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CONTROL OF REGRESSION ARTIFACT ERROR IN EVALUATING 

THE EFFECTIVENESS OF CRIME REDUCTION PROGRAMS 

by 

Denise Corcoran, M.S., and Nelson B. Heller, Ph.d. 

ABSTRACT 

A common method of evaluating the results of social programs 

designed to all~viate specific problems involves a "before and after" 

comparison of the performance of the treatment group. (Le., clients, 

or geographic areas being served). When the selection of the treat­

ment group depends on prior performance (eg., high crime, low I.Q., 

etc.) rather than on a random scheme, this type of evaluation may 

produce erroneously inflated results in favor of the project's impact, 

by overestimating the "before" levels. This study presents analytical 

techniques for estimating the magnitude of this bias, called regression 

artifact. These techniques were used to analyze the results of the . 

St. Louis High Impact Anti-Crime Program's Foot Patrol Project, which 

was implemented in 1972 in the highest crime areas in the city. 
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PREFACE 

Considerable attention has recently been focused on the need to evaluate 

government programs, particularly those aimed at correcting social problems. 

In the field of law enforcement and criminal justice, Congress has specifically 

directed the Law Enforcement Assistance Administration, through the Safe Streets 

Act of 1973, to examine its own and local projects to find out "what works and 

what doesn't work". Although many criminal justice practitioners and researchers 

are eager to r~spond, the art of evaluating crime control programs is still very 

much in its infancy, and pitfalls abound, likely to mislead even the most well­

intentioned evaluators. This study is an examination of one such pitfall, called 

the "regression artifact", which presents itself in the very common situation 

in which project treatment resources are administered only to those clients 

or geographic areas most in need of service. For example, intensive police 

patrols are usually deployed to high crime areas where the need for crime 

reduction appears most acute. 

Scientists who can i-Brform experiments in laboratories are careful to 

establish controlled conditions which permit rigorous interpretation of the 

results. Social and political scientists, however, can rarely control the 

experimental programs with whose evaluations they are charged. Crime 

control programs are implanted in political and social enviroments far from 

the tranquility of the research laboratory. While the laboratory scientist can 

withhold treatment from a "control" group of the population under study, moral 

and political considerations often mak e the establishment of similar control 

groups for criminal justice programs impractical or impossible. Is it fair 

to withhold police patrols from some high crime areas while intensifying them 

" 
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in others? Should some seriously delinquent juveniles be left untreated when 

others are receiving the benefits of new programs? 

When treatment programs serve only those persons or areas most in need 

of service, it is common practice to use a comparison of the treated group's 

performance be~ore and after treatment as the basic evaluative index. If crime 

and recidivism rates, and the other measures of effectiveness employed in 

evaluating criminal justice programs, were not frequently erratic and subject 

to apparently random fluctuations, then this sort of straightforward before -after 

comparisons could be quite reliable. However, the random nature of these variableE 

introduces a form of estimation error which is rather subtle and has been overlookec 

in an alarmingly high proportion of evaluative studies, although its magnitude can 

be substantial. This, of course, is the regression artifact, the subject of this 

study. 

Without going into a full discussion of the mechanism responsible for this type 

of error, since it is covered thoroughly on the following pages, the nature of the 

problem can be illustrated rather dramatically by considering a simple coin 

tossing experiment. 

Imagine a room in which 20 individuals are each given a perfectly fair coin to 

toss, that is, a coin which has been tested to verify that a head is as likely to 

come up as a tail on any toss. Also, imagine that a "coin fairness" program has 

been instituted by the U. S. Treasury Department to identify and correct any 

coins which are not fair, and that a program staff person has been assigned to 

deal with "problem" coins in the aforementioned room. Further, because of the 

usual time pressures and paucity of available data, the staff person is not aware 

that all the coins in question are perfectly fair. Consequently, his first activity 

is to "test" all coins in the room by having each individual toss his coin ten times 
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and report the number of heads observed. Since five heads would be expected on 

the average from fair coins, the coins in the room are then ranked according to This simple example points out that the process used to select members of a 

the absolute difference between the number of heads observed and five. Clearly, population for treatment may cause a program to look good when program services 

those with the greatest differences are most in need of "fairness correction." actually have no effect whatsoever on the treated population. Of course, in the 

Unfortunately, sufficient funds are available to treat only six of the twenty world of crime reduction programs, the populations treated will not be composed 

coins, so the highest ranked coins are Singled out for treatment. Belug of members whose needs for treatment are equally great. Some members will 

a careful evaluator, the staff person carefully notes the performance observed al\vays be seriously in need of services while others will not. Because of random 

for each of these six coins before treatment, and computes the average difference fluctuations in the performance measures, however, is is never possible to 

as an index of the "coin unfairness" observed prior to treatment. Next, the discriminate with certainty between members true1y in need of service and those 

six coins are carefully "treated" and then retested by having them each tossed an whose performance exhibited exceptional need on the pretest due to random 

additional ten times. Encouragingly, the average number of heads observed Is variation. Consequently, following treatment, some members will rev:ert to 

found to be much closer to five per coin, and a computation of the before-to~after their normal levels of performance (a change which would have occurred without 

improvement ratio proudly indicates the effectiveness of the treatment progroam. any treatment at all), while other members may make meaningful improvements 

Is this a completely lidiculous analog to real-world crime control program as a result of treatment. The net effect is that before -after evaluation methods, 

evaluation? After all, all coins were in fact perfectly fair, and those observed unless carefully controlled for regression artifact, may erroneously indicate 

originally as having been "unfair" in the pretest were actually behaving cons:Lstently inflated success levels, even for programs having no effect whatsoever. 

with their fairness-- when the .probability of tossing a head is 0.5, the average number In the study presented here a fuller description of the regression artifact 

of heads in ten tosses will be five, but not every set of ten tosses will yield exactly five phenomenon and a method for estimating the magnitude of artifact related error 

heads (in fact, the chances are only about 25 per cent that exactly five will be observed). are given. The study was conducted as a component of the Impact Evaluation Program 

Therefore, it is entirely likely that for at least six of the twenty coins the number of heads established by the Missouri Law Enforcement Assistance Council - Region 5 to 

observed wql be significantly different from five per coin. Of course, when these six coins evaluate projects funded by the St. Louis High Impact Anti -Crime Program. Co-

are retossed, assuIl1:ing the "fairness treatment" has not in fact made them less fair, author Denise Corcoran analyzed the results of the study for ber Master of Science 

the expected number of heads will still be five per coin and the chances that all six thesis, submitted to the Department of Computer Science at Washington University. 

will again behave as divergently as they did on the pretest are qulte small. In other Co -author NelsoIl Heller served thedual roles of Director of Program Evaluation 

words, the treatment program will appear to have "corrected" the fairness of the coins for the St. Louis I~pact Program, and thesis adviser (he is an Affiliate Professor 

when in fact they were perfectly fair from the start. of the Department of Computer Science at Washington University). The following 
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report is t~ken almost entirely from Ms. Corcoran's thesis. 

Nelson B. Heller 
St. Louis I June 1974 

I I, 
JJ 
11 ,J 

CONTROL OF REGRESSION ARTIFACT 

ERROR IN EVALUATING THE EFFECTIVENESS 

OF CRIME REDUCTION PROGRAHS 

1. FORMULATION OF THE PROBLEM 

1.1 SCOPE OF THE PROBLEM 

As one component of St. Louis' High Impact Anti-C~ime 

Program, the Foot Patrol Project was designed and implemented 

to determine the crime reduction effect of intensive 

police foot patrols in high crime areas. The project's 

primary objective was to decrease the number of robberies 

and burglaries in the areas patrolled by providing a con-

centrated police presence in the form of foot patrolmen. 

The process for selecting the experimental group of 
. . 

blocks for the project involved identifying the s~x 

reporting areas (called "Pauly" blocks in St. Louis) 

within the city that ranked highest in crime for the 

specific target crimes considered. The ranking procedure 

was based on the lO-month crime totals for the period 

*The numbers in parentheses in the t~xt indicate references 
in the Bibliography. 
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from January to October of 1971. The project was implemented 

in July 1972, and was evaluated for its effectiveness for 

the period ending December 1972.Figure 1 displays graphically 

the above details. The statistics from the experimental 

period indicated a reduction of the target crimes in these 

six Pauly blocks. This leads to an important question: 

How effective was the project in meeting its objectives? 

This is just one example of the following general type 

of analysis used in social experimentation: collect 

observations which measure a characteristic of the pop~­

lation considered, choose an extreme subg~oup for treatment, 

collect data on this subgroup after the treatment. To 

determine the effectiveness of the treatment, a common 

approach is to measure the net change of the subgroup 

before and after the treatment. The problem with this 

typ.e of "before-and-after" analysis is that, in most cases, 

some of the change in the observations may be due to 

source$ other then those controlled by the experiment. 

Thus, one purpose of this study was to examine the 

erratic behavior in crime rates before the Foot Patrol 

Project went into existence. It is only in this per­

spective that a true measure of the effectiveness of the 

project can be determined. Although the major p~rt of 
this study revolves around this specific application, the 

basic analytical techniques can be used for other similar 

experimental situations. 
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The core of this research effort was mainly con­

cerned with two aspects of the project: 

1) the design of the experiment 

2) the method of evaluating the program after its 

implementation. 

In discussing the design of an experiment in 

general terms, a bias may result from the process of 

selecting a particular extreme group to which a remedial 

treatment is administered. Relating this to the Foot 

Patrol Project, the underlying assumption in the design 

of this program was that the six Pauly blocks actually 

chosen were, in fact, the six highest crime areas in 

the city, for the period in which they were selected. 

However, the erratic behavior of crime within the 

population of Pauly blocks may actually have produced a 

selection bias. But the problem does not end here. 

In the actual evaluation of the project, it was 

assumed that any significant reduction in the overall 

crime total for the six Pauly blocks, from that for the 

base period in which they were chosen, would be sufficient 

evidence of the successful impact of the project. 

However, ~ince the group of Pauly blocks may have been 

chosen at-an exceptionally high point in the histories of 

their own crime l"ates, caused by unusucllly large "l"andom" 

.crime incl"eases, the absence of another l"andom increase 

• 
~---------- -------------~ - - -
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may well reduce the magnitude of cl"ime in the subsequent 

"after" time pel"iod to a more normal level, regardless 

of the existence of the Foot Patrol Project. Thus, an 

abnormal pel"iod of crime in the six foot-patrolled 

Pauly blocks may have coincided with the pel"iod in 

which they ranked the highest among all the Pauly blocks. 

Thus, this study will attempt to evaluate the 

undel"lying random process which affects both the whole 

population of Pauly blocks and each individual Pauly block 

within the population simultaneously. 

The remaining sections in this chapter include the 

following topics: a general discussion of the problem 

of "regression al"tifact", as encountered in evaluative 

research; previous research concerning this problem; 

and a general formulation of the problem as it relates 

to the evaluation of social programs. Chapter 2 presents a 

theoretical approach to this artifact problem using order 

statistics, for those cases in which certain simplifying 

assumptions of the model are valid. Chapters 3 and 4 

discuss the design of a simulation model and the general 

logic of the computer program written to carry out the 

simulation. Chapter 5 describes the procedures used to 

validate the computer model in order to justify its use 

in situations too complex to be solved using order 
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statistics techniques. Chapter 6 presents the results 

of the simulation experiment, which replicates the 

selection process for the six highest Pauly blocks, 

based on generated crime rates, for a given number of 

runs. Finally, a summary of this paper with conclusive 

remarks about the results of the simulation experiment 

are presented in Chapter 7. 

