime in progress, is the response time. The factors of in-progress or past, and the probability of arrest as a function of response time were also incorporated. Other factors may also affect disposition times, such as crimes occuring inside or outside. The disposition times were modeled as a family of exponential distributions with the mean as a function of request type and whether or not an arrest is made. Seven categories of request types are defined in the model.

These concepts incorporate into the model many of the dynamic interactions of the Police Response System.

An important point, which leads to increased simulation efficiency, is the fact that time components connected with turret board processing are not dynamically related to the Dispatching and Field Response sectors of the system. Given an arrival rate of calls and a level of personnel on the turret boards, processing can be described purely as a random variable having a probability distribution in no way affected by the state of the dispatchers or field units. Conversely, none of the time components connected with the Dispatching and Field Response segments of the system are influenced by the state of the Turret Board Sector. This allows for decoupling the simulation model. A Turret Board Model simulates turret board processing only. The second model incorporates the turret board processing time as a probability distribution obtained from the output of the Turret Board Mode1.

This decoupling provesefficient for a number of reasons. Turret board experimentation can be performed without incurring the time required to simulate dispatching and field response each time.

Then, dispatching and field response runs can be made assuming a fixed level of turret board personnel. Since these are the desired types of runs, the savings in time can be significant. A second important factor is that the Turret Board Model requires the processing of all call types, whereas the Dispatching and Field Response Model simulates emergency calls only.

In any large simulation, difficulties arise in data collection and reduction. It can readily be seen that data problems in a public service organization like the police department are immense. Since the diversity and immediate nature of their operations preclude detailed data accumulation and reduction, only skeletal data is recorded and stored. However, efforts are underway to increase the scope of data for management decisions and modeling.

For the models discussed in this report, some of the data needed was either unavailable or required a major data collection and reduction effort.

Since the basic objective of this study was to develop and demonstrate the use of simulation models, the lack of "accurate" data should be considered of a secondary nature. However, the models pinpoint the type of data necessary to structure simulation models. Thus in designing management information schemes for police activity, the type of data required for simulation models can be reduced and generated as a byproduct of these routine management reports.

The data used in the models are of a reasonable nature since whenever assumptions were made, they were deduced from related available data.

The data collection and reduction effort consisted of the following activities:

1. actual data collection
2. review of police records and reports
3. discussions with police officials

1. Actual Data Collection:

This phase of data collection was comprised of determining call handing times as they arrived at the police communications center. The data pertain to a Friday evening in March (3-28-68).

The turret board operators were observed and call types (emergency, emergency with ambulance, non-emergency) and duration were recorded. It was not possible to monitor or count all calls that came to the communications center at the time.

From the data collected the following call duration distributions were obtained:

1. Emergency Calls (Figure 29)
2. Emergency with Ambulance (Figure 30)
3. Non-emergency Calls (Figure 31)

These distributions form the basis for the call duration times used in the Turret Board Model. (Figures 32, 33)

During the same evening the dispatchers were also observed to obtain data on radio reach times. It is extremely difficult to obtain quantitative data due to the level of activity in the dispatching area. These observations were useful in forming an impression for the distribution relating radio reach times to resource utilization. (At approximately 50% utilization the mean radio reach time was 25 seconds).

2. Data From Records and Reports

From discussions and the study of yearly data it was established that a Friday evening in July would be a representative time to study peak period demands on the police response system. July 21,1967 was chosen as the day for which police records (CRD-7 slips) would be studied.

From these records, number of emergency calls and ambulance requests by division and by time of day were tabulated for Manhattan and Brooklyn. Number of daily calls from the other boroughs was also recorded.

This information was used in establishing the origin and frequency of emergency calls. The data also aided in determining the frequency of one request type ambulance calls.

From "The Statistical Report of Crime and Related Activity NYC Police Department (July 1967)", divisional crime frequency counts
as well as frequency of crimes committed inside and outside were extracted.

From 20th Precinct (Manhattan) Management Reports, dispọition times on crime types were obtained.
a. Data from Police Records July 21,1967

The CRD-7 slips were tabulated by division (Manhattan) by hour for emergency and ambulance calls. The data are recorded and displayed in the following manner.

```
Column 1: Hour of day
Column 2: Number of emergency calls not including
    ambulance requests
Column 3: Number of abulance calls
Column 4: Total number of emergency calls (sum of
    columns 2 and 3)
Column 5: Hourly percent of daily emergency calls
                                (column 4 divided by daily total of column 4
                        expressed as percent)
Column 6: Percent ambulance calls (column 3 divided by
        column 4 expressed as percent)
```

1st. Div. $(1,4,5,6,7)$
2nd. Div. $(9,10,13,14)$

$\begin{aligned} & \text { y } \\ & \text { : } \end{aligned}$			$\begin{aligned} & \vec{y} \\ & \stackrel{\rightharpoonup}{0} \\ & \text { م } \end{aligned}$		$\begin{aligned} & \dot{\text { 早 }} \\ & \text { 号 } \end{aligned}$
Midnte.	13	3	16	5.1	18.8
$1 \mathrm{a} . \mathrm{m}$.	9	-	9	3.1	-
$2 \mathrm{a} . \mathrm{m}$.	9	1	10	3.4	10.0
3 am.	7	1	8	2.7	12.5
$4 \mathrm{a} . \mathrm{m}$.	3	1	4	1.4	25.0
5 a.m.	4	-	4	1.4	-
6 a.m.	1	-	1	. 34	-
7 a.m.	2	-	2	. 68	-
$8 \mathrm{a} . \mathrm{m}$.	5	2	7	2.4	28.6
$9 \mathrm{a} . \mathrm{m}$.	8	1	9	3.1	11.1
$10 \mathrm{a} . \mathrm{m}$.	9	5	14	4.8	35.7
11 a.m.	8	3	11	3.7	27.3
Noon	7	4	11	3.7	36.4
$1 \mathrm{p} . \mathrm{m}$.	10	3	13	4.4	23.1
2 p.m.	6	3	9	3.1	33.3
$3 \mathrm{p} . \mathrm{m}$.	10	2	12	4.1	16.7
4 p.m.	12	3	15	5.1	20.0
5 p.m.	9	4	13	4.4	30.8
6 p.m.	14	3	17	5.8	17.8
$7 \mathrm{p} . \mathrm{m}$.	17	10	27	9.2	37.0
8 p.m.	15	5	20	6.8	25.0
9 p.m.	12	2	14	4.8	14.3
10 p.m.	18	5	23	7.8	21.8
$11 \mathrm{p} . \mathrm{m}$.	19	5	24	8.2	20.8
	227	66	293		

TABLE 1
distribution of calls

		Div	（16，	7,18	
	$\stackrel{\sim}{\text {－}}$	$\stackrel{\sim}{\text {－}}$		－	
$\begin{aligned} & \text { 블 } \\ & \text { 뭉 } \end{aligned}$		$\begin{aligned} & \dot{\text { 最 }} \\ & \text { 茾 } \end{aligned}$	$\begin{gathered} \vec{N} \\ \stackrel{\rightharpoonup}{0} \\ \underset{\sim}{n} \end{gathered}$	宫	－
Midnte．	10	1	11	5.0	9.1
$1 \mathrm{a} . \mathrm{m}$ ．	7	2	9	4.1	22.2
2 a．m．	6	2	8	3.7	25.0
$3 \mathrm{a} . \mathrm{m}$.	5	2	7	3.2	28.6
4 a．m．	2	－	2	． 9	－
5 a．m．	2	－	2	． 9	－
6 a．m．	3	1	4	1.8	25.0
$7 \mathrm{a} . \mathrm{m}$.	3	－	3	1.4	－
8 a．m．	7	－	7	3.2	－
$9 \mathrm{a} . \mathrm{m}$.	6	2	8	3.7	25.0
$10 \mathrm{am}$. ．	9	－	9	4.1	－
11 am.	6	1	7	3.2	14.3
Noon	3	1	4	1.8	25.0
1 p．m．	9	－	9	4.1	－
2 p．m．	12	4	16	7.3	25.0
$3 \mathrm{p} . \mathrm{m}$ ．	8	5	13	6.0	38.2
4 p．m．	7	2	9	4.1	22.2
5 p．m．	7	2	9	4.1	22.2
6 p．m．	11	1	12	5.5	8.4
7 p．m．	13	1	14	6.4	7.1
8 p．m．	4	－	4	1.8	－
9 p．m．	10	5	15	6.9	33.3
10 p．m．	14	1	15	6.9	6.7
11 p．m．	21	－	21	9.6	－
	185	33	218		

