SEARCH THEORY

by

PHILIP M. MORSE

Working Paper WP-01-74

'Innovative Resource Planning in Urban Public Safety Systems"
National Science Foundation Grant GI38004 Research Appiied to National Needs
Division of Social Systems and Human Resources
Operations Research Center
Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Computations, dissemination, and othor expenditures (in
ascociated with the work reported herein were supported (in part) by the National Science Foundation under Grant GI 38004 and (in part) by the U.S. Army Rescarch office (Durham) under
contract DAHCOA-20-C-0058. The final version of this report will appear in the llandbook of Operations Research, J. J. Moder and S. J. Eimaghraby, $\frac{1}{\text { eds., to be published by Van }}$ Nostrand Reinhold Company, New York.

		Page
6.0	Introduction	1
6.1	Fundamental Concepts	3 a
6.11	Visual Search of an Area	4
6.12	False Alarms, Non-Random Scanning	6
6.2	Motion of the Searcher	10
6.21	Visual Search	10
6.22	Latcral Range Probabilities for Different Detection Devices	12
6.23	Search Width and Its Measurement	16
0.3	Search of an Area	20
6.31	Parallel Sweeps	20
6.32	Randomly Distributed Sweeps	23
6.33	Miscellaneous Examples	26
6.4	Optimal Allocation of Search Effort	27
6.42	Applying the Formula	27
6.5	Target Motion	32
6.51	Target Position and Motion Unknown	42
6.52	Crossover Barricr	49
6.52	Retiring Scarch Sweeps	51
6.6	Scarch of Discrete Sites	57
6.61	An Analogue of Area Search	57
6.62	Detection Prrors	61
6.7	Scarch for an Active Evader	70.
6.8	Applications	74
Bibli	ography	

Being a part of a Handbook of Operations Research, this Chapter is addressed to the average worker in the field, not to the specialist in search theory. Results and conclusions are emphasized, rather than niceties of derivations (these can be found by going to the references). Procedural outlines and graphical aids are provided, so that use can be made of the theory in planning actual scarches. The aim has been to foster such use, and the hope is that interest will be aroused in developing more usable solutions for real search probiems.

Search is an example of an operations research subject wherein theory and practice have diverged as they have developed. Search theory, as a distinct subject, of study, was begun in World War II* in response to a very practical need for the efficient use of planes and ships to find enemy submarines. The theory then worked out, rudimentary as it was, turned out to be of considerable help to the Navy in preparing search plans and procodures that were more offective than the earlier, more intuitive tactics. Since that time the mathomatical logic underlying the theory has been approciapiy strengthened (see,

[^0]
1a -

for example, Dobbie, 1368, and Pollock, 1971) and the range of suggested applications has been conjecturally extendea, but it is questionable whether many of the later, more elegant, extensions are in a form to be of much help to an operator carrying out an actual search, with its attendant urgencies and errors

Part of the reason for the lack of advance in applieations is the wide variety of situations implied in the word sesrch. Asice from the basic probabilistic principles, there is little in common between the computational search for the maxima of a complex function of many variables and the search for a lost child on the slope of a mountain or the search by the police for a fugitive who is continually changing his hiding place. If search theory is to extend its range of applicability, nany specific practical cases will have to be analyzed in detail, and usable solutions (even though they be approximate and inelegant) must be found for each case.

As pointed out by Pollock (1971)(see also Danskin, 1962) the term sherch has at times come to encompass, not only the strategy of the operation of looking for a "lost" object or person (the target), but also the design and use of the detection equipment and the question of what to do after the object has been found. In this Chapter the less inflated definition will be accepted: search is the planning and carrying out of the process of looking for the target. We assume that the characteristics of the detection equipment have been obtained, either directiy from operational experiments (as described in subsection 6.23) or else indirectly from the combined use of the statistical theory of signal detection and decision theory, and proceed to discuss how the equipment con be used in devising the strategy of actual search. A discussion of these excluded problems, and a partial list of related papers, is given in Follock (1971).

This concentration on the actual search process allows us to shorten the list of appropriate measures of effectiveness.

In general wo assume that the desideratum is to maximize the probability of finding the target, for a given expenditure of search effort. Occasionally we assume that the criterion is to minimize the expected time required to find the target; indecd in many cases these two criteria requixe the game strategies. We do not consider other criteris, such as maximizing the amount of information gathered, discussed by Mela (1961) and Dobbie (1968).

Even with this delimitetion, the present Chapter, for reasons of space, can only include a review of basic principles, plus some scattered romerks regarding recent developments. Details of these recent developments may be obtained from the papers given in the bibliographies of Enslow (1966). Dobbie (1968) and Pollock (1971). Our discussion of basic principlea will be given in terms of particular examples, to ensure that a modicum of realism be retained.

We will treat first the case of continuous search, because it has been studied in more detail. Here the military applications are more numerous, though other search situations have been deale with. Some space is given to consideration of the effect. on the atructure or an optimal search, of false targets that often dilute an actual search. Later sections daal with the problew of the search of diacrete sites,"with potential applications to the prospecting for ore or oil, or the police seacch for evidence. Finally the problem of the gearch for an active evader is touched on; here the theoretical development is just beginning and the application to practice is yet to come.

$$
(\text { to page } 3 a)
$$

6.11 Visual Search of an Area.

The pertinent properties of the eyes in scanning an area and the nature of the paychophysiological response are reviewed in Chapter 4 of Koopman (1946). They form the basis of the following discussion.

The human eyes scan an area in a sequence of fixations in various directions (fom about $1 / 2$ to $1 / 4$ second apiece) separated by rapid changes of eye direction; the eye does not "see" while the line of sight is moving. The detail seen per fixation drops off rapididy with angle away from the line of sight. Fine detail is parceived only by the fovea, the small central portion of the retina, subtending only a few degrees. Large objects, with a strong contrast, may be detected when 20° or more srom the line of sight, but the central 2° to 5° are needed for fine detall.

These effects may be expressed in terme of a probability $\mu(\beta)$ that the searched-for target is recognized during a given fixation of the eyes in a direction at angle β to the line to the target. Probability μ of course depends on β, but also on the
illumination, the angular size and visual contrast of the target and of courge on the state of the viewer'g eyes. As noted, μ has a sharp maximum at $\beta=0$, dropping rapidiy to zero beyond $\beta \simeq 5^{\circ}$. The effective solid angle scanned for the target, per fixation, mould then be the integral of μ over solid angle $d \Omega=d \alpha \sin \beta \alpha \beta$,

$$
\Gamma=\iint \mu(\beta) d \Omega
$$

The value of I also depends on the nature of the target and on the conditions of illumination; it is a measure of the utility of a single glimpse in finding the target. In many cases this effective solid angle is small, of the order of 10 square degrees.

The magnitude of the search task also depends on the total solid angle Ω subtended, at the searcher's eyes, by the total area to be searched over. If initially the searcher has no idea of the position of the target in the solid angle Ω_{g} and if the plane is oriented and illuminoted so that Γ is independent of the direction to which the line of sight is pointed, then the chance of dotecting the target in a siagle firation, directod at random wthin Ω_{s}, will be constant, indepandeat of direction (other cases will be considerea later) . This chance, called the a priori glimpse probability, the ratio between the effoctive solid angle scanned per fixation and the total golid angle to be scanned, $g=\Gamma / \Omega_{B}$ ia the probability that the target will be recognized in a single, randomly pointed fixation.

When, as is usual in such visual searches, successive fixations are randomly directed, the probabllity that the object will be recognized in the n^{\prime} th pixation $18(1-8)^{n-1} g$, the probability that it will still be undetected apter the n^{\prime} th glimpse is $(1-g)^{n}$ and the probability that it will be located by or belore
the n'th eixation 18

$$
\begin{equation*}
p_{n}=1-(1-g)^{n} \tag{1}
\end{equation*}
$$

Since $\%$ is usually considerably amaller than unity and since searches of any importance involve hundreds of inxations (i.e.g times of half a minute or more) this formula may be replaced by its asymptotic Poma

$$
\begin{equation*}
P_{n}=1-e^{-n g} \tag{2}
\end{equation*}
$$

It is often useful to express this formula in terme of time t spent and toral solid angle Ω_{g} to be searched. If ν is the frequency of eye fixations during the search, 80 that $n=v t$, we can write

$$
\begin{equation*}
P(\Psi)=1-e^{-X} ; \Psi=E / \Omega_{s} ; E=\omega t \tag{3}
\end{equation*}
$$

as the probability that the target will be detected in time t or sooner; where $\omega=\nu \Gamma$ is the search rete, in solid angle per unit time, is tio total gearch effort, in effective solid angle scanned in time t and Φ is the specific search offort or sighting potential of the gearch.

We note the important property of diminishing returne, paramount in all search procedures. Doubling the search effort E does not double the probability of finding the target. Other search operations, discussed later, correspond to less simple relations betwean $P(M)$ and \mathbb{Q}, but for all well-organized searches the probability $P(\mathbb{T})$ is related to the epeciple search effort $\overline{6}$ by the following general properties (
$P(\mathbb{Q})$ is a monotonically increasing function of and $P(0)=0 ; P(\mathbb{Q}) \rightarrow U \leqslant 1$ as $\rightarrow \infty$; intinermore
$P^{\prime}($ eit (dP/da) is a monotonically decreasing function of and $P^{\prime}(\mathbb{I}) \rightarrow 0$ as $\mathbb{I} \rightarrow \infty$

The adjective "well-organized" implies that the properties - of $P\left(\begin{array}{l}\text { (6) }\end{array}\right.$, expreasad in (4), are in effecta definition of whet we mean by "well-organized" search. At any time during the expenditure of search effort we should, if possible, direct our next quantum of effort in that direction that promises the greatest results; that is, for which P^{\prime} is greateat then. If we can do this at every instant of the search, we will have picked first the action for which P^{\prime} is the largest (or at least not smaller than for any other action), and go on; and P^{\prime} will as a result be a monotonically decreasing function of ${ }^{\text {ig. For further dig- }}$ cussion aee Koopman 1956b, de Guenin 1961 and Section 6.33 of this Chapter). These properties of $P^{\prime}(\Phi)$, summed up in the phrase "diminishing returns", usually imply that the most efficient search involves a very non-linear distribution of search effort, as will be seen in Section 6.33 .

6.12 Falge Alarms, Non-random Scanning.

Just now, however, we must return to an actual example of visual search, to see whether our assumption, inherent in tq. (1), of the statiatical independence of succesaive glimpse probabilitioe is (or can be made) valid, and whether the actual search rate w is in practice equal to Γ. For example, suppose a person is standing front of a large bookcase, trying to find a particular book that he believes is somembere on the shelves. He first scans at random; then out of the corner of his eye he may glimpse what seems to be the right title and be directs his
next fixations there to check. Perhaps the follow-up shows he was in error, so he returns to random scanning. Next time his attention is caught he may have to come close, or even to take the book off the shelf, before he realizes this also is not the book he is looking for. Eventually a glimpse, followed by a closer look, discovers the wanted book (if it is truly there). Thus the actual process of visual search involves both randor and correlated Pixations. In addition, some of the "detectiona" prove to be false alarms, that tend to dilute the rate of search and thus delay the eventual discovery. In the latter part of subsection 6.42 we will discuss the effects of the presence of false targets on the structure of another kind of search, and in the latter part of subsection 6.42 we report the solution for a very simple false target situation (see Stone 1972 and Dobbie 1973 for further details). At present, however, the effect of false alarms on the visual search operation just described, has not been analyzed in detail, so the best we can do is to assume that it will not change the form of Eq. (3) but will reduce the magnitude of the search rate ω. In view of the number of approximations already imbedded in our assumptions, it is doubtful whether any more detail analysis will produce a solution that is enough closer to what actually happens to warrant discarding the gimplicity of Eq.(3).

In fact one can verify experimentally that the probability
of finding a wanted book in a bookcase containing N, books (N large) in time t is approximately given by the formula

$$
\begin{equation*}
i^{\prime}(\Phi)=1-e^{-\Phi} ; \quad \Phi=\rho t / \mathbb{N} \tag{5}
\end{equation*}
$$

where ρ, the effective search rate in books per unit time, epends on the searcher, the degree of illumination and the physical characteristics of the book, and includes the effects of Palse alarmis. In practice this rate turns out to lie batween 100 and 200 books per minute ${ }_{A}$ if the books are arranged at random on the shelves, so the a priori probability of the book's location 18 unipom throughout the bookcase. In this case the deviations to follow up false alarma slow the search but do not seem to alter its generally random nature.

The formula of Eq. (5) is an exemplar of the relationship between the probability $P(\Phi)$ of discovery and the specific search coverage $=E / A$, the ratio between search effort E and the area A to be covered. We note again the property of diminishing returns characteristic of all P's satisfying (4): if effort E is doubled, ${ }^{(13}$ is doubled but P is not doubled (unless E is small). Probability P is not additive, but search coverage is additive. For this reason is often called the sighting potential (see Koopman, 1956b).

To meamure the degree of inefificiency caused by this process of random fixation, we turn to the idealized situation of complete regularity of search. Suppose our eyes could be made to swing smoothly across area A and guppose the target mould certainly be discovered if it came within a solid angle subtending a circular region R of diameter W on A, and would not be discovered if it merer outside A (this assumption eliminater the effects of falge targets). We could then try to cover area A efficiently by moving the line of gight so
that region R sweeps out a regular, non-overiapping path, either in a apiral or a zigzag patterg, eventually covering all of A but never covering any area more than once.

If the target is equally limely to be enywhere in A, the probability that it will have been discovered by the time an area a of A had thus been searched over is

$$
P(a)= \begin{cases}(a / A) & (a \leqslant A) \tag{6}\\ 1 & (a \geqslant A)\end{cases}
$$

Where a> A meang that some of A has to be searched over again. To compare this with Eq. (5), for random search, we note that the gighting potential in the present case is $=a / A$. Thus the two curves for P start with the same initial value and slope at $\mathbb{T}=0$ and both approach each other as $\mathbb{T} \rightarrow \infty$. The greatest difference between the two curves is at $\Psi=1$, where the probability for uniform coverage is 1.00 and that for random coverage 1s 0.63 . As we shall see later, the results for any intermediate degree of regularity in search coverage give results internediate between these two curves (see Fig. 8).

$$
-11-
$$

plane is $q(t)=\exp \left[-\nu \operatorname{Ch} \alpha t /\left(h^{2}+r^{2}\right)^{\frac{2}{2}}\right]$ and the cumulative probability of not finding the ship, as the plane progresses on its search course, is the product of all the partial probabilities, $\cdots q(t-d t) q(t) q(t+d t) q(t+2 d t) \cdots$, for as long as the ship is within the solid angle searched over by the observer. Thus the probability $p=1-[\cdots q(t-\alpha t) q(t) q(t+d t) \ldots]$ of finding the ship during the passage of the search plane is given by the equation

$$
\begin{equation*}
p=1-e^{-F(x)} ; \quad F(x)=\int \nu g(r) d t \tag{7}
\end{equation*}
$$

Where the integration is taken over the whole time during which the target ia within the golid angle covered by the observer. The coments about visual search at the end of the previous Section indicate that the effective value of the constant $V C$ ia rather less than laboratory measurements would predict; indeed, to be safe, its vaiue must be measured under operational conditions, as will be discussed later. Nevertheless, the general form of Eq. (7) is valid.

The quantity $F(x)$ is, as mentioned previouslw, aighting potential; ite additive property is evidenced by ita being an integral. If, later in the search, the plane's course bringa it again within alghting range of the ship, the combined probability of detection would be obtained by adding the two values of F; $\mathrm{p}=1-\exp \left(-\mathrm{F}_{1}-\mathrm{F}_{2}\right)$. The individual F of Eq 。(7) is a sum of all the infinitesimal sighting potentials accumulated as the plane passes by the target.