1.2 REGRESSION ARTIFACTS - WHAT ARE THEY? 

One of the most pervasive phenomena in the study of 

change has been coined lIregression artifact."'" It is 

the natural tendency for those subjects selected as 

most deviant on an initial measure to average nearer to 

the mean on a second measurement. Since this so-called 

regression is a situation to be found in real life, it is 

important to understand why it occurs, so as to avoid 

misinterpreting any causal inferences. 

All measures contain some component of "error" - to a 

greater degree for measures of behavioral characteristics 

than for those of physical prqperties. Thus, it is 

possible that those initially high on a measure are 

there Partly because chance errors favored them on the 

day they were examined~ Similarly, those low on an 

initial measure fell down because chance errors worked to 

*Also called regression fallacy or regression effect. 
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their disadvantage on this testing. Since it is 

atypical that chance hits in the same manner on two 

successive occasions, it is a stochastic expectation 

that both those originally high and those originally 

low would regress toward the mean. 

For experimental work, the regression phenomenon 

becomes important if subjects are selected bacause of 

their extreme scores on some variable, which is to be 

measured after a certain treatment has been administered 

to the group. Whenever a group is chosen fo~ treatment 

because they were high on an initial measure, the 

effect of the treatment may, in part, be counteracted 

by the regression effect. Moreover, when a group is 

chosen because they were low on an initial measure, 

at least some of their gain on a subsequent measure 

may be attributed to the rival hypothesis of regression 

effects. A familiar example of this situation deals 

with I.Q. scores. Frequently, those children who 

score the lowest on an I.Q. test are selected for 

remedial training. After some time they are again 

tested, resulting in an improvement in their I.Q. scores. 

However, since the scores would be expected to rise 

anyway due to regression, the contribution of the 

training program is unknown. The regression effects are 
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created partly by chance factors in the testing 

situation, by' measurement error, and by other temporary 

influences, all of which had worked to the disadvantage 

of these subjects on an initial test. 

However, it is necessary to point out that a 

regression artifact is not always encountered with 

extreme scores. For the situation in which a group 

is originally chosen by a random process, but yet 

turn out to have an extreme mean, regression effects 

may be prevented. But for a group selected because 

of an extreme variable, we can expect the mean of 

this group to regress toward the mean of the 

population from which it was selected. 

1.3 PREVIOUS RESEARCH 

Th e phras e "1.~egres s ion art if a ct" appears to have 

taken its name from F. Galton's observation that "the 

progeny of all exceptional individuals tends to regress 

towards mediocrity:~l) That is, Galton thought the 

heights of people were becoming more uniform because 

the sons of the tallest fathers and of the shortest 

fathers were closer to the average tha~ the fathers 

had been. Later on, Galton realized. the fallacy in 

his own findings, due to the fact that he was simply 

looking at selected members of the population {sons 

of the tallest and shortest fathers}. In his paper, 

-9-

"Regression toward Mediocrity in Hereditary Stature", he 

recognized that not only did exceptional parents have 

offspring more mediocre than themselves, but also 

exceptional offspring came from parentage more mediocre 

(2 ) than they. Thus, in an era in which the average 

stature does not change, the heights of sons of tall 

fathers average shorter than their fathers, but the 

heights of fathers of tall sons average shorter than 

their sons. 

Although the regression phenomenon has been 

known for more than a half century, such results were 

not used until some time later in interpreting scores 

obtained in mental and educational tests. Robert 

Thorndike, involved in educational experimentation, 

pointed out the importance of the reliability of a test 

when one is using the obtained score on a test as an 

estimate of the student's "true tl score. He considered 

a highly reliable test one which yields a high correlation 

between obtained scores with the corresponding true 

scores. The formula that Thorndike used to estimate the 

true score was 

X =rX b • d' true 0 ta~ne 

where the lefthand sid~ denotes the true score as a 

deviation from the mean of the group being measured, and 
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the right side equals the reliability coefficient, 

assumed to be a certain value, times the obtained 

score expressed as a deviation from the mean of the 

group. Thorndike emphasized that it is the true 

scores from an initial test, not the obtained scores, 

which must be used as the basis to match those groups 

to be compared on subsequent tests. However, throughout 

the discussion, Thorndike does not attempt to define 

what he means by a student's "true" score. Moreover, 

he fails to mention how to compute the reliability 

coefficient that he uses in his formula. 

Further development was made by Frederic M. Lord 

it), regard to educational testing. In "Measurement of 

Growth", he derives a regression formula to estimate 

the student's true gain between successive tests, as 

based on his observed initial and final scores.(3) 

However, such a method is based on the assumption that 

initial and final tests are of "identical or equated 

forms". In a follow-up paper, he discusses some of 

the basic controversial measurement problems.(4) 

The most co~mom problem deals with a frequent 

attempt made by educators to compare the magnitude of 

a gain in the score of a good student to that of a' 

poor student on a retest. Since it is highly probable 

that one would observ~ smaller gains for higher initial 

-11-

scores, such an occurence might lead to the erroneous 

conclusion that the good students are actually learning 

less than the poor students. As Lord points out, the 

flaw in this type of evaluation is that a comparison 

of the gain of two individuals cannot be made unless 

they start at exactly the same point on the score scale. 

For to compare gains of people at different parts of the 

score scale is to imply that the magnitude of a gain 

from different points on the score scale may be treated 

in terms of "equal" units. This would be ·a subject 

for serious debate. 

Since very little of the experimental and evaluative 

research work in the social psychological sciences are 

subject to controlled observation, regression effects 
--

must not be ignored as a possible explanation for many 

test results. However, a survey of the literature 

indicates that at the present time there has been no 

rigorous attempt to measure the magnitude of the 

artifact, but merely a recognition that the problem exists. 

1.4 GENERAL APPROACH TO THE PROBLEM OF REGRESSION 

ARTIFACT IN EVALUATIVE RESEARCH 

The artifact problem encountered in the evaluation of 

experimental social programs may lead to erroneous con-

clusions about the outcome of a program if the clients or 
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areas served by it are chosen on the basis of their poor 

performance or exceptional need during the period pre­

ceding impiementation, as opposed to some kind of 

randomized selection procedure. The most common 

measure of effectiveness of such programs involves a 

flbefore and after" comparison of the behavior of the 

experimental, or treated group - that is, 

Effectiveness = Performance measured before experiment 
Performance measured after experiment 

Any change in performance is attributed to the program. 

The extent to which this type of measure is inflated by 

the artifact depends on the random or irregular behavior 

of the performance measure for the experimental group 

and the population from which it is selected. Therefore, 

a more accurate estimate of the effectiveness is given by 

the overall change in effectiveness minus an estim~te of 

the artifact. 

To measure the magnitude of the artifact requires 

knowledge of the following: the size of the popUlation 

(i.e., clients or areas), the size of the experimental or 

treated group, and a measure of both the regular behavior 

and the irregular, or random, variability of the per-

• 

formance measure for the population. Since most experiments 

are performed in a time setting, an estimate of the expected 

performance and random error component can be computed using 

a time series model. Each estimate is used in determining 
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the artifact: the expected performance represents a 

measure 6f normal behavior and the error component 

represents a measure of erratic behavior. Although 

there is no set way to compute these estimates for a 

given model, the least-squares regression model 

technique is suggested because it gives measures for the 

testing of significance of its estimated parameters, 

as well as minimizing the sum of squares of the error 

terms. 

Following the format of the "before and after" 

effectiveness measure, the measure of the artifact 

suggested is the ratio of a "before" measure, based on 

actual behavior during the selection period, to an 

estimated lIafter" measure, based on behavior expected 

from the areas treated if they had been selected during 

a period of more normal performance for themselves. In 

other words, the "befOl'e" measure reflects the extremes 

of performance during the selection period, and the 

"after" measure represents the more normal behavior of the 

experimental group, or the level of behavior expected 

when no random or irregular fluctu~tions are present. 

That is, 

Artifact = "Before" Measure 
"After" Measure = 

Biased Behavior 
EXPected BehavIo~ 

• 

Because of the random nature of the ~xtv&mes in performance 
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of the clients, or areas, the artifact measure, itself, is 

best treated as a random variable. Therefore. the infor­

mation which is necessary for the evaluation of a social 

experiment must include knowledge of random variations 

in the behavior of the performance measure for the 

popUlation under study, and how the process of selecting 

for treatment only those units exhibiting poorest per­

formance during a specified period leads to "before" 

performance estimates which are misleadingly ~xtreme. 

A computer simulation was used in this study to 

provide estimates of all the factors described above. 

Included as input to the simUlation model is a time series 

performance model which is based on observed performance 

for time periods prior to implementation of the program. 

The time series model is used to estimate: 

1) the distribution of irregUlar or random per­

formance variations for each client or area in the 

population under study, 

2) an estimate of the expected or normal performance 

of each client or area for the selection peried, and, 

3) an estimate of the expected behavior for each 

client or area during the subsequent period when 

the program is underway~ 

The procedure for estimating the magnitude of the 

artifact, based on data for the period prior to implementation 

......... '. 
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of a program,is illustrated for the case of the St. Louis 

Foot Patrol in the following chapters. The probability 

distribution for the artifact measure, and its expected 

value, are derived using the time series model, and a 

random number generator for the irregular fluctuations. 

At each iteration of the simulator the performance of 

every client or area is determined. The set of those 

exhibiting poorest performance is identified, and their 

performance average is computed. This average is then 

divided by the average performance for these same clients 

or areas when the random fluctuation has been set to 

zero. The iterative procedure is repeated a specified 

number of times (eg., 400-500 times for the Foot Patrol 

analysis) • Probability statements can then be made, on 

the basis of the estimated distribution, about the 

magnitude of the artifact for the actual period used for 

the selection of the experimental group. 

If the experimental period is, in fact, the same 

duration as the selection period but in a subsequent 

time interval, then the simulation may also be used to 

evaluate the extent of the change in the behavior of the 

experimental group during the program, which can be 

attributed to the artifact. This involves a two-stage 

process: first, simulating the behav.ior of the population 
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prior to the project to determine the members of the 

experimental group, and second, simulating the behavior 

of the selected group for the subsequent period. Thus, 

the "before and after" measure of the artifact for the 

experimental group is 

Artifact = "Before" Simulated Behavior 
"After" Simulated Behavior-

• 

By repeating this process a number of times, the distri-

bution of this random variable can be estimated. It is 

then used to determine the probability tha~ the actual 

change in the behavior of the experimental group during 

the program period is due to an artifact alone. The actual 

change during the experimental period minus the mean 

artifact measure from the simulated distribution may be 

used as an estimate of the true change in the experimental 

group attributed to the program. The validity of the 

output results will, of course, depend on the extent to 

which the simUlation model correctly describes the behavior 

of the popUlation. 

