NCIRS

This mierofiche was produces from documents received for inslusion in the MCJRS data base. Since MCJRS cannot exercise contiol over the physical condition of the documents sumitted, the individual frame quality will vary. The resolution chart on this frame may he used to evaluate the document guality.

Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR•101-11.504

Points of view of opinions stated in this document are these of the author(s) and do not represent the official nosition or policies of the U.S. Department of Justice.

U.S. DEPARTMENT OF JUSTICE LaW ENFORCEMENT ASSISTAMCE ADMINISTRATION NATIONAL CRIMINAL JUSTICE REFERENCE SERVICE WASHINGTON, D.C. 20531

RESOURCE ALLOCATION IN PUBLIC SAFETY SERVICES

Richard C. Larson
Associate Professor Urban Studies \& Electrical Engineering Massachusetts Institute of Technology Cambridge, Massachusetts

During the 1960's many large cities experienced a 10 to 15 per cent annual rate of increase in demands for urban public safety services, as represented by police, fire and emergency medical services. Such demand increases, coupled with higher salaries and tighter city budgets, required city administrators to seek management alternatives other than simply adding more personnel. Systematic analysis of alternatives tō improve performance and productivity have of course been carried out in the private and defense sectors. However, this has noi generally been done in the municipal public service secior. Administrators in many municipal public services had simply grown accustomed to adding personnel as the sole management response to be considered. Examining the budget of these services, however, one typically finds that 90 to 95 per cent of expenditures are consumed directly by salaries, pensions and related fringe benefits. Consequently, police, fire and emergency medical services comprise some of the most laborintensive, undercapitalized industries in the United States today.

One useful measure of the effort allocated toward seeking innovative solutions to problems is the dollar amount spent on research and development. Comparing relative expenditures in research and development, healthy growing industries in the private sector typically allocate 4 per cent of gross revenues to research and development. The Department of Defense usually obligates 10 per cent of its budget (13 per cent in the late 1960's) to research and development. In contrast, for most urban public safety services, at least through the late 1960's, it is difficult to identify as much as 0.1 per cent of total expenditures being directed toward research and development. This has changed somewhat in recent years-due to Law Enforcement Assistance Administration (LEAA) funding in the case of police, Department of Housing and Urban Development funding in the case of certain emergency services, and funding by the Departments of Transportation (DOT) and Health, Education and Welfare (HEW) in the case of emergency medical services. However, much research remains to be done, particulaily in areas where no one agency (Federal or otherwise) has had interest or jurisdiction.

Our NSF-RANN research aims at developing policy-related procedures and guidelines for improving the planning and decision-making in urban public safety systems, particularly poilice and emergency medical services. By focusing on more than one of the traditional urban emergency services, it falls outside the jurisdiction of any one of the specialized federal agencies (such as LEAA, HEW, etc.).

The research effort is broken down into three components:

1. A comprehensive analysis of evaluation criteria of urban public safety services, directed toward the understanding of productivity and effective. ness of urban public safety services.
2. Development of a set of analytical and simulation models that should be useful as planning, research, and management tools for urban public safety systems in many cities.
3. An evaluation of the impact of new criteria, methodologies, technologies, and organizational forms on traditional crime-hazard rating schemes, insurance rating methods, related regulations and standards, personnel performance criteria, system operating policies, neighborhood service indicators, employees and their organizations.

If these research components are envisioned as horizontal "cuts," police and emergency medical services are the two primary vertical cuts, representing the two specific kinds of urban public safety systems on which the research is focused.

The research is strongly tied to cooperating agencies, especially in the Boston-Cambridge area, and additionally to other agencies throughout the country. It provides a close interaction of university-based research with the operational realities of police and emergency ambulance agencies. This is designed to provide early feedback from agency administrators regarding the underlying assumptions of the research and the potential utility of the research results. It is also designed to shorten the usual $5-10$ year span from the inception of a research program, through the development phase, to the successful implementation of the fruits of the research in operating agencies. Current pressures for productivity improvement in the urban public sector almost demand that this time lag be cut to 2-3 years wherever possible.

Successful transier of research results requires an understanding of the institutions in which change and innovation are proposed. To faciitate the transfer, our research project is
concerned not only with developing the technical details of various management and planning tools, but also with obtaining a knowledge of the process of change within the institutions-paricularly in urban police departments and emer gency medical seg porals historians, urban planners, police and medica professionais, operations researchers, marage ment scientists and physicists.
An up-to-date account of these efforts can be obtained from our monthly newsletters, which 4-209 Massachusetts Institute of Tectnology, Cambridge, Massachusetts 02139 .

Due to space limitations, the present paper int focus on the second research component lisled above, involving the development and im or mation of analytical and simulation models for planning, research and management. Th will examine the quantitative tools that have been developed recently, often under the name "operations research," and place them in a larger conext. This context will relate to industrial and military applications of similar tools on the one tional problems of urban public safety services on the other.

