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New Statistical Methods for
Substance Use Prevention
Research

Linda M. Collins and Larry A. Seitz

Some research on drugs and drug use takes place in the laboratory under
well-controlled conditions using simple experimental designs. The data
from these studies are analyzed easily using standard statistical proce-
dures; sometimes inferential statistics are not even necessary. In contrast,
substance use prevention research, particularly intervention research,
generally takes place in the field. Field settings offer the tremendous
advantage of ecological validity, but they are associated with some
disadvantages as well: Field research designs are, of necessity, more
complicated, and the researcher can maintain only so much control.
Often, the standard, commonly available statistical procedures fall short
when applied in complex field research situations. For example, because
these procedures are not well suited for the type of data that have been
collected, they do not answer directly the research question of interest,
Type 1 error rates are inflated, or statistical power is low. For these
reasons and others, it is extremely important for the field of prevention
that researchers keep abreast of the very latest developments in statistical
methods.

The ultimate purpose of statistics is to provide a means for drawing
conclusions from data. At its best, statistics enjoys a symbiotic rela-
tionship with substantive research: The need to answer substantive
questions in a particular area inspires the development of new statistical
methods, and then the new statistical methods in turn prompt substantive
researchers—both inside and outside the area in which the method was
originally developed—to see their data in new ways and pose new sub-
stantive questions. Yet, statistical methods do not always fulfill their
potential for playing an important role in substantive research. In the



field of prevention, this often is because statistical methods are not made
accessible to substantive researchers. Statistical research is unique among
scientific disciplines in that new developments must be shared not only
with the statistics community but also with the substantive disciplines,
such as prevention, most likely to make use of them. The problem is that,
while the former goal of sharing with the statistics community is accom-
plished by means of publications in statistics journals, there is no well-
established mechanism for achieving the Iatter goal.

It has been the experience of the editors of this monograph that
prevention researchers display an openness to, and even eageress for,
new statistical methods that would help them obtain the most from their
data. Unfortunately, they have nowhere to turn to learn about the very
latest methods. Most prevention researchers, like their colleagues in
other areas (including statistics), are not trained to read highly technical
presentations outside their own area of research, so they typically do not
read statistics journals. Even those prevention researchers who do have
the background to read technical presentations of statistical material
understandably are willing to invest the considerable time that this
requires only if there is a high probability that the technique presented
will be useful to them. However, the likelihood that a technique will be
useful cannot be determined without reading the article, resulting in a
frustrating "catch-22."

The editors believe that monographs like this one represent a way to
disseminate state-of-the-art statistical procedures to the substance use
prevention research community while avoiding the frustration described
above. This monegraph results from a technical review held by the
National Institute on Drug Abuse in Bethesda, MD, on September 9 and
10, 1992. Each of the chapters presents a statistical technique or method-
ological issue chosen because of its immediate relevance to prevention
research, The authors of these chapters all have demonstrated an ability
to present technical material in an interestiny; and accessible manner;
many of them are prevention researchers and are familiar with the special
concerns of this field.
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Readers are likely to find the presentation of the material in this mono-
graph to be somewhat different from other presentations of statistical
material. Each chapter in this monograph is accompanied by an abstract
that summarizes how the technique presented is useful in prevention
research. The chapters are written as nontechnically as is possible
without sacrificing rigor, with more technical material set off in italics
from the rest of the text so that it can be skipped in a first reading. In this
way, the editors hope to encourage prevention researchers to think
creatively about the kinds of research questions that can be addressed
using these procedures. A chapter’s purpose is not to make the reader an
expert in a statistical procedure, nor even, in most cases, to equip the
reader to carry out an analysis. Rather, each chapter provides sufficient
conceptual details to enable the researcher to make an informed decision
about whether to pursue further study of the procedure. Most of the
chapters point readers toward additional literature to read to help them
become familiar enough with a particular procedure to apply it to
prevention data.

As the reader will see, the chapters in this monograph constitute a broad
and varied assortment of introductions to newly developed techniques,
introductions to procedures well establisiied in other disciplines but new
to substance use prevention research, and new perspectives on well-
established techniques.

INTRODUCTIONS TO NEWLY DEVELOPED TECHNIQUES

Multilevel Analysis

The unit of analysis issue has been a contentious one for years in
prevention research. Most substance use prevention research is school
based and, thus, the subjects are part of a naturally occurring hierarchy:
students are clustered in classes, classes are clustered in schools, and
schools are clustered in neighborhoods and/or school districts. The costs
of ignoring this hierarchy potentially are great. Individuals clustered
together in some way tend to give responses that are related to each



other’s responses; thus, they are not independently sampled data.
However, presence of independently sampled data is an assumption of
most statistical procedures. If this assumption is violated, Type I error
rates go up, sometimes dramatically. One solution that has been offered
to this problem is to perform analyses at the aggregate level, using, for
example, classroom or school means as the dependent variable. This
method does eliminate the problems caused by a lack of independence
among individuals but, for many analyses, this is the only benefit
associated with this approach. In most cases in prevention research, the
questions are posed at the individual level, such as, "Is there an overall
decrease in the amount of alcohol used by individual students? For what
kinds of students is the program most effective? What are the charac-
teristics of students who seem to be unaffected by the prevention
program?" These kinds of questions cannot be answered by aggregate-
level analyses because conclusions based on analyses at, say, the class-
room level cannot be generalized to either the individual level or the
school level.

Kreft’s chapter on multilevel analysis offers an elegant solution to this
problem. Kreft shows us that, by using multilevel analysis, we can model
all the levels occurring in data simultaneously. This approach even
makes it possible to examine the effects of interactions among various
levels, for example, interactions between characteristics of the classroom
environment and characteristics of the individual. Furthermore, the Type
I error rate is controlled by this approach to data analysis. Multilevel
analyses require special software, but the user is likely to find the time
invested in learning the software very worthwhile.

Missing Data Analysis

Another problem that has dogged prevention research is that of missing
data. There are numerous sources of missing data. Probably the most
pathological source is subject attrition. Most longitudinal substance use
prevention studies experience subject dropout over the course of the
study. If subject dropout were completely randoin, the most serious
problem would be a loss of statistical power due to a decreasing N.



However, subject attrition in prevention studies is almost never random.
Dropouts tend to be those at higher risk for increased substance use or
those who already are using at a higher rate. Thus, the problem becomes
one not only of statistical power but also of internal and external validity.

There are widely used procedures for dealing with missing data, primarily
listwise deletion, pairwise deletion, and mean replacement. The chapter
on missing data analysis by Graham and colleagues discusses each of
these procedures and introduces some recently developed alternatives. In
some ways, the often-used term "missing data analysis" is 2 misnomer.
Missing data are, well, missing, and so they cannot themselves be
analyzed. The techniques reviewed by Graham and colleagues do not
create data out of thin air, and they are not a substitute for careful
experimental design and assiduous efforts to prevent subject attrition,
Rather, they help the researcher make the most out of the data that are
present in order to obtain more accurate statistical results.

Meta-Analysis

In substance use prevention, as well as in other fields, it is important to
integrate the results of years of research in order to draw policy-relevant
conclusions. However, this is more easily said than done. Rarely does a
series of research studies speak with one voice; usually there are some
conflicting findings. For example, some studies might find that a
particular prevention program works well overall, while others find that
the program works only moderately well or only for a subset of people.

Meta-analysis is a method of integrating research findings statistically.
The chapter by Tobler presents an annotated example of a meta-analysis
performed on prevention data. This chapter demonstrates how meta-
analysis can be used to make sense out of inconsistencies in findings
across studies by examining what characteristics of studies, such as type
of sample or whether or not the study is well controlled, can account for
the discrepancies. The task of amassing an exhaustive collection of
available studies, coding all relevant variables, computing effect sizes,
and performing the required analyses is, as Tobler puts it, "not for the



faint of heart." However, meta-analysis is the state of the art in research
integration, and those who have the courage to undertake a demanding
meta-analysis project will find that it is the clearest way to synthesize
findings and arrive at valid policy-relevant conclusions.

Dynamic Modeling

In their chapter, Kibel and Holder demonstrate how to break out of the
controlled laboratory or field environment and examine the interplay
between various kinds of prevention programs and society at large.
Using the dynamic modeling technique advanced by Kibel and Holder,
the user can build models of the reciprocal effects of societal factors and
substance use. One of the imiportant contributions of this approach is as a
heuristic. It forces the user to make explicit every assumption about how
societal forces work. It also allows the user to try out different models
fairly easily. This is another approach that has likely policy relevance as
society considers options like restricting the density of liquor stores in
neighborhoods or legalization of certain drugs.

INTRODUCTIONS TO PROCEDURES WELL ESTABLISHED IN
OTHER DISCIPLINES

Time Series Analysis

Time series analysis, presented in this monograph by Velicer, grew out of
econometrics and has been applied successfully in the social sciences for
years. The data needed for time series analysis consist of a long string of
repeated observations on an individual taken at regular intervals. Thus,
time series designs usually are focused on intensive observation of an
individual, in contrast to the typical school-based prevention intervention
design, which collects data on a large number of individuals at widely
spaced intervals.

For example, Velicer collected data on the cigarette smoking behavior of
six individuals twice daily for 62 days. Time series analysis is ideal for
modeling the routine habits of substance users. It also is possible to
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evaluate the effectiveness of interventions designed to interfere with these
habits by comparing characteristics of a time series before and after an
intervention. This is called interrupted time series analysis. Time series
analysis has great potential for use in substance use prevention studies,
particularly where subject sample size is limited but intensive
measurement of subjects is feasible.

Survival Analysis

Singer and Willett present survival analysis, a statistical technique that is
familiar in epidemiology but is beginning just now to be adopted by
behavioral researchers. Survival analysis rephrases some of the funda-
mental questions asked by prevention researchers. For example, in a
survival analysis, we identify an event of interest—say, onset of substance
use—and ask the question, "Is the amount of time until onset for the pro-
gram children longer than the amount of time until onset for the control
children?" Survival analysis produces some useful quantities, such as the
survival function. An example of a survival function in prevention
research is the proportion of a sample who have not yet begun the onset
process expressed as a function of time. Another useful quantity is the
hazard funiction. This function expresses incidence as a function of time;
for example, a hazard function would express the probability of onset at a
particular time, given that onset has not occurred already. This function
expresses risk (hazard) of substance use onset. The hazard function
potentially is tremendously useful in substance use prevention interven-
tion research. For example, a thorough knowledge of the hazard function
for people in their preadolescent and adolescent years would be a highly
useful tool in the timing of prevention intervention activities and booster
sessions.

Latent Class and Latent Transiticn Analyses

In building models of substance use and its prevention, it often makes
sense to identify qualitatively distinct groups. For example, there may be
certain patterns of use characterized by frequency, duration, and sub-
stance or combination of substances. There may be bingers, light steady



users, or specializers in a particular substance. Identifying these kinds of
subgroups within data could help prevention efforts by pointing toward
directions to go and areas to cover in planning interventions. The chapter
by Uebersax illustrates how to use latent class analysis (LCA), a proce-
dure that originally was developed in sociology and psychology, to
identify these subgroups or latent classes. Uebersax also shows that,
once the subgroups are identified, further analyses can be performed to
look at quantitative differences among the groups. For example, perhaps
bingers are more rebellious or have a poorer relationship with their
parents than do light steady users.

Another approach to questions involving latent classes is to ask whether
membership in latent classes changes over time. Often these latent
classes can be thought of as stages in a process that unfolds over time.
Collins and colleagues present latent transition analysis, which is a
generalization of LCA to longitudinal data. This approach provides a
method of testing stage-sequential models of substance use and related
processes.

NEW PERSPECTIVES ON WELL-ESTABLISHED TECHNIQUES

Incorporating Trend Data Along With Individual-Level
Cross-Sectional Relationships

Figure 1 in the chapter by Bachman presents an interesting graph show-
ing the increase over time in individuals’ perceived risk and disapproval
of marijuana use, as well as their corresponding decline in marijuana use
during the same period (while availability remained constant). The issue
raised is one of causality. Three hypotheses are possible: (1) increases in
perceived risk and disapproval led to the decline in marijuana use;

(2) changes in use led to changes in attitudes; or (3) changes in.some
other factor or factors caused changes in both use and attitudes. Bachman
provides a series of analyses designed to resolve this issue by incorpo-
rating trend data along with individual-level, cross-sectional relationships.
These analyses are relatively simple, straightforward, and easy to follow.
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The resulting conclusion is in favor of the first hypothesis; individual
attitudes about specific drugs seem to affect individual use of those drugs.

Repeated Measures Analysis of Variance

Although the designs of substance use prevention intervention studies
often are complex, the bottom-line questions about program effects often
boil down to a repeated measures analysis of variance (ANOVA) or
analysis of covariance. Many researchers learned the basics of this time-
honored approach in graduate school, but they may be a little rusty with
these procedures, may not appreciate their subtleties, or may not be aware
of the most recently raised issues. The chapter by Barcikowski and
Robey, who are noted experts on repeated measures, begins with the
basics of repeated measures designs and continues through more compli-
cated designs. Included in this chapier is a wealth of information sure to
be helpful to prevention researchers, such as how to detect and adjust for
violations of the sphericity assumption.

Statistical Power

Statistical power is an issue that many substance use prevention research-
ers feel they understand well-—just obtain the largest N possible, and
power will be maximized. The chapter by Hansen and Collins reminds
us that there are other factors that go into power besides the number of
subjects at the outset of a study. For example, when subjects are lost to
attrition over the course of a study, a loss of statistical power can occur.
Hansen and Collins also point out that certain aspects of design under the
researcher’s control have a direct impact on effect size, which is one of
the factors determining power. Hansen and Collins discuss two general
strategies for increasing effect size: (1) increasing the size of the
difference between the treatment group means and any control group
means, and (2) decreasing variance. These authors share many useful
practical suggestions for increasing statistical power in the context of
prevention research.



Some Important Procedures Not included in This Monograph

Of course, no monograph of this type can be comprehensive. Of the
many exciting statistical procedures that potentially can be of much use in
prevention research, only a few could be included in this monograph.

The prevention researcher interested in methodology may wish to look
into some of the procedures mentioned below.

Structural equation modeling is an exciting procedure that has gone from
being virtually unknown 20 years ago to being in almost routine use
today. This approach has been used extensively to test models of sub-
stance use onset and prevention. There are numerous issues in structural
equation modeling that are of interest to prevention researchers, such as
assessing goodness of fit (Bentler 1990; McDonald and Marsh 1990), and
models for multitrait, multimethod applications (Graham and Collins
1992; Marsh and Bailey 1991; Wothke and Browne 1990).

A related topic is growth curve models. This is a general term for meth-
odology that allows the user to develop and test models of individual
growth. Such models can be tested in the context of hierarchical linear
models (Bryk and Raudenbush 1992) and structural equation models
(McArdle and Hamagami 1991; Willett and Sayer, in press).

A notable omission from this monograph is an extensive discussion about
measurement of substance use and related variables. Measurement of
substance use is a complex and rich topic and easily could fill a mono-
graph alone. Most researchers have been trained in classical test theory
and feel most comfortable using factor analysis and evaluating scales
using Cronbach’s alpha. In recent years, there have been other
approaches developed that researchers potentially would be interested in.
For example, item response theory is a different perspective on measure-
ment that has been used successfully in many areas outside of standard
achievement testing situations (e.g., Wilson.1992). Under certain
conditions, item response theory allows the estimation of item parameters
that are independent of the exact sample upon which they are based.
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Often researchers measure substance use and related variables with
categorical variables, which means in most cases that data analysis is
going to involve contingency tables. Use of log-linear models (Agresti
1990) is a methodology for analyzing complicated multiway contingency
tables using a framework similar to the familiar ANOVA framework.
Latent class models, which are discussed in this monograph, are related to
log-linear models but involve latent variables.

CONCLUSION

In this monograph, the editors have attempted to assemble a collection of
chapters presenting innovative statistical methods to the substance use
prevention rescarch community. The chapters are intended to be acces-
sible conceptual and technical introductions to each method rather than
complete tutorials. The editors hope that prevention researchers find the
monograph useful. The editors also hope that, in the short run, this
monograph helps increase the use of innovative statistical procedures in
prevention research, and that, in the long run, two-way communication
between the fields of statistics and substance use | ..evention research is
established to the benefit of bath.
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Analysis With Missing Data in
Drug Prevention Research

John W. Graham, Scott M. Hofer, and Andrea M. Piccinin

ABSTRACT

Missing data problems have been a thorn in the side of prevention re-
searchers for years. Although some solutions for these problems have
been available in the statistical literature, these solutions have not found
their way into mainstream prevention research. This chapter is meant to
serve as an introduction to the systematic application of the missing data
analysis solutions presented recently by Little and Rubin (1987) and
others., The chapter does not describe a complete strategy, but it is rele-
vant for (1) missing data analysis with continuous (but not categorical)
data, (2) data that are reasonably normally distributed, and (3) solutions
for missing data problems for analyses related to the general linear model,
in particular, analyses that use (or can use) a covariance matrix as input.
The examples in the chapter come from drug prevention research. The
chapter discusses (1) the problem of wanting to ask respondents more
questions than most individuals can answer; (2) the problem of attrition
and some sclutions; and (3) the problem of special measurement
procedures that are too expensive or time consuming to obtain for all
subjects.

The authors end with several conclusions:

» ~ Whenever possible, researchers should use the Expectation-Maximi-
zation (EM) algorithm (or other maximum likelihcod procedure,
including the multiple-group structural equation-modeling procedure,
or, where appropriate, multiple imputation, for analyses involving
missing data [the chapter provides concrete examples]);
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» If researchers must use other analyses, they should keep in mind that
these others produce biased results and should not be relied upon for
final analyses;

*  When data are missing, the appropriate missing data analysis
procedures do not generate something out of nothing but do make
the most out of the data available;

s When data are missing, researchers should work hard (especially
when planning a study) to find the cause of missingness and include
the cause in the analysis models; and

+ Researchers should sample the cases originally missing (whenever
possible) and adjust EM algorithm parameter estimates accordingly.

INTRODUCTION

Missing data problems have been a thorn in the side of prevention re-
searchers for years. Although some solutions for these problems have
been available in the statistical literature for some time now, consumers
of statistical procedures, in general, and prevention researchers, in par-
ticular, generally have not reaped the benefits of these solutions. In large
part, drug prevention analyses have dealt with missing data problems in a
piecemeal fashion. A systematic solution to missing data problems,
which prevention work to date has lacked, has been viewed as something
that was at the very top of the second page of the priority list.

This chapter is meant to serve as an introduction to the systematic
application of the missing data analysis solutions presented recently by
Little and Rubin (1987).and others. The chapter does not describe a

complete strategy, but it is relevant for:

* Missing data analysis with continuous (but not categorical) data;

14
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« Data that are normally distributed, or at least close enough to
normally distributed that most critics would not complain too much
about it; and

¢ Solutions for missing data problems for analyses related to the
general linear model, in particular, analyses that use (or can use)
a covariance matrix as input.

The chapter will deal with three missing data situations. The first is
omissions. The second is the problem of participant attrition. The third
is planned missing data, that is, data that are missing as a result of the
measurement strategy. In general, the discussion cf these issues will be
conceptual and practical, rather than mathematical (see Little and Rubin
[1987] for mathematical treatments of these issues). Finally, the exam-
ples in this chapter come from drug prevention research, and most of the
points are made in this context. However, most of the points have
relevance in other research domains as well,

Before discussing the various forms of missing data, consider the philos-
ophy of missing data analysis. Analysis of data with missing values is
thought of more appropriately as a set of procedures for analyzing the
data one has, rather than for generating the data one does not have. The
missing data analysis procedures recommended here are reminiscent of
pairwise deletion (or pairwise inclusion) in the sense that they allow full
use of the available data, thereby allowing the most statistically powerful
analysis possible. The procedures recommended, however, provide
additional benefits that far exceed those of pairwise deletion.

OMISSIONS

Omissions are defined as missing data that occur within an otherwise
complete survey. In discussing omissions, a distinction is drawn be-
tween those that cecur somewhere in the middle of the survey and those
that occur at the end. Various causes of missingness in both cases also
are discussed.

15



Internal Omissions

Internal omissions occur for various reasons. A subject simply may not
see a question. He or she may want to think about a question before an-
swering and simply forget to go back to the skipped question. A subject
may have trouble understanding the meaning of a question and may skip
it. Finally, a subject may not answer a particular question because he or
she is afraid of possible negative consequences of answering it or because
the question evokes negative feelings he or she does not want to
experience.

Failure To Complete the Survey

This type of omission simply means that the subject began the survey,
completed it up to a point, and then stopped responding. Assuming that
many subjects do finish the survey, the two main reasons for the failure to
complete it are lack of ability and lack of motivation. A subject may lack
the ability to finish because he or she is a slow reader or because the sur-
vey is in English and the subject is not a native English speaker. A sub-
ject may lack the motivation due to general rebelliousness or because

he or she feels it is appropriate to make a minimal effort,

ATTRITION

Attritior occurs when a subject is present for the intervention and for at
least one wave of measurement but is absent entirely for one or more
other waves of measurement. Various patterns of attrition are possible,
and each may possess unique problems and solutions. Consider the
example shown in table 1: An intervention is completed for seventh
graders, a pretest measure is taken at seventh grade, and posttest mea-
sures are taken on the same subjects at the eighth and ninth grades.

16
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TABLE 1. Patterns of attrition

Is subject present for _?

Attrition

pattern 0, X, 0O 0,
1 YES YES YES YES
2 YES YES YES no
3 YES YES no YES
4 YES YES no no
5 no YES YES YES

Some of the patterns shown in table 1 may be more of a problem than
others. For example, patterns 2 and 4 have in common the fact that the
subject leaves the measurement part of the research and is never heard
from again. This could be a problem in that the subject may have
dropped out of the study for reasons having to do with the main depen-
dent variable (i.e., drug use). With attrition patterns 3 and 5, this is less
of a concern in that later drug use may be used as a reasonable proxy for
earlier drug use.

Causes of Attrition

Researchers would like to think that the kind of attrition shown in table 1
is caused by a random process. As discussed in a later section, and as
many researchers believe at an intuitive level, data that are missing com-
pletely at random (i.e., the cause of missingness is a random process) are
a minor nuisance compared to data that are missing for nonrandom
reasons. Unfortunately, the cause of attrition probably is never a purely
random process.

There are numerous nonrandom causes of attrition that are completely

unrelated to the measurement: The subject is ill for the measurement
session; the subject cuts several classes, and this happens to be one of
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them; the subject drops out of school to earn money for the family or to
take care of a family member; the subject is suspended from school
(e.g., for fighting); the subject’s parents move away to take a new job in
another city; or the subject’s parents move around a lot for other reasons.

There also are several nonrandom causes of attrition that are directly re-
lated to the measurement: The student refuses to participate because

of general rebelliousness; the student refuses to participate due to diffi-
culty with the survey (e.g., he or she is a poor reader); the parents actively
withhold permission to participate due to concerns about invasion of
privacy; the parents passively fail to give permission due to procrasti-
nation; or the parents passively fail to give permission because they do
not care about what their child does.

Finally, there could be a nonrandom cause of attrition that is directly re-
lated to scores on the dependent variable itself, For example, students
who use drugs may be more likely to drop out of the study than are stu-
dents who do not use drugs. Fortunately, drug use may be a rather distal
cause of attrition, and some other variable (e.g., dismissal from school)
may be the more proximal cause. If this is the case, it may be possible to
find and measure the more proximal cause even though the drug use
measure is not available because of attrition.

Differentiai Attrition

Differential attrition has been thought to be one of the most serious
threats to the validity of intervention programs. Two definitions
of differential attrition are:

» People who drop out of the study have greater drug use at the posttest
than do those who stay, AND more people attrit from the program

group than from the control group; and

» Program by attrition status interaction with posttest drug use as the
dependent variable.
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Note that, in both definitions, it is posttest drug use that is relevant.
Unfortunately, when researchers have missing data for the posttest mea-
sure of drug use, they never can be certain whether there is differential
attrition or not. Procedures have been suggested for testing for differ-
ential attrition that involve using the pretest measure of drug use as a
proxy for posttest drug use (e.g., Biglan et al. 1987; Hansen et al. 1985).
However, even when the correlation between pretest and posttest drug
use is substantial (e.g., r = .60), pretest use may be a poor proxy for
posttest use. Although the jury is still out on these procedures, recent
work has suggested that the Biglan and colleagues (1987) and Hansen
and colleagues (1985) procedures may be useful in most cases if they
show no differential attrition using pretest drug use as a proxy (Graham
and Donaldson 1993). However, the procedures often may be misleading
when they suggest that there is differential attrition.

A study is described below showing that differential attrition is a serious
problem only when the cause of missingness is the posttest drug use vari-
able itself. When differential attrition is caused by some variable other
than the dependent variable, and when that variable is included properly
in the model, there is no bias due to attrition. This can be true even when
traditional complete cases analyses are performed.

PLANNED MISSING DATA

One of the most important features of planned missing data is that
researchers know what caused the missingness—they caused it. If re-
searchers assign subjects randomly to the various measurement con-
ditions, then they know that the cause of missingness is a random
process. The advantage of doing this will be discussed in a later
section.

The Three-Form Design

One of the biggest problems facing drug prevention researchers is that
there simply are too many questions to ask and not enough time to ask
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them. Models of prevention and prevention effectiveness necessarily are
complex (e.g., Flay and Petraitis 1991) and require the measurement of
many behavioral and psychosocial constructs. However, in many popu-
lations (especially adolescent populations), there simply is not enough
time to ask all of the relevant questions. Thus, researchers devise various
measurement plans to maximize the total number of questions asked
while maintaining a manageable number of questions for any individual.

One such measurement plan is the three-form design, which is depicted in
table 2 (Graham et al., submitted). Suppose a research team wants to
collect questionnaire data on adolescents in their area. They would like
to ask 130 questions, but the children will complete only about 100.

With the three-form design, each child receives only 100 items, but 130
questions still are asked overall.

TABLE 2. Three-form design

Answered question set?

X A B C

Form 1 YES YES YES no
Form 2 YES YES no YES
Form 3 YES no YES YES

There are two main advantages of the three-form design. First, one

can ask approximately 33 percent more questions overall while keeping
reasonable the number answered by any individual. Second, although no
subject has complete data for item sets X, A, B, and C (as shown in

table 2), at least one-third of the subjects respond to each pair of items.
Thus, good estimates of covariances can be obtained for all item pairs.
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Special Measurement Procedures

Another type of planned missingness has to do with special measurement
procedures. For example, in the Adolescent Alcohol Prevention Trial
(AAPT), Graham and colleagues (1989), Hansen and Graham (1991),
Hansen and colleagues (1988, 1991), and Rohrbach and colleagues
(1987) sought to measure the variables hypothesized to mediate pre-
vention program effectiveness (see figure 1). One of these key medi-
ating variables was the resistance skill of subjects receiving various

; prevention curricula (including a resistance skills-training curriculum).

TIME 1 TIME 2 TIME 3

RESISTANCE
TRAINING

RESISTANCE

SKILLS

DRUG USE

PERCEPTIONS
OF PREVALENCE
4

NORMATIVE
EDUCATION

PERC%!:_TIONS
ACCEPTABILITY,

FIGURE 1. Process model

However, because the measurement procedure was rather extensive and
involved pulling subjects out of class individually, only a random one-
third sample of the subjects could receive the skills assessment. Drug use
and other related measures were collected for the full sample.




Test of the Interaction: ProgramxGrade of Intervention

One of the key questions for prevention researchers is: "What is the best
grade for an intervention?” As a means of answering this question, the
AAPT project was implemented fully at the fifth and seventh grades as
shown in table 3. Hypotheses regarding grade of intervention could be
tested easily with a posttest-only analysis (e.g., by treating posttest drug
use, say eighth-grade drug use, as the dependent variable and program,
grade, and the programxgrade interaction as the independent variables.

TABLE 3. Analysis by grade

Grade
of Grade 5 Grade 8
Panel program data? data?
1 5 yes yes
2 7 yes yes
3 5 yes yes
4 7 NO yes

However, a stronger test of hypotheses involving grade of intervention
would include pretest drug use ac a covariate. In the AAPT study, be-
cause some subjects received the program as fifth graders, it would seem
that fifth-grade drug use would be the most appropriate covariate. How-
ever, most subjects receiving the program in the seventh grade were not
pretested until the seventh grade and had no data for fifth-grade drug use.
Thus, if the analyses of covariance (ANCOV As) were coriducted based
only on students with complete data, no seventh graders from panel 4
would be involved, and the test of the key interaction would not be
possible without significant loss of power.
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CAUSES OF MISSINGNESS REVISITED

Many causes of missingness have been suggested in the examples given
above. When the cause of missingness is a random process, the problems
arising from the missing data are relatively minor and are mainly a matter
of statistical power. However, when the cause of missingness is not a
random process, the problems are more complex. Two general kinds of
nonrandom missing data mechanisms are discussed below: accessible
and inaccessible. Ways in which most causes of missing data can be
made accessible also will be discussed.

Accessible Missing Data Mechanisms

The missing data mechanism is accessible when the cause of missingness
has been measured and is available for use in the analysis (Graham and
Donaldson 1993). Although one never can know for sure whether the
mechanism is accessible, it is important to know that accessible, nonran-
dom mechanisms cause no bias when the cause of missingness is included
properly in the analysis. As discussed more fully below, analyses that
properly take the cause of missingness into account include: (1) use of
the Expectation-Maximization (EM) algorithm; (2) other maximum
likelihood procedures (e.g., the multiple-group structural equation-
maodeling procedures described by Allison [1987] and Muthen and
colleagues [1987]); and (3) ANCOVA with complete data in certain
situations.