1.5 PREDICTIVE MODELS FOR CRIME TOTALS IN EACH 

PAULY BLOCK 

The main objective of this research effort is to 

test hypotheses about the behavior of crime within the 
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system of Pauly blocks. However, it is necessary to 

define the structure of this system before any analysis 

work can be performed. 

The two important features of this system are as 

follows: 

1) Components 

The components of the system are all the 

Pauly blocks in the City. The performance of the 

system as a whole and of each component in the 

system is measured in terms of crime rates. 

2) Variables 

As the performance measure, crime rate is the 

key variable of this system. Formulated as a 

time-series model, the crime rate can be explained 

in terms of three variables: trend, seasonality 

and a random "error." The first two variables 

r~late to a systematic change in crime rate 

behavior; the latter, an erratic change. It is 

this "error" variable which leads to, and is used 

as a basis for measuring, the regression artifact 

in crime rates. 

Assuming that crime rates can be modeled as a linear 

combination of the variables described above, the 

following expression may be used to relate crime for 
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random fluctuation which depends on other variables 
each Pauly block and time period to trend, seasonality. 

and random fluctuation, 
that affect crime rates j but which are not explicitly 

included in the model. An estimate of this random 

cei.t) = A(i) + T(i,t) + S(i,t) + e(i,t), (1-1) variable e(i,t) can be obtained from -the equation 

.. .. 
where C(i,t) denotes the crime rate e(i,t) = C(i,t) C(i,t). 

for Pauly block i, during time period t, 

A(i) is a constant factor giving the 
The estimates of e(l,t) may be used to compute a 

measure of the regression artifact, as described in 
average crime rate for Pauly block i, 

Section 6. 
T(i,t) is the trend factor for Pauly 

1.6 USE OF A SIMULATION 
block i and time period t, 

S(i,t) is the seasonality factor for 
A computer simulation model was used to study the 

Pauly block i and time period t, 
behavior of the "error" component in crime rates over 

e(i,t) is the random fluctuation 
time for single Pauly blocks and for groups of Pauly 

component in the crime rate for 
blocks. One of the main reasons for selecting a simUlation 

Pauly block i, and time period t. 
rather than an algebraic model is that fairly complex 

processes may be modeled more readily in simulation. 

The underlying, or expect~d, crime rate for a given In this case, the size of the popUlation of Pauly blocks, 

Pauly block and time period is obtained by estimating compounded by differences in their crime behavior, make 

the parameters A(i), T(i,t) and S(i,t) from equation the developme~t of a realistic, analytic model of the 

(1-1). That is, selection process for the Foot Patrol Project very. 

At A AI. " 

C(i,t) = A(i) + T(i,t) + S(i,t) (1-2) 
diffi~ult. 

The simUlation is programmed to generate random .. 
The estimate C(i,t) represents the expected norm of numQers having the probability distribution of the 

crime behavior for each Pauly block and time interval. error factors for each Pauly block being modeled. The 

Any deviation from this norm can be characterized as a 
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random number generator makes use of an estimated dis­

tribution function for the error terms. The function was 

computed by fitting a form of the basic mode~, discussed 

in the previous section-,- to the actual time-series of 

crime data for each block. Both the generated error 

term and an estimate of the normal crime rate during 

the actual selection period for the project for each 

Pauly block (also computed from the basic model) were 

used to replicate the process of selecting the six 

highest crime Pauly b1ock~ from a population of Pauly 

blocks affect~d by erratic crime behavior. Given this 

set of the highest crime blocks fo~ each J. run, a measure 

of the selection bias is then recorded. Thus, the 

simulation model is run a sufficient number of times to 

produce a measure of the expected performance of the 

system of Pauly blocks in terms of its generated crime 

rate and its expected crime rate for the selection period. 

However, reliability of the simulation output depends on 

how accurately the model describes the real system. If 

validation of the simulated model can be established, it 

then becomes an effective tool for evaluating events that 

have occur~ed in the real system. 

• 
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2. ORDER STATISTICS MODEL 

2.1 DEFINITION AND ASSUMPTIONS OF ORDER STATISTICS 

Met~ods for analyzing order statistics have become an 

extremely useful tool in statistical inference because 

some of their properties are not dependent upon the distri­

bution from which the random sample is obtained. Thus, 

assuming that all the observations of a random sample 

Xl- X2 , ••• , Xn have the same density function f(x) and 

are independently distributed, order statistics can 

create order from this mass of data by putting the 

observations in numerical sequence. The result is a 

permutation of the original observations X., denoted by 
l. 

[Y(l)' ••• , Yen)]' such that Yell < '" YCn)' 

This vector of ordered observations is referred to as 

the order statl.·stl.·c. Then Y l.' - 1 2 . 11 d ., - " ••• , n, l.S ca e l. 

th . th d e 1.-- o~ er statistic of the random sample Xl' X2 , '00, 

In principle, it is possible to derive the distribution 

of the individual components of the order statistic or 

the joint distribution of several of them from the distri-

bution of. the complete order statistic. However, beyond 

the joint distribution of two order statistics, the task 

becomes quite burdensome for manual computation. For 

this reason, the usefulness of these results has been limited 

for any kind of analytical work. 

i' 
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Generally speaking, various other quantities based 

on order can be thought of as order statistics. For 

example, the average of the i~ and j~ order statistic, 

Y(i) + Y(j) 
2 , is included in this branch of statistics. 

It is this area of order statistics that is of great 

consequence in analyzing regression artifacts. 

2.2 ANALYTICAL MODEL BASED ON ORDER STATISTICS 

In this section, general results for the distri-

but ion of the average of the two highest order statistics 

have been derived - that is, for the distribution of the 

statistic, [Y(n-l) 2+ Y(n)J' for a given sample of size n. 

Let Xl' X2 , ••• , Xn denote' a random sample from a 

distribution of the continuous type, having a probability 

density f(x)*. Let Y(r) and yes) denote the r~ and s~ 

order statistic, such that Y(r) < Y(s), Then the joint 

dsitribution of Y(r) and Y(s), denoted by f(Y(r), yes) ), 

for a given sample of size n can be expressed as 

f ( Y (r ), Y ( s) ) 
[ F ( Y ( r) )] r-l 

.[F(Y(s) )-F(Y(r) )]s-r-l [l-F{Y(s) )]n-s 

f(Y(r» f(Y(s) ),<5) (2-1) 

*The discrete case has been omitted due to the complexity 
of the expressions for manual computation. 

~---~----
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where r denotes the cumulative distribution function. 

Thus, it follows that the joint distribution of the two 

highest order statistics, namely Y(n-l) and Y(n), is 

f(Y(n-l), yen) ) = n(n-l) [r(n.~1)]n-2 f(Y(n-l) ) 

*f(Y(n) ). 

This result is necessary to obtain the distribution of 

the average of Y(n-l) and Yen). 

Now l~t M define a new random variabl~, such that 

M = • 

The cumulative distribution function of the random 

variable M, denoted by FM(Z) - that is, the probability 

that M is less than or equal to some arbitrary number 

Z - can be expressed as 

FMCz) = PCM < z) = P [Y Cn_1 )2+ Ycn)] ~ z 

= p [Y cn_1) + YCn) ~ 2Z] · 

(2-2) 

But pry (n-l) + Y (n) ~ 2z] is the volume of f(Y(n-l), yen»~ in 

the region Y(n-l) + yen) ~ 2z, with an additional 

constraint that Y(n-l) < y(n), and f(Y(n-l), yen) ) = 0 

outside the defined boundaries. 
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Thus, 

FM(z) = P[Y(n-l) + yen) < 2z] 

= ffRf(Y(n-l), yen) ) d (Y(n-l) d (Y(n) ) 

(2-3) 

where R is the region in which f(Y{n-l), yen) ) is defined 

(see Figure 2). Using the "change of variable" technique,(6) 

let 

s = Y(n-l) 

t = Y(n-l) + yen) • 

which results in the transformation 

Y(n-l) .:: S 

yen) = t-s 

and 

= at. 

This gives the identity 

The region Rt on which f(s.t-s) is defined can be obtained 

by using a similar transformation on the boundaries of R. 
FIGURE a. 

R: 

\ 
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, , 
\ 

\ 

- \-... --.. ------. ,_ .. '-"--'--J 
\ Y(n-l) 

Y(n-l) < Yen) 

Y(n-l) + Yen) < 2z 

Region on which the joint density function of 
Y(n-1) and yen) is defined. 
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The boundary Y(n_l) ~ Yen) yields the new boundary 

s < t ; the boundary Y(n_l) + Yen) < 2z gives the 
'2 

new boundary t < 2z (see Figure 3). 

Using the change of variab~e technique, the.cumu-

lative distribution function of M can now be expressed as 

f(s,t-s)dsdt. 

The probability density function, fM(z), is computed by 

taking the derivative of FM(z) with respect to z. That is, 

= 

= d 
dZ 

dz 

({Z l~ fCS,t-SldSdt) 

The derivative of the right-hand expression with respect 

to z, which appears only in the upper limit of the outer 

integral, is the inner integral evaluated at t = 2z 

times the derivative of 2z with respect to z: 

f(s,t-s)dt~. 

• 

FIGURE 3. 
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t 

\. 

R' , 
. \. 

\. I 
",J ' 
~/ 

s 

R' 

Transformed region on which the joint density 
function of Y(n-l) and yen) is defined. 
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Using the expression for the joint distribution of the 

two highest order statistics from Equation (2-2), 

[F(2z-s)_F(S)]n-2 

*f(s) f(2z-s)ds. 

To apply this result to a 
specific probability distri-

(2-5 ) 

bution, one need only 

districution function 

sUbstitute the appropriate cumulative 

and density function 'in the latter 
equation. 

2.3 ANALYTICAL MODEL VS. SIMULATION MODEL 

The validity of the order statistics model is 

contingent on the t 
s rength of its underlying assumptions, 

as applied to the "real world" . 
s~tuation. Thus, to use 

this model, it is necessary to k 
now the specific distri-

bution of the random sample and also 
justify that each 

and every observation is identically 
distributed 

according to this density function. 

With reference to crime rates fo~ .. ' the various 
sections of the city of St L . 

• ou~s, the necessary condition 

of identical distributions is highly' b b ' . 
~mpro a le, s~nce 

the magnitude of crime is greatly i fl . 
n uenced by geographical 

location. Such a discrepancy is . 
also complicated by the 

lack of knowledge f th 
o e particular distribution. 
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Furthermore, manual computation limits the results to a 

small number of specific continuous distribution functions, 

to a very small sample size and to only the average of 

the two extreme observations in the sample. This is due 

mainly to the impossible task of manually evaluating 

cumbersome integrals and/or summations that are 

encountered throughout the computation. However, this 

approach can become a valuable tool if such limitations 

can be overcome through the use of computers. 

