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CONTROIL OF REGRESSION ARTIFACT ERROR IN EVALUATING

THE EFFECTIVENESS OF CRIME REDUCTION PROGRAMS

by '

Denise Corcoran, M.S., and Nelson B. Heller, Ph.d.

ABSTRACT

A common method of evaluating the results of social programs
designed to alleviate specific problems involves a "before and after"

comparison of the performance of the treatment group (i.e., clients,

or geographic areas being served). When the selection of the treat-

ment group depends on prior performance (eg., high crime, low I.Q.,
etc.) rather than on a random scheme, this type of evaluation may 2.

produce erroneously inflated results in favor of the project's impact,

by overestimating the "before" levels. This study presents analytical

techniques for estimating the magnitude of this bias, called regression

artifact. These techniques were used to analyze the results of the
St. Louis High Impact Anti-Crime Program's Foot Patrol Project, which

was implemented in 1972 in the highest crime areas in the city.
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PREFACE

Considerable attention has lrecentl'y been focused on the need to evaluate
government programs, particularly those aimed at correcting soclal problems.
In the field of law enforcement and criminal justice, Congress has specifically
directed the Law Enforcement Assistance Administration, through the Safe Streets
Act 0of 1973, to examine its own and local projects to find out "what works and
what doesn't work', Although many criminal justice practitioners and researchers
are eager to respond, the art of evaluating crime control programs is still very
much in its infancy, and pitfalls abound, likely to mislead even the most well-
intentioned evaluators, This study is an examination of one such pitfall, cailed
the "regression artifact”, which presents itself in the very common situation
in which project treatment resources are administered only to those clients
or geographic areas most in need of service. For example, inténsive police
patrols are usually deployed to high crime areas where the need for crime
reduction appears most acute.

Scientists who can ) erform experiments in laboratories are careful to
establish controlled conditions which permit rigorous interpretation of the
results. Social and political scientists, however, can rarely control the
experimental programs with whose evaluations they are charged. Crime
control programs are implanted in political and social enviroments far from
the tranquility of the research laboratory. While the laboratory scientist can
withhold treatment from a ''control' group of the population under study, moral
and political considerations often make the establishment of similar control

groups for criminal justice programs impractical or impossible. Is it fair

to withhold police patrols from some high crime areas while intensifying them

SR
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in others? Should some seriously delinquent juveniles be left untreated when
others are receiving the benefits of new programs?

When treatment programs serve only those persons or areas most in need

of service, it is common practice to use a comparison of the treated group's

performance before and after treatment as the basic evaluative index. If crime
and recidivism rates, and the other measures of effectiveness employed in
evaluating criminal justice programs, were not frequently erratic and subject
to apparently random fluctuations, then this sort of straightforward before -after
comparisons could be quite reliable. However, the random nature of these variables
introduces a form of estimation error which is rather subtle and has been overlookes
in an alarmingly high proportion of evaluative studies, although its magnitude can
be substantial. This, of coﬁrse, is the regression artifact, the subject of this
study.

Without going into a full discussion of the mechanism responsible for this type
of error, since it is covered thoroughly on the following pages, the nature of the
problem can be illustrated rather dramatically by considering a simple coin
tossing experiment.

Imagine a room in which 20 individuals are each given a perfectly fair coin to
toss, that is, a coin which has been tested to verify that a head is as likely to
come up as a tail on any toss. Also, imagine that a ''coin fairness'" program has
been instituted by the U.S. Treasury Department to identify and correct any
coins which are not fair, and that a program staff person has been assigned to
deal with "problem' coins in the aforementioned room. Further, because of the
usual time pressures and paucity of available data, the staff person is not aware

that all the coins in question are perfectly fair. Consequently, his first activity

is to "test' all coins in the room by having each individual toss his coin ten times



X

and report the number of heads observed. Since five heads would be expected on
the average from fair coins, the coins in the room are then ranked acéording to
the absolute c’iiffere;me between the number of heads observed and five. Clearly,
those with the greatest differences are most in need of "fairness correction,"
Unfortunately, sufficient funds are available to treat only six of the fWenty

coins, so the highest ranked coins are singled out for treatment. Being

a careful evaluator, the staff person carefully notes the performance observed
for each of these six coins before treatment, and computes the average difference
as an index of the "coin unfairness" observed prior to treatment. Next, the

six coins are carefully “treated" and then retested by having them each tossed an
additional ten times. Encouragingly, the average number of heads observed is
found to be much closer to five per coin, and a computation of the before-to~aft¢r
improvement ratio proudly indicates the effectiveness of the treatment program.

Is this a completely ridiculous analog to real-world crime control program
evaluation? After all, all coins were in fact perfectly fair, and those observed
originally as having been "unfair" in the pretest were actually behaving consistently
with their fairness-- when the probability of tossing a head is 0.5, the average number
of heads in ten tosses will be five, but not every set of ten tosses will yield exactly five
heads (in fact, the chances are only about 25 per cent that exactly five will be observed).
Therefore, it is entirely likely that for at least six of the twenty coins the number of heads
observed will be significantly different from five per coin. Of course, when these six coins
are retossed, agsuming the "fairness treatment" has not in fact made them less fair,
the expected number c?f heads will still be five per coin and the chances that all six
will again behave as divergently as they did on the pretest are quite small, In other

words, the treatment program will appear to have "corrected” the fairness of the coins

when in fact they were perfectly fair from the start.

This simple example points out that the process used to select members of a
population for treatment may cause a program to look good when program services
actually have no effect whatsoever on the treated population. Of course, in the
world of crime reduction programs, the populations treated will not be composed
of members whose needs for treatment are equally great, Some members will
always be seriously in need of services while others will not, Because of random
fluctuations in the performance measures, however, is is never possible to
discriminate with certainty between members truely in need of service and those
whose performance exhibited exceptional need on the pretest due to random
variation. Consequently, following treatment, some members will revert to
their normal levels of performance (a change which would have occurred without
any treatment at all), while other members may make meaningful improvements
as a result of treatment. The net effect is that before-after evaluation methods,
unless carefully controlled for regression artifact, may erroneously indicate
inflated success levels, even for programs having no effect whatsoever,

In the study presented here a fuller description of the regression artifact
phenomenon and a method for estimating the magnitude of artifact related error
are given. The study was conducted as a component of the Impact Evaluation Program
established by the Missouri Law Enforcement Assistance Council - Region 5. to
evaluate projects funded by the St. Louis High Impact Anti-Crime Program. Co-
author Denise Corcoran analyzed the results of the study for her Mastér of Sgience
thesis, submitted to the Depai'tment of Computer Science at Washington University.
Co -guthor Nelson Heller served thedual roles of Director of Program Evaluation
for the St. Louis Impact Program, and thesis adviser (he is an Affiliate Professor

of the Department of Computer Science at Washington University). The following



report is taken almost entirely from Ms. Corcoran's thesis.

Nelson B, Heller
St. Louis, June 1974

CONTROL OF REGRESSION ARTIFACT
ERROR IN EVALUATING THE EFFLECTIVENESS

OF CRIME REDUCTION PROGRAMS

l., FORMULATION OF THE PROBLEM

1.1 SCOPE OF THE PROBLEM

As one component of St, Louis' High Impact Anti-Crime
Program, the Foot Patrol Project was designed and implemented
to determine the crime reduction effect of intensive
police foot patrols in high crime areas. The project's
primary objective was to decrease the number of robberies
and burglaries in the areas patrolled by providing a con-
centrated police presence in the form of foot patrolmen.
The process for selecting the experimental gfoup of
blocks for thebproject involved identifying the six
reporting areas (called "Pauly" blocks in St., Louis)
within the city that ranked highest in crime for the
specific target crimes considered. The ranking procedure

was based on the 10-month crime totals for the period

*The numbers in parentheses in the text indicate references
in the Bibliography.
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from January to October of 1871. The project was implemented
in July 1972, and was evaluated for its effectiven;ss for

the period ending December 1972,Figure 1 displays graphically
the above details, The statistics from the experimental
period indicated‘a reduction of the target crimes in these
six Pauly blocks. This leads to an important question:

How efféctive was the project in meeting its objectives?

This is just one example of the following general type
of analysis used in social experimentation: collect
observations which measure a characteristic of the popu-
lation considered, choose an extreme éubgnoup for treatment,
collect data on this subgroup after the treatment. To
determine the effectiveness of the treatment, a common
approach is to measure the net change of the subgroup
before and after the treatment. The problem with this
type of "before-and-aftep" analysis is that, in most cases,
some of the change in the observations may be due to
sources other then those controlled by the experiment,

Thus, one purpose'of this study was to examine the
erratic behavior in crime rates before the Foot Patrol
Project went into existence, It is only in this per-
spective that a trﬁe measure of the effectiveness of the
project can be determined. Although the major part of
thig study revelves around this specific application, the
basic analytical techniques can be used for other similar

experimental situations.
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The core of this research effort was mainly con-
cerned with two aspects of the project:

1) the design of the experiment

2) the method of evaluating the program after its

implementation.

In discussing the design of an experiment in
general terms, a bias may result from the process of
selecting a particular extreme group to which a remedial
treatment is administered. Relating this to the Foot
Patrol Project, the underlying assumption in the design
of this program was that the six Pauly blocks actually
chosen were, in fact, the six highest crime areas in
the city, for the period in which they were selected.
However, the erratic behavior of crime within the
population of Pauly blocks may actually have produced a
selection bias, But the problem does not end here,

In the actual evaluation of the project, it was
assumed that any significant reduction in the overall
crime total for the six Pauly blocks, from that for the
base period in which they were chosen, would be sufficient
evidence of the successful impact of the project.
However, since the group of Pauly blocks may ﬁave been
chosen at-an exceptionally high point in the histories of
their own crime rates, caused by unusually large "random"

.¢rime increases, the absence of another random increase

—S-

may well reduce the magnitude of crime in the subsequent
"after" time period to a more normal level, regardless
of the existence of the Foot Patrol Project., Thus, an
abnormal period of crime in the six foot-patrolled
Pauly blocks may have coincided with the period in
which they ranked the highest among all the Pauly blocks.
Thus, this study will attempt to evaluate the
underlying random process which affects both the whole
population of Pauly blocks and each individual Pauly block
within the population simultaneously.
The remaining sections in this chapter include the
following topics: a general discussion of the problem
of "pegression artifact", as encountered in evaluative
research; previous research concerning this problem;
and a general formulation of the problem as it relates
to the evaluation of social programs. Chapter 2 presents a
theoretical approach to this artifact problem using order
statistics, for those cases in which certain simplifying
assumptions of the model are valid. Chapters 3 and 4
discuss the design of a simulation model and the general
logic of the computer program written to carry out the
simulation, Chapter 5 describes the procedures used to
validate the computer model in order to justify its use

in situations too complex to be solved using order
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statistic¢s techniques, Chapter 6 presents the results
of the simulation experiment, which replicates the
selection process for the six highest Pauly blocks,
based on generated crime rates, for a given number of
runs, Finally, a summary of this paper with conclusive
remarks about the results of the simulatidn experiment
are presented in Chapter 7. |
1.2 REGRESSION ARTIFACTS - WHAT ARE THEY?