TABLE 3

4th．Div．（19，20，22，23）

5th．Div．$(24,26,30,34)$

		न̈7 J		®	
$\begin{aligned} & \text { 品 } \\ & \text { व } \end{aligned}$	$\begin{aligned} & \text { of } \\ & \text { 㥻 } \\ & * \end{aligned}$	$\begin{aligned} & \dot{\text { O }} \\ & \text { 最 } \\ & \# \end{aligned}$		$\begin{aligned} & \vec{H} \\ & \text { N} \\ & \text { 0a } \end{aligned}$	
Midnite	13	4	17	3.9	23.5
$1 \mathrm{a} . \mathrm{m}$ ．	15	5	20	4.6	25.0
2．a．m．	11	2	13	3.0	15.4
$3 \mathrm{a} . \mathrm{m}$ ．	5	－	5	1.2	－
4 a．m．	9	1	10	2.3	10.0
5 a．m．	9	1	10	2.3	10.0
$6 \mathrm{a} . \mathrm{m}$.	4	－	4	． 9	－
7 a．m．	4	1	5	1.2	20.0
8 a．m．	6	2	8	1.8	20.0
9 arm ．	16	2	18	4.2	11.1
$10 \mathrm{a} . \mathrm{m}$.	10	2	12	2.8	16.7
11 a．m．	12	4	16	3.7	25.0
Noon	10	3	13	3.0	23.1
1 p．m．	15	4	19	4.4	21.0
2 p．m．	10	1	11	2.5	9.1
3 p．m．	17	4	21	4.8	19.0
4 p．m．	26	2	28	6.5	7.1
5 p．m．	21	3	24	5.5	12.5
6 p．m．	26	9	35	8.1	25.7
7 p．m．	21	2	23	5.3	8.7
8 p．m．	27	4	31	7.2	12.9
9 p．m．	25	5	30	6.9	16.7
10 p．m．	29	6	35	8.1	17.1
11 p．m．	22	3	25	5.8	12.0
	363	70	433		

TABLE 5

6th．Div．$(25,28,32)$

$\begin{aligned} & \underset{\pi}{7} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { न్ } \\ & \text { ত̃ } \end{aligned}$			
울 a	$\dot{\text { 完 }}$			$\dot{\text { 安 }}$
17	2	19	4.3	10.5
25	4	29	6.6	13.8
9	－	9	2.1	－
4	－	4	． 9	－
6	－	6	1.4	－
5	－	5	1.1	－
5	3	8	1.8	37.5
6	3	9	2.1	33.3
8	3	11	2.5	27.3
8	3	11	2.5	27.3
9	2	11	2.5	18.2
17	6	23	5.2	26.1
10	3	13	3.0	23.1
17	10	27	6.1	37.0
20	9	29	6.6	31.0
8	2	10	2.3	20.0
19	9	28	6.4	32.2
24	5	29	6.6	17.2
21	6	27	6.1	22.2
25	3	28	6.4	10.7
20	2	22	5.0	9.1
26	4	30	6.8	13.3
20	13	33	7.5	39.4
14	4	18	4.1	22.2
343	96	439		

ALL MANHATTAN

	$\stackrel{\text { N゙ }}{\text { J̃ }}$	7 0 0		ถ๐	
烒		$\begin{aligned} & \dot{\text { 夏 }} \\ & = \end{aligned}$	$\begin{aligned} & \text { Ty } \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \vec{H} \\ & \underset{Z}{3} \\ & 0 \end{aligned}$	首
Midnite	95	14	109	4.9	12.8
$1 \mathrm{a} . \mathrm{m}$ ．	77	15	92	4.1	16.3
$2 \mathrm{a} . \mathrm{m}$ ．	49	8	57	2.5	14.0
$3 \mathrm{a} . \mathrm{m}$ ．	32	6	38	1.7	15.8
$4 \mathrm{a.m}$.	33	2	35	1.6	5.7
$5 \mathrm{a} . \mathrm{m}$ ．	27	5	32	1.4	15.6
6 a．m．	23	6	29	1.3	20.7
7 a．m．	31	6	37	1.6	16.2
8 a．m．	45	15	60	2.7	25.0
9 a．m．	62	12	74	3.3	16.2
$10 \mathrm{a} . \mathrm{m}$ ．	64	19	83	3.7	22.9
$11 \mathrm{a} . \mathrm{m}$ ．	62	22	84	3.7	26.2
Noon	55	17	72	3.2	23.6
$1 \mathrm{p} . \mathrm{m}$ ．	85	26	111	4.9	23.4
$2 \mathrm{p} . \mathrm{m}$ ．	84	27	111	4.9	24.3
$3 \mathrm{p} . \mathrm{m}$ ．	85	28	113	5.0	24.8
4 p．m．	125	32	157	7.0	20.4
5 p．m．	108	22	130	5.8	16.9
6 p．m．	109	26	135	6.0	19.3
7 p．m．	113	29	142	6.3	20.4
8 р．m．	92	16	108	4.8	14.8
9 p．m．	115	24	139	6.2	17.3
$10 \mathrm{p} . \mathrm{m}$ ．	127	35	162	7.2	21.6
$11 \mathrm{p.m}$.	121	13	134	6.0	9.7
	1819	425	2244		

TABLE 7

dISTRIBUTION OF CALLS

TOTAL COUNT BY BOROUGHS

BOROUGH	EMERGENCY	EMERGENCY WITH	
MANHATTAN	1,819	AMBULANCE	TOTAL
BROOKLYN	1,491	425	2,244
BRONX	836	441	1,932
QUEENS	1,075	227	1,063
RICHMOND	288	225	1,300

TABLE 8

b. Divisional Crime and Related Activities From Police Reports

To obtain data on divisional police activity in the Borough of Manhattan, "The Statistical Report of Crime and Related Activity, New York City Police Department (July 1967)" was used:
Division 1No. in July 1967
Murder and Rape10
Robbery and Felonious Assault 202
Burglary and Grand Larceny 1,185
Grand Larceny Motor Vehicles 154
Misdemeanors 1,889
Offenses 721
4,161
Division 2
Murder and Rape 17
Robbery and Felonious Assault 379
Burglary and Grand Larceny 2,245
Grand Larceny Motor Vehicles 200
Misdemeanors 1,784
Offenses 452
Division 3No. in July 1967Murder and Rape8
Robbery and Felonious Assault 234
Burglary and Grand Larceny 1,646
Grand Larceny Motor Vehicles 135
Misdemeanors 1,716
Offenses 852
Division 4
Murder and Rape 14
Robbery and Felonious Assault 340
Burglary and Grand Larceny 1,606
Grand Larceny Motor Vehicles 164
Misdemeanors 1,833
Offenses 728
Division 5
Murder and Rape 22
Robbery and Felonious Assault 439
Burglary and Grand Larceny 1,194
Grand Larceny Motor Vehicles 135
Misdemeanors 2,055
Offenses 181
Division 6
Murder and Rape 33
Robbery and Felonious Assault 891
Burglary and Grand Larceny 1,208
Grand Larceny Motor Vehicles 114
Misdemeanors 1,801
Offenses 305
4,683
Total All Manhattan $\frac{4,352}{26,888}$

The information presented so far was used to arrive at the following input distributions and parameters:

1. Breakdown of total calls into emergency calls by division in Manhattan and other calls. (non-emergency)
2. Breakdown of emergency calls by request type by division in Manhattan.
3. Total number of peak hour calls.

From the total monthly Manhattan felonies (Table 9) an attempt was made to determine the number of peak hour crime request calls. These constitute request types 1 through 4 and 6, 7. These are the only request types reported in figures given in Table 9.

From Table 7, the peak hour was determined to be between 10 pm and 11 pm . The number of emergency calls during this peak hour was 162 (7.2\% of daily total).

An estimate of daily crime-request calls was made, 867 calls. This assumes that there is no significant daily variation throughout the month on crime requests.

To obtain peak hour crime request calls:
(867) (0.072) $=63 \mathrm{calls}$

Total number of emergency calls are made of crime requests, non-crime requests (request type 8) and ambulance requests.

For ambulance calls during the peak hour 20% was used. (actual for July 21, 1967, 21.6\%)

The non-crime request percentage was calculated indirectly as follows:
$63+(A+N) 162=162$
$\mathrm{A}=$ Fraction of ambulance requests $=0.2$
$\mathrm{N}=$ Fraction of non-crime requests
Solving for N, we obtain $\mathrm{N}=.411$

40\% was used for non-crime requests during the peak hour.

Using these percentages we can estimate total number of emergency calls for the month for Manhattan.

These are calculated as follows:

Crime request calls (Table 9) are divided by 1-(A+N) give monthly emergency calls.