The term "accessible” is related to the term "ignorable” as used by Little
and Rubin (1987), except that the term "accessible” refers to the mechan-
ism per se, whereas the term "ignorable" refers to a combination of the
mechanism and the analysis used. For example, even when the cause of
missingness has been measured, the mechanism is not ignorable if the
cause is not used properly in the analysis. The term "accessible" em-
phasizes the importance of measuring the causes of missingness.
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Inaccessible Missing Data Mechanisms

The missing data mechanism is inaccessible when the cause of missing-
ness has not been measured or otherwise is unavailable for analysis
(Graham and Donaldson 1993). This is similar to Little and Rubin’s
(1987) term "nonignorable." Again, however, the term "inaccessible”
refers 7o the mechanism itself, whereas Little and Rubin’s term refers to a
comb mation of the mechanism and the analysis used.

Inaccessible missing data mechanisms arise when the variable containing
the missing data itself is the cause of missingness. For example, the
mechanism would be inaccessible if the people who drop out of a drug
use prevention study do so because they currently are high-level drug
users.

Inaccessible mechanisms also can arise if another unmeasured variable is
the cause of missingness and that variable is correlated with the one con-
taining the missing data (e.g., posttest drug use). If the cause of missing-
ness is unrelated to the variable with missing data, then the cause
essentially is a random process with respect to the variable containing
missing data. (Keep in mind the fact that a variable can be correlated
with missingness on the posttest drug use variable and still can be
uncorrelated with posttest drug-use itself.) For example, general tran-
siency may be related to attrition and may be correlated with drug use.
On the other hand, a parent being transferred to another job will be
related to attrition but may not be correlated with drug use.

When the cause of missingness is inaccessible, there may or may not be
bias in the estimation of key parameters. For example, a recent study
(Graham and Donaldson 1993) showed that estimates of program effects
were substantially biased if there was differential attrition on the main
dependent variable and if that variable was the cause of missingness.

The study also showed that, even in the presence of substantial attrition
(caused by the dependent variable itself), the estimates of program effects
were unbiased if there was no differential attrition on the main dependent
variable.
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How Can One Know if the Mechanism Is Accessible?

Given the importance of being able to distinguish between accessible and
inaccessible missing data mechanisms, the natural question that arises is:
"How can one know if the mechanism is accessible or inaccessible?" The
answer, unfortunately, is that one cannot know. At least, one cannot
know about the mechanism if one collects no new data. However, there
may be several courses of action researchers can take.

One can assume that the mechanism is a random process (i.e., daia are
missing completely at random). Although it never may be reasonable
to assume that data missing due to omissions or attrition are missing
completely at random, it often may be reasonable to assume that the
cause is a random process-with respect to the dependent variable.

One can assume that the mechanism is accessible. Following Heckman
(1979), Dent (1988) described a procedure to determine how much of the
cause of missingness had been measured (also see Graham and Donald-
son 1993; Leigh et al. 1993). The procedure involves creating a missing-
ness dummy variable with the value of 1 if the variable of interest was
nonmissing and the value of 0 if the variable was missing. This missing-
ness variable then would be regressed on all other variables in the data
set. The linear combination of all other variables could be thought of as a
single variable representing the known causes of missingness and could
be included in all other analyses. In this way, biases from measured
causes of missingness would be controlled.

The main problem with this approach is that one still does not know
how much of the measurable cause of missingness has been measwred.
In general, there are three possible causes of missingness: (1) measured
variables correlated with the variable containing the missing data, (2) un-
measured variables correlated with the variable containing the missing
data, and (3) variables that essentially are a random process with respect
to the variable containing the missing data. Suppose one discovers that
the first type of cause (measured variables correlated with variable of
interest) accounts for 20 percent of the variance in the missingness
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dummy variable. Although this is a rather substantial amount, it still is
not known whether the remaining 80 percent of the causes are of the
second or third type (unmeasured and correlated, or random processes).
In this situation, researchers must resort to making assumptions about the
causes of missingness.

o
|

Collect Additional Data. The best way to get around the problem of not
knowing about the mechanism of missingness is to collect additional data
from those with initially missing data (Graham and Donaldson 1993;
Little and Rubin 1987; Rubin 1987). If one can obtain measures from a
random sample of the cases originally missing, one has sampled and mea-
sured all causes of missingness. That is, the causes of missingness then
are accessible. If used properly in the analyses, this addition of cases
controls completely for all missing data biases. Using these data properly
in the analysis will be discussed further in the Analysis Possibilities
section, EM Algorithm subsection.

NMost Causss of Missingness Are Measurable

Short of collecting additional data, one never can be certain about the
causes of missingness. Nonetheless, the better a researcher is able to
account for missingness, the stronger his or her argument that the
important causes of missingness have been measured and taken into
account is. In most cases, the cause of missingness should be
measurable.

Table 4 presents a set of possible measures for some of the major causes
of missingness discussed in this chapter. This is not meant to be an
exhaustive list, but it does provide a starting place for thinking about
measuring these important variables.
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TABLE 4. Possible measures of causes of missingness

Cause: Subject is a slow reader

Possible Measures:

o Standardized test scores from school records, especially reading scores
«  What language do you usually speak at home?

o What language do you usually speak with your friends?

¢ Grades

Cause: Subject lacks motivation to completé survey

Possible Measures:
o Measures of general motivaton
e Measures of motivation to complete the questionnaire

Cause: Subject is rebellious

Possible Measures:
e Measures of rebelliousness

Cause: Parents move away/transiency

Possible Measures:

= How many schools have you attended since first grade?

= How many times have you moved in the past 5 years?

s How likely is it that next year, you will be in this school, or in the next higher school
in this school system?

Cause: Parents actively fail to give permission (are political activists, fear invasion
of privacy, etc.)

Possible Measures:

e How bad is invasion of privacy?

e How bad do your parents think invasion of privacy is?

»  Possible to get classroom teacher to ask questions such as these in general
classroom context (i.e., even those without permission may respond)

Cause: Parents passively fail to give permission (are procrastinators, couldn’t
care less about what their kids do or don’t do, etc.)

Possible Measures:

s How much do your parents care what you do?

»  Possible to get classroom teacher to ask questions such as these in general
classroom context

Cause: Child refuses to participate because of scores on the dependent variable

Possible Measures:

»  How would your best friends react if you used drugs?

s How would your parents react if they found out you used drugs?

o Ifyou used drugs, and you said so on this questionnaire, how likely is it that your
Sfriends would find out?

»  Ifyou used drugs, and you said so on this questionnaire, how likely is it that your
parents would find out?
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ANALYSIS POSSIBILITIES

In this section, several possibilities for analysis with missing data will be
discussed. Some of the procedures employed in the past, as well as pro-
cedures that have emerged more recently, will be explored. A strong
stand is taken in this chapter on what should and should not be used for
analysis with missing data.

Mean Substitution

One of the most common forms of analysis with missing data involves
simply substituting the mean for the variable whenever a value is missing.
As illustrated m an example below, mean substitution can produce very
wrong estimates of variances and covariances. In general, substituting
the mean for the missing value has the effect of underestimating the
magnitude of both variances and covariances.

In short, mean substitution should never be used. Other procedures to be
described below are as easy; or easier, to use and are far more defensible.

Complete Cases Analysis

The advantage of analyzing only those cases with complete data is

that it is easy to do. For many procedures, analysis of complete cases
(i.e., listwise deletion) is the default option. If the cause of missingness
is a random process, there are no biases in such analyses. Under some
circumstances, there may be no biases even if the cause of missingness is
nonrandom, provided the nonrandom cause is accessible. For example,
consider a simple program evaluation ANCOV A model with program
and pretest drug use predicting posttest drug use. If there are missing
data only for the posttest drug use measure and, if the cause of miss-
ingness is pretest drug use, then the complete cases analysis is unbiased
for estimating the program effect (Graham and Donaldson 1993).
However, if the cause of missingness is nonrandom and unmeasured
(i.e., inaccessible), serious bias can occur with complete cases analysis.
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The greatest drawback with the complete cases analysis is loss of statis-
tical power. If the amount of missing data is substantial, one may have to
discard much data in order to have cases with complete data. In research
designs that call for planned missingness, for example, the three-form
design (see table 2), one simply cannot perform analyses involving all
sets of variables. In other designs (e.g., the process model in figure 1),
one may have to discard a large amount of relevant data to obtain com-
plete cases. Finally, for some designs, analysis with complete data
would produce a serious imbalance in the data and would make impor-
tant analyses impossible (e.g., see the analysis of grade by program
interaction shown in table 3). :

Pairwise Deletion

The main advantage of analyzing by pairwise deletion (or pairwise
inclusion) is that one makes use of all the available data. Also, if the
cause of missingness is a random process, then analysis by pairwise
deletion produces unbiased estimates of each correlation. For example,
Graham and colleagues (submitted) have shown that pairwise deletion
provides unbiased estimation for analysis of the three-form design when
the only cause of missingness is a random process.1

Although pairwise deletion may produce pairwise unbiased estimates of
covariances, there is no guarantee that the estimates will be matrixwise
unbiased. In other words, there is no guarantee that the resulting matrix
will be positive-definite, and if it is not, some analyses will not be pos-
sible. Furthermore, if the cause of missingness is nonrandom, pairwise
deletion does not provide protection from bias, even if the cause of miss-
ingness is included in the model. This point is illustrated in a later
section with an example of analyses with attrition.

Regression-Based Singie Imputation
Another alternative for dealing with missing data is regression-based

single impuiation. In this case, the variable containing missing data is
predicted by all other relevant variables to be used in the final model.
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The regression equation obtained for cases with data present is used to
predict the variable for cases with missing values. The predicted scores
are substituted (i.e., imputed), and analyses are conducted as if there were
no missing data.?

Although there is a good rationale for doing such analyses, there are some
drawbacks. First, the regression-based imputation procedure has a statis-
tical basis only with certain patterns of missingness called monotone
missing data patterns (Little and Rubin 1987). The missing data pattern
is monotone when the variables and cases can be organized in a way
similar to that depicted in table 5. That is, for every subject, if a variable
has a nonmissing value, then ali variables to the left also have nonmissing
values. Also, for every subject, if a variable has a missing value, then all
variables to the right also have missing values.

TABLE 5. Monotone missing data pattern

Variable
Case A B C D
1 1 1 1 1
2 1 1 1 1
3 1 1 1 0
4 1 i 1 0
5 1 1 0 0
6 1 1 0 0
7 1 0 0 0
8 1 0 0 0

KEY: 0=Missing
1 = Nonmissing
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For missing data patterns that do not conform to the monotone pattern,
one can discard data to achieve the monotone pattern, but this can result
in a substantial loss of statistical power.

A second disadvantage of regression-based single imputation is that the
resulting variance estimates are negatively biased (i.e., smaller than they
shouid be). Covariance estimates also are negatively biased when vari-
ables are missing jointly. The problem of negatively biased variance
estimates can be understood as described below,

Suppose a regression equation is used to predict scores for data that are
nonmissing. Everyone knows that the regression equation does not
predict these known scores perfectly. Rather, each score is predicted with
some amount of error. That is, there is a component of variability in the
known scores that goes beyond the variability accounted for by the
regression equation.

So, why should any regression equation be expected to predict the
missing scores without error? In fact, this is the most serious problem
with single imputation: The missing scores are predicted without error.
That is, the component of variability (due to random error) is missing.
Thus, the total variability of scores is less than would be expected if they
were nonmissing. This point is explored further in the next section.

Multipie Imputation

There are two key parts to multiple imputation as described by Rubin
(1987): restoring error to the singly imputed values and performing the
error restoration multiple times. One way the error restoration could be
done foilows. Suppose researchers have a situation with three variables,
X;» X,, and Y. Further suppose that only Y contains any missing data.
For those subjects who have no missing data, the regression equation is:

Y = bytb,X,+b,X +e 1)
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The degree to which the regression equation is not perfect in predicting
the nonmissing Y scores is described by the distribution of error terms, e.
It often is reasonable to assume that the distribution of error terms is
about the same for both the cases with and without missing data for Y.
Thus, the appropriate variability can be restored to the prediction of Y by
adding a randomly selected element of the distribution of e to the singly
imputed Y score.

There really is nothing multiple about this correction. The "multiple"” in
multiple imputation comes from performing the sampling and addition of
error multiple times. ‘Although the imputed scores (with the error added)
are expected to provide unbiased estimates of variances even if performed
just once, more precise estimates of the variances can be obtained by
performing the random draws multiple times. Rubin (1987) recommends
creating multiple full data sets, each with a different set of random draws.
He suggests that even two sets of random draws provide substantial
improvement in estimation.

The main disadvantage with multiple imputation is that it is a bulky pro-
cedure. In order to do the procedure, one must: (1) perform the basic
single imputation, (2) generate a distribution of residuals, (3) perform the
random selection of error terms (with replacement), (4) create a new data
set, adding errors to the singly imputed scores, and (5) perform the anal-
ysis of interest. For multiple imputation, one repeats steps 3-5 the desired
number of times. One must then (6) average the key parameter estimates
over the number of imputation steps.

Another limitation is that, if the multiple imputation procedure is based
on regression-based single imputation, a monotone missing data pattern
still is required. Alternatively, one could perform the single imputation
step (step 1, above) based on the EM algorithm (see next section). With
this approach, one would not be limited to monotone missing data pat-
terns. However, once a maximum likelihood estimate of the variance-
covariance matrix is obtained based on the EM algorithm, adding the
bulk of the multiple imputation procedure seems unnecessary.
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There certainly are situations in which the multiple imputation procedure
is superior to an EM algorithm designed to produce a covariance matrix.
One example is the analysis of difference scores. Still, when the analysis
to be done is based on a covariance matrix {or means and covariance
matrix), use of the EM algorithm to produce maximum likelihood
estimates of the covariance matrix seems preferable.

EM Algorithm

The EM algorithm (Dempster et al. 1977; Little and Rubin 1987)
achieves much the same result as multiple imputation in that it adds

an error component to the imputed vaiues. With the EM algorithm,
however, the error it added to the sums of squares and cross-products
rather than directly to an imputed score. In this sectior., the operation of
the EM algorithm for the continuous variable case with covariance matrix
as output is described briefly. It is important t= note different EM algo-
rithms are required for different kinds of analysis. However, because so
many common analyses can be performed with the covariance matrix as
input (e.g., anything involving the general linear model), this particular
version of the EM algorithm can be extensively useful.

For the Expectation (E) step of the EM algorithm, sums of squares and
sums of cross-products are collected. If the score for a particular variable
is present, the algorithm collects sums in the usual way. If the score is
missing, the algorithm uses the best estimate of the score (i.e., the singly
imputed value based on a regression involving all other variables).

Collection of sums of squares and sums of cross-products is straightfor-
ward if neither variable is missing or if just one variable is missing. If the
score is present for both of the two variables involved, sums of squares
and sums of cross-products are collected in the usual way. If one of the
two values is missing, sums of squares and sums of cross-products are
coliected in the usual way except that the missing value is replaced by the
singly imputed score using all other variables as predictors.
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Finally, if both values are missing, the sums of squares and sums of
cross-products are collected in the usual way except that the scores are
replaced by the singly imputed scores, and a correction term is added.
For sums of squares, the correction term is the residual variance of the
variable after being predicted by all other variables in the model. For
sums of cross-products, the correction is the residual covariance between
the two variables after being predicted by all other variables in the model.
This concludes the E step.

The Maximization (M) step is very straightforward in this case. Based
on the estimates of sums of squares and sums of cross-products, one
calculates the means and covariance matrix.

The EM algorithm is an iterative procedure: The covariance matrix
generated at one iteration is used to generate b-weights, and the E step
(collecting sums of squares and sums of cross-products) is repeated using
the revised b-weights for prediction of missing values. The iterative
process continues until the changes in the covariance matrix from one
iteration to the next are deemed trivially small.

One clear advantage of the EM algorithm is that it handles virtually any
pattern of missing data (i.e., it is not restricted to monotone patterns of
missingness). Second, this version of the EM algorithm produces maxi-
mum likelihood estimates of the means and the variance-covariance
matrix. Third, the procedure is available in its general form in BMDP
AM (Dixon 1988; Frane 1988).>*

In practical terms, advantages of the EM algorithm are that (1) all param-
eter estimates are unbiased’ and more efficient than other methods of
estimation (e.g., pairwise cleletion);6 (2) the covariance matrix is positive-
definite (i.e., usable for all analyses requiring a covariance matrix as
input); and (3) it makes full use of all available data.

Disadvantages of the general implementation found in BMDP AM

include: (1) standard errors are not readily available; (2) even if they
were, one generally needs the standard errors for the analysis based on
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the covariance matrix, not for the variances and covariances themselves;
and (3) there is no method within BMDP AM to modify the results for
inaccessible (nonignorable) missing data mechanisms.

Hybrid Version of EM Algorithm: EMCOV.EXE

It is possible to write a hybrid version of the EM aigorithm. One such
program is EMCOV.EXE (Graham and Hofer, unpublished manuscript).
The advantage of this program is its flexibility. For exampie, the pro-
gram can be modified easily to adjust the EM algorithm to account for
inaccessible missing data mechanisms (for a brief discussion, see the next
section; for additional details, see Graham and Donaldson [1993]).

It also is possible to revise the program for special missing data prob-
lems. For example, Graham and Hofer (1992) have revised the program
to handle missing data problems involving interactions. If the variables
making up the interaction have missing data, most procedures must throw
away data unless both variables are nonmissing. For some missing data
designs (the three-form design, for example), this could mean a
substantial loss of data and statistical power. With the hybrid EM
algorithm program, however, Graham and Hofer (1992) were able to
make use of all the available data and to obtain estimates of interaction
terms with smaller standard errors.

The disadvantage of this and other similar hybrid programs is that they
are not readily available. However, such programs are becoming more
available. The EMCOV EXE program (Graham and Hofer, unpublished
manuscript) is available from the authors as a beta-test program. The
current version provides the correct solution for all situations (i.e., any
number of variables missing for each subject). An MS-DGS compatible
486 computer with math coprocessor is recommended. The program is
FORTRAN compiled with a DOS extender and can handle any number
of cases, variables, and missing data patterns, provided one’s computer
has sufficient memory. Four MB RAM may be sufficient for smaller
problems (in the neighborhood of 20-60 variables with N = 1,000), but
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8 MB RAM or more may be required for larger problems. Results
obtained are the same as those obtained from the BMDP AM program.

Adjusting the EM Algorithm Estimates for Inaccessible Missing
Data Mechanisms. The adjustment to the EM algorithm is applicable
in a theoretical sense to any missing data problems. However, in prac-
tical terms, it is best applied to the case of attrition where relatively few
variables have missing data. The example presented here examines the
case in which there are three variables—a program variable (Program),
pretest covariate (X), and posttest dependent variable (Y), with data
missing only for the dependent variable.

The correction begins with the collection of data from a random sample
of cases with previously missing data on the dependent variable. There
are three relevant samples. Sample 1 is the sample of cases having com-
plete data at the outset. Sample 2 is the small random sample of those
with inijtially missing data. Sample 3 is the sample of those for whom
posttest data are still missing. The main idea is that the data from sample
2 will be used to extrapolate to those in sample 3. Theusual EM algo-
rithm would make use of all nonmissing data to extrapolate to those in
sample 3.

Although this correction is conceptually simple, it is computationally
complicated. If multiple imputations were being performed, it would be
a simple matter to use the sample 2 data to impute values for those in
sample 3. However, because the EM algorithm computes the covariance
matrix directly for the entire sample, a simpler computational solution
must be found.

" The computational solution is based on the prediction of scores in sample
2 using the regression equation from sample 1. As described in Graham
and Donaldson (1993), the first equation is:

Y"< b +b, Program +b,X @
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where by, b;, and b, are the intercept and b-weights derived in sample 1.
These predicted scores (7" then are compared to the actual scores in
sample 2. Without going into detail here, the correction to be applied to
the EM algorithm comes from the regression of the actual scores in
sample 2 on these predicteu scores:

Pe=b*+b *7"

where Y* is the estimated score in sample 2, ¥ “is the predicted score
based on the regression equation from sample 1, and b,* and b,* are the
intercept and regression weight from that regression analysis.

At the point in the EM algorithm where one must use the best guess of
the missing value, one estimates the value in the usual way but adjusts the
estimate by mult'plying by b,* and adding b,*.

A General Solution for Estimating Standard Errors:
Bootstrapping

A general solution for the problem of estimating standard errors is
bootstrapping (Efron 1982). Boctstrapping begins with the assumption
that the data sample is a random sample of the population. If this is true,
then a random sample of cases from the original sample (with replace-
ment) also is a random sample of the population. Furthermore, the
standard deviation for any given parameter estimate across several such
new samples is an estimate of the standard error for that parameter
estimate.

The bootstrap procedure is outlined as follows:

1. Estimate tiie variance/covariance matrix using the EM algorithm
(e.g., BMDP AM or EMCOV EXE).

2. Use some statistical package (e.g., LISREL, SAS) to perform the
analysis of ultimate interest based on the EM covariance matrix.
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3. Do the following 50 times (or 20-1,000 times depending on precision

required for hypothesis-testing):

a. Sample cases with replacement from the original data set
10 obtain a new data set with the same N as the origina17,

b. Obtain the EM algorithm estimated covariance matrix
(e.g., BMDP AM or EMCOV.EXE),

c. Analyze covariance matrix (with LISREL, SAS, etc.) to obtain
parameter estimates of interest, and

d. Save parameter estimates.

4. The standard deviation obtained for each parameter estimate over the
50 data sets is an estimate of the standard error for that parameter
estimate.

The DOS, BASIC, LISREL, and EMCOV .EXE (and BMDP AM) code
necessary to perform a simple bootstrap can be obtained from John
Graham.

Multiple-Group Structural Equation-Modeling Procedure

An alternative to the EM algorithm is the use of multiple-group structural
equation-modeling analyses. These analyses have been outlined recently
by Allison (1987), Jéreskog and Sorbom (1989), Muthen and colleagues
(1987), and others. When the data are missing completely at random, or
when the cause of missingness has been measured and is included in the
model, this procedure gives maximum likelihood estimation for most
models that can be estimated in LISREL or comparable programs.

The procedure makes use of the multiple-group capabilities of LISREL
(or comparable programs). One divides the data into groups correspond-
ing to each distinct missing data pattern and creates a covariance matrix
and vector of means for each group. For groups with missing data, the
input covariances and means involving a missing variable are set to 0,
and input variances are set to 1.
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The basic idea of the procedure is that parameters are estimated based on
all data that are available for that parameter. All latent-variable variances,
covariances, and regressions are constrained to be equal across groups. If
the relevant variable is nonmissing, then factor loadings and residuals are
estimated and constrained to be equal across groups. If the relevant vari-
able is missing for a particular group, then all factor loadings and residual
variance and covariances corresponding to that variable are not estimated
in that group; factor loadings and residual covariances are fixed at 0 and
residual variances are fixed at 1. The control statement for running a
simple LISREL VI or VII program can be obtained from John Graham.

For models based on manifest variables only, this procedure gives results
that are the same as those given by the EM algorithm (EMCOV.EXE or
BMDP AM). For latent-variable models, the results from this procedure
and the EM algorithm are very similar (both unbiased) but, as might be
expected, the estimates based on the multiple-group procedure are very
slightly more efficient (i.e., have lower standard errors).

Two clear advantages of using this procedure orer use of the EM
algorithm are (1) that one can analyze directly the model of ultimate
interest, and (2) that, as a byproduct of the analysis, correct standard
errors routinely are obtained for the model of ultimate interest.

One disadvantage of the multiple-group procedure is that it can be
extremely tedious. One look at the LISREL control statements shows
that this is not a procedure for the faint of heart. In fact, the procedure
may be useful only for those v/ith considerable LISREL experience.

A second disadvantage is that there may be a practical upper limit to the
number of different patterns that can be analyzed. For example, the
already bulky procedure becomes unwieldy when the number of different
patterns or groups gets larger than four or five (however, such analyses
have been conducted with as many as 24 groups, and others have
reported using the procedure with even more groups). Also, there is a
lower limit to the number of cases present for each pattern: There must
be more cases within each group than there are variables. One result of
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these two problems is that data often must be discarded when using this
procedure in order to meet the sample size requirements. Although the
amount of data to be discarded generally is small, it could be a deciding
factor in choosing this procedure.

There also are soimne limitations in the kinds of missing data patterns that
can be handled by this procedure. For example, for the analysis of the
program by grade interaction presented in table 3, the group containing
missing data on fifth-grade drug use had no variability for any variables
relating to grade of intervention, including the key programxgrade
interaction. Because all variables relating to grade of intervention were
defined only in the total sample, the multiple-group procedure did not
work, whereas the EM algorithm worked well.

Finally, in the multiple-group procedure, there is no way to adjust for
inaccessible (nonignorable) missing data mechanisms.

EXAMPLE ANALYSES

Analysis of Three-Form Design

The first example, taken from Graham and colleagues (submitted), is a
simulation involving analysis of the three-form design. For this example,
there were two simulated variables with no missing data (drug use 1 and
drug use 2) and three others simulating data from the three-form design.
A master data set with no missing data was generated with these five
variables (N = 500). Data then were removed completely at random
from the three-form design variables such that exactly one of the three
variables had missing data for each subject. This random deletion of data
was performed 20 times, producing 20 data sets with missing data.

The covariance matrix for the five variables then was reproduced in the
20 data seis. Five different analysis methods were used: EM algorithm,
pairwise deletion, mean substitution, single imputation (based on the EM
algorithm), and multiple imputation (also based on the EM algorithm).
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For the simulation, all variances for the master data set were around 1.0,
and all covariances were positive, ranging from .36 to .70.

The results for the simulation appear in table 6. The values in table 6 are
deviations from the actual values obtained in the analysis of the master
data set containing no missing data (deviations are averaged over all
variances and over all covariances). If the estimation procedure is unbi-
ased, the mean of the estimate of each variance and covariance element
over the 20 data sets should be very close to the parameter value esti-
mated in the master data set with no missing data. A positive deviation
means that the estimate is too high (i.e., positively biased); a negative
deviation means that the estimate is too low (i.e., negatively biased).

EM Algorithm. The analysis by EM algorithm was performed using
EMCOV.EXE, the hybrid EM algorithm program; the same results
were obtained using BMDP AM. Details regarding the program can be
obtained elsewhere (Graham and Donaldson 1993; Graham et al., sub-
mitted) or by writing to John Graham. The EM algorithm performed
very well, producing the least biased and most efficient estimates.”

Pairwise Deletion. In this example, pairwise deletion performed nearly
as well as the EM algorithm. The variance and covariance elements were
estitnated virtually without bias (on average), and the standard errors for
the estimation were only slightly higher than those obtained with the EM
algorithm. However, the lack of bias in this example is due to the fact
that the data were missing completely at random. In addition, despite the
fact that there is very little bias with pairwise deletion, there is no
guarantee that the matrix itself will be positive-definite.

Mean Substitution. 1t should be very clear from this simple example

that mean substitution is the worst of the analysis options. Both variance
and covariance elements were seriously negatively biased.
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TABLE 6. Results for three-form design simulation

Mean deviations {rom true parameter values
Cause of missingness: Random process

Estimation procedure

pair- singie mean mult

EM wise imp replc avg

Variances .001 .002 -.201 -319 -.015

Covariances .002 002 002 -185 -.000
Average
Standard

Error 037 045 036 025 040

KEY: EM =EM algorithm; Pairwise = pairwise
deletion (inclusion); Single imp = single imputation
(based on EM algorithm); mean replc = mean
replacement; mult avg = average of 5 multiple
imputations.

Single Imputation. The single imputation procedure was included here
to illustrate the problem with variance estimates. These single imputa-
tions were produced as a byproduct of the EMCOV .EXE program, not
based on simple regression. In fact, because data from the three-form
design do not conform to the monotone missing data pattern, performing
regression-based single imputation would not be appropriate.

The results for single imputation were identical to the EM algorithm for
covariance estimates (in this example, covariances were estimated in the
same way for the two approaches). As expected, however, the variance
elements were estimated with serious negative bias.
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Multiple Imputation. Multiple imputation began with the single
imputation described in the previous section. As a byproduct of the

EMCOV.EXE program, singly imputed values are output along with

a vector of residuals for each variable. For each missing score, one
element from the distribution of residuals for that variable was sampled
(with replacement), thereby restoring variability to the estimate of the
sums of squares (and, hence, the variance). This process was repeated
five times. The entries in table 6 are average parameter estimates over the
five replications of this process.

The results show that the multiple imputation procedure provided esti-
mates that were approximately equal to those obtained with the EM
algorithm. The multiple imputation estimates were about equally
unbiased, with only slightly larger standard errors.

Examples of Analyses To Deal With Atirition

The attrition example is taken from Graham and Donaldson (1993),
where additional details of the study may be found. In this example, data
were simulated from a simple drug prevention analysis as shown in figure
2. There were no missing data on pretest drug use or on the program
variable, but some data were missing for the posttest drug use variable.

A master data set was generated with no missing data, The relationships
between variables were modeled after actual drug prevention data. The
correlation between pretest and posttest drug use was r = .60, and the
correlation between the program variable and posttest drug use simulated
a rodest program effect, r =-.10. The correlation between the program
variable and pretest drug use was nearly 0, r =.03.