One of the most pervasive phenomeng in the study of
change has been coined_"regressioh artifact."* It is
the natural tendency for those subjects selected as
most deviant on an initial measure to average nearer to
the mean on a second measurement. Since this so-called
regression is a situation to be found in reél life, it is
important to understand why it occurs, so as to avoid
misinterpreting any causal inferences,

All measures contain some component of "error" - to a
greater degree for measures of behavioral characteristics
than for those of physical properties., Thus, it is
possible that those initially high on a measure are
there partly because chance errors favored them on the
day they were examined. Similarly, those low on an

initial measure fell down because chance errors worked to

*Also called regression fallacy or regression effect,

7w

their disadvantage on this testing. Since it is
atypical that chance hits in the same manner on two
successive occasions, it 1s a stochastic expectation
that both those originally high and those originally
low would regress toward the mean.,

For experimental work, the regression phenomenon
becomes important if subjects are selected bacause of
their extreme scores on some variable, which is to be
measured after a certain treatment has been administered
to the group. Whenever a group is chosen for treatment
because they were high on an initial measure, the
effecf of the treatment may, in part, be counteracted
by the regression effect. Moreover, when a group is
chosen because they were low on an initial measure,
at least some of their gain on a subsequent measure
may be attributed to the rival hypothesis of regression
effects., A familiar example of this situation deals
with I.Q. scores. Frequently, those children who
score the lowest on an I.Q. test are selected for
remedial training. After some time they are again
tested, result%ng in an improvement in their I.Q. scores,
However, since the scores would be expected to rise
anyway,due to regression, the contribution of the

training program is unknown. The regression effects are
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created partly by chance factors in the testing
situation, by measurement errcr, and by other temporary
influences, all of which had worked to the disadvantage
of these subjects on an initial test.

However, iﬁ is necessary to point out that a
regression artifact is not always encountered with
extreme scores, For the situation in which a group
is originally chosen by a random process, but yet
turn out to have an extreme mean, regression effects
may be prevented, Bu; for a group selected because
of an extreme variable, we can expect the mean of
this group to regress toward the mean of the
population from which it was selectéd.

1,3 PREVIOUS RESEARCH

The phrase '"regression artifact" appears to have
taken its name from F. Galton's observation that "the
progeﬁy of all exceptional individuals tends to regress
towards mediocrityl‘l) That is, Galton thought the
heights of people were becoming more uniform because
the sons of the tallest fathers and of the shortest
fathers were closer to the'average than the fathers
had been, Later on, Galton realized the faliacy in
- his own findings, due to the fact that he was simply
looking at selected members of the population (sons

of the tallest and shortest fathers)., In his paper,

-

"Regression toward Mediocrity in Hereditary Stature'", he
recognized that not only did exceptional parénts have
offspring more mediocre than themselves, but also
exceptional offspring came from parentage more mediocre

(2)

than they. Thus, in an era in which the average
stature does not change, the heights of sons of tall
fathers average shorter than their fathers, but the
heights of fathers of tall sons average shorter than
their sons,

Although the regression phenomenon has been
known for more than a half century, such results were
not used until some time later in interpreting scores
obtained in mental and educafional tests., Robert
Thorndike, involved in educational experimentation,
pointed out the importance of the reliability of a test
when one is using the obtained score on a test as an
estimate of the student's "true" score, He considered
a highly reliable test one which yields a high correlation
between obtained scores with the corresponding true

scores. The formula that Thorndike used to astimate the

true score was

xtrue =T Xobtained ’

where the lefthand side denotes the true score as a

deviation from the mean of the group being measured, and
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the right side equals the reliability coefficient,
assumed to be a certain value, times the obtained
score expressed as a deviation from the mean of the
group, Thorndike emphasized that it is the true
scores from an initial test, not the obtained scores,
which must be used as the basis to match those groups
to be compared on subsequent tests, However, throughout
the discussion, Thorndike does not attempt to define
what he means by a student's "true" score. Moreover,
he fails to mention how to compute the reliability
coefficient that he uses in his formula,

Further devélopment was made by Frederic M. Lord
in regard to educational testing., In "Measurement of
Growth", he derives a regression formula to estimate
the student's true gain between successive tests,‘as
based on his observed initial and final scoves.(s)
However, such a method is based on the assumption that
initial and final tests are of "identical or equated .
forms". 1In a follow-up paper, he discusses some of
the basic controversial measurement problems.(u)

The most commom problem deals with a frequent
attempt made by educators to compare the magnitude of
a gain in the score of a good student to‘that of a-

poer student on a retest, Since it is highly probable

that one would observe smaller gains for higher initial

-11l-

scores, such an occurence might lead to the erropeous
conclusion that the good students are actually learning
less than the poor students. As Lord points out, the
flaw in this type of evaluation is that a comparison

of the gain of two individuals cannot be made unless
they start at exactly the same point on the score scale,
For to compare gains of people at different parts of the
score scale is to imply that the magnitude of a gain
from different points on the score scale may be treated
in terms of "equal" units. This would be a subject

for serious debate,

Since veryklittle of the experimental and evaluative
research work in the social psychological sciences are
subject to controlled observation, regression effects
must not be ignored as a possiblé\explanation for many
test results,  However, a survey of the literature
indicates that at the present time there has been no
rigorous attempt to measure the magnitude of the
artifact, but merely a recognition that the problem exists.
1.4 GENERAL APPROACH TO THE PROBLEM OF REGRESSION

ARTIFACT IN EVALUATIVE RESEARCH

The artifact problem encountered in the evaluation of
experimental social programs may lead to erroneous con-

clusions about the outcome of a program if the clients or



areas served by it are chosen on the basis of their poor

performance or exceptional need during the period pre- ' .
ceding implementation, as opposed to some kind of

randomized selection procedure, The most common

measure of effectiveness of such programs involves a

"before and after" comparison of the behavior of the

experimental, or treated group - that is,

Performance measured before experiment .
Performance measured after experiment

Effectiveness =

~Any change in performance is attributed to the program,
The extent to which this type of measure is inflated by
the artifact depends on *the random or irregular behavior
of the performance measure for the experimental group

and the population from which it is selected. Therefore,
a more accurate estimate of the effectiveness is given by
the overall change in effectiveness minus an estimate of
the artifact,

To measure the magnitude of the artifact requires
knowledge of the following: the size of the population
(i.e., clients or areas), the size of thé experimental or
treated group, and a measure of both the regular behavior
and the irregular, or random, variability of the per=-
formance measure for the population., Since most experiments
are performed in a time setting, an estimate of the éxpected
performance and random error component can be computed using

a time series model, Each estimate is used in determining

the artifact: the expected performance represents a
measure of normal behavior and the error component
represents a measure of erratic behavior. Although
there is no'set way to compute these estimates for a

' ]
given model, the least-squares regression model
technique is suggested because it gives measures for the
testing of significance of its estimated parameters,
as well as minimizing the sum of squares of the error
terms.

Following the format of the "before and after"
effectiveness measure, the measure of the artifact
suggested is the ratio of a "before" measure, based on
actual behavior during the selection period, to an
estimated "after" measure, based on behavior expected
from the areas treated if they had been selected during
a period of more norma) performance for themselves, In
other words, the "before'" measure reflects the extremes
of performance during the selection period, and the
"after" measure represents the more normal behavior of the
experimental group, or the level of behavior expected
,when no random or irregular fluctuations are present.
That is,

"Before" Measure _ Biased Behavior .
W"After" Measure Expected Behavior

Artifact =

Baecause of the random nature of the extrames in performance



-]18=
elbe

of a program,is illustrated for the case of the St. Louis

of the clients, or areas, the artifact measure, itself, is . .
Foot Patrol in the following chapters. The probability

best treated as a random variable. Therefore, the infor- g . . . . .
distribution for the artifact measure, and its expected

mation which is necessary for the evaluation of a social . . . .
value, are derived using the time series model, and a

experiment must include knowledge of random variations . .
random number generator for the irregular fluctuations,

in the behavior of the performance measure for the ) ) )
At each iteration of the simulator the performance of

population under study, and how the process of selecting . . .
every client or area is determined. The set of those

for treatment only those units exhibiting poorest per- . .. .. .
exhibiting poorest performance is identified, and their .

formance during a specified period leads to "before" ] . .
performance average is computed, This average is then

performance estimates which are misleadingly extreme, .. .
divided by the average performance for these same clients

A computer simulation was used in this study to . .
or areas when the random fluctuation has been set to

provide estimates of all the factors described above. . . . ‘os
zero, The iterative procedure is repeated a specified

Included as input to the simulation model is a time series . . ‘
number of times (eg.,, #00-500 times for the Foot Patrol

performance model which is based on observed performance . . .
analysis), Probability statements can then be made, on

for time periods prior to implementation of the program. . . . . .
the basis of the estimated distribution, about the

The time series model is used to estimate: . . .
magnitude of the artifact for the actual period used for

1) the distribution of irregular or random per- . .
the selection of the experimental group.

formance variations for each client or area in the _ . . . .
If the experimental period is, in fact, the same

poepulation under study, . ) . . s .
duration as the selection period but in a subsequent

2) an estimate of the expected or normal performance . . . .
time interval, then the simulation may also be used to

of each client or area for the selection peried, and, . .
evaluate the extent of the change in the behavior of the

3} an estimate of the expected behavior for each . . :
experimental group during the program, which can be

client or area during the subsequent period when . '
g 1 P . ) attributed to the artifact. This involves a two-stage

the program is underway,
prog Ve process: first, simulating the behavior of the population

The procedure for estimating the magnitude of the

artifact, based on data for the period prior to implementation



-]lb=

prior to the project to determine the members of the
experimental group, and second, simulating the behavior
of the selected group for the subsequent period, Thus,
the "before and after" measure of the artifact for the

experimental group is

"Before" Simulated Behavior .