Returning to the formule for $g(r)$ for visual sighting, we can work out the visual sighting potential for a ship that is a perpédicular digtance x (called the latoral range) from the plane s course. It is

$$
\begin{equation*}
F(x)=\frac{k h}{7} \int_{y_{0}}^{\infty} \frac{d y}{\left(h^{2}+x^{2}+y^{2}\right)^{\frac{3}{2}}}=\frac{k b}{v\left(h^{2}+x^{2}\right)}\left[i-\frac{y_{0}}{\sqrt{h^{2}+x^{2}+y_{0}^{2}}}\right] \tag{8}
\end{equation*}
$$

where 7_{0} ia the rearward limit of the observer's scanned area, at ghom in Fig. 2. If the observer scans the entire forward hals of the ocean, $\mathcal{Y}_{0}=0$, the formula simplifies and the resulting probability of detection of a ship at lateral range x, from a plane at altitude h, travelling on atraight course with speed v, is

$$
\begin{equation*}
\dot{p}(x)=1-\exp \left[-k h / v\left(h^{2}+x^{2}\right)\right] \cong 1-e^{-k h / v x^{2}} \quad(h \ll x) \tag{9}
\end{equation*}
$$

which " gloted as curve a infig3.
In view of the discussion preceding Eq. (6), we see that the parameter k is likely to be rather smaller than $V C$. Nevertheless k is determined by the contrast and size of the sought object, the atmospheric visibility and the observer's alertness, plus the degree to which his poaition in the plane hinders clear vision in (it may nlso depend on r if the plane is going. very fast). all directiona \wedge The details of the methods of visual search also are important. For example, the use of binoculars may actually reduc the value of k; because such use reduces the irequency V of fixations and also the size of the solid angle covered per fixation, even though it increases the probability of detection if the target is within the angle of view. Methods of measuring k under operational conditions will be discussed later.

6.22 Lateral Rango Probabilities for Different Detection Deviceg.

The latoral range curve for visual search from a plane ourve a of Fig. 3, is one example of various curves corresponding to various ingtruments used to detect the searched-for target.

A lateral range curve embodies the details of the search effectIveness of the detection equipment that is carried at unjform velocity y^{v} alcng a straight path that happens to pass a distance x

												T								$[9$				
												-1												
		\square										d												
\square	\square	+						5				9	0	!				4	1					1
17		-											-					4						
5	0		-											\square	\%		$:$	T						
8			c			1												-						
$+9$																		\because						
+																								
d	4											-												
		-			-							1												
A				:																				
		-																						
													0											
																	;							
+					-	\because																-		
$\stackrel{\square}{-}$		1		-	\bigcirc	-												,						
E				-	-													\cdots						
6	S	-		\square	\bigcirc																	\square		
\bigcirc	-	\square		"	\square	\pm		-										-	9					
a		\square			\cdots			\pm									:							
\square				4.														T						
																		T						
		5													$x \neq$			F					0.	-
				Q10			18	Rax	38.			P3	बrcm		+									\cdots
\cdots				\square			\cdots		-															
T	1			-	4	\square	!		\square	\cdots												-	-	$:$
			Eig.	. 3 !	ypica	al car			robab	init	4 of	degec	ction	n $\mathrm{p}(\mathrm{x})$	dis	functi	ion							
					ater	al ra	ange x	x. C	crue a	a is	for	yisua	al se	earch	fram	8 plan	ne,							
					ror	radar	r, c.	for	cadar	W	the	2 retu	urna	and cu	ve d		Oram							
					deal	izedf	defit	fite	range	Raw		1 cur	rves	80 sc	cte W									
\cdots	\%			$+9$		rimeq	$q^{-i n}=$	5	\because			1		\ldots	1	F								

from the target. The shape of the curve is dependent on the nature of the target and the type of detection equipment involved. In the idealized case where the object is not detected if it never comes within a definite range R of the observer, 18 certainly seen if it comes within range R, the curve is the definite range curve marked d in Fig. 3.

In actual practice the lateral range curve seldom approaches the definite range curve d; nearly always there is a range of uncertainty near the limit of detection. For example, a search radar sends out a succession of pulses, as it amings its directional antenna around, and rellections from the target are received and displayed, as a"blip" on the scope, at a point corresponding to the poeition of the target with reapect to the radar. If the terget is too small or too far away the received signal will be the limit of detection a blip may occur only occasionally, instead of every time the antenna scans in the direction of the target. In addition, other objects, guch as waves, produce blips that may intermittently show up on the screen. Only when the blip appears nearly every acan, 1.0., only when the blip-Bcan ratio approaches undty, can the observer be sure that an object is really detected (For Purther details, see Koopman, 1946, Chapter 5) Baaically, radar search ia a two-level search: the radar producing blips on the screen, the obsorver searching the screen for persistent blips.

There are analytic methods (aee, for example, Pollock, 1971) to balance between the chance of false alarm and the chance of overlooking the target, in terms of the blip-scan ratio. Uaualiy the exigencies of the search, and the stress on the searcher, preclude the application of such niceties in actual practice.

The degree of fatigue of the obserymr, for example, has been pound can have much larger effect on the results than eny prebcribed rule for blipascan ratio; observer fatigue can at times reduce the erfective pange of detaction to bali the optimal range. Also if pank pece
 In any case, under reasonably good conditione, the lateral range curve for radar search would have the general shape shown in curve b of Fig.3. No detection occurs wion the lateral range x is some factor (50% in the curve shown) greater than the effective range R; perfoct detoction occurs if x is loss than R by about the same factor. Under poor conditions the curve may bo more like curve c of Fig. 3. For example the search plane may be flying over a rough soa, or cver hosvily wooded torrain, with a great number of Palge blipg (sea or ground clutter) that tend to hide the true blip. In some cases the clutter is greatast in the forward direction, so the chance of detection is greatest for mone intermediate value of x as illustrated in curve c of Fig.3. For further details Bee Koopman, 1946, Chapter 5.
most of the remarik made for radar acarch apply to the case of the use of sonar by a surfaco vessol soarching for a aubmorged submarine (see Koopman, 1946, Chapter 6). Instead of ground clutter, the so-called reverberation tenda to hide the true blip; also the signal tends to be lost when the vessel is nearly over the submarine. Therefore, oxcept for the differences in distance scale, lateral range curves for sonar resemble curves b and c of Fig. 3.

Many other search situations correspond to the model dizcugsed here. For example, the vieual soarch, irom a helicopter, for lost child would probably conform roughly to curve of Pig. 3, and thus to Eq. (9). If the person were loet in wooded territory,
and the search has to be conducted on foot, the lateral range curve would more nearly correspond to b of Fig.3, the visibility being sharply limited by the trees. On the other hand, if shouts were used to alert the lost one, the shape may be nearer curve a When dogs are used, still another curve may be appropriate. For fuxther discussion of these problema, see Kelley, 1973.

The sighting potentials $\mathrm{F}(\mathrm{x})$, for the four curves of probability $p(x)$, shown in Fig. 3 , are displayed in Fig. 4. As mentioned before, these potentials are additive; if several observers are involved, either followink along the same path or travelling in parallel paths, their potentials are to be adied, to obtain the resultant probability of detection,

$$
\begin{equation*}
p(x)=1-\exp \left[-F_{1}(x)-F_{2}(x)-\cdots\right] \tag{10}
\end{equation*}
$$

For example, if the search plane has n visual observers, or if n planes follow the same path, the k of Eqs. (8) and (9) is to be replaced by nk. Because the probabilities follow the law of diminishing returns, such duplication of effort is inefficient unless $F(x)$ for a single observer is less than about 0.7 , or $p(x)$ less than about 0.5 . Thus additional sighting potential would be useful, in the visual case (curve a) for $|x|>0.3 \mathrm{~W}$.

6.23 Search Width end ItB Measuremant.

The effective width of the path swept out by the searcher in hie conese is found by integrating the probability of detection over the lateral range x

$$
\begin{equation*}
W=\int_{-\infty}^{\infty} p(x) d x=\int_{-\infty}^{\infty}\{1-\exp [-F(x)]\} d x \tag{11}
\end{equation*}
$$

where $F(x)$ is the sighting potential. The search width W is the most usefiul single measure of the effectiveness of a detection instrument, carried by an observer moving in continuous path over the area to be searched. As he movea, he can de reasonably certain to find the searched-for target if it comes within the swept path of width W, centered on his track. his one can gee from Fig. 3 , most search will not certainly dobots the target if it lies between $\frac{8}{2} W$ and $-\frac{1}{2} W$ of the peth; but there 18 a compensating chance of finding it if it lies beyond $\pm \frac{1}{2} W$, so the eifective width is W.

The offective search width for visual search frum low altitude 13, Lecording to Eq.(9),

$$
\begin{align*}
W & \simeq \int_{-\infty}^{\infty}\left[1-\exp \left(-k h / v x^{2}\right)\right] d x \\
& =2\left[x\left(1-v^{-k h / v x^{2}}\right)\right]_{0}^{\infty}+2 \int_{0}^{\infty}\left(2 k h / v x^{2}\right) e^{-k h / v x^{2}} d x \\
& =2 \sqrt{\pi / \ln / v} \quad(\text { for } h<w / 10) \tag{12}
\end{align*}
$$

(Note the difference with Eq. 29 of Koopman, 1956,2; we assume the observer looke in the forward half circle, instead of all around). For hieher altitudes, an approximate formula is

$$
\begin{equation*}
\mathrm{w} \simeq 2 \sqrt{\pi k h / T} \exp (-h v / 4 k) \tag{13}
\end{equation*}
$$

We note that the width increases with altitude up to $h \simeq(2 k / v)$, above which visibility begins to redice the chance of spotting the target, even when below the plane. We note also that increasing
the speed of the search plane reduces the search width, which is not surprising, since increasing the speed of the plane shortens the time during whichany given area is scanned. As was noted before, if n independent observers traverso the same track, the k in the square root is replaced by nk.

Each of the curves of Fig. 3 and Fig. 4 have the abscissa scaled to the efrective search width. The curve for the usual radar and sonar search (b in Figs. 3 and 4) is much closer to the idealized definite range curve d, than is the visual search curve $a ;$ the fringe of low probability for curve b does not extend very far beyond $x=W / 2$ and over the range $0<x<W / 2$ the chance of detecting the target is nearly unity. In this case it would be a nearly complete waste of effort for another radar or sonar vehicle to repeat the same path (unless the seing is poor, as with curve c)

We have noted earlier that the ability of an observer, with his vehicle and equipment, to detect some target, depends on so many variables that in practice it is wellnigh impossible to predict this ability from laboratory measurements. Thus, if it is important to conserve search effort (and, for this, one needs to know the value of W, the only safe procedure is to measure W under conditions closely approximating those in actual search. It was found, in World War II, that the usual search width W for radar planes searching for German submarines, was one half to one third the value claimed by the radar manufacturer, based on laboratory measurements. This is not surprising when one compares the results of tests on an optimally tuned radar, operated by an expert, with the results using a radar that had seen heavy service, operated by a tired G.I. If the manufacturer's clains had been used in planning, there would have been larae "holes"
in the search plans. In addition to these differences between laboratory and practice, there is the effect of "false alams" and the pauses to verify questionable detections (discussed in Sections 6.1) which serve to dilute the search effort by emounts that cen usually only be determined experimentally.

If a target simulating the real target is easy to construct, the meagurement can be carried out as pollams. Lay out a band of width D, at least 3 times the best estimate of the search width W and of length I at least 10 times D, with a well-marked, straight search course down its middie. Now place T simulated targets, more on less unfformly distributed over the whole area LD, but not so regularly spaced that it would be possible to deduce the regularity. If one wishes to measure $p(x)$ as well as W, the distance from the search path of each target should be measured, and recorded. An observer is then sent along the search path and required to note the position of each target he observes during his pagsage. After checking his records and removing the "false alarms", if it turns out he has spotted n of the T targets then an estimate of the search width is $n D / T$. If n is larger than $\frac{1}{2} T$, the band width D was chosen too small. D should be doubled, the targets redistributed uniformly over the new band, and the experimentfun over again.

If the number n of true targets apotted is less than about 20, statistical fluctuations will preclude accuracy in the result. In this case a number of independent observers should be run through the course, making sure that each is ignorant of the location of the targets of of the findings of other observers. When the total number $N=\sum n$ of targets spotted by all m observers reaches a value of 100 or more, the resulting ratio ($\mathrm{ND} / \mathrm{mT}$) will be a
reasonably accurate estimate of the search width W.
If one can persist long enough for \mathbb{N} to reach values of 500 to 1000 , and if the lateral range of each target has been measured, then a rough estimate of the lateral range curve of Fig. 3 can be constructed. One divides the N spotted targets (counting each target as many times as it has been spotiod, as before) into those within $W / \sigma_{\wedge} \circ$ of $^{\circ}$ cithe search path (suppose there are \mathbb{N}_{1} of these), those with lateral range between $t(w / 6)$ and $\pm(W / 3)$ (\mathbb{N}_{2} of those), those with lateral range between $\pm(W / 3)$ and $\Psi(W / 2)\left(N_{3}\right.$ of these) and so on until all the have been counted. One can then construct a block diagram, as shown in Fig.5, with the height of the 1 'th block equal to $\left(3 N_{i} / N\right)$, which will be a rough estimate of the lateral range curve, A shown in Fig. 5 by the solid line. The accuracy of the result depends, in part, on the uniform distribution of the - initial placing of targets; there should be a roughly equal number in each of the strips parallel to the path.

The usual search operation involves the corering of an area to innd some target presumed present. In this Section wo assume that there is no initial guess as to the object'g whereabouts, so one has to assume it is equally likely to be anywhere in the area. In accord with the discussion Iollowing Eq. (5), and dealt with further in Section 6.33, the best way of applying our search efrort, in this case, is to distribute it as evenly over the whole area as is operationally possible. Details of the derivation of many of the equations given in this Section may be found in Koopman, 1956, 6 。

6.31 Parallel Sweeps.

If the area to be searched is considerably larger than can be covered by a stationary inspection or by a single sweep through it, the best way of insuring uniform coverage is by a sequence of parallel awseps, spaced a distance S apart. This may be accomplished a spiral path or by plished by the zigzag course of a single observer, as shown in Fig.6, or else by a number of observers following parallel courses interspaced a distance S. Depending on the time and degree of effort available, a parallel courses can be afforded, each of length D, spaced $S=C / n$ apart, thus amounting to a total path length I m nD. From the previous Section we have measured an effective search width W, so that $W I=n D=A(W / S)$ is the area erfectively searched (or the total search effort) $A=C D$ being the area to be searched and $W L / A=W / S$ being the fractional seasch coverage (or specific search effort, or total sighting potential). If the dimensions C and D of the area are considerably larger than W, n and thus I can be considered to be

Fi9.6. Parallel sweeps, of search width W, spaced a distance S apart, providing uniform coverage of area $A=C D$.
continuous variables. Also, if the area A is not rectangulas, as shown in Fig. 6, but is sufficiently large and compact in shape. spiral ${ }_{\wedge} p a t t e r n$ or of parallel sweeps can be laid out that produce essentially the same uniform coverage and the same fractional coverage for the same total aearch effort WL.

To predict the probability of finding the target during such a coverage, we must add the sighting potentials F of Fig.4, for the parallel sweeps as shown in Fig. F. We have (if A is large nough)

$$
\begin{align*}
& P_{p}(x)=1-\exp \left[-F_{p}(x)\right] \tag{14}\\
& F_{p}(x)=\sum_{n=0 n_{0}}^{N_{0}+1} P(|x-n S|) ; \text { soe Fig. }
\end{align*}
$$

Por the probability of detection $1 \mathrm{I}^{2}$ the target bas a lateral range x from one of the paths. The Pormulas. represent the fact that each parallel sweep contributes its share to the total sighting potential F_{p} 。 The limiting value m_{0} is the integer such that $F(x)$ becomes negligible for $|x|$ between $n_{0} S$ and ($n_{0}+1$) ; usually is such that n_{0} is small. Thus in practice we need not cansider "edge effects" for the aweeps next to the edges of the area. If these edge effects are neglected, both p_{p} and p_{p} are periodic Punctions of x with period S.