From the master data set (N = 500), missing data were generated for
the simulated posttest drug use variable producing the following four
patterns: (1) differential attrition caused by pretest drug use (i.e., an
accessible missing data mechanism); (2) differential attrition caused by
posttest drug use (i.e., an inaccessible missing data mechanism); (3) no
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/ Drug Use 2

(V3)

FIGURE 2. Simple attrition model

differential attrition, missingness caused by pretest drug use (i.e., acces-
sible); and (4) no differential attrition, missingness caused by posttest
drug use (i.e., inaccessible).

Twenty different data sets were generated for each of the four attrition
patterns. All data sets were analyzed by standard complete cases analyses
and with the EM algorithm (the hybrid EMCOV.EXE program was
used). The standard complete cases analyses were zero-order correlation
analysis and ANCOVA with posttest drug use as the dependent variable
and pretest drug use as the covariate. For the EM algorithm, the same
two analyses were repeated but were based on the EM algorithm
estimates of the covariance matrix.

For cell (2) of the design (inaccessible missing data mechanism, differ-

ential attrition), the data also were analyzed using a correction to the EM
algorithm. The details of the correction appear in Graham and Donaldson
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(1993). In brief, the cases originally missing were randomly sampled,
and the data were restored for this random sample. Then, rather than
using the regression equation in the original sample to predict scores for
the missing cases, the regression equation in the random sample was used
to predict missing scores for cases with data still missing.

The results for the correlation analyses appear in table 7. As shown,
there are no biases for the correlation associated with prevention program
effects if there is no differential attrition. This is true even with an
inaccessible missing data mechanism.

‘When there is differential attrition and an accessible mechanism, the stan-
dard zero-order correlation analysis based on complete cases is biased
because it does not take the cause of missingness into account. In this
same situation, the zero-order correlations based on the EM algorithm are
unbiased.

When there is differential aitrition with an inaccessible missing data
mechanism, both standard complete cases and EM algorithm analyses
produce biased estimates of program effects. However, note that the
correction to the EM algorithm based on a random sample of previously
missing cases produces an unbiased estimate of the correlation
corresponding to the program effect.

The results for the ANCOVA appear in table 8. As with the zero-order
correlation analyses, there are no biases for the regression weights associ-
ated with prevention program effects if there is no differential attrition.
This is true even with an inaccessible missing data mechanism.

When there is differential attrition and an accessible mechanism, the
regression coefficient based on complete cases is not biased because it
does take the cause of missingness into account. In fact, in this particular
situation (missing data only for posttest drug use), the complete cases
ANCOVA analysis is equivalent to the analysis based on the EM
algorithm.
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TABLE 7. Attrition study: Program effect results based on correlation

coefficients
Deviations from actual values
(standard errors in parentheses)
Missing data mechanism
Accessible Inaccessible
Differential
attrition
Complete EM Complete EM EM,
Yes -0.09 0 -0.16 -0.11 -.01
(o1 (o1 (o (:00) (o1
No -0.02 0 -.00 -.00

on (.0 (oD on

KEY: Complete = listwise deletion; EM = EM algorithm;
EM, = correction to the EM estimates based on the sample
of previously missing cases.

SOURCE: Graham, J.W., and Donaldson, S.I. Evaluating
interventions with differential attrition: The importance
of nonresponse mechanisms and use of follow-up data.
Journal of Applied Psychology 78:119-128, 1993;
Copyright (1993) by the American Psychological
Association. Reprinted by permission.
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TABLE 8.  Attrition study: Program effect results based on ANCOVA

(betas)
Deviations from actual values
(standard errors in parentheses)
Missing data mechanism
Accessible Inaccessible
Differential
attrition
Complete EM Complete EM EM,
Yes 0 0 -0.25 -0.25 -.01
(o) (01 ¢on (o1 (.03)
No -0.01 -0.01 -.00 -.00
(o1 (on (02) (.02)

KEY: Complete = listwise deletion; EM = EM algorithm;
EM, = correction to the EM estimates based on the sample
of previously missing cases.

SOURCE: Graham, J.W., and Donaldson, S.I. Evaluating
interventions with differential attrition: The importance
of nonresponse mechanisms and use of follow-up data.
Journal of Applied Psychology 78:119-128, 1993;
Copyright (1993) by the American Psychological
Association. Reprinted by permission.
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‘When there is differential attrition with an inaccessible missing data
mechanism, both standaid complete cases ANCOVA and ANCOVA
based on the EM algorithm produce biased regression estimates of
program effects. However, as with the zero-order correlation analysis,
the correction to the EM algorithm based on a random sample of previ-
ously missing cases produces an unbiased estimate of the regression
weight corresponding to the program effect.

Followup to Attrition Study. In order to illustrate the fact that pairwise
deletion is not a general solution to missing data problems, one cell of the
previous attrition study was reanalyzed. In particular, the cell with differ-
ential attrition and accessible missing data mechanism was examined.
Table 9 presents the results of this brief simulation in which five new data
sets were generated with differential attrition and the accessible missing
data mechanism. The data sets were analyzed with standard complete
cases analyses (i.e., listwise deletion), the EM algorithm, and pairwise
deletion.

As before, the complete cases correlation for the program effect is biased.
However, the complete cases estimate of correlation R, also is substan-
tially biased, and this produces an unbiased estimate of the regression
weight corresponding to the program effect. Also as before, all corre-
Jation and regression estimates based on the EM algorithm are unbiased.
Finally, the estimates corresponding to program effects based on pairwise
deletion are seriously biased both for the correlation analysis and the
ANCOVA analysis.

Analysis of the Process Model

The analysis of the process model will be used to illustrate the utility of
the multiple-group structural equation-modeling procedure (e.g., Allison
1987) with empirical data. In this case, there were 1,977 cases with com-
plete data for pretest drug use (seventh grade), program variables, process
data relating to the normative education curriculum, and posttest (eighth
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TABLE 8. Auvition study: Comparisons of estimates based on various
procedures

Mean deviations
from true parameter values
(accessible missing data mechanism)

Estimation procedure

True EM
pairwise listwise
R21 -.025 .000 .000 -175
R31 -.096 -.009 -.108 -.108
R32 598 -.008 -.006 -.006
bl -.18 -.021 -241 -.021
b2 596 -.007 -.006 -.007

grade) drug use. However, there were only 925 cases for the immediate
posttest measure of behavioral resistance skills. Thus, a complete cases
analysis of the entire process model was undesirable because it would
produce a substantial loss of statistical power for certain parts of the
model and would be based on a rather small subset of the total sample.
Because there were just two major patterns of missingness, the multiple-
group procedure would be ideal for analysis with missing data. The
annotated control statements for running the appropriate LISREL model
can be obtained from John Graham.

The process model tested is shown in figure 1. The results for complete
cases analysis and analysis using the multiple-group procedure are pre-
sented in table 10. It can be seen by inspection of table 10 that results
for the parts of the model not related to the resistance-training measure
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TABLE 19.  Results of process model with complete cases and multiple-
group LISREL procedure
Cause RT RT NORM NORM NORM
Effect: Behav Alc3 NotOK Prev Alc3
Complete b 0.297 0.122 0.116  -0.27 -,036
Cases SE 0.05 0.049 0.05 0.056  0.049
N =925 z 594 248 2.34 492 0.73
Allison b 0.299 0.098 0.159  -0.25 -.024
Procedure SE 0.05 0.033 0.034 0.037 = 0.032
+N = 1052 zZ 5.98 2.99 4.69 6.8 0.73
Cause Behav NotOK Prev
Analysis Effect: Alc3 Alc3 Alc3
Complete b -0.082 -0.199 0.108
Cases SE 0.032 0.033 0.029
N =925 A 2.58 6.09 3.71
Allison b -0.075 -0.209 0.097
Procedure SE 0.03 0.021 0.019
+N = 1052 z 2.47 9.77 5.00

KEY: RT = resistance training program dummy variable;
NORM = normative education program dummy variable;
Behav = measure of resistance skills; NotOK = beliefs about
acceptability of adolescent alcohol use; Prev = perceptions of
adolescent drug use prevalence; Alc 3 = alcohol use at time 3

(8th grade).
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are rather different for the complete cases and multiple-group procedures.
Note that the parameter estimates are comparable for the two procedures
but the standard errors for the multiple-group procedure are considerably
smaller for parameters not directly involving the measure of behavioral
skills. Z-values for these estimates are shown in bold in table 10.

Note that the parameter estimates and standar errors for parameters
directly involving the measure of behavioral resistance skills are virtually
unchanged for the two models. This makes sense in that these estimates
are based on the smaller sample size (N = 925). Also note that the param-
eter estimate, NORM --> ALC 3, was not significant for the complete
cases analysis (N = 925) and also was not significant when the remaining
data were added, bringing the effective sample size to N = 1977.

Substantive Conclusions. The data for this example come from the
AAPT study (Hansen and Graham 1991). Based on these analyses, it is
reasonable to conclude that the normative education (NORM) curriculum
had significant effects on the mediating variables: perceptions of preva-
lence of peer drug use and perceptions of acceptability of peer alcohol
use. In turn, these mediating variables have a significant effect on
alcohol use at the eighth grade (all analyses controlled for alcohol use at
seventh grade). That is, there was a significant indirect effect of the
NORM program on eighth-grade alcohol use, which was mediated by
perceptions of prevalence and acceptability of peer alcohol use.

The resistance training (RT) curriculum had a significant effect on the
mediating variable, behavioral resistance skills, which in turn had a
modest but significant effect on eighth-grade alcohol use. There was a
significant indirect effect of the RT program on eighth-grade alcohol use,
which was mediated by behavioral resistance skills. However, there also
was a significant, direct, counterproductive effect of the RT program on
eighth-grade alcohol use. Although there is no firm evidence to explain
this direct effect, Donaldson and colleagues (submitted) have shown that
the effect could be due to the unexpected effect of RT increasing
perceptions of peer prevalence of drug use offers.
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Analysis of Program by Grade of Intervention Interaction

The missing data problem with the analysis of the program by grade
interaction was introduced in table 3. In the AAPT study (Hansen and
Graham 1991), programs were implemented in the fifth and seventh
grades. One of the main questions of interest was whether the programs
would have greater effectiveness when implemented earlier or later. One
hypothesis was that it is best to intervene in the seventh grade, when
students are beginning to feel strong pressures to use various substances.
On the other hand, one of the key curricula, normative education, was
designed to demonstrate to young adolescents that using drugs at their
age is not as common as most kids believe. One might suppose that such
a curriculum would be more effective in the fifth grade, when substance
use is very low, than in the seventh grade, when at least some adolescents
have begun using drugs. It was an easy matter to do a posttest-only
analysis of variance using grade, program, and the gradexprogram
interaction as effects. Tlie results for the posttest-only analysis are
presented in table 11.

Unfortunately, the more sensitive (and, perhaps, more appropriate)
ANCOVA could not be used because there was no generally appro-
priate pretest measure of drug use that could be used as a covariate in the
ANCOVA. The fifth-grade measure of drug use was available for those
receiving the program as fifth graders, and the seventh-grade measure of
drug use was available for those receiving the program in the seventh
grade. However, these two measures were not equivalent and could not
be used as a single covariate (i.e., pretest use) in the same analysis. If
complete case analysis were used, either fifth graders only or seventh
graders only wouid be used. This obviously was no solution.

Fortunately, the authors did include pretest measures at the fifth-grade
level for one of the two cohorts receiving the program in the seventh
grade (see panel 2 in table 3). However, even with this, if complete cases
analysis were used, it would mean discarding data for one entire cohort of
subjects receiving the program as seventh graders (120 classrooms). This
could bias an interpretation and would reduce statistical power.
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TABLE 11.

Analysis of variance

Dependent variable = 8th-grade alcohol use

Pre-post
Posttest EM

Source only algorithm

z p z p
Alc5 - - 3.68 .0001
Pub5 51 ns 92 ns
Pub7 .05 ns .61 ns
PYear 1.55 12 .85 ns
NORM -1.78 .08 -1.98  .048
PYear*NORM .07 ns -42 ns
RT -.03 ns 14 ns
PYear*RT -82 ns -.53 ns
NORM*RT -.90 ns -1.14 ns
PYear*norm*rt -.20 ns .09 ns

KEY: N =420 classrooms. Alc5 = alcohol use at 5th grade;
OubS = public (1) versus private (-1) schools (5th-grade
interventions); Pub7 = public (1) versus private (-1) schools
(7th-grade interventions); PYear = grade of intervention
(7th = 1, versus 5th = -1); NORM = NORM (1) versus
NoNORM (-1); RT =RT (1) versus NoRT (-1).
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One would think that the multiple-group structural equation-modeling
procedure would be ideal for this missing data problem in that there were
two missing data patterns—those with the fifth-grade pretest and those
without it. Unfortunately, because missingness was partially confounded
with grade of intervention, the group containing missing data had no
variability for the grade of intervention variable.

The solution used here is the EM algorithm. Although missingness was
partially confounded with grade for the multiple-group analysis, grade of
intervention was well defined for the sample as a whole. EMCOV.EXE,
the hybrid EM program, was used for this problem; BMDP AM also
would perform well for this type of problem,

The results for the EM algorithm also appear in table 11. For the post-
test-only analysis, the program NORM had only a marginaily significant
effect on eighth-grade alcohol consumption. However, for the ANCOVA
using pretest as a covariate, this effect reached statistical significance.
Note that none of the interactions involving grade of intervention even
approached statistical significance. One can conclude from these findings
that: (1) the NORM program has a modest effect on reducing or delayihg
the onset of alcohol use, (2) the RT curriculum has no overall effects, and
(3) fifth- or seventh-grade interventions are equivalent.

The third result should be modified, however, in that those receiving the
program in the fifth grade also received a one- to three-session booster in
the seventh grade. Thus, the conclusion to be reached here is that receiv-
ing the program in seventh grade only is as effective as receiving the
program in the fifth grade with a seventh-grade booster.

DISCUSSION

A cross-section of missing data problems has been presented in this
chapter. Omissions within a survey, attrition from whole waves of
measurement, and planned missingness have been discussed. All of these
problems are encountered routinely in drug prevention research.
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Attrition Solutions

Two approaches to solving the problem of attrition, perhaps the most
insidious problem discussed in the drug prevention literature, were pre-
sented. The first solution is to plan the research with attrition in mind,
identifying the likely causes of attrition and measuring as many of them
possible. If one can include these causes in the analysis, biases associated
with attrition can be minimized or eliminated.

The second solution to the problem of attrition is to collect data from a
sample of those initially missing. This type of solution may be difficult
to implement but may be cost effective in the long run. For some kinds
of prevention studies, studies involving parents or other adults, for
example, experience shows that the sampling procedure can be
successful. For studies involving adolescents, however, use of this
procedure may present more of a challenge.

General Missing Data Analysis Solutions

Two general solutions for analysis with missing data, the EM algorithm
and a multiple-group structural equation-modeling procedure (e.g., Alli-
son 1987), were discussed. For analysis of continuous data, especially
analyses that can be based on a covariance matrix, one of these solutions
always should be used.” The EM algorithm theoretically is applicable to
any missing data problem. In practical terms, however, its ready avail-
ability is Iimited currently to BMDP, which may not be widely available.
However, other versions of the EM algorithm (e.g., EMCOV EXE) are
becoming more readily available. Also, current implementations of the
EM algorithm do not allow for special problems, such as adjusting the
EM estimates for inaccessible missing data mechanisms. The other
drawback noted for the general EM algorithm is that correct standard
errors are not computed for the parameter estimates of ultimate interest.
Fortunately, one can use bootstrapping procedures (Efron 1982) to obtain
these standard errors for any problem.
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The multiple-group structural equation-modeling solution (e.g., Allison
1987), is an excellent procedure when it is applicable. The main advan-
tages of the procedure are (1) that it provides unbiased and statistically
powerful estimates of the model of ultimate interest, and (2) that it
provides good estimates of the standard errors for these model param-
eters. Because of the practical and statistical limitations on the number of
missing data patterns that may be present, this procedure often involves
discarding a small amount of data. However, experience shows that this
Joss of data is unimportant compared to the gains that can be made.

Statistical Power

Whenever a researcher has missing data, there are important statistical
power issues to be considered. It has been mentioned throughout this
chapter that one of the advantages of using the EM algorithm or multiple-
group structural equation-modeling procedures is that one makes full use
of data that are available. This means that, compared to analyses using
ontly complete cases, one can estimate certain parameters with greater
statistical power.

This point was made most clearly in the example of analysis of the
process model of prevention program effects (see figure 1 and table 10).
Compared to analyses with complete cases, statistical power was boosted
substantially for several parameter estimates that were not related to the
missing variable.

On the other hand, this same example illustrated very well that these
missing data procedures do not give something for nothing. The results
in table 10 showed that there was no gain in statistical power for param-
eter estimates relating directly to the variable with missing data.

Statistical power also is a particularly important issue when research
plans specify missing data patterns. For example, although the advantage
of using the three-form design is that one can collect data for additional
variables without placing too much of a burden on any individual respon-
dent, researchers who use this approach should bear in mind that they are
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giving up statistical power. With the three-form design (see table 2),
correlations between variables within the same block of items are esti-
mated with only two-thirds of the total sample. Correlations between
variabies across blocks of items are estimated with only one-third of the
total sample. Researchers should carefully weigh the loss of statistical
power associated with this measurement plan. In imost cases, a researcher
will have ample power even with a cne-third sample. However, for
certain key analyses, this could be totally unacceptable.

Limitations

This chapter has not discussed all missing data problems nor presented

all solutions. Several important procedures available for dealing with
missing data in the continuous variable situation probably were omitted.
The authors hope that readers will forgive these omissions. In addition,
procedures for categorical data analysis with missing data were presented.
Although this certainly is an important area, it is one that goes beyond the
scope of the present chapter. Others who have discussed solutions to this
problem recently include Little and Rubin (1987), MacKinnon and
Graham (1993), Muthen and colleagues (1987), and Rindskopf (1992).

Points To Remember

There are several points made in this chapter that should be
reemphasized:

1. Whenever possible, use the EM algorithm (or other maximum
likelihood procedure, including the multiple-group structural
equation-modeling procedure or, where appropriate, multiple
imputation) for analyses involving missing data.

2. If other analyses must be used, keep in mind that they produce biased
results and should not be relied upon for final analyses. Recom-
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mendations regarding the use of other procedures for preliminary looks at
the data include:

a. Never use mean substitution, even for preliminary analyses.

b. With minimal missing data, analysis of complete cases may be a
reasonable solution.

c. If data are missing completely at random, pairwise deletion or
complete cases analysis may be a reasonable solution.

d. If data are not missing completely at random and the cause of
missingness has been measured, complete cases may produce
unbiased estimates, although it is a generally less powerful
approach than the EM algorithm or multiple-group procedure.

3. When data are missing, missing data analysis procedures do not
generate something out of nothing. Missing data analysis procedures
do make the most out of the data available, maximizing precision of
estimation and eliminating biases.

4, When data are missing, work hard to find the cause of missingness
and include the cause in the analysis model. When planning a study,
think about what the causes of missingness are likely to be and obtain
measures for as many causes as possible.

5. Ultimately, one can never know whether the cause of missingness is

fully accessible. So, one solution is to sample the cases with missing
data and adjust EM algorithm parameter estimates accordingly.10

NOTES
1. Note that, in actual practice, one would expect some amount of
nonrandom missingness to be superimposed over top of the random

missingness due to the three-form design.

2. Because the missing values are imputed and not real, the standard
errors for these analyses will be lower than they should be. In these
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cases, other methods (e.g., using bootstrap procedures) must be used
to obtain proper estimates of the standard errors.

A general version of the EM algorithm also should be available with
the next release of SYSTAT.

There also is a general version of the EM algorithm available within
the Gauss program. However, this may be even less accessible than
BMDP. Although the Gauss program undoubtedly will prove to be a
very good program, the authors are not prepared to comment on it
further at this time.

This is true if the causes of missingness are random processes or if
they are accessible and are included properly in the analysis.

By "more efficient,” the authors mean less variability around the true
parameter value. Other approaches may yield less variability (i.e.,
lower standard errors) around biased parameter estimates.

One should be careful in this step to make use of a randomizing
procedure that provides a good approximation to true random
selection. The simplest approaches (e.g., using the RANDOL {IZE
TIMER function in BASIC) are known to be flawed. Results based
solely on this randomizing procedure will produce standard errors
that are incorrect to an unknown degree.

Again, by "most efficient,” the authors mean the least variability
around the true parameter value. Some of the values for average
standard error shown in table 6 are smaller than those shown for the
EM algorithm. However, these figures refer to variability around the
substantially biased parameter estimate.

Some missing data problems (e.g., analysis of difference scorzs)

involve continuous data but cannot be analyzed directly with a
covariance matrix. Such problems can be handled with multiple
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imputation procedures using the EM algorithm (not simple
regression) as the basic single imputation method,

10. This suggestion applies especially to the case of attrition but may be
of less value for the case of nonrandom omissions.
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lLatent Class Analysis of
Substance Abuse Patterns

John S. Uebersax

ABSTRACT

This chapter discusses use of latent class analysis (LCA) as a tool for
identifying substance use patterns in cross-sectional data. LCA serves as
an exploratory and data reduction tool that helps clarify the nature of
substance use and may provide insight concerning effective prevention
strategies. LCA is well suited to categorical data such as typically are
collected in substance use research. Use of LCA can be divided into
three steps: (1) model comparison and selection, (2) assignment of cases
to latent classes, and (3) interpretation of the latent classes. Quantitative
indices of model fit may assist model comparison and selection. Latent
classes can be interpreted by examining probabilities of substance use in
each latent class and by examining differences on exogenous variables.
Limitations, extensions, and software for LCA are discussed. An
example illustrates use of LCA with actual data collected from a current
substance abuse prevention study.

INTRODUCTION

Substance abuse is not the same in every case. There are important
differences among individuals in terms of the substances abused and the
amount, frequency, and social context of use. Recognition and identifi-
cation of common patterns promote understanding of the psychological
determinants of substance abuse and the development of more effective
prevention interventions.

64



Latent class analysis (LCA) is a statistical method for finding groups in
data. LCA is related to "mixture model" types of cluster analysis (Day
1969; Wolfe 1970). LCA differs from most forms of cluster analysis,
however, in that it is intended mainly for use with categorical data. This
is significant because, in substance abuse research, variables typically are
measured at the categorical level. This chapter discusses use of L.CA for
substance abuse prevention research. The focus is practical rather than
technical and addresses the question, "How does one actually use LCA in
a substance abuse prevention study?”

Latent Class Analysis (L.CA)

LCA is attributable mainly to sociologist Paul Lazarsfeld (1950). Lazars-
feld envisioned L.CA as a tool to identify respondent groups from survey
data. Applications were limited until Goodman (1974) supplied an effi-
cient estimation method. LCA now is used increasingly, especially in
psychology, sociology, education, and health research. A book by Laz-
arsfeld and Henry (1968) remains an important source of information on
LCA. A good introduction to the subject is provided by McCutcheon
(1987). For technical details on LCA, see Goodman (1974). Langeheine
and Rost (1988) discuss current developments in the area.

The LLCA model posits the exist= ice of two or more population subtypes
or latent classes. Each latent class has a set of probabilities for various
responses on each observed (manifest) variable. In the present context, a
latent class corresponds to an ideal substance abuse pattern; response
probabilities are the probabilities of various levels of substance use for
each latent class.

The model is understood easily with reference to table 1 and figure 1.
Table 1 illustrates the concept of a response pattern. s, s,, and s, denote
responses to three substance use items, coded 0 = not used and 1 = used;
there are eight possible response patterns of the form (s,, s,, 5;). Table 1
shows the patterns and their hypothetical observed frequencies in a
population.
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TABLE 1. Possible response patterns for three dichotomous substance

use items
Response pattern™ Observed
Pattern frequency
S, S, S
1 0 0 O 432
2 0 0 1 23
3 010 31
4 0 1 1 17
5 1 0 O 175
6 1 0 1 34
7 1 1 0 126
8 1 1 1 87

KEY: * Coded as 0 =nonuse, 1 =use

Figure { schematically represents the LCA model. Starting at the top, the
circle represents a case in the population selected at random. X, X,, and
X, represent three latent classes. The use of three substances (the same
substances for each class) is denoted here by s,, s,, and s;. The numbers
represent probabilities. The top set are the probabilities of a randomly
selected case belonging to each latent class; these are the latent class
probabilities of the LCA model. The lower set are the probabilities of
substance use given each latent class, or conditional response proba-
bilities. The conditional response probabilities shown in figure 1 are the
probabilities of substance use; subtracting them from 1 gives the
probabilities of nonuse (items with more than two response levels have,
correspondingly, several conditional response probabiiiiies for each latent
class).
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X, X, X3
1/ 2 \ / 4 \3\ / 8 8
S S, S3 S, S, S5 8 S, S,

FIGURE 1. Schematic representation of the latent class model

The input for LCA consists of observed response pattern frequencies like
those in table 1. For each analysis, one also specifies the number of latent
classes in the solution. The procedure then determines optimal (maxi-
mum likelihood) estimates for the unknown latent class and conditional
response probabilities, which form the basis of interpretation of results.

EXAMPLE APPLICATION

Background

The exampie here uses data from a substance abuse prevention study in
Winston-Salem, NC. The study involves middle school and high school
students in the Winston-Salem public school system. Reported substance
use by high school students in the 1991-1992 academic year is considered
here; analysis is limited to 11th- and 12th-grade male students, for whom
substance use is highest.

Data were obtained with a 115-item, self-administered survey. The sur-
vey contains items on current and lifetime substance use; hypothesized
mediating variables (e.g., personality, attitudes towards drugs); and
demographic information.
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The present analysis considers seven lifetime substance use items: drunk-
enness, cigarettes, marijuana, cocaine, heroin, amphetamines, halluci-
nogens, and inhalants. Responses on each item, originally ordered-
categorical, were recoded to dichotomies: Students who reported having
been drunk once or more were coded positive on the drunkenness vari-
able; those reporting having smoked at least one pack of cigarettes were
coded positive on the cigarettes variable; all other variables were coded
positive if the student reported at least one lifetime use of the
corresponding substance.

Respondents are assured anonymity, and the survey response rate is high
overall—over 90 percent. For this analysis, a small number of students
who did not respond to every item were eliminated; the total N for the
analyses reported here is 855.

Analysis and Results

Use of LCA can be divided into three steps; the analysis here illustrates
each of them:

e Model selection. One first tests several latent class models and
selects one that is optimal in some way. Models differ mainly in the
number of latent classes but also may differ in other ways. Various
measures of model fit can be used to assist model selection.

» Assignment of cases. Once a model is selected, each case is assigned
to its most likely latent class based on the model parameter estimates
and cases’ responses to the manifest variables.

e Latent class interpretation. The main procedure for interpretation is
to examine the response probabilities of items given each latent class.
One also may examine whether latent classes differ on exogenous
variables—that is, variables other than those used to estimate the
latent classes.
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From the raw data—students’ responses to the substance use items—
observed frequencies for each response pattern were generated using the
PROC FREQ feature in SAS, with the LIST option. This supplied the
input to the LCA program PANMARK (other programs could be used as
well; see SOFTWARE section). Six models, with from one to six classes,
were tested; the results are summarized in table 2.

The table shows the models, the number of estimated parameters,
the degrees of freedom (df), and model fit according to three criteria.
The df are equal to the number of possible rating patterns minus 1
(here, 21 = 127) minus the number of estimated parameters.

TABLE 2. Results of latent class models of responses to 7 substance use
items by 855 male 11th- and 12th-grade students

Normed
No. of fit
Model Description - parameters  df G X index
M1 ° lclass 7 120 1,468.42 24,550.34 -
M2 2 classes 15 112 306.29 501.19 791
M3 3 classes 23 104 90.81 108.93 938
M4 4classes 31 96 65.61 81.13 955
M5 5 classes 39 88 43.08 48.82 971
M6  6classes 47 80 31.89 38.91 .978

Deciding the number of latent classes is given much attention in the
technical literature. However, substance abuse prevention researchers
will do well to note that mode] preference less often is a statistical than a
practical issue. In substance abuse research, one is more likely to view
latent classes as a means for data reduction; a solution is sought that
captures as much meaningful variation among cases as possible without
resorting to an excessive number of classes. Still, although the research-
ers’ judgment should be primary in selecting among models, one should
not lose sight of statistical criteria altogether.
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The familiar Pearson X’ statistic, calculated by comparing observed with
model-predicted response pattern frequencies, can be used to assess
goodness of fit. An alternative is the likelihood-ratio chi square statistic,
G’ (see McCutcheon 1987 for details). Under ideal conditions, G* and X°
both follow the ;:2 distribution and can be used to statistically test
departure of the model from observed data. For an acceptable model,
both statistics should be close to the df and close to each other; the
required conditions are a sufficiently large sample size and data that are
not too sparse (sparse data have many response patterns with small
frequencies). Prevention studies usually meet the first condition, but the
second sometimes is problematic. In the present case, for example, note
that in table 2 with models M4-M6, G? and X° are much lower than the
df, the result of sparse data.

More refined model selection criteria have been proposed that are related
to G’ but add a component to penalize models with more parameters
(Collins et al., this volume; Sclove 1987). Much work, however, remains
to be done in this area.

Table 2 also shows the normed fit index (nfi) (Bentler and Bonett 1980;
Clogg 1977) for each model. For a model with k latent classes, the nfi is
calculated as the G statistic for a 1-class model minus G” for the k-class
model, divided by G’ for the 1-class model. It can be interpreted infor-
mally as the proportion of unexplained variance accounted for by the
k-class model. Some researchers will find this index, which approaches
model £t more from a descriptive than an inferential standpoint, useful.
The nfi increases markedly going from two to three classes and little
beyond five latent classes. The results, therefore, suggest that a model
with from three to five latent classes is best. The solution for model M3
is relatively uninteresting, and one of the latent classes for M5 has a very
low prevalence; therefore, focus attention on M4.
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FIGURE 2. Probabilities of substance use conditional on latent class for
Model M4 of table 2

The four latent classes for M4 have estimated population prevalences of
474 (class 1), .322 (class 2), .063 (class 3), and .141 (class 4). Figure 2
shows estimated probabilities of use of each substance for each latent
class.