Aptifact = "After" Simulated Behavior

By repeating this process a number of times; the distri-
bution of this random variable can be estimated., It is
then used to determine the probability that the actual

change in the behavior of the experimental group during

the program period is due to an artifact alone, The actual

change during the experimental periocd minus the mean

artifact measure from the simulated distribution may be

used as an estimate of the true change in the experimental

group attributed to the program., The validity of the

output results will, of course, depend on the extent to

which the simulation model correctly describes the behavior

of the population,
1.5 PREDICTIVE MODELS FOR CRIME TOTALS IN EACH
- PAULY BLQCK
The main objective of this research effort is to

test hypotheses about the behavior of crime within the
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system of Pauly blocks, However, it is necessary to
define the structure of this system before any analysis
work can be performed.

The two important features of this system are as

follows:

1) Components

The components of the system are all the
Pauly blocks in the City. The performance of the
system as a whole and of each component in the
system is measured in terms of crime rates.

2) Variables

As the performance measure, crime rate is the
key variable of this system, Formulated as a
time-series model, the crime rate can be explained
in terms of three variables: trend, seasonality
and a random "error." The first two variables
pelate to a systematic change in crime rate
behavier; the latter, an erratic change, It is
this "error" variable which leads to, and is used
as a.basis for measuring, the regression artifact

in crime rates.

Assuming that crime rates can be modeled as a linear

combination of the variables described above, the

following expression may be used to relate crime for

.
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each Pauly block and time period to trend, seasonality,

and random fluctuation,
C(i,t) = A(Li) + T(i,t) + S(i,t) + e(i,t), (1-1)

where ' C(i,t) denotes the crime rate

for Pauly block i, during time period t,

A(i) is a constant facfor giving the
average crime rate for Pauly block i,

T{(i,t) is the trend factor for Pauly
block i and time period t,

S(i,t) is the seasonality factor for
Pauly block i and time period t,

e(i,t) is the random fluctuation
component in the crime rate for

Pauly block i, and time period t.

The underlying, or expected, crime rate for a given
Pauly block and time period is obtained by estimating
the parameters A(i), T(i,t) and S(i,t) from equation

(1-1), That is,
Cli,t) = ACL) + T(i,t) + S(i,t) (1-2)

The estimate C(i,t) represents the expected norm of
crime behavior for each Pauly block and time interval,

Any deviation from this norm can be characterized as a
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random fluctuation which depends on other variables
that affect crime rates, but which are not explicitly
included in the model. An estimate of this random

variable e(i,t) can be obtained from  the equation
e(i,t) = c(i't) - C(i’t)-

The estimates of e(i,t) may be used to compute a
measure of the regression artifact, as described in
Section 6.
1,6 USE OF A SIMULATION

A computer simulation model was used to study the
behavior of the "error" component in crime rates over
time fsr single Pauly blocks and for groups of Pauly
blocks, One of the main reasons for selecting a simulation
rather than an algebraic model is that fairly complex
processes may be modeled more readily i% simulation.
In this case, the size of the population of Pauly blocks,
compounded by differences in their crime behavior, make
the devel&pment of a realistic, analytic model of the
selection process for the Foot Patrol Project very
difficult,

The simulation is programmed to generate random
numbers having the probability distribution of the

error factors for each Pauly block being modeled. The
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random number generator makes use of an estimated dis-
tribution function for the error terms, The function was
computed by fitting a form of the basic model, discussed
in the previous section),.- to the actual time-series of
crime data for each block, Both the generated error

term and an estimate of the normal crime rate during

the actual selection period for the project for each
Pauly block (also computed from the basic model) were
used to replicate the process of selecting the six
highest crime Pauly blocks from a popﬁlation of Pauly
blocks affectgd by erratic crime behavior. Given this
set of the highest crime blocks for each run, a measure
of the selection bias is then recorded., Thus, the
simulation model is run a sufficient number of times to
produce a measure of the expected performance of the
system of Pauly blocks in terms of its generated crime
rate and its expected crime rate for the selection period.
However, reliability of the simulation outputﬂdepends on
how accurately the model describes the real system, If
validation of the simulated model can be established, it
then becomes an effective tool for evaluating events fhat

have occurred in the real system,

2]~

2. ORDER STATISTICS MODEL

2.1 DEFINITION AND ASSUMPTIONS OF ORDER STATISTICS

Methods for analyzing order statistics have become an
extremely useful tool in statistical inference because
some of their proﬁerties are noé dependent upon the distri-
bution from which the random sample is obtained. Thus,
assuming that all the observations of a random sample

X X «eey X_ have the same density function f(x) and
1° n

2!
are independently distributed, order statistics can
create order from this mass of data by putting the
obs;rvations in numerical sequence, The result is a
permutation of the original observations Xi, denoted by
[Y(l),v..., Y(n)]’ such that Y ,) < ... Y(n)'

This vector of ordered observations is referred to as
the order statistic. Then Yi’ i = 1,2, s+eey 0, is called
the ish order statistic of the random sample Xl, X2, ceey Xn.
In principle, it is possible to derive the distribution
of the individual components of the order statistic or
the joint distribution of several of them from the distri-
bution of the complete order statistic. However, beyond
the joint distribution of two order statistics, the task
becomes quite burdensome for manual computation. For

this reason, the usefulness of these results has been limited

for any kind of analytical work,
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Generally speaking, various other quantities based

on order can be thought of as order statistics. For

example, the average of the i:E--ll and jEﬂ order statistic,

Y(i) + Y(3) .
2 , 1s included in this branch of statistics.

It is this area of order statistics that is of great
consequence in analyzing regression artifacts.
2,2 ANALYTICAL MODEL BASED ON ORDER STATISTICS

In this section, general results for the distri-
bution of the average of the two highest order statistics

have been derived - that is, for the distribution of the

statistic, [Y(n-l) + Y(n)], for a given sample of size n.
: 2

Let Xl, X2, seey Xn denote a random sample from a
distribution of the continuous type, having a probability
density f(x)%*, Let Y(r) and Y(s) denote the ph and SEE
order statistic, such that Y(r) < Y(s), Then the joint
dsitribution of Y(r) and Y(s), denoted by f(Y(r), Y(s) ),
for a given sample of size n can be expressed as

- n! [F(Y(r) )IF~7T
£(Y{r), Y(s) ) = (r=1)!'(s=r=-1)!(n=s)!

#[F(Y(s) )-F(¥(r) )11 [1-F(¥(s) )3""S

£(Y(r)) £(¥(s) ), ) (2-1)

*The discrete case has been omitted due to the complexity
of the expressions for manual computation.
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where F denotes the cumulative distribution function.
Thus, it follows that the joint distribution of the two

highest order statistics, namely Y(n-1) and Y(n), is

2

£(Y(n=-1), Y(n) ) = n(n-1) [F(n-1)1""° £(¥(n=1) )

#£(Y(n) ). (2-2)

This result is necessary to obtain the distribution of

the average of Y and Y(n)'

(n-1)

Now let M define a new random variable, such that

M= |T-1) t Y| .

2

The cumulative distribution function of the random
variable M, denoted by FM(z) - that is, the probability
that M is less than or equal to some arbitrary number

2 - can be expressed as

n

P Y(n-l) + Y
2

P [Y(n-l) t Ty S 22] ‘

(n-1) (n)j_2Z] is the volume of f(Y(n-1), Y(n))in

the region Y(n-1) + Y(m) < 2z, with an additional

FM(z) = P(M < z) (n)] < =

But PL{Y + Y

constraint that Y(m-1) < Y(m), and £(Y¥(un-1), ¥Y(n) ) = 0

outside the defined boundaries.
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Thus,

Fy(z) = P[Y(n-1) + Y(n) < 22z]

Y
= [[g£(¥(n-1), Y(n) ) d (¥(n-1) d (¥(m) ) L \
(2-3) :
where R is the region in which f(Y(n-1), Y(n) ) is defined 1 //’
s I
(see Figure 2 ). Using the "change of variable" technique,(e)‘ ‘
'let ,
s = Y(n-1) g
i
t = Y(n-1) + Y(n) , i
}
which results in the transformation |
Y(n-1) = s
Y(n) = t-s Y
(n-1)
and
dC¥ e, 1)) = ds o e | Tn=1) = V()
: Y(n-l) + Y(n) < 2z
d(Y(n)) = dt,
This gives the identity

f(Y(n~l)’ Y(ay? @ (¥ y? 4 (Yy) = £(s, t-s)Qsdt.

(n-1
The region R' on which f(s,t-s) is defined can be obtained

by using a similar transformation on the boundaries of R. ' . . . . )
FIGURE 2. Region on which the joint density function of

Y(n=1) and Y(n) is defined,
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The boundary Y(n-l) < Y(n) yields the new boundary

s < t 3 the boundary Y(nul) + Y(n) < 2z gives the
2

new boundary t < 2z (see Figure 3).