Second, we will review the methodologies contributing to the development of quantitative models of urban public safety services and out simulation of urban police patrol and dispatching

Finally, we will discuss current public safety Finally, we will discuss current public satety
mplementations of quantitatively oriented planning and management tools developed at M.I.T The discussions will usually emphasize police applications, although significant activity is unde Weferences are of emergency medical services. reader to pursue details of methods or implementations that are not discussed here.
Quantitative Tools in Perspective
To place quantitative tools in the broader context of administrative and organizational prob lems of urban public safety systems, it is useful
to review the history of their use or nonuse in

1 For instance, see J. M. Hoey. Planning for an
Ettective Hospital Administered Emergency Ambulance System in the Citty of Boston. Report RR-0.1-7.7, Innova-
tive Resource Planning in Urban Public Safety Systems, Laboratory of Architecture and Planning, Masssachusets,
institute of Technology, Cambridge, Massachusetts, Institute
public and other systems. The application of operations research and quantitative modeling to agencies with operational problems is relatively new. Most agree that operations research estabapproximately 30 years ago. Shertly after World War II it was found that many operational problems experienced in an industrial context could be addressed through the classic steps of an operations research study; define the problem,
specify the objectives, define criteria relating to the objectives, specify alternatives, compare al ternatives, present results, implement recommen dations

Indeed, both major applications areas of operations research-industrial and militaryhave been flourishing during the last 20-25 years Many special transportation science have spun off as in dividual applied sciences in their own right. In fact, it is a popular notion that operations re search is, by definition, a transient applied sci ence to be utilized in substantive areas that have tematic analysis. Then, the notion holds, as the knowledge and experience in a particular sub stantive area grow, work in that area is no longer operations f geaw bus logistics analysis or in ventory control.

Implementation of operations research studie in military and industrial settings never has been entirely straightforward. But there are many doc umented instances of successful implementation ranging from revised military tactics during World War II, to modern inventory control systems, to time-shared computers.

There also are documented cases of difficult implementations and cases where there has been no implementation at all. It is concededly cianger ous to generalize over thousands of operations research studies. But it would be fair to say that curred in instances for which either the objectives and constraints were very well-defined (e.g., maximize profit, minimize probability of system failure or the analysts took pains to include in thei study broader organizational issues. Examples of
such issues are impact on personnel training recruitment and incentives; customers' perceptions and longer-term implications of the work in terms of how it might fundamentally change the system under study. Many unsuccessful implementations when success or failure would be determined by their degree of resolution

A third major set of operations research applications that has emerged during the last 2-5
years is in the area of governmental service
systems, including urban public safety systems. In these systems today, applications of operations research and systematic analys were in defense systems 30 years ago and in industrial systeins 20-25 years ago. ${ }^{2}$ Problems of these systems are becoming known, alhough formulaplexity has usualy come apparent although work in this area barely has begun. Limited implementat:on experience already is available, and much of this experience points to a need to consider more cares discussed veve in order to provide any chance of success ful implementation. ${ }^{3}$

Implementation Difficulties-One may question why the quantitative techniques often re ferred to as operations research have not had an earlier impact on governmental service systems. The answer to this is multifaceted and din there are some obvious considerations:

1. III-Defined Objectives and Constraints. bjectives, performance criteria and constraints for these systems are very difficult to isolate and define. For urban public safety systems one may state as an objective the eefficient, eflective service within reasonable budget constraints." It is difficult, however, to transform such sweeping tatements into performance criteria that a measured easily and into constraints whose por sible violation can bey vary among administrators, peratives and consumers in an urban public safety service.

Travel time may be offered as one possible performance criterion, but its indiscriminate use could result in the assignment of inappropriate personnel in response to a famise medical personnel in response to a cardiac arrest, just to save seconds of travel time. Workload equalization among personnel, if followed precisely, could result in gross inequities in the type, qualdition rapidity of servegins to realize that a popular word in operations research, optimization, often bears little relevance to sperational realities of governmental service systems, primarily because of the

difficulties in defining objectives and constraints. 2. Lack of Productivity Measures. Since sys res of system productivity. Signals that an urban public safety system is not performing well are no nearly as apparent as a loss (rather han a profi) in a particular year for an industry or as a large system. For instance, if one city incurs twice the per-capita crime rate of another city, this may simply mean that the citizens and police in th former city are more likely to report consistently and record acrime rate is a fact, it may be due in par to the number of transients who enter the city at 9 a.m. and leave at 5 p.m.

Many measures other than crime rate reflect upon police operations in a city. This fact makes impossible such statements as "City A's police department is better han City B. Be within an urban public safety system that would tend to favor the status quo often prevail. The alternative of "no change" assures that visible failure will not occur, because these systems have been working in some visible progress may be difficult to achieve.