Class 1, accounting for nearly half the population, is termed the "non-
user” group, although, interestingly, even for this group, the probability
of at least one episode of drunkenness is above .4. Members of class 2
have a very high probability of reported drunkenness and lower but
relatively high probabilities of cigarette and marijuana use; this group is
termed "conventional substance users." Members of class 4 have very
high or relatively high probabilities of reported use on all items; this
group is termed "general substance abusers." For class 3, reported
probabilities of use of amphetamines, hallucinogens, inhalants, and
cocaine are intermediate between those of conventional substance users
and general substance abusers; for drunkenness, cigarette use, and
marijuana use, the probabilities are slightly higher than for general
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substance abusers, although for drunkenness and marijuana, the
differences appear negligible; this is the "moderate drug use" group.

The four classes correspond to roughly increasing levels of substance use.
Often the results will not lend themselves to so simple an interpretation.
For example, with the same students, when items on beer, wine, and hard
liquor use are added, one sees more crossing of response profiles. This
shifts interpretation away from degree of overall substance use more
toward different patterns that involve specific substance combinations.

Examination of a graph such as the one in figure 2 may reveal important
aspects of substance abuse within a population. The following are
representative of the kinds of questions that LCA may suggest:

+ Many students in the nonuser group have been drunk but have not
used other substances. What does this say about the socialization
factors responsible for adolescent substance abuse? Where and with
whom do they have the opportunity and motivation to be drunk such
that they are not simultaneously exposed to or motivated to use other
substances?

* Does the conventional substance use group represent a transitional
stage of experimentation with alcohol, cigarettes, and marijuana from
which adolescents may move to use ot other drugs, or does it
represent a terminal pattern that reflects preference for these
substances?

* In the general substance abuse group, there still are many students
who do not smoke cigarettes. What dissuades these students from
smoking cigarettes? If researchers knew this, they could use the
information to dissuade them from use of other substances?

* Again, in the general substance abuse group, cocaine use is more
common than amphetamine, hallucinogen, and inhalant use. This is
not true for the other groups. Do students who use cocaine find the
other substances less interesting?
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By drawing attention to these types of issues, LCA can provide insights
into substance use in a population and refine thinking about prevention
intervention strategies.

Another way to interpret a latent class solution is with exogenous
variables. As noted above, to do this one first assigns each case to its
most likely latent class. LCA provides the probabilities of membership in
each latent class given each response pattern, or recruitment probabilities
(Lazarsfeld and Henry 1968, pp. 36-38). Each case is assigned to the
latent class for which its membership probability is highest. (Current
L.CA programs usually provide the recruitment probabilities but do not
perform the actual classification of cases. Case classification can be done
with the MERGE feature in SAS, or, for example, as here, with a short
BASIC program.)

Once cases are assigned, latent classes can be compared on the exogenous
variables. Table 3 summarizes the comparisons of the latent classes of
M4 on 13 psychological scales. Each scale is composed of several items
given on the same survey as the substance use items. The 13 scales also
were factor analyzed using iterated principal factor analysis and orthog-
onal varimax rotation. The results showed a two-factor solution with two
items ("academic orientation" and "assistance-helping") that did not load
strongly on either factor.

Each scale was used as the dependent variable in an analysis of variance
(ANOVA), with class membership as the independent variable. Results
are expressed as R, or the proportion of total variation on the scale
accounted for by between-class differences. Significance is assessed with
the usual F-test. Table 3 also shows how much latent classes differ on
each scale after removing the effects of all other scales; this can be
interpreted as the unique contribution of each psychological variable to
explaining latent class differences. Unique contributions are expressed as
squared partial correlations obtained by entering each scale in a stepwise
discriminant analysis after entry of all other scales, with latent class as the
group variable. Significance is assessed with the F-to-enter statistic. The

73



TABLE 3. Association between psychological variables and latent class

membership
Factor/Scale Partial
RZa RZI)
Factor I 0.4161"  0.4016"
Life compatibility 03615  0.0370"
Pledges 0.3282°  0.0963"
Peer use and beliefs 0.2946°  0.0301"
Beliefs about consequences ~ 0.2783"  0.0220
Resistance skills 0.0964"  0.0059
Factor II 0.0353°  0.0114
Activities/alternatives 0.0398" 0.0021
Decision skills 0.0313°  0.0016
Self-esteem 0.0281" 0.0057
Goal orientation 0.0190 0.0035
Sociability 0.0146°  0.0121
Stress management 0.0076 0.0018
Academic orientation 0.0230 0.0017
Assistance-helping 0.0044 0.0092

KEY: " Based on univariate ANOVA
b Controlling for all other scales or factors in a
stepwise discriminant analysis
p < .01

results show clear differences among latent classes on the psychological
variables and, in that sense, they validate the latent class solution.

A parallel analysis to the above was conducted using factor scores on the
two factors. Factor scores were calculated as the unweighted mean of
standardized scale scores on the constituent scales. The variables on
factor I, which appear related to values, principles, and normative beliefs,
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more strongly differentiate classes than the more diverse factor II vari-
ables. The scales within each factor also vary in their association with
latent classes. For example, the "life compatibility" variable (perceived
compatibility of substance use with the student’s life goals) is associated
more strongly with latent class membership than the "resistance skills"
variable (ability to resist peer influence to use substances). The results
suggest that students’ perceptions of the compatibility of substance use
with their personal goals and ideal lifestyles may be an important
mediating variable that should receive special attention in designing
substance abuse prevention interventions.

The researcher also may wish to consider extensions of this approach to
latent class interpretation. For example, with discriminant analysis, one
may consider the number of discriminant functions and the amount of
variance accounted for by each. Similarly, one may plot the groups
relative to the discriminant functions to interpret the differentiating
dimensions.

LIMITATIONS AND EXTENSIONS

Limitations
Some potential limitations of LCA are noted below.

Local Maxima. LCA programs use iterative methods for maximum
likelihcod estimation. Sometimes algorithms converge on a local maxi-
mum rather than the global maximum solution; this is true of many
statistical procedures. The simplest way to avoid local maximum solu-
tions is to run a program several times using different parameter starting
values and to select the best-fitting solution. Use of multiple start values
can be included in the LCA software, making this process largely
invisible to the user.

Identification. With an unidentified model, different parameter values
account for the data equally well. The situation is analogous to having
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more unknowns than equations, resulting in an infinite number of
solutions. LCA model identifiability requires that the number of possible
rating patteins minus 1 is greater than or equal to the number of estimated
parameters. This restricts the number of latent classes one can estimate
for a given number of variables and rating levels. For example, given
dichotomous items, a two-latent class model requires at least three items
(even then, no df remain to assess model {it, so a more realistic minimum
requirement in this case is four items). Unusual patterns of observed data
sometimes may cause nonidentifiability; again, if this occurs, the main
consequence is to limit the number of latent classes one can consider,
Some LCA programs include the option to check model identifiability.

Number of Variables. With many variables and response levels, the
number of possible response patterns can be very large. For example,
with 10 items and 3 response levels each, over 59,000 response patterns
are possible. Because of this, some LCA programs allow only a limited
number of variables. The problem can be avoided or minimized if the
estimation algorithm considers only rating patterns that actually are
observed—usually far fewer than the number possible. This approach
greatly extends the number of variables that can be used in an analysis.

Multiple Indicators. LCA assumes conditional independence of
manifest variables. This stipulates that variables are independent within
each latent class. For example, it requires that, within a given latent class,
alcohol use is as common among those who use marijuana as among
those who do not use marijuana. This assumption sometimes is difficult
to justify, especially if two items are similar, such as, "Have you used
marijuana in the last week?" and "Have you used marijuana in the last
month?" LCA should produce useful results despite moderate violations
of this assumption, although model fit may be decreased. Future versions
of LCA may address this limitation.
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Extensions

Extensions of the basic LCA approach, which some researchers may wish
to consider, include multiple-group LCA, located latent class models, and
mixed-mode measurement.

Multiple-Group LCA. As with structural equation modeling, one can
estimate a latent class model simultaneously across two or more groups.
By comparing models where one or more parameters are held constant
across groups with models in which the parameters are free to vary, one
can investigate group differences. For example, it might be useful to
know if schools in different areas have the same basic latent classes but
different proportions of students belonging to each.

Located Latent Class Models. Many recent authors have discussed
located latent class models (Formann 1992; Lindsay et al. 1991; Rost
1988; Uebersax 1993). These models view latent classes as located on
one or more underlying continua. ‘With this approach, one can examine,
for example, whether different latent classes correspond to increasing
levels of overall substance use. Located latent class models also can help
reduce the number of parameters that require estimation.

Mixed-Mode Measurement. With continuous measures, the counter-
part of LCA is latent profile analysis (Lazarsfeld and Henry 1968).
Latent class analysis for problems with mixed-mode measurement

(e.g., combinations of dichotomous, ordered categorical, and contin-
uous measures) is an area of ongoing research (Everitt and Merette 1990;
Uebersax 1992).

The discussion here has assumed cross-sectional data. For discussion of

extensions of LCA appropriate for longitudinal data, see Collins and
colleagues (this volume).
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SOFTWARE

At present, no major statistical package includes LCA. However, several
stand-alone computer programs are available; most are written for per-
sonal compuicrs. These programs incl..de MLLSA (Clogg 1977),
PANMARK (van de Pol et al. 1989), LAT and D-Newton (Haberman
1979), CGAGS (Hagenaars 1990), and LT-CLASS (Andersen 1990).
The LTA program for latent transition analysis (Collins et al. 1992, this
volume) also can be used to estimate the standard latent class model.
Any of these programs will serve well for basic analyses.

Researchers considering more advanced or extensive use of LCA may
wish to consider some of the following options in selecting software:
(1) how many variables are allowed; (2) what input data formats are
possible; (3) if model identifiability is checked; (4) if some parameters
can be assigned fixed values or set equal to one another; (5) if multiple-
group analysis is possible; (6) if standard errors of parameter estimates
are calculated; (7) if recruitment probabilities are calculated; and (8) if
variable and value labels are permitted. )

CONCLUSIONS

In conclusion, LCA can be a useful data analysis tool for substance abuse
prevention research. Its function is to assist the broader goal of develop-
ing a theoretical understanding of substance abuse and designing and
implementing effective interventions. It is important not to reify the
latent classes; they are best regarded as abstractions that help clarify
variation in substance abuse in a population.
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Latent Transition Analysis and
How It Can Address Prevention
Research Questions

Linda M. Collins, John W. Graham,
Susannah Scarborough Rousculp, Penny L. Fidler,
Jia Pan, and William B. Hansen

ABSTRACT

The objective of this chapter is to introduce latent transition analysis
(LTA) to the substance use prevention research community. LTA isa
new methodological technique for testing stage-sequential models, such
as models of substance use onset. L.TA estimates several different sets of
parameters. One of these sets is the transition probability matrix, which
contains information about the probabitity of movement between stages
in the mode]l. LTA can be used to evaluate the effectiveness of preven-
tion intervention programs by comparing the transition probability
matrices of the program and control groups. If the prevention program is
successful, the transition probability matrices will indicate that the proba-
bility of moving to a more advanced stage of drug use is lower for the
program participants than for the control group. An advantage of taking
a stage-sequential approach is that examining the transition probability
matrix reveals how effective a program is for inuividuals entering the
program with different levels and types of substance use experience.

In this chapter, LTA is used to evaluate a variety of models of the early
onset process separately for Anglo, Latino, and Asian-American adoles-
cents, measured in seventh grade and again in eighth grade. Although
somewhat different models are found to fit the three ethnic groups best,
the differences likely are due to differences in the overall amount of
substance use experience. Based on these results, it is suggested that, to
be most effective, prevention programs should take place earlier for
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Anglos and Latinos, and later, followed by boosters, for Asian
Americans.

INTRODUCTION

A thorough understanding of the substance use onset process, and of
diversity in this process, is important if prevention efforts to delay or halt
onset are to be successful. One useful way to view the substance use
onset process is as a stage sequence of substance use experiences

(e.g., Yamaguchi and Kandel 1984). Methodology has existed for some
time to test models of onset based on event history data, for example,
reports of when a substance was tried. However, most school-based
prevention researchers do not collect this kind of data because doing so is
too labor intensive and because drug use data collected this way from
adolescents are not very accurate (Collins et al. 1985). Instead, most
school-based prevention efforts use longitudinal panel designs, in which
data are collected at regular intervals and the emphasis is on the present,
the recent past, or general lifetime use.

This chapter illustrates latent transition analysis (LTA), a methodology
for estimating and testing stage-sequential models in longitudinal panel
studies. The LTA model will be used to examine the nature and extent of
ethnic group differences in early substance use prevalence and onset.
Using LTA, it is possible to estimate the prevalence of the various stages
in a model in a given sample and also to estimate the incidence of tran-
sitions between stages. These estimates are adjusted for measurement
error, resulting in a more accurate picture of the onset process.

LATENT TRANSITION ANALYSIS (LTA)

The LTA model will be presented relatively briefly here; for a more
complete presentation, see Collins and Wugalter (1992) and Graham and
colleagues (1991).

82



LTA is a latent variable model for longitudinal panel data. By the term
"latent variable model," researchers mean that they are measuring

a theoretically error-free latent variable by means of fallible observed
variables. In this study, the latent variable is substance use onset. It has
been measured in seventh grade and again in eighth grade by four fallible
observed variables: an alcohol item, a tobacco item, a drunkenness item,
and an item indicating advanced use. In the LTA procedurs, the latent
variable has two important special features. First, it is dynamic; that is,
individuals exhibit growth on this latent variable over time. Second, it is
conceptualized as a sequence of stages. In LTA ferminology, stages are
referred to as "latent statuses.”

Figure 1 depicts a substance use onset process discussed by Collins and
colleagues (in press-a). This is an example of a dynamic stage-sequential
latent variable. The latent statuses correspond to substance use experi-
ence and are denoted in the circles. In this model, individuals may begin
their substance use experience by passing through any of a number of
stage sequences, as depicted by the arrows in figure 1. For example,
according to figure 1, some individuals begin their substance use experi-
ence with alcohol followed by either tobacco or an experience with
drunkenness, while others begin with tobacco foliowed by alcohol. Only
certain latent statuses will appear in a given model. There are eight latent
statuses consistent with the model depicted in figure 1: "no use;" "tried
alcohol;" "tried tobacco;" "tried alcohol and tobacco;" "tried alcohol, been
drunk;" "tried alcohol, been drunk, advanced use;" "tried alcohol, tried
tobacco, advanced use;" and "tried alcohol and tobacco, been drunk,
advanced use." LTA models the transitions between latent status
memberships across time.

The LTA Mathematical Model'

Suppose there are two occasions of measurement, with the first taken at
Tir=¢+ t and the second at Time t+1. Further suppose there are four
manifest indicators: item I, with i,i’ =1,...I response categories; item 2,
with j,j'=1,...J response categories; item 3, with k.k'=1,..K response
categories; and item 4, with 1,1’ =1,...L response categories, where i, j, k,
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FIGURE 1. Stage-sequential model of substance use onset discussed in
Collins and colleagues (in press)

and ¢ refer to responses obtained at Time t, and i', j', k', and I'refer to
responses obtained at Time t+1. (For example, in the substance use
research that will be described here, the following manifest indicators
were used: an alcohol use item, a tobacco use item, an item asking about
drunkenness, and an advanced use item that was a composite of several
substance use items. Data were collected in seventh grade and again in
eighth grade.) The extension to more than two occasions, fewer than
Sfour indicators, or more than four indicators is direct. There are

ab = 1,.5 latent statuses, with a denoting a latent status at Time tand b
denoting a latent status at Time t+1.

Let Y = {ij,k,bi'j'\k'l"} represent a "response pattern," a vector of pos-
sible responses made up of a single response to the manifest indicator of
the exogenous variable and responses to the four items at Times t and
t+1. Then the estimated proportion of a particular response pattern,
P(Y), is expressed as equation (1) on the following page.
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Parameters Estimated in the LTA Model

In the LTA models discussed in this chapter, three different types of
parameters are estimated:

0, represents the proportion in latent status a at Time ¢; in other words,
this parameter is the estimated proportion of subjects in each latent status
at the first occasion of measurement. Using the latent variable in figure 1,
an example would be the estimated proportion of individuals who at
Time ¢t have used tobacco only.

7,,, 1S a transition probability representing the probability of membership
in latent status b at Time #+1, conditional on membership in latent status
a at Time ¢. These parameters represent the probability of moving to a
particular latent status at the second occasion of measurement, condi-
tional on latent status membership at the first occasion. In figure 1, one
example of a transition probability would be the probability of moving to
the "alcohol and tobacco” latent status at the second occasion, given
membership in the "alcohol only" latent status at the first occasion. The
transition probability matrix is latent, that is, adjusted for error in the
observed items. The transition probabilities usually are arranged in a
matrix like the one below:

{Tm PTRRE

T

112 Y212 ‘32

13 213 ‘33
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where 7, represents the probability of membership in stage b at the end
of the interval, given membership in stage a at the beginning of the inter-
val. Because the elements of the matrix are conditional probabilities,
each row of this matrix sums to unity.

LTA also estimates measurement parameters. p,,, represents the proba-
bility of response i to item 1 at Time ¥, conditional on membership in
latent status a at Time ¢; p, , represents the probability of response

i’to item 1 at Time #+1, conditional on membership in latent status b at
Time #+1; etc. In other words, these parameters assess the degree of error
in each observed item. The p’s play two roles in LTA models. First,
they map the manifest items onto the latent statuses in much the same
way that factor loadings map variables onto factors. For example, if

the probability of responding no to each of the substance use items is
high for a particular latent status, this would be interpreted as a "no
substance use" latent status. If, in another latent status, the probability

of responding yes is high for the alcohol item while the probability of
responding no is high for the remaining items, this latent status would be
interpreted as "tried alcohol only." The second role that the o’s play is in
reflecting measurement precision. If measurement is error free, each
manifest response is determined completely by latent status membership,
and all the p’s are 0 or 1. In general, the closer these parameters are to Q
or 1 for a particular item, the closer the relationship between latent status
membership and manifest responses.

Comparison of LTA and Covariance Structure-Modeling

There are many analogies between LTA and covariance structure-
modeling (Joreskog and Sérbom 1989). Both are latent variable models
where fallible observed variables serve as indicators of error-free unmea-
sured variables. Both procedures involve a measurement model that
maps the observed variables onto the latent variables. In covariance
structure modelis, the latent variable is continuous and usually is mea-
sured by continuous indicators, whereas LTA involves discrete latent
variables and indicators. In covariance structure models, factor loadings
provide the link between observed and unmeasured variables; in LTA,
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the measurement parameters serve this purpose. However, the LTA
measurement parameters cannot be interpreted in exactly the same way as
factor loadings. With factor loadings, a large absolute value is a strong
loading, while a value close to 0 indicates no relationship, or a very weak
relationship, between a variable and a factor. In contrast, LTA measure-
ment parameters are estimates of probabilities, so a value near 0 or near
unity indicates "sureness," or a strong relationship between a measured
variable and a latent variable. A value close to 1/J, where J is the number
of response alternatives, indicates no relationship between a measured
variable and an observed variable. Negative values are impossible.

USING LTA TO INVESTIGATE ETHNIC DIFFERENCES IN
ADOLESCENT SUBSTANCE USE ONSET

There is a growing body of evidence that ethnic differences in adolescent
substance use prevalence are genuine, reliable, and substantial. Perhaps
the most compelling evidence comes from Bachman and colleagues
(1991), who conduct the Monitoring the Future project. This project has
surveyed nationally representative samples of high school seniors yearly
since 1975. The surveys have revealed consistently that Native Ameri-
cans have the highest prevalence rates for most substances, followed by
Anglos; that Latinos show intermediate prevalence rates; and that Asian
Americans show the lowest substance use rates, with African Americans
showing only slightly higher use.

This general finding has been replicated in a variety of settings by
numerous other studies. Oetting and Beauvais (1990) found results
remarkably similar to those reported in Bachman and colleagues (1991)
in their American Drug and Alcohol Survey, which is based on a nation-
wide nonrandom sample. Both Welte and Barnes (1987), based on a
large random sample of junior high and high school students from New
York, and Brannock and colleagues (1990), based on a smaller sample
from two high schools and one college in southern California, found
results consistent with those found by Bachman and colleagues (1991).
Grady and colleagues (1986), using a sample of New England seventh
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and eighth graders, found that Anglos showed greater use of tobacco,
alcohol, and marijuana than African Americans. Graham and colleagues
(1990) followed three successive cohorts of southern California students
from seventh grade through eighth grade. Their results were consistent
with those found by Bachman and colleagues (1991) and also suggested
that their substance use prevention program was less effective for Anglos
than it was for minorities. There is a considerable body of older research
that is consistent with these findings (e.g., Engs 1977; Humphrey and
Friedman 1986; Humphrey et al. 1983; Kandel et al. 1976; McIntosh et
al. 1979; Walfish et al. 1981; Wechsler and McFadden 1979) despite the
documented changes in overall trends in adolescent substance use over
the last decade.

Because an individual arrives at a level of substance use experience after
going threagh an onset process, the finding that there are ethnic differ-
ences in substance use prevalence raises the important question of
whether there are ethnic differences in this substance use onset process as
well. Such differences may take one of two forms. One possibility is
that the onset process essentially is the same across ethnic groups, but
onset begins earlier and/or the process is accelerated for certain groups.
Alternatively, the onset process itself may be qualitatively different for
different ethnic groups. If so, there may be differences in time and rate of
onset, but direct coniparisons between groups at best can be limited when
the process itself differs.

The Substance Use Onset Process

The stage-sequential point of view on substance use onset was pioneered
by Yamaguchi and Kandel (1984), who examined the onset process from
tenth grade through early adulthood. They found that use of alcohol
and/or cigarettes preceded marijuana use and that marijuana use was a
necessary precursor to use of other illicit drugs. Graham and colleagues
(1991) used a longitudinal panel design to test several models of early
substance use onset. Their subjects were in seventh grade at the first
wave of data collection and eighth grade at the second wave. Graham
and colleagues (1991) found that the best-fitting model was one in which
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most subjects initiated their substance use with alcohol followed by
tobacco, but an important minority of subjects initiated their substance
use with tobacco followed by alcohol. Next was a first experience with
drunkenness, followed by advanced use (defined as regular use of
alcohol, regular use of tobacco, or any experience with marijuana).

In the present study, the researchers tested five models of substance use
onset using a larger sample of which the Graham and colleagues {(1991)
sample is a subset. Because the researchers were interested in ethnic
differances in onset, the models were tested separately for Anglos,
Latinos, and Asian Americans.

METHODS

Subjects

The subjects for this study completed a drug use survey as seventh
graders in either fall 1987 or fall 1988 and again as eighth graders 1 year
later as part of the Adolescent Alcohol Prevention Trial (Graham et al.
1989; Hansen and Graham 1991; Hansen et al. 1988). The study
participants were those Anglos, Latinos, or Asian Americans who had
complete data for relevant measures on both pretest and posttest; the
participants were taken from a sample of seventh graders (N = 5,242)
who completed the survey at pretest. The subsample used in this study
contains 1,443 Anglos, 1,185 Latinos, and 498 Asian Americans.

Measures

The measures used in this study included lifetime alcohol use (How many
drinks of alcohol have you had in your whole life?); lifetime cigarette use
(How many cigarettes have you smoked in your whole life?); and lifetime
drunkenness (How many times have you ever been drunk?). The alcohol
item was coded Q if the subject reported "no use" or "sips for religious
services" and was coded 1 for "sips (not for religious services)" or more
in his or her lifetime. The cigarette item was coded 0 for "never tried”
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and 1 for "one puff” or more in his or her lifetime. The drunkenness item
was coded O for "never been drunk" and 1 for "been drunk once" or more.

Several other measures were used in the analyses reported in this chapter,
including alcohol use in the previous month and previous week, tobacco
use in the previous month and previous week, and lifetime marijuana use.
Models involving these items separately showed considerable instability.
It appeared that much of the instability stemmed from the fact that these
were young adolescents with very low levels of use. Thus, these items
tapping greater involvement with various substances were combined into
a single composite item reflecting advanced use. The combined item was
scored O if the subject had engaged in no alcohol use and no tobacco use
in the previous week and the previous month and had never nsed
marijuana; otherwise, it was coded 1.

Models Under Consideration

In this study, the researchers specified five models to be tested using
LTA. Figure 2 depicts all of these models, with different types of arrows
indicating which path is featured in a particular model. All of the models
specify that the onset process may begin with alcohol or with tobacco
followed by alcohol. Model 1, the model depicted in figure 1, is the most
parsimonious of the five models. This model suggests that for those in
the "tried alcohol, tried tobacco" latent status and those in the "tried
alcohol, been drunk" latent status, the next transition is into a "tried
alcohol, tried tobacco, been drunk” latent status. This model suggests an
orderly progression of increasing involvement where alcahol, tobacco,
and then drunkenness occur before advanced use. Model 2 eliminates the
“"tried alcohol, tried tobacco, been drunk” latent status, involving instead
transitions to a “tried alcohol, been drunk, advanced use" latent status or a
"tried alcohol, tried tobacco, advanced use"” latent status. Model 3 adds a
latent status to model 1, suggesting the existence of a "tried alcohol, been
dirunk, advanced use" latent status. This allows for the possibility of
engaging in advanced use (of alcohol or marijuana) before having tried
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FIGURE 2. Models considered in the present study

SOURCE: Collins, L.M.; Graham, J.W.; Long, I.; and Hansen, W.B.
Crossvalidation of latent class models. Multivariate
Behavioral Research, in press.

tobacco. Model 4 includes the "tried alcohol, tried tobacco, been drunk"
latent status and the "tried alcohol, tried tobacco, advanced use" latent
status. Both model 2 and model 4 suggest that it is possible to proceed to
advanced use without having been drunk. Finally, model 5, the most
complex of the five models, includes all of the paths and latent statuses
involved in models 1, 2, 3, and 4,

Evaluating the Models

Typically the fit of LTA models is evaluated using the likelihood ratio
statistic, G*. For fixed degrees of freedom, a smaller G? indicates a better
fit of the model being tested to the data. Hypothesis-testing can be used
to aid in model selection. However, it is well known that the p-values
associated with G are very inaccurate for models like LTA (Collins et al.
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1993; Holt and Macready 1989; Read and Cressie 1988). As an alter-
native to relying on these p-values, the authors have taken a cross-
validation approach (Collins et al., in press-b; Cudeck and Browne 1983).
They split the sample randomly into two samples that will be referred to
as sample A and sample B and fit each model in sample A, estimating
all relevant parameters. In order to assess goodness of fit, the authors
computed G for the fit of each sample A model in the sample B data.
They then reversed the process, fitting each model in sample B and then
computing G*s based on sample A. This is known as double cross-
validation. Ideally, this procedure will point clearly to a single model
that has a low cross-validation G” in both samples; in practice, the results
usually are not so clear cut. When the results were ambiguous in this
study, the authors chose the most parsimonious models.

RESULTS

Statistical analyses were performed using the software LTA (Collins et
al., in press-a). In order to achieve mode! identification, some parameters
were constrained to remain equal to each other where it made conceptuat
sense to do so. The LTA program requires the user to input initial param-
eter estimates to be used as "start values” to begin the estimation proce-
dure. If a model is identified, the choice of start values usually has little
or no impact on the final solution. As is consistent with good practice
when estimating latent ¢lass models, two very different sets of start values
were used for each model in this study. In 25 out of 30 analyses, the
results were virtually identical. Small differences between the two
solutions occurred in model 4 for both subsamples of Anglos and both
subsamples of Latinos and in model 3 for one of the Latino subsamples.

Mode! Selection

Table 1 shows the cross-validation G*'s for each of the LTA models that
was estimated in each subsample. For Anglos, model 4 cross-validates

best in one sample, but model 5 cross-validates best in the other sample.
Model 2, although it does not cross-validate best in either sample, cross-
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validates second best in both samples; thus, model 2 is chosen for
Anglos. For Latinos, model 5 cross-validates consistently well; it is
the best in one sample and the second best in the other. For Asian
Americans, models 1 and 2 cross-validate best in both samples; the
authors choose model 1 because it is most parsimonious.

Table 2 contains the p parameters for the Anglo sample. These param-
eters represent the probabilities of a yes response, conditional on latent
status membership. As discussed above, the values of these parameters
are what determines the interpretation of the latent statuses. For those
individuals in the first latent status, the probability of responding yes to
ANY of the substance use items is extremely low. Thus, the first latent
status is interpreted as a "no use" latent status. For those in the second
latent status, the probability of responding yes to the alcohol item is large,
but the probability of responding yes to any other items is small. Thus,
this latent status is interpreted as "alcohol use only." Similarly, the third
latent status is interpreted as "tobacco use only," the fourth as "alcohol
and tobacco," the fifth as "alcohol and drunkenness,” the sixth as
"alcohol, drunkenness, and advanced use,” the seventh as "alcohol,
tobacco, and advanced use," and the last as "alcohol, tobacco,
drunkenness, and advanced use."