Using the change of variable technique, the .cumu-

lative distribution function of M can now be expressed as

I'4

t
FM(z) =f2z -['2' f(s,t-s)dsdt, (2.4)

The probability density function, fM(z), is computed by

taking the derivative of FM(z) with respect to z, That is,

£,(z) = 3(Fy(2)

dz

L
2

[a

The derivative of the right-hand expression with respect
to z, which appears only in the upper limit of the outer
integral, is the inner integral evaluated at t = 2z

times the derivative of 2z with respect to z:

'fM(z) = i/-z f(s,t-s)ds,

[l

4 2z '
> / / f(s,t-s)dsdt

FIGURE 3,

=27 =

s < t/2

Transformed region on which the joint density
function of Y(n-1) and Y(n) is defined.
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Using the expression for the joint distribution of the

two highest order statistics from Equation (2-2)
]

fM(z) = 2n(n=1) ‘
[F(2z-5)-F(s)]™"2

*f(s) £(2z-s)ds, (2-5)

T .
© apply this result to a specific Probability distpi-

bution,

equation,

2.3 ANALYTICAL MODEL VS, SIMULATION MODEL
The validity of the order statistics model is

COnti i
ngent on the strength of its underlying assumptions
> »
as applied to the "real world" situation Thus, to use
d »

th- ’ L]
1s model, it ig Necessary to know the specific distri-
buti
ion of the random sample and also justify that each
and every observation is identically distributed

according to this density function

Wit i
ith reference to crime ratesg for the various

section i
s of the city of st, Louis, the necessary condition

f L (] . J N -
of identical distributions is highly improbable éince
9,

the i
magnitude of crime 1s greatly influenced by geographical

locat
ation, Suech a discrepancy is also complicated by the

1
ack of knowledge of the particular distribution,
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Furthermore, manual computation limits the results to a
small number of specific continuous distribution functions,
to a2 very small sample size and to only the average of
the two extreme observations in the sample, This is due
mainly to the impossible task of manually evaluating
cumbersome integrals and/or summations that are
encountered throughout the computation. However, this
approach can become a valuable tool if such limitations
can be overcome through the use of computers,

On the other hand, the main advantage of a simulation
model is that it can reproduce system behavior, given
any distribution function. Furthermore, if the specific
distribution which governs the observations is unknown,
the empirical distribution may be used as a substitute
in the modei. This also relaxes the need for every
area in the city to have an identical distribution of
crime rates. The flexibility of the sample size and the
number of replications of the simulated experiment can
allow for a greater degree of reliability in the output
analysis. For these reasons, the simulation model was
selected as the means for evaluating the experimental
results, as they exist in the real situation, However,
there is always the question of how much confidence we

can place in the simulation model in using it to represent
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the true system, It is for this purpose that the ana-
lytical results become very important. Consequently,
deviations of the simulated results from the analyticai
results have been used to determine the validity of the
simulation model in a subsequent chapter.
2.4 USﬁ OF ORDER STATISTICS FOR VALIDATION OF THE
SIMULATION MODEL
The results derived in Section 2.2 have been applied
to three distributions for the purpose of validatihg the
simulation - namely, the uniform, exponential and tpi-
angular distributions, A sample of the procedure for
each distribution will now follow: first, the joint
distribution of the two highest order statistics will
be given for a certain sample size, and second, the
distribution of the average of the two highest order

statistics will be computed.

Uniform Distribution

Let X,, X,, ooy X, be uniform on [0,1] and Y,, Y,, «es,
Yn be the corresponding order statistics, Then the joint
distribution of Y(n-1) and Y(n) is |
£(¥(n=1), ¥(n) ) = n(a-1)[¥(n-1)1""2,
as derived from Equation (2-2), For a sample of size threes

£(Y(2), Y(3) ) = 6&¥(2) .

A i S o e
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Since the joint density function of Y(2) and Y(3) is

defined only on the [0,1] interval, the distribution of

fM(z). where z = ¥(2) ; Y(3) , is also defined only on

the [0,1] interval, TFor 0 < z < 1, different calculations
are required in the right and left halves of Fhe'
interval [0,1] (see Figure 4),

Having used the change of variable technique to
obtain fM(z) in 2.2, the procedure for determining the
corresponding constraints for the uniform distribution

have been outlined in Table 1 , Thus, for 0 < 2z < 1/2,

2[2 f(s, 2z-s)ds
0

fM(z)

= 622
and for 1/2 < z < 1,
fH(Z) = 2 % f(s, 2z-s)ds
2z-1

28z - 18z - 6 .

Figure 5 shows the population distribution from which the

random variables X,, X,, «e.y X were derived and the
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FIGURE &4,

Graphical Representation of fy,(z) in terms of
transformed variables for the uniform distribution.

| e BESRT A  | S i T gg
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Table 1, Table of Transformed Variables
(Corresponding to Figure 4 )

Constraints for
Original Variables

Equivalent Constraints
for Transformed Variables

v

(L)

(2y = ©

[A
<

(1) (2)

(2)

s >0

2z-5>0 (s < 2z)
s<2z-s (s < z)
2z-s<1 (s > 2z =

1)




f(z)

£f(x)

Population Distribution of x:
Uniform Distribution

FIGURE 5. Population and Transformed Distribution:

Distribution of =z,

2 = L21()

Given the Uniform

Distribution

Uniform
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corresponding distribution of the average of the two
highest observations as related to the order statistics.

Exponential Distribution

Let X be exponentially distributed, where f(X) =

Ae-Ax for 0 < » , so that the joint distribution of the

order statistics Y(n-1) and Y{(n) is

£(¥(n-1), Y(n) ) = n(n-1)[1 - e-*Y(n=1)yn=-2

CremMY(R=1)y [ mAY(n)y
For n = 3,
£(Y(2), ¥(3) ) = F(¥(2),¥(3)) = 6[1-e" T(2)3[32e-2 (X (2)4Y(3));

In terms of the transformed variables, where it is

required that s < 2z - s (Or s < z),

fM(z) 2 /z f(s, 2z - s)ds

n /z r2e 22245
0

3z -ékz

= 12z0%e"%2% | 10ae” - 12)e
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Figure 6 shows the probability density function of Xl,

X esey Xn and the probability distribution obtained

20
for the average of the two highest order statistics,
Y(n=-1) and Y(n).

Triangular Distribution

The computational procedure for the average of the

two highest order statistics, Y(n-1) + Y(n) , for the
2

triangular distribution is similar to that for the previous
distributions. Thus, the results for this distribution
have been summarized,

Let X have the density function

£(X) = X 0 <X <1
= 2 - X 1 <X<2
=0 Elsewhere

Then the probability distribution of Y(n-1 + Y(n) , denoted
2

as fM(z), for a sample size of two has been evaluated as

follows:
_ 3
fM(z) = 8z 0 <z < 1/2
3 2
= -8z +16z " -82+4/3 1/2 <z <1
3 2
s 82 =32z"+402=44/3 1 <z < 3/2

1}

-8/323+1622-32z+ﬁk/3 3/2 < z < 2 .,



f(X)

a‘ f(Z) ’ b.
-
A,
if&
!
.l A / .
-
0 0
Y(2)+Y(3)
v 2
Population Distribution of X: Distribution of =z,
Exponential Distribution (A = 1) Given the Exponential Distribution

B

F.4UET 6, Population and Transformed Distribution: Exponential
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For this particular sample size, these expressions are
equivalent to the average of any two random variables,
regardless of order, from the triangulér distribution.
The derivation of fM(z) for a sample size greater ﬁhan
two was too cumbersome for manual computation.

The presults derived for each distribution have been
summarized in Chapter 5, and used for tests of significance

to determine the validity of the simulation model,
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3. DESIGN OF SIMULATION EXPERIMENT

The first section of this chapter outlines the data
specifications, as the crime type, the time period, etc.;
the last two sections deal with the statistical design of
the simulation model, including the estimation of the
parameters of the model and the design of the sample of
Pauly blocks used to represent the complete population
in the model,

3.1 DATA BASE

The Foot Patrol Project will be used to illustrate the
types of input data required by the simulation model, The.
specifications of the data are as follows:

Form of Data: Crime rates for specific blocks and time

periods.

Type of Crime: Suppressible robbery and burglary,.

Time Periods: January - October for five years (1967-1971),.

The term "crime rate" here refers to the number of
crimes reported for a given time period. The St. Louis
Metropolitan Police Department classifies as "suppressible"
all crimes which could conceivably have been prevented by
an officer on routine patrol had he been near enough to
view the incident, 1In general, suppressible crimes are
those which take place outdoors. In regard to the time

period, crime data at the Pauly block level was not
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available for years prior to 1967. Since the Foot Patrol
P?oject had been implemented in 1972, the time range of
interest in assessing crime patterns prior to implemen~
tation was limited to the five years from 1967 to 1971.
The historical crime data, as outlined above, was
obtained for each Pauly block represented in the
simulation., All data was obtained from crime tapes at the
St. Louis Police Department,
3.2 STATISTICAL DESIGN

The simulation model was used to test the hypothesis
that the artifact situation, as introduced in Section 1.2,
existed in the evaluation of the Foot Patrol Project, It
was also used to compute the probability distribution of
the inflation in crime - that is, the patio of the
generated crime rate to the expected; or normal, crime
rate - for the six highest Pauly blocks (before the Foot
Patrol Project)., The inflation in crime can be attributed
to the selection process and the random fluctuation in
crime in each Pauly block; the above ratio used to measure
this inflation will be referred to as the artifact ratio,
Thg simulated distribution of the artifact ratio can be
used to make probability statements about the behavior of
crime rates in the system of Pauly blocks. Moreover, the
mean of the distribution is an indicator of the expected

bias - that is, the amount of crime reducti~n which can be

T

anticipated in a subsequent period even without the presence
of the project,

In order to produce such output, estimation of the
parameters of the model, formulated in Equation (1-1),
was necessary to satisfy the input gspecifications of the
computer simulation. To do this, the basic model had to
be modified due to the small number of observations for
each Pauly block. Thus, a time-series model, which
incorporated a uniform trend factor for each Pauly block,
was used. Since the use of a single model might result in
a poor fit, if, in fact, behavior among the Pauly blocks
differed significantly, a block factor was included to

explain some of this variation.

Let C(i,y) (y = 1,2, ..., 5 for the time range 1967-1971)

be the 10-month tdtal of crime in Pauly block i during
year y. Then the time-series model for C(i,y) can be
expressed in the form

b(p) g(p,id+e(i,y)

z
c(i,y) = a + t(w)X(w,y)+ E

1 p=1l

[ 10 e I ¥4

L

where a is a constant, t(w) is a correction, or trend,

factor for each year, X(w,y) is a "0-1" variable such that

1 ifw=y

0 otherwise ’

XK(w,y) =

(3-1)
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b(p) is a correction factor for each block, z is the
total number of blocks in the sample, g{p,i) is a "o0-1"
variable such that

‘ 1 if p =1

g(p,i) =
0 otherwise , and

e(i,y) is the residual error term for block i and year y.
The seasonal factor was omitted from the model since the
same ten months ox each year were used for each of the
five years under stufly.