Let the distance of the searchedmor target from odge D be z. of the target is equally likely to be anywere in A, it is equally likely for z to have any value between O and $n S m$. Thus the probability that the object will be found by the end of the n sweeps is an integral of the periodic function p_{p} over the whole width C, divided by C,

1

Sighting Potantial

$-22-$

$$
\begin{align*}
P(L) & =\frac{1}{n S} \int_{0}^{n 5} p_{p}\left(z-\frac{1}{2} S\right) d z=\frac{1}{n S} \int_{-\frac{1}{2} S}^{(n-b / 5} p_{p}(x) d x=\frac{1}{S} \int_{0}^{5} p_{p}(x) d x \\
& =\frac{1}{S} \int_{0}^{5}\left\{1-\exp \left[-F_{p}(x)\right]\right\} d x ; y=\frac{W}{S}=\frac{W L}{\mathbb{A}} \tag{15}
\end{align*}
$$

The integration can be carried out analytically for the visual search case of Eq . (8). The result (when h is small enough so that $w \simeq \mathrm{wh} / \mathrm{v} x^{2}$) 10

$$
P(\pi)=\operatorname{erf}\left(\frac{\pi}{S} \sqrt{\frac{8 g}{\nabla}}\right)=\operatorname{erf}\left(\frac{1}{2} \sqrt{\pi} \pi\right)
$$

where $\operatorname{erf}(u)=(2 / \sqrt{\pi}) \int_{0}^{4} e^{-t^{2}} d t$ is the wellaknown error function. Details of the calculation may be found in Koopman, 1956,b (note the misprint in his Eq. 45). Other casea may be calculated numerically, once the appropriate sighting potential $F(x)$ has been determined by measuring $p(x)$ operationaliy and computing $F(x)$ an $[1-p(x)]$, then calculating F_{p} and p_{p} and finelly integrating p_{p} / S numerically from $x=0$ to $x=S$.

The curves for $P($ ($)$, as functions of the fractional bearch coverage $=W L / A$, are shown in Fig. 8 , for parallel eweeps of equipment exhibiting the different detection capabilities dige played in the lateral range curves of Fig.3. All of them show a decided dimunition of value when $=W / S=W L / A$ becomes smaller than unity, but a substastial dimintshment of additional returns when becomes larger than unity. Also tho curves a, b and c are not greatily different from the limiting curve d, for the definite range law. The implications of these properties, when the a priori probability of presence of the target is not uniform throughout A, will be discussed in the next section.

Curve b, for radar search under good conditions, is nearly identical with the definite range curve d. In both cases an increase of spacific search effort I greater than unity produces practically no additional sightings. (If, however, too optimistic

a value of W is used, one may think $W / S>1$ and no further effort is needed, whereas in actuality $W / S<1$ and more search could profitably be appiiad).

Curve c, for redar under difficult conditions of sea or ground return is an interesting caso because of the peake in $F(x)$ and $p(x)$ for $|x|>0$ (seo Figs. 3 and 4). This results in a curve for $P(\mathbb{C})$ that nearly flattens out when the peake of $F(x)$ and $P(8-x)$ coincide, and then rises again glowiy ag S is further decreased (or w w w is further increased) 。 Thus $\mathrm{P}^{\prime}(\mathbb{W}) \mathrm{dP} / \mathrm{d}$ has a minimum value and then risos again to a subsidiary maximum as is increaned further, before dropping asymptotically to zero. Thus thia curye does not meet the requirements of (\&) for a wellorganized search. As will be indicated later, this mares it difficult to optimize the search effort. Luckily the conditions giving rise to curve c do not arise in practice very often.

6.32 Randomly Distributed Swoeps.

In actual gearchos it often is quite difficult to traverse the precisely parallel, equally-spaced tracks assumed in the previous aubsection. In fact, unless all the tracks are laid out and ehecked during execution by accurate visual or radar triangulation, it is unlikely that the optimistic calculations of detection probability, indicated in curves a to d of Fig. 8 , can be achieved. It is much more likely that the results will correspond more nearly to an assumption that the path or paths cover area A more or less uniformiy but are randomly oriented. To be more precise the likelier mocel is that of search paths made up of a number of atraight egmenta (as sketched in Fig. 9a) of total
lengith L within A, with the position and orientation of one segment being independent of the position and orientation of any other aegment that is separated from the iirst by several intermediate piecos.

To analyze this case we examine the longth ΔI of search track, ad shown in Fig. 9b. If the target ie equally likely to be anym where in A, and if the search track is randomly located, in the sense of the previous paragraph, then the target is equally likely to be anywhere in relation to the element of track ΔI. If the detection equipment has a definite range $\frac{1}{2}$ 略, as indicated by curve d of Fig. 3, the chance of detection, while traversing ΔL is the area of the ghaded rectangle of Fig. $9 b, W \Delta I$, divided by A. The reault is the amo for any lateral range curve, for the probability the target is in the elementary area $d x \Delta I$, a distance x Prom the track, is $d x \Delta L / A$ and thus the chance of detection during ΔI by equipment having the lateral range probability $p(x)$
1.s

$$
\begin{equation*}
P=(\Delta I / A) \int_{-\infty}^{\infty} p(x) d x=(W \Delta L / A) \tag{17}
\end{equation*}
$$

according to the derinjtion of search width W, given in Eq. (II).
The argument now proceeds $a s$ did that of section 6.1 , and reaches a similar result. The chance of not inding the target while traversing the element ΔL is $[1-(W \Delta L / \mathbb{A})]$ and the chance of not finding it in a soquence of n elements is $[1-(W \Delta L / A)]^{n}$. Since there are $n=L / A x$ much elements in the total track traverged In the search, the chance of finding the target during the search

$$
\begin{equation*}
\text { iB } P(\Phi)=1-\left[1-\frac{W \Delta L}{A}\right]^{L / \Delta L} \xrightarrow[\Delta L \rightarrow \infty]{ } 1-0^{-母} \tag{18}
\end{equation*}
$$

where (WL/A) is (as previously) the effective search potential or specific search effort. The curve for this probability is shown in Fig.8, along with the curves for the parallel sweeps of the previous subsection.

Thus, as soon as randon deflections disorganize to any extent a parallel search pattern, no matter what the detection equipment, the probability of auccess reduces to the same exponential dependence on search effort as was found in Section 6. (Eq. F for the simplest sort of visual search. Of course the constants involved, expressed in terms of W and L, differ in value from the ω and t of Eq. (3), depending on the nature of the detection equipment and its carrier. Nevertheless the similarity in form of the reaulting onastion for $P($ (1) means that $w 8$ can develop procedures for optimal allocation of search effort that are almost completely independent of the nature of the search, as long as it involves covering an area.

The preceding discussion, however, should not be used as an excuse to be careless in laying out and following a search track. A glance at Fig. 8 shows that the detection probability for random sweeps is less than any of the probabilities for parallel sweeps, for the same amount of effort. Farallel sweeps should be used whenever possible, but one should be sure that the paths are accurately parallel and equally spaced, or one runs the danger of overeatimating the search effectiveness. Finally, it should be realized that to cover an area uniformly, oven with randomiy oriented aweeps, requires a fair amount of planning and path control.

Isbell (1957) and Glues (1961) have discussed a very different "eoarch" problem, where the target is very large, the soarcher is blind and muat find the target by moving around until he bumpe into it. For oxample the "lost at sea" prohlem assumes that one is in a donse fog, that he knows exactly how far from shore to is but has no idea in what direction it is. The problom is to devise a path that either minimizes the maximum distance travelled (Isbell, 1957), or minimizes the statistical expectation of the distance to be travellod (Ghas,1961)

Search for other large objecta have also received attention. For example Guss (1961b) has worked out the optimal path for finding (by touching) a circle of known radius and distance away, but unknown direction. The result could also be useful in trying to find a point target a known distance ${ }_{\mathrm{N}}$ away, direction unknown, by use of detection equipment with known definite range for the ($\operatorname{l} / \mathrm{PR}$). target A However these exerciges are of limited utility in practice because of the assumption of precise knowledge of target distance, and the solutions are quite sensitive to these assumptions.

Other probleme, discussed by Bellman (19\$2) and, for example, Heyman (1968), involve the"search" for maxima (or zeros) of a function of many variables by means of dynamic (or linear) programming. A gurvey of this work would lead us too far afield from the practical problems surveyed in this Chapter.

If nothing is known as to the position of the target, except that it is inside area A, the optimal procedure is to distribute the available search effort uniformly over A. mhis easily verified if one considers the search coverage $E_{j}=W_{j}$ to be ${ }_{\mathrm{A}}$ function of each zubarea A_{f} in A. The probability of finding the target in A_{j} is the product of the probability A_{j} / A that the target is in A_{j}, times the probability $P\left(\phi_{j}\right)$, ($\left.\phi_{j}=E_{j} / A_{j}\right)$, that it would be round if it were in A_{j}, so the total probability of success is $P(\oplus)=\sum\left(A_{j} / A\right) P\left(\phi_{j}\right)$. If the coverage is made non-uniform by making ψ_{j} somewhat greater (by an amount Δ, say) than the
 another equal subarea $A_{i}=A_{j}$ less by the same amount Δ then, because $P(\varnothing)$ is subject to the law of diminishing returns, the sm. total probability $P(\not \subset)$ will be reduced for all the cases so far discussed. Since $P(\phi+\Delta \phi)-P(\phi)<P(\phi)-P(\phi-\Delta \phi)$, the total probability wll be dininished by the negative amount $\left(A_{i} / A\right)[P(\phi+\Delta \phi)+P(\phi-\Delta \phi)-2 P(\phi)]$.

6.41 The Effect of Some Knamledfe of the Target's Whereabouts.

Now suppose something is known about the target's location, so that its a priori probability of presence varies from region to region within A. We firgt deal with the rather impractical general case, when the a priori probability density $g(r)$, of its being at tha point indicated by the vector r, to vary from point to point within A. Since $g(x)$ is probability density

$$
\begin{equation*}
\iint_{A} g(r) d A=1 \tag{19}
\end{equation*}
$$

 at point x also. maw diffge irom point to point in A, the probability $P\left(\begin{array}{l}\text { (}) \text { of dotncting the targot, during tho expendsturo of a }\end{array}\right.$ givea garoh efort

$$
\begin{equation*}
\text { ges } \iint_{A}(x) d A \text { w } \tag{20}
\end{equation*}
$$

throughout A, is the integral of the product of the probability $B(x) d A$ of target presence in $d A$ and the probability $p[\sigma(x)]$ that the target is found if it is in $d A$

$$
\begin{equation*}
P(\varnothing)=\iint_{A} E(x) P[\phi(x)] d A \tag{21}
\end{equation*}
$$

Bupyose two diatributions of boarch deasity (each adang up to the ame total coverage are compared; one being $q(r)$ and the other $\phi(x) * \delta \phi(x)$, difioring erom by the rolatively
 probsilitty of detoction ρ will bo

$$
\begin{gather*}
\Delta P=\iint_{A} g(x)\left[P(\phi)+\delta \phi^{\prime}(\phi)-P(\phi)\right] d A \\
=\iint_{A} \delta \phi g(x) P^{\prime}[\phi(x)] d A \tag{22}
\end{gather*}
$$

where $P^{\prime}(\$)=d P / \alpha \phi$. The distribution of searom offort $\phi(x)$
 And the only way ΔP can be zero, for any choice of $\delta 6$ (as long * $\delta\left(\mathrm{Ls}\right.$ gull and $\left.\iint \delta \phi d A=0\right)$ is for the product $g(r) P^{\prime}[\phi(r)]$

Of evatre this optimal distribution of met aatisfy Eq. (20), that the tategrel of over A must equal the specified total sameh frortwixa. The requirement, arivod at in tine last pragraph, thate $\mathbb{F}^{\prime}(x)=G / E(x)$ if O it to be maximun, mag Involven inconalatenoy; for the ourvea of Fig. 8 show that the maximum value of $P^{\prime}(\varnothing)$ is unity (when $\phi=0$), no matter which curve La used. Now 1 f, for any value of 5 , the a priori probobility
density of presence of the target is less than the value of the constant G, the requirement that $P^{\prime}=G / G$ cannot be satisfied, so this region must have zero coverage. No region in A, for which G/g > 1 can be covered by the search, if it is to be optimal; any offort mould more offectively be used in an area where $G / E<1$ Thus the properties of the search operation outlined in (5), preacribe a highly discriminatory soarch plan, if search offort is not limeless. Dotalls of the derivation of this formula, and prooi that the reaulting io is maximum, not minimuri, are given in do Guenin, 1961 and Dobbie, 1963.

More oxplicitly, the procedure for computing the search coverage $\Phi(x)$ that maximizes the probability $8(\Phi)$ of deteotion of the target Por a secified total search effort ${ }^{(1)} W$, is a two-phase one:

1. The appropriate value of the constant $G=G(r) P \cdot[\phi(r)]$ may axclude some portions of area A, those for which $G / g(I)>1$. In this axcluded area A_{0} the search density is to be zero. In the soarcised area $\mathbb{A}_{\mathbb{B}}=\mathbb{A}-A_{e}$ the denaity of soarch $\phi(r)$ mutt be guch that $P^{\prime}[\phi(r)]=G / g(r)$, which, in A_{g} is overywhere loss than or aqual to unity.
2. In adiftion, G must aquisiy the requirement that the integral of the search density 0 , as specified in i_{g} over the searched area A_{g}, be equal to the specified Bearch effort

Themo requirementa can be more compactly beatod in torme of the inverse function of $1 / P^{\prime}(\phi)=G / G \cdot \operatorname{Call}$ it $f(g / G)=\%$. so that $1 / P^{\prime}[P(G / G)]=g / G$, and $P\left[I / P^{\prime}(\phi)\right]$ - Then, to maximize the probability of detection in an area A, within wich the

A prion probability donsity of prosence of the target at x is $g(x)$, for a given total soaroh offort, definod as WI. 婁A, we find a value of G such that
$\iint_{A_{s}}[g(x) / C] d A=A_{0}$, with ine integration over the portion of area A_{s} whin wich $g(s) / G \geqslant$ bo Then the optimal search deasity at x is $I[G(x) / G]$ in A_{s} and zero in $\Delta_{0}=A-A_{g}$, there $g / G<1$. The resulting (aximal probability of dotection 10 then $P(\mathbb{G})=\iint_{A_{G}} g(r) P\{P[E(r) / G]\} d A$
Curves of $\mathcal{P}^{\left(1 / P^{9}\right) \text {, for the cases shown in P1g.8, are plottod in }}$ Fig. 10.

One limitation of thia procedure comes from the amsumption that $P^{\prime}(\varnothing)$ has a singlearalued inverse function 1 . This is the case for curves a, b and d and the random covarage curve of Fig. 8. However curve c does not heve a single valued inverge bocause dts p is not a monotonically decreasing fiunction of (t. As long as g/G does not rise above about 15 over the whole of A, can ignore the complication, but if the avallable search offort is large enough so that $g / G>20$ over some portion of the farea then part of the effort must bo dence onough bo make up for the "valloy" at $x=0$ in tho latoral range curve。 Because thim typo of curve is rarely oncountered in practice, we shall devote no further space to its lalosyncrasion.
 single-valued functions of $1 / P^{\prime}$, the featumes of procedure (23) do not correspond to intuitive allocatione of suarch offort. The fact that regioms of low a priort probebility of presence should be avoided entirely is due to the fact that the maximum

- - mand nontact to a time longer than the average time

 asaex verify that the contact is really n false contact.value of p^{\prime} ia unity, which occura for $\phi=0$. As long as the value of target density $g(r)$ in some region is larger than the value of g elsewhere, it is best to concentrate on the high-g region until the search there has reduced the Baysian, a posteriori target probability density to a value aqual to the gor the next most likely region. And, if the search effort is limited, some low-g aroas will have to be left out entirely. In fact, the proceas of optimal aearch may be restated in terms of a sequence of decisions as to where the next quantum of aearch effort can be most productively used (see Charnes and Cooper 1958 and Dobble 1968, for example).