On the other hand, the main advantage of a simulation 

model is that it can reproduce system behavior, given 

~ distribution function. Furthermore, if the specific 

distribution which governs the observations is unknown, 

the empirical distribution may be used as a substitute 

in the model. This also relaxes the need for every 

area in the city to have an identical distribution of 

crime rates. The flexibility of the sample size and the 

number of replications of the simulated experiment can 

allow for a greater degree of reliability in the output 

analysis. For these reasons, the simulation model was 

selected as the means fo~ evaluating the experimental 

results, as they exist in the real situation. However, 

there is always the question of how much confidence we 

can ~lace in the simulation model in using it to represent 
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the true system. It is for this purpose that the ana-

lytical results become very important. Consequently, 

deviations of the simulated results from the analytical 

results have been used to determine the validity of the 

simulation model in a subsequent chapter. 

2.4 USE OF ORDER STATISTICS FOR VALIDATION OF THE 

SIMULATION MODEL 

The results derived in Section 2.2 have been applied 

to three distributions for the purpose of validating the 

simulation - namely, the uniform, exponential and tri-

angular distributions. A sample of the procedure for 

each distribution will now follow: first, the joint 

distribution of the two highest order statistics will 

be given for a certain sample size. and second, the 

distribution of the average of the two highest order 

statistics will be computed. 

Uniform Distribution 

Let Xl' X2 , ••• , Xn be uniform on [O~l] and Yl' Y2 ••••• 

Yn be the corresponding order statistics. Then the joint 

distribution of yen-l) and yen) is 

feyen-l). yen) ) = n(n_l)[Y(n_l)]n-2. 

as derived from Equation (2-2). For a sample of size three 

f(Y(2). Y(3) ) = 6Y(2) • 
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Since the joint density function of Y(2) and Y(3) is 

defined only on the [0,1] interval, the distribution of 

Y(2) + Y(3) 
fM(z), where z = 2 ' is also defined only on 

the [0,1] interval. For 0 < z ~ 1, different calculations 

are r~quired in the right and left halves of the 

interval [0,1] (see Figure In. 
Having used the change of variable technique to 

obtain fM(z) in 2.2, the procedure for determining the 

corresponding constraints for the uniform distribution 

have been outlined in Table ~ • Thus, for 0 ~ z ~ 1/2, 

fes. 2z-s )ds 

= 

and for 1/2 < z < 1. 

2 
. 6z 

= 24 z - 1 a z -' 6 

f(s, 2z-s )ds 

• 

Figure 5 shows the population distribution from whibh the 

random variables Xl' X2 , •••• Xn were derived and the 
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z 

= Z 

'----s = 2z - 1 
.,..' 

I 

L_-s = 2z 

s 

FIGURE 4. Graphioal Representation of fM(z) in terms of 
transformed variables for the uniform distribution. 

Table 1. 
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Table of Transformed Variables 
(Corresponding to Figure 4 ) 

Constraints for Equivalent Constraints 
Original Variables for Transformed Variables 

Yell > 0 s > 0 - -

Y(2) > 0 2z-s>O (s < 2z) - - -

Yell < Y(2) s <2z-s (s < z) - - -

Y(2) < 1 2z-s<l (s > 2z -- 1) 



f(x) a. f(z) 

-4"' .~: •••• ' •• " • 

o 1 x 

Population Distribution of x: 

Uniform Distribution 

FIGURE 5. Population and T~ansfo~med Dist~ibution: 

b. 

o 1 

Distribution of z, 

Given the Uniform Distribution 

Uniform 

, 
w 
.r= 
I 
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corresponding distribution of the average of the two 

highest observations as related to the order statistics. 

Exponential Distribution 

Let X be exponentially distributed, where f(X) = 
-AX Ae for 0 < m , so that the joint distribution of the 

order statistics Y(n-l) and Y(n) is 

-).Y(n-l) n-2 f(Y(n-l), Y(n) ) = n(n-l)[l - e ] 

For n = 3, 

In terms of the transformed variables, where it is 

required that s < 2z - s (Or s < z), 

f(s, 2z - s)ds 
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~igure 6 shows the probability density function of Xl' 

• • ., X n 
and the probability distribution obtained 

for the average of the two highest order statistics, 

Y(n-l) and yen). 

Triangular Distribution 

The computational procedure for the average of the 

two highest order statistics, Y(n-l) + yen) • for the 
2 

triangular distribution is similar to that for the previous 

distributions. Thus, the results for this distribution 

have been summarized. 

Let X have the density function 

f(X) = X o < X < 1 --
= 2 - X 1 < X < 2 

= 0 Elsewher"e • 

Then the probability distribution of Y(n-l + yen) , denoted 
2 

as fM(z), for a sample size of two has been evaluated as 

follows: 

fM(z) 8z 3 
0 < < 1/2 = z -

3 2 1/2 1 = -8z +16z -8z+4/3 < z < 

3 2 3/2 = Bz -32z +40z-44/3 1 < z < 

3 2 3/2 :: -B/3z +16z -32z+G4/3 < z < 2 • 
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Population Distribution of X: 

----- - - --------------

f (z >1 

.. -) 

I 
I 

b. 

o 1 2 

Distribution of z, 

z = 

t 
w 
-.J , 

Y(2)+Y(3) 

2 

Exponential Distribution (A = 1) Given the Exponential Distribution 

Population and Transformed Distribution: Exponential 
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For this particular sample size, these expressions are 

~quivalent to the average of any two random variables, 

regardless of order, from the triangular distribution. 

The derivation of fM(z) for a sample size greater than 

two was too cumbersome for manual computation. 

The results derived for each distribution have been 

summarized in Chapter 5, and used for tests of significance 

to determine the validity of the simulation model. 
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3. DESIGN OF SIMULATION EXPERIMENT 

The first section of this chapter outlines the data 

specifications, as the crime type, the time period, etc.; 

the last two sections deal with the statistical design of 

the simulation model, including the estimation of the 

parameters of the model and the design of the sample of 

Pauly blocks used to represent the complete population 

in the model. 

3.1 DATA BASE 

The Foot Patrol Project will be used to illustrate the 

types of input data required by the simulation model. The 

specifications of the data are as follows: 

Form of Data: Crime rates for specific blocks and time 

periods. 

Type of Crime: Suppressible robbery and burglary. 

Time Periods: January - October for five years (l967-l97l). 

The term "crime rate" here refers to the number of 

crimes reported for a given time period. The St. Louis 

Metropolitan Police Department classifies as "suppressible" 

all crimes which could conceivably have been prevented by 

an officer on routine patrol had he been near enough to 

view the incident. In general, suppressible crimes are 

those which take place outdoors. In regard to the time 

period, crime data at the Pauly block level was not 



---"----------- - -- --- -- ------ ----- -- - ~~-

-40-

available for years prior to 1967. Since the Foot Patrol 

Project had been implemented in 1972, the time range of 
I 

interest in assessing crime patterns prior to implemen-

tat ion was limited to the five years from 1967 to 1971. 

The historical crime data, as outlined above, was 

obtained for each Pauly block represented in the 

simUlation. All data was obtained from crime tapes at the 

St. Louis Police Department. 

3.2 STATISTICAL DESIGN 

The simulation model was used to test the hypothesis 

that the artifact situation, as introduced in Section 1.2, 

existed in the evaluation of the Foot Patrol Project. It 

was also used to compute the probability distribution of 

the inflation in crime - that is, the ~atio of the 

generated crime rate to the expected, or normal, crime 

rate - for the six highest Pauly blocks (before the Foot 

Patrol Project). The inflation in crime can be attributed 

to the selection process and the random fluctuation in 

crime in each Pauly block; the above ratio used to measure 

this inflation will be referred to as the artifact ratio. 

The simulated distribution of the artifact ratio can be 

used to make probability statements about the behavior of 

crime rates in the system of Pauly blocks. Moreover, the 

mean of the diBt~ibution is an indicato~ of the expected 

bias - that is, the amount of c~ime reducti~n which can be 
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anticipated in a subsequent period even without the presence 

of the project. 

In order to produce such output, estimation of the 

parameters of the model, formulated in Equation (1-1), 

was necessary to satisfy the input specifications of the 

computer simulation. To do this, the basic model had to 

be modified due to the small number of observations for 

each Pauly block. Thus, a time-series model, which 

incorporated a uniform trend factor for each Pauly block, 

was used. Since the use of a single model might result in 

a poor fit, if, in fact, behavior among the Pauly blocks 

differed significantly, a block factor was included to 

explain some of this variation • 

. Let C(i,y) (y = 1,2, ••• , 5 for the time range 1967-1971) 

be the 10-month total of crime in Pauly block i during 

year y. Then the time-series model for C(i,y) can be 

expressed in the form 

5 Z 
C(i,y) = a + 1: t(w)X(w.y)+ E b(p) g(p,i)+e(i,y) 

w=l p=l 

where a is a constant, t(w) is a correction, or trend, 

factor for each year, X(w,y) is a "0-1" variable such that 

X(w,y)= 

1
10 

if w = y 

otherwise , 

(3-1) 
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b(p) is a correction factor for each block, z is the 

total number of blocks in the sample,g(p,i) is a "0-1" 

variable such that 

g(p,il = { ~ if P = i 

otherwise , and 

e(i,y) is the residual error term for block i and year y. 

The seasonal factor was omitted from the model since the 

same ten months o~ each year were used for each of the 

five y~ars under stu~y. 

The input data for the time-series model was based on 

crime data for the sample of Pauly blocks used to 

represent the population. The design of the sample is 

discussed in the next section. Estimates of the 

parameters in Equation (3-1) were obtained using the 

BMD "Multiple Regression" Library Program. A sample of 

the input format for the program is shown in Table 2 • 

Using the estimates obtained for the parameters, the 

expected total crime for each block and year can be 

computed as 

... ... 
C(i,y) = a + 

5 
1: 

w=l 

... z ... 
t(w)X(w,y)+ p~l b(p)g(p,i) (3- 2) 

The results of the regression analysis indicated that the 

estimates for each year correction factor are significant 

at the 95\ level; the estimates for the Pauly block factors 



TABLE 2. Sample Input for Time-Series Model 
(Number ~f blocks = 3, Number of years = 2) 

Dependent Variable Inde~endent Variables 
Total Crime Year 1 Year 2 Block 1 Block 

Y Block 1 Cll 1 0 1 0 
E 
A Block 2 C2l 1 0 0 1 
R 

.J... Block 3 C3l 1 0 0 0 

Y Block 1 C12 0 1 1 0 
E 
A Block 2 C22 0 1 0 1 
R 

.A. Block 3 C32 0 1 0 0 

2 Block 

0 

0 

1 

0 

0 

1 

3 

I 
~ 
CAl 
I 
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showed very little statistical significance. The last 

result suggests that there was no a significant difference 

in the year to year crime behavior among Pauly blocks. 

But this is not conclusive since these estimates are 

based on a small number of observations. Moreover, the 

t-statistic used for testing significance is based on the 

assumption that the distribution of e(i,y) is normal 

(0,0 2 ), which may not be valid in this case. 

The estimates obtained from Equation (3-2) were 

utilized in the simulation model in two ways: 
.. 

1) to compute C(i.S). 

Since year 5, corresponding to 1971, was the year in 

in which high crime caused a Pauly block to be selected 
.. 

for the Foot Patrol Project, C(i,5) is an estimate of the 

normal activity expected for Pauly block i during the 

selection period. The estimate for each block remains 

constant throughout the simulation experiment, only the 

random compone~t varies from year to year. 
... 

2) to compute e(i,y) for every year, and every Pauly block. 
.. 