The input data for the time-series model was based on
crime data for the sample of Pauly blocks used to
represent the population, The design of the sample is
discussed in the next section. Estimates of the
parameters in Equation (3-1) were obtained using the
BMD "Multiple Regression" Library Program. A sample of
the input format for the program is shown in Table 2 .,
Using the estimates obtained for the parameters, the
expected total crime for each block and year can be

computed as

c(i,y) = a +
w

n z .
t(w)X(w,y)+ I, b(plelp,i)  (3-2)

[T o N4,

1 1

The results of the regression analysis indicated that the
estimates for each year correction factor are significant

at the 95% level; the estimates for the Pauly block factors



TABLE 2, Sample Input for Time-Series Model
(Number of blocks = 3, Number of years = 2)

Dependent Variable Independent Variables
Total Crime Year 1 Year 2 Block 1 Block 2 Block 3

; Block 1 Cll 1 0 1 0 0

A Block 2 Col 1 0 0 1 0

R

1 Block 3 Cay 1 0 0 0 1

; Block 1 012 0 1l 1 0 0

A Block 2 Cop 0 1 0 1 0

R »

_&_ Block 3 C32 0 1l 0 0 1
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showed very little statistical significance. The last
result suggests that there was no a significant difference
in the year to year crime behavior among Pauly-blocks.
But this is not conclusive since these estimates are
based on a small number of observations. Moreover, the
t-statistic used for testing significance is based on the
assumption that the distribution of e(i,y) is normal
(0,02), which may not be valid in this case.

The estimates obtained from Equation (3-2) were
utilized in the simulation model in two ways:

1) to compute E(i,S).

Since year 5, corresponding to 1971, was the year in
in which high crime caused a Pauly block to be selected
for the Foot Patrol Project, E(i,S) is an estimate of the
normal activity expected for Pauly block i during the
selection per}od. The estimate for each block remains
constant throughout the simulation experiment, only the
random component varies from year to year.

2) to compute ;(i,y) for every year, and every Pauly block.

An estimate of ;(i,y) can be obtained from the
formula -

e(i,y) = C(i,y) - C(i,y).

The frequency distribution of e(i,y) for Pauly blocks is
then computed; the distribution serves as the basic input

for generating the variables eYi,5) - that is, the random
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crime fluctuation for each block during the selection
period, This, in turn, is used to generate an estimate
of the crime rate, denoted as C'(i,%); which determines
the crime performance of the system of Pauly blocks
during the selection year,

3.3 SAMPLE DESIGN

The motivation for using a sample of Pauly blocks rather
than the whole population of blocks was to reduce the cost
of running the computer simulation. The main expense
arises with the generation of a random number for each
Pauly block and year under study, for a large number of
runs, The total number of Pauly blocks in the city is
approximately 500,

There is another reason for limiting the number of
blocks used in the simulation experiment, Since many of
the Pauly blocks have such low mean crime rates, the
probability that they would rank among the top six Pauly
blocks for any simulation run would be close to zero,
Thus, these blocks can be safely omitted from the model due
to the fact that the artifact ratio depends.only on the
generated crime rate for the six highest -crime blocks, in
this particular application of the problém. The use of a
sample of only the topmost elements to represent an

entire population is also valid for the general situation.
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Those elements in the population with a relatively low
estimated average would be chosen for an experiment only
in rare instances in which they might experience very
abnormal behavior, Under such circumstances, there is
little harm in excluding these cases from participation
in the simulation experiment.

In view of the above discussion, the sample of
bloqks finally chosen for the experiment were the 40
blocks which ranked the highest in target crimes in
the indicated 1l0-month period of 1971, The minimal
size of the sample had to be 37 in order to insure that
those six Pauly blocks actually chosen for the project
would be included in the sample range for each of the
five years considered. A check was made for those blocks
whose crime ranked between forty-first and fiftieth
highest in 1971, The highest rank among those ten blocks
for any of the five years was twenty-fifth., Thus, these
blocks, as evidenced by their history of crime rates,
would almost certainly not be among the six highest in
crime for any simulation of 1971 crime,

for those 40 Pauly blocks chosen for the sample, various-
statistics were estimated that characterized the behavior
of the system, Figure 7 shows the overall average crime
rate for the set of sample blocks for the l0O-month periods
for each of the five years under study. The plot of this .

statistic shows a genaeral upward trend for the five years,
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FIGURE 7 Mean Crime of Sample for Each of Five Years.
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However, the last three yeurs suggest that average crime
for the sample set had reached a fairly constant level,
Figure 8 shows a plot of each Pauly block in the
sample, giving its mean, highest, and lowest crime rates
for the five year period in descending order. Those
blocks depicted with a dotted line represent the Pauly
blocks actually chosen for patrol in the project, This
graph, based on the history of crime rates, supports the
hypothesis that an artifact situation exists‘within

the system. In considering each block separately, many
of them show great variability about their own mean
crime rates. In considering the whole system of blocks,
it can be observed that those six blocks chosen for the
project were not very different from the other blocks in
the sample, as indicated by the great amount of overlap
in the crime rate ranges of the blocks. In other words,
these six blocks might well have not been chosen for
patrol if the time period on which the 'selection was to be

made was changed, Figure 9 plots the estimated crime

for each Pauly block for 1971 in descending order, and

gives a range of possible variation estimated by the
standard error of the regression model of Equation (3-1),
In this case, the estimated crime for each block is the

average number of crimes for 1971, The graph suggests that
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if the selection of the six highest blocks could actually
be repeated, a different set could be expected each time
due to the variability in the system. These results
strongly suggest that an artifact situation exists in

the system. The remaining chapters focus on simulating
the behavior of crime during the base period 1971 to
determine the magnitude of the artifact that can be
expected using this particular year as the selection

period,



-52-

4, FORMULATION OF COMPUTER PROGRAM

This chapter gives the details of the structure of the
computer simulation, bgginning with the initial conditionms
of the program and ending with the printout of the final
results. The overall logic of the program is discussed,
followed by a description of the function of each sub-
program. Flow charts are included for easy reference.

4,1 INITIAL CONDITIONS AND INPUT DATA

In this program the following input data is required
for each element of tﬁe sample congidered for the
simulation experiment: an estimated mean for the period used
in selecting a treatment group and an estimate of the
random error for each of those periods used for the
time~series model. For the specific application of the
Foot Patrol Project, the input data for each block in the
system consisted of an underlying average of crime for
1971 and a time-series of the error terms for the five
years of crime statistics available for the period prior to
implementation of patrols, To duplicate the actual
conditions of the Foot Patrol Project, during each iteration
of the simulator, after an estimate of the 1971 crime rate
was computed by the simulator for each of the 40 blocks

modeled, the six highest c¢rime blocks were.identified and

A

kAl M A e T

-53~

their estimated crime rates averaged. The number of
simulation runs (iterations) was set to 400.
4.2 GENERAL LOGIC OF THE COMPUTER SIMULATION
The simulation model was embodied in a computer
program in FORTRAN. In general, the chronology of the
program proceeds in three stages:
1) Preliminary computation
2) Simulation experiment
3) Analysis
The logical structure of the program, as defined by
these stages, is shown in Figures 10,11 and 12, A
discussion of the flow of the program within each stage

follows.

Stage 1l:

Since the random number generator in this program
utilizes the cumulative distribution of the random variable
being simulated, the time series data for each block bhas
to be converted into such a distribution, (The details of
the random number generator are given in the next section).
This involves, first constructing a frequency histogram
for the error terms. The cumulative distribution can be
calculated directly from the results of the histogram.

That is,
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\L , ' GENERATE UNIFORM RANDOM ¢
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v
ERROR TERHS GENERATE RANDOM NUMBER
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¥
FOR SELECTION PERIOD TOWPUTE ORINE RATE
(COMPUTED FROM MODEL) \
;L ' IS SAMPLE EXHAUSTED? (O
LIl
YES
FORM HISTOGRAM OF INPUT JV
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| NUMBER OF RUNS COMPLETED? |—iO
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FIGURE 11, Flow chart of Simulation Experiment.

FIGURE 10, Flow chart of Preliminary Computation,
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where Fi is the cumulative probabilify

{ : for the iEE interval,

. ' fj is the number of observations in the

jﬁﬁ interval (j<i)
CONSTRUCT FREQUENCY DISTRIBUTION . o

OF ARTIFACT STATISTIC n is the total number of observations,

\L t is the number of intervals,

The cumulative probability distribution has to be stored

FINAL ANALYSIS OF QUTPUT | as an array in the program to be used as the input for

h o3 . . " )
RESULTS AND INTERPRETATION ~each iteration of the simulation experiment

Stage 2:

Having organized the input data in the necessary

i form, the simulation experiment can now proceed., The

SToP

experiment can be described in terms of a two-stage

process., The first stagé includes those events occurring
within the system in a single unit of time - in this case,
the selection period for the Foot Patrol Project, In

more specific terms, the simulation generates crime rates

for each block in the sample for the initial l0-month period,
Using the simulated crime rates for the 40 sample blocks,

the six blocks whose rates are highest are "selected" for
foot pﬁtrol operations. The artifact ratio is then
estimated, The second stage involves a_replication of

the simulation experiment: the estimation of crime rates

S ey

FIGURE 12, for the base year, the selection of the six highest

Flow chart of Analysi
ysis Stage,
blocks and the estimation of the artifact ratio. This



process is repeated for the number of runs specified.,
Stage 3:

After the completion of the experiment, a
frequency distribution is constructed for the artifact
statistic, and the mean and standard deviation are
computed, The distribution is then used to make proba-
bilistic statements about the magnitude of the
regressionvartifact.