When false targets (call them ghosts) are present as well as the aingle target looked for, the analysis becomes much more complicated, and only a few caser have been worked out in detail. The resulta depend strongly on the number and nature of the ghosts and on the search strategy regarding them. The ghosts may be caused by poradic malfunctioning of the detection equipment (among which may be included some of the radar ground and sea clutter and the reverberation in sonar equipment), in which the delay required to eatablish the contact as false may be quite short. Or the ghont may be a definite object (such as a sunken wreck of "second-time-round" echo from an islet) that would take some time to verify as ghont but, once verilied, could be mapped so reverification would not be needed. Or the ghost could be mobile (as with a friendly bhip or a whale) that would require reverification each time a contact was made.

Many strategies could be devised for dealing with these false targeta. In regions where the ghosta are chiefly of the reverberstion type, one might decide to limit the effort spent
n oputuel search plan has been worked out by Stone, scanshine act Pexisisger (1972) for a spectalized case of this wind of setret surategy. The results show the greatly thoreased complexity If calcubetions required to reduce the theory to practice. One is tempted yo amsum that the effect of gich ghosta is to dilute che seamen effort required, without the ghostis, by is factor yroporuconas to the estimated ghoof density.

When the ghoati are actial targets, though false ones, the searcher mag be forced to follow up each new contact for as long as it takes to determing whether it is truse or falso. Here also the resulting Pormulas (see Stone, et al., 1972 again) are quite difficult to appiy. In the cases where the ghosts are stationary and mappable, a sequential procedure has been worked out by Doboie (1973). An example of this procedure, for the simplest possible situation, will be given in the next subsection.

It should be noted that in many of the cases involving false targets the more feasible criterion for optimal search strategy appears to be the minimization of total effort (nciuding that used to verify that a contact is a ghost) expected to be used to find the target, rather than the maximization of the detection probability for a given search offort. Indeed, in some cases, the two criteria may lead to different (see Dobbie, 1973)

6.42 Applying the Fommia.

Using procedures (23) in all their generality has disadvantages. First, it is seldom that one's e priori mowledge of the whereabouts of the target 18 good enough to enable one to specify target density $g(r)$ in detail over all of A. Often we know only that it is within A; then the search coverage should be
uniform over A. In some caseb me can divide A into two subareas, with the target being rathex more likely in one than in the other; in only a few cases is our a priori knowledge more detailed than this. It ds thus useful to work out simple procedures to solve (23) Ior the two-bubarea case.

Here the probability density $g(r)$ is uniform within each of the subareas A_{1} and A_{2} (so the search density $1 g$ uniform within oach aubarea) but g_{1} differs from $g_{2}\left(80 \phi_{1}\right.$ will differ from ϕ_{2}). We can then reduce (23) to dimensionless terms by using as parameters and unknown the following:

Ration of areas; $\alpha_{j}=A_{j} / A ; \quad \alpha_{1}+\alpha_{2}=1$
Probability that the target is in a aubarea;

$$
\begin{equation*}
\gamma_{j}=A_{j} B_{j}=A \alpha_{j} E_{j} ; \quad \gamma_{I}+\gamma_{2}=2 \tag{24}
\end{equation*}
$$

Minimum searchworthy probebility of presence; $\lambda=A G$
Optimal specific search coverage of a subarea;

$$
\begin{aligned}
& \Phi_{j}=\alpha_{j} \phi_{j}=W L_{j} / A=\alpha_{j} \mathcal{P}\left(g_{j} / G\right)=\alpha_{j} f\left(\gamma_{j} / \alpha_{j} \lambda\right) \\
& \Phi_{1}+\Phi_{2}=W=W L_{1} / A
\end{aligned}
$$

Optimal probmbility of finding target in a subarea;

$$
\theta_{j}=\gamma_{j} P\left[f\left(\gamma_{j} / \alpha_{j} \lambda\right)\right] ; \quad \rho(2)=\theta_{I}+\theta_{2}
$$

The values of ${ }_{f}$ and $\left(\rho_{j} / \lambda\right)$, as functions of γ_{f} / λ are displayod in nomogram form in Figs. 11 to. 14, for the cases of vibual gearch in parallel sweeps and for randora coverage, any detection means. The specific formulas for the two cases shown sxe obtained by referring to Eqg. (16) and (18);

For parallel Jweeps, visual sighting

$$
\begin{gather*}
P(\phi)=\operatorname{erf}\left(\frac{1}{1} \sqrt{\pi} \phi\right) ; P^{\prime}(\phi)=\exp \left(\frac{1}{2} \frac{\pi}{4} \phi^{2}\right) \\
f\left(1 / P^{\prime}\right)=(2 \sqrt{\pi}) \sqrt{\ln \left(1 / P^{\prime}\right)}=\phi \tag{25}
\end{gather*}
$$

Vor untform coverage of random sweeps per subarea

$$
\begin{aligned}
P\left(\phi^{\prime}\right)=1-e^{-\phi} ; P^{\prime}(\phi) & =e^{-\phi} \\
f\left(1 / P^{\prime}\right)=\ln \left(1 / p^{\prime}\right) & =\phi
\end{aligned}
$$

Parallel Sweeps, Visuki Search.
Detemmination of λ.

Whese are the functions used to compute the scales of Figs. 11 to 14.
The left-hand half of each chart corrosponds to the smaller subarea, which we call A_{1}; the right-hand half goes with \mathbb{A}_{2}. The Pirst cherts (Figs. 11 or 13) serve to determine λ, given the total search effort WL a AT that can be expended. Suppose we have Buessed that the target has a chance γ_{1} of being in aubarea $A_{1}=\alpha_{1} A$ of the area A to be searched, and that it has a corresponding chance $\gamma_{2}-1-\gamma_{1}$ of being in the subarea making up the rest of $A, A_{2}=a_{2} A$. We first choose the pair of columns corresm ponding to the retative gizes of the subareas, given by the values of α_{1} and $a_{2}=1-\alpha_{1}$.

Next we determine the ratio γ_{2} / γ_{1} of the probabilities of presence in the two subareas. The γ_{j} / λ scales are logarithmic, so moving a line between the columns parallel to itseli preserves the ratio of the γ^{\prime}. For each value of γ_{j} / λ on the scale to the left of each colum there is a corresponding value of \mathbb{T}_{j} on the scale to the right. We glide the line parallel to itself until the two values, ${ }_{1}$ and In $_{2}$, picked out at the two ends of the line, add to equal \mathbf{T} wh/A, the prescribed specific search offort.

Two examples aro shown in Fig. Il. In case a we have gressed that the target has a probability $\gamma_{1}: 0.4$ of being in the small mubarea $A_{1}=0.2 A$ and thereiore that the chance of 1 ts being in the remaining $A_{2}=0.8 \mathrm{~A}$ is $\gamma_{2}=0.6$. We also have decided that we can onlJ spend a total effort WL $w 0.5 A$, on the aearch. The ratio of the $\gamma^{\prime} g$ is 1 to 1.5 , so we set s muler on $\gamma_{1} / \lambda=1$ on the $\alpha_{1}=1 / 5$ column and on $\gamma_{2} / \lambda=1.5$ on the $\alpha_{2}=4 / 5$ columm and move it parallel to itself until the aum of the corresponding $\Psi^{\circ} \mathrm{s}$ equals 0.5 . This occurs at the two ends of the line a, for $\gamma_{1} / \lambda=0.58,{ }_{2}=0.235$ and $\gamma_{2} / \lambda=0.87,{ }_{2}=0.265$. Thum ws
nust apend nearly half (0.47) of our soarch effort in the smaller area A_{1}. Note that if the available search effort were less than 0.26 A the right-hand end of the parallel line would come ebove the top of the right-hand column, indicating that ${ }_{2}$ muat be zero and that A geta all the aearch effort, even though the chance of finding the target in A_{2} is 1.5 timea the chance of sinding it in A ${ }_{1}$ Whin such a small available effort, it is better to spend it all in the smellex area, where the probability density is greater.

Strice assumed γ_{1} to be $0.4, \lambda$ must then be $(0.4 / 0.58)$ $=0.69$. To check we divide $\gamma_{2} 0_{4} 6$ by 0.87 and gain get 0.69 . To find the predicted probability of detection we turn to Fig. 12 and draw the same line, betweon $\gamma_{1} / \lambda=0.58$ and $\gamma_{2} / \lambda=0.87$, betwern the same two columns. The probability scales on these columns show that $P_{1} / \lambda=0.5$ and $P_{2} / \lambda=0.3$. Having already found that $\lambda=0.69$, we determine that the chance P_{1} of finding the target in A_{1} is 0.34 and that of inding it in A_{2} is $P_{2}=0.21$, with a total chance of finding the target as 0.55 .

Example b is for two equal subareas $\left(\alpha_{1} \times \alpha_{2}=0.5\right)$ with the target guessed to be 4 times as likely to be in A_{2} as in $A_{1}\left(\gamma_{1}=0.2\right.$ and $\gamma_{2}=0,8$). We have available this time a total search effort $W L=A(x)$. Setting our maler on $\gamma_{1} / \lambda=1$ and $\gamma_{2} / \lambda=4$ and moving it parallel we find that $\mathbb{I}_{1}+a_{2} m$ at the enda of line b, for $\gamma_{2} / \lambda=0.625, w_{1}=0.28$ and $\gamma_{2} / \lambda=2.5, w_{2}=0.72$. Here we had better devote $3 / 4$ of our search effort to the more likely area. Since $\gamma_{1}=0.2$ and $\gamma_{1} / \lambda=0.625$, we have $\lambda=0.32$, which can be checked, for $0.8 / 2.5 \times 0.32$. We note that if the total search effort is less than 0.66 A then Φ_{1} would be zero. In this case if WL is less than sbout $(2 / 3) A$, it is best to spend all of it in the more likely hall of A. Turning to Fig. 12, the line points

The Fight-hand pair of curvea, for the more nearly equai areas, - Shows that the less likely area is not touched until wL equals nearly \mathbb{A} / \mathcal{Z}, but that by the time available effort has reached $3 \mathrm{~A} / 2$ the search effort in the two areas is nearly equal (though the probebility of detection in A_{2} is atill considerably smaller than that in A_{1}, further search in A_{1} would not improve matters).

When the a priori'estimates of the target's presence are
detailed enough to require the separation of A into more tha two subareas, a computational procedure to use with a minicomputer or a $\log \log$ slide rule can be developed for the case of random sweeps. Reforring to Eqs. (23), (24) and (25), proceed as follows:

1. Having divided area A into N subareas, with ared fractions $\alpha_{j}=A_{j} / A$ and target presence probabilitios γ assigned to each, one rank-orders the areas in dogcending order of $\gamma_{j} / \alpha_{j}=g_{j} A_{\text {, atarting with the gubarea having the largest }}$ γ / α as A_{1}, and so on, so that $\gamma_{j-1} / \alpha_{j-1} \geqslant \gamma_{j} / \alpha_{j}$. Of course

$$
\sum_{j=1}^{N} \alpha_{j}=1 \quad \text { and } \quad \sum_{j=1}^{N} \gamma_{j}=1
$$

We then compute and tabulate the two sete of limits,

$$
\begin{aligned}
& I_{n}=\sum_{j=1}^{n} \alpha_{j} \ln \left(\gamma_{j} / \alpha_{j}\right) \quad(n=1,2,3, \cdots, N) \\
& L_{n}=\beta_{n}-\left[\sum_{j=1}^{n} \alpha_{j}\right] \ln \left(\gamma_{n+1} / \alpha_{n+1}\right)
\end{aligned}
$$

Limits I_{n} form monotonically incromeing function of n. 2. When the total available apecific search offort
$\Phi=W L / A$ is leg女 than $L_{1}=\alpha_{1} \ln \left(\gamma_{1} \alpha_{2} / \gamma_{2} \alpha_{1}\right)$ search should be concentrated aolely in gubarea A_{1}. The probability of datection of the target (in the only soarched A_{1}) is

$$
Q=\gamma_{1}\left(1-0^{-\Phi / \alpha_{1}}\right)=\gamma_{1}\left(1-e^{-W I / A_{1}}\right)
$$

3. When $I_{n-1}<\Psi_{a} w L / A<I_{n}$ the search is to be in the subareas $A_{1}, A_{2}, \cdots, A_{n}$ only, with the search eifort in A_{j}

$$
A g_{j}=\operatorname{la}_{J}\left[\ln \left(\frac{\gamma_{j}}{\alpha_{j}}\right)+\left(\frac{K_{n}}{\alpha_{1}+\alpha_{2} \cdots+\alpha_{n}}\right)\right](j=1,2, \cdots, n)
$$

This meavito from the equation $\mathrm{m}_{\mathrm{n}}-\left(\alpha_{1}+\cdots+\alpha_{n}\right) \ln \lambda$ so that $\alpha-\exp \left[\left(K_{2}-1\right) /\left(\alpha_{1}+\cdots+\alpha_{n}\right)\right]$. Therefore we have

The probubility thet the target will be diacovered in a

$$
\begin{aligned}
& \text { during the search is then } \\
& \qquad \mathcal{Q}_{j}=\gamma_{j}-\alpha_{j} \lambda=\gamma_{j}-\alpha_{j} \text { exp }\left[\frac{\underline{\beta}_{A}-\underline{Q}}{\alpha_{1}+\cdots+\alpha_{n}}\right] \text { so that } \\
& Q=\sum_{j=1}^{n}\left(\gamma_{j}-\alpha_{j} \lambda\right)
\end{aligned}
$$

4. When is greater then Ins, the largest of the L_{h} of Eq. (26), then all subereas of A are to be searched, with individusl elforts given by

$$
\begin{aligned}
& \text { idusl efforte given Dy } \\
& A G_{j}=W L_{j}=\mathbb{A} a_{j}\left[\ln \left(\gamma_{j} / \alpha_{j}\right)+E-K_{N}\right]
\end{aligned}
$$

which resulte from the equation $\lambda=\exp \left(K_{M}-\Psi\right)$ The probability that the taiget will be discovered in A_{j} is

$$
\begin{gathered}
B_{j}=\gamma_{j}-\alpha_{j} \lambda=\gamma_{j}-\alpha_{j} \exp \left(K_{N}-\Phi\right) \text { so that } \\
P=1-\exp \left(K_{N}-\Psi\right)
\end{gathered}
$$

Note that $K_{N} \leq 0$ and that $K_{B}=0$ only when all ratioe $\gamma_{j} / \alpha_{j}=g_{j} A$ are equal and thus all equal to 1 . Note also that if the dearch effort were to be distributed uniformily (randor orientation) over the entire area A, the probability of detection would be 1 - $\exp (-$ (1) $)$ Therefore, when $K_{N}<0$ (i.e., when the probobility dencities of presence of the target, $g_{j}=\gamma_{j} / \alpha_{j}$ are not all equal) the probbility of auccess β is increased if the search effort is allocated according to Eqs. (26). For unother kind of apllication, sce Moyse (19\%),

It can bo shom (soe Dobbie, 1963) that this allocation produces a P that is the largest achievable for a given q; likewise that the , distributed according to the formulas, is the mallest effort that can achieve the resulting P.

One example of the results is shown in Fig.16, for three subaras. The least likely A_{3} is neglected until the search coverage WL becomes greater than (3/4)A. The dashed line shows the probability of success if the search effort had been spread avenly over A. One would have to increase by 20% to get an equal P.