In the context of our research project, the first of the three research components examines alternative measures of performance and produc individual officer or ambulance attendant, to provide more meaningful measures of efficiency effectiveness and equity. The complexity of the issues involved requires that several different ap proaches be used. The approaches include interviewing agency personnel and consumers (perat M.I.T.), reviewing the literature from about 1900, analyzing measures and rules of thumb used currently by consulting firms and profes sional organizations (such as the internationa Association of Chiefs of police) misused so as to achieve results not desired (and possibly ex actly opposite to those originally planned).
3. Internal Resistance to Innovation. These systems with their civil service orientation have tended to be insular, often fraternal, staffed with career employees whose tormac eol level. The high degree of job security frequently gives rise to an average of 20 years or more in one agency until either retirement, or (less likely) resignatio or dismissal. Thus, the time constants of thes sysemieve a 50 per cent turnover in personnel Rapid innovation is apt to be frustrated unless there are receptive personnel in key positions.

Most often, implementation must be viewed as a multiyear process, making governmental
distinct from their industrial counterparts.

In our research project, Prof. Robert Fogelson (a historian in the Department of Urban Studies and Planing, M.I.T.) is analyzing the process of States. He is focusing on the response of police personnel and their de facto unions to attempted tional. This effort is aimed at providing guidance to those performing the analytical modeling regarding the projected response of police personnel and their unions to innovations that may
evolve from the more narrow technical work. Fogelson's efforts should shed light on constraints that otherwise may have remained hidden until after attempted implementations, and they should suggest aspects of various innovations unattractive).
4. Resistance to Outside Technical Assistance. Until recenily, there has been no provision or motivation for agency administrators to call
upon outside experts or consultants for assistance upon outside experts or consultants for assistance
in helping analyze an operational or planning problem. In police departments, for instance, stated that outsidn police administrans have cause they have had no on-the-beat experience. This attitude in a manufacturing firm would require all executives to start as assembly-line
workers. Until the recent initiation of Federal funding programs, it has precluded successful interaction of professional problem solvers and agency administrators. Moreover, in those few
circumstances in which such interaction is funded locally, the 1 or 2 per cent of the budget for outside technical assistance often receives the most careful scrutiny and subsequently the sharpest cuts, apparently neglecting the fact that 90 per cent or more of the total budget is consumed Thus, the operational problems of these agencies only recently have become known to those other than agency employees.

This situation has contributed to the delay of urban public safety services in modifying and implementing various modern technological in-
novations that could markedly improve performance and productivity. One example is the computer. Urban public safety systems (and many other governmental service systems) are years
behind their industrial counterparts in incorporatbehind their industrial counterparts in incorporating the computer's capabilities in day-to-day
planning. and decision making. Prof. Kent Colton (an urban planner at M.I.T.) is continuing a multiyear survey of more than 150 police departments to determine what factors have led to delay in computer impiementation and which departments
consumers of computer services. He is also work ing to project the use of computers in such new
application areas as resource allocation, command and control systems, and automatic vehicle monitoring systems.
5. Operational Complexity. The physics that governs the operational behavior of urban public safety systems is complex and, at this time, poorly understood, This lack is due to several circummands for services cannot be determined precisely in advance. The time required to service an incident is likewise unpredictable. There are many priority or importance levels of requests
-for service. There are often many cooperating emergency response units within a region, making the number of highly interdependent status and performance variables quite large. There are needs to have point-referenced performance mea sures (e.g., average travel time to an emergency
at a particular address) as well as area-referenced performance measures (e.g., average region-wide travel time). Each of these factors adds complex ity in the operational analysis of these systems. of urban public safety systems is still in its em bryonic stages.

The simulation model to be discussed later in this paper represents one tool for studying the physics of these systems. Others now are being
developed as part of our NSF-RANN efforts. 4

Undoubtedly, there are still other factors one might cite when discussing the difficulties of im plementing changes based on methods of opera illustrated above, the approach used in our NSF RANN research program inciudes the identifica fion of social, political and bureaucratic factor hat are at least as important as the technical results of the analysis, and the study of these with practice within these systems. In addition, as new quantitative tools are developed in the course of the research, we plan to document each quantitastood case study, selected from and with the oncurrence of one of several local cocperating public safety agencies. To the maximum extent

possible, we draw on the expertise of one or more
of the administrators of the selected agency
agencies to obtain the following

1. A more realistic case study, incly/ding often ill-defined legal, political and socia/ contraints.
2. A sense of the limitations of the particular uantitative method under study.
3. The understanding and cooperation of he agency.
4. It is hoped-the commitment of the agency to implement the method at least on a

The Relevant Quantitative Tools

Before one of the receritly developed quanti ative tools is detailed, the mathematical modeling methods that are most relevant are discussed briefly. These methods are presented in a nev
M.I.T. graduate course "Analysis of ce Systems," which has evolved from the recent NS public systems work at the M.I.T. Operations Research Center. ${ }^{5}$