Monthly Emergency Calls

Div. 1	Div. 2	Div. 3	Div. 4	Div. 5	Div. 6
10,400	12,680	11,470	11,710	10,050	10,880

TABLE 10

These monthly calls can be used to calculate an estimate of peak hour emergency calls by division. (Results rounded to next higher integer).

Div. 1	Div. 2	Div. 3	Div. 4	Div. 5	Div. 6
25	30	27	28	24	26

TABLE 10 A

To obtain the breakdown of total calls into emergency calls by division in Manhattan and other calls, the percent non-emergency calls has to be estimated.

After discussion with police officials, this was set at 30% of all incoming calls.

In addition, the percent of non-Manhattan emergency calls have to be assumed. This was approximated by studying the boroughs of Manhattan and Brooklyn. In Manhattan 7.27\% of daily emergency calls occurred during the peak hour and in Brooklyn 8.2% of daily emergency calls occurred during the peak hour. An estimate for peak-hour emergency calls were made for the other boroughs taking 7.7% of daily emergency calls during the peak hour.
Manhattan 162
Brooklyn 159
Queens 100
Bronx 82
Richmond 24
Total $\overline{527}$
1300 X . 077
1063 X . 077
31.4 X . 077

The total number of calls was estimated by using total number of emeigency calls and the percent of non-emergency calls (30\%):

$$
\frac{527}{1-.30}=750 \mathrm{calls}
$$

To calculate emergency calls as a percent of all calls by division, figures of Table 10 A must be divided by total number of calls (750).

Emergency call Percentages for Manhattan

Div. 1	Div. 2	Div. 3	Div. 4	Div. 5	Div. 6
3.3	4.0	3.6	3.7	3.2	3.5

Note: Non-emergency 30%

Non-Manhattan emergency 48.7\%

Using the figures of Table 10 and the appropriate divisional crime type breakdowns in Table 9, the breakdown of emergency calls by request type for each division can be obtained.
BREAKDOWN OF \% CRIME TYPE REQUESTS

CRIME TYPE	DIV. 1	DIV. 2	DIV. 3	DIV. 4	DIV. 5	DIV.
	NO. \%					
Murder \& Rape	10.10	17.13	$8 \quad .07$	14.12	22.22	33.30
Robbery \& Fel. Assault	2021.9	3793.0	2342.0	$340 \quad 2.9$	4394.4	8918.2
Burglary \& Grand Larceny	118511.4	224517.7	164614.3	160613.7	119411.9	120811.1
Grand Larceny M.V.	1541.5	2001.6	1351.2	1641.4	1351.3	1141.0
Misdemeanors	188918.2	178414.1	171615.0	183315.6	205520.3	180116.4
Offenses	$721 \quad 6.9$	$\begin{array}{lll}452 & 3.6\end{array}$	8527.4	$728 \quad 6.2$	1811.8	$305 \quad 2.8$
Total Emergency Calls	10,400	12,680	11,710	11,710	10,050	10,880

[^6]Note: The ambulance request percentage was set at 20 and other non-crime request percentage was set at 40. The mean inter-arrival time for all incoming calls is calculated from:
$3600 \mathrm{sec} / \mathrm{hr} \div 750 \mathrm{calls}=4.8$ seconds

CHAPTER V

MODEL EXPERIMENTATION

Turret Board Model

A set of simulation runs was made to demonstrate some of the possible application areas of the model. The objective of these runs was to explore the performance of the system under varying input levels and under varying manpower levels.

The input levels selected were:

Average Interarrival Time

(Time between calls)

3.0 sec.	$(1200$ calls per hour $)$
4.8 sec.	$(750$ calls per hour $)$
6.0 sec.	$(600$ calls per hour $)$

For each of the above input levels runs were made where the number of operators in Group II remained constant (20) and the number of Group I operators was varied.

The results were summarized as follows:

1. Average utilization of Group I operators (Figure 6)
2. Average utilization of Group II operators (Figure 7)
3. Number of operators in Group II busy 95% of the time (Figure 8)
4. Maximum number of operators busy on Turret II (Figure 9)
5. Sum of maximum number of operators busy on Turret I and Turret II
(Figure 10)
6. Cumulative distributions of time that emergency calls spent in the system (Figures 11-13)
7. Per cent of emergency calls that had to wait. (For 3.0 second interarrival time only). (Figure 14)
The average utilization figures give an insight to the effect of varying the number of Group I operators under different inter-arrival times.

Figure 8 indicates the estimated number of Group II operators that would be needed to provide service without delay 95% of the time for a given number of Group I turret operators.

Figure 9 indicates the number of Group II operators needed to service without delay all of the incoming calls.

The cumulative distributions pertaining to time spent in the system by emergency calls for 5, 11, 18 Group I turret operators do not indicate much variation.

For a heavy incoming load of calls ($1200 \mathrm{calls} / \mathrm{hr}$.), the effect of increasing the number of Group I turret operators is clearly shown in Figure 14.

A second set of simulation runs were made with a constant level of manpower (20) but allocated in different patterns among the two turret boards.

The patterns used were:

Turret I

5
8
12
15

Turret II
15
12
8
5

The hourly arrival rate of calls: 750

Attention was focussed on:
a. Percent of emergency calls that waited (Figure 15)
b. Mean waiting time for emergency calls that waited (Figure 16)
c. Mean waiting time for non-emergency calls (including identification time) (Figure 17)
AVERAGE UTILIZATION OF TURRET

v-6
!

NON-EMERGENCY CALLS
FIGURE 17

[^7]
$(5,15)$
-

Response System Model

The primary purpose of the simulation runs made with the response system model was to investigate the effect of varying resource levels on the response time. These experiments were for a 4.8 second interarrival time (750 calls per hour). The first set of runs utilizes a single resource type: cars. An equal number of cars was allocated to each division.

The following levels were used:
Resource Levels
100
80
65
50
35

The cumulative distributions of response time for the above resource levels are given in Figure 18.

The average response time for all Manhattan for varying resource levels is given in Figure 19; for individual divisions, Figure 20.

The average utilization of dispatchers and the average waiting time at the dispatchers for various resource levels are given in Figures 21 and 22 .

To illustrate the flexibility of the model, a second resource type (scooter) was added and similar runs were made. (Figures 23-28).

Again, equal resources were allocated to each division.

$\cdot \supset \exists S$ NI \exists WIL \exists ISNOdSヨy $\exists 9 \forall y \exists \wedge \forall$

－JヨS NI JWIL ヨSNOdSヨy
－

average waiting time at dispatcher/trans. various resource levels (cars)

FIGURE 24
AVERAGE RESPONSE TIME
FOR VARIOUS RESOURCE LEVELS
(CARS \& SCOOTERS)

$(35,14) \quad(50,20) \quad(65,26)$
RESOURCE LEVELS (CARS a SCOOTERS)
FIGURE 26

DIVISION VARIOUS

AVERAGE UTILIZATION OF DISPATCHER

（Syヨ100つS 8 Sy甘5）Sフヨヘヨ7 $\exists コ y \cap O S \exists y ~ S \cap O l y \forall \Lambda ~$

AVERAGE WAITING TIME AT DISPATCHER/TRANS. (IN SEC.)

CHAPTER VI

DISCUSSION AND CONCLUSIONS

The curves displayed in the previous chapter should be looked upon as the kind of information obtainable from computer simulation. The models reported here address themselves to questions such as
...for a given rate of calls, how many switchboard operators are required to process all emergency calls with waiting time not exceeding 30 (or 15) seconds? (The answer could be more than the current switchboard capacity.)
...for a given rate of calls, and a given number of turret operators, what is the average waiting time per call? How many calls need not wait at all? How many must wait more than one minute? What fraction of time are all operators busy? What fraction of time are more than two idle?
...what contribution, in terms of reduced waiting time, could one (two, three...) additional turret operator (dispatcher, vehicle) make?

Slight program modifications could permit questions relating to non-existing, but possibly desirable configurations and procedures, such as
...if a computer is introduced into the system, how are waiting and processing times, personnel and equipment utilization affected?
...alternatively, how much additional personnel (if any) could accomplish similar results?
...for a given amount of money, which alternative among competing proposals would be most effective?
...how much additional money would be required to reach a given level of performance?

In the runs conducted for this report, arriving calls were assumed to be exponentially distributed. This is consistent with experience on similar calls reported in the literature. However, this assumption is not essential to any of the models described. GPSS allows the substitution of any distribution by any other distribution, observed or theoretical, simply by replacing the pertinent program cards. The relevant distributions are clearly labeled in the program printouts of Appendices A through C.

In conclusion, simulation requires a decision maker to describe a system under study in complete, unambiguous terms. An analyst translates such a description into computer language. The decision maker then is able to ask a series of "What will happen if..." questions. These questions must be consistent with the information structure put into the model. The answers will be the logical consequences of the data, rules, and logic of the model.