The next section explains the subroutines used for
storage of pertinent information, the process of
generating random variates, and the recording of

statistics concerning the performance of the system.
4.3 DATA GENERATION
4,3, Random Number Generator
The subroutine RANDN is used to generate random

numbers based on the inverse transformation method.(7)
The advantage of this method is that its flexibility
lends itself to be applied to any probability distribution,
botk theoretical and empirical, discrete and continuous.,

Since uniformly distributed random variates play a
major role in the generation of random variates drawn
from other probability distributions, the basic prerequisite
for this method is that a sequence of independent raitidom

variates, each with a uniform distribution on the interval

[0,1], can be generated, The particular source which

PATUR ST ERIE N S
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was used to generate the uniform random numbers was a
subprogram in the Scientific Subroutine Package.
The rationale for such a technique is as follows.,
Let f(x) represent the density function of the particular
statistical population for which it is desired Fo
generate réndom variates, Xg-. Let F(x) denote the cor-
responding cumulative distribution function, that is, "
the probability that a random variable X takes on the
value of x or less. For the continuous case, this can
be computed by

X

F(x) = Prob(X & x) = jﬂ F(t)dt

and for the discrete case,

F{x) = Prob (X < x) L Pg »

S

such that
Xg 2 %

\
where pg denotes the probability of the random variable
taking on the value Xg. Let u denote a uniform random

variate such that the probability density function is

1 0 < u g 1
r{u) =
' 0 Elsewhere

and the cumulative distribution is

R(u) = u 0 <u <l
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The cumulative distribution of %, F(x), also defined over
the range 0 to 1, can be used as the intermediary in the
transformation process of generating a uniform random
variaté u to the generation of the random variate x, of
the desired probability distribution. Thus, the
procedure involves generating uniformly distributed
numbers and setting F(x) = uv. At this point, one can
approach the problem in one of two ways, depending on

’

the form of F(x).

F(x)

Case I:

The following procedure can be uséd only if x is
uniquely determined by u = F(x), that is, if there v | Vo — - == = = = - - = -
exists an inverée function of x, F-l(u) (see Figure 13),
Then it follows that for any particular value of u, say
U,, it is possible to find the value of x, namely Xo,

which corresponds to it, through the inverse function ‘ A

of F, if it is known, That is, ‘ ' L
-~ 0,0 =

o
.
o
)
L. - — -

- X
X = F l(uo), °

-1 . . . s .
o n : .
where F (uo) is the inverse transformation of F, taking . Cumulative distribution
u, from the unit interval to the domain of x. function of x
This procedure was used for some of the distributions

that were involved in validating the simulation model, as

ized in Table 38 , '
summarized 1ln-lable FIGURE 13. Generation of Random Numbers from Specific

Continuous Distribution.



Generation of Random Numbers by Inverse Transformation Method.

TABLE 3.
Distribution for Corresponding Transformation Function
Generation of Density where u is uniform
Random Numbers Function random variate
- -Ax 1
Exponential £(x) = e s X = (5) log u
A>0, x>0
F(x) = (¢ 0=xsl Y2u 0<usi/2
2=-x 1l<x<2 % =
1+v/2u=1 1/2<u<]

Triangular

—zg-




However, for many probability functions it is
extremely difficult or impossible to express x in terms
of an inverse transformation, F-l(u). Thus, a more
general version of this approach must be taken, which is
particularly applicable to 1) empirically estimated
probability distributions, 2) discrete distributions,
and 3) some continuous functions with no simple inverse
transformation function and which can be approximated
by a discrete distribution,

Case II:

In this case, it'is necessary to compute numerically

the cumulative distribution for a given interval. This

may be expressed as

1 <3j<n,

I 3.5
Hh

1
Fj = T

e

i=1

where Pj is the cumulative distribution up to and including
the jEE interval, f; is the number of observations falling
in the iEE interval and n is the total number of obser-
vations., A uniform random variate ug is then generated,

and a searching process is performed to find the intervals

for which the relation

holds, Having determined the proper interval, the method
used to find %o is arbitrary, Some of the options include

using the lower interval limit or the midpoint of the jEE
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interval, For the simulation experiment in this study,
Xo Was determined by 1nterpolat1ng within the ]th
interval, as bounded by Xj and xj4] (see Figure 16), -
Since the random variable of interest assumes only
integer values, then the largest integer in Xo was
used as the variate, Moreover, the.estimated cumulative
distribution of error terms was used as the input
distribution for generating the randbm variates.‘ Then,
at the end of this subroutine, the sunm of the generated
error term and the average crime rate (estimated from
the time-series model) for the Selection period fopr
each Pauly block is computed; this sum represents the
simulated crime behavior of each Pauly block in the
sample during the Selection period.
4,3,2 Description of Record-Keeping

The following subroutines have been developed to
perform the record-keeping Process for all three stages
of the computer simulation, as discussed in the previous
section, The variable names used in these subroutlnes
are defined jinp Appendix g,

HIST SUBROUTINE

The function of this subroutine is to compute the
frequency distribution for an array of numbers. The
subroutine first determines the limits for each of the
intervals in the distribution, then takes each number of

the input array and performs a search for the appropriate

Uniform
Random
I .Numbe

“65=

F(x)
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interval in which it falls, After each number has been
placed in the correct interval, the frequency count for
this interval is updated.

This subroutine is called from the main program in
two instances: to form the frequency distribution of
the time-series of error terms at the start of the
program and the frequency distribution of the artifact
statistic computed in the simulation experiment, .For
the lattér, the distribution is stored in an array and

printed after the experiment is completed,

CMPROB SUBROUTINE

After the frequency distribution of the error terms
is determined for each Pauly block, the program proceeds
to this subroutine to compute the cumulative distribution.
Stored as an array, this distribution remains unchanged
throughout the progran.

MAXM SUBROUTINE

Following the subprogram RANDN, this subroutine ranks
the Pauly blocks in descending order by estimated crime
rate. To do this, the method involves the comparison of
two numbers, as they appeared in the original array; and
interchanging the order of the two numbers if, in fact;
the latter number was the larger, The logical check
continues until the six highest crime rates have been
placed in tﬁe proper order sequence., This subset is

stoered in an array for each run, along with the
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corresponding expected crime rate for each of the six
highest Pauly blocks.

AVERG SUBROUTINE

This subroutine computes the mean, variance and
standard deviation fﬁr a series of numbers, The subroutine
is called a number of times from the main program. It
is needed to compute the above statistics fo? the
generated crime rates of the six highest blocks and
similar statistics for the expected crime rates of
these blocks, These results are used to compute the
artifact ratio for each run, which is sto;ed in an
array, It is also used to compute the mean and
standard deviation of the distribution of the artifact
ratio at the end of the program.

4,3,3 Generation of Statistics and Final Output

The artifact ratio is computed at the end of each
run of the experiment, based on those six Pauly blocks
which have the highest generated crime rates.

et B(n) denote the set of numbers identifying the
six highest crime blocks for the n-~t--ll run, Then for the
iEE-block in this set Ci,n) represents the generated
crime rate for this run and 6(1,5) represents the estimated
norm of crime behavior for the 1971 selection period, as

determined by basic model, The artifact ratio for the
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nzh-run is computed as

A(n) = £ c¢'(i,n)
ieB(n) .
£ G(i,5)
ieB(n)

From the'identity

C'i,n) = C(i,5) + e'(i,n),

where e'(i,n) is the generated error

term for block i,

an alternative expression of the artifact ratio is

A(n) = 1 + b e'(i,n)
ieB(n)

£ E(i,s)
ieB(n)

A printout of the final results displays the frequency
distribution of this statistic for 400 runs of the
experiment, and the mean and standard deviation of this

distribution. A sample report is shown in Table 4,
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TABLE 4, Sample Output Report of Program,

Lower Interval Liﬁit Observed
Interval of Artifact Statistic Frequency
1 0.80 0
2 0.85 0
3 0.90 0
m 0,95 0
5 1.00 0
6 1,08 0
7 l1.10 2
8 1,15 '8
9 1,20 13
10 1,25 40
11 1,30 66
12 1,35 106
13 1.40 T4
1y l1.45 59
15 1,50 23
16 1,55 7
17 1,60 2
18 1.65 0
19 1.70 0
20 1,75 0
Number of Runs = 400 Mean = 1,.,3845

Standard Deviation = ,08578
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5. VALIDATION OF SIMULATION MODEL

The distribution of tﬁe average of a set of extreme
observations is a valuable tool for determining the
inflation that can be expected in using the mean of these
observations as an estimate of the population mean. For
this reason, the crux of the simulation model is to
establish a basis of confidence in the reliability of
the distribution of the avarage, which it generates, as
being representative of the population distribution,

This chapter includes two approaches used in validating
the simulation model: the order statistics results,
derived in Chapter 2, and a coin-tossing experiment,
5.1 VALIDATION OF MODEL FROM ORDER STATISTICS RESULTS

For the case of continuous probability distributions,
the order statistics results were used in validating
the simulation model in order to achieve confidence in
"its output. Tab;e § summarizes these results, for each
of three density functions and a given sample size,

These results represent the theoretical probability dis-
tributions of the average of extreme observations; the
simulation fesults represeﬁt sample probability distributions.

To evaluate the reliability of the simulation dis-

(8)

tribution, the Kolmogorov-Smirnov statistic, based on

the cumulative distribution function, has been used to



Distribution of the average of the two highest

TABLE 5,
observations for a given sample size,
Density :agge of z .
Function Y(n-1)%(n) SAMPLE SIZE
' 2
' n = 2 n = 3 n = U
Uniform 0< z<1/2 Wz 822 8z"
[0,1] 1/2¢ z51 batiz 24z-1822-6 -562°+962°-48z+8
2 =2)z

- s am s e M wn o W e

Exponential 0<z<= nzale™2A2 12zA e __.
zizaelBE L pumaellP7
-3saeT 212007000
Triangular - 0% z< 1/2 ' 8/3z3
1?2:;:} -823+1622-82+4/3 '
1£2<3/2 82°-322°+40z-414/3 RS —
3/2<2<2 -8/32°+1622-322+64/3

-‘[L.—
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compare the simulation results with the theoretical
results derived from the order statistics. Thus, if
Fn(X) denotes the sample distribution function,

- generated by the simulation, and F(X) denotes the
theoretical (or population) distribution function,
obtained from the order statistics model, the hypothesis
to be tested assumes that F(X) is the appropriate
population distribution from which Fh(X) has been
obtained,

It is the absolute difference |F_(X) - F(Xx)| that
iz used in the Kolmogorov-Smirnov test., The rationale
of the test is that if the sampling distribution, Fn(x),
differs from the expected distribution by too much, this
may serve as grounds to reject the hypothesis that F(X)
is the correct assumed distribution from which rn(x)

has been derived, The statistic then becomes

Dn(X) = max [E(X) - Fn(x)}.
all X
A test of validity was performed for each density
function used in the order statistics model: the uniform,
exponential and triangular distributions, However, due to
the limitations of these results, the simulation model
was set up to form the distributior of the average of

only the two highest observations from a certain sample

SO PSSR Y S

size, n, The distribution of the average was based on
758 observatioﬁs - that is, the number of simulation
runs - for each density function,

Figures 15, 16 and 17 display the cumulative distri-
butions from both the theoretical and simulation models
for each density function; Tables 6 , 7 and 8 ,
following the graphs, indicate the absclute deviation
between the two cumulative distributions for a given
interval, The additional columns pertain to the
Kolmogorov-Smirnov test.