An example of the effect of false targets hea been worked out by Dobbie (1973), for the very almple case of tho areas, thus analogous to the oxamples given in Pige. (11) to (15). Expressed in the nomenclature or Eq. (24), the anea A is divided into two equal parta, so $\alpha_{1}=a_{2}=0.5$. There is to be only one falee target, which is stationary, so if it is once located its presence can thereafter be ignored. We are supposed to know whether it 13 in A_{2} or A_{2}, but we do not know its whereabouts in the subarea. As before, we assume we know the probability γ_{1} that the true target is somewhere in A_{1}, and thus the probability $\gamma_{2}=1-\gamma_{1}$ that it is somewhere in A_{2}. Also as berore we assume A_{1} to be the subarea with the larger probsbility of preaence of the terget, $\gamma_{1} \geqslant \gamma_{2}$. Search effort is given in terms of the specific effort ${ }_{E}=W I_{B} / A$.

In this case Dobbie minimizes the expected specific effort $W_{s}+W_{e}$ required to find the true target, where \dddot{m}_{g} is the specific effort spent in search and Ψ_{θ} is that spent in determining whether the contact is true or false (and we assume that the expected time required for each determination, whether it be the true or ialse target investigated, is unity). Random-uniform search is asaumed, so the probability of making a contact, on either the false or the true target, by application of search density $\theta_{j} W_{j} / A_{j}$ in A_{j} ie $1 \cdots 0^{-\phi j, ~ a s ~ i n ~ E q . ~(25) . ~ A c c o r d i n g ~ t o ~ t h e ~}$ total specific effort ${ }^{[}=W L_{\text {m }} / A$ avallable, it is allocated gequentially in searching over A_{1} or A_{2}, or in verifying a contact, as long as there is available offort, in the order Elven by the following acenario, which is presented in a form convertable to a flow chart.

There are three possibilities:
Ia) If the false target is somewhere in A_{1} and $I>\gamma_{1}>0.6418$, search A_{1} until either A or B occurs, which ever comes sooner; A) A contact is made. Then spend the requisite specific efiont $\mathbb{W}_{C}=1$ to determine whether it is the true or false target. a) If it is the true target, go to 1 below.
b) If it is the ialse target, record its position and resume the search of A_{1} until elther α or β occurs, whichever comes sooner:
a) Another contact is made. Go to I below.
b) A total of $=\frac{1}{2} \ln \left(\gamma_{1} / \gamma_{2}\right)$ of search eifort has been expended in A_{1}. Then go to 2 below.
B) An amount T $_{g}=\frac{1}{2}\left[\ln \left(\gamma_{1} / \gamma_{2}\right)-0.5831\right]$ of search effort has been expended in A_{2} without obtaining a contact. Then go to 2 below.
Ib) If the ialse target is somewhere in A_{1} and $0.6418 y_{1}>0.5$, search A_{2} until either A or B occure, whichever comes sooner;
A) A contact is made. Go to 1 below.
B) An amount $\cos _{a}=\frac{1}{2}\left[0.5831-\ln \left(\gamma_{1} / \gamma_{2}\right)\right]$ of search effort has been expended in A_{2} without contact. Thon go to 2 below.
II) If the false target is somewhers in A_{2} and $1>\gamma_{1}>0.5$, search A_{1} until ej,ther A or B occurs, whichever comes sooner;
A) A contact in made. Go to 1 below.
B) An mount $\mathbb{I}_{3}=\frac{1}{2} \ln \left(\gamma_{1} / \gamma_{2}\right)$ of search effort has been expended in A_{1} without contact. Then go to 3 below.

1) This is tho true target. Stop the search.
2) Search the whole area $A A_{1}+A_{2}$ uniformiy until a contact is made. If the contact is in A_{2}, 80 to 1. If the contact is in A_{1} expend the requisit effort 1 to determine whether it is the true or the false target.
2.1) If it is the true target, go to 1.
2.2) If it is the false target, record its position and resume the search in \mathbb{A}_{1} only, until 2.2 .1 or 2.2 .2 occurs, which ever comes sooner;

- 2.2.1) A contact is made. Go to 1.
2.2.2) An additional amount $\Phi_{3}=0.2915$ has been expended in A_{1} without contact. Then go to 4 below.

3) Procede as in 2, but interchange A_{2} and A_{2} in the instructions 4) Resure the search uniformly over the mole area $A=A_{1}+A_{2}$ until a contact has been mado. Then go to 1.

The probability of detection of the true target, es a function of the atailable specific effort expended in accordance with this gcenario, is not given explicitiy by Dobbie, but the procedure will encure that, on the average, the effort expended will be the least amount required to attain that probability. Since this, almost the simplest of search allocation probleme involving palse targete, gives rise to operating rules that woula be difficult to follow in the heat of an actual search, It may be questioned whether precise analysis of more complex altuations would be more an admirable mathematical exercise thon a practical aid in actual searcheb. One can hope that approximate solutions can be developed that will be simpler to carry out in practice.

6.5 Marget Motion.

The previous sections have assumed that the target moves slowly anough tisat it would have moved a negligible distance during the whole search operation. If there is no a priori knowledge of the whereabouts, in area A, of the target, nor of its direction of motion, this motion does not alter the fact that it may be anywhere in A (assuming that it cannot leave A). Thus the best procedure still is to provide uniform coverage of A. If the target can leave A, the area to be searched will have" to be increased in size as the search proceeds. If this increase is a small fraction of A, it makes little difference in the organization of the search or in its outcome. On the other hand if the increase is equal to or creater than A by the time A has been searched over ${ }_{\lambda}{ }^{\text {and }}$ if the target has not been found by then, it is unlikely that further search will be able to keep up with the expanding area of presence.

6.51 Target Position and Motion Unknown.

To justify these statements, it is convenient to use the diflerential equation governing the probability P of finding the target. The searcher, as in previous sections, is assumed to move with veloojiy v and to have a search with W. Referring to Fig. 9 b , the increase in the probebility $P(L)$ of having found the target, after a search path of leagth L,is equal to the increage in the area of coverage da $=W \nabla d t$, divided by the area, within which the target is likely to be, and mitiplied by the probability $1-P$ that the target ia not yet pound;

$$
\begin{equation*}
d P=(1-P)(W / q) d L=(1-P)(d a / q) \tag{27}
\end{equation*}
$$

where al is tive area already searched over by the time the path has reached length L.

If the target is confined within the area A and if initially it can be anywhere inside A, then target notion will not change its probability density of presence, which will be ($1 / \mathrm{q}$) at any instont. If, in addition, the search is random-uniform, then the area q in Eq. (27) will be practically equal to A (as long as W^{2} io small compared to A); possible target motion within a confined area A cannot change its probability density of presence. The equation and ite solution are then

$$
\begin{equation*}
\frac{d P}{P-1}=-\frac{W}{A} d L ; P(a)=1-e^{-W L / \hat{A}}=1-e^{-a / A} \tag{28}
\end{equation*}
$$

identical with Eq.(18).
On the other hand, if the target can cross the perimeter of the area A_{0} the area of possible presence, q in Eq. (27), increases with time. In this subsection we suppose the target is not amare of the searcher and that its motion in randomly orionted. If it happened to be on the perimeter of A, in only hali the cases mould its motion take it outside A, and the average distance it would penetrate beyond A in time dt would be

$$
(u-2 t, 2 \pi) \int_{0}^{\pi} \sin \theta d \theta=(u / \pi) d t=(u / \pi v) d L=(u / \pi v W) d \theta
$$

where u is the estimated mean target speed of target motion, v is the speed of the searcher and w is his search width. This "leakage" produces a gradual enlargement of the area of presence of the target, over the initial value A, as though the various possible positions of the target were molecules in a gas, with
mean speed u. The gas expands with a mean velocity (u / π) normal to the boundary. In fact the expected enlargement of the area is $\quad d q=\frac{u}{\pi} s d t=\frac{u s}{\pi v i d a}$
where s is the length of the perimeter of q. If the initial area A is circular or square, s is equal to the perimeter S of A times $\sqrt{q / A}$. Even if the length of A is twice itg width, the pormula $\approx \sim S \sqrt{q / A}$ is approximately correct as long as is less than twice A.

Therefore the area of presence of the target q, after area a has been searched over in a randommuniform manner, is approxinately equal to the solution of the differential equation

$$
\frac{d a}{\sqrt{q}}=2 \gamma \frac{d a}{\sqrt{A}} \text { or } q=A\left(1+\gamma \frac{(}{A}\right)^{2} \text { where } \gamma=\frac{u S}{2 \pi V}
$$

Inserting this into Eq. (27) we obtain the frobability $P(a)$ of detection of the target after random-uniform search effort WI $=a$ of an area initially of nagnitude A, when the target is initially anywhere within a and has an ostimatod, randomly directed speed u (and is not confined within A)

$$
\begin{equation*}
P(a) \neq 1-\exp \left[\frac{-a / A}{I+\gamma(a / A)}\right] ; \quad \approx=W L \tag{29}
\end{equation*}
$$

This difiers from Bq . (28) by the term in the denominator of the exponential, resulting from the "leakage" of the moving target into the region outside A. It is a valid approximation as long as factor $\gamma=(u / 2 \pi v)(S / W)$ is small, which asaumes that ratio (u / v) of estimated average target apeed to searcher speed is no larger than the ratio (W/S) of search width to perimeter of A. In fact if $\gamma \simeq 1, F(a)$ ceases to increase soon afeer a becomes equal to A , after which area q expands faster than the search can catch up. However if (W/S)
for a single searcher is smaller than $u / v, \gamma$ can be reduced in value by employing more than one searcher. For mindependent searchers, oach following a uniform-random path, W in the Pormula is changed to and thus γ is changed to (γ / m).

To see what degradation is produced by this possible "leakage" of the target outside initial area A, wa tabulate $P(A)$, the probability of detection after a total area mim $=A$ has been soarchid over, for different values of γ.

Table 1.

γ	0	0.1	0.2	0.3	0.4	0.5
$P(A)$	0.632	0.597	0.565	0.537	0.510	0.487
a_{1} / A	1.000	1.111	1.250	1.429	1.667	2.000

The third line measureg the area $a_{1}=m W L_{1}$ that must be searched over in order that the probability of detection $P\left(a_{1}\right)$ equal the value 0.632 for $\gamma=0$ and $a=A$. Purther increase of a beyond a_{1} of course produces further increases of $P(a)$, but these further gains are made at the cost of disproportionately large efforts. The gain in $P(A)$ by dividing the search eiforta among m searchers comes in the fact that γ becomes γ / m, because each searcher needs to search only aroa A / m (provided the m patha betweon them, cover A uniformiy) and the search is completed in ($1 / m$)'th the time, so the target has less time to "leak out".

An exact analyais of target motion on a regularly patterned search (such as the parallel sweeps of Fig.6) has not jet been worked out. For comparison, as an opposite limit from the random-uniform case just presentod, we can look at the daealized case of using derinite-range equipment in parallel gweeps spaced $S=$ apart, so an to leave no unsearched area between
sweeps. If the target is at rest somewhere within A, the probability of detection by the time the path length has reached $L=a / W$ is given by Eq.(6) and by curve d of Pig. 8 ($P=a / A$).

First, wo assume that the target is in motion, with a
randomily directed average spoed u, but that it is confined to motion within. the initial area A. In this case the only way the target can "leak out" is into the area \dot{a}, that was assumed to bave been completely swopt. Examination of Fig. 17 indicates that when the area is completely swept, so that a $I I_{m}=A$, the regions where the target could have leaked back (the cross-hatched aream have gn area

$$
q(A)=\frac{n u}{\pi \gamma} \dot{D}^{2}=\frac{n D}{\pi v N} A \quad \text { since } \quad n=\frac{C}{\theta} \text { and } A=C D
$$

Within which the target may still reside, unfound (we assume it takes n parallel sweeps to completely cover A).

This leaked-back area is approximately proportional to the swept area so that, at the stage when area a has been swept (as shown in Fig.17) the area within which the target may still be (if it has: not yet been discovered) is

$$
q(a)=A-(1-\mu) a \quad \text { where } \mu=\frac{u}{\pi v} \frac{D}{W}
$$

Finally, inserting this into Eq. (27) results in

$$
\begin{equation*}
\frac{d P}{1-P}=\frac{d a}{A-(1-\mu) 2} \quad \text { or } \quad P(a)=1-\left[1-(1-\mu) \frac{a}{A}\right]^{1 /(1-\mu)} \tag{30}
\end{equation*}
$$

for the case where the target is constrained to move inside A.
The probability of detection when $=A$ (when the search would have been complete if there were no target motion) is not unity but $P(A)=1-\mu^{1 /(1-\mu)}$

This is tabulated for a few valies of μ;

$$
\begin{array}{ccccccc}
\mu & 0 & 0.05 & 0.10 & 0.15 & 0.20 & 0.25 \\
P(A) & 1.000 & 0.957 & 0.923 & 0.893 & 0.866 & 0.843
\end{array}
$$

As with the random case, the analysis is valid whon constater $\mu=(u / \pi \nabla)(D / W)$ is small. Better reaults can bo achieved by using m soarchers, in which case each searcher noeds to cover only area A / m and constant μ becomes ($u / \pi v$) ($D / m W$). In an actual search the detection will not have the sharp cutooff of the definite range curve d of Fig.3, nor will the sweeps be the perfect pattern of Fig.17. Therefore the actual probability of detection for $W L=A$ will be somewhere between the $P(A)$ of Table 2 and the $1-e^{-1}=0.632$ of Eq . (28) for randora coverapo. The difierence betwoen these limits is less when is less than or is greatio than A If the target is not prevented from crossing the perimeter
of A, the bottom side of A (as shown in Pig.27) will be penetrated and the increase in searchable area, because of this side, when a $x A$, is D times the effective velocity u / π of leakage, times the duration $T=n D / V=A / V W$ of the search. This also increases linearly as the search progresses, so this addition to the area of ${ }_{q}^{\text {also }} 1 s(u D / \pi \nabla W) a=\mu a$. The leakage out of each of the sides C of A is a stopmise approximation to a triangle mith vertex at the upper corner and base, down a distance $C(a / A)$ from the top, of midth (u/ πw^{W}) a, plus a rectangle of widin ($u / \pi v$ w) a boyond the rest of side C. The added area on both sides, when (a/A) of the search has been completed, is thus $\nu[2-(a / A)] a$, where $\nu=$ (uC/ $\pi v W$). Therefore when the searched area is a $=W I$, the area within which the target may jet be is

$$
q-A-a(1-2 \gamma)-(v / A) a^{2}
$$

here $\gamma=\mu+\nu=(u / \pi v w)(C+D)=(u / 2 \pi v)(S / W)$, S being the perimeter of A, as in Eq. (29).

The probability of discovering the target after area a has been searched over by the "ideal" coverage of Pig.17, is the solution of Eq. (27) with this new value of q inserted. It is

$$
\begin{equation*}
P(a)=1-\lambda\left\{\frac{1-\lambda[1-2 \gamma+2 v(a / A)]}{1+\lambda[1-2 \gamma+2 \nu(a / A)]} \frac{1+\lambda(1-2 \gamma)}{1-\lambda(1-2 \gamma)}\right\}^{\lambda} \tag{31}
\end{equation*}
$$

where $\lambda=1 / \sqrt{1-4 \mu+4 \gamma^{2}}$. To measure the effect of this leakage we tabulate P when A is a square (when $\gamma=2 \mu=2 v$) and when $a=A$, for different values of γ;

Table 3.

$$
\begin{array}{ccccccc}
\gamma & 0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \\
P(A) & 1.000 & 0.878 & 0.785 & 0.718 & 0.680 & 0.667
\end{array}
$$

Comparison with rable 2, for the case when the target is kept inside A (for $\gamma=2 \mu$) shows that leakage over the perimeter of A produces a considerable reduction in the probability of detection. Of course if m searchers are used, moving accurately in line abreast, W becomes mW and γ becomes γ / m. If one has enough manpower, the search can be completed quickly enough so the effect of target motion can be minimized.