An estimate of e(i,y) can be obtained from the 

formula 
,. .. 
e(i,y) = C(i,y) C(i,y). 

.. 
The frequency distribution of .(i,y) for Pauly blocks ~s 

then computed; the distribution serves as the basic input 

for generating the variables e~i,5) - that is, the random 
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crime fluctuation for each block during the selection 

period. This, in turn. is used to generate an estimate 

of the crime rate, denoted as Ct(i,S>j which determines 

the crime performance of the system of Pauly blocks 

during the selection year. 

3.3 SAMPLE DESIGN 

The motivation for using a sample of Pauly blocks rather 

than the whole population of blocks was to reduce the cost 

of running the computer simulation. The main expense 

arises with the generation of a random number fo~ each 

Pauly block and year under study, for a large number of 

runs. The total number of Pauly blocks in the city is 

approximately 500 • 

There is another reason for limiting the number of 

blocks used in the simulation experiment. Since many of 

the Pauly b~ocks have such low mean crime rates, the 

probability that they would rank among the top six Pauly 

blocks for any simulation run would be close to zero • 

Thus, these blocks can be safely omitted from the model due 

to the fact that the artifact ratio depends only on the 

generated crime rate for the six highest'crime blocks, in 

this particular application of the problem. The use of a 

sample of only the topmost elements to represen~ an 

entire population is also valid for the general situation. 
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Those elements in the population with a relatively low 

estimated average would be chosen for an experiment only 

in rare instances in which they might experience very 

abnormal behavior. Under such circumstances, there is 

little harm in excluding these cases from participation 

in the simulation experiment. 

In view of the above discussion, the sample of 

blocks finally chosen for the experiment were the 40 

blocks which ranked the highest in target crimes in 

the indicated 10-month period of 1971. The minimal 

size of the sample had to be 37 in order to insure that 

those six Pauly blocks actually chosen for the project 

would be included in the sample range for each of the 

five years considered. A check was made for those blocks 

whose crime ranked between forty-first and fiftieth 

highest in 1971. The highest rank among those ten blocks 

for any of the five years was twenty-fifth. Thus, these 

blocks, as evidenced by their history of crime rates, 

would almost certainly not be among the six highest in 

crime for any simulation of 1971 crime. 

For those 40 Pauly blocks chosen for the sample, various' 

statistics were estimated that characterized the behavior 

of the system. Figure 7 shows the overall average crime 

rate for the set of sample blooks for the lO-month periods 

for each of the five years under study. The plot of this. 

statistic shows a general upward trend for the five years. 
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However, the last three y~~rs suggest that average crime 

for the sample set had reached a fairly constant level. 

Figure 8 shows a plot of each Pauly block in the 

sample, giving its mean, highest, and lowest crime rates 

for the five year period in descending order. Those 

blocks depicted with a dotted line represent the Pauly 

blocks actually chosen for patrol in the project., This 

graph, based on the history of crime rates p s~pports the 

hypothesis that an artifact situation exists within 

the system. In considering each block separately, many 

of them show great variability about their own mean 

crime rates. In considering the whole system of blocks, 

it can be observed that those six blocks chosen for the 

project were not very different from the other blocks in 

the sample, as indicated by the great amount of overlap 

in the crime rate ranges of the blocks. In other words, 

these six blocks might well have not been chosen for 

patrol if the time period on which the 'selection was to be 

made was changed. Figure 9 plots the estimated crime 

for each Pauly block for 1971 in descending order, and 

gives a range of possible variation estimated by the 

standard error of the regression model of Equation (3-1). 

In this case, the estimated crime for each block is the 

average number of crimes for 1971. The graph suggests that 
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if the selection of the six highest blocks could actually 

be repeated, a different set could be expected each time 

due to the variability in the system. These results 

strongly suggest that an artifact situation exists in 

the system. The remaining chapters focus on simulating 

the behavior of crime during the base period 1971 to 

determine the magnitude of the artifact that can be 

expected using this particular year as the selection 

period. 
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4. FORMULATION OF COMPUTER PROGRAM 

This chapter gives the details of the structure of the 

computer simulation, beginning with the initial conditions 

of the program and ending with the printout of the final 

results. The overall logic of the program is discussed, 

followed by a description of the function of each sub-

program. Flow charts are included for easy reference. 

4.1 INITIAL CONDITIONS AND INPUT DATA 

In this program the. following input data is required 

for each element of the sample considered for the 

simulation experiment: an estimated mean for the period used 

in selecting a treatment group and an estimate of the 

random error for each of those periods used for the 

time-series model. For the specific application of the 

Foot Patrol Project, the input data for each blocK in the 

system consisted of an underlying average of crime for 

1971 and a time-series of the error terms for the five 

years of crime statistics available for the period prior to 

implementati6n of patrols. To duplicate the actual 

conditions of the Foot Patrol Project, during each iteration 

of the simulator, after an estimate of the 1971 crime rate 

was computed by the simulator for each of the 40 blocks 

modeled, the six highest crime blocks were identified and 

11 

Ii 
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their estimated crime rates averaged. The number of 

simulation runs (iterations) was set to 400. 

4.2 GENERAL LOGIC OF THE COMPUTER SI1'PlLATION 

The simulation model was embodied in a computer 

program in FORTRAN. I~ general, the chronology of. the 

program proceeds in three stages: 

1) Preliminary computation 

2) Simulation experiment 

3) Analysis 

The logical structure of the program, as defined by 

A these stages, is shown in Figures 10,11 and 12. 

discussion of the flow of the program within each stage 

follows. 

Stage 1: 

Since the random number generator in this program 

utilizes the cumulative distribution of the random variable 

h tl.°me serl.·es data for each block has being simulated, t e 

su~h a dl."stribution. (The details of to be converted into -

the random number generator are given in the next section). 

This involves, first constructing a frequency histogram 

for the error terms. The cumulative distribution can be 

calculated directly from the results of the histogram. 

That is, 

i 
I fj 

j=l 

n 
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INPUT: TIME-SERIES OF 

ERROR TERMS 

INPUT: ESTIMATED MEAN CRIME I PERIOD FOR SELECTION 

(COMPUTED FROM MODEL) 

'If 
FORM HISTOGRAM OF INPUT 

TIME-SERIES 

V , 
COMPUTE CUMULATIVE 

DISTRIBUTION 

FIGURE 10. Flow chart of Preliminary Computation. 

-55-

[FIRST PAUl. Y BLOCK IN SAMPLE I~---r 
- .. - ;]I 

GENERATE UNIFORM RANDOM 

NUMBER 

GENERATE RANDOM NUMBER 

BASED ON CUMULATIVE 

DISTRIBUTION OF ERROR TERMS 

COMPUTE CRIME RATE 

IS SAMPLE EXHAUSTED? NO 

YES 

~ I CHOOSE 6 PAULY BLOCKS WITH 

HIGHEST CRIME RATE 

COMPUTE ARTIFACT STATISTIC 

NUMBER OF RUNS COMPLETED? NO 

FIGURE 11. Flow chart of Simulation Experiment. 
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where F. is the cumulative probability l. 

f h · th . 1 or t e ~-- l.nterva , 

fj is the number of observations in the 

j~ interval (j~i), 

n is the total number of observations, 

t is the number of intervals. 

The cumulative probability distribution has to be stored 

as an array in the pvogram to be used as the input for 

each iteration of the simulation experiment. 

Stase 2: 

Having organized the input data in the necessary 

form, the simulation experiment can now proceed. The 

experiment can be described in terms of a two-stage 

process. The first stage includes those events occurring 

within the system in a single unit of time - in this case, 

the selection period for the Foot Patrol Project. In 

more specific terms, the simulation generates crime rates 

for each block in the sample for the initial la-month period. 

Using the simulated crime rates for the 40 sample blocks, 

the six blpcks whose rates are highest are "selected" for 

foot patrol operations. The artifact ratio is then 

estimated. The second stage involves a. replication of 

the simulation experiment: the estimation of crime ~ates 

for the base year, the selection of the six highest 

blocks and the estimation of the artifact ratio. This 
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process is repeated for the number of runs speeified. 

Stage 3: 

After the completion of the experiment. a 

f~equency distribution is constructed for the artifact 

statistic, and the mean and standard deviation ~re 

computed. The distribution is then used to make proba­

bilistic statements about the magnitude of the 

regression artifact. 

The next section explains the subroutines used for 

storage of pertinent information, the process of 

generating random variates! and the recording of 

statistics concerning the performance of the system. 

4.3 DATA GENERATION 

4.3.1 Random Number Generator 

The subroutine RANDN is used to generate random 

numbers based on the inverse transformation method.(7) 

The advantage of this method is that its flexibility 

lends itself to be applied to any p~obability distribution, 

both theoretical and empirical, discrete and continuous. 

Since uniformly distributed random variates play a 

major role in the generation of random variates drawn 

from other probability distributions, the basic prerequisite 

for this method is that a sequence of independent ~ahdom 

variates ,each with a uniform distributior~ on the interval 

[O~lJ, can be g~nerated. The particulap source which 

! 

i 
{ , 
t 
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was used to generate the uniform random numbers was a 

subprogram in the Scientific Subroutine Package. 

The rationale for such a technique is as follows. 

Let f(x) represent the density function of the particular 

statistical populatio~ for which it is desired to 

generate random variates, Xs. Let rex) denote the cor­

responding cumulative distribution function, that is, 

the probability that a random variable X takes on the 

value of x or less. For the continuous case, this can 

be computed by 

F (x) = Prob (X < x) = 

and fQr the discrete case, 

F(x) = Prob (X < x) = 

f(t)dt 

t Ps • 
s 

such that 
Xs < x 

\ 

, 

where psdenotes the probability of the random variable 

taking on the value Xso Let u denote a uniform random 

variate such that the probability density function is 

r(u) = 
I ~ 

o ~ u < 1 

Elsewhere 

and the cumulative distribution is 

u < 0 

F,(u) = o < u < 1 

u > 1. 

'J£. 
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The cumulative distribution of x, F(x), also defined over 

the range 0 to 1, can be used as the intermediary in the 

transformation process of generating a uniform random 

variate u to the generation of the random variate x, of 

the desired probability distributione Thus, the 

procedure involves generating uniformly distributed 

numbers and setting F(x) = u. At this point, one can 

approach the problem in one of two ways, depending on 

the form of F(x). 

Case I: 

The following procedure can be used only if x is 

uniquely determined by u = F(x), that is, if there 

of x, F-l(u) (see Fl"gu-e 13). exists an inverse function ~. 

Then it follows that for any particular value of u, say 

uo ' it is possible to find the value of x, namely xo, 

which corresponds to it, through the inverse function 

of F, if it is known. That is, 

-1 
Xo = F (uo ), 

-1 where F (uo ) is the inverse transformation of F, taking 

Uo from the unit interval to the domain of x. 

This procedure ~as used for some of the distributions 

that were involved in validating the simulation model, as 

summarized in Table 3 • " 

Uniform 
Random 

~umbers 

I 
u 

1.0 

.50 

0.0 
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TABLE 3. Generation of Random Numbers by Inverse Transformation Method. 