Only the decision maker can decide whether a given model is adequate for his purposes. He does this by asking a series of questions and evaluating each answer in light of his experience and judgment. Frequently this leads to a series of model adjustments. It is dangerous for one organization to use another organization's models without verification of its validity under the new circumstances. Similarly, a model may no longer be appropriate in the situation for which it was developed if conditions have changed appreciably.

The purpose of this report is to demonstrate the suitability and usefulness of computer simulation in the analysis and design of large scale police activities and systems. It describes three prototype models, based on information obtained in a real police environment. It then shows the kind of information that can be extracted with the help of a computer.

The authors welcome comments and questions from interested persons or organizations.

COMPUTER PROGRAM - TURRET BOARD MODEL

The following discussion refers to the program printout at the end of this Appendix. Some familiarity with GPSS/360 is assumed.

INPUT

STORAGES

The Group I and Group II turret operators are represented in the model by STORAGEs labelled TUR 1 and TUR 2. The capacities of these STORAGEs correspond to the number of operators at each turret board.

FUNCTIONS

FUNCTION 1 - Cumulative distribution of time spent in conversing and supplying information for non-emergency calls.

FUNCTION 2 - Cumulative distribution of time spent in conversing, obtaining information and recording the details for emergency calls.

FUNCTION 3 - The fraction of calls which are emergency and non-emergency. A functional value of 0 corresponds to an emergency call and a value of 1 to a non-emergency call. The function is coded as a discrete cumulative distribution.

FUNCTION 4 - Cumulative distribution of interarrival times for calls coming into the Communications Center. At present, these are assumed to be exponentially distributed, with the mean value supplied by the user. OUTPUT

TABLES

TABLE 2 - This table yields the distribution of time spent in the system by emergency calls.

TABLE 3 - This table gives the distribution of time spent waiting for a Group II turret operator by emergency calls which found the Group I
turret operators busy.

TABLE 4 - This table corresponds to the distribution of time until a non-emergency call is handled. It includes identification by a Group I turret operator if this has occurred.

TABLE 5 - This table yields the distribution of the number of Group I turret operators that are busy. The system is sampled every three seconds to determine the number of busy operators.

TABLE 6 - This table is similar to TABLE 5 but concerns the number of busy operators in Group II.

General Logic

Calls are randomly generated by the GENERATE block, labelled GEN, with any desired mean interarrival time from an exponential distribution. Call type (emergency (0), non-emergency (1) is assigned randomly to PARAMETER 1 using FUNCTION 3. The Group I turret operators are checked to determine if they are all busy by a GATE block. If they are all busy, the call is sent to PRGP2. If not, it takes a Group I turret operator (ENTER block). A TEST block interrogates PARAMETER 1 to determine the nature of the call. If it is an emergency call ($\mathrm{P} 1=0$) , the call is sent to PROC1. Non-emergency calls are identified by Group I turret operators, within 10 to 20 seconds uniformly distributed, and spend this time in the ADVANCE block. Then the Group I turret operator is released and the call is sent to NEMG2. Emergency calls (sent to PROC1) undergo a time delay to represent the conversation time and recording of information. This time is randomly selected from FUNCTION 2. The Group I turret operator is then released (LEAVE block), a statistic is entered into TABLE 2 (TSMAN) and the call is terminated.

Calls which found the Group I turret operators busy are sent to PROC1 where a PRIORITY is assigned to them. This is done to assure that they will be-handled before the identified non-emergency calls sent to the Group II operators, in case there is a queue. At NEMG2 the calls queue (if all Group II turret operators are busy) and are answered when a Group II
turret operator is available. PARAMETER 1 is tested to determine if the call is non-emergency and if so, it is sent to NOEMG. An entry is made in TABLE 3 for emergency calls. The call undergoes a time delay randomly selected from FUNCTION 2 to represent conversation time and the recording of information. The Group II turret operator is then released (LEAVE block) and the call is sent to TSMAN where TABLE 2 is compiled; and the call is then terminated. TABLE 4 is tabulated for non-emergency calls sent to NOEMG. There is a delay to represent conversation time and time necessary to supply information. The time is randomly selected from FUNCTION 1. The Group II turret operator is then released and the call terminated. The block labelled TIMER is a timing routine that controls the length of the run in terms of simulated time. The system generates a transaction at a predetermined interval (in this model a transaction is generated every three seconds). The inquiry made by this transaction generates TABLEs 5 and 6. (Number of operators busy on each one of the turret boards). After performing certain bookkeeping operations for printout purposes, the transactions count in determining the run length. The run length is controlled by the START card which indicates how many of these timing transactions should occur before the run is completed and a printout occurs.

time in seconds

A-8

FIGURE 34

> TURRET BOARD MODEL
> (COMMIINICATION CENTER)
> Block Diagram 1

TURRET BOARD MODEL (COMMUNICATION CENTER)

Block Diaaram 3

$6086[$
TME TO COMPLETE CONVERSAIICA TER FMERCEACY CALLS -
IABLE 2 CLMULAJIVF PER CENJ

$$
\begin{aligned}
& \text { ENO }
\end{aligned}
$$

- Ron-metightido
$1 \quad 1-1+1=1$ -

-30^{*}
25:
*

$*$
$*$
$*$
$*$
$*$
$*$
5*

* $7 v 101$ in
nc of eperatirs in turatila

IIME TO COMPLETE CONVERSATION FOR EMERGENCY CALLS -
IABLF 2 CUMULAIIVE PER CENT

COMPUTER PROGRAM - RESPONSE SYSTEM

The following is a detailed narrative of the program logic of the Response System Model viewed from a GPSS point of view. Familiarity with the GPSS/360 1anguage is assumed.

First the definitions and correspondences of major entities used in the discussion are given. This is followed by the definition and description of distributions used and special output produced. Then the logic of the program is discussed.

INPUT

FACILITIES (Label and/or No.)
DSPH 1
(1)

DSPH 2
DSPH 3 (3)

DSPH 4 (4)

DSPH 5 (5)

DSPH 6
MSDSO
MSDNO

STORAGES
CAR 1
CAR 2 (10)

CAR 3(11)
CAR 4 (12)
CAR 5 (13)
CAR 6 (14)
SCTR 1 (15)
SCTR 2 (16)
SCTR 3 (17)
SCTR 4 (18)
SCTR 5 (19)
SCTR 6 (20)

DEFINITION

Division 1 Dispatcher
Division 2 Dispatcher
Division 3 Dispatcher
Division 4 Dispatcher
Division 5 Dispatcher
Division 6 Dispatcher
Master Dispatcher-Manhattan South
Master Dispatcher-Manhattan North

Division 1 Cars
Division 2 Cars
Division 3 Cars
Division 4 Cars
Division 5 Cars
Division 6 Cars
Division 1 Scooters
Division 2 Scooters
Division 3 Scooters
Division 4 Scooters
Division 5 Scooters
Division 6 Scooters

USER CHAINS		DEFINITION
DSPH 1	(1)	Calls Waiting for Division 1 Dispatcher
DSPH 2	(2)	Calls Waiting for Division 2 Dispatcher
DSPH 3	(3)	Calls Waiting for Division 3 Dispatcher
DSPH 4	(4)	Calls Waiting for Division 4 Dispatcher
DSPH 5	(5)	Calls Waiting for Division 5 Dispatcher
DSPH 6	(6)	Calls Waiting for Division 6 Dispatcher
DSPH 7	(7)	Calls Waiting for Man.So. Master Dispatcher
DSPH 8	(8)	Calls Waiting for Man. No. Master Dispatcher
RPBK 1	(9)	Report back calls waiting for Div.l Dispatcher
RPBK 2	(10)	Report back calls waiting for Div. 2 Dispatcher
RPBK 3	(11)	Report back calls waiting for Div. 3 Dispatcher
RPBK 4	(12)	Report back calls waiting for Div. 4 Dispatcher
RPBK 5	(13)	Report back calls waiting for Div. 5 Dispatcher
RPBK 6	(14)	Report back calls waiting for Div. 6 Dispatcher
QUEUES		CONTENTS
DSPH 1	(1)	Div. 1 calls to be dispatched waiting for Dispatcher
DSPH 2	(2)	Div. 2 calls to be dispatched waiting for Dispatcher
DSPH 3	(3)	Div. 3 calls to be dispatched waiting for Dispatcher
DSPH 4	(4)	Div. 4 calls to be dispatched waiting for Dispatcher
DSPH 5	(5)	Div. 5 calls to be dispatched waiting for Dispatcher
DSPH 6	(6)	Div. 6 calls to be dispatched waiting for Dispatcher
DSPSO	(7)	Man. So. calls waiting for master dispatcher
DSPNO	(8)	Man. No. calls waiting for master dispatcher
		UNCTIONS

FUNCTION 1 - Distribution of time spent at the turret boards by emergency calls. This function is obtained from TABLE 2 of the Turret Board Model.