Geometrical Probability-One relevant tool geometrical probability, a branch of applied probability that has seen successful application in astronomy, atomic physics, biology, crystallogthe techniques of geometrical probability have not been widely applied to urban public safety systems, probably because most previous applicaions have been in areas far removed from urban problems. Yet geometrical probability concepts involving spatial interrelationships between response units of urban public safety services and demands for their services. For instance, given the spatial distribution of police patrol units and rator can predict neighborhoods that receive nadequate coverage in anticipation of various types of emergencies that might arise, the work ads of police units in each of the areas or the more than t minutes to travel to the scene. Geo metrical probability techniques are important in planning situations in which an administrator examines how alternative numbers and positionings of units in the field affect the performance

Generally speaking, the models developed that use geometrical probability methods have the
advantage of indicating first-order interrelation5 See $\mathrm{R} . \mathrm{C}$. Larson, "A New MIT Graduaate Course:
Analysis of Urban Service Systems.," Urban Analysis, Analysis of No. 1, 1972 .
${ }^{6}$ See M. G. Kendall and P. A. P. Moran. Geomet-
ships among parameters. They thereby improve who may have to incorporate other nonquantifiable issues into their decision making. Thus, these models indicate the general nature of the effect of adding more units in a certain region, designating particular units as specialists in or tain types of incidents. Rather than yielding precise numerical "answers" as one finds with a complex optimization model, these models typically offer a range of policy options in which the straints perhaps not included in the modelis. Thus, the methods provide a general tool for analyzing operational questions, but they do not purport to provide precise answers to the problems.

Multiserver Queuing Theory-A second class of relevant tools derives from multiserver queuing lation places excessive demands on a limitedcapacity service system. For instance, a city's population generates the need for ambulance short a time period, certain required in too lance service may have to wait in queue until ambulances become available to respond. An ad ministrator would want to examine the trade-offs between the costs of additional ambulances and ambulances. This type of question numbers proached from a queuing theory point of view. The important new feature in applying queuin ideas to urban public safety services is the close interrelationship between spatial positions of arrival times and service completions. Such spatial and temporal interrelationships are rela ively unexplored in queuing theory and are pro iding important are for current research.
Again, queuing models are useful for obtainmeters applied to urban safety servong para already have provided insights about the placing of boundaries between ambulance garages, the location of facilities, the number of patrol units and the amount of acceptable level of service system is likely to incur 7 -dist dispatching th Networks and Algorithms

In recent years interest has been focused on matical programming techniques. The applica ions of these techniques to the urban public safety systems area include problems of design o ransportation, communication, distribution, and 7 See for example, Drake, Keeney, and Morse, op
cit., especially Chapters 7,8, and 10 .
unexpected; design of work schedules, work force size problems, design of hiring strategies, and
optimal location of service facilities are among optimal
these. ${ }^{8}$

Simulation-When complex combinations of policy alternatives are being contemplated in a actual urban envirst to achieve certain insights and to indicate important unresolved problems; then simulafion models are used to examine the policy al ernatives in detail.

Simulation of urban public safety systems presents many new problems not ordinarily faced in more usual situations. To be effective, such simulation must be structured to reflect fully the well as the sequential time nature of events common to many systems. The spatial organization of the simulation must be sufficiently general so that one can readily examine problems involving par (e.g., ambulance or hospital districts, police patro sectors), spatial distribution of response units and ncidents within districts, and determination of preferable dispatching strategies.

Simulation of Urban Police Patrol

and Dispatching

As part of our NSF-RANN work we are developing a number of quantitatively oriented tools to assist decision making based on the methods outned above. Some are just now at the point o inception, whereas others are well down the road owa following pararraps we describe a simula tion model of police patrol and dispatching that alls in the latter category. It was developed under NSF support at MIT several years ago and now is being implemented in several police department in the United States and Canada. Continued reis an important part of our NSF-RANN work

The simulation model is constructed to allow users to replicate to a very great extent the actual dispatch and patrol operations of most urban police departments. It provides thereby a tool to questions. Police administrators should find simulation models valuable for the following purposes
. They facilitate detailed investigations of operations
part of the city).

> 8 See C. Revelle, D. Marks and J. Liebman, "An
Analysis of Private and Public Sector Location Models." Management Science: Theory Vol. 16,1970, p. . 692 -2707.
Also N. B . Heller : Proportional Rotating Schedules. Also N. B. He
Ph.D. Dissertation
Phia. Pa 1969 .