The overall structure of these parameters cross-validates well; in other
words, the same interpretation of the Jatznt statuses is indicated in both
samples. Also, in general, these parameters are above .75 or below .25,
indicating a strong relationship between the items and the latent statuses.
Where the manifest items are dichotomous, as they are here, a parameter
estimate close to .5 suggests that the item in question is not a good indi-
cator of latent status membership. The weakest relationship in these data
between an item and latent statuses is the relationship between the
advanced use indicator and the last three latent statuses.

Table 3 shows the transition probability matrix for the Anglo sample.
Sample A estimates are in the first line in each row, and sample B
estimates are in the second line. The elements on the diagonal of each
matrix represent probabilities of being in the same latent status in both
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TABLE 1. Results of applying five models to ethnic subsamples

Model fitted to sample A, G’on sample B

Ethnicity
Model Anglos Latinos Asians
1 198.2 225.1 190.6
2 177.5 2125 196.2
3 202.8 234.1 213.6
4 174.9 201.5 192.0
5 178.5 207.8 206.4

Model fitted to sample B, G’on sample A

Ethnicity
Model Anglos Latinos Asians
1 222 253.3 131.5
2 196.7 239.9 127.5
3 205.5 243.8 164.4
4 209.1 2412 137.6
5 196.2 2293 138.9

seventh grade and eighth grade, and the elements on the off-diagonal
represent probabilities of transitioning to the column latent status,
conditional on membership in the row latent status. For example, for
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TABLE 2. Measurement parameters (p’s) for Anglos

Probability of responding
yes to these items,
conditional
on latent status
Latent status membership

Ever Ever Bver Any
Sample Tried ~ Tried  been advanced

Tobacco Alecohol drunk use
? ? ? ?

No use A .03 00 02 01
B .03 .03 .02 .02

Alcohol Use Only A 03 Y7 02 L1
B .03 .98 .02 02

Tobacco Use Only A Y7 00 02 01
B .93 .00 .02 .02

Alcohol+Tobacco A 97 97 02 01
B 93 98 02 02

Alcohol+Drunkenness A .03 97 79 01
B .03 98 90 02

Alcohol, Drunkenness, Advanced A .03 97 79 .66
Use B .03 .98 .90 .62
Alcohol, Tobacco, Advanced A 97 97 .02 .66
B 93 98 .02 .62

Alcohol, Tobacco, Drunkenness, A 97 97 .19 .66
Advanced B 93 98 90 62

those Anglos who start out in the "no use" latent status in seventh grade
in sample A, it is estimated that the probability is .58 (in sample B, .55)
of being there in eighth grade.

In estimating model parameters, the authors chose to estimate full
transition probability matrices, as opposed fo fixing the lower triangle (all
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except the transition from the most extreme latent status back to "alcohol,
tobacco, and drunkenness") to 0’s. The rationale for fixing the lower
triangle to 0’s would be that these fransitions are impossible in theory.
For example, it is impossible to transition from having tried alcohol to
having never tried alcohol. On the other hand, although these transitions
are impossible, subjects nevertheless respond as if they were possible.
Estimating these transitions can give a very useful picture of the kinds of
response biases that are operating in a sample to produce these kinds of
responses. In several cases, fairly large lower-triangle elements were
estimated. However, in general, these parameter estimates did not cross-
validate well in these data.

Table 4 shows the estimates of the p parameters for the Latino sample,
and table 5 shows the transition probability matrix. Table 4 shows that
the model that cross-validated best for the Latino sample is similar to the
model selected for the Anglo sample, with the addition of an "alcohol,
tobacco, drunkenness” latent status.

Table 6 contains the estimated p parameters for the Asian-American
sample. The parameter estimates for the first four latent statuses based
on the Asian-American sample lead to the same interpretation as their
counterparts in the Anglo and Latino samples. However, the p param-
eters suggest very different interpretations for the last three latent statuses.
For the Asian-American sample, the fifth latent status essentially is
similar to the second latent status, and the sixth latent status essentially is
similar to the fourth latent status. The only difference is that the fifth and
sixth latent statuses involve a somewhat higher probability of responding
yes to the drunkenness item, although a no response to this item still is
more likely than a yes. The last latent status involves alcohol, tobacco,
and advanced use only.

These results illustrate why it is very important to examine the o param-
eter estimates carefully when interpreting and labeling the latent statuses.
LTA is a confirmatory procedure in the sense that the user must specify
certain important aspects of a model like the number of latent statuses and
any constraints on parameter estimates. Generally, a user who specifies
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TABLE 3. Transition probability matrix for Anglosj

Latent status Sample Latent status

No use A 58 .30 .00 .03 .01 .00 .03 .04
B .55 31 02 05 01 .00 .04 02

Alcohol Use Only A 07 .74 00 .10 01 .03 01 04
B .08 .74 .00 .03 .03 .00 .05 .07
Tobacco Use Only A .04 .00 .34 .53 .00 .00 .00 .09
B .00 .00 .22 .40 .00 .00 .19 .18
Alcohol+Tobacco A 006 .00 .00 .63 00 .00 .04 .32
B .00 .00 .00 70 .00 00 .14 .14
Alcohol+Drunkenness A 00 .00 06 00 48 .08 .00 45
B .00 .00 .00 .00 .22 .21 .00 .55
Alcohol, Drunkenness, Advanced Use A .00 .00 .00 .00 .00 .69 .00 .30
B .00 .00 .00 .00 .32 .66 .00 .00
Alcohol, Tobacco, Advanced Use A 00 .00 .00 .20 .00 .00 .79 .60
B .00 .00 .00 .09 .00 .00 .54 .35
Alcohol, Tobacco, Drunkenness, A 60 .00 .00 .00 .00 .00 00 99
Advanced Use B .00 .00 .00 .00 .00 .00 .00 .97
NOTE: ' Some rows do not sum to 1 because of rounding.

the number of latent statuses will have particular values of the p param-
eters in mind. However, it is important to examine the estimates of the p
parameters that result from an LTA analysis, because these estimates may
be different from what is hypothesized and may lead to different
interpretations of the latent statuses. In the present study, although a
solution involving seven latent statuses cross-validated the best for the
Asian-American sample, the model as estimated is different from the
model 1 depicted in figure 2. Rather than emerging as conceptually
distinct latent statuses as depicted in figure 2, the fifth and sixth latent
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TABLE 4. Measurement parameters (p’s) for Latinos

Probability of responding
yes to these items,
conditional
on latent status
membership

Latent status
Ever Ever Ever Any

Sample = Tried Tried been advanced

Tobacco Alcohol drunk use
? ? ? ?

No use A 00 .00 00 01
B .04 .04 02 02

Alcohol Use Only A 00 95 .00 02
B .04 97 .02 .02

Tobacco Use Only A 98 00 00 .02
B .97 .04 .02 .02

Alcohol+Tobacco A 98 95 00 02
B 97 97 .02 .02

Alcohol+Drunkenness A 00 95 a7 02
B .04 .97 .85 .02

Alcohol, Drunkenness, Advanced A 00 95 77 91
Use B .04 97 85 .83
Alcohol, Tobacco, Advanced Use A .98 95 00 91
B 97 97 .02 .83

Alcohol, Tebacco, Drunkenness A 98 95 77 02
B .97 .97 .85 .02

Alcohol, Tobacco, Drunkenness, A 98 35 77 91
Advanced Use B 97 97 .85 .83

statuses conceptually are very similar to the second and third latent
statuses, respectively. ’Moreover, the seventh latent status as estimated in
the Asian-American subsample does not involve a high probability of
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TABLE 5. Transition probability matrix for Latinos

Latent status Sample Latent status

No use A 46 .26 .07 .10 .03 .01 .60 .05 .04
B .64 20 .00 .06 .01 .01 .03 .01 .05

Alcohol Use Only A A5 .61 .01 .11 03 .00 .02 .03 .05
B .04 66 .02 .13 .02 .00 .05 .03 .05
Tobacco Use Only A A3 .01 40 .26 .00 .00 .00 .13 .06
B 00 .02 33 .34 .06 .00 .06 .09 .21
Alcohol+Tobacco A 01 .01 .01 .65 .01 .01 .18 .03 .09
B 02 .02 .02 .61 .02 .02 .15 .05 .11
Alcohol+Drunkenness A 01 .01 .01 01 .37 .20 .01 .22 .15
B .02 02 .02 .02 35 .05 .02 .16 .36
Alcohol, Drunkenness, Advanced A 01 .01 .01 .01 .35 .20 .01 .38 .00
Use B .02 .02 .02 .02 47 .32 .02 .13 .00
Alcohol, Tobacco, Advanced Use A 01 .01 .01 45 .01 .01 .15 .00 33
B .02 .02 .02 .36 .02 .02 .16 .06 34
Alcohol, Tobacco, Drunkenness A 01 .01 .01 .01 .01 .61 .01 .53 .38
B 02 .02 .02 .02 .02 .02 .02 47 43
Alcohol, Tobacco, Drunkenness, A 01 .01 .01 .01 .01 .01 .01 .08 .84
Advanced Use B .02 0z .02 .02 .02 .02 .02 .00 .89

|
having experienced drunkenness. This leaves the interpretation of the last }
three latent statuses unclear. A partial transition probability matrix for the
Asian-American sample appears in table 7. Because the meaning of the

last three latent statuses is unclear, transitions involving these latent

statuses are difficult to interpret, so they are omitted from the table.

Table 8 shows the estimates of the J parameters, which are the propor-
tions in each latent status in seventh grade. For the Asian-American
sample, the J estimates for the second and fifth latent statuses and for the
fourth and sixth latent statuses are collapsed because of their similaricy.
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TABLE 6. Measurement parameters (p’s) for Asian Americans

Probability of responding
yes to these items,
conditional
on latent status
Latent status membership ;

Ever Ever Ever Any

Sample - Tried Tried been advanced
Tobacco Alcohol  drunk use
? ? ? ?
No use A 00 10 01 01
B .00 .06 .00 .01 '_
Alcohol Use Only A 00 97 01 01
B 00 .88 .00 .01
Tobacco Use Only A 98 10 01 01
B .87 .06 .00 .01
Alcohol+Tobacco A 98 97 01 K} |
B .87 .88 .00 .01
Alcohol (+Drunkenness) A 00 97 .39 01
B .00 .88 .48 .01
Alcohol, Tobacco (+Drunkenness) A 98 97 39 01
B .87 .88 48 .01
Alcohol, Tobacco, Advanced Use A 98 97 39 1.00
B .87 .88 48 1.00

(+Drunkenness)

The parameter estimates are very close across sample A and sample B for
Anglos and Latinos, indicating good cross-validation. The estimates
based on the Asian-American sample do not cross-validate as well,
although the general pattern of results is consistent across the two
subsamples. The results show that, as expected, Anglos are the least
likely to be abstainers, even in this early phase of onset. However, they
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TABLE 7. Partial transition probability matrix for Asian Americans

Latent status Sample Latent status

No use A 83 09 04 04 00 00 .00
B 78 .03 .01 .11 01 .04 .03

Alcohol Only A bO 54 03 14 29 060 .00
B 06 73 .00 .15 02 .04 .00
Tobacco Only A 38 W3 34 16 .00 00 .10
B 20 00 T .00 .00 .08 .00
Alcohol+Tobacco A 03 03 .03 .61 03 23 .03
B .00 00 00 100 .00 .00 .00

are least likely by only a small margin. Only approximately 28 percent
of Anglos have never tried alcohol or tobacco, as opposed to 31 and 33
percent for Latinos. This difference seems to be due mostly to the
relatively large percentage of Anglos who have tried alcohol but have
engaged in no further experimentation. The prcbability of having gone
no further than trying a single substance can be obtained by summing the
probabilities of membership in the "no use," "alcohol only,” and "tobacco
only" latent statuses. This shows that the probability of having gone no
iurther than trying a single substance is .65 for Anglos and .77 and .80 for
the Asian-American subsamples but is .58 for Latinos. Thus, although
the Latino sample contains a slightly higher proportion of abstainers than
does the Anglo sample, those Latinos who have tried a substance are
likely to have engaged in comparatively more experimentation.

DISCUSESION

Using LTA, the authors have tested several stage-sequential models of
the early substance use onset process in three different ethnic groups.
Each of these models represented the onset process as a dynamic latent
variable measured by four manifest variables. LTA was used to identify
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TABLE 8. Estimates of proportions in each latent status at first

occasion

Asian
Anglo Latino American
Latent status sample sample sample
A B A B A B
No use 28 028 .31 033 59 49
Alcohol Only 35 034 22 022 12 .22
Tobacco Only 02 003 .65 003 09 .06
Alcohol+Tobacco 13 013 .18 0.16 .18 .19

Alcoholt+Drunkenness .03 002 .04 002

Alcaohol, Drunkenness, Advanced Use 02 001 01 0.01

Alcohol, Tobacco, Advanced Use 03 006 .04 007 .04 .04
Alcohol, Tobacco, Drunkenness .06 0.06

Alcohol, Tobacco, Drunkenness, 09 0.13 10 0.09

Advanced Use

the latent statuses in each model and to provide estimates of the probabil-
ities of membership in each latent status in seventh grade and the condi-
tional probabilities of transitions between latent statuses between seventh
grade and eighth grade. These probabilities are adjusted for measurement
error occurring in the manifest variables.

Upon first examination, the results of this study suggest that somewhat
different onset processes may be operating in Anglo, Latino, and Asian-
American samples. The authors found that a model involving nine latent
statuses was necessary for Latinos; that a slightly less complex model,
omitting the "alcohol, tobacco, drunkenness” latent status, was sufficient
to represent the data collected on Anglo subjects; and that, although the
simplest model tested here fit the Asian-American sample best, even that
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proved too complex when two sets of two latent statuses emerged as
virtually identical.

However, upon closer examination it seems that the similarities among
these ethnic groups in the onset process outweigh the differences. The
models are virtually identical in the early phases of the onset process.
According to all three models, most individuals initiate their substance
use experience with alcohol. However, a small but significant proportion
initiate their experience with tobacco. Graham and colleagues (1991)
found that thiy latter group of individuals was on an accelerated onset
trajectory compared to those who start with alcohol. That finding seems
to hold here for Anglos and Latinos. For Asian Americans, sample A
estimates are consistent with this, but the finding does not replicate in
sample B. The question of whether Asian Americans who start the onset
process with tobacco are on an accelerated onset trajectory is an impor-
tant one because, according to these results, Asian Americans are more
likely to begin the onset process with tobacco than are Anglos or Latinos.

Another interesting feature shared by all three models is the important
role that tobacco plays in the remainder of the onset process. These
results indicate that in the Anglo and Latino samples, relatively few
individuals went on to advanced use without trying tobacco and that, in
the Asian-American sample, trying tobacco was an integral part of the
early onset process. Drunkenness plays a major role in the onset process
for both Anglos and Latinos. Drunkenness is not a major part of the
onset model that represents the Asian-American sample in this study.

Although it is possible that the differences in onset-process models
among ethnic groups reflect real qualitative differences, in this case there
is an alternative explanation. The differences that have emerged among
the ethnic groups may have to do primarily with how advanced the onset
process is. In any stage-sequential process, differentiation among stages
cannot take place until enough subjects have passed through the stages.
The authors’ results indicate that the Asian-American subsample had
considerably less substance use experience at the first observation than
the other two subsampler. The results also show that the Asian-American
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subsamiple advanced through the onset process at a considerably slower
rate, as reflected in the transition probability matrix. This may account
for the lack of involvement of drunkenness in the Asian-American onset
process—too few of the Asian Americans in the sample had arrived at
that point in the onset process at that time. Perhaps, in an Asian-
American sample with more substance use experience, a model more like
model 2 or model 5 would be necessary to represent the onset process.
Although the Anglo group has the smallest proportion of abstainers at the
outset, Anglos who have initiated the onset process tend to have
somewhat less substance use experience than Latinos who have initiated
the process. It may be that in the Latino sample sufficient subjects had
engaged in various cnset activities for the authors to differentiate nine
latent statuses. The Anglo and Latino subsamples are advancing through
the onset process at comparable rates. Perhaps, if a little bit more time
were allowed to elapse, the additional latent status would emerge in the
Anglo sample. This seems likely, given that the more complex model,
model 5, cross-validated nearly as well as model 2 in the Anglo sample.

Implications for Prevention

The degree and kind of ethnic differences fovnd in this study have
implications for planning prevention currictfa. The result that the onset
process essentially is comparable across groups, although there are some
differences, offers hope that a single prevention curriculum can be effec-
tive for Anglos, Latinos, and Asian Americans. However, the compara-
bility of the onset process across ethnic groups does not guarantee that the
psychosocial factors prompting transitions between latent statuses also are
comparable. If these factors are different, this will have to be taken into
account in prevention programs.

Ideally, a prevention intervention should occur just before onset is
expected. The results of this study suggest that the optimal timing of an
intervention may vary according to the ethnic composition of the target
population. Results indicate that 72 percent of Anglo seventh graders and
67-69 percent of Latino seventh graders already have initiated the onset
process. Thus, for these ethnic groups, interventions protably should
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start earlier than seventh grade. In contrast, considerably fewer Asian
seventh graders have started the onset process, and, furthermore, the
process seems to be slower for this ethnic group. The results of the study
by Graham and colleagues (1990), which showed a trend for stronger
program effects among Asian-American students, indicate that perhaps
seventh grade is a good time for beginning interventions on this subpop-
ulation. The present study suggests that interventions should start earlier
for Anglo and Latino students. Because the onset process is slower for
Asian Americans, taking place over a long timespan, periodic boosters
may be needed particularly with this group.

Limitations of This Study

An obvious limitation of this study is the lack of African-American

and Native-American subjects. There were no Native Americans in this
sample and far too few African Americans (fewer than 75) to test the
models of interest in this study. A second important criticism of this
study and, by implication, many other studies that have looked at ethnic
differences in substance use, is the way in which the authors and most
researchers measure ethnicity. As Cheung (1991) has pointed out, ethni-
city is a multidimensional construct that cannot be captured well in a
single variable. Furthermore, many observed "ethnic" differences
undoubtedly are due to differences on a constellation of other variables,
such as attitudes, educational levels, and socioeconomic status, for which
ethnicity serves as a rough proxy. Yet, in most studies (including this
one), ethnicity is measured by a single manifest variable. This approach
obviously cannot capture the complexity and richness of ethnicity.
Where ethnicity is measured poorly, some ethnic differences will be
obscured, and observed differences will be subject to misinterpretation.
At the very least, understanding the culture and social norms operating in
various ethnic groups and how they relate to substance use onset is far
more important than merely noting ethnic differences. There is a need for
further research on ethnicity and early substance use onset using more
sophisticated measures of ethnicity.
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More About Latent Transition Analysis (LTA)

There are several features of LTA that have not been discussed in the

present chapter. Where data have been collected on three or more occa- |
sions, second-order models can be tested in which transitions between |
latent statuses depend not only on latent status membership at the imme-

diately previous time but on membeiship at two times previous as well.

The LTA approach can incorporate a discrete exogenous grouping vari-

able. This means it can be used to test multiple-groups models, in which

the grouping variable either is manifest or latent. For more information,

refer to Collins and Wugalter (1992) and to the LTA User’s Guide

(Collins et al., in press-a).

LTA’s capability to incorporate a discrete exogenous grouping variable is
a useful feature for researchers wishing to test the effectiveness of a pre-
vention intervention program. By treating a dummy variable representing
program versus control group membership as the exogenous grouping
variable, the researcher can compare p, &, and 7 parameters across
groups. If the prevention program is successful, the transition probability
matrices will indicate that the pi.ovability of moving to a more advanced
stage of drug use is lower for the program participants than for the control
group. An advantage of taking a stage-sequential approach is that
examining the transition probability matrix reveals how effective the
program is for individuals entering with different levels and types of
substance use experience. For example, Graham and colleagues (1991)
found that a prevention program that was successful overall was not
successful for individuals who had entered the prevention program
having tried tobacco but not alcohol.

Although LTA is a promising technique that offers the researcher a
unique look at the onset process, it has some serious shortcomings. Two
shortcomings stem from sparseness, which can occur when there are
many indicators and relatively few subjects and/or when the measurement
parameters are extreme. One of these shortcomings is the problem of
goodness-of-fit testing, discussed earlier in this chapter; the other is large
standard errors for some of the parameters, particularly the transition
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probabilities. Despite these problems, Collins and Wugalter (1992) con-
cluded based on an extensive simulation that the addition of indicators

is a benefit to most latent transition models as long as the indicators
belong in the model. The procedure also has some limitations. For
example, LTA currently does not have a missing data procedure, so
listwise deletion of subjects must be used. Also, the procedure currently
cannot incorporate continuous exogenous predictors, such as grade point
average. The authors are working on expanding the capability of LTA in
both of these areas.

CONCLUSIONS

The analyses done in this study illustrate the benefits of the LTA
approach for analysis of substance use data. LTA allows the researcher
to test and compare a variety of models of the substance use onset
process. In this example, the authors assessed whether several ethnic
groups can be represented by the same general model. LTA can be used
for many other types of research questions, including testing the effec-
tiveness of drug abuse prevention interventions. Much information in an
LTA is contained in the transition probability matrix, which shows the
probabilities of transitions among stages, for instance, among stages in
the drug use onset process. Furthermore, in LTA the transition proba-
bility matrix is latent, which means that error in the observed variables is
taken into account when the matrix is computed. This produces a more
meaningful picture of the patterns of substance use onset.

NOTE

1. This section may be skipped without loss of continuity.
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Incorporating Trend Data To Aid
in the Causal Interpretation of
Individual-Level Correlations
Among Variables: Examples
Focusing on the Recent Decline
in Marijuana Use

Jerald G. Bachman

ABSTRACT

Given the close correspondence of several trends beginning in 1979, it is
tempting to conclude that increases in perceived risk and disapproval led
to the decline in actual use of marijuana. In this chapter, two alternative
interpretations are considered, reflecting different hypotheses about indi-
vidual-level causal processes: (1) changes in use led to the changes in
attitudes, or {2) changes in some other factor(s) (e.g., increased "conven-
tionality") caused both changes in use and changes in attitudes.

This chapter documents a series of analyses designed to untangle such
issues by incorporating trend data along with individual-level, cross-
sectional relationships. One analysis strategy shows that controlling
attitudes could “account for" the time trend in marijuana use, whereas the
reverse is not true. The second analysis strategy examines how time
trends in marijuana use are affected by multivariate controls for attitudes,
as well as other individual characteristics, and shows that only the attitude
measures can "explain" the time trend in marijuana use. Although these
analyses are viewed as helping to explain the recent secular trend down-
ward in marijuana use, as well as the still more recent decline in cocaine
use, their most important contribution to prevention intervention research
may be that they support a very basic generalization about individual-
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level causal processes: individual attitudes about specific drugs affect
individual use of those drugs.

INTRODUCTION

When two or more trends over time correspond closely with each other,
it is tempting to conclude that there is an underlying causal connection.
Conversely, a lack of correspondence suggests the absence of causal
connection. In the field of drug research, a number of trend patterns
have emerged that have potential implications for prevention efforts.
Consider, for example, the following findings shown in figure 1, all
based on the Monitoring the Future annual surveys of large represen-
tative samples of high school seniors:

1. Seniors’ beliefs that marijuana is harmful began to increase in 1979
and continued to rise throughout the 1980s.

2. Seniors’ disapproval of marijuana use showed nearly parallel
increases beginning in 1980.

3. Seniors’ use of marijuana decreased steadily beginning in 1980.

4. Seniors’ perceptions that marijuana is readily available has shown
little change from the mid-1970s onward.

First, and most simply, the above evidence strongly suggests that recent
changes in marijuana use, as well as changes in perceived risk and disap-
proval, have had little to do with (perceived) availability of marijuana;
this implies that the "supply side" strategy for prevention of marijuana
use has not been very effective. That is not the only possible conclusion,
of course, but it is surely the most parsimonious.

Second, given the close correspondence among the other trends, it is

tempting to conclude that the increases in perceived risk and disapproval
have contributed to the decline in actual use of marijuana. Here,
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*  All items were scaled with the minimum possible score
set equal to O and the maximum possible score set equal to

Adapted from Bachman, J.G.; Johnston, L.D.; and
O’Malley, P.M. Explaining the recent decline in

cocaine use among young adults: Further evidence that

perceived risks and disapproval lead to reduced drug

use.

J Health and Soc Behav 31:173-184, 1990,
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however, the argument becomes much more complicated. When faced
with parallel (or opposite) trends, the question remains whether A
(attitudes) causes B (behaviors), B causes A, or C (one or more other
variables, perhaps unmeasured) causes both A and B. Moreover, there
also is the problem of going from the aggregate level (reflected by the
trend data) to the individual level {the level at which the causal hypoth-
eses often are formulated). This chapter documents a series of analyses
undertaken iu the hope of untangling some of these issues, at least with
respect to the recent changes involving marijuana attitudes and use. Sev-
eral earlier papers have focused on the substantive findings with respect
to drug use (Bachman et al. 1986, 1988, 1990). The present chapter in-
corporates key findings from these earlicr papers but now focuses on the
analysis strategy per se. Because the earlier papers were developed over
a period of several years, the first major section of this chapter covers the
interval from 1976 to 1985, and the second discusses the period from
1976 to 1986.

STATEMENT OF THE PROBLEM: DID CHANGES IN
ATTITUDES DURING THE 1980s CAUSE THE DECLINE IN
MARIJUANA USE AMONG YOUTH?

As suggested above, one straightforward interpretation of the marijuana
findings is that the changes over time in attitudes (A) caused the changes
in bebaviors (B). Indeed, early reports of findings from the Monitoring
the Future surveys of high school seniors stated a clear preference for that
kind of "A causes B" interpretation (Johnston et al. 1981). Johnston
(1985) later expanded the argument, noting additional trends (e.g., rising
proportions of marijuana quitters who listed physical and/or psycholog-
ical risks as their reasons for quitting), all consistent with the notions that
individuals’ use of marijuana is influenced by their attitudes about mari-
juana and that changing attitudes about marijuana (in response io various
historical changes in such factors as information about the drug) may
have led to a reduction in demand.
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Jessor (1985) found Johnston’s argument plausible but "not yet com-
pelling," pointing out that aggregate trend data are not sufficient to
establish causal order. Jessor spelled out two alternative hypotheses.
The first of these is that B causes A: "It remains quite possible that
regular use of marijuana declined and beliefs about its harmfulness
subsequently increased rather than the other way around" (Jessor 1985).
The second alternt.ve is that C (conventionality) causes both A and B;

It is possible to entertain an equally plausible alternative
hypothesis to account for both the increased perception
of harm from regular use and the actual decline in regular

5 use, namely, that there has been an increase in the gen-
eral conventionality of adolescents during this same
historical period. Such an increase in conventionality
would lead to less motivation to use marijuana or to seek
its effects, and would also imply greater receptivity to
messages from authorities about the harmfulness of drug
use (p. 259).

Jessor’s comments clearly articulate the problem faced by those who
would draw conclusions trom correspondences among trends: In the
absence of additional data, it is virtually impossible to sort out cause and
effect. Fortunately, the Monitoring the Future surveys do include an
additional key ingredient: the fact that the several trends are based on the
same annual samples of high school seniors rather than from completely
independent sources permits analyses that incorporate individual-level,
cross-sectional relationships. This ingredient is crucially important
because the various hypotheses illustrated above all are based (implic-
itly, if not explicitly) on individual-level causal interpretations.
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ANALYSIS ISSUES AND STRATEGIES: INCORPORATING
INDIVIDUAL-LEVEL, CROSS-SECTIONAL RELATIONSHIPS
AMONG VARIABLES ALONG WITH TREND DATA

It will be useful here to distinguish two analysis strategies, both of which
require the examination of individual-level, cross-sectional relationships
among the attitude and behavior measures. The first strategy focuses on
whether the trend data can be explained by one of the two simplest inter-
pretations: A caunses B (operationalized as prediction 1 below) or B
canses A (operationalized as prediction 2). The second strategy expands
the scope of inquiry to consider whether some other factor(s), perhaps C,
cause(s) both A and B.

First Analysis Strategy: Examining How Time Trends in
Behaviors Are Affected by "Holding Constant” Attitudes, and
Vice Versa

Samples and Measures. This section summarizes analyses reported in
detail by Bachman and colleagues (1986). The data are derived from the
Monitoring the Future surveys of high school seniors taken from 1976 to
1985. Each of these nationally representative annual surveys included

5 different questionnaire forms, with 3,000 or more cases per form each
year. Although items on marijuana use appeared in all five forms, ques-
tions on perceived risk appeared only in form 5, and questions on disap-
proval appeared only in form 3. In more recent surveys, key questions on
perceived risk ai:d disapproval appear on several forms, thus permitting
additional correlational analyses not possible with the earlier surveys.

Because the different forms involve random subsets of the total annual
samples, there are very slight differences in marijuana use trends, depend-
ing upon whether the analysis is based on the form 5 subsample, which
cross-tabulates marijuana use with perceived risk, as shown in figure 2, or
on the form 3 subsample, which links marijuana use with disapproval, as
shown in figure 3. All such differences are trivially small and do not
affect the conclusions discussed here.
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Recall that throughout the 1980s survey of each successive class of high
school seniors showed higher rates of perceived risk and disapproval
associated with marijuana and also lower levels of (self- reported) use. It
seems most likely that the increased negative attitudes strongly contri-
buted to the decline in marijuana-using behavior. Specifically, it is likely
that an individual’s attitudes about marijuana strongly influenced actual
use of the drug and that changes over time in information about mari-
juana led to changed attitudes and, in turn, changed behavior. However,
a plausible alternative interpretation is that seniors who did not use mari-
juana themselves were, as a consequence, more likely to feel and express
negative views about marijuana. This distinction was operationalized in
the form of two competing predictions.