In summarizing thé test results, for each density
function the null hypothesis was accepted at the 95%
confidence level, That is to say, F(X) is the population
distribution function for the sample distribution, Fn(X).

In Table 9 , the mean of the distribution of

Y(n-1) + Y(n)
2 - that is, the average of the two highest

observations for a sample size n, is given for both the

order statistics model and the simulation model, It can be

be observed that the sample mean (derived from the

simulation results) is very close to the theoretical mean.
This provides validation of the logical structure

of the simulator for these simple distributions, necessary

in order to achieve confidence in simulation reﬁults for

more complicated density functions and averages of the

set of the n highest observations when n is greater than twe,
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TABLE 6, Comparison of Simulated and Theoretical
Uniform Distributions.
Absolute Deviation
Range of |of Simulated from Maximum Test 95%
Average Theoretical Deviation | Statistic\Confidence
Distribution
L0-.1 .0113
01‘02 00106
02-03 .0260
.3-.“ .0“53
c“"os 00513
e5=,6 0640
06"07 .0660
e7-.8 .0667 >.0667 .1550
e8=,9 .0220 _
.9-1.0 .0080

Average of
! 2 highest

Uniform Cumulative Distributions - Average of . ?
Top 2 out of 3 Random Numbers, S

FIGURE 15,
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Simulated Distribution

W Theoretical Distribution
'8—0-
'6-}-
.udn |
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;Ji?%g
o U Greater than
2.8
FIGURE 16, {

Exponential Cumulative Distributions (A = 1)
_Avepage of Top 2 out of 3 Random Numbers,
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TABLE 7, Comparison of Simulated and Theoretical
Exponential Distributions,

Absolute Deviation

Range of of Simulated from Maximum Test 95%
Average Theoretical Deviation Statistic|Confidence
: Distribution

«0=,4 «0152

U=,8 .0u70

«8=1,2 «0297
102-1,06 .lllu
1,6-2,0 .1319 > .1319 .1550
2,0=-2,4 «0232
2.4-2,8 .0281
Greater
than 2.8 «0000
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Table 9+ Mean of Distribution of Y(n=-1) + Y(n)

2

. . . Simulation Order Statistics
Distribution Model Model
Uniform [0,1] .588 .625

(top 2 out of 3)

Exponential 1.482 1.333

A= 1 ‘ ;

(top 2 out of 3)

Triangular 1,008 .968

(top 2 out of 3)

5,2 COIN-TOSSING EXPERIMENT
Since the order statistics model, as derived in
Chapter 2, is not applicable to discrete random variables,
a coin-tossing experiment was used as a means of
validating the simulation results for the binomial distri-
bution, The experiment proceeded in the following»manner:
1) Toss five identical coins simultaneously.
2) Record the number of heads obtained (the maximum
being five heads).
3) Repeat steps 1-2 for a total of five times,
4) Ch&ose three out of the five tosses which have
the highest number of heads.
5) Average the number of heads from the top three
tosses obtained in Step 4.
6) Repeat steps 1-5 for 75 runs,
7) Construct a histogram for the distribution of
the average (of the highest three tosses for
each triai).
A similar procedure was followed for the simulation
experiment. Five random numbers were generated from the

binomial distribution,
P(X = x) = (:) pq" 7%

wvhere X i3 the number of heads obtained in one trial. 1In

~order to rebroduce the initial conditions of the coin-

tossing experiment, the sample size, n, was set equal to
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the number of coins tossed and p(the probability of
getting a head on a single toss) was set to +5, assuming
the coins to be unbiased, Thus, the binomial probability

function for the simulation experiment was

P = () () -

The three highest tosses of heads out of five were then
averaged, and this was also repeated for 75 trials,

The frequency distribution of this average was then
tabulated,

In comparing the distributions of the average
obtained from each eXperiment, it is necessary to test
the hypothesis that these two distributions were
obtained from the same population distribution., Fop
this case, the two-sample Kolmogorov-Smirnov test must
be used, |

Although random sampling fluctuations can introduce
a difference in the two sample distributions even if
the samples are from the 8Same population distribution,
it is a large discrepancy between the sample distribution
functions that serves 4s a reasonable basis to reject
the null hypothesis of the test,

A comparison of the cumulative distributions is
shown in Figure 18, and the deviation between the two

distributions for each interval is given in Table 10 which
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FIGURE 18, Sample Cumulative Distributions: Binomial (p=.5),
Average of top 3 out of 5 Random Numbers.



TABLE 10, Comparison of 2 Sample Binomial Distributions,

Kbsolute Deviation
Range of of Simulated from Maximum Test. . 95% .
Average Coin Experiment Deviation Statisticl{Confidence
Distribution

0.-1. .0000

l.~-2, «01u45

2.,-3, 0400 0400 «1550

J.-4, »0000

4,-5, .0000

R e R S
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follows. Since the maximum deviation between the two
cumulative distributions is less than the critical value
at the 95% confidence level, the hypothesis that the

two sample distributions were derived from the same
population distribution is accepted,

In this case, the population of the two samples is
assumed to be binomial. Theoretically speaking, the
coin can be categorized as a binomial experiment. To
verify this, a Chi-Square goodness of fit test was
used to determine how good the sampling distribution
from the coin-tossing experiment approximates the
population distribution. The Chi~Square statistic for
the test was 5,7; for five degrees of freedom at the
95% confidence level, the critical value is 11.1.

Thus, the hypothesis that the coin experiment has a
binomial distribution can be accepted,

From the results of the foregoing tests (Chi-Square
and Kolmogorov-Smirnov), one can conclude that the

distribution of Y(n-1) + Y(n) , as generated by the
2

simulation model, is also representative of the true

(or thecretical) distribution.

Finally, the means for each of the sample distri-

butions of Y(n-l) + Y(n) were as follows:
2




ity
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Simulation experiment: 3.09

Coin~tossing experiment: 3,13

These results validate the use of the simulation model
f&r processes involving discrete»réndom variables, This
is a particularly useful capability, since in many real-
life experiments the related probability density
functions are unknown and empirical estimates in the
form of histograms must be used, thereby representing a

continuous phenomenon with a discrete approximation.
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6, SIMULATION EXPERIMENT AND RESULTS

The simulation experiment was run a number of times,
computing the probability distribution of the artifact

ratio and its expected value., These results were the

‘measures used to reflect the crime performance of the

system of Pauly blocks, This was done for three different
experiments, in which the input data had been modified.
A descriftion of these experiments and their results are
presented in this chapter, Since conclusions based on
results of the simulation runs depend on the validity of
the assumptions made in this study, some of these have
been tested at the end of the chapter, along with
suggestions for validating them. |

6,1 SIMULATION EXPERIMENT

Crime rates during the l0-month selection period
January to October 1971 for the Foot Patrol Project were
simulated for a set of 40 Pauly blocks. The purpose of
the simulation was to study the variability in the crime
rates in sach block and how this would effect this
selection of high crime blocks for foot patroel., The
simulator provided estimates of the results which could
be expected if this selection process were replicatgd
many times, The magnitude of the regression artifact
for the set of highest blocks for the selection period
depends on the deviation of the simulated crime rates

for the set from its estimated normal crime behavior, In
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repeating the selection process, the magnituvie of the
regression artifact itself would be expected‘to change and,
therefore,.must be considered a random variable, for which a
probability distribution may be estimated on the basis of
400 iterations of the simulation experiment, Thus, the
crime performance of the system‘of Pauly blocks can be
evaluated in terms of the magnitude of the estimated artifact
for each run of the simulator, and the probability of getting
this bias. |

Three réplications of the experiment, using an estimate
of the expected crime rates for each Pauly block for the
selection period and the distribution of error terms as the
input data, were made., Each experiment used a different
random number seed for the program's random number generator.
The average of these results in terms of the probability
distribution of the artifact rates was used as the final
distribution for any analysis.

Other experiments were made with the input data
modified., The basic time series model used to estimate
the error terms for each block for the input data, was
assumed to be a linear, additive model, However, this
model will actually overestimate the error terms, and
therefore, overestimate the artifact ratio,.if there is
another model that is a "better fit" for the crime data." :
"Better fit", in this case, refers to a smaller sum of

squares of unexplained variation about the regresson line

g
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or curve, To allow for such a possibility, a sensitivity
analysis of the output results of the artifact ratio was
performed by reducing the series of error terms by a
constant fraction, Two additional experiments of this
nature were made, with the error terms reduced to 1l/2
and 3/4 of their original size. Three runs were also
made for each of these experiments, starting with a
different sea2d each time, The results of each experiment
are presented in the next section; moreover, a graphic
representation of each experiment displays the findings
of the sensitivity analysis,
6;2 OUTPUT RESULTS OF SIMULATION EXPERIMENT
Before presenting the results for each simulation
experiment, it is necessary to point out that the
particular results obtained are dependent on three
major factors: |
1) the validity of the assumptions on which the time
series model was based,
2) the size of the treatment group for the experiment,
3) the size of the population from which the treatment
group is selected. |
Thus, caution must be taken in using these results to make
any generalizations about the nature of the‘regreésioq
artifact in other situations, Each experiment must be
treated separately within its own setting, However, it is
the approach to evaluate this artifact which may be applied

to other cases,
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The results for each experiment are presented in
the form of a cumulative probability distribution in
Table ‘11, 1In using the cumulative distribution, pro-
babilistic statements can be made about the occurrence
of a selection bias, measured by the artifact ratio,
of any given size, That is, let A, denote the "before"
artifact ratio, based on actual crime rates and estimated
mean crime rates for those six Pauly blocks chosen for
the project in 1971, The chances of getting an artifact
at least as large as Ay can then be determined. This
also gives an indicatién of the crime performance of
the system of Pauly blocks, if it could be observed for
a large number of Y"selection" periodsQ