~---------,------------~--------------------~----------------------------------~ Distribution for 
Generation of 
Random Numbers 

Exponential 

Tr iang'.llar 

Corresponding 
Density 

Function 

A>O, x~O 

f(x) 
4 O<x<l 

= (2-X -1'<x< 2 

T tranSformation Function 
where u is uniform\ 

random variate J 

x = 

x = 

(~) log u 
2 

1+ {2u-l 

'------------~-------------'---------- .... -._ ...... _._--_ .. _._--' 

, 
Ol 
I\) 

I 
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However, for many probability functions it is 

extremely difficult or impossible to express x in terms 

of an inverse transformation, F-l(u). Thus, a more 

general version of this approach must be taken, which is 

particularly applicable to 1) empirically estimated 

probability distributions, 2) discrete distributions, 

and 3) some continuous functions with no simple inverse 

transformation function and which can be approximated 

by a discrete distribution. 

Case II: 

In this case, it is necessary to compute numerically 

the cumulative distribution for a given interval. This 

may be e~pressed as 

F' = J 
1 -n 

j 
t 

i=l 
f. 
~ 

1 < j~ n • 

where Fj is the cumulative distribution up to and including 

the j~ interval, fi is the number of observations falling 

. th . th . 1 d . h 1 b f b ~n e ~-- ~nterva an n ~s t e tot a num er 0 0 ser-

vations M A uniform random variate Uo is then generated, 

and a searching process is performed to find the intervals 

for which the relation 

holds. Having determined the proper interval, the method 

used to find Xo is arbitrary.' Some of the options include 

using the lower interval limit or the midpoint of the j~ 
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interval. For the simulation experiment in this study, 

d . db' l' . th . th . th Xo was ete.rm~ne y ~nterpo atl.ng w~ ~n e)-

interval, as bounded by Xj and Xj+l (see Figure 16). 

Since the random variable of interest assumes only 

integer values, then the largest integer in Xo was 

used as the variate~ Moreover, the estimated cumulative 

distribution of error terms was used as the input 

distribution for generating the random variates. Then, 

at the end of this subroutine, the sum of the generated 

error term and the average crime rate (estimated from 

the time-series model) for the ~election period for 

each Pauly block is computed; this sum represents the 

simUlated crime behavior of each Pauly block in the 

sample during the selection period. 

4.3.2 Description of Record-Keeping 

the following subroutines have been developed to 

perfo~m the record-keeping process for all three stages 

of the computer simulation. as discussed in the previous 

section. The variable names used in these SUbroutines 

are defined in Appendix 9. 

HIST SUBROUTINE 

The function of this SUbroutine is to compute the 

frequency distribution for an array of numbers. The 

subroutine first determines the limits for each of the 

intervals in the distribution, then takes each number of 

the input array and performs a search for the appropriate 

U I 
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! 
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FIGURE 16. 
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interval in which it falls. After each number has been 

placed in the correct interval, the frequency count for 

this interval is updated. 

This subroutine is called from the main program in 

two instances: to form the frequency distribution of 

the time-series of error terms at the start of the 

program and the frequency distribution of the artifact 

statistic computed in the simulation experiment. For 

the latter, the distribution is stored in an array and 

printed after the experiment is completed. 

CMPROB SUBROUTINE 

After the frequency distribution of the error terms 

is determined for each Pauly block, the program proceeds 

to this subroutine to compute the cumulative distribution. 

Stored as an array, this distribution remains unchanged 

throughout the program. 

MAXM SUBROUTINE 

Following the subprogram RANDN, this subroutine ranks 

the Pauly blocks in descending order by estimated crime 

rate. To do this, the method involves the comparison of 

t~o numbers, as they appeared in the original array, and 

interchanging the order of the two numbers if, in fact, 

the latter number was the larger. The logical check 

continues until the six highest crime rates have been 

placed in the proper order sequence. This subset is 

stored in an array for each run, along with the 
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corresponding expected crime rate for each of the six 

highest Pauly blocks. 

AVERG SUBROUTINE 

This subroutine computes the mean, variance and 

standard deviation for a series of numbers. The subroutine 

is called a number of times from the main program. It 

is needed to compute the above statistics for the 

generated crime rates of the six highest blocks and 

similar statistics for the expected crime rates of 

these block.s. These results are used to compute the 

artifact ratio for each run, which is stored in an 

array. It is also used to compute the mean and 

standard deviation of the distribution of the artifact 

ratio at the end of the program. 

4.3.3 Generation of Statistics and Final Output 

The artifact ratio is computed at the end of each 

run of the experiment, based on those six Pauly blocks 

which have the highest generated crime rates. 

Let B(n) denote the set of numbers identifying the 

th 
six highest crime blocks for the n-- run. Then for the 

i~ block in this set C~i,n) represents the generated 
~ 

crime rate for this run and C(i,5) represents the estimated 

norm of crime behavior for the 1971 selection period, as 

determined by basic model. The artifact ratio for the 
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th n-- run is computed as 

A(n) = t c'(i.n) 
ieB(n) 

t 
ieB(n) 

From the identity 

A 

~ 

C(i,5) 
• 

C'(l,n) = C(i.5) + e'(i,n). 

where e'(i.n) is the generated error 

term for block i. 

an alternative expression of the artifact ratio is 

A(n) = 1 + E e'(i •. n) 
ieB(n) 

• .. 
t C(i.5) 

ieB(n) 

A printout of the final results displays the frequency 

distribution of this statistic for 400 runs of the 

experiment, and the mean and standard deviation of this 

distribution. A sample report is shown in Table q. 
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TABLE~. Sample Output Report of Program. 

Lower Interval Limit Observed 
Interval of Artifact Statistic Frequency 

1 0.80 0 

2 0.85 0 

3 0.90 0 

~ 0 0 95 0 

5 1.00 0 

6 1.05 0 

7 1.10 2 

8 1.15 8 

9 1.20 13 

10 1.25 40 

11 1.30 66 

12 1.35 106 

13 ,I 1.40 74 

14 1.45 59 

15 1.50 23 

l~ 1.55 7 

17 1.60 2 

18 1.65 0 , 

19 1.70 0 

20 1.75 0 

Number of Runs = ~OO Mean = 1.3845 

Standard Deviation = .08578 
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5. VALIDATION OF SIMULATION MODEL 

The distribution of the average of a set of extreme 

observations is a valuable tool for determining the 

inflation that can be expected in using the mean of these 

observations as an estimate of the popu~ation mean. For 

this reason, the crux of the simulation model is to 

establish a basis of confidence in the reliability of 

the distribution of -the average~ which it generates, as 

being representative of the population distribution. 

This chapter includes two approaches used in validating 

the s-imulation model: the order statistics results, 

derived in Chapter 2, and a coin-tossing experiment. 

5.1 VALIDATION OF MODEL FROM ORDER STATISTICS RESULTS 

For the case of continuous probability distributions, 

the order statistics results were used in validating 

the simulation model in order to achieve confidence in 

its output. Table 5 summarizes these results, for each 

of three density functions and a given sample size. 

These results represent the theoretical probability_ dis-

tributions of the average of extreme observations; the 

simulation results represent sample probability distributions. 

To evaluate the reliability of the simulation dis­

tribution, the Kolmogorov-Smirnov statistic,(8) based on 

the cumulative distribution function, has been used to 
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TABLE S. Distribution of the average of the two highest 
observations for a given sample size. 

Density 
Function 

Uniform 

(0,1] 

Exponential 

Triangular 

Range of Z 

Z = Y(n-l)iy(n) 
2 

O!, z.!.l/2 

1/2!, z!,l 

O<z<-

O~ z~ 1/2 

1!.z!.3/2 

3/2<z<2 - -

n = 2 

8/3Z 3 

_az 3+16Z 2_az+4/3 

8z 3-32z 2+40Z-44/3 

_8/3z 3+16z 2_32Z+64/3 

SAMPLE SIZE 

n = 3 

_12Ae- 2AZ 

--~----~~----------

I 
n = L~ 

8z 3 

3 2 -56z +96z -48z+8 

--------------
36 ' -2AZ l~' -4AZ - "e . - "Ae ------------------

I 
-..J 
..... 
I 
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compare the simulation results with the theoretical 

results derived from the order statistics. Thus, if 

F (X) denotes the sample distribution function. 
n 

generated by the simulation, and F(X) denotes the 

theoretical (or population) distribution function, 

obtained from the order statistics model, the hypothesis 

to be tested assumes that F(X) is the appropriate 

population distribution from which Fn(X) has been 

obtained. 

It is the absolute difference Ir (X) - F(x)1 that n 

is used in the Kolmogorov-Smirnov test. The rationale 

of the test is that if the sampling distribution, Fn(X), 

differs from the expected distribution by too much, this 

may serve as grounds to reject the hypothesis that reX) 

is the correct assumed distribution from which Fn(X) 

has been derived. The statistic then becomes 

Dn (X)- max 

all X 

I reX) - FnUe) I. 

A test of validity was performed for each density 

function used in the order statistics model: the uniform, 

exponential and triangular distributions. However, due to 

the limitations of these results, the simulation model 

was set up to form the distribution of the average of 

only the two highest observations from a certain sample 
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size, n. The distribution of the average was based on 

75 observations - that is, the number of simulation 

runs - for each density function. 

Figures 15, 16 and, 17 display the cumulative distri­

butions from both the theoretical and simulation models 

for each density function; Tables 6 ,7 and a , 

following the graphs, indicate the absolute deviation 

between the two cumulative distributions for a given 

interval. The additional columns pertain to the 

Kolmogorov-Smirnov test. 

In summarizing the test results, for each density 

function the null hypothesis was accepted at the 95% 

confidence level. That is to say. reX) is the population 

distribution function for the sample distribution, Fn(X). 
I 

In Table 9 , the mean of the distribution of 

Y(n-l) + yen) 

2 - that is, the average of the two highest 

observations for a sample size n, is given for both the 

order statistics model and the simulation model. It can be 

be observed that the sample mean (derived from the. 

simulation results) is very close to the theoretical mean. 

This provides validation of the logical structure 

of the simulator for these simple distributiQns, necessary 

in order to achieve confidence in simulation results for 

more complicated density functions and averages of the 

set of the n highest observations when n is greater than t~o. 
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TABLE 6. 

Range of 
Average 

.0-.1 

.1-.2 

.2-.3 

.3-.4 

."-.5 

.5-.6 

.6-.7 

.7-.8 

.8-.9 

.9-1.0 
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Comparison of , Simulated and Theoretical 
Uniform Distribution •• 

. 
Absolute Deviation 
of Simulated from Maximum Test (95% ) 

Theoretical Deviation Statistic Confidence 
Distribution 

.0113 

.0106 

.0260 

.0453 

.0513 

.0640 

.0660 

.0667 
...... 
........ 0667. .1550 

.0220 -

.0080 
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Simulated Distribution 

Theoretical Distribution 
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L .. ..:.. .................. ~~ ............. ~~a....-.a.~!t........... MA'\~ ___ _ 
.4 

FIGURE 16. 

.8 1.2 1.6 2.0 2.4 2.8 Greater than 
2.8 

Exponential Cumulative Distributions (A = 1) _ 
Average of Top 2 out of 3 Random Numbe~s. 