Of course Table 3 is for the perfect coverage of A implied in Fig. 17. If the lateral range curve differs from d of Fig. 3 and/or the sweps are not exact, the detection probability $P(A)$ will approach the lower limit given in Table l, for random coverage.

Other patterns of parallel sweeps, with definite range equipment, will result in slightly different values of the upper limit of $P(A)$; but the difference will not be large.

For example, the approximate analysis for path that covers the perimeter first and then spirals in to the center fields results similar to those of Table 3 , but with $\gamma \approx$ ($3 \mathrm{us} / 8 \pi \mathrm{FW}$), roughly three quarters of the γ for $\mathrm{fq} .(31)$. Covering the perimeter of A first is some improvement, but the leakage into the ewept psth still occurs. In any case those results are for the tieal case of definite range, parectiz alignod,parallel 3*epa. It is safer to predict probabilities nearer those of Table 1, for random-uniform awoops.
6.52 Crossover Barrior.

Whom the target motion is not randomly oxientod, the search problem differs again. Only two specific cases have been analymed sufficiently to yield results of practical utility. The simplest case of this sort is when the direction and magaitude of the target's motion is known, but its position is not.

Sughose an aerial search is to discover a ship that must pass thagigh ai ocean strait, of navigable width D, as mown in Fig. 18ste If the ship 18 known to have a speed u as it persos through the strait, we can analyze the search path most easily by trangforming to coordinate ayetem moving with the ship, as ghownin fig. 18b. In there coordinates the nost efficient search path will be geries of parallel sweeps that transform back to coordinates at rest with respect to the scean, as the angular figure 8 shown in Fig.18a. Note that the short, end legs are in a direction opposed to that of the target.

Tige 18 A cross-over barrier patrol to catch a ship passing through an ocean strait.

If this path is to close on itself, if the barrier patrol is to keep up with the motion of the target, the spacing S between parallel sweeps in comoving coordinates must be riated to the width of the strait, to the apeed u of the target and to the speed v of the search plane. The time $T=2 D / v$ that it takes the plane to go across and back (we assume u / v is small enough so the length of the diagomal leg in Fig. 18 a is nearly oqual to D ; if not, correction can be mede) must equal the length of time T w $25 / u$ for the comoving coordinates to move downard by two swoep apacings. Thus pacing, S and the resulting sighting potantial are given by the formulas

$$
\begin{equation*}
S=D(u / v) ; \quad W=W / S=(W v / D r) \tag{32}
\end{equation*}
$$

This path, translated back to stationary coordinates, as ehown in Pig.i8a, is called crossover barrier patrol.

If it is not known where, along the line D across the gtrait, the target is to pass, nor is it known, within a time $T=2 D / V$, when it is to pass, then the whereabouts of the target may be anywere within an ares $2 S D$ in comoving coordinatos. Thus, if the barrier patrol is in operation when the target passer through The strait, the probability of detoction 2 , the probability $P($ (4) that has beon given in Eqs. (16) or (18) or ghown in Fig.8, for parallel sweops. There is more completa discuseion of this problem in Cbmpter 7 of Koopman, 1946.
 ratio W/D is lobe than hali the ratio $u / \nabla_{\text {, }}$ between target gpoed and search plane speed, the probability P of detection will not be aatisiactorily large. Several mearch planes should then be used if possible, either ilying parallel courses a distance S / n apart (if n planes are used) or spaced in sequence along the
geme courae, maced in time. For example, if two planes are to be elows in equence, the socond plane ahould be started at point 2 in Pig.Iga when the firgt plane is at point 1 , halfway up the oppontte vertical leg; in thls manner the second plane's sweeps would come half way botwean those of the first plane, in comoving coordinutes. If the rultiple swoops are carefully flown, so that the paraliol sweops re equally spaced tho offectivo siehtine potential would be mW/Du, and thi value could be uged as to determino the probsbility $P(5)$ of detection.

Barrier patrolare useful in many othor military, police and life maving operations.

6.52 Retiring Search Swoopg.

Another ituation, not infrequently encountered, arises afian when the targot is located exactly, at some instant, but the mearch is not ble to ataxt until a time T_{0} later. One has to asume that the taxget has moved during that time wad, if the target'g maximum relocity u is known and if there is no indication of the direction of its motion, at T_{0} it could be nywhere withia - circle of radius ur 0° As the search progresser, this circle of prosence continues to expend; so the search path, if possible, should be an oxparding apiral, trying to cover this increasing area.

If the goarch effort is to be limited to the value $E(T)$ $=W \mathbb{W}$, it must be within that part of the eircle, of radius $R(T)=u\left(T_{0}+T\right)$, that the allocation rules of Eqs. (23) say should be maxched. In moets camen, when it is not kmown whether the target's actual apeed t itw maximum speed u, or zero, or something 1a betwean, the point of maximum probability of presence of the target would be at the origin, where the target had originaliy
besn spotted. Therefore the search would begin at the center and spiral outward, with spacing between the arms prescribed by the density 6 w/S detepmined by Eqs. (23).

The analyois of this operation a mbill more "intrisaic" than that for a tationary target. We shall go through it usiag the formulas for rasdom swocps, partly beaquse it lis the only came for which tho answorm can be amalytio nad pariy boamue it fanlikely that caroful intorpath spaciag can be maintained in a spiral search, so jt is gafer to asmum tho leas optimistic Cormias. We consider the case at time A , when the allocated search efiort fir has been used up and the radius of the circie of presence of the target $1 \mathrm{~m}\left(T_{0}+T\right)$. Looking back on the search, that started at the conter at $t=0$ and mirallod out, aa the apiral passed through the radius $r<B(T)$ and cifort $E(t)=\mathbb{F} t$ has siready been used inp, the a priori estimate of tho probability density of prosence of the target there would then have boon $g\left(r^{\prime}\right)$, which can be ostimated for each value of r_{A} out to the value at which the mearch orde.

It is more conveniont, and leade to asira generalization 11 the area of presence is not a circle, to change variables from radius to area. The area of presence $A(4)$ at time t after the start of the aearch and the area $q(t)$ inside the circie of radius r (the area already soarched over by time t) are given by the Pormulas (note that this of it not the same as the q of Eq5, 27 to 31),

$$
A(t)=\pi u^{2}\left(I_{0}+t\right)^{2} ; \quad q(t)=\pi x^{2}
$$

Thme during search can be measured in terms of search offort

$$
E(t)=\text { Wot sot these variables can be }
$$

expreabed in temma of dinensiomiess quantities

$$
\begin{align*}
& A(t)=\alpha(1+z)^{2} ; z=\left(t / T_{0}\right)=E(t) / \beta ; Q(t)=\alpha x \\
& \alpha=A(0)=\pi u^{2} T_{0}^{2} ; \beta=W T_{0} \tag{33}
\end{align*}
$$

4 Thus a La the area of presence of the target at the start of the search and β ia the area that could have been searched with density $\phi=1$ durines the time T_{0} (which we can call the delay time). The interxelation between theae quantities must be given in terms of the rules of eearch given in (23), only now they must include the fact that the probability density of presence $g(r)$ refers to the time t at which the plane was searching at the distance rem the origia.

Before we gtax the analysis, however, some salient points hould be noted. When the search ends at time T the search - fert WVI has bean expended. But by this time the area of presence of the target has become $\pi u^{2}\left(T_{0}+T\right)^{2}$. Therefore, by the and of the sorch the mean sighting potential E/A has bacome $\left[W \mathrm{VI} / \pi u^{2}\left(T_{0}+m\right)^{2}\right]$. This quantity increases with T for a while, but it reacher a naximum ate $I=T_{0}$ and theapter decines. Its maximum vaiue at $T-T_{0}$ is $I_{m}=\left(W / 4 \pi u T_{0}\right)(v / u)$, inversely
-54.
proportional to T_{0} product of a ratio of fareas and a ratio of velocitios of marget and searcher. This has two coneequonces: Iirst, the sooner ore can gitart the seareh the rore efficiant is the search cotrexge and, socond, the first pazt of the soarch, during a time equal to the delay tine mo, is Dy iar the moat ofiective part of the somxch. Hurthor soasch, boyond T w , Is chasing a wiening circle of preannce thet has already gone too sar to cateh up with。

Eoturning to procedur (23), we pirt have to docido on a reasomable Porm for the probablity of prowence g(r), at the instant of time then the rearch has reachod s and the aroa of presence has reached $A(t)$. Since we do not know the actral apeed or course of the target, beyond its maximus gpecd u, we might assume an average afatribution and let

$$
g(x)=(2 / \Delta)\left[1-\left(\pi x^{2} / A\right)\right]=(2 / \Delta)[1-(Q / A)]
$$

 A is function of tand therefore of $z, ~ g$ is a functuan "
 say that A, g, and 2 are all function of x. Their interrolatyons
 the derivatsve of the probability deraity of aighting, a function of the density of soarch of there, must equel a constent G ox, if it camot, muat be zero. In the cano of random aweops, thig leads to the equation

$$
\begin{align*}
& \phi=\ln (g / G)=\ln (2 / A G)+\ln [I-(q / A)] \\
& \text { is } \sigma \operatorname{La} \text { pasitive, otherwae } \$=0 \tag{34}
\end{align*}
$$

But or the dengity of search, is the derivative of with respect to q, and the wiole equation can be writton am a diferential
equation in terme of the variables defined in Eqs.(33)

$$
\left.\begin{array}{l}
z^{\prime}(x)=\frac{d z}{d x}=k\left\{c-\ln (1+z)^{2}+\ln \left[1-\frac{x}{(1+z)^{2}}\right]\right\} \\
\text { wher } k=\frac{\alpha}{B}=\frac{u^{2} M_{0}^{2}}{W V T_{0}} ; \quad c=\ln (2 / \alpha G)=\phi(0)
\end{array}\right\}(35)
$$

This equation may be integrated namerically, for different values of k and \mathbb{C}, out to $x=x_{m}$, where s^{\prime} goes to zerc. The value of z at that point, $z_{\bar{W}}$, times $B=W \mathrm{~T}_{0}$, is equal to the total search effort $E(T)$ expended; the value of x_{m}, times $\pi u^{2} T_{0}^{2}=\alpha_{0}$ is equal to the total area searched, $Q=\pi\left(r_{m}\right)^{2}$ and the value of $z^{\prime}(x)$ times $1 / k$ is equal to the dêinsity of search ϕ at the radius $r=\sqrt{\alpha x / \pi}$. In other words
$z^{\prime}(x)$ goes to zero at $x=x_{m}$, where $z=z_{m}$
Total search effort $E_{m}=\beta z_{m}=W V I_{o} z_{m}$
Total atea searched $Q=\pi r_{m}^{2}=\alpha x_{m}=\pi u^{2} T_{0}^{2} x_{m}$
Search density at $r=\sqrt{\alpha x / \pi}<r_{m}$, is

$$
\phi=W / S=(1 / k) z^{\prime}(x)=\left(W \nabla T_{0} / \pi u^{2} T_{0}^{2}\right)(d z / d x)
$$

Probablility density of presence of target at time and place of Bearch

$$
g(x)=\frac{2 / a}{(1+z)^{2}}\left[1-\frac{x}{(1+z)^{2}}\right]
$$

The probability of succeas in the whole search is then

$$
\begin{equation*}
\rho-\int_{0}^{Q}\left(1-\theta^{-\phi}\right) g d q=\alpha G \int_{0}^{x_{m}}\left(e^{\phi}-1\right) d x^{\prime}=2 e^{-\infty} \int_{0}^{x_{m}}\left(e^{z^{\phi} / k}-1\right) d x \tag{37}
\end{equation*}
$$

which also can be ovaluated numerically.
A few examples of the results are shown in Figs. 19 and 20. Two values of the parameter $\left.k=\alpha / \beta=\left(\pi u T_{0} / W\right){ }^{\prime}, ~ / v\right)$ were used, 1 and 2. Since α is the area of presence of the target at the instant the search starts and β is the area that could have been searched effectively $(\phi=1)$ in the delay time $\mathbb{T}_{0}, k=1$ represents cases where the search'started before the target could get very

Fig.20. Curves for search density as function of area q already covered, for two values of C and k. Dashed line is proportional to density of presence, $g(q)$, at time of search.

6.6 Search of Dibcrete Sitos

Mane are operttional situations that can be more easily modelled in texm of the search of discrete sites（boxes，in more mathomatical jargon）．The individual sitos may themselves be soparated axoas，or have more complicated structure．All we seed to know is tho relationship between the effort expended in search at site sat the probability of discovory of the searchode for objoct．Hsre the＂target＂may not bo unique object．that may Do in ox mite or ajother but not in both；it may bo in several siter dimitancousis．So the probabilities of presence γ may not have to add up to umity．For example，the search may be to locate the fellure in complex piece of oquipment；more than one failure ay be prosert．An interesting example of this sort of search problem la the ytrategy of search for ores or oil．Other examples of equal complication are those connected with police search． Al． 1 we can do in this Section is to report a few simple models In the hop that they may be of more use than no model atiall． or than a nodel too complex to put to yractical use．

From one point of view these discrete site－gearch prooloms are gimpler than the area search problem we have been discussing earlier．⿴e did not treat them first because the area－bearch problem ia the classical search problem，daalt with firat and， to date，of more practical utility．

6．61 An Analogue of Aroa Soarch．

The discrete analogue of the classical allocation of aearch effort，given in Eqs．（23）to（31）For the area case，is the followir质qno：

There are N sites，抽e probability of presence of the target in the j＇th sibe i is γ_{j} ，where $0 \leqslant \gamma_{j} \leqslant 1$ but $\sum \gamma_{j}$ is not necessarily unity．We ranic－order the $81 t e s$ in decreasing order of probability，so that $\gamma_{J} \geqslant \gamma_{J+1}$ ．The probability that a target is discovered in site $j, i f$ it is present，is related to a quantity we shall call the search effort fin y by a function $P(\phi)$ ，that satisfios the specifications given ia（5）and is the same function for overy site．We wish to distributo the search
 probabilities $\gamma_{j} P\left(\varphi_{j}\right)$ ．See Charnes and Cooper（1958）for details．

This is actually a simpler problem than that of Equ．（23）
to（26）aince in the present case the only parameters to ovaluate are the $\gamma^{\prime} s$ ，instead of the $\gamma^{\prime} s$ and $a^{\prime} s$ of Eq．（24）．The added corplication may be achieved by assuming the search offort has different powers in different gites，so that the probability of detection in site j is $P\left(\alpha_{j} \phi_{j}\right)$ instead of $P\left(\phi_{j}\right)$ ．In this caso the problem is completely parallel to that of Section 6．4．Because of the simplicity of the results and the wide range of applicability of the formulas，we will go into details only for the case of the exponential formule

$$
P(u)=1-e^{-u}
$$

Assuming equal searchability of each site（1．e．，that $\alpha_{j}=1$ for each site）our problem is to

$$
\text { Maximize } \mathcal{P}(E)=\sum_{j=1}^{M} r_{j}\left(1-e^{-\phi_{j}}\right)
$$

subject to the requirement $\sum_{j=1}^{N} x_{j}=$ ．The standard procedure is to mininize $\left.J(E)=\int_{1}^{\pi}\left[\gamma_{j} e^{-\phi_{j}}+\lambda_{j}\right]\right]$
with parameter λ to be adjusted go that the sum of the g＇s equals E ． The process of solution is as follows：