2 They provide a consistent framework for estimating the value of new tech nologies
3. They serve as training tools to increase awareness of the system in
teractions and consequences resulting from everyday policy decisions
4. They suggest new criteria for moni toring and evaluating actual operating systems.
systems.
Earlier work by Colton 9 reporting survey results from approximately 500 police departputers for resource allocation as the single most important application of computers in the coming years. Simulation models and other analytical

Overall Model Structure-This section will outline the structure of the model developed by
the zuthor and its use in an on-line interactive mode. The simulation works in the following way. Incidents are generated throughout the city and distributed randomly in time and space according to observed statistical patterns. Each incident has an associated priority number, the lower
numbers designating the more important incidents. For instance, a Priority 1 incident would be officer-in-trouble, felony-in-progress or seriously injured person; a priority 4 incident could be open fire hydrant, lock-out or parking violation. As each
incident becomes known, an attempt is made to assign (dispatch) a patrol unit to the scene of the incident. In attempting this assignment, the computer is programmed to duplicate as closely as possible the decision-making logic of an actual police dispatcher. In certain cases this assigntion level of the force is too high; then, the incident report (which might in actuality be a complaint ticket) joins a queue of waiting reports. The queue is depleted as patrol units become aliabie.
The model is designed to study two general classes of administrative policies-the patrol dement policy. The patrol deployment strategy determines
the total number of patrol units, whether units are assigned to norioverlapping sectors, which sectors constitute a geographical command and
which areas are more heavily patrolled than others. The dispatch and reassignment policy specifies the sell of decision rules the dispatcher follows when attempting to assign a patrol unit to reported incident Included in the dispatch

9K. Colton, "Police and Computers: The Ise, Ac-
ceptance and Dimpact of Automation ion Municipal
Year Book, international City Managem:ent Association,
'1972.
policy are the priority structure, rules about crossprecinct dispatching, the queue discipline and so

The model tabulates several important measures of operational effectiveness. These include times, amount of preventive patrol, workloads of individual patrol units, the amount of intersector dispatches, and others

The simulation program is organized to reflect the spatial relationships inherent in patrol operations, as well as the sequential time nature
of events which is common to all simulations First, the spatial or geographical structure is discussed, then, the time sequence of events.

Geographical Structure-The city, of arbi-
art trary shape, is partitioned into a set of "geographical atoms." Each atom is a polygon of arbitrary shape and size. The atoms are sufficiently smal so that any probability density tunction can be
considered uniform over the atom. Such functions depict, for instance, the positions of reported incidents. This partitioning does not restrict accuracy of results, because the atoms can be arbitrarily small.

A patrol unit's sector is a collection of atoms tiguous (spatially) or consecutive (in the numerical ordering of atoms). In general, each atom may belong to any number of patrol sectors hich are overlapping
A patrol command (for instance, precinct, dis trict, or division) is also a collection of atoms command.

Time Sequence of Events-The simulation is an event-paced model. That is, once a certain set of operations associated with one event is completed, the program determines the nex gent that occurs and updates a simulation clock next event. The program then proceeds with the set of operatioris associated with that event. Once the clock reaches some maximum time ($T_{\text {marr }}$), the simulation is terminated and summary pleted run of the simulation entails inputting data initializing simulation status variables, executing the program for an equivalent time $T_{\text {mas }}$ and print ing the summary statistics.

The details of the various dispatching algoinms or patrol deployment policies are no portant parameters at each point in the simulation is provided.

The main type of event that occurs is a reported incident or a "call for police service." The
times of occurrence of calls are generated as in
a Poisson process with rate parameter LAMBDA (equal to the average number of calls per hour) he greater the value of LAMBDA, the more saturation) of resources. The location of the call s determined from historical patterns which indicate the fraction of calls that originate from each atom; given the atom of the call, its spatia location within the atom is assumed to be uniermined from historical data which may vary by atom.

Once the position and priority of the inciden are known, the program executes a DISPATCH algorithm, which attempts to assign a patrol unit th dispatch policy specified by the user. One component of the dispatch policy specifies the geographical area from which a unit may b ispatched

Option 1: Only assign a unit whose pa-
trol sector includes the geographical
atom containing the incident (a sector
policy
Option 2: Only assign a unit whose precinct or district designation is the
same as that of the incident (a precinct or district policy).
Option 3: Only assign a unit whose division designation is the same as that of the incident (a division policy). A division con
tricts.

The

The particular option on a given run usually is specifieu at the start of the run, although the alter the dispatch policy during the course of a run.

Given that a patrol unit is within the correc geographical area for a particular incident, the considered eligible for dispatch to this incident. This determination focuses on estimated trave time to the incident, the priority of the incident and the current activity of the patrol unit. In general hery important incidents to preempt (interrupt) patrol units servicing incidents of lesser impor tance. In addition, the importance of preventive patrol may vary with each unit, thereby giving the mal levei of continuous preventive patrol

If no unit is found eligible for dispatch, the reported incident is inserted at the end of a queue of other unserviced incidents. There may be separate queus
priority level.

If at least one unit satisfies the eligibility pected travel time. The assigned unit's priority
A second major type of event occurs wh a patrol unit completes servicing an incident. A either reassigns the returning unit to an unserviced incident or returns the unit to preventive patrol. The eligibility conditions regarding priorities, travel distances, and geographical areas are constitute an integral part of the reassignment policy. In addition, it is necessary to specify how one unserviced incident is given preference over another. This part of the reassignment policy, alled the reassignment preference polic, pay systems.