" 

TABLE 7. Comparison of Simulated and Theoretical 
Exponential Distributions • 

Range of 
Average 

.0-.4 

.4-.8 

.8-1.2 

1.2-1 .• 6 

1.6-2.0 

2.0-2.4 

2.4-2.8 

Greater 
than 2.8 

Absolute Deviation 
of Simulated from 

Theoretical 
Distribution 

.0152 

.0470 

.0297 

.1114 

.1319 

.0232 

.0281 

.0000 

Maximum 
Deviation 

~ /.1319 

Test (;5% ) 
Statistic~onfidence 

.1550 
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~~Simulated Distribution 

IIITheoretical Distribution 

.8 .\..2 1.6 2.0 Average 0 

2 highest 

FIGURE "17. Triangular Cumulative Distributions - Average 
of Top 2 out of 2 Random Numbers. 

, 
1 ~ 
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TABLE 8. Comparison of Simulated and Theoretical 
Triangular Distributions. 

Absolute Deviation 
Range of of Simulated from Maximum 

Test ~S% ~ Average Theoretical Deviation Statistic Confidence 
Distribution 

.0-.2 .0010 

.2- .11, .0096 

.4-.6 .0205 "-7. 020 5 .1550 

.6-.8 .0018 

.8-1.0 .0198 

1.0-1.2 .0147 

1.2-1.4 .0204 

1.4-1.6 .0057 

1.6-1.8 .0065 
. 

1.8-2.0 .0050 
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Table 9" Mean of Distribution of YCn-l) ... yen) 
2 

Distribution Simulation Order Statistics 
Model Model 

Uniform [0,1) .588 .625 
(top 2 out of 3) 

Exponential 1.482 1.333 

>. = 1 
(top 2 out of 3) 

Triangular 1.008 .968 
(top 2 out of 3) 
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5.2 COIN-TOSSING EXPERIMENT 

Since the order statistics model, as derived in 

Chapter 2, is not applicable to discrete random variables, 

a coin-tossing experiment was used as a means of 

validating the simulation results for the binomial distri-

but ion. The experiment proceeded in the following manner: 

1) Toss five identical coins simultaneously. 

2) Record the number of heads obtained (the maximum 

being five heads). 

3) Repeat steps 1-2 for a total of five times. 

4) Choose three out of the five tosses which have 

the highest number of heads. 

5) Average the number of heads from the top three 

tosses obtained in Step 4. 

6) Repeat steps 1-5 for 75 runs. 

7) Construct a histogram for the distribution of 

the average (of the highest three tosses for 

each trial). 

A similar procedure was followed for the simulation 

experiment. Five random numbers were generated from the 

binomial distribution, 

P(X = x) = (~) 5 n-x p q • 
where x is the number of heads obtained in one trial. In 

order to reproduce the initial conditions of the coin-

tossing experiment, the sample size, n, was set equal to 
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the number of coins tossed and p(the probability of 

getting a head on a single toss) was set to .5, assuming 

the coins to be unbiased. Thus, the binomial probability 

function for the simulation experiment was 

PIX = x) = (;) (~ • 

The three highest tosses of heads out of five were then 

averaged, and this was also repeated for 75 trials. 

The frequency distribution of this average was then 

tabUlated. 

In comparing the distributions of the average 

obtained from each eXperiment, it is necessary to test 

the hypothesis that these twc distributions were 

obtained from the same population distribution. For 

this case, the two-sample Kolmogorov-Smirnov test must 

be used. 

Although random sampling fluctuations can introduce 

a difference in the two sample distributions even if 

the samples are from the same popUlation distribution, 

it is a large discrepancy between the sample distribution 

functions that serves as a reasonable basis to reject 

the null hypothesis of the test. 

A comparison of the cumUlative distributions is 

shown in Figure 18, and the deviation betw~en the two 

distributions for each interval is given in Table 10 which 

1.0 

.6 

.4 

• 2 

FIGURE 18. 
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/.' . Simulated experiment 

;~ Coin experiment 

o 1 2 3 4 5 Average of 
3 highest 

Sample Cumulative Distributions: Binomial (p=.5), 
Averag@ of top 3 out of 5 Random Numbers. 
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TABLE 10. Comparison of 2 Sample Binomial Distributions. 

Absolute Deviation 
Range of of Simulated from Maximum 

Test ~5% ~ Average Coin Experiment Deviation Statistic Confidence 
Distribution 

. 
0.-1. .0000 

1. - 2. .0145 

2.-3. .0400 .0400 • 1550 

3.-4. • 0000 

4.-5. .0000 

! • 
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follows. Since the maximum deviation between the two 

cumulative distributions is less than the critical value 

at the 95% confidence level, the hypothesis that the 

two sample distributions were derived from the same 

population distribution is accepted. 

In this case, the population of the two samples is 

assumed to be binomial. Theoretically speaking, the 

coin can be categorized as a binomial experiment. To 

verify this, a Chi-Square goodness of fit test was 

used to determine how good the sampling distribution 

from the coin-tossing experiment approximates the 

popUlation distribution. The Chi-Square statistic for 

the test was 5.7; for five degrees of freedom at the 

95% confidence level, the critical value is 11.1 • 

Thus, the hypothesis that the coin experiment has a 

binomial distribution can be accepted • 

From the results of the foregoing tests (Chi-Square 

and Kolmogorov-Smirnov), one can conclude that the 

distribution of yen-l) + yen) • as generated by the 
2 

simulation model, is also representative of the true 

(or theoretical) distribution. 

Finally, the means for each of the sample distri­

butions of yen-l) + yen) were as follows: 
2 
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Simulation experiment: 3.09 

Coin-tossing experiment: 3.13 

These results validate the use of the simulation model 

for processes involving discrete random variables. This 

is a particularly useful capability, since in many real-

life experiments the related probability density 

functions are unknown and empirical estimates in the 

form of histograms must be used, thereby representing a 

continuous phenomenon with a discrete approximation. 
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6. SIMULATION EXPERIMENT AND RESULTS 

The simulation experiment was run a number of times, 

computing the probability distribution of the artifact 

ratio and its expected value. These results were the 
I 

measures used to reflect the crime performance of the 

system of Pauly blocks. This was done for three different 

experiments, in which the input data had been modified. 

A description of these experiments and their results are 

presented in this chapter. Since conclusions based on 

results of the simulation runs depend on the validity of 

the assumptions made in this study, some of these have 

been tested at the end of the chapter, along with 

suggestions for validating them. 

6.1 SIMULATION EXPERIMENT 

Crime rates during the 10-month selection period 

January to October 1971 for the Foot Patrol Project were 

simulated for a set of 40 Pauly blocks. The purpose of 

the simulation was to study the variability in the crime 

rates in each block and how this would effect this 

selection of high crime blocks for foot patrol. The 

simulator provided estimates of the results which could 

be expected if this selection process were replicated 

many times. The magnitude of the regression artifact 

for the set of highest blocks for the selection period 

depends on the deviation of the simulated crime rates 

for the set from its estimated normal crime behavior. In 



-88-

l ' s the magnituie of the repeating the se ectlon proces t 

, a~t~fact l'tself would be expected to change and, regress~on L ... 

'd d ~andom variable, for which a therefore, must be cons~ ere a L 

, b estimated on the basis of probability distribut~on may e 

400 iterations of the simulation experiment. Thus, the 

crime performance of the system of Pauly blocks can be 

evaluated in terms of the magnitude of the estimated artifact 

for each run of the simulator, and the probability of getting 

this bias. 

Three replications of the experiment, using an estimate 

of the expected crime rates for each Pauly block for the 

and the d ~stribution of error terms as the selection period ... 

d Each exper iment used a different input data, were ma e. 

b d f the P~og-am's random number g,enerator. random num er see or L L 

The average of these results in terms of the probability 

, of the a~t~fact rates was u;ed as the final distributlon L ... 

distribution for any analysis. 

Other experiments were made with the input data 

modified. The basic time series model used to estimate 

the error terms for each block for the input data~ was 

dd 't' del However, this assumed to be a linear, a ~ ~ve mo • 

model will actually overestimate the error terms', and 

therefore, overestimate the artifact ratio, if there is 

another model that is a "better fit" for the crime data." 

"Better fit", in this case, refers to a smaller sum of 

squares of unexplained variation about the regresson line 

II 1 
I" 
I' \l 
I' d 
: ~ 

" 

;,: 

i! 
. ij • 

l 
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or curve. To allow for such a possibility, a sensitivity 

analysis of the output results of the artifact ratio was 

performed by reducing the series of error terms by a 

constant fraction. Two additional experiments of this 

nature were made, with the error terms reduced to 1/2 

and 3/4 of their original size. Three runs were also 

made for each of these experiments, starting with a 

different se~d each time. The results of each experiment 

are presented in the next section; moreover, a graphic 

representation of each experiment displays the findings 

of the sensitivity analysis. 

6.2 OUTPUT RESULTS OF SIMULATION EXPERIMENT 

Before presenting the results for each simulation 

experiment, it is necessary to point out that the 

particular results obtained are dependent on three 

major factors: 

1) the validity of the assumptions on which the time 

series model was based. 

2) the size of the treatment group for the experiment. 

3 ) the size of the popUlation from which the treatment 

group is selected. 

Thus, caution must be taken in using these results to make 

any generalizations about the nature of the regression, 

artifact in other situations. Each experiment must be 

treated separately within its own setting. However, it is 

the approach to evaluate this artifact which may be applied 

to other cases. 
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The ~esults fo~ each expe~iment a~e p~esented in 

the fo~m of a cumulative p~obability dist~ibution in 

Table 11. In using the cumulative dist~ibution, p~o-

babilistic statements can be made about the occu~~ence 

of a selection bias, measu~ed by the a~tifact ~atio, 

of any given size. That is, let Ao denote the "befo~e" 

a~tifact ~atio, based on actual c~ime ~ates and estimated 

mean c~ime ~ates fo~ those six Pauly blocks chosen fo~ 

the p~oject in 1971. The chances of getting an a~tifact 

at least as la~ge as Ao can then be dete~mined. This 

also gives an indication of the c~ime pe~fo~mance of 

the system of Pauly blocks, if it could be obse~ved fo~ 

a la~ge numbe~ of "selection" pe~iods. 

Fo~ the Foot Pat~ol P~oject, the base pe~iod, used to 

select blocks fo~ pat~ol, was Janua~y to Octobe~ 1971. 

If B denotes the indices of set of the six highest 

c~ime Pauly blocks, chosen fo~ pat~ol in the p~oject, 

then the a~tifact measu~e, in this case, is 

Ao = 

1: C(i,S) 
iEB 

1: 
iEB 

,. 
C(i,S) • 

... 
whe~e C(i,S) ~ep~esents the actual c~ime ~ate and C(i,S) 

~epresents the estimated mean c~ime ~ate fo~ the selection 

period fo~ each of the six Pauly blocks chosen for the 



I 
i 
I 

I 
I 
! 

I , 
I 

! 
I 
I , 
; 

I 
i 
i 
I 

i 
f 

I 
; 

, 

TABLE 11. Output Results of Simulation Experiments. 