Prediction 1: With attitudes held constant, marijuana use will show no
change from one year to another. The underlying hypothesis is that
individuals generally behave in accordance with their attitudes and that
perceived risk and disapproval inhibit the use of marijuana. Therefore, as
the proportions of young people holding these negative attitudes about
marijuana increased each year, the numbers willing to use marijuana
consezquently declined. According to this argument, if this were the sole
basis for the relationship between the two trends, then, after (statistically)
"holding constant” the attitudes at any particular level, no decline in
usage rates from one year to the next should have been observed within
that attitude category.

Figure 2 is one example of the initial findings, based on analyses extend-
ing from 1976 to 1985. The figure shows that monthly marijuana use
rates consistently were close to 70 percent among those who saw "no
risk" in occasional marijuana use and less than 10 percent among those
who saw "great risk.” The trends within these two subgroups clearly
were consistent with prediction 1; specifically, the fluctuations from year
to year seemed largely random with no clear evidence of a trend upward
or downward. Among those perceiving slight or moderate risk, the per-
centages of monthly marijuana users actually rose somewhat, prompting
the comment that ". . . these data snggest that if it were not for the sharp
increases in perceived risk since 1978, marijuana use for seniors
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FIGURE 2. Trends in monthly marijuana use by level of perceived
risk of accasional marijuana use

as a whole might have risen rather than declined" (Bachman et al. 1986,
p- 12).

Figure 3 provides another example, again for the period from 1976 to
1985. It shows that monthly marijuana use rates consistently were about
60 percent among those who reported they "don’t disapprove" of occas-
ional marijuana use and 3 percent or lower among those who indicated
they "strongly disapprove,” both fully consistent with prediction 1. The
usage rates for those in the intermediate category who said they
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FIGURE 3. Trends in monthly marijuana use by level of
disapproval of occasional marijuana use

“disapprove" rose from about 7 percent to 15 percent. These findings are

similar to the findings for the intermediate levels of perceived risk.

The evidence thus far is largely supportive of prediction 1 but, before
reaching any conclusions, the data from the reverse perspective, as stated
in prediction 2, should be examined.

Prediction 2: With marijuana use held constant, attitudes about
marijuana will not change from one year to another. The underlying
hypothesis here is that individuals bring their attitudes into conformity
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FIGURE 4. Trends in perception of great or moderate
risk in occasional marijuana use by level
of marijuana use

with their behaviors. According to this perspective, the only reason
marijuana attitudes changed on average during the 1980s simply is that
the proportions of individuals actually using marijuana grew progres-
sively smaller. If that explanation is correct, then looking separately at
subgroups who use marijuana frequently, those who seldom used it, and
those who did not use it reveals little or no upward trend in disapproval or
perceived risks.

In fact, as exemplified in figures 4 and 5, the data led to a very different
conclusion:

In sum, contrary to Prediction 2, we find that controlling
for the behavior of marijuana does nothing to reduce
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FIGURE 5. Trends in disapproval or strong disapproval of occasional
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or "explain away" the upward trend from 1978 through
1985 in negative attitudes about marijuana. Subgroups
consisting of frequent users, infrequent users, and non-
users, all show substantial increases in the proportions
wito disapprove of marijuana use and perceive that such
use is risky (Bachman et al. 1986, p. 14).

Methodological Observations on the Technique of Examining One
Trend While Holding Another Constant. The analyses just summa-
rized really are quite elementary from a statistical standpoint—indeed, all
tabulations are in the form of simple percentages. Instead of percentages,
of course, mean rates of marijuana use in figures 2 and 3, mean perceived
risk in figure 4, and mean disapproval in figure 5 could have been plotted
with virtually identical results (e.g., Bachman et al. 1988; figure 1, this
chapter). However, percentages are preferable, whenever possible,
because of their ease of interpretation by broader audiences.
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This lack of statistical complexity surely is one of the chief advantages of
this technique. If controlling levels of A eliminates (or reverses) trends in
B, and if the converse is not the case (i.e., controlling B does not
eliminate trends in A), that would seem to be fairly straightforward and
persuasive evidence. (However, a first journal submission based solely
on this technique was not sufficiently convincing to the journal’s review-
ers. Perhaps simplicity also must be counted as a disadvantage!)

A major limitation of the technique just presented is that it is bivariate.
It treats only two trends at a time and is limited to exploring whether A
seems to cause B to a greater extent than whether B causes A (or vice
versa, or neither). The problems of multiple causes (Al, A2, A3 .. )or
"third variable" causes (C), require more sophisticated methods, such as
the next method.

Second Analysis Strategy: Examining How Time Trends in
Behavior Are Affected by Multivariate Controls for Attitudes
and Other Individual Characteristics.

As an extension of the first analysis strategy, the second analysis strategy
incorporated several additional variables reflecting "lifestyle" factors that
also could be considered as positive or negative indicators of conven-
tionality. These analyses were carried out somewhat later than those de-
scribed above. Thus, data from the 1986 cohort were added, extending
the span to the period from 1976 to 1986.

Change and Stability in Lifestyle Factors Linked to Drug Use.
Before incorporating lifestyle factors into multivariate analyses including
time trends in drug use, it was important to address the stability of such
factors and the consistency of their relationships with drug use (specif-
ically, marijuana use). Overall, the level of consistency was rather high.
The factors most important in predicting marijuana use during the late
1970s also were very important in the early 1980s. More specifically,
marijuana use was more frequent among those who did poorly in school
(those exhibiting low grades or frequent truancy), those frequently away
from home in the evenings, those with high eamings and long hours
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committed to part-time work, those with low commitments to religion,
and those describing their political views as very liberal or radical
(Bachman et al, 1988). Background factors, such as race, parental
education, number of parents in the home, urbanicity, and region, added
relatively little in regression analyses when combined with the above
factors; accordingly, these factors were not included in the multivariate
analyses described below.

Given that these lifestyle factors remained important predictors of mari-
juana use throughout the 1976-1986 period, it was important to consider
whether any of these factors showed sufficient change to account for the
downward trend in marijuana use during the 1980s. Although political
views moved in a conservative direction (which appears consistent with
the decline in marijuana use), there also was a reduction in religious
commitment (which would, if anything, lead one to expect an increase in
marijuana use). Each of eight factors was examined separately following
the first analysis strategy as illustrated in figures 2 and 3. Quite clearly,
no single lifestyle or conventionality factor could "account for" the
declining trend in marijuana use, whereas both perceived risk and disap-
proval were able to do so (Bachman et al. 1988). These preliminary
analyses provided a great deal of useful detail; however, they also were
somewhat cumbersome and lacked the ability to examine multiple factors
simultaneously.

Pooling Data From Multiple Years. The strategy for providing multi-
variate controls was to employ straightforward multiple regression tech-
niques, but applied to a somewhat unusual data set. Specifically, this
employed analysis files that combined data from all 11 cohorts of seniors
(in graduating classes of 1976-1986; total N per form was approximately
33,000). One advantage of such a pooling is that it simplifies reporting.
Correlations between marijuana use and each of the other variables
already studied already showed little or no change during the 1976-1986
period, so there was no need to continue reporting separate correlations
for each of the 11 cohoris.
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"Cohort Mean" Marijuana Use as a Measure of Secular Trend. By
pooling the data across all 11 cohorts, it was possible to assign a new
variable to each individual, consisting of the "cohort mean" for marijuana
use. Specifically, each respondent was assigned the mean annual
marijuana use score for his or her graduating cohort. This permitted
calculation of correlations between individual marijuana use and the
mean level of marijuana use among all seniors for that year. In other
words, this made it possible to compute the extent to which the total
variance in individual marijuana use throughout the period in question
(1976-1986) was explainable simply in terms of which year the individ-
ual graduated—that is, the overall secular trend in use.! This new vari-
able can be referred to as a measure of the secular trend in marijuana use.
Confidence in treating this as a secular trend rather than as cohort differ-
ences resulted from a variety of other analyses that showed the secular
trend interpretation is by far the most parsimonious in accounting for
year-to-year changes in seniors’ use of marijuana (O’Malley et al. 1984,
1988).

Here is how this assignment of scores actually worked. Annual mari-
juana use is reported on a 7-point scale, with the following values:

1 =0 occasions

2 = 1-2 occasions

3 =3-5 occasions

4 = 6-9 occasions

5 = 10-19 occasions
6 = 20-39 occasions
7 = 40 or more

The mean score on that scale for seniors in 1976 was about 2.7; accord-
ingly, all respondents from 1976 were assigned 2.7 as their value on the
new "marijuana secular trend" variable. For the class of 1977, the mean
was about 2.8, so that value was assigned to all of them. For the classes
of 1978 and 1979, the mean had reached about 3.0, so that value was
added to all of their files. Thereafter, use declined gradually; by 1986
(the last year used in the analyses summarized here), the mean was down

125



to about 2.2, so that was the value assigned to all members of the class of
1986. In other words, the marijuana secular trend variable rose from 2.7
to 3.0 and then declined to 2.2 during the interval studied. Extrapolating
from the 7-point scale, these figures mean that marijuana use among
seniors dropped by roughly half from 1979 (mean of about four uses per
year) to 1986 (mean of about two uses per year).

The shift in cohort means across the 1976-1986 period is substantial;
however, it does not begin to match the wide range of individual vari-
ation within each year—or across all years. Thus, the correlation between
individual use and the marijuana secular trend variable necessarily was
limited; the actual product-moment correlation was about 0.12, meaning
that this substantial secular trend accounts for about 1.5 percent of the
total variance in individual marijuana use during the period in question.
As described in the first report:

This finding serves as a useful reminder that although
year-to-year variations in marijuana use over the past
decade are important and interesting, such variations
remain small in comparison to the wide range of vari-
ability among seniors within each year of the study
(Bachman et al. 1988, p. 105)".

Nevertheless, that secular trend in marijuana-using behavior was viewed
as quite important, given that annual use rates dropped by about half from
1979 to 1986. It is this very importance that prompted the exploration of
whether the decline might be explainable in terms of such attitudinal
factors as perceived risk and/or disapproval (i.e., A causes B) or in terms
of changes in conventicnality (C causes both A and B).

Regression Analyses Contrasting Different Sets of Predictors.
Table 1° displays a portion of the regression analysis findings, those that
include the disapproval measures. Three sets of variables, examined
separately and then in combination, are treated as "predictors"4 of indi-
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TABLE 1. Multiple regression analyses predicting annual marijuana use from (A) lifestyle variables, (B)
disapproval of marijuana use, and (C) mean marijuana use per year

Predictor r A B C A+B A+C B+C A+B+C
A) Lifestyle variables
Grades -206 | -.091 -.045 -.094 =045
Truancy 362 239 135 233 135
Hours worked per week 117 038 011 021 012
Average weekly income 131 .028 .038 .047 037
Religious commitment® |} -.269 | -.171 -.051 -.176 -.051
Political beliefs ° 170 090 025 .089 .025
Evenings out per week 315 219 J11 213 11
Gender M =1,F=2) -.114 1 -.030 -.018 -.030 -.018
B) Disapproval of regular -.677 -.677 -.573 -.680 -574
marijuana use
C) Mean marijuana use per year { .120 120 105 -0.15 -.003#*
R 497 677 120 713 507 678 713
R’ 247 459 015 508 257 459 .508

KEY: * p>.05

*  Mean of two items: How often do you attend religious service? (1 = Never . .. 4 = About once a week or more);
How important is religion in your life? (1 = Not important . . . 4 = Very important)

b IS{irzFIt;gem: How would you describe your political beliefs? (1 = Very conservative . . . 5= Very liberal .. . 6 =
adical).

NOTE: Entries in the first column are ;ﬁgducpmoment correlations coefficients (r); entries in the bottom rows are multiple:
con%c;,}a_tlortxs coefficients (R and R”) adjusted for degrees of freedom. All other table entries are standardized regression
coefficients.

SOURCE: Adapted from Bachman, J.G.; Johnston, L.D.; O’ Mz_ﬂleal, P.M.; and Hum;ihrey RH. EXﬁ)laining the recent decline
:Sp mgn uanélgusci: Plnge{grétéanng the effects of perceived risks, disapproval, and general lifestyle factors. J Health
oc Behav 29:92-112, .



vidual seniors’ self-reported amounts of marijuana use during the past
year:

» Set A includes seven lifestyle dimensions plus gender;
« Set B is personal disapproval of regular marijuana use; and

» Set C is the marijuana secular trend measure (i.e., the nationwide
mean of marijuana use—by seniors—during the year when the
individual graduated).

The lifestyle variables in set A show a multiple correlation of .50 with
annuai marijuana use, explaining fully 25 percent of its variance. This
contrasts with the much smaller correlation of .12 with set C, the secular
trend measure, representing only 1.5 percent of the variance in marijuana
use (as noted earlier). Clearly, it one wished to account for a senior’s use
of marijuana, then religiosity, truancy, and frequency of evenings out
would provide much more explanatory power than knowing the year of
graduation. However, a slightly better result is obtained by using botlz;
indeed, set A+C accounts for fully 1.0 percent more variance than set A
alone. Additionally, the regression coefficient for the secular trend
measure is changed very little when the set A variables are added to the
equation (the coefficient for C changes from .120 to .105). Thus, very
little of the secular trend can be "explained away" by the lifestyle
variables included as potential indicators of conventionality.

‘What about attitudes as an alternative approach to explaining the secular
trend? Set B, disapproval of regular marijuana use, accounts for fully
half of the variance in individual marijuana use. More importantly, the
addition of the secular trend measure provides no increase at all in
predictive power. The variance explained by set B-+C is identical to that
explained by set B alone, and the coefficient for C changes from .120 to
-.015 when set B is included as a predictor. Thus, this part of the analysis
leads to the same conclusion as the earlier, simpler approach: If there is a
control for the attitude measure, the secular trend "effect” essentially
disappears. (Indeed, the small but significant negative coefficient for C
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when set B is included ameng the predictors is consistent with the slight
upward trends in lines 2 and 3 in figure 3, opposite to the downward
trend for the total sample shown in line 4.) The same general finding can
be seen occurs when the set A variables are included; comparing set A+B
with set A+B+C shows again that, once the attitude measure is included
in the equation, the secular trend measure does not explain any additional
variance—and the coefficient for set C goes to -.003.

Although the data are not reproduced here, the findings were comparable
when the attitude measure was perceived risk of regular marijuana use
(Bachman et al. 1988). The conclusion was drawn from regression
analyses that:

. .. the secular trend in marijuana use cannot be
"explained” in terms of the lifestyle measures included in
Set A, but the trend can be "explained" either by the
measure of perceived risk or by the measure of
disapproval (p. 105).

A Replizqtion and Extension: Explaining the Recent Decline in
Cocaine Use. In May 1986, basketball star Len Bias died as a result

of cocaine use; a few weeks later, football star Don Rogers also died
because of cocaine. The following spring, the 1987 Monitoring the
Future survey of high school seniors showed marked increases in
perceived risk and disapproval associated with cocaine use, along with

a substantial decline in self-reported use but no decrease in perceived
availability of the drug. When it became clear that each of these trends
continued into 1988, it seemed worthwhile to conduct multivariate
analysis of the cocaine trends and to see if the pattern of results in some
respects replicated those obtained in the earlier analyses of marijuana
trends. Although the relationships were weaker with respect to cocaine
(as would be expected, given the much lower rates of usage fr.c this drug),
the analyses again showed that, whereas the lifestyle factors could not
"explain" the recent decline in cocaine use, the attitudes—either perceived
risk or disapproval—could (Bachman et al. 1990). Those analyses were
based on data through 1988, but more recent tabulations have shown that
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the trends in cocaine attitudes and use continued for severs? additionai
years (Johnston et al. 1992).

However, even in the absence of the complex multivariate analyses, the
researchers noted that by now the simple trend comparison had become
more compelling:

We would find it hard to argue plausibly that such differ-
ent secular trends in the use of these two drugs [mari-
juana and cocaine] could have been caused by some
general trend among young people toward becoming
more "conservative" or less "trouble-prone” in recent
years. . . . Changes in drug-specific factors, on the other
hand, correspond clearly to the declines in both mari-
juana use and cocaine use (Bachman et al. 1990, p. 181).

Methodological Observations on the Multivariate Analysis
Strategy. The chief advantage of this second of the two lines of
analysis simply is that it is multivariate; it permits examining a wide
range of predictors simultaneously and exploring the extent to which
explained variance is shared (overlapping) or unique while, at the same
time, including the secular trend measure as one predictor.

An additional advantage of this multivariate approach is that it places the
secular trend "effects” alongside "effects” (i.e., correlations) involving
individual differences in lifestyles and attitudes; in the process, it illus-
trates dramatically that the action is much greater at the individual level.
Why, then, bother with the secular trends? One reason is they still are
quite large—as noted earlier, marijuana use was cut about in half from
1979 to 1986. The more compelling reason, from the present perspective,
is that the analyses of secular trends may provide some additional lever-
age in the attempts to sort out causal interpretations at the individual
level. Specifically, the present findings (i.e., that the secular trends in
attitudes can "account for" the secular trends in use, whereas the reverse
is not true) are strongly consistent with the interpretation that individual
attitudes about specific drugs influence individual drug use behavior.
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GENERAL OBS©SRVATIONS ON THE ANALYSIS STRATEGY
OF COMBINING INDIVIDUAL-LEVEL, CROSS-SECTIONAL
DATA WITH TREND DATA

The analyses summarized in this chapter were prompted by a desire to
learn more about the causal connections between drug-related attitudes
and the actual use of drugs. On the one hand, the analyses made use of
individual-level correlational data in explaining trends in both attitudes
and behaviors with respect to marijuana and later cocaine. On the other
hand, and perhaps more importantly, the analyses used the trend data to
provide some extra leverage in understanding individual-level causal
dynamics.

The researchers interpreted the findings as supporting the initial hypoth-
esis that individuals’ attitudes about a drug-—specifically, perceived risk
and disapproval—are among the primary factors contributing to their use
or nonuse of that drug. The multivariate analyses alsc clearly indicate,
however, that these are not the only contributors; other lifestyle factors
also appear to have an impact, consistent with findings in much earlier
analyses (Bachman et al. 1981).

On reviewing this work, which evolved over several years, it seems that
two basic conditions must be met in order for this strategy to lead to clear
conclusions. First, it is necessary that the attitude and behavior measures
show some correlation at the individual level. That certainly is the case
with respect to marijuana; annual use correlated -.57 with perceived risk
and -.68 with disapproval. Such correlations clearly indicate the possi-
bility that one factor has a direct (and/or indirect) causal impact on the
other. The second condition is that the secular trend is stronger for one
factor than for the other; specifically, the "between-years variance”

(i.e., the variance "explained" by knowing the year of measurement)
must be greater for one of the two factors. That also is the case.

Figure 1 shows that the rises in perceived risk and disapproval are

more pronounced than the corresponding declines in marijuana use. It
should be added that, for this purpose, it would be technically correct to
scale figure 1 to equalize standard deviations rather than ranges. The
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latter was chosen for the published report because of its greater intuitive
value and because it turned out that the two scalings were mostly similar.
The one difference is in line with the researchers’ preferred interpretation:
The rise in perceived risk is even more pronounced when scaled to
equalize w.andard deviations.

With these two conditions in place, the most parsimonious interpretation
is that (1) some factors that changed from one year to another led to sub-
stantial shifts in attitudes about marijuana, and (2) because such attitudes
do affect behavior, there was a smaller shift in marijuana use (it is smaller
because the attitude-behavior correlation is less than perfect). It is impor-
tant to stress that, so long as the correlation between cause and effect is
distinctly lower than 1.0, the change on the outcome dimensions should
be somewhat smaller than the change on the causal dimensions. It
should be noted that, if the correlation were very close to 1.0, the
techniques described in this chapter would not give any leverage in
disentangling causes from consequences.

One other methodological observation is that it does not seem strictly
necessary to have all data from the same sets of respondents in order to
meet the two conditions described above. If one knows the extent to
which each of two dimensions have shown aggregate year-to-year
changes and can express those changes as proportions of the individual-
level variance (whether that variance estimate is obtained from the same
data or elsewhere), and if one also has a trustworthy estimate of the
individual-level correlation between the two dimensions (again, whether
obtained from the same or different data sets), then one can carry out the
kinds of calculations done here—at least with respect to estimating
whether A causes B more than B causes A.

Possible Adjustments for Measurement Error

The analyses described above did not take account of issues of measure-
ment error, at least not explicitly. The first strategy, examining time
trends in behaviors while holding constant attitudes {and vice versa),

is not easily adaptable to adjustments for measurement error. But the
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second strategy, involving multivariate controls and using cohort means
to indicate secular trends, is readily amenable to such adjustments. The
simplest approach would be to disattenuate the correlation matrix

(i.e., adjust correlations upward to compensate for estimated measure-
ment error) before conducting regression analyses. A more compre-
hensive approach might be to use structural equation models.

Such adjustments for measurement error were not included in earlier
reports because doing so would not have changed the findings substan-
tially and, thus, the additional complexity was not warranted. The
researchers reached that conclusion considering carefully the likely effect
of adjustments for measurement error. It may be useful to review those
considerations here, especially since, in other applications of this
approach, it may be appropriate to include such adjustments:

1. Individual self-reports of drug use. Earlier analyses documented
what appears to be a widespread systematic bias toward under
reporting total occasions of drug use over a 12-month interval,
compared with a 30-day interval. That bias was attributed largely
to failure of recall rather than deliberate distortion (Bachman and
O’Malley 1981). Such a bias, however, does not necessarily dis-
tort correlations or lower reliability estimates. In fact, fairly high
levels of reliability have been estimated consistently in the drug use
measures (O’Malley et al. 1983). For example, in other analyses
that did use disattenuated correlations, the estimated reliability of the
annual marijuana use measure was .90 (Bachman et al. 1984).

2. Cohort means as measures of secular trends in drug use. Each
graduating cohort of seniors is represented by a sample of approx-
imately 16,000 cases. With these numbers of cases, the sampling
ervor is vanishingly small. Accordingly, it seems that no adjustment
for measurement error would be needed for this variable.

3. Individual measures of drug-related attitudes. Assessments of

reliability and stability have focused primarily on measures of drug
use rather than measures of drug-related attitudes. Nevertheless, it is
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likely that reliabilities are lower for the attitude measures since these
items involve 3-point or 4-point response scales with large majorities
of respondents sometimes clustered in a single category.

4. Other measures used in the regression analyses. Some of the
measures listed as lifestyle variables in table 1 can be assumed to
have fairly low to very low error (e.g., grades, hours worked, income,
and gender), while others (e.g., truancy, religious commitment,
political beliefs, and evenings out) may have moderate error.

Likely Effects of Adjustments for Measurement Errors. Suppose the
above sorts of measurement errors were taken into account and appro-
priate adjustments were made so as to dissattenuate the correlation matrix
underlying the calculations shown in table 1. The result would have been
slightly larger estimates of the relationships in table 1, but there would
have been no important change in overall patterns or conclusions. That
judgment is based on the specific considerations discussed below.

First of all, the reliability estimaiz of .90 for the dependent variable
measure, individual-level annual marijuana use, would lead to adjusting
virtually all coefficients upward to a slight extent. Specifically, for a
simple correlation with a second measure judged to be error free, such as
mean marijuana use per year, the estimate would be the original corre-
lation multiplied by the reciprocal of the square root of the estimated
reliability (in this case, 1+.949 = 1.054). The result would be that the
correlation of .120 in table 1 would be adjusted upward to .126.

Second, the large negative correlation between disapproval and marijuana
use would be enhanced by the above adjustment and also by a (probably
larger) adjustment reflecting the measurement error in the disapproval
measure. After such adjustments, it would remain true that, when pre-
dictor set B+C was used, the coefficient for C would be close to 0, and
the joint prediction would not be ary improvement over the use of the
attitudes (set B) alone. In other words, the changing attitudes would
continue to "account for" the secular trend in marijuana use,
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Finally, the further adjustment in the lifestyle variables (set A) would
heighten their overall contribution, but that would not change the story
appreciably with respect to the marginal contribution of the secular trend
measure (set C). Overall R-squared values would rise, of course, but the
purpose in these analyses was not to seek a nrecise estimate of those
values; rather, the purpose was to see whether some factors might
"account for" or "explain” the secular trend in marijuana use.

IMPLICATIONS OF EPIDEMIOLOGICAL TREND STUDIES FOR
PREVENTION INTERVENTION

The ficst journal article reporting the analyses summarized here suggested
that one of the implications for those concerned with prevention is that

" ... realistic information about risks and consequences of drug use,
communicated by a credibie source, can be persuasive and can play an
important role in reducing demand, which ultimately must be the most
effective means of reducing drug use"” (Bachman et al. 1988, p. 108-109).

It must be emphasized that the conclusion quoted above reflects an
inference about individual-level causal processes—an inference devel-
oped by exploiting trend data coupled with some individual-level data.
It also should be stressed that it is the individual-level interpretation that
is likely to have the most important implications for prevention
intervention.

An important question remains about what caused the overall trends
during the 1980s in attitudes about marijuana. The interpretation was
offered earlier that some factors that changed from one year to another
led to substantial shifts in attitudes about marijuana. What were those
factors? The important factors very likely included increasingly per-
suasive research findings on physical and psychological consequences,
more extensive and effective coverage in the media, and firsthand obser-
vation of some schoolmates (virtually no school was immune) who did
indeed fit the reports about marijuana-using "burnouts.”" Were some of

135



those factors "prevention intervention?" That is, perhaps, a matter of
definition.

In any case, the point here is that these trend analyses do not tell us which
among a myriad of societal forces were most dominant in producing the
year-to-year changes in perceived risks and disapproval associated with
marijuana use. In a previous National Institute on Drug Abuse research
monograph on prevention intervention research, Johnston (1991) made
the same point quite clearly:

Epidemiological studies . . . provide outcome data on
the aggregate impact of all the forces in society that
influence drug use—whether they are labeled as
prevention programs, whether they are intended to
prevent or promote drug use, and whether they are
organized programs (p. 74).

The trend studies and analyses can be very useful, in other words, but
they remain only one part of the prevention intervention research puzzie.

NOTES

1. ‘An alternative strategy, if the researchers had been willing to assume
that any secular trend was strictly linear, would have been to assign to
individuals numerical values of 1 through 11 (or 1976 through 1986)
corresponding to their graduating class and then consider the extent
to which those values correlated with individual use (again using the
pooled individual data from all 11 classes). Such an approach, how-
ever, would not have captured the curvilinear trend in marijuana use
during the period in question. On the other hand, it would have
avoided any tendency to capitalize on chance fluctuations from year
to year—not much of a problem when the annual means are based on
thousands of cases, but potentially a problem with smaller samples.
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2. Later analyses (Bachman et al. 1990) extending from 1976 to 1988
showed the trend continuing, thus explaining more variance (the
prodiict-moment correlation rose to about .16, accounting for about

2.5 percent of the total variance). .

3. For further details and comparable data on perceived risk, see
Bachman et al. (1988), from which table 1 was adapted.

4. The terms "predictor" and "variance explained" are used here because
they are the familiar ones used in describing regression analyses. In
fact, the author does not assume single directions of causation for
some of the lifestyle dimensions. Moreover, the secular trend
“correlation” is recognized as merely a different way of expressing
the proportion of overall individual differences in marijuana use
related to overall year-to-year changes during the decade studied.
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Multilevel Models for
Hierarchically Nested Data:
Potential Applications in
Substance Abuse Prevention
Research

Ita G.G. Kreft

ABSTRACT

This chapter reports on an application of a multilevel analysis. A multi-
level analysis is a data analysis that uses variables that are measured at
different levels of the hierarchy. A hierarchy can have many levels, such
as student level, class level, school level, and State or country level,
where students are nested within classes, classes are nested within schools
or school districts, and school districts can be nested within towns, States,
or countries. As soon as one pays attention, hierarchies are present in all
data. In large-scale prevention research, researchers usually have infor-
mation about two or more levels involved, for instance, variables describ-
ing individuals (such as achievemnent, drug use, gender, and measures of
socioeconomic status or home environment); variables describing schools
(such as school environment, urban versus rural, and type of treatment
administered); and perhaps variables describing districts, States, or coun-
tries, It is well known that the analysis of variables (i.e., measures at
different levels of the hierarchy) on any of these levels separately can be
misleading, as will be shown in this chapter. It is more satisfactory to
construct a model and technique that simultaneously take information on
all levels into account.

This chapter introduces such a multilevel model for hierarchically nested

data by evaluating the effect of a drug prevention program, Normative
Education (NORM), wherein data are collected on students nested within
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schools. The model is a linear regression model. The difference between
this model and the traditional linear regression model is that it takes the
intraclass correlation into account and treats variables measured at
different levels of the hierarchy in a more appropriate way.

INTRODUCTION

Methodological probiems ars present whenever real-life experimentation
is the object of study. This chapter deals with one of them: how to ana-
Iyze data that are collected over students in existing schoois, where the
treatment consists of drug prevention programs. From the hierarchical
structure of the data, where students are nested within classrcoms, class-
rooms are nested within schools, and schools are nested within programs,
it follows that measurements can be obtained from all levels of this hier-
archy. If measurements are at different levels, a question that remains is,
"What should be taken as the unit of analysis, the student or the school?"
A way to make this choice is by asking another question: "What is the
unit of interest?"