Location Estimation-If not all available position information is. used or if the unit is performing preventive patrol, the method of estimation of patrol unit position must be specified. Three options are available. One simulates the system. 10 The other two simulate estimation guessing procedures that are commonly found today in most police operatiens.

Simulation Variables-The simulation program can tabulate statistics on any algebraically defined variable. The variables that have been

1. Tolat olo in cident that is travel time plus time at the scene.
2. Workload of each patrol unit, mea sured in total iob assignments and in time spent on jobs.
3. Fraction of services preempted
4. Amount of preventive patro
5. Travel time of a unit to reach the scene of the incident.
6. Dispatcher queue length
7. Dispatcher queue wait.
8. The number of intersector dis patches.
9. The fraction of dispatcher and/or re assignment decisions for which the than known exactly
10. The fraction of dispatch decisions which were nonoptimal, in the sens that there was at least one availabl 10 See R, C. Larson, Urban Police Patrol Analysis,
MIT Press, Cambridge, Mass. 1972 , Capaper , for more
details of simulating automatic car locer
unit closer to the scene of the inci-帾.
11. The extra distance traveled as the signmen
As will be discussed below, each variable Ae tabulated at any one of several levels of gregation
On-Line Interactive Capabilities-Following the initial creation of the model at MIT, a number ifying and developing the noodel for various implementation purposes. Here we discuss one such effort by R. Couper, K. Vogel and J. Williamson 11 which has been devoted to implementing an easy-to-use on-line input/Output package
with the simulation. This effort has resulted in a program that is usable readily by someone without detailed knowledge of computer operation the simulation logic, or statistics. (Several othe next section.)
The core of the Input/Output package is a sequential tree structure, which presents to the user the options available to him. If the user ex presses interest in a particular option, details o termined by the responses of the user. Defaul ptions are standard, so that if the user does no know what to do at a particular point, a simple arriage return yields adaitional helpful informa Table 1.

TABLE I. Sample I/O Session
nter districts to be simulated (or enter "all") (Italics indicate user's instructions.)
Enter districts you wish to modify.
none
Do you want to change any variables?
es
Simulation Variables and Their Value

1. Length of simulatiori run $=2.00$ hours
2. Number of calls per hour $=$

Distr. $\begin{array}{rllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 11 & 13 & 14 & 15\end{array}$
3. Vehicle selection method $=$ Strict center
mass speed
$\begin{array}{lrrrrr}\text { Priority } & 1 & 2 & 3 & 4 \\ \text { Serv. time (in min.) } & 33 & 33 & 33 & 43\end{array}$
$\begin{array}{lllll}\text { Serv. time (in min.) } & 33 & 33 & 33 & 33 \\ \text { Resp. speed (in } \mathrm{mph} \text {) } & 15 & 12 & 12 & 10\end{array}$

11R. Couper, K. Vogel and J. Williamson. Final Report on the Computer Simulation of fine Boston Police
 Report on the Computar Simulation of the Boston Police Partoro forces. Urban Sciences, Inc., Wellesley, Mass., 1972.

5. Type of simulation output=City
6. More detailed information

Enter number(s) of those to be changed
1,3, 5

1. Enter the length of the simulation in hours=
2. There are 3 vehicle selection procedures, they are $=$
3. Modified center of mas
4. Strict center of mass
system
Flease enter the number of your choice $=$
5. Do you want city-wide or district simulation strict
Once the initial input/output session is completed, the user has specified the following: the employ (these data are usually stored on disk), the patrol deployment policy (a standard one also is stored on disk), the dispatch procedures, the method of car location estimation, the length of the run and whether he desires to trace the simuprogress.

Following completion of the simulation, a LEVEL 1 output is printed. A sample is shown in Table II.

Table II. Sample LeVEL 1 Outp DISTRICT NO. 15
 The average patron unit spent 34.21% of its time servicing calls.
 Averagi response time to high-priority calls was 6.40 minutes.
 Average response calls was 7.27 minutes.
 Average travel time was 3.19 minutes.

This contains a small number of highly aggregated statistics describing the run: average queuing delay), averal response time (including LEVEL 1 output contains no statistical jargon (for instance, variance or sample size) and no program variables. It is self-contained and selfexplanatory. LEVEL 1 output has been found to be quite useful for introducing police planners ulation and for quickly eliminating runs with obviously poor performance characteristics.