1. Compute the requence $\ln \left(1 / \gamma_{j}\right)$, increasing with j. Also compute the partial sums $\left.K_{n}=\sum_{j=1}^{n} 1 / \gamma_{j}\right)$ ond the sequence L_{n} m ($1 / n$) $K_{n}-\ln \left(1 / \gamma_{n}\right)$, that alsó increases with n.
2. The minimization is accomplished by setting the derivative of $J(\mathbb{E})$ with respect to ϕ_{j} equal to zero. Thus $\lambda=\gamma_{j} e^{-\sigma_{j}}$. The requirement that $\sum \phi_{j}=E$ leade to the formula $\ln \lambda=-(1 / n)\left(K_{n}+E\right)$ and thus to the elimination of λ Prom the formulas, for ϕ_{j} and \mathcal{P}_{j}.
3. When $L_{1}=0 \leqslant \pi \leqslant L_{2}$ site 1 only is searched (the site with the largest velue of probability of preaence γ). Then $\beta_{j}=E$ for $j=1$ and O for $j>1$ and $\theta=\gamma_{1}\left(1-\theta^{-E}\right)$ When $I_{n} \leqslant E \leqslant L_{n+1}$ only the most probable n aites are searched, and

$$
\phi_{y}(1 / n)\left(K_{n}+E\right)-\ln \left(1 / \gamma_{f}\right) \text { if } j \leqslant n,=0 \text { if } j>n
$$

$$
\begin{equation*}
\dot{\rho}=\sum_{j=1}^{n} \rho_{j} ; \rho_{j}=\gamma_{j}-\exp \left[-(1 / n)\left(K_{n}+\mathbb{E}\right)\right] \text { if } j \& n \tag{39}
\end{equation*}
$$

When $L_{N}<\mathrm{S}$ all N sites are searched and

$$
\phi_{J}=(1 / \mathbb{N})\left(\mathbb{K}_{\mathbb{N}}+\mathbb{E}\right)-\ln \left(1 / \gamma_{j}\right) ; \rho_{\mathcal{N}}=\gamma_{j}-\exp \left[-(1 / \mathbb{N})\left(K_{\mathbb{N}}+\mathbb{E}\right)\right]
$$

$$
E=\sum_{j=1}^{n} \phi_{j} ; \rho=\sum_{j=1}^{n} \sigma_{j}
$$

interthere An example of this solution is shown in Fig. 21 for four sites. For four or fewer sites the calculations can be made by nomogram if very approximate solutions are good snough. The nomogram is shown in Fig.22. To use it a line is drawn from γ_{1} (column 1) to r_{2} (column 2) on the right-hand side, to locate point u on the B vertical; lines from u to γ_{3} to locate on the C vertical and from v to γ_{4} to locate w on the D column. To see how many sites are to be searched we locate, on the central column, the intersections of lines drawn from γ_{1} on the right to E on the left columin marked 1 , from u to E on the left side column marked B, from v to E on column C and from to E on column D. From the
W to E of D intersection on the central scale we draw a line to $\left\{\begin{array}{c}\text { If after expending effort } E \text {, the target is not yet found } \\ \text { and it decided to epond an extra } \triangle E=E \in-\mathbb{E} \text {, xecompute (} 39 \text {) }\end{array}\right.$ uaing E^{\prime} instead of E and add search effortre $\sigma_{j}^{1}-\phi_{j}$ to each sute J.

γ_{4} on the left-most colunin marked γ_{n}. If this line intersects the lower, calibrated half of the scale marked onen all sites are to be searched. If it cuts above the $\varnothing=0$ on this scal then site 4 is not to be searched. Then take the v.to \mathbb{E} of C intoresction with the contrel scale and see whether a line from thia intersection to γ_{3} on the γ_{n} column comes below the 0 mark on the ϕ column, and so on until an intersection below the 0 is obtained.

The example illustrated is the case of $\mathbb{Z}=1$ of P1g. 21, for $\gamma_{1}=0.4, \gamma_{3}=0.3, \gamma_{2}=0.2$ and $\gamma_{4}=0.1$. At $E=1$ only the first two sites have intersections below the zero of the acale, so we use the intersection of the u to $\$$ of B line on the central scale, corresponding to $\gamma_{j}-P_{j}=0.22$. The line from this point to $\gamma_{1}=0.4$ on the leftmost scale intersects the scale at $\phi_{1}=0.6$ and the line from this point to $\gamma_{2}=0.3$ gives $\gamma_{2}=0.4$; these are the two search efforts in the sites searched. The prohabilitios of success are obtained from the value of $\gamma_{y}-P_{j}=0.22$; $P_{1}=0.4-0.22=0.18, P_{2}=0.3-0.22=0.08$ and thus $P_{=0} 0.26$. Once learned, the procedure is straightforward and fairly rapid, though the results have berely 2-8ignificant-figure accuracy.

Solutions for other kinds of discrete search problems have been developed by Gluss (1959) for the allocation of elfort in testing for failures in a complex electronic system. In this case, instead of a probability of detection dependine on a continuous effort function, times are assumed for checking out each aite and probabilities are given that the specified times will find the error. A dynamic programming technique is devela oped to deterinine the order in mich the sites are to be searched so that expected total time is minimized.

We have notod, et beveral pointa during our discusaion nevertheless absent from the site. Likewise there is a nonzero chance that a negative indication may be orronoous. of continuous eoarch coverage, the complexitien that arize A detailed study of the observer's process of deciding whether he has found the target, and how thin fects the cost of both kinds of error, has been discussed by Pollock (1964) and others (see Pollock, 1971, for a'bibliography). We need only take the results here, to show how they modify the allocation of search effort. The example we use to illustrate our formulas is a simplified model of prospecting for oil or ore

In looking for new sources of minersls one first looks for possible aites for more detailed study, by searching for particular geological formations or other characteristics that have been present in previous successfiul strikes - - including simple proximity to known sources. This preliminary exploration, partly in the field and partly from maps, yields estimates of the
likelihood of striking"pay dirt" at a number of possible aitas. From this $218 t$ of a priori probebilities of presence of ore, one must lay out a gtrategy for the moxe expensive part of the prospocting operation. $O f$ courge one could blindiy sink all further effort into the aingle highest rated site, but it might be better in the long run to utilize these a priori probabilities as fully as possible in deciding whether and how to go abaado whese estimates of the probability of presence of the mineral (mhich we can again call γ_{f}) at each possible aite f will be changed as the operation progreases, but at the beginning, when the first plans are made, they are the only measures available.

At each likely site survey must be made, using sonic or gravitational or magnetic or electrical equipment, to sharpen our estinate of the probability of presence of the mineral. The prea Iminary plan must decide how extenaive auch a survey should be. Agaik the preliminary estimates of survey effort may be modified later, but the initial allocation of effort must be made on the basif of the a priori probabilities γ. By the end of the aurvey a decision must be made, whether to abandon further effort at that alte or to commence excavation (or drilling), hopefully to obtain actual samples of the desired mineral.

The excavation or drilling is usually much more expensive than the instrumental survey, and one hopes that the survey has reduced the chance of an erroneous decision to excavate, with no ore to ahow for the digging. (An alternative analysis of this decision process 1s given by MacQueen and Milier, 1960).

It may be that the result of the survey measurements is to the increase the chance of deciding to excavate. With no survey we may be disinclined to dies or drill; with a very extensive survey

CONTINUED

1052

we would have reached a fairly precise estimate of the worth of excavation. At the time of the preliminary plans our best guess as to the likelihood of a decision to excavate at site j would be the a priori probability γ_{j}. Thus one possible forecast of the results of the instrumental survey is that, as the survey effort is increased from zero to some large value, the chance of our deciding to investigate would start irom zero and approach the value γ_{f} asymptotically. In other words this chance would depend on the effort ϕ_{j} expended on the survey something like the function $\gamma_{f}\left(1-e^{-\infty}\right)_{j}$ with ϕ_{j} being proportional to the expenditure involved in making the survey at site j.

Unless the instruments used in the survey are perfect, a certain iraction of times the decision is made to excavate, it will have been a wrong decision and a lot more money would have m been needlessly spent. The crucial question is; how does the fretion of "dry holes" to "strikes" depend on the amount of effort spent on the ingtrumental aurvey? Decision theory doss not give an unequivocal answer to this question. Indeed the answer apponds on the nature of the equipment used in the gurvey and on how it is used. All we can do here is to make a few not unceasonable guesses as to possibilities and work out models to correspond. In the end the choice of model and the values of its parameters will have to be decided on the basis of operational experimente, just as was done for the model of search for a submarine by a plane. In view of the costs of mineral prospecting and the value of a "strike", such a series of measurements would seem to be a worth while investment.

At one end of the sequence of possibilities is to assume that the amount of effort expended on the instrumental survey changes
the probability of reaching a decision to excavate but does not
alter the ratio between success and failure, if oxcavation is carried out. Put in terms of expected monetary costs and returns, this limiting model is:

A priori probability of presence of ore at site j, reached from the preliminary exploration, is γ_{j}, the only quantitative estimete available at the time of the initial planning.
Estimated returns from site f, if ore is present and discovered by excavation, is R_{j}.
Expected cost of excavation to "prove out" site f is D_{j} Expected cost of instrumental survey at f to help decide whether to excavate is C_{j}.
A priori probability that a decision will be made to excavate at j is $\gamma_{j}\left(1-e^{-\beta C_{j}}\right)$.
A priori probability that this decision will be correct, if made, is assumed in this model to be equal to γ_{j}, the a priori probability of presence of the ore. Until the instrumental survey is made, we have no other information beaide γ_{j} and the estimated costs; we must use them in laying out our preliminary strategy.
Thus the expected return from site j, if survey effort costing C_{j} were to be expended there, is

$$
q_{j}=\gamma_{j}\left(\gamma_{j} R-D_{j}\right)\left(1-e^{-b C_{j}}\right)
$$

In other words the expected net return from site J, if excavation is decided, is $S_{j}=\gamma_{j} R_{j}-D_{j}$; there is a chance γ_{j} that the excavation succeeds, returning R_{j}, but a certainty that the excavation will cost an expected D_{j}. Thus the variational problem representing this case is:

$$
\left.\begin{array}{l}
\text { Maximize } Q=\sum_{j}\left[\gamma_{j} S_{j}\left(1-e^{-\beta C_{j}}\right)-C_{j}\right] \\
\text { Sunject to the requirement that } \sum C_{j}=C
\end{array}\right\}
$$

L.his is quite similar to the Eqs. (38) for simple gearch of N
sites, with βC_{f} substituted for ϕ_{j} and $S_{f} \gamma_{j}$ for γ_{j}. The solution also is quite similar;

Rank the sites in decreasing order of magnitude of $\gamma_{j} S_{j}$,
then calculate the sequences $K_{n}=\sum_{j=1}^{n} \ln \left(\beta \gamma_{j} S_{j}\right)$ and
$I_{n}=K_{n}-n \ln \left(B \gamma_{n} S_{n}\right)$.
When $L_{1}=0<C<L_{2}$ only gite 1 (with the largest γS) is to be considered. The survey at site 1 is planned to cost C and the expocted return is

$$
\begin{aligned}
& \text { octea return } 18 \\
& Q(C)=\gamma_{1} S_{1}\left(1-e^{-\beta C}\right)
\end{aligned}
$$

When $I_{n}<C<I_{n+1}$ (assume that $I_{n+1} \rightarrow \infty$) then only the n most promiaing sites are surveyed, the aurvey cost allocation for site j being

$$
C_{j}=\frac{1}{\beta}\left[\ln \left(B \gamma_{j} S_{j}\right)-\frac{1}{n} K_{n}\right]+\frac{1}{n} C \quad(j \leqslant n)
$$

$$
\begin{align*}
& \text { and the expected return is } \tag{41}\\
& \qquad Q(C)=\sum_{j=1}^{n} \gamma_{j} S_{j}-\frac{n}{\beta} \exp \left[\frac{1}{n}\left(K_{n}-\beta C\right)\right]-C \tag{1}
\end{align*}
$$

We can now adjust the survey cost C to produce the greatest return $Q(C)$, by setting the differential of Q with respect to C equal to zerc. We find the value of n for which

$$
Q_{\max }(n)=\sum_{j=1}^{n} \gamma_{j} s_{j}-\frac{1}{\beta}\left(K_{n}+n\right) \text { is greatest }
$$

The corresponding optimal survey cost allocation is then

$$
\left.C_{\max }(n)=K_{n} / \beta \quad \text { and } C_{j}=(1 / \beta) \ln \left(\beta \gamma_{j} S_{j}\right) \quad(1 \leq j \leq n)\right)
$$

The optimal value of C is for $n=N$ (all siter survejed) unless $\beta \gamma_{j} S_{j}$ is less than unity for some site; in which case n is the largest value of j for which $\beta \gamma_{j} S_{j}>1$ 。

To assume, as this model does, that the effect of the instrumental survey will have no effect on the ratio between success or failure of the excavation, but only on the chance of of deciding to excavate, is perhaps the most pessimistic assumption to make. We see that it results in the rule that the sites with the largest values of $\gamma_{j} S_{j}$ should be surveyed first.

At an opposite extreme is the assumption that the probability - Of making a decision to oxcavate at site f is independent of the amount of survey effort put in at aite f (1.e., it has the value γ_{j} for all values of C_{j}) but the probability that the oxcavation. is successful increases, from γ_{j} for $C_{j}=O_{\text {, asymptotically to }}$ unity as $C_{j} \rightarrow \infty$. In other word the expocted probability of deciding to excavate site j is γ_{j} and the expected cost of such oxcavation is $\gamma_{j} D_{j}$, but the expected return eros a poasible successiul excavation ia $\gamma_{f}\left[1-\left(1-\gamma_{f}\right) e^{-\alpha C_{j}}\right] R_{f}$, increasing as C_{j} is increased. Fach of the N sites chozen may be excavated; the detailed instrumental survey is used to improve the chance that the excavation is succesaful. This effect would be greater when γ_{j} is near $1 / 2$ than when γ_{j} is near unity (when detailed survey may not be needed).

To be realistic, this model must represent a separation of the decision process into three steps instead of two (see Engel, 1957, for another such model):

1. On the basis of map and field oxploration a list of aites (is chosen that have a good chance of containing the searchedrfor mineral.
2. Then an initial survey, using simple quipment, costing C_{0}, is run on all chosen aites. On the basis of this survey probabilities γ_{j} are assigned. It may be that aome $\gamma^{\prime} s$ are near enough unity to justify going ahead with the excavation. Also those sites turning out to have $\gamma^{\prime s}$ less than some lower limit (preaumably $1 / 2$ or even greater) will be discarded from the list.
3. On the basis of the solution of the variational problon, biven below, some or all of the sites remaining may have further, more intensive surveys applied before the decision to excavate is made.

The variational problem is thus:
Maximize $Q=\sum \gamma_{j}\left[1-\left(1-\gamma_{j}\right) e^{-\alpha O_{j}}\right] R_{j}-C_{j}-\gamma_{j} D_{j}$ subject to the requirement that $\left.\sum \mathrm{C}_{j}=\mathrm{C} \quad\right\}$ (43 and the procedure for solution ia;

Rank the sites in deacending order of $\gamma(1-\gamma) R_{\text {, with }}$ $\gamma_{1}\left(I-\gamma_{1}\right) R_{I}$ being the largest (if the $R^{\prime} s$ are gqual and if all the γ^{\prime} are greator than $1 / 2$, the aitea will be in increasing order of the $\gamma^{\prime} s$, the smallest γ being first). Calculate the ascending sequences $K_{n}=\sum_{j=1}^{n} \ln \left[\alpha \gamma_{j}\left(1-\gamma_{j}\right) R_{j}\right]$ and $L_{n}=K_{n}-n \ln \left[\alpha \gamma_{n}\left(1-\gamma_{n}\right) R_{n}\right]$ 。
When $I_{1}=0<C<L_{2}$, make the intencive survey only in site 1, that has the greateat uncertainty $\gamma_{1}\left(1-\gamma_{1}\right) R_{1}$ in expected return; deide on excavating the other sites on the basis of the γ^{\prime} s obtained from the initial survey (using some decision procedure that results in a probability γ_{j} of deciding to excavate site J).