It seems that the effect of the drug prevention programs on individual
students is the main object of interest, and a logical choice would be

an analysis of covariance (ANCOVA). However, ANCOVA has its
problems in this situation. The first problem is that observations in
groups are correlated. This statistical problem cannot be solved in the
traditional ANCOVA framework. ANCOVA analysis also lacks the
ability to answer important questions, such as: "What are the effects of
drug prevention programs on special groups of students, for instance,
high-risk students or boys versus girls?" This chapter will argue that
analyzing this type of data with any of the traditional linear techniques,
either ANCOVA or regression (i.e., regression executed at the school, the
class, or the student level) is not satisfactory. To analyze those data, a
model that can handle the clustered and hierarchical structure of the data
in an appropriate way is needed.
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To analyze data that have a hierarchical structure and contain measure-
ments from different levels of the hierarchy (i.e., multilevel measure-
ments), techniques that are based on assumptions that are in agreement
with the data structure are needed. The next paragraphs summarize the
main problems that have to be dealt with when analyzing multilevel data.
The concepts defined here are intraclass dependency, hierarchical nesting,
random effects, cross-level interaction, and different sources of variation
in unbalanced data.

Intraclass Dependency

Observations that are close in time, space, or both are assumed to be
more similar than observations far apart in time, sSpace, cr both. Intraclass
correlation is defined as the degree to which individuals share common
experiences due to closeness in space, time, or both. In traditional linear
models, the effect of omitted variables is summarized in the error term.
The assumption is that individual errors are unrelated to each other be-
cause the omitted variables have a random, instead of a specific, effect.

However, since observations in the same group or context share some
omitted variables (i.e., the ones related to the shared context), a covari-
ance of individual error terms can be observed in such situations. For
example, in evaluation of drug prevention programs, existing school
classes are used. Students in the same class have a lot in common:

They share the same school environment and have the same teachers.
The omitted variables in analysis models represent nonrandom influences
of the same school climate and the same peer pressure for students in the
same school. The degree of covariance in the error terms of individuals
sharing the same school or class can be expressed in a correlation coef-
ficient, that is, defined as the ratio of between-school variation to total
variation in the dependent variable (Cochran 1977). This correlation is
known as the intraclass correlation.

Intraclass correlation is associated in the literature with an increase in

Type 1 errors (Barcikowski 1981; Cochran 1977; Crits-Christoph and
Mintz 1991; Murray and Hannan 1990). If intraclass correlation occurs,
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as it will when clustered data are sampled, the assumption of independent
observations in the traditional linear model is violated. For instance, the
30 students in the same class are not 30 independent observations. The
degree of intraclass correlation determines how many independent obser-
vations there really are. Since tests of significance lean heavily on the
number of independent observations involved, the existence of intraclass
correlation makes the test of significance too liberal when using tradi-
tional linear models. Based on research by Barcikowski (1981), it can be
shown that even a small intraclass correlation (like r = 0.01) can inflate
the alpha level from the assumed level of 0.03 to 0.17 under specific
circumstances (see table 1 later in this chapter).

Random Effects versus Fixed Effecis

In fixed effects analysis of variance (ANOVA), the factor (or treatment)
is said to be fixed if all possible treatments in which the researcher is
interested are present. In research that uses real-life groups, this assump-
tion can hardly ever be made. For instance, in drug prevention research,
the treatment is administered to groups, such as school classes, that are a
random sample from all possible school classes. Students are nested
within these groups. An effect of a certain treatment in real-life experi-
mentation has to be redefined as random instead of fixed because the
groups are not formed by randomization of, for instance, students over
treatment groups. Treatment effects have to be viewed as random effects
because the effect may differ randomly from group to group or from
school to school. In drug use prevention programs, schools are sampled
from a large population of schools. Even when this sampling is con-
venient rather than strictly random, random effects are assumed.

The following distinction between random and fixed models can be
made: fixed effects models focus on differences between means, while
random effects models focus on variances. It has to be kept in mind that
the way the data are obtained affects the inferences that can be made.
Random effects can be used as the basis for making inferences about
populations from which the samples are drawn. In other words, "in
endeavoring to decide whether a set of effects is fixed or random, the
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context of the data, the manner in which they were gathered and the
environment from which they came are the determining factors" (Searle
etal. 1992, p. 16).

Hierarchical Nesting

Students are nested within classes, classes are nested within schools and
neighborhoods, and schools are nested within States or countries. Once
researchers know that nierarchies exist, they can see them everywhere.
When samples of real-life groups are used in an experiment, such as
school classes, classes instead of individuals are said to be assigned to
treatments. The concept of "group," in the context of multilevel analysis,
should not be confused with the concept of treatment or treatment group.

Groups

The hierarchy of nesting in drug pravention research usually is students
nested in schools and schools assigned to programs or treatments. In
the multilevel literature, the lower level (the students) is referred to as
"micro-level," while the highest level (schools and programs) is referred
to as "macro-level." Measurements obtained at all levels of a hierarchy
can be analyzed simultaneously in multilevel modeling. For instance,
student measurements, such as gender, race, poverty, level of rebel-
liousness, and level of risk, are analyzed in relation to school-level
measurements, such as rebelliousness level, drug use level, and
environmental risk factors of the school.

An example of hierarchically nested data and problems related to ana-
lyzing such nested data is in Bachman (this volume). In Bachman’s
chapter, the question is raised whether the negative relationship between
perceived risk and drug use resulting from an aggregated analysis over
the years can be related to an individual relationship, where perceived
risk causes a lowering of marijuana use. The analysis results show that
an aggregate trend over years is different from trends observed when sep-
arate groups of individuals are studied (Bachman, this volume, figures
1-5). This well-described phenomenon is called the ecological fallacy or
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Robinson effect, named after the author of the first article (Robinson
1950) that showed that aggregated models can measure different things
from individual models and, hence, can lead to different conclusions
(also see Kreft and De Leeuw 1988). Bachman's chapter is a nice
illustration of the complications a researcher faces when studying trends
over years with the intention of finding causal relationships between
individual attitudes and individual marijuana use.

Cross-Level Interactions

Cross-level interactions are interactions between context and student.
This type of interaction was first mentioned in the educational research
literature (Cronbach and Webb 1975). The assumption made in Cron-
bach and Webb (1975) is that some teachers interact better with certain
types of students than with others. If certain teachers are, for instance,
more effective with bright students than with others, it means that the
relationship between an individual student’s aptitude and achievement is
strengthened. Such a teacher is said to have a meritocratic teaching style.
If, on the contrary, a teacher is more effective with slow learners, the
relationship between aptitude and achievement may be reduced. The
teacher is said to have an egalitarian teaching style. The first type of
teacher widens the gap between high and low performers, while the
second type of teacher narrows this gap. In the educational literature this
is called an aptitude/treatment effect. In theory, the same can happen in
drug prevention programs. While some programs widen the gap between
high-risk and low-risk students, others may narrow the gap between these
two groups of students.

Collins and colleagues (this volume) and Uebersax (this volume) show
potential applications of models that test for cross-level interactions. In
both chapters, techniques are presented for classification of students
according to certain patterns of drug use. After labeling students accord-
ing to type of drug use, a subsequent multilevel analysis can test if drug
prevention programs are more effective for certain types of students than
for others. Defining again students as "micro" and prevention programs
as "macro," such a cross-level interaction is a micro-macro interaction.
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The program strengthens or reduces the relationship between type of
student and drug use. The stronger the micro-macro interaction, the
stronger the effect of the program for that specific type of student in
either direction.

Unbalanced Data and Scurces of Variation

When dealing with multilevel data, researchers deal with a nested design,
where existing schools are nested within drug prevention programs and
where schools may have unequal numbers of students. As illustrated in
table 1, a nested design gives rise to two sources of variation: a variation
between individuals within groups and a variation between groups within
each treatment. To analyze such multilevel data, the analysis model
needs to provide for a separation of the total variation in the dependent
variable into different sources. The variance components are associated
with the larger unit (such as the school or the B’s in table 1) and with the
smaller units (such as the students or the O’s in table 1) within each
treatment (the A’s in table 1). As a result of the way the data are struc-
tured, there is more than one source of variability at the group level: a
variation between the groups within the same treatment and a variation
between treatments.

THE ANALYSIS OF DRUG PREVENTICN DATA: THREE
TRADITIONAL STRATEGIES

There are three traditional strategies for analyzing multilevel data:

(1) ANCOVA, (2) a means-to-means regression approach, and (3) a
"slopes as outcomes” approach. ANCOVA is straightforward and prob-
ably what most people do. The means-to-means regression approach
involves group means as the unit of analysis in regression to avoid the
problem of intraclass correlation in clustered sample designs. Burstein
(1980) suggested a new and better approach to the analysis of multilevel
data, the slopes as outcome approach. This last approach is considered to
be a multilevel technique because it is based explicitly on the fact that
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TABLE 1. Hierarchy of 2 treatments (A), 4 groups (B), and
22 observations (0O)

A] A2
B] B2 Bl BZ
Ol o7 O11 018
02 08 012 019
03 09 013 020
04 010 014 021
05 014 OZZ
06 016

0

—_
-3

observations are collected at different levels and are clustered. The slopes
as outcomes approach ("separate models" in table 2), however, has, its
own disadvantages and problems. Table 2 illustrates the differences
among the two traditional linear models and the two multilevel linear
models in relation to the modeling of context effects.

The new approach mentioned in table 2, multilevel random models, con-
ceptually is close to the slopes as outcomes approach and will be intro-
duced later in this chapter. In this section, each of the fixed effects
approaches will be reviewed, and the strengths and weaknesses of each
will be discussed.

Basic Equations and Assumptions of Fixed Linear Models
The basic equation for all models mentioned in table 2 is in the equation

at the top of the next page, where the convention of underlining random
variables is used.
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Y= aj-*l-ij“ﬁzij
a, = Intercept(s) 1
b; = Slope(s)

TABLE 2. Assumptions of two traditional linear models compared to
two multilevel models

Intercepts Slopes
Traditional linear regression equal equal
ANCOVA ' unequal equal
Multilevel fixed models unequal unequal
Mutltilevel random models unequal choice (either
equal or
unequal)

Subscripts refer to i for individual and j for group; e; is the usual individ-
ual error term, with a mean of O and a variance of . The first three
models in table 2 are fixed effects linear models. Within the fixed
models, the choices are that intercepts are equal:

ay=a;=..=a (2)
or unequal:

a, * 8y # . R, ©)]
Equation (2) applies to the total regression model, not to. the ANOVA
model or the separate models for separate contexts. ANOVA models

assume equation (3), while the separate models for separate contexts
approach also assumes this by definition.
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The fixed effects models in table 2 also may differ in their assumptions in
relation to the slope coefficients. Slopes can be assumed to be equal over
contexts as in equation (4), which is an assumption on which the
ANOVA model is based:

b, =b,=..=b 4
or unequal:
b, #b, #..# b (5)

Equation (4) states that slopes are equal for all contexts, which is an
assumption of most fixed effects models, with the exception of the sep-
arate models analysis. The last assumes by definition that all contexts
differ in their parameters since, for each context, a separate model is
fitted. In multilevel models (the fixed, separate models for separate
groups, as well as the random model), assumption (5) is made when it is
expected that the relationship between the dependent and independent
variable is different over contexts. In separate models, slopes and inter-
cepts are different by definition, whereas in multilevel random effects
models intercepts are assumed to be different and differing slopes are
given as an option.

ILLUSTRATION OF THE FIXED EFFECTS LINEAR MODELS

The next paragraph illustrates several analyses by using a data set
(Hansen and Graham 1991) of 12 schools, with 120 classes, 2,069 stu-
dents, and 2 treatment situations. Measurements at the micro-level are
student prealcohol use and student postalcohol use. XMacro-level charac-
teristics are the drug prevention program (NOFRM) versus something else
and mean alcohol level of the school. NORM is short for "Normative
Education." Mean preprogram alcohol level of schools is used here as
proxy for laws and norms favorable towards alcohol and drug use by
peers, siblings, and parents.

149



Analysis of Covariance (ANCGOVA)

An assumption of ANCOVA is that each covariate (here, prealcohol use)
has the same relationship with the dependent variable (here, postalcohol
use) within each school. The regression coefficient of pretest on posttest
in ANCOVA is the pooled within-regression coefficient. The ANCOVA
model is applied to the data using schools as the macro-level, students as
the micro-level, prealcohol use as the covariate, and postalcohol as the
dependent variable.

The equation for the ANCOVA is:
Y, = oy X+ gy (6)

where the Greek letter for the intercept («;) refers to the different
estimates for each school. The best estimate for the slope (b) is the
pooled within-group estimate, by,. The estimate of «;, which is different
for every school, is Y;~b,, X, The dot replaces the subscript i in Y; and

X‘j since the pretest score (X) and the posttest score (Y) are summarized
over individuals (i) in each school (j) separately. —‘fj and fj represent
the school means for these variables.

The solution for schools obtained by ANCOVA is:
Y, = a+0.51X,

The F-test for differences between a’s is;

F(11, 2056) = 3.15, p = 0.000
and the value for the pooled within-regression coefficient is 0.51 and
equal to a coefficient that would be obtained by a regression equation
over all students irrespective of their schools (see summary table 5 later in
this chapter). The F-test indicates that some or all schools differ signif-

icantly in their mean alcohol level when corrected for pretreatment
alcchol use. Remember, however, that the Type I error rate is inflated
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significantly when intraclass correlation is present. A check for intraclass
correlation shows that r = 0.01 for these data, which brings the Type I
error rate to at least 0.17, according to the table produced by Barcikowski
(1981) and summarized in table 3 on the following page. In table 3, it
can be seen that, based on the large number of observations per school
(most schools have more than 100 observations), even small intraclass
correlations may lead to high Type I errors.

More About the Effect of Intraclass Correlation

In studies using existing groups, as in the present example, not students
but schools are randomly assigned to treatments. Students within the
same school share many experiences (among them, the group dynamics
during the treatment) that make them in certain ways more similar to each
other than students in different schools. This violates the assumption of
independency of observations in linear models and results in an iniraclass
correlation between the error terms in the linear model. Intraclass corre-
lation reduces the number of independent observations compared to the
observed number of observations, enhancing Type I error probability,
depending on the number of observations in a school and the magnitude
of the intraclass correlation. As shown in table 3, a small intraclass
correlation of r = 0.01 in schools with 100 students inflates the Type I
error rate from the assumed 0.05 to an observed 0.17 for an ANOVA,
while a large intraclass correlation of 0.20 enhances the alpha level to
0.28 (instead of the assumed 0.05) in small schools with only 10 obser-
vations per school. Table 3 shows how much the observed alpha levels
(in the body of the table) differ from the nominal alpha level (alpha =
0.05) for different values of intraclass correlation and different numbers
of observations within groups.

A next logical step would be to see why schools differ significantly in
their intercepts. ANOVA models do not show if some of the differences
between schools can be attributed to macro-level characteristics. The
observed differences between schools in this model may be the result of
the drug prevention program NORM in combination with other factors
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TABLE 3. The inflation of the alpha level in the presence of intraclass
correlation (Barcikowski 1981, p. 270)

Intraclass correlation

N per group
0.01 0.05 0.20
10 0.06 0.11 0.28
25 0.08 0.19 0.46
50 0.11 0.30 0.5%
100 0.17 0.43 0.70

NOTE: The values in the body of the table are the observed alpha levels.

(for instance, the preprogram mean alcohol level of a school), but testing
such effects is beyond the limits of this fixed effects model. ANOVA
shows limitations and, although the data have been analyzed at the correct
level for making inferences about individual students, the fact that the
Type I error is inflated poses real problems for inferences. To avoid the
danger of Type I errors, using group means as the unit of analysis instead
of individual observations is considered by some (Barcikowski 1981;
Murray and Hannan 1990) to be more appropriate.

The Aggregate Model

Using the school as the unit of analysis will solve the problem of intra-
class correlation. The aggregate model is a between-school model (see
equation [7]), where mean prealcohol level is used to predict mean
postalcohol level. In the present data, this analysis is based on N = 12,
Note on the following page that the subscript "dot j" means that the
observations are summarized over individuals (i), and only the subscript
(j) for group remains.
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If the g ; are assumed to be independent, with variance nj'1 a* (i.e., vari-
ance weighted by the number of observations within groups), it follows
that the best estimate of b is bg,,,..,- In the aggregated model, the dis-
tinction between individual and contextual effects disappears. The results
are (with standard scores between parentheses):

A
Y,=-0.04+0.59 X,

(z=-0.13) (z=1.66)

Both coefficients are nonsignificant. The correlation between mean
pretest and mean posttest is r = 0.47.

The aggregate model has several disadvantages, which range from loss

of power to loss of interpretation. In this example, with 12 schools, the
number of observations dropped from 2,069 to 12. As a result of this loss
of power, the conclusion is that prealcohol use is unrelated to postalcohol
use. Moreover, inferences to the student level based on these results
could be incorrect and, later in the chapter, they will be shown to be
incorrect (see table 4).

This illustrates the most serious problem with aggregated models: They
answer the wrong questions. Questions about how schools behave are
not equivalent to questions about how students behave. Drug prevention
research targets students and effects of drug prevention programs on indi-
vidual students, as well as on certain types of students. Hawkins and
colleagues (1992) reached a similar conclusion in their review of the
literature—that the overall effect of the program is important as an effect
on individual students. Reasons are given why cross-level interaction
may exist between the student (micro-level) and programs (macro-level).
Questions can be raised, such as, "What is the effect of drug prevention
programs on high-risk students versus low-risk students?" where "at risk"
may be defined at all levels of the hierarchy, including the individual
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student level, the social environment level, and the school level. In Haw-
kins and colleagues (1992), several descriptors of risk factors defined at
different levels of the hierarchy are given based on the literature, such as
individual student risk factors, environmentally based risk factors, and
family-based risk factors. Individual student risk factors are physiolog-
ical (such as hyperactivity and attention deficit), academic (failure and
lack of commitment), or family oriented (high levels of conflict in the
family and laws and norms favorable towards alcohol and drug use by
peers, siblings, and parents). Environmental risk factors are described
as extreme economic deprivation and poverty, neighborhood disorgan-
ization, and availability of drugs.

The conclusion is that the aggregate model does solve the Type I error
rate problem, but at the cost of a serious loss of power. More imper-
tantly, it is off the mark conceptually since it cannot address the question
of whether special cross-level interaction effects exist. The following
model, first proposed by Burstein and colleagues (1978), offers oppor-
tunities for testing the cross-level interaction effects.

Separate Models for Separate Schools

A more suitable analysis than ANCOVA for the hie- wchically nested
data that still is within the traditional fixed effects linear model frame-
work is fitting a separate model within each school. In the next table,
table 4, the result of fitting 12 models within 12 schools is shown where
student prealcobol use (X;) predicts student postalcohol use (Y;) in each
school. The estimates for intercepts and slopes show to be different
across schools. The intercepts are nonsignificant, except two, which is
almost contradictory to the earlier reported results of the ANCOVA anal-
ysis, where the F-test results show highly significant differences among
(at least some) intercepts or alphas [F(11, 2056) =3.15, p = 0.000]. The
widely differing slopes (from 0.36 to 0.71) contraindicate the fitting of a
pooled within slope as is done in ANCOVA.
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TABLE 4. Regressions of prealcohol use on postalcohol use over

12 schools

Schools  Intercept (SE) Stope  (SE) R N
1 -0.08  (0.05) 0.41*  (0.07) 0.41 190

2 0.00  (0.06) 049* (0.11) 0.33 161

3 0.12  (0.06) 0.71*  (0.09) 0.53 205

4 0.01  (0.06) 0.57*  (0.09) 0.4¢ 164

5 0.20* (0.07) 0.74*  (0.08) 0.58 156

6 -0.02  (0.05) 0.56* (0.06) 0.53 195

7 0.01  (0.05) 0.55*  (0.06) 0.55 192

8 0.07  (0.06) 0.41*  (0.05) 0.47 213

9 -0.16*  (0.04) 0.36* (0.04) 0.52 185

10 -0.11  (0.06) 0.39* - (0.06) 0.50 118

11 -0.12  (0.06) 0.55%  (0.05) 0.69 118

12 -0.03 = (0.06) 0.52*%  (0.06) 0.54 172
Total -0.003  (0.02) 0.51*%  (0.02) 0.51 2,069

KEY: * issignificantatp <0.01

Comparing results over the separate models in table 4 and ANCOVA, it
may look as if the F-test in the ANCOVA model is based on two schools
(#5 and #9), the only schools that differ significantly from 0. Doing that
may be misleading since the two analysis models are incomparable. By
allowing the slopes to differ in the last model, the intercepts are different
from the ones obtained by ANCOVA and so will be the significance of
the ANCOVA F-test. A more substantive discussion of this difference
between fixed effects ANCOVA models and muitilevel models can be
found in Aitkin and Longford (1986).

Table 4 shows that the strengths of the correlation between pretest and

posttest vary in a similar fashion as the slope coefficients do, meaning
that the differences in schools mainly are in their relationships between
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prealcohol and postalcohol use and not in their intercepts (see column
"R" in table 4). Comparing the separate models in each school with the
overall or individual model over all observations (see "total" row of table
4) shows again that schools differ from the total model, mainly in their
slope and correlation coefficients.

Separate models for separate schools, wherein a student-level micro-
model is fitted within each school, reflect the conceptual idea behind
multilevel modeling. However, the separate models approach is not very
parsimonious. In this simple example, with only one predictor, three
parameters per school are estimated: the parameter for *he intercept, for
the slepe, and for the individual-level error variance, which brings the
total number of parameters for the 12 schools to 36 in this first step.
Sometimes, even more parameters are required, as will be shown next,
The same random effects model needs only six parameters to obtain
comparable results, which will be explained later in this chapter.

Separate analyses are the first step in testing for separate school effects.
The next step is checking for cross-level interactions between school and
student. Researchers know from the literature that the environment of a
student can have a moderating effect on individual drug use. Brook and
colleagues (1990), for instance, found that the effect of drug-using peers
was moderated by a strong attachment or bond between parents and ado-
lescents. Rutter (1985) found that resilient children display a repertoire
of social skills and belief in their own self-efficacy. Hawkins and col-
leagues (1992) express the need for research that studies interactions
between student characteristics and the characteristics of the environment
(i.e., drug prevention programs): "It is not known how children who
ceme from poor managed families, who have failed in school, who are
aggressive, or who lost commitment to school respond to ‘Just Say No’
or other anti-drug messages in the media or in their personal social envi-
ronments. , . . Additional research is needed on the effectiveness of
school policies in preventing or reducing the use of drugs other than
tobacco and on the effects of such policies on those at highest risk for
drug abuse” (Hawkins et al. 1992, p. 89).

156



Assuming that ¢haracteristics of schools can function as moderators, a
model is fitted next with an interaction effect between the mean alcohol }
level of schools and the student alcohol use. The question of interest here

is: "Can a characteristic of a school inhibit or enhance the substance

abuse of high-risk students, where ‘high-risk’ is defined as students with

a high level of alcohol use?” From the first step, the separate analyses, it

is known that the schools show different magnitudes of the ".elationship

between prealcohol and postalcohol use of students. The next step is to

test if mean school alcohol level is related to these ooserved school dif-

ferences. In the second step, the values of the slopes constitute the de-

pendent variable, which is predicted by the school mean. This approach
appropriately is called the slopes as outcomes approach in the first article

that used this procedure (Burstein et al. 1978). Although Burstein and

colleagues (1978) used the values of the slopes as the dependent variable

in a second step, the values for the intercepts can be used also as the

dependent variable in another macro-level regression, where the same
macro-variables (e.g., the school alcohol mean) may be used again as the

predictors.

Equation (5) shows the macro-level regression analysis with schools as
the unit of analysis, slopes as the values for the dependent variable, and

school alcohol mean, X;, as the predictor. The research question is:
"Does a cross-level effect exist between the mean alcohol level of a

school and the student-level relationship between prealcohol and post-
alcohol use?" The research hypothesis is nondirectional, meaning that it
does not predict in what direction this effect will be. Either the outcome
is that a school with a high mean level of alcohol consumption has a
negative (lowering) effect on the positive relation between prealcohol and
postalcohol use of the student or the opposite, a positive (strengthening)
effect:

b, = otpX+e; 8)

The macro-level equation in model (8) again is an aggregated model,
with the difference, compared to the aggregated model reported earlier,
*hat the dependent variable is produced by a statistical model (i.e., a linear
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that the dependent variable is produced by a statistical model (i.e., a linear
regression) instead of being a simple average. Model (8) relates the slope
parameters obtained in the micro-models in step 1 (refer to table 4), to a
macro-level regressor, which is the mean prealcohol use over schools.
The slope as outcomes model again is a fixed effects model. The solution
for equation (5), where f.j is the mean alcohol level for each school is

(with standard scores in parentheses):

slopes = 0.52+0.16 X,

(z = 13.0) (z = 0.40)

The intercept is the main effect of the slopes, representing the effect of
prealcohol use on postalcohol use. The results are, for that reason, close
to results obtained earlier for the slope coefficient in ANCOVA and in the
individual regression model, where the magnitude of the slope coefficient
is 0.51, and significant (with large z-values). The coefficient for fj
(representing the cross-level interaction between alcohol mean of the
school and student-level alcohol use) is 0.16 but nonsignificant. The
correlation between slope coefficients (b’s) and school mean is r = 0.12.
The coefficient for the slope is 0.16 and not significant (z = 0.40), show-
ing no significant cross-level interaction between student alcohol use and
school mean. Since the intercepts in table 4 are almost all close to 0, no
"intercepts as outcomes™ model is fitted. This lack of variation prohibits
any successful further analyses.

The two-step separate models for separate schools approach has as
advantages over the traditional models that it treats the observations at the
appropriate level and allows for different effects within different schools.
On the other hand, the model is ill defined in a statistical sense. For
instance, schools are analyzed separately, without any reference to each
other; the values of the estimations are taken at face value, without any
reference to their reliability; and the error structures at both levels (micro-
error, g;, and macro-error, e ;) are not defined. Another disadvantage is
the lack of parsimoniousness. Many parameters have to be ¢stimated
even in simple analyses such as this one.
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Summary

Different modeis present different answers; the individual student re-
gression shows only a significant slope coefficient, the aggregate model
shows no significant results, and the ANCOVA model shows significant
differences over intercepts. The results of the individual regression
model and the ANCOVA model are questionable because of the existing
intraclass correlation. The ANCOVA model erroneously assumes equal
slopes for all schools. The results of the aggregate model shows the rela-
tion between variables related to schools, which is not the same as a
model for students. The two-step separate models for separate schools

is statistically ill defined and not very parsimonious. Clearly all three
models have their own specific probiems for answering questions related
to drug prevention programs and their influence on individual students.
Would it not be nice to have an approach that allowed inferences at all
levels of a problem, produced the correct Type I error rate, did not result
in a loss of power, and was parsimonious? Models can answer multilevel
questions such as: "If this program is effective, is it equally effective for
high-risk students as for low-risk students?"

Such a model will be introduced next. The convention adopted earlier to
underline random variables and random coefficients g, and b of the linear
model will be used again, A more extensive discussion of random effects
multilevel models follows later in this chapter.

THE MULTILEVEL RANDOM MODEL

A General Introduction

The muitilevel random model presented here is a straightforward general-
ization of the separate models for separate schools approach (again see
table 4 and discussion). The basic ideas of the random effects model is
the same general approach as in the slopes as outcomes. Again, there is
a student-level micro-model, defined separately for each macro-unit (the
school). This is a linear model, with an individual-level predictor (pre-
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alcohol use) and individual-level dependent variable (postalcohol use).
Mason and colleagues (1983), the first to publish an article using this type
of multilevel modeling, made the following remarks: "Although its
origins are uncertain, the notion of a regression in which the dependent
variable consists of regression coefficients from other regressions has
long been attractive to social scientists and statisticians” (p. 73).

In the separate equations approach, researchers must decide what exactly
they are modeling in the second set of equations. Either the regression
coefficients in the within-group models are fixed parameters, or they are
random coefficients. If they are fixed, they can be estimated by ordinary
within-group regression analysis. However, the distribution of the fixed
within-group regression coefficients already is determined in the first step
and cannot borrow any strength from other information available in the
data set. The slopes as outcomes approach automatically leads to the fol-
lowing question: "Should the regression coefficients in the micro-models
be modeled as random variables or as fixed constants?" One answer is
that it depends on the contexts and the purpose of the analysis. If con-
texts (schools) are a random sample of the population of contexts
(schools) and the purpose of the analysis is to generalize to this popu-
lation (to all possible schools in a certain area), researchers may consider
a model with random, instead of fixed, coefficients.

Before going into more detail, examine the results of applying a random
effects multilevel model to the data. In table 5, the results of the rar:Jlom
multilevel model are compared with the results obtained by fixed effects
models (i.e., the total individual student model an ihe aggregate school
model). Table 5 shows different symbols for the parameters in fixed
effects versus random effects models. The fixed coefficients (a and b)
are the symbols used in the fixed models, while in the random models the
symbols for the fixed coefficients are the gammas (y,, and v,,) with their
respective variances, the omegas (wy, and w,,). Since random effects
models have random effects (indicated by the underlining of a; and b; in
the equation in table 5), parameters reflecting that randomness are the
omegas. The gammas in the random model conceptually are compa-
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TABLE 5.  Comparison of parameter estimates between two fixed and
one random model

Individual Model Aggregate Model HL Model
Y = a+bX ey Y =a+b X, e, X = ;b Xyrey

A .
Y;=-0.003+0.51X;  Y;=0.04+0.59%; Y =-0.006+0.51X
parameter z-test parameter Zz-test parameter  z-test
estimate estimate estimate
a-0.003 -0.17 a-0.004 -0.13 Yoo -0.005
b 0.514*%  26.94 b 0.589 1.66 Yo 0.518*% 15.83

variance of the intercept wy,,  0.005*  4.32

variance of the slope w,, 0.008*  4.46

KEY: * issignificantat p <0.01

rable to the point estimators or fixed effects in fixed models (like the a

and b are), while the variances ars the measures of spread or the fluctu-
ation of the schools around the mean estimates for intercept and slopes

(the gammas in the random model).