FUNCTION 3 - Defines the fraction of incoming calls which are nonemergency, non-Manhattan emergency, and emergency calls for each Division of Manhattan. The function is coded as a cumulative distribution with the following values:

1-6 - Manhattan Division 1 - 6 Emergency
7 - Non-Manhattan Emergency and Non-Emergency
(Figure 35)

FUNCTIONS 4-9 - These functions give the probability of the request types by Division. FUNCTION 4 corresponds to Division 1, FUNCTION 5 to Division 2, etc. The function values are as follows:

1. Murder, rape
2. felonious assault, robbery
3. burglary, grand larceny
4. grand larceny - motor vehicle
5. ambulance request
6. misdemeanor
7. offense
8. non-crime request

For each Division, the fraction of incoming emergency calls which fall into each category is given. The functions are coded as cumulative distributions. (Figures 36-41)

FUNCTION 10 - This function gives the probability that the crime has occurred inside. Numbers are coded in parts per 1,000. (Figure 42)

FUNCTION 11 - This function gives the probability of the crime still being in progress at the time of the call, for each request type. Since request types 5 and 8 are not crimes, they have probabilities of zero. The probabilities are given in parts per 1,000. (Figure 43)

FUNCTION 12 - This function gives the mean radio reach time as a function of field resource utilization. It is assumed that time to reach a field unit by the dispatcher increases as utilization of the field resource increases. The utilization is given in parts per 1,000. (Figure 44)

FUNCTION 13 - This function gives the mean car travel time to reach the scene of the request as a function of car utilization in the field. The utilization is shown in parts per 1,000. (Figure 45)

FUNCTION 14 - This function is similar to Function 13 except mean scooter travel time to reach the scene of the request is given.

FUNCTION 16 - This function gives the type of resource to be assigned to each request type. Cars are represented by a functional value; scooters by a 1.

FUNCTION 17 - This function defines the probability of arrest (given a crime in progress) as a function of response time. It is assumed that as response time decreases, probability of arrest increases. (Figure 46)

FUNCTION 18 - This function gives the average disposition time for each request type. It is assumed that disposition times differ significantly if an arrest is made. Therefore, the function look-up is coded as follows:

Units digit - request type (1-8)
tens digit - 1 if arrest, 0 if non-arrest
Example

01 is murder or rape without an arrest
11 is murder or rape with an arrest made.
FUNCTION 20 - This is the cumulative exponential distribution.

$$
\begin{gathered}
\text { FIGURE 35 } \\
\text { DISTRIBUTION OF } \\
\text { CALLS BY LOCATION }
\end{gathered}
$$

은	$\stackrel{\infty}{0}$	$\stackrel{0}{\circ}$	$\stackrel{1}{+}$	No		
	人1I7I日＊80yd ヨヘIค＊ากwกว					

ג1I7Ig＊gOyd ヨヘIคヲากWกว
FIGURE 39

FIGURE 42

${ }^{1000}$

FIGURE 43

REQUEST TYPE

$\begin{aligned} & \text { 응 } \\ & \text { ㅇ } \end{aligned}$	O	O	O	O-
0001/S18甘d				

MEAN RADIO REACH TIME：ϕ（RESOURCE UTILIZATION）
RESOURCE UTILIZATION（PARTS／IOOO）
$\cdot כ \exists S$ NI ヨWIL HOVヨy OIOヲY NVヨW

OUTPUT

TABLES

TABLE 3 - This table gives the distribution of time to reach dispatcher queue.

TABLE 4-9 - These tables give the distributions of time until dispatch for low priority emergency calls for Manhattan Divisions 1 - 6 .

TABLES 10-15 - These tables give the distributions of time until dispatch for high priority emergency calls for Manhattan Divisions 1 - 6 .

TABLES 16-21 - These tables give the distributions of time until the scene reached (response time) for low priority emergency calls for Manhattan Divisions 1-6.

TABLES 22-27 - These tables give the distributions of time until scene reached (response time) for high priority emergency calls for Manhattan Divisions 1 - 6.

TABLES 28-33 - These tables give the distributions of time until disposition completed (time spent in system) for low priority emergency calls for Manhattan Division 1-6.

TABLES 34-39- These tables give the distributions of time until disposition completed (time spent in system) for high priority emergency calls for Manhattan Divisions 1-6.

TABLE 40 - This table gives the distribution of time until dispatch for all Manhattan emergency calls. It is a summary of TABLES 4-15.

TABLE 41 - This table gives the distribution of time until scene reached for all Manhattan emergency calls. It is a summary of TABLES 16-27.

TABLE 42 - This table gives the distribution of time until disposition completed for all Manhattan emergency calls. It is a summary of TABLES 28-39.

MATRIX SAVE VALUES	DESCRIPTION
CRTYP	Number of emergency requests by request type and division. Columns represent request type. Rows represent division. Column 9 is a total by request type. Row 9 is a total by division.
CARCR	Number of cars in use for each division at various times throughout the run. Colums represent divisions. Rows are sampled values.
CARAV	Similar to CARCR except average number of cars in use.
SCTCR	Similar to CARCR except number of scooters in use at various times throughout the run.
SCRAV	Similar to CARAV except average number of scooters in use.

Detailed Logic Description

Calls are generated at a specified mean inter-arrival time using FUNCTION 20, the exponential distribution. Next FUNCTION 3 is assigned to PARAMETER 9. This indicates whether the call is a Manhattan emergency call (1-6), a non-emergency or non-Manhattan emergency call (7,8). Since only Manhattan emergency calls are considered in this version, types 7,8 are terminated. Next the request type is assigned to PARAMETER 2 in the following manner:

1. The function number for the proper function, depending on division, is assigned to PARAMETER 1 by the INDEX Block.
2. PARAMETER 2 is assigned a value designating rerequest type ($1-8$), randomly selected for the function whose number is given in PARAMETER 1.
Next the state of being inside/outside is assigned to the call. Since a zero in PARAMETER 3 indicates inside, only those calls which are to be considered as being outside incidents must be tagged with a 1 . FUNCTION 10
is interrogated for the probability that the particular request type is inside and that fraction of the calls is transferred to BYPOT. The remainder is assigned a 1 in PARAMETER 3. In similar manner, the state of being in progress/past is assigned. In this case, FUNCTION 11 is interrogated for the probability that the particular request type is in progress.

The model then simulates the time spent at the turret boards. The ADVANCE block labeled TRRT randomly selects a time from FUNCTION 1 (Distribution of Time Spent at the Turret Boards). Priorities for dispatching are assigned by the routine labeled ASPRI. The true priorities are assigned to PARAMETER 6 of the call; this is used throughout the model to determine the order of transactions on USER CHAINS. The higher the parameter value, the lower the priority. Request types 1-3, if they are crimes in progress, are assigned a 1 in PARAMETER 6. All others are assigned a 2 in PARAMETER 6. A value of 3 is assigned later in the model to indicate that disposition is complete and the field resource is attempting to reach the dispatcher for report-back. The high priority calls also have their GPSS PRIORITIES set to 1 . This is used only for tabulation purposes.

At the block labeled CONVR the call spends time to represent the conveyor belt carrying the slips with the recorded information about the call to the master dispatcher.

The particular request type and division is then entered to the MATRIX SAVEVALUE CRTYP. A test is made to see if the call is from Manhattan North or South and the appropriate master dispatcher number is assigned to PARAMETER 5 at the blocks labeled MSDSO or MSDNO. The calls queue for the appropriate master dispatcher, and, if the master dispatcher is busy, they are linked to the USER CHAIN whose number and name is identical to that of the FACILITY representing the master dispatcher. The calls are linked on the basis of PARAMETER 6 which contains an indication of the call priority. The high priority calls are handled first. When the master dispatcher is free, the call is unlinked and seizes the master dispatcher. He spends time to determine the precinct and sector of the call and is then released. The next call waiting is unlinked and sent to the master
dispatcher and TABLE 3 is tabulated for the call.

Next the type of resource to be dispatched is assigned to the call. This is done by interrogating FUNCTION 16 and assigning the values (0 for cars, 1 for scooters) to PARAMETER 7. The STORAGE number of the particular group of resources to be assigned is placed in PARAMETER 8. This is done in the following manner:

1. FUNCTION 16 value (0 or 1) is multipled by the constant 6 and placed in PARAMETER 8.
2. The constant 8 is added to PARAMETER 8.
3. PARAMETER 9, which contains the Division Number, is added to PARAMETER 8.