At this point the user may request LEVEL 2

$$
\begin{aligned}
& \text { Table III. Sample LEVEL } 2 \text { Output } \\
& \text { Do you want to see LEVEL } 2 \text { statistics? } \\
& \text { Statistical summaries-District No. } 15 \\
& \text { An average of } 34.21 \% \text { of time of all units wa } \\
& \text { An average of } 34 \\
& \text { The following units were substantially below } \\
& \begin{array}{l}
\text { The following units were substantially above } \\
\text { this figure: }
\end{array} \\
& \text { his figure: } \\
& \text { Unit } N \\
& \text { Unit Type } \\
& \begin{array}{c}
\% \\
79.14
\end{array} \\
& \text { Average times for each type of call were }
\end{aligned}
$$

The average travel time was 3.19 minutes with regular spread.
10.53% of calls incurred a queuing delay due $0.32=$ aver. extra miles travel due to not dis $0.32=$ aver. extra
patching closest car.
Average total jo cene) by priority was:

$$
\begin{aligned}
& 1 . \quad 77.54 \text { minutes } \\
& \text { 2. } 37.45 \text { minutes } \\
& \text { 3. } 0.00 \text { minutes } \\
& \text { 4. } 18.05 \text { minutes }
\end{aligned}
$$

The
call was:

$$
\begin{array}{lr}
\text { 1. } & 0.00 \\
\text { 2. } & 0.51 \\
\text { 3. } & 0.00 \\
\text { 4. } & 0.43
\end{array}
$$

The
all was:

$$
\begin{aligned}
& \text { 1. } \quad 0.00 \text { minutes } \\
& \text { 2. } \quad 05.39 \text { minutes } \\
& \text { 3. } 0.00 \text { minutes } \\
& \text { 4. } \quad 33.46 \text { minutes }
\end{aligned}
$$

seen, this level is less aggregated and provides average vaiues of many variables by priority leve. It is expected that a sizable number of users will quate for certain high-level planning and decision making problems, such as determining overal manning levels.

If the user desires even more detail, he may now request portions of a LEVEL 3 output. A
sample is shown in Table IV. As one can see, this

Table IV. Sample LEVEL 3 Outpu

 Do you want to see LEVEL 3 statistics?yes

evel presents many detailed statistics and can be of great assistance in very fine-grain planning problems-for instance, sector design. It is expected that very experienced users usuallisions
demand LEVEL 3 output before making decision ffecting actual operating procedures in, the field or at the dispatcher's position.
Regarding the other on-line capabilities, the TRACE optiori, which prints out the details of eac call, assignment and reassignment in real time, assists new users in learning the operantuition fo system operation. The TRACE option potentiall can be used for training dispatchers in new dispatching procedures. In this mode of operation, the computer would request the user to make dispatch or reassignment decision DISPATCH and REASSIGNMENT algorithms would be by-passed Once the dispatcher-user settles on a para sto strategy he wishes to test in detall, he can scrib ing his strategy and run the model for a sufficiently long time to obtain reliable statistics.

Implementatioi

At the time of this writing (January 1974), the simulation model described above and several other models are being implemented or are planned for implementation in the following cities: Boston; New York; Washington, D. C.; Quincy, Mass.; Newark
Lowell, Mass. Lowell, Mass.

The work with Boston, Cambridge and Quincy is being supported as part of our NSF-AANN
activity. It focuses primarily on various analytical activity. for focuser design, dispatch selections, and preventive patrol allocation. The remainder of the implementation work, supported by various scribed above and, in one case, a resource allocation algorithm, ${ }^{12}$ 'both of which were developed at MIT several years ago under NSF support. Their technical details now appear in the open literature. The following paragraphs outline a portion
of this implementation activity, focusing first on of this implementation activity,
the work in the greater Boston are Much of this work utilizes the so-called hypercube queuing model, 13 which currently is being
${ }^{12}$ See R. C. Larson, Urban Police Patrol Analysis note 10), Chapter 5 .
13 See for example, R. C. Larson. A Hypercube
Queuing Model, ox. ofit: R. C. Larson, lllustrative Police Queuing Model, op. cit.; R. C. Larson, Illustrative Polic
Redesign; G. L. Campbell, op. cit.; and J. P. Jarvis Redesig,
op. cit.

Boston-The Boston Police Department an nounced Sept. 18, 1973, the largest change it had ever made in its policies of patro manpowe
allocation. The total number of cars on the stree as incre. The total number of cars on the stre nincrease of 46 per cent Commissioner Robert J. diGrazia announced that the department's new "Maximum Patrol and Response Plan" was the result of a five-month study by the Police Com personnel and consultants During July, a cas study applying the hypercube queuing model to District 4 in Boston was done by the author in response to a request from the police Command force. The initial focus was on District 4 becaus that district contained nearly an entire spectrum of neighborhood characteristics to be found else where in Boston. Thus, it was felt that if the plan worke. Boston police districts.

Several quantitatively based objectives pro vided the goals of the reallocation plan:

1. Frovide immediate response (i.e., no queue delay at the dispatcher's posifor at least 95 per cent of all calls.
2. Approximately equalize workload per
car
3. Provide about 50 per cent of street
time for patrol.