Range of 
Artifact Ratio 

1 .• 00-1.05' 

1 .. 05-1.10 

l..10-1.15 

1.15-1 .. 20 

1.20-1.25 

1.25-1.30 

1.30-1.35 

1.35-1 0 40 

1.40-1.45 

1~45-1.50 

1.50-1.55 

1.55-1.60 

1.60-1.65 

1.65-1.70 

Mean Standard 
Deviation 

Experiment 1: 

Experiment 2: 

Experiment 3: 

- l:REOUENCY DISTRIBUTION 
E"pe1"iment 1 Experiment 2 

---. 
0 0 

0 0 t 
I 

i 2 3 i 
5 30 

i 

1 

17 105 i 
I 
I 

40 160 I 
67 87 I 
95 14 

78 1 

5S 0 
I 30 0 

8 0 

3 0 

I 0 0 

1.38e 1.258 
0.0842 0.0478 

e(i.j) - original input data 

3/4 eCi.j) 

1/2 e(i.j) 

Experiment .3 
----

1 

43 

201 

137 

18 

0 

0 

0 

0 

0 

0 

0 

0 

0 

1.141 
0.0336 

CUMULATIVE 
Experiment 1 

-.'_._ .. -
0.000 , 
0.000 I 
0.005 

0.018 

0.060 

0.160 

0.330 

0.580 

0.740 

0.900 

0.970 

0.990 

1.000 

-- , 

____ 's!..., 

DISTRIBUTION 
Experiment 2 

0.000 

0.0(1;0 

0.008 

O.OBO 

0.31:)0 

0.7150 

0.9 1130 

0.9!!~O 

1.000 
_-,I 

-.,~ 

--, 
--. 
--

" 

,1'1' 

· Exper iment ::! 

0.003 

0.025 

0.350 

0.860 

1.000 

--
--
--
--
--
--
-----
--

I 
lO 
/-J 
I 

~ 

t,.J 
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p~oject. This ~atio was computed to be 1.27. The 

likelihood of this selection bias is given in Table 12. 

A g~aphical representation of this table is shown in 

Figure 19, in which the cumulative distribution is 

approximated as a continuous function. The height of 

the. shaded section to the left of Ao denotes the 

probability of getting a bias less than 1.21; the height 

of the shaded section to the right denotes the proba-

bility of getting a bias of 1.27 or greater. As can be 

observed from these g~aphs, the chances of getting a 

selection bias greater than 1.27 quickly diminishes as 

the variability of random fluctuations in crime within 

each block is reduced in magnitude. 

With the unscaled error terms estimated from the 

original data in experiment 1, the distribution function 

indicates that 78 out of 100 times, or selection periods, 

the artifact ratio will be at least 1.27. This indicates 

that for the six blocks chosen for patrol in the Foot 

Patrol Project, it is highly probable that the reduction 

in the target crime in the subsequent time period, 

comparable to the selection period in terms of duration 

and season, will be at least 27%.due to the selection 

process. 

, ~ 

JI 
~ ': 

!1 
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TABLE 12. Probability Statements about the Artifact 
Ratio for Each Experiment. 

Prob(A!.1.:i7) Prob(A~1.27) 
~ ...... -

Experiment 1 .22 .78 

Experiment 2 .83 .17 

Experiment 3 1.00 0.00 

Experiment 1: e(i,j) - original data 

Experiment 2: 3/4 e(i,j) 

Experiment 3: 1/2 e(i,j) 
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Probability 

leO 
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.8 

.6 

.4 

• 2 

Experiment 1 

., ... _- ..... _.-

\,\,,\ .. ---~::""':':~-=-=t-------..:.....-------

/\J\/,--~=::::::=---~4---------------------'-

Experiment 3 

/V\/\-~~...:.--t-~~JL-\j¥-t---t---t---r----t---=-=-----­
Artifact 

Ratio 
1.0 1.2 Ao 1.4 

(1.27) 
1.5 

FIGURE 19. Cumulative Distribution for Each Experiment 
Showing the Probabilities Relating to a 
Change as Large as that Observed in the 
Foot Patrol Project. 
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The average artifact for each experiment has been shown 

in Table 11. The 1.39 average for experiment 1 indicates 

that an inflation of 39% above the normal crime totals can 

be expected in the selection period for those six blocks 

chosen, considering the manner in which they were selected. 

The other two experiments suggest that the expected 

bias is a function of the magnitude of the random crime 

fluctuations in each block. Figure 20 shows a graphical 

representation of these results. 

Finally, as presented in Table 11, the artifact ratio 

for each of the three experiments was never less than one • 
• ....... ~~_ .~ . ____ * _ ~~._M •• ~ ___ ~ .......... _______ .... -----oP~ ... 

This indicates that those six Pauly blocks chosen for 

tr~atment were always above their normal crime totals • 

Since the crime behavior of the blocks in the s~~~le is 

not significantly different, the tendency to select those 

blocks with a positive error - that is, above their 

normal crime rates - can be expected. 

6.3 BASIC ASSUMPTIONS 

This section presents some of the basic assumptions on 

which the study is based, and suggests means of 

validating them • 

AssumDtion: , 

The model used to estimate the er~or terms, e(i,j), 

was assumed to be a linear, additive function of trend 

facto~s for each year and block factors for each Pauly 
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2 

e(i,j) 
3/4 e(i,j) 
1/2 e(l,j) 

3 Experiment # 

FIGURE 2Q. Plot of the Results of Each Experiment in 
Terms of the Mean Artifact Ratio. 
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block in the sample. To verify this assumption, it is 

necessary to measure how well any part of the model 

contributes to its ability to explain the observations • 

Tests of significance may be used for this kind of 

analysis, testing whether the parameter estimates of the 

model are significantly different from zero. If they 

are ~, then the related factor is not a useful part of 

the model. 

Assumption: 

The use of uniform trend factors for all Pauly blocks 

assumes that the time trends in crime are uniform for 

all the blocks. The small number of observations for 

each Pauly block (i.e., five years of data) does not 

permit verification of the assumption at any reasonable 

level of significance. However, to determine significant 

differences, the "F to remove" statistic for the trend 

terms in the regression model indicates how well they 

contribute to explaining the variance. If trend varies 

widely from block to block, this statistic will be small 

and indicate low significance for trend factor estimates. 

To minimize the variance of error in this model, the 

use of uniform trend factors for all Pauly blocks can be 

slightly modified to differentiate between those blocks 

with an upward trend and those with a downward trend in 

crime. This would involve plotting the crime for each of 



-98-
-99-

the 40 blocks individually for the five years and then 
; 

I 
system of Pauly blocks. To test these assumptions, data 

through a scanning process of these plots, separate the 
on crime victimizations and crime reporting rates in 

f • 
i 
i 

blocks into two groups, according to an increasing or 
each block for the years of interest are required. The 

decreasing trend in crime. The use of two time series 
high cost of obtaining this type of information has 

models - each with a uniform trend factor for its group -
prevented its collection by criminal justice agencies. 

may reduce some of the unexplained variation in the single 

model used for all Pauly blocks. Another possibility is 

to just screen out those blocks with decreasing crime 

rates from the sample of the 40 highest blocks, since 

their expected, or normal, crime behavior was at an 

all time low during the selection period. Under such 
,', • 

circumstances it would be difficult for these blocks to 

compete for the experimental treatment with other blocks 

whose normal crime rates have, on the other hand, reached 

a peak during the selection period 

Assumption: 

When using data on the number of reported crimes, as 

opposed to the actual number of crimes for each Pauly 

block, two assumptions are being made. First, it is 

assumed that the reporting rate for each block does not 

change over time. Second, it is assumed that reporting 

rates do not differ among the blocks. Thus, changes in 

reporting rates as a function of time and geography could 

be a contributing factor in the erratic behavior of the 
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7. CONCLUSIONS . 

Regression artifact is an unavoidable problem in 

the evaluation of experimental programs which are designed 

to select a sample of clients or areas from the population 

for treatment, based on performance during a given period 

prior to the experiment. Ignoring the artifact situation 

in a comparison of the "before and after" performance of 

the treatment group may inflate the effectiveness mea-

sure used to evaluate the program. In view of this 

problem, the objective of this project was to develop 

analytical techniques for estimating the magnitude of 

the artifact, and consequently, for determining a more 

accurate measure of the effectiveness of such programs. 

For simple cases, the use of order statistics provides 

a theoretical approach to the artifact problem. For more 

complex situations, a computer simulation was developed. 

A computer program was constructed to simulate the 

process of selecting for treatment those elements in the 

population which exhibit the poorest performance during a 

specified period. To satisfy the specifications of the 

simulator, estimates of the expected performance during 

the selection period and the distribution of random 

performance variations for each element in the population 

are necessary. A time series model may be used to estimate 

• 

• 
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the above factors. For each run of the experiment, a 

measure of the artifact, based on the performance of 

the group selected for treatment, is computed. The 

output results of the experiment provide a probability 

distribution of the artifact measure, and its expected 

value, using the time series model, and a random number 

generator for the irregular fluctuations. In determining 

the reliability of these results, the order statistics 

techniques were used for validating the computer model 

for simple cases involving continuous probability 

distribution functions. A coin-tossing experiment was 

used for validation of the simulation model for discrete 

probability distribution functions. 

Use of the analytic techniques to study an actual 

evaluation situation, the St. Louis Police Foot Patrol 

Project, illustrates by way of a specific example that 

the regression artifact is almost certainly responsible 

for some of the apparent crime reductions attributed to 

the project. Based on the simulation results for this 

project, it can be concluded that the mere comparison of 

a "before" measure to an "after" measure may not always 

be a true iri~ication of the effectiveness of a program • 



-~.L-. 

-102-

I-
, 

8. APPENDIX 

" 
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APPENDIX 8.1 

Names of Variables Used in Compute~ Program 

Input Variables 

XINT (1 ) 

NINT 

WIDTH 

LINT 

NRUNS 

M 

LB 

LT 

CRIME (Ii J) 

P(I) 

lower bound on first class 
interval of histogram 

numbe~ of class intervals 

width of each class inteival 

number of class limits 
NINT + 1) 

number of runs of each 
simulation experiment 

(i.e., 

number of higheJt Pauly blocks 
in experimental set 

total number of Pauly blocks 
in sample 

number of unit time intervals 

number of crimes for ith 
Pauly block, j!h time interval 

estimated mean crime for 1971 
for Pauly block i 

Variables Determined by Program 

XINT(K) 

f(K) 

CPROB(I, K) 

x 

lower class limit for k~ 
interval 

f . h· kth . 1 requency w~t ~n -- ~nterva 

of histogram 

cumulative probability up to 
k~ interval for ith Pauly block 

uniform random number generated 



RANDN(I) 

SMALL 

SUMD2 

AMEAN 

VAR 

STDV 

STAT(N) 
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APPEND IX 8.1 
(continued5 

random error term generated 
by use of cumulative distri­
bution for i~ Pauly blocK; 
also r~?resents f~nerated 
crime rate for i~ Pauly 
blocK 

smallest of two random 
numbers being compared 

sum of squares for series 
of numbers 

average of series of 
numbers 

variance of series of numbers 

standard deviation of series 
of numbers 

artifact ratio for nth run 

• 

, , 

• 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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