A field resource can now be assigned by the dispatcher. The call joins a queue identical in name and number to the dispatcher and is linked to a USER CHAIN if the dispatcher is busy. The linking is done on the PARAMETER 6 value so that high priority calls get access to the dispatcher before low priority calls. Report-back calls are last on the chain since they are assigned a PARAMETER 6 value of 3 prior to reportback. When the call is unlinked (or if it was never linked because the dispatcher was free), it is sent to CKBAK. At CKBAK, PARAMETER 6 is interrogated for a value of 3 to determine if this is a report-back call and, if so, the call is sent to SZDS2 in the report-back routine. Calls to be dispatched are not diverted and continue on to the remainder of the dispatching routine.

The linking and unlinking of both calls to be dispatched and reportback calls using the same dispatcher is further complicated by the use of multiple resources (cars, scooters). Since field resources of any given type (cars, scooters) in any division should never be all in use under normal operating conditions, the model assumes that this is the case. A test is made upon calls to be dispatched to determine if the resources they desire are all in use. If all are in use, the call is sent to a routine ERROR where the run is terminated. Otherwise the call seizes the dispatcher indicated in PARAMETER 9 and departs the queue. A unit of field resource indicated in PARAMETER 8 is taken. The ADVANCE block represents the time to locate and dispatch a field unit (radio
reach time). It is assumed that these times are exponentially distributed where the mean is a function of the utilization of the field resource required. FUNCTION 12 gives this relationship. The call then releases the dispatcher and unlinks the next call waiting for the dispatcher \mid from the USER CHAIN. At this point "Time Until Dispatch" is tabulated. This is done twice. Once by division and priority and once for an "all call" tabulation. A MACRO labeled TABL is used since similar tabulations are made throughout the model. The field resource traveling to the scene of the request is next simulated. The proper travel time FUNCTION number (12 or 13) is assigned to PARAMETER 1 by the INDEX block. It is assumed that travel times are exponentially distributed with the mean a function of field resource utilization. These relationships are given by FUNCTION 12 for cars and FUNCTION 13 for scooters. The ADVANCE block utilizes the mean selected from the proper FUNCTION and the exponential distribution.

At this point the arrest determination is made. Arrests are generated only for crimes in progress. The probability of an arrest is assumed to be a function of response time and this relationship is given by FUNCTION 17. This fraction of calls is randomly assigned a 1 in PARAMETER 10 indicating that an arrest has been made.

The time required to handle the request by the field unit (disposition) is assumed to be exponentially distributed with the mean a function of request type and whether or not an arrest is made. FUNCTION 18 gives this relationship. The ADVANCE block labeled DISPO simulates the disposition using the mean selected from FUNCTION 18 and the exponential distribution (FUNCTION 20). Time Until Disposition is then tabulated using the MACRO TABL.

After disposition, reporting back by the field resource is simulated. The call is assigned a PARAMETER 6 value of 3 to indicate that it is now a report-back call. It joins a QUEUE and is LINKED to the USER CHAIN if the dispatcher is occupied. The ordering of the CHAIN is on the value of PARAMETER 6 so that report-back calls have access to the dispatcher only when there are no calls waiting to be dispatched. When the call is un-
linked, it is sent to CKBAK as are all calls unlinked from the Dispatcher User Chain. Report-back calls are sent to SZDS2 from there. Calls that do not get linked (find the dispatcher free) go on to SZDS2 also.

At SZDS2 the call SEIZEs the dispatcher and DEPARTs the queue. Time is spent in reporting back to the dispatcher (ADVANCE block). The dispatcher and the unit of field resource are RELEASED. The next call waiting for the dispatcher is UNLINKED and sent to CKBAK. The "Time Until Disposition Completed" is tabulated using the MACRO TABL and the transaction is terminated.

TIMER is a routine which generates a transaction every ten minutes. This transaction is used for timing and also for storing the number of cars and scooters currently in use and average usage of cars and scooters in the appropriate SAVEVALUES.

FIGURE 47

FIELD RESPONSE MODEL

FIELD RESPONSE MODEL
Block Diagram 3

DISPATCHING

FIELD RESPONSE MODEL

FIELD RESPONSE MODEL
Block Diagram 6

STOP RUN
 IF RESOURCES FULL

FIELD RESPONSE MODEL Block Diaaram 7

TIMING \& TABULATING ROUTINE

MACRO USED
 FOR TABULATING

RESPONSE SYSTEM MODEL
Block Diaqram 9

HLOCK
NUMBER

$$
.001,1 / .03,2 / .167,3 / .181,4 / .381,5 / .531 .6 / .6,7 / 1.0 .8
$$

$\begin{array}{ll}\text { FUNCTION } 10 \text { DEFINES } & \text { PROB OF CRIME BEINGINSIDE } \\ & \\ 10 & \text { VSSCRIME TYPE WPARIS/IOOOS }\end{array}$
$1.600 / 2,420 / 3.750 / 4,50 / 5 \cdot 700 / 6,500 / 7.500 / 8 \cdot 500$
F
FUNCIION 11 DEFINES

$$
\begin{array}{ccc}
\text { FUNCTION } & P 2.18 \\
100 & 2 & 100 \\
100 & 8 & 0 \\
\text { FUIICIION } & 12 & \text { DEFINES }
\end{array}
$$

11
100
function il defines
function 13 uefines
12
$0,100 / 500,250 / 800,450 / 1000,600$
MEAN CAR TRAVEL TIME TO REACH SCENE VS CAR UIILIZATION
GPARIS/IOCOK

MEAN SCOOTER TRAVEL TIME
TO REACH SCENE VS SCOOTER UTILILAIION \$PARTS/IOOOS

KESUURCES ASSIGNED GY CRIME
TYPE-
0, CAR \quad I, SCOOTER
0
0 $\quad 5 \quad 1 \quad 6 \quad 6 \quad 0$
\circ
0 O $\quad 5 \quad 1 \quad 6 \quad 0$
PROG OF ARREST VS
RESPONSE TIME SPARTS/IOOO<
0
\checkmark
$0,300 / 500,1200 / 800,2400 / 1000,4800$
FUNCTION 16 DEFINES
$\begin{array}{cccc} & \text { FUNCTICN } & \text { P2,L8 } \\ 0 & 2 & 0 & 3 \\ 0 & 8 & 0 & \end{array}$
fidaction if defises
17 FUNCTION M1,C6
$0,1000 / 600,600 / 1200,300 / 1800,200 / 2400,100 / 6000,0$