The District 4 Commander, Deputy Superintendent Joseph M. Jordan, reported that 93 per a trial implementation in District 4 , using numbers of patrol units derived from queuing analysis.

Workloads were distributed very unevenly prior to implementation of the new plan. For instance, cars in District 7 (East Boston) were anday, five hours at night and two hours in the early morning shift. However, cars in District 11 (Dorchester) were answering calls for more than six hours during the day, virtually all of the time dur during the early morning shift,

Furthermore, District 11 cars were often unable to respond to all of the calls during the night shift. The new plan attempts to give at least four hours to each car in each shift for preven such parked worklod sities. such marked workload inequities.
Examining the computational results of the
study, the Task Force felt additionai workload and travel time inequities due to geographical factors could be significantly reduced by formalizing a procedure for inter-district dispatching; in one district now may assume a new central
role if its patrol unit is dispatched to calls in an adjacent district. The
in the adjacent distric

The extra manpower required to implement the new Boston allocation policy was drawn from sworn police personnel performing clerical funcfunctions were unnecessary or could be handled by other agencies. Many non-vital clerical functions were eliminated, including such functions as duplicating at the district level records available at headquarters. New organizations were drawn
for district personnel and new procedures developed to speed the remaining paper work, thereby making policemen who previously performed clerical functions availabie for street duty.
Cambridge and Quincy, Massachusetts-Use
the model by the Cambridge and Quincy Police of the model by the Cambridge and Quincy Police
Departments still is at a more preliminary stage. The directors of planning and research of both departments are now collecting the data required to operate the model. Both plan to perform the sector-redesign iterations themselves, using the puter programs developed at MIT.
The Cambridge sector plan has not been re-
igned for more than 20 years, and there is evidence of marked inequities in patrol workloads. An officer assigned to the most centrally located sector has recently complained to planning and research staff about the operation of his police Doesn't it work?" He responded, "Yes, it worksthat's the problem. Every time l'm free, l'm being sent to sonieplace else in Cambridge on another assignment." Naturally, the Cambridge Director
of Police Planning and Research hopes to reduce of Police Planning and Research hopes to reduce
this workload burden by exploring different sectedesign options with the aid of the model.

The Quincy Police Department is performing a broad-based operational analysis under a grant for innovative planning, supported by the Massachusetts Governor's Public Safety Committee. Massachusetts for the Law Enforcemient Assistance Administration of the U.S. Department of Justice.) Part of this activity requires use of analytical and simulation modiels of police activity to improve planning and day-to-day decision
making. The City of Quincy, situated on Quincy Bay, has many natural and man-made barriers to travel, thereby limiting the number of feasible alternative sector designs. The Director of Planested in learning the magnitudes of the effects on performance discussed here in a Boston context.

Both the Cambridge and Quincy implemientation experiences, will be documented as reports of our NSF-RANN project.

Washington, D. C.-An uff-line version of the
simulation model is being created and implemented for the Washington, D. C., Metropolitan Police Department under the technical guidance of Mathematica, Inc. and with the support of the
Law Enforcement Assistance Administration 14 Here the city's geographical structure is modeled as a set of discrete points, rather than polygons, each point corresponding to one city (surveyor) block. For Washington, D. C. this represents apdetail to make the model useful for sector redesigns for the 138 scout cars distributed throughout the city. The selection of a point geography was based on detailed block-ievel statistics available for Washington, D. C., and on the fact that around times (in the same sense as an on-line real time model). This effort began in January 1972, and is reported in periodical publications of Mathematica, Inc. and the Washington, D. C.
New York-The New York City Police De York City-Rand Institute to adopt the on-line simulation and a resource allocation algorithm to the special requirements of New York City and to mplement these tools for analysis of the entire bver 700 regular radio-dispathout 75 precinct plus special-assignment cars and radio-dispatch able foot patrolmen). The Department eventuall hopes to provide each precinct commander with a readily understandable set of on-line decision 5 precinct station houl access from each of the hese tools will houses. Thus, it is hoped that ralized decision be used for short term decenralized decision making, as well as for longer and centralized resource allocation, and plannin poject still is in progress, and draft reports ar available from the New York City-Rand Institute

[^0]National Research Council of Canada-Dur ing the last two years, F. R. Lipsett and J. Arnold of the Radio and Electrical Engineering Division of the National Research Council of Canada hav eprogrammed the version of the simulation mode o their computing system. Their work is curram in progress, aimed at determinirg the potentia usefulness of simulations to both small and large police forces. They have successfully simulate a cooperating police force near Ottawa (Glou ester Township) which operates with five sector and five patrol cars over a 125 square mile region. Their current work, now at the data co llection stage, is with the Ottawa Police Department. Documentation should be available
early in 1975.

[^0]: 14 See H. F. Miller and B. A. Knoppers, "A Com ons." Paper presented at spatching and 1 ntionational Sym osium on Criminal Justice, Information and Statistic