The expected payoff is then

$$
\begin{aligned}
Q(C)=Q(0)+\gamma_{1}\left(1-\gamma_{1}\right) R_{1}\left(1-e^{-\alpha C}\right) \\
Q(0): \sum \gamma_{j}\left(\gamma_{j} R_{j}-D_{j}\right)-C_{0}
\end{aligned}
$$

When $I_{n}<C<L_{n+1}$ (assume that $I_{N T} \rightarrow \infty$) only the Iirst n sites are given a more detailed survey, the f ! th costing C_{f}; the rest are decided on the basis of the initial aurvey. The recomended costs C_{j} of the further survey, and the expected payoff of the plan are then

$$
\left.\begin{array}{c}
C_{j}=\frac{1}{\alpha}\left\{1 n\left[a \gamma_{j}\left(1-\gamma_{j}\right) R_{j}\right]-\frac{1}{n} E_{n}\right\}+\frac{1}{n} C \quad \text { for } j \leqslant n \\
Q(C)=Q(0)+\sum_{j=1}^{n}\left\{\gamma_{j}\left(1-\gamma_{j}\right) R_{j}-\frac{1}{\alpha} \operatorname{axp}\left[\frac{1}{n} X_{n}-\frac{\alpha}{n} C\right]\right\}-C \\
Q(0)=\sum_{j=1}^{n} \gamma_{j}\left(\gamma_{j} R_{j}-D_{j}\right)-C_{0}
\end{array}\right\}(44
$$

As before, wo can now determine the cost of the detailed survey allocation that will produce the greatest expected return. The result is, for the largest value of n for which $\alpha \gamma_{n}\left(1-\gamma_{n}\right) R_{n}$ is m greater than unity,
$-69-1$

$$
\left.\begin{array}{l}
C_{\max }(n)=\left(K_{n} / \alpha\right) \quad \text { and } C_{j}=\frac{1}{\alpha} \operatorname{Ln}\left[\alpha \gamma_{j}\left(1-\gamma_{j}\right) R_{j}\right] \tag{45}\\
Q_{\max }(n)=\sum_{j=1}^{n} \gamma_{j}\left(\gamma_{j} R_{j}-D_{j}\right)-\frac{1}{\alpha}\left(K_{n}+n\right)-c_{0}
\end{array}\right\}
$$

An example of this solution is shown in Fig. 23.
Thus the pinal results of these two alternative models are similar in some respects and contrasting in others. They both point to the importance of determining the value of the parameter B or α, measuring the effect of the cost C_{j} of the instrumental survey on the improvement of the probability that excavation will be successful. Once even a crude value of this parameter can be ebtained, one or the other of the models (or another, perhaps, intermediate between the two) can be used to estimate, at the start, the probable worth of the campaign and an initial estimate of the allocation of effort that may be involved. These estimates will be altered as the search goes on, but at the beginning, the appropriate model, with the best estimates of the values of the $\gamma^{\prime} \dot{s}, R^{\prime} s, D^{\prime} B$ and of α or β, is the only way it will be possible to estimate, quantitativaly, the projected campaign.

For example, both results show that a sito for which the a priori estimate of $\beta \gamma_{j} S_{j}$ or $\alpha \gamma_{j}\left(1-\gamma_{j}\right) R_{j}$ is leas than uaity is probably not worth including in the campaign. It is botter to reduce the number of sites to those that canmall be covered by some amount of instrumental survey. The particular model that has been shown to be appropriate will then indicate which sites deserve more coterage than others.

As a final comment, the models diacusmed. here may be useful in other than prospecting operations. For example, the process of testing a few samplea from each manufactured production lot Would be the preliminary exploration, determining γ; the more iraction of thrumental survey" might be the sampling of a large repairing or diacarding each unit. Decision not to excavate" would correspond to deciding to screp the bateh without further testing. Analogues in police investigation alao come to mind.

6.7 Search for an Active Brader.

 getting through a long strait of varying width, with the aubmarine able to submerge part but not all the time, and the cross-over barrier patrol having varying degrees of coverage An alternative examplea of a patrol to prevent infiltration across a length L of the border of a country.As with many game thoory solutiona, tho strategios of both sides, the infiltrators (I) and the repulsive patrol (R), must vary their actions along the border; otherwise the opposition will learn these actions and devise means of circumventing them Only by continuously varying actions, according to a prescribed probability diatribution, can the opponent be kept guessing. Suppose side I sends each infiltrator at random across the border mith a probability density $\Psi(x)$ that he cross at point x (so that $\left.\int_{0}^{1} \Psi(x) d x=1\right)$. And suppose that side R places its patrol at random
along x with a probability density $\phi(x)$ that the patrol covers x (here also $\int_{0}^{L} \phi(x) d x=I$). And, finally, suppose that if a patrol happens to be covering x and an infiltrator happens to try crossing at x then, the probability that he will be prevented from crossing is $P(x)$. This probability will vary with x, depending on the terrain; in heavily wooded or mountaincus comntry P would bo small, Por example. The expected fraction of infiltrators that are prevonted irom aroseing the border will, in the long run, be

$$
\begin{equation*}
J=\int_{0}^{1} \phi(x) \Psi(x) P(x) d x \tag{46}
\end{equation*}
$$

The problem for side I is to adjust the likelinood of crossing Ψ so that J is as small as possible; that for aide R is to adjust the frequency of patrols of so that J is as large as possible. To be saie, side I should arrenge Ψ so that no action by R can make J larger, and side R should arrange \varnothing so that no action by I can make J any smaller.

Taking side R first, note that, in integral J , if the product $g \mathrm{P}$ is smailer, for some range of x , than it is elsewhere, then if side I finds this out, more infiltrators will be sent through the "weak" range A and J will be reduced in value. Therefore the gafe strategy for R is to make ϕ inversely proportional to $P(x)$ (heavy patrolling where P is small, light patrolling where P is large).

$$
\begin{aligned}
& \text { To be more precise, side } R \text { should make } \\
& \phi(x)=[1 / N(L) P(x)] ; N(L)=\int_{0}^{L}[1 / P(x)] d x \\
& \text { in wich case the Iraction of inflitrators } \\
& \\
& \text { prevented from croseing is } \\
& J(I)=[1 / N(L)] \int_{0}^{L} \Psi(x) d x=[1 / \mathbb{N}(L)]
\end{aligned}
$$

no matter what I does about the shape of $\Psi(x)$.

However unless side I does the same thing with Ψ, side R
an could modify ϕ so ax to increase J. For oxample $\Psi(x)$ might be $[h / P(x)]$ over a smaller range I_{h} of I, for which $P(x)<H$ and be zero when $P(x)>H$. In thals case

$$
\Psi(x)=\left\{\begin{array}{l}
{\left[1 / N\left(I_{h}\right) P(x)\right] \text { over } I_{h}} \tag{48}\\
0 \text { over the rest of } L
\end{array}\right.
$$

where $M\left(I_{h}\right)=\int_{0}^{h_{n}}(1 / P) d x$. If side R stuck to the patrol density \$ of Eq. (47), the value of J would still be $[1 / \mathrm{N}(\mathrm{I})]$, but if R learned of the change to the Ψ of Eq. (48), he can change to increase J. For example he can make oqual to the \bar{y} of Eq. (48), omitting any patrolling along $L-L_{h}$. where there is no infiltration. In that case $J\left(I_{n}\right)$ would equal $\left[1 / \mathbb{N}\left(I_{h}\right)\right]$, which is larger than $[1 / \mathbb{N}(I)]$ because I_{h} is swaller than I. Of course, if R continued to use this patrol density and side I learned of it, he could send infiltratore through the unpatrolled jength I - I_{h} without ang loss.

Therefore the safe strategy for both sides is to have both Ψ and ϕ equal the $\phi(x)$ of $\mathrm{Eq} .(47)$.

Finally, thore should be mentioned the discrete cases involping a search for a conscious evader. The problem of a number of discrete sites, where the ovader can hido and the searcher may look, seams to be a very dipifcult ono to solve. A start at a solution has been made by Norris (1962) for the very simplified case where the search is conducted in a series of d crete "lookg" into the different aiter, with specified probabilities q_{j} of discovering the ovader if he is in site j when that sito is looked into. As with other game theory solutions, this requires a mixed strategy solution, with the evader moving
. Prom site to site, between looks of the searcher, with spocified
probebilitios that he make chen \wedge plus specified probabilitios for being initially in the different sites. The searcher must also use a mixture of strategiea, each of which consists of a series of looks at a spocified sequence of aites.

The game is determined by alloting quanta of gains to the evader every time the searcher looks but does not find him and costs every time he changes sites. Norris solved the case for two sites in some completeness. He found that if the cost of changing sitea is larger than some limit, tno best strategy for the evader is to choose a site initially, with a probability P of going to aitio 1 and $1-P$ of going to site 2, and then staying put. Thes probabilities are determined by the relative magnitudes of the probabilities q_{1} and q_{2} of being discovered (which are presumed known to both gidea). If the searcher assumes that the evader 2. ha hidden according to these safest probabilities, he then can look in one of the sites, thus changing the a priori probablijty P into an a posteriori probability (if his look does not find the ovader). (See Pollock, 1960, for further discussion). The desired sequences of looks are those which tend to keep these a posteriori probabilities oscillating within limite. The archer must also use a mixture of these "good" sequences.

The same considerations also enter into the game when the Qvader can move from one site to another between looks. When more than two aites are involved the problem is considersbly more complicated. Other aspects are treated by Nouta (1963).

Indeed, this part of the theory is not jet in shape to be useful in any real world situation. In fact search theory, in regard to practical applications, is still in an embrionic state.

As indicated several times in this Chapter, although much of the basic structure of search strategy has been elucidated in the literature, the specific solutions appropriate to a given application are, for the most part, yきt to be worked out. The search process enters into a surprisingly large number of our individual, as well as group, actions. We look for a book in the library or an item in a catalogue. Searches are conducted Por a lost child, a fugitive, a buried city or pocket of oil, an enemy submarine or infiltrating division, a faulty component in an ailing piece of equipment or an exror in a manafacturing process. Each of these searches has its own physical, procedural and economic boundary conditions; each requires considerable study and experimentation before a workable search strategy can be devised for it. In only a few cases have they been studied, measured and analyzed in detail.

To date, most of the practice of search theory has been in the military pield (see, for example, Koopman, 1946, and the bibliographies of Enslow, 1966, and Dobbie, 1968). Much of the detail of these applications is, of course, buried in sucrecy. The nature of the search for a person loat in a wilderners, and a few applications of the theory have been reported by Kelley (1973). Some applications in the search for flaws in equipment have been reported (sec Gluas, 1959, for example) and a few reports in the field of prospecting (see Engel, for example). A small amount of work has been reported (Larson, 1972) on the

Bibllography 1.

police search problem, particularly in regard to the ailocation of patrol effort. Practical applicationa in many other fields are atill lacking.

As for the devolopment of theory, some interssting progsess has recently been made in the analyeis of the affects of ialso taigeta on search strategy (see Stone, 1972 and Dobbie, 1973) and a littie progress has been made into the inmenseiy difficult problem of the bearch for a conscious evader. In seneral, however, one has the impression that the theory needs to be proved out by appication in many more fields before forther mathematical superstructure is added. The sobject is already tapheary enough.

Bellman, R.E. and Dreyfus,S.E., Applied Dynamic Programming, Princeton University Press, 1962, Chapter 4

Charnes,A. and Cooper, W.W., The Theory of Search, Optimum Distribution of Search Effort., Management Sci. 5, 44-50 (1958).

Dansking John . A Mheory of Reconnaissance, Opns.Res. 10, 285-299(1962) A Helicoptor vs.Subnarine Search Game, Opns.Res.16,509(1968).
de Guenin, J., Optimum Distribution of Exfort, an Ertension of the Koopran Basic Theory, Opas. Res. 2, 1-7 (1961).
Dobbie, James , Search Theory, a Sequential Approach, Naval Res.Log.quart. 10, 323-334 (1963).
-----, A Survey of Search Theory, Gpne.Res. 16, 525-537 (1968). -----., Search with False Contacts, Opns.Res. 21, 907-925 (1973).
Engel, J.H. Use of Clustering in Mineralogical and other Surveys, Proc.1st Internat.Conf.on $0 . \mathrm{R}_{\mathrm{B}}$, Oxford,1957, pp.176-192.

Enslow, P.H.Jr., A Bibliography of Search Theory and Reconnaisaance Theory Literature, Naval Res.Logoduart. 13, 177-202 (1966).

Gluss, Brian, An Optimum Policy for Detecting \& Fault in a Complex system, Opns.Res. $2,468-477$ (1959).
-----, An Alternative Solution to the "Lost sea" Problam, Naval Res.Log.quart. 8, 117-121 (1961).
---->, The Minimax Path in a Search fox a Circle in a Plane Haval Rea.Log.Quart. 8, 357-360 (19610).

Kelley, Dennia, Mountain Search for the Lost Victim, Privately Published, 1973, P.O.Box 153, Montrose, C\&1. 91020.
Koopman, B.O. Search and Screening, O.E.G. Offlce of the C.M.O. OEG Report 56 (ATI 64 627) 1946.
-------., The Theory of Search: I. Kinematic Bases, Opas.Res. 4, 324-346 (1956).
-------, The Theory of Search: II. Target Detection, Opns.Res. 4, 503-531 (1956b)。
--------, The Theory of Search:III. The Optirum Distribution of Searching tifort, Opns.Res. 5, 613-626 (1957).

Warson, R.C., Urban Police Patrol Analyaig, MIT Preas, 1972.

Macdueen, J. and Miller,R.G.Jr., Optimal Persistance Policies, Opns.Res. 8, 362-380 (1960).
Mela, Donald F., Information Theory and Search Theory as Special Cases of Decision Theory, Opns.Res. 2, 907-909 (1961).

Morse, P.M. and Kimball,G.E., Methods of Operations Research, OEG Report 54, 1946, and Edn. MIT Press, 1951.
-----, Searck Theory and Browsing, The Library Quart., 40, 391-408(1970)
Neuta, Marcel F., A Multistage Search Game, Jour.SIAM 11,502-507(1963).
Norria, R.C., Studies in Search for a Conscious Evader, Lincoln Lab. MIT Tech. Rept. 279 (AD 294 832) (1962).
Pollock, Stephen M., Optimal Sequential Strategies for Two Region Search when Effort is Quantized, O.R.Center, MIT, Interim Tech. Rept. 14 (AD 238 662) (1960).
--------, Sequential Search and Detection, O.R.Center, MIT, Technical Report 5, (1964).
…----, Search Detection and Subsequent Action: Some Problems on the Interfaces, Opns.Res. 19, 559-586 (1971).

Stone, L.D., Total Optimality of Incrementally Optimal Allocations, to appear in Naval Res.Log.Quart. 20, Sept. (1973).
-----, and Stanshine,J.A., Optimal Search Using Uninterrupted Contact Investigation, Jour.BIAM, 20, 241-263 (1971).
and Persinger, C.A., Optimal Search in the Presence of Pof son-distributed False Targeta, Jour.SIAM, 23, 6-27 (1972).

[^0]: ""Preliminary Renort on the Submarine Search Problem," by P. M. Morse, R. F. Rinehart and others, issued in May 1942, was the first Technical Report of the newly formed Anti-Submarine Warfare Operations Research Group, financed by the National Defense Research Committee and assigned to the Office of the Chief of Naval. Operations, Admiral king. It covered parts o the material in subsections 6.23, 6.32, and 6.52 below. The contents of this and of many other studies by various members of the Group are reported in consolidated form in Koopman (1946).