3	table	M1,0,150,50		time to reach dispatcher				
4	TABLE	M1,0,300,50	tIME	UNTIL 0	DISPAICH-	OIV 1	LOW	PRIOR
5	table	M1,0,300,50	TIME	UNTIL D	DISPATCH-	DIV 2	2 LOW	PRIOR
6	table	M1,0,300,50	tIME	UNTIL D	DISPATCH-	DIV 3	3 LOW	PRIOR
7	table	M1,0,300,50	TIME	UNTIL D	DISPATCH-	DIV 4	LOW	PRIOR
8	TABLE	M1,0,300,50	tIME	UNTIL D	DISPATCH-	DIV 5	5 LOW	PRIOR
9	table	M1,0,300,50	TIME	UNTIL D	DISPATCH-	DIV 6	6 Low	PRIOR
* TABLE								
10	table	M1,0,150,50	tIME	UNTIL D	DISPATCH-	DIV 1	HIGH	PRIOR
11	TABLE	M1,0,150,50	tIME	UNTIL D	DISPATCH-	DIV 2	2 HIGH	PRIOR
12	table	M1,0,150,50	IIME	UNTIL D	DISPATCH-	Div 3	3 HIGH	PRIDR
13	table	M1,0,150,50	TIME	UNTIL D	DISPATCH-	DIV 4	4 HIGH	PRIOR
14	table	M1,0,150,50	TIME	UNTIL D	DISPATCH-	DIV 5	5 HIGH	PRIDR
15	table	M1,0,150,50	TIME	UNTIL D	DISPATCH-	DIV 6	6 HIGH	PRIDR
disparchodiv 6 high								
16 TABLE M1,0,300,50 TME TO REACH SCENE DIV 1 LOW								
16	table	M1,0,300,50	tIME	TO REAC	Ch Scene	DIV 1	L LOW	PRIOR
17	table	M1,0,300,50	TIME	TO REAC	CH SCENE	DIV 2	LOW	PRIOR
18	table	M1,0,300,50	TIME	TO REAC	CH SCENE	Div 3	3 LOW	PRIIOR
19	table	M1,0,300,50	TIME	TO REAC	CH SCENE	DIV 4	4 LOW	PRIOR
20	table	M1,0,300,50	tIME	TO REAC	Ch SCENE	DIV 5	5 LOW	PRIOR
21	table	M1,0,300,50	TIME	to Reac	CH SCENE	DIV 6	6 LOW	PRIOR
22	TABLE	M1,0,300,50	TIME	TO REAC	CH- SCENE	DIV 1	1 HIGH	PRIOR
23	table	M1,0,300,50	TIME	TO REAC	CH SCENE	Div 2	2 HIGH	PRIOR
24	table	M1,0,300,50	TIME	TO REAC	CH SCENE	Div 3	3 HIGH	PRIOR
25	TABLE	M1,0,300,50	TIME	TO REAC	CH SCENE	Div 4	4 HIGH	PRIOR
26	table	M1,0,300,50	TIME	to Reac	CH SCENE	DIV 5	5 HIGH	PRIOR
27	table	M1,0,300,50	TIME	to Reac	Ch SCENE	DIV 6	6 HIGH	PRIOR
*								
*								
28	table	M1,3000,6000,50	time	DISPD C	COMPLETE	DIV 1	L 10 W	PRI
29	table	M1,3000,6000,50	TIME	DISPO C	COMPLETE	DIV 2	2 LOW	PRI
30	table	M1,3000,6000,50	TIME	DISPO C	COMPLETE	DIV 3	3 LOW	PRI
31	table	M1,3000,6000,50	IIME	DISPO C	COMPLETE	DIV 4	4 LOW	PRI
32	table	M1, 3000,6000,50	TIME	DISPU C	COMPLETE	DIV 5	5 LOW	PRI
33 TABLE M1,3000,600, S0 TIME DISPG COMPLETE DiV 6 LOW PRI								
34	table	M1,3000,6000,50	TIME	dispo com	COMPLEIE	Div	HIGH	P?
36	TABLE	M1,3000,6000,50	TIME	DISPO C	COMPLEIE	DIV 2	2 HIGH	
37	table	M1,3000,6000,50	IIME	DISPO C	complete	Div 4	4 HIGH	PRI
38	table	M1,3000,6000,50	tIME	DISPO C	Cumplete	DIV	HIGH	PRI
39	table	M1,3000,6000,50	TIME	DISPO C	COMPLETE	DIv 6	6 HIGH	PRI
* 40	TABLE	M1, $0,300,50$	TIME	TO DISP	PAICH-ALL	MAN	CALlS	
41	table	M1,0,300,50	TIME	IO REAC	CH SCENE	-ALL	MAN C	Alls
42	tABLE	M1.3000,6000,50	TIME	to Disp	PO COMPLE	ETE-AL	L MAN	

70 $\stackrel{』}{\Xi}$

 CURRENT
CONTENTS 룬

TABLE
NUMBER
 LNBJ\&3d

 n . . . 늘

QUEUE.
 CONTE

STDRAGE
:'

OG1H913M-NON

STANOARD DEVIATION

SUM DF ARGUMENTS

$$
\begin{aligned}
& \begin{array}{l}
4 \\
3 \\
5 \\
5
\end{array}
\end{aligned}
$$

of
$\stackrel{3}{3}$

ARGUMENTS
57131.000
OF ARGUMENTS
1845054.000
$\stackrel{y}{3}$

STANDARD DEVIATION

STANDARD DEVIATION

IABLE 34
ENTRIES IN
ENTRIES IN TARLE

$q=$ 4 a 2 2

 30009000
15000
21000
27000
33000
39000
FREQUEN
remaining frequencies are all zero

	0832 צוּ	S9IJN3nO3y	9NINIVWG*
$00^{\circ} 52$	1	0006 E	
00°	0	O00EE	
00°	0	00012	
00°	0	00012	
$00^{\circ} \mathrm{S} 2$	1	00051	
$00^{\circ} 05$	2	0006	
00°	0	O00E	
78101 \#0	AJnanncya	11 Wl	
1N3J 8ヨd	03^83580	y3ddn	

NON-WEIGHTED

SINGWก9yV fo wns

IVE
ER
.0
.0
.6
.9
.2
.3
.4
.0
.5
.8
.6
.4
.3
.8
.4
.3
.6
.0
.8
.5
.4
.3
.2
.0
.0
.0 ATIVE
INDER
100.0
100.0
98.6
91.9
79.2
64.3
49.4
36.0
25.5
17.8
12.6
8.4
6.3
4.8
3.4
2.3
1.6
1.0
.8

 $\stackrel{3}{0}$
 $\underset{\sim}{3}$

tmontavoON
MATRIX HALFWORD SAVEVALUECRTYP
m onsmmonoor
$N \sin \sin \operatorname{moO}_{\mathrm{m}}$

APPENDIX C

COMPUTER PROGRAM - PRELIMINARY MODEL

The following refers to the program printout at the end of this Appendix. Familiarity with the GPSS/360 language is assumed.

	Definitions
Storage	Description
TURUL (5)	Turret Board Operators
Facilities	Description
MANOR (1)	Manhattan North Dispatcher
AMBL (6)	Ambulance Dispatcher
Queues	Description
MANOR (1)	Calls to be dispatched waiting for the Manhattan North Dispatcher
NDISP (3)	Report-back calls waiting for the Manhattan North Dispatcher
TURUAL (5)	Calls waiting to be answered by Turret Board Operators
AMBL (6)	Calls to be dispatched waiting for the Ambulance Dispatcher
ADISP (7)	Report-back calls waiting for the Ambulance Dispatcher
Tables	Description
TURIL (8)	Distribution of Turret Operator Utilization
CADIP (9)	Distribution of Time until dispatch
CADIS (10)	Distribution of Time until disposition complete
Function	Description
1	Cumulative Exponential Distribution
2	Distribution of Report-back Times
3	Distribution of Manhattan North radio reach times

Distribution of Ambulance Dispatcher radio reach times

Distribution of disposition times for patrol cars Distribution of disposition times for ambulances Distribution of time for ambulance to converse and fill out form for emergency calls excluding ambulance requests

Distribution of time to converse and fill out form for ambulance calls

Distribution of time to notify precinct and perform clerical operations after call answered Distribution of time to converse and supply information for non-emergency

Detailed Logic Description

Calls are generated, at the block labeled BEGIN, according to the exponential distribution and a specified mean inter-arrival time. A TRANSFER block tests whether the turret operators are all busy and if so sends the call to BUSY. Otherwise it is answered by a turret operator. A fraction of the calls are sent to TERM by the TRANSFER block, these are considered non-emergency calls. The remainder (emergency calls) are assigned a PARAMETER 1 value randomly selected from FUNCTION 9 which represents the time to notify the precinct and perform the necessary clerical operations after the completing of the conversation.

A fraction of these calls are sent to AMBUL; these represent emergency calls which require an ambulance. The remainder (emergency calls not requesting an ambulance) spend time at the turret boards to represent telephone conversation and the filling out of the form. This time is randomly selected from FUNCTION 7. A duplicate transaction is created by a SPLIT block and sent to DISPL. This represents the slip going to the dispatcher. At FILE, the call transaction spends time to represent the turret operator notifying the precinct and performing
clerical operations. This time was assigned to PARAMETER 1. The turret operator is then released and the transaction is terminated.

The routine labelled BUSY handles calls which found the turret operators busy. They join a QUEUE; a PRIORITY block is used to allow other transactions in the system to release a turret operator if it is time for them to do so. A GATE block prevents the transaction which found the turret operators busy from attempting to leave the QUEUE until a turret operator is free. At that time the call leaves the QUEUE and is sent to ANSR. At ANSR, the calls go through the same sequence of steps as other calls which did not find the turret operators all busy.

The routine AMBUL handles the fraction of calls designated as ambulance requests. Time is spent to represent conversation and the filling out of the form. This time is randomly selected from FUNCTION 8. A duplicate transaction is sent to DISPL for car dispatching and another duplicate is sent to DISAM for ambulance dispatching. The transaction is then sent to FILE.

The fraction of calls that were designated non-emergency calls were sent to TERM. PARAMETER 1 is assigned the time to converse and supply information to non-emergency calls. This time is selected from FUNCTION 10. The call is then sent to FILE. Since PARAMETER 1 contains the above time, the routine FILE represents non-emergency call conversation in addition to precinct notification and clerical operations for emergency calls.

At DISPL a fraction of the transactions are sent to NORTH. The remainder, representing cars to be dispatched for Manhattan South, are terminated. At NORTH, a time to reach patrol car (radio reach time) is assigned to PARAMETER 1. This value is randomly selected from FUNCTION 3. The dispatcher queue number (1) is assigned to PARAMETER 2, and the report-back queue number (3) is assigned to PARAMETER 3. A value representing time to dispose of case is assigned to PARAMETER 4. This value is randomly selected from FUNCTION 5. Turret operator utilization is sampled and an entry made in TABLE 8. The transaction is then sent to TUBE.