For the Foot Patrol Project, the base period, used to
select blocks for patrol, was January to October 1971.
If B denotes the indices of set of the six highest
crime Pauly blocks, chosen for patrol in the project,

then the artifact measure, Iin this case, is

z c(i,5)
ieB
AO = ~
X c(i,s)
ieB

where C(i,5) represents the actual crime rate and C(i,5)
represents the estimated mean crime rate for the selection

period for each of the six Pauly blocks chosen for the



TABLE 11, Output Results of Simulation Experiments.
Range of FREQUENCY DISTRIBUTION - CUMULATIVE DISTRIBUTION 1
Artifact Ratio|Experiment 1 | Experiment 2 |Experiment 34 Experiment 1 |Experiment 2 Experiment?
©1,00-1.05 0 0 1 0.000 0.000 0.003
1,05-1,10 0 0 i 43 0.000 0.000 0.025
1.10-1,15 2 3 E 201 0,005 0.008 0,350
, 1,15-1,20 5 30 | 137 0.018 0.080 0.860
i 1.20~1,25 17 105 | 18 0.060 0.350 1.000
b 1.,25-1,30 40 160 0 0.160 0.750 -
g 1.30-1,35 67 87 0 0.330 0,960 -
I 1,35=1,40 95 14 0 0.580 0.990 -
; 1.40-1,45 78 1 0 0,740 1,000 -
g 1.,45-1,50 55 0 0 0.900 - -
! 1.50~1,55 30 0 0 0,970 _— -~
| 1.55-1.60 0 0 0.990 -- --
: 1,60-1,65 0 0 1.000 -- --
1.65-1,70 0 0 - -- -
! Mean Standard 1.388 l.258 l.141
‘ Deviation 0.0842 0,0478 0,0336

Experiment 1:
Experiment 2:

Experiment 3:

3/4 e(i,j)

1/2 e(i,])

e(i,j) - original input data

-Ts—
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prcject. This ratio was computed to be ;.27. The
likelihood of this selection bias is given in Table 12,
A graphical representation of this table is shown in
Figure 19, in which the cumulative distribution is
approximated as a continuous function. The height of
the shaded section to the left of A, denotes the
probability of getting a bias less than 1.27; the height
of the shaded section to the right denotes the proba~
bility of getting a bias of 1,27 or greater. As can be
observed ffom these graphs, the chances of getting a
selection bias greater‘than 1.27 quickly diminishes as
the variability of random fluctuations in crime within
each block is reduced in magnitude,

With the unscaled error terms estimated from the
original data in experiment 1, the distribution function
indicates that 78 out of )00 times, or selection periods,
the artifact ratio will be at least 1,27. This indicates
that for the six blocks chosen for patrol in the Foot
Patrol Project, it is highly probable that the reduction
in the target crime in the subsequent time period,
comparable to the selection period in terms of duration
and season, will be at least 27%,due to the selection

process,

e —
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TABLE 12. Probability Statements about
Ratio for Each Experiment,
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the Artifact

Prob(A<l.%7) Prob(A>1,27)
Experiment 1 «22 . .78 |
Experiment 2 .83 .17
Experiment 3 1.00 0.90
Experiment 1l: e(i,j) - original data
Experiment 2: 3/4 e(i,j)
Experiment 3: 1/2 e(i,])
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Probability The average artifact for each experiment has been shown
1,04 . P in Table 11, The 1,39 average for experiment 1 indicates
Experiment 1 !
« Bdam j that an inflation of 39% above the normal crime totals can
'
6 i be expected in the selection period for those six blocks
" chosen, considering the manner in which they were selected,
2 A I\ The other two experiments suggest that the expected
® L - - e 7
' ' : bias is a function of the magnitude of the random crime
VA
fluctuations in each block, Figure 20 shows a graphical
representation of these results,
l o O Sl , . .2 :, 'v‘.‘ N -. <
Ll U gWAT % _Experiment 2 Finally, as presented in Table 11, the artifact ratio
-
for each of the three experiments was never less than one.
B - memm— e s This indicates that those six Pauly blocks chosen for
ol ' . .
' L” treatment were always above their normal ¢rime totals,
‘2‘V' Since the crime behavior of the blocks in the sea:ple is
YAYAYAE not significantly different, the tendency to select those
4 ' '
blocks with a positive error - that is, above their
. N normal crime rates - can be expected,
Experiment 3
.8 = 6.3 BASIC ASSUMPTIONS
W6 L This section presents some of the basic assumptions on
which the study is based, and suggests means of
o L oo
validating them.
2 fm
\ Asgumption:
FAVAVAY { - ' . -
' Artifact 3 , . ] )
1,6 Ratio : The model used to estimate the error terms, e(i,j),

was assumed to be a linear, additive function of trend
FIGURE 19, Cumulative Distribution for Each Experiment

Showing the Probabilities Relating to a : factors for each year and block factors for each Pauly
Change as Large as that Observed in the :

Foot Patrol Project.

i

|-
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Mean
Artifact
Ratio
2
M
T
1 } R |
1 | ' S
1 2 3

Experiment 1: e(i,j)
Experiment 2: 3/u4 e(i,j)
Experiment 3: 1/2 e(i,3)

FIGURE 20. Plot of the Results of Each Experiment in
Terms of the Mean Artifact Ratio.

Experiment #

block in the sample, To verify this assumption, it is
necessary to measure how well any part of the model
contributes to its ability to explain the observations.
Tests of significance may be used for this kind of
analysis, testing whether the parameter estimates of the
model are significantly different from zero, If they
are not, then the related factor is not a useful part of
the model,

Assumption:

The use of uniform trend factors for all Pauly blocks
assumes that the time trends in crime are uniform for
all the blocks. The small number of observations for
each Pauly block (i.e., five years of data) does rnot
permit vérification of the assumption at any reasonable
level of significance, However, to determine significant
differences, the "F to remove" statistic for the trend
terms in the regression model indicates how well they
contribute to explaining the variance. If trend varies
widely from block to block, this statistic will be small
and indicate low significance for trend factor estimates,

To minimize the variance of error in this model, the
use of uniform trend factors for all Pauly blocks can be
slightly modified to differentiate between those blocks
with an upward trend and those with a downward trend in

crime, This would involve plotting the crime for each of



the #0 blocks individually for the five years and then
through a scanning process of these plots, separate the
blocks into two groups, according to an increasing ox»
decreasing trend in crime, The use of two time series
models - each with a uniform frend factor for its group =
may reduce some of the unexplained variation in the single
model uséd for all Pauly blocks, Another possibility is
to just screen out those blocks with decreasing crime
rates from the sample of the 40 highest blocks, since
their expected, or normal, crime behavior was at an

8l) time low during the selection period, Under such
circumstances it would be difficult for these blocks to
compete for the experimental treatment with other blocks
whose normal crime rates have, on the other hand, reached
a peak during the selection period

Assumption:

When using data on the number of reported crimes, as
opposed to the actual number of crimes for each Pauly
block, two assumptions are being made, First, it {is
assumed that the reporting rate for each block does not
change over time, Second, it is assumed that reporting
rates do not differ among the blocks. Thus, changes in
reporting rates as a function of time and geography could

be a contributing factor in the erratic behavior of the

RS e o e S
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system of Pauly blocks, To
on crime victimizations and
each block for the years of
high cost of obtaining this

prevented its collection by

test these assumptions, data
crime reporting rates in
interest are required, The
type of information has

criminal justice agencies,
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7. CONCLUSIONS

Regression arfifact is an unavoidable problem in
the evaluation of experimental programs which are designed
to select a sample of clients or areas from the population
for treétment, based on performance during a given period
prior tq the experiment, Ignoring the artifact situation
in a comparison of the "before and after" performance of
the treatment group may inflate the effectiveness mea-
sure used to evaluate the program, In view of this
problem, the objective'of this project was to develoﬁ
analytical techniques for estimating the magnitude of
the artifact, anq consequently, for determining a more
accurate measure of the effectiveness of such programs,
For simple cases, the use of order statistics provides
a theoretical approach to the artifact problem. For more
complex situations, a computer simulation was developed.

A computer program was constructed to simulate the
process of selecting for treatment those elements in the
population which exhibit the poorest performance during a
specified pericd., To satisfy the specifications of the
simulator, estimates of the expected performance during

the selection period and the distribution of random

performance variations for each element in the population

are necessary. A time series model may be used to estimate
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the above factors., For each run of the experiment, a
measure of the artifact, based on the performance of
the group selected for treatment, is computed. The
output results of the experiment provide a probability
distribution of the artifact measure, and its expected
value, using the time series model, and a random number
generator for the irregular fluctuations. In determining
the reliability of these results, the order statistics
techniques were used for validating the computer model
for simple cases involving continuous probability
distribution functions. A coin~tossing experiment was
used for validation of the simulation model for discrete
probability distribution functions. |
Use of the analytic techniques to study an actual
evaluation situation, the St, Louis Police Foot Patrol
Project, illustrates by way'of a specific examplé that
the regression artifact is almost certainly responsible
for some of the apparent crime reductions attributed to
the project, Based on the simulation results for this
project, it can be concluded that the mere comparison of
a "before" measure to an "after" measure may not always

be a true indication of the effectiveness of a program,
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APPENDIX 8.1

Names of Variables Used in Computer Program

Input Variables

XINT (1) lower bound on first class
interval of histogram
NINT number of class intervals
) , WIDTH width of each class interval
LINT number of class limits (i.e.,
NINT + 1) y-
NRUNS number of runs of each

simulation experiment

. M number of highest Pauly blocks
* in experimental set
. e LB total number of Pauly blocks
APPENDIX in sample
LT number of unit time intervals
CRIME (I, J) number of crimes for izh
Pauly block, jER time interval
P(I) estimated mean crime for 1971
for Pauly block i
Variables Determined by Program
fo th
XINT(K) lower class limit for k—
interval
. ; th .,
F(K) frequency within k— interval
+ of histogram
, \ CPROB(I, K) : cumulative probability up to

kIR interval for ilh Pauly block

X uniform random number generated



RANDN(I)

SMALL

SUMD2

AMEAN

VAR

STDV

STAT(N)
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APPENDIX 8.1

“"{continued)

random error term generated
by use of cumulative distri-
bution for iftl Pauly block;
also represents pgenerated
crime rate for iR Pauly
block

smallest of two random
numbers being compared

sum of squares for series
of numbers

average of series of
numbers

variance of series of numbers

standard deviation of series
of numbers

artifact ratio for nEE run

ATt

10'

11,

12.

13.

14.
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