The transaction representing ambulances to be dispatched were sent to DISAM. Here, a value representing time to reach an ambulance (radio reach time for ambulances) is assigned to PARAMETER 1. The value is randomly selected from FUNCTION 4. The dispatcher and queue number (6) is assigned to PARAMETER 2, the report-back queue number (7) is assigned to PARAMETER 3. A value representing disposition time is randomly selected from FUNCTION 6 and assigned to PARAMETER 4. The transactions then go to TUBE.

All calls to be dispatched proceed to TUBE. They join in the appropriate QUEUE indicated in PARAMETER 2. They are LINKed to a User Chain having the same number as the dispatcher, if the dispatcher is busy. When he is free, the call is sent to AAA where it DEPARTs the queue and is handled by the dispatcher indicated in PARAMETER 2. They are delayed to represent radio reach time. The time that this requires is obtained from PARAMETER 1. The dispatcher is then released and the next call waiting for the dispatcher is unlinked. Time Until Dispatch (Table 9) is TABULATEd. The call is delayed to represent disposition of the case. The time is obtained from PARAMETER 4.

The call is ready for report-back at this point and joins the reportback queue indicated in PARAMETER 3. It is LINKED to the Dispatcher User Chain indicated in PARAMETER 2 if the dispatcher is busy. When the dispatcher is free, the call DEPARTs the queue and the dispatcher handes the call. The time spent in reporting-back is randomly selected from FUNCTION 2. The dispatcher is then released and the next call waiting is UNLINKed. Time Until Disposition Complete (TABLE 10) is tabulated and the call is TERMINATED.

FIGURE 48

PRELIMINARY MODEL

$$
\text { Block Diagram } 1
$$

PRELIMINAPY MODEL
Block Diaqram 2

PRELIMINARY MODEL
Block Diaaram 4

3．
兌

新总

BCO	ATJVANCE SPLII	$\begin{aligned} & \text { FN7 } \\ & 1,01 S P 1 \end{aligned}$		
+ILE	alvance	Pl	NOTIFY PRECINCT, FILE FORM	
	teave JEKMINAIE	5		
BUSY	sutue	b		
	PKIORITY	O, BUFFEK		
	GATE SNF	5		
	OEPART	5		
	TKANSFEK	- Ansk		
arbul				
	ajvance	FNE		
	SPLIT	1,DISPI		
	SPLIT	1,DISAM		
	transfer	, Flit		
IERT:	ASSIón	1, Firlo	time to terminate conversaidon	
	TKANSFER	-FILE		
CISP!	transfer	.433, NOR TH	*	
	terminate			
*				
SOHTH	ASSIİN		1,fids	time to reach patrol car dispatcher queve number dISPOSITION QUEUE time to dispose tf case
	ASSIGN	2,1		
	ASSIGV	3,3		
	ASSIGN	4, FAS		
	tabulate			
	tisanisfer	, TUEE		
DISAM			IIME TO REACH AMBULANCE	
	ASSIGN	1,Fi,4		
	ASSIGIt	2,6	dispatcher and queve number	
	ASsIGiv	3,1	dispusition queue	
	ASSIGV	4,Fivo	disposition time	
jube	CUEUE	$P{ }^{2}$	If uispatcher busy	
	ASSICN	h, $A \Delta A$		
	LINK	PZ, TIFO,AAA		
AAA	DEPART	P_{2}		
	SEILE	P^{2}		
	ADVANCE	P_{1}	Call patrol car sambulances	
	rilease	P2		
CDE	U.LIINK	P\%,CCC,1		
	tabulate	$?$		
	ASSIG\%	5, BBH		
	Auvinct	P4	walt while case being disposed If DISPATCHER BUSY	
	gueue	${ }^{3}$		
	IINK			
BRB	depart	P3		
	SEILF	9 ?		
	ADVANCE	+N2	RECIJRD OISPOSITIOV , FILE	
	RELEAS:	r2		
UEF	Ualink	P2.CCC. 1		
	tabulate	10		
	teiminat			
CCC	F?NVSFI:?	.05		

12
SWIIChBGARD CAPACITY

FAC TITLE
MANHATIEN NORIH DISPAICHER

3
3
NOR

$50, \mathrm{iNP}$
8
0
0

FAC TIILE IVIHE FQLLUWING STATISTICS REFER TO FACILITY I. THE
MANHATIEN NORIH DISPAICHER w

~~~
 THE NOKTH DISPAICHER
THE FOLLOWING STATISTICS REFEK TO DISPOSITION 3, THE NORTH DISPAICHER \begin{tabular}{c}
\(1 H\) \\
3 \\
3 \\
5 \\
\hline
\end{tabular}
5, THE FOLLOWING STATISTICS REFER TO CALLS AWAITING
ING
3
3
6, THE FOLLOWING STAIISTICS REFER ID CASES AWAITING G,THE OIN SPACE
SPACE
TITLE
岂
PACE
LANCE
7, IHE FRLLOWING STATISTICS KEFEK TO UISPOSITION TIILE T, THE FRLLOWING SHATHER
FAC NLOLER AVGTIME/TRANS QUE NUMBER AVG QUE CAPACITY
FORMAT \(1 / F I, F 4, W I, G 3\)


STATEMENT 29,1.0

N 8,38, CUMULATIVE TURRET OPERATOR UTILIIZATION
\(16,1, \mathrm{C}\)
\(17,1, \mathrm{U}\)
\(18,1, \mathrm{M}\)
\(19,1, \mathrm{U}\)
\(20,1, \mathrm{~L}\)
\(21,1, \mathrm{~A}\)
\(22,1,1\)
\(23,1,1\)
\(24,1, \mathrm{~V}\)
\(25,1, \mathrm{E}\)
\(27,1, R\)
\(28,1, \mathrm{E}\)
\(29,1, \mathrm{M}\)
\(30,1, \mathrm{~A}\)
\(31,1,1\)
\(32,1, N\)
\(33,1, \mathrm{D}\)
\(34,1, E\)
\(35,1, R\)
\(52,33, N U M E E R\) OF ACTIVE TURRET OPERATORS 10,9
8,10 \(, 3,20 ., 22\) \(., 3,20 ., 22\)
\(0.5,20.2\)
8.25, CUMUL
b,25,CUMULATIVE DISPATCH tImes 6.1.C コ
こ
\(=1\) B.1,M \(4,1,0\) 1,1, 1 1.2., 2,1,1,1 3,1,1 4,1,V 5,1,E 7.1 .1
\(8.1,5\) 8.1.R : 31,1,t \(\underset{2}{2}\) in


DISPATCH
\(1, N\)
\(1, T\)
\(1, A\)
\(1, G\)
\(1, E\)
NO DISPATCH \(1 / 9\)
14
14
nnmmmin
.10
2,5
\(1,4,300,19\) \(0,1,15,3\)

\footnotetext{
HdVY
1 NJWJ
1NJW3
1NJWJ
1NJWJ
1NJWJ
1NJW3
\(3 W 31 V\)
\(3 w 31 v\)
\(7 w 318\)
\(3 W 31 v\)
\(3 W 31 v\)
\(3 W 31 V\)


EBECT
GRAPH
ORIGIN
ORIGIN
\begin{tabular}{l} 
ㄷ \\
\(\frac{4}{4}\) \\
\(\frac{8}{3}\) \\
\(\frac{0}{3}\) \\
\hline
\end{tabular}
足
}



SUM DF ARGUMENTS


\section*{NON-WEIGHTED}


\(\because\) \(\stackrel{5}{3}\)




空茥

turret operator utilization
*

~~~


[^0]: *The Challenge of Crime In A Free Society, President's Commission On Law Enforcement and Administration of Justice, U.S. Government Printing Office, 1967.

[^1]: *This section is based on a chapter of Volume I of "Computers in Engineer-. ing Design Education," published by The University of Michigan, written by one of the authors of this report.

[^2]: $\overline{\star \text { Nevertheless, attempts }}$ in this direction may lead to insights not otherwise apparent. Comprehensive analytical models are developed by A. Blumstein and R. Larson in "Models of a Total Criminal Justice System," Operations Research, 17 No. 2, March-April 1969, 199-232.

[^3]: *General Purpose Simulation System/360 User's Manual, International Business Machines Corporation, White Plains, 1967.

[^4]: *As it was in early 1968.

[^5]: *Non-emergencies do not require dispatching of field resources. As previously mentioned, this demonstration model was restricted to Manhattan. Other boroughs could easily be substituted or added.

[^6]: TABLE 11

[^7]: $(10,10) \quad(12,8)$
 NO. OPERATORS (TURRET 1, TURRET 2)