Comparing the values of the fixed effects (a) and (b) of the individual and
aggregate models, differences are found again in significance level of the
parameters. Comparing the estimated parameters of the fixed and ran-
dom models shows that the gamma values (and respective standard
errors) of the random model are close to the aand b values (and respec-
tive standard errors) in the total individual student model. The differ-
ences over models clearly are somewhere else. The extra parameters
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estimated in the random model for variance of schools around the
intercept (wq,) and varisnce of schools around the slope (w,,) for the
random model make this model different from the total fixed effects
model and, at the same time, more promising.

The concept of separate models for separate schools is introduced here by
translating this concept into the freedom the model allows for schools to
fluctuate around a mean value for slope and a mean value for intercept.
These extra parameters introduce the opportunity to go beyond the stu-
dent level and find macro-level variables that can explain this variation
between schools, much in the same way as was demonstrated in the sepa-
rate models for separate schools analysis, where slopes as outcomes was
used and predicted by school mean alcohol level. Both variances in the
random model, the variance for the intercept (®;) and the variance for
the slope (w,,), are significant, with z-values of over 4.00. This result
gives reasons to proceed with a model that includes macro-level vari-
ables. Macro-variables can model the variances in intercept as well

as in slopes. The macro-level variables NORM and mean alcohol use are
used in the next paragraphs in an attempt to explain the observed vari-
ation among schools (in intercepts as well as in slopes), much in the same
way as was done before, when the researchers tried (unsuccessfully) to
explain the variation in slopes (see table 4) by the mean alcohol level of
schools in the slope as outcomes approach.

The Random Effects Model for Hierarchically Nested Data

The random effects models presented in more detail in this section are
comparable to the random effects models founa in textbooks such as
Searle and colleagues (1992) and Winer (1971). The difference is that
these are too general for present purposes. To distinguish the random
effects models used in the literature from the one introduced here, the
name "random coefficient (RC) model” will be used for the random
effects multilevel model for the rest of this chapter. The main differ-
ence between the random component models, as discussed in Searle and
colleagues (1992) and Winer (1971), is that in RC models more than
just variances are estimated since means are estimated along with their
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variances. The last fact is the reason this model also is known as a
"mixed" model (for more details, see Searle et al. 1992).

In equation (9), the RC model is introduced, which has the form of the

usual fixed effects linear model (compare for that purpose the model in
equation [1]), with a single individual predictor, X;;> but random coeffi-
cients, g and bj. The convention of underlining random coefficients is

used again here.

Xﬁ = _aj+b.jXU+§ﬁ (9)

where g and b; are random coefficients with a fixed and a random part as
in equations (10) and (11):

a;= Y0+.64;j (10)
and
b= v+8; (11)

As was shown in table 5, the random intercept (gj) is estimated as two
parameters rather than as one: The first parameter is in the mean inter-
cept over schools, and the second parameter is the variation among
schools around that mean. The same is true for the slope (b;). Compared
to the coefficients estimated in a fixed individual model, two estimates
are obtained for each intercept (a) and each slope (b), instead of only one
parameter. The fixed parts or means are the gammas (representing the
mean values summarized over all schools), and the random parts are the
deltas (representing the fluctuation or error of each school around the
mean values). Equation (12) shows equation (9), with g; and l_)j replaced
by their two parts, the random part or macro-error (), and the fixed part
ory:

Y, = vory X (e +8,Xy) (12)
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Except for the complicated error structure (between parentheses) with
macro- and micro-disturbances, the model in equation (12) looks like the
usual regression model. The macro-error associated with the intercept
while &, is the macro-error associated with the slope as well as with the
values for X. The macro-level errors are unrelated to the micro-level
errars, g;. The variance of the intercept is @, and the variance of the
slope is w,;. The variance of the e;’s is o

The random parts of each coefficient are of special interest since this vari-
ation can be used to model macro-level effects. The fixed parts of slope
and intercept (y, and v,) are of interest for the estimation of the micro
effects (such as the effects of students prealcohol on postalcohol use),
while the random parts are of interest for the estimation of macro effects
(as NORM and alcohol mean level of a school). The macro-level errors
(8 and 8,y are the deviations of schools from intercept and slope esti-
mates, respectively. In analogy to ANOVA, the variance of the student
error terms (02) is the within variance, while the between variance is split
up in more than one source of macro-level disturbances (wy, W, and
w,;). The difference between RC models and ANOVA is that more than
one between variance is allowed to exist in an RC model. The present
example shows a between-school variance of the intercept, a between-
school variance of the slope, and a covariance between slope variance and
intercept variance. The difference in definition of the a’s and b’s in fixed
models compared to random models is that the first are conceived as
representing the same treatments, whereas the a’s and b’s in the random
case are conceived as random samples of a population of parameters,
distributed as (v, @y, for the intercept and as (v,,, ©,,) for the slope.
Each variance (wg, or wy;) is a variance in its own right and is a
component of the variance of Y.

A technical summary of the RC model '

In the usual notation for RC models, the random coefficients g and Qj are
defined as:

a; = Y+ 0y (10)

164



and
by =y, (11)

where 3, has variance wy, 0, has variance w,,, and 8y and 6,; have
covariance wg,. This extension of the variance component models shows
that the total variance, usually divided in a single within and a single
between part, now again is divided in a single within part. However, at
the between-group level, there are three components, one for each
coefficient (the variances of the macro-level errors 6, and 6, and a
covariance between the two variances of intercept and slope).

In more general notation,
Y= 2X; v+ 2X; 5, (13)

where vy is defined as all fixed components of the random coefficients

in the model, including intercept, while 6, is defined as all random
components of the random coefficients in the model, including the
intercept. In summary: The first summation defines the fixed part of the
model, and the second summation defines the random part.

This model is based on the assumptions of random school-level slopes,
independent from each other but correlated with the random school-level
intercepts. Error terms are correlated within contexts, because it is
assumed that students in the same school share (unmeasured) character-
istics based on their common environment. Because the model allows a
variation among schools, it takes the intraclass correlation inio accouni.

Intraclass correlation is defined in the literature (e.g., Cochran 1977,
Searle et al. 1992) as the ratio of the between-class variance to the total
variance. If the between-class variance (here, for instance, w;, or @y, or
both) is equal to O, the intraclass correlation is equal to 0. In fixed
effects models, the omitted variables are summarized in the individual
error term (e;) only, while in the random models the part that relates to
omitted variables based on shared experiences of observations within the
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same class is taken out and considered a berween-class variation either
in intercepts or in slopes.

Random slope and intercept co-vary only if they belong to the same
school. Dismrbances are uncorrelated between levels of the hierarchy.
Disturbances of g; have the usual structure (1ID) and are independent of
the macro-errors. The metric of the dependent variable is at least
ordinal, although some software for multilevel analysis such as VARCL
(Longford 1991) and ML3 (Rasbash et al. 1989) allows for dichotomous
dependent variables. The dependent variable is defined at the micro-
level of the hierarchy. Observations within the same school have equal
coefficients. The choice within RC models is to model all coefficients as
random or some as fixed and some as random. In the present example,
the choice is between a random intercept model only (and only one
macro-error term, O) or a model with random intercept and a random
slope (with both macro-error terms: éo,‘”‘ ¥} 7K A model has been
chosen that allows all coefficients to be random. What to model as a
fixed coefficient and what to model as a random coefficient ultimately
should be decided Dy a replication of the study.

Estimation of means and variances in the RC model asks for more
complicated computational methods than is the case in fixed effects
models. In the RC model, the total variance is divided in the usual indi-
vidual error variance (the micro-error variance of eij) but also in macro-
level variances. Computational methods for the joint estimation of ran-
dom and fixed parameters by means of the empirical Bayesian esti-
mation methods can be fouad in the literature as well as in the manuals
that accompany the four software packages now available: GENMOD
(Mason et al. 1983), HLM (Bryk et al. 1988), ML3 (Rasbash et al. 1989),
and VARCL (Loongford 1991). For the next analysis, VARCL software
will be used (Longford 1991).

Applications of the RC Model

The variables used in the following RC models are a combination of
micro- and macro-level variables. At the student level, the variables are
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prealcohol use and postalcohol use. At the school level, the variables are
NORM and mean alcohol level of the school. In the notation of equation
(12) for random models, one single subscript was used for the gamma
parameters, such as y, and ¥y, (subscript O for first parameter or intercept,
subscript 1 for the first slope coefficient). To enable indication of a
parameter estimate for a macro-level variable, a second subscript is intro-
duced. For instance, v, is the parameter estimate for the first macro-level
variable, and vy, is the parameter estimate for the second macro-level
variable, and so on. Cross-level interactions of macro-level variables and
student-level variables are treated equally. 7y, is used for the effect of the
first macro-level variable (NORM, for instance) on the first micro-level
variable (prealcohol use). The first 1 in the subscript is the first micro-
level variable, and the second 1 in the subscript is the first macro-level
variable. The effect of a second macro-variable in the mode! (mean
alcohol level of schools, for instance) on the first micro-level variable
(prealcohol use) would be v,,, and so on.

Analysis 1

In the first model, it is assumed that slopes and intercepts differ over
schools (see equations [10] and [11]). The research question (see equa-
tion [14]) is: "Are slopes significantly different over schools, and is that
difference explainable by NORM, the drug prevention program?” If
NORM has a negative effect on intercepts, it could be concluded that
NORM has an overall lowering effect on student postalcohol use. In all
RC models reported in this chapter, both coefficients, the intercept, and
the slope of the student or micro-model are defined as random. Although
both coefficients are allowed to fluctuate among schiools, in this first anal-
ysis an attempt is made only to explain the variation in the intercepts (not
the variation in the slope) by introducing the macro-level variable NORM
in equation {14) and figure 1:

Y= Yot VoKt Yo Norm+(3,+8, X, +e) (14)

= =y

In equation (14), v, is the effect of NORM on the in‘ercept (see the
arrow in figure 1 that passes through the intercept, and equation [15] in
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the next technical [italicized] section). This effect of NORM on postal-
cohol use is the main effect. The complicated error term between paren-
theses reflects the fact that, next to the individual error, & two macro
errors are present in this model, &; for the intercept and §,.X;; for the
slope. Note that the error related to the slope is associated with values for
X and, as a result, has different values for different levels of the predictor.

Figure 1 is based on equation (14).

Figure 1 (and all following figures) is organized as follows: the squares
represent macro-level variables (here, NORM and the intercept), and the
circles represent micro-level variables (here, prealcohol and postalcohol).
If an arrow leaving a macro-level variable passes through a square repre-
senting the intercept, it shows a direct effect as a function of the intercept
(g’s in equation [15]). The parameter estimates for equation (14) are on
the following page (with standard scores between parenthesis).

Yﬁ = -0.01+0.52X;-0.04dNORM

(z=16.18) (z=224)

Again, prealcohol use is significantly related to postalcohol use
(z = 16.18), and the drug prevention program NORM has a signif-

Intercepl J

\

Pre Al

FIGURE 1. The effect of the drug prevention program NORM
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icant and negative effect on postalcohol use, showing that NORM has

an overall lowering effect on alcohol use of students. The analysis results
for the macro-level variances (the variances of the macro-level errors,

_Qq. and QU , in equations [15] and [16]) show significant differences in
slopes and intercepts across schools, which may be explainable by macro-
level variables. For more explicit details concerning values of macro-
level variances and their respective z-tests, refer to summary table 6 at the
end of this section.

A technical summary of the RC maodel in equation (14)

The model fitted in figure 1 is based on the micro-equation in equation
(9), repeated here:

Y;=a+bX;te; ()

Again, Y, is the individual student variable, postalcohol use of student i
within school j, while X; is the individual-level predictor variable,
prealcohol use of the same observation. For the individual-level

disturbance, g, is used. In this simple example, all coefficients are

&;
random.

The next step in the modeling process is to specify the properties of the
random slopes and intercepts. The estimates for slope and intercept are
divided into a fixed part and a random part (see equations [15] and
[16]). The random parts or variance components are school-level
disturbances, with expectation 0. The school-level disturbances are
assumed 1o be independent of the student-level disturbances, ¢;. So g,
and b; in equation (14) are defined in equations (15) and (16) as:

a.= Yyt ¥y NORM+0,, (15)
b= 5+ (16)

For the gammas (v, ¥y, and y,,) in equations (15) and (16), the sub-

script is defined for the first index as the number of the variable at the
micro-level, and the second index is the number of the variable at the
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macro-level. This means that v, is the effect of the macro-level ¢ on the
regression coefficients of micro-variable s. Zero is the intercept (i.e., the
variable with all values equal to +1, either at the micro-level or on the
macro-level). For instance, Yy, is the effect of the drug prevention pro-
gram NORM on the micro-level coefficient of the intercept (see figure 1).
If the decompositions of random intercept and slope in equations (15)
and (16) are substituted in micro-model (9), equation (14) is obtained.

Y= Yyt VigXi+ YuNORM+(8,+ 3 X +e,) (14)

Equation (14) shows that the variance in Y is decomposed in a fixed
part (Yot ¥io+ ¥g) and a random part (Oy+0,X,+e,). The random part
includes two school-level disturbances ( _éoj+ Xe) ,/.X,.j) and one individual-
level disturbance (gy), which is the usual individual error term. The ran-
dom part contains a disturbance, which is related to the variable X;;.

This disturbance shows that the covariance structure is more complicated
than researchers are used to seeing in fixed effects linear models. Model
(14) again resembles the usual linear regression model, only with a
complicated error term. The variances of the random components are
called the variance components of the model (hence, the name VARiance
Component anaLysis [VARCL] for the computer program applied to this
body of data).

Analysis 2

The next RC model replaces the macro-level variable NORM with the
macro-level variable alcohol mean ( f} ). The research question is equal
to the one used in the separate analysis of the fixed linear model: "Does
the mean alcohol level of schools have an effect on the alcohot use of the
students, and does a cross-level interaction exist?” Figure 2 is based on
equation (17), where the main effect of mean alcohol use is reflected in
the vy, for fl . The cross-level interaction effect of the same variable
with prealcohol use of the student is reflected in the v, for?(:. X;; (for
details, see the following technical summary, equations {18] and {19];
both equations contain the school mean).
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Yy = VXt Yo X +Yn X X8y +3, X +ey) 17)

The results of model (17) and figure 2 are:

Yij = 0.06-+0.78X,;~0.15 ¥,-0.09X,

(z=1720) {(z=0.59) (z=8.55)

The effect of prealcohol on postalcohol use is significant as usual

(z = 17.20). The effect of the mean alcohol level of schcols has no

direct effect, with a value of -0.15 and a z-score of 0.59, but its cross-
level interaction with student alcohol use is significant, with a value of
-0.09 and a z-value of 8.55. The conclusion based on this analysis is that
school mean has a negative effect on alcohol use but only as a cross-level
interaction. The arrow in figure 2 shows that this negative effect lowers
the strength of the relationship between prealcohol and postalcohol use of
the student. In other words, the higher the school mean for alcohol use,
the lower the magnitude of the coefficient for the prediction of post-
alcohol by prealcohol use of students. In the next model, the macro-
variable NORM is added to test if the effect of the mean alcohol level is
due partly to drug prevention program NORM or is a separate, unrelated
effect.

Alcohol Mean

e
G

FIGURE 2. The effect of mearn alcohol level of schools
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A technical summary of the RC model in equation (17)

If the same micro-level equation (9) is used as before,

¥, =a+bXyre; ()
where
@G= Vot Vor 3{_1'*'% (18)
and

b= yry, X;+0, (19)

Substituting equations (18) and (19) in equation (9) and rearranging
terms yields equation (17).

Analysis 3

The next model tests the hypothesis that both macro-variabies, NORM
and school mean (of the prealcohol consumption of students), have an
effect on the micro-relation of prealcohol and postalcohol (see figure 3).
It is assumed that the drug prevention program NORM lowers the use of
alcohol in generali, but the mean (pretest) alcohol level of schools is
assumed to have a weakening effect on the relationship of prealcohol to
postalcohol use in the sense that the higher the mean alcohol level of a
school, the less alcohol use at Time 1 predicts alcohol use at Time 2. The
RC model used (see equation [20]) again is based on the micro-model in
equation (9). In equations (21 and (22) and in figure 3, it is shown that
student prealcohol and postalcohol use is related to both school-level
variables. Figure 3 shows by way of arrows that the mean alcohol level
of schools interacts with prealcohol use of the student but is not related to
the intercept. The school mean in this model is related only to the slope
and not to the intercept (reflected in equations [21] and [22] in the
following technical summary). The final model is on the following page.
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NORM

Alcohol Mean \

intercept

Pre

FIGURE 3. The effect of NORM and mean alcohol level of schools

Y,

where v, is the main effect of NORM and v, is the cross-level

= Yot Y Xt o NORMy ), X; X+ (8 +6, X +e)  (20)

interaction effect of the mean alcohol level ( i.) and the student alcohol

use at Time 1, (Xij.).
The results based on model (20) and figure 3 are;

YU = 0.06+0.78X,~0.04NORM-0.09 X; X

(z=1737) (z=2.20) (z=8.35)

Model (20) shows the familiar sofutions, where pretest is significantly
related with posttest (z = 17.37), and NORM and the school mean of

prealcohol use are significant with, respectively, z = 2.20 and z = 8.35.

Both macro-variables have a surpressing (negative) effect on student
alcohol use.

A technical summary of the RC model in equation (20)

To understand in more detail how equation (20) was formulated, st:rt
again with the basic micro-level equation (9):

(9)



In the model are two macro-level variables, NORM and school mean
( 5{}). The first has an effect only on the intercept, as is formulated in
equation (21):

@;= Yo+ YuNORM+3;, (21)

while the second macro-variable has an effect only on the slope, as is
formulated in equation (22):

_b_j =Yt Ye X.j +é1j (22)

Substituting equations (21) and (22} in equation (9) and rearranging
terms yields equation (20) on the following page.

Y, = Yot V1oXyt Yo NORM+ ?’lz:f-i X4+ 0, Xtey) (20)

Note the notation for the gammas associated with the macro-variable.
For the effect of NORM, y,,, the first subscript (0) relates to the intercept,
the second subscript (1) indicates the first macro-variable, which is
NORM. In the same fashion, the cross-level interaction effect, y,, has
two subscripts; the 1 indicates the first micro-level variable (prealcohol
use) and the 2 indicates that Yj is the second macro-level variable.

In table 6, the results of the three RC models are summarized. All RC
models in this table show that the effect of the micro-level relation pre-
alcohol on postalcohol use (y,,) remains equally significant, with
z-values around 17.00. The effect of NORM (Y,,) in models (8) and
(10) is of equal strength, with close to equal z-tests (around 2.20). The
cross-level interaction effects in models (9) and (10) also are comparable,
with equally strong and equally significant values (both z-values are
around 8.55). The macro-error variances (w’s) are close in magnitude
over all three models.

The following conclusion is supported by all three analyses: The drug

prevention programi NORM lowers alcohol use, while the interaction
effect between student and school alcohol mean is significant. The last
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TABLE 6. A summary table of three RC models

+b X +e

Micro-model: Lj= ath X +e;

NORM MODEL

RC MODELS with CROSS-LEVEL interaction

Model 14 Model 17

8= Yo{aNORM+8 o =YtV K45,

Model 20

2= YortYo NORM+5,,

b= vytd; b= Yoty _)-EJ +8; =Yty —)?J +8y;
¥, =-0.01+0.52X; Y= ~0.06+0.78X - Yij = -0.06+0. 78X~
0.15 X;- 0.04NORM~
0.09(X; X;) 0.09(X; X;)
Model 14 Model 17 Model 20
parameter z-test parameter z-test parameter z-test
estimate estimate estimate
Yo -0.01 0.06 0.06
Yo 052 16.18 0.78 17.20 0.78 17.37
Yo -0.04 224 -0.15 0.59 -0.04 2.20
Yy a a -0.09 8.55 -0.09 8.53
Variances and Co-Variances
w,, 0.002 292 0.01 4.23 0.003 3.16
w, 001 4.05 0.01 4.33 0.01 4.14
w, 0.01 3.52 0.01 4.11 0.01 3.80

NOTE: a=absent



result indicates that, in high-mean schools, more students change for the
better, after correcting for NORM, than in low-mean schools. It is worth
investigating in further analyses whether this is the result of a ceiling
effect or a new fact. For instance, an interaction effect would exist
between NORM and mean alcohol level of a school, with the impli-
cation that prevention programs are more effective in schools with a
high mean alcohol consumption than in schools with a low mean

alcohol consumption.

A technical summary of the RC model in relation to the macro-error
components

Note that the error term stayed the same over all three random models
(14), (17), and (20) used in this chapter. The two cogfficients, the inter-
cept, and the slope are defined as random throughout the analyses.
Within the available software for RC models (see last section for a list of
available software), choices can be made about which first-level coeffi-
cient is fitted as random and which is fitted as fixed. The choice is any-
thing between the two extremes: all coefficients random, or only a ran-
dom intercept. For this analysis, with only two coefficients and one
individual-level regressor, the choice was berween defining the coeffi-
cient for the prealcohol slope as random or as fixed. The error term in
all models of table 6 is (S+0 Xytey). A model with a fixed instead of a
random slope would have a less complicated error term ( Oytey) because
the macro-error for the slope (9,X;) is not present in the model esti-
mation. The last error term is comparable to the definition of the error
Structure in variance component medels (e.g., Searle et al. 1992).

SUMMARY

As is shown in the literature, researchers have struggled for some time
with concepts such as hierarchically nested observations, intraclass
correlation, the unit of analysis, and random instead of fixed factors.
The problems for experimental researchers are summarized in Anderson
and Ager (1978), Crits-Christoph and Mintz (1991), and Murray and
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Hannan (1990). Traditional analysis models are limited in the way they
solve the technical problems of nested designs. They also are limited in
the questions they can address. RC models provide more reliable solu-
tions for nested designs with unbalanced data and take the intraclass
correlation into account. By estimating random instead of fixed effects,
these models acknowledge the fact that the design has random factors
instead of a fixed number of treatments. The treatments can be real
treatments but more often are defined as groups within treatments.

The random processes taking place within groups are modeled as
random effects.

The RC model is a useful extension of the traditional variance com-
ponent models as discussed in Searle and colleagues (1992) and Winer
(1971). For drug prevention researchers, the model offers the possibility
to make use of within-school differences in parameter estimates by turn-
ing it from a within-group error (or nuisance) into a meaningful source
of variation.

Questions do remain, however. For example: Are RC models more
powerful than traditional methods? This question never really is ad-
dressed, and should be. If RC models prove to be less powerful, why
would a researcher go through the trouble of learning another technique
if loss of power is the tradeoff of a statistically more "correct" model?
After all, researchers evaluating real-life experiments are more interested
in the promises and the usefulness of RC models than in the statistical
correctness of such models.

Aside from the unresolved issue of power, what do RC models offer
that others do not? The promise of the RC model is that it can help
build theories that predict the effect of drug prevention programs for
special groups of students, in the sense that some programs may work
well for some students but not for others. The attractiveness of the RC
model is that it estimates effects over all schooels together, it is parsimo-
nious, and it can test macro-effects in combination with micro-effects
and their cross-level interactions.
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As illustrated in this chapter, traditional models have their specific
problems fer drug prevention research, which can be solved by using
RC models. Problems are found in the aggregate model, which mea-
sures schools instead of students, while students are the object of interest
in drug prevention programs. ANCOVA problems are intraclass corre-
lation, pooled within-slope estimate, and no opportunity to introduce
macro-level characteristics to explain school differences. The separate
models for separate schools or slopes as outcomes approach (Burstein et
al. 1978) is cumbersome, too general, and not parsimonious.

The decision to use RC models and how to decide if a set of effects is
fixed or random depends on several things. These include the context
of the data, the manner in which the data are collected, the environment
from which they come and, most :mportantly, the inferences that are
made based on the analysis to groups, to students, or to types of students.
Last but not least, theories are needed that state meaningful relationships
between individual characteristics and contexts. Theories are needed
that can help find aptitude/treatment interactions as advocated by
Cronbach (1957, p. 679):

The job of applied psychology is to improve decisions
about people. The greatest social benefit will come
from applied psychology if we can find for each indi-
vidual the treatment to which he can most easily adapt.
This calls for the joint application of experimental and
correlational methods.

The problems mentioned above are familiar problems to new techniques
being developed, but it is an active area of research in the statistical and
educational communities, and there are hopeful signs that some, perhaps
many, of these problems will be solved in the next few years.
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ANALYSIS PACKAGES FOR THE ANALYSIS OF MULTILEVEL
DATA USING HIERARCHICAL LINEAR MODELS

Multilevel modeling software now has become readily available, al-
though under different names. One package clearly used the already
existing random effects model from the experimental research tradition
(Dempster et al. 1981) by naming the software package VARiance Com-
ponent anaLysis (VARCL). Others (Bryk et al. 1988) had a class of
substantive problems out of the observational research tradition in mind
and named their package Hierarchical Linear Models (HLM). Rasbash
and colleagues (1989) highlighted the way the data are coliected at three
levels of the hierarchy by naming their package ML3, where the name
"Multilevel" is combined with the number three, the number of hierar-
chies the package is able to handle. ML3 and VARCL ailow for three
levels of nesting, while GENMOD and HLM ailow for two levels of
nesting. These programs are described in more detail below:

GENMOD was written by Hermalin and Anderson at the Population
Studies Center, University of Michigan, from instructions provided by
Mason and colieagues (1983).

HLM, Version 2.20, was written by Bryk and colleagues. They also
have written a manual for its use (Bryk et al. 1988).

ML3, Version 2.2, is software for two- or three-level analysis written
by Rasbash. The manual is by Rasbash and colleagues (1989). The
program is based on theoretical work by Goldstein. Prosser and col-
leagues (1991) have written a booklet on data analysis with ML3.

VARCL was initiated by Aitkin and Longford (1986) and was written

and is maintained by Longford. Longford (1991) has written a manual,
to accompany the program.
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NOTES

1. Technical summary sections may be skipped without loss of
continuity,
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Seven Ways To increase Power
Without Increasing N

Williamm B. Hansen and Linda M. Collins

ABSTRACT

Many readers of this monograph may wonder why a chapter on statistical
power was included. After all, by now the issue of statistical power is in
many respects mundane. Everyone knows that statistical power is a
central research consideration, and certainly most National Institute on
Drug Abuse grantees or prospective grantees understand the importance
of including a power analysis in research proposals.

However, there is ample evidence that, in practice, prevention researchers
are not paying sufficient attention to statistical power. If they were, the
findings observed by Hansen (1992) in a recent review of the prevention
literature would not have emerged. Hansen (1992) examined statistical
power based on 46 cohorts followed longitudinally, using nonparametric
assumptions given the subjects’ age at posttest and the numbers of
subjects. Results of this analysis indicated that, in order for a study to
attain 80-percent power for detecting differences between treatment and
control groups, the difference between groups at posttest would need to
be at least 8 percent (in the best studies) and as much as 16 percent (in the
weakest studies). In order for a study to attain 80-percent power for
detecting group differences in pre-post change, 22 of the 46 cohorts
would have needed relative pre-post reductions of greater than 100
percent. Thirty-three of the 46 cohorts had less than 50-percent power to
detect a 5O-percent relative reduction in substance use. These results are
consistent with other review findings (e.g., Lipsey 1990) that have shown
a similar lack of power in a broad range of research topics. Thus, it
seems that, although researchers are aware of the importance of statistical
power (particularly of the necessity for calculating it when propesing
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research), they somehow are failing to end up with adequate power in
their completed studies.

This chapter argues that the failure of many prevention studies to main-
tain adequate statistical power is due to an overemphasis on sample size
(N) as the only, or even the best, way to increase statistical power. It is
easy to see how this overemphasis has come about. Sample size is easy
to manipulate, has the advantage of being related to power in a straight-
forward way, and usually is under the direct control of the researcher,
except for limitations imposed by finances or subject availability.
Another option for increasing power is to increase the alpha used for
hypothesis-testing but, as very few researchers seriously consider
significance levels much larger than the traditional .05, this strategy
seldom is used.

Of course, sample size is important, and the authors of this chapter are
not recommending that researchers cease choosing sample sizes carefully.
Rather, they argue that researchers should not confine themselves to
increasing N to enhance power. It is important to take additional mea-
sures to maintain and improve power over and above making sure the
initial sample size is sufficient. The authors recommend two general
strategies. One strategy involves attempting to maintain the effective ini-
tial sample size so that power is not lost needlessly. The other strategy is
to take measures to maximize the third factor that determines statistical
power: effect size.

MAINTAINING EFFECTIVE SAMPLE SIZE

Preventing Attrition

One of the best ways to increase power without increasing N is to avoid
decreasing N through attrition. Of course, attrition has other conse-
quences besides loss of power, such as internal and external validity
problems. However, independent of these problems, a loss of subjects
through attrition is accompanied by a loss of statistical power.
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Many articles about attrition (Biglan et al. 1987; Ellickson et al. 1988;
Hansen et al. 1990; Pirie et al. 1989) have helped to alert the research
community to the potential causes of attrition so that meastires can be
taken to prevent it. Aitrition has many and varied causes. Sometimes the
causes are as simple as subjects moving out of the school district where
the study is taking place. Usually, though, the causes are more complex
and not totally unrelated to the study. In some studies where the treat-
ment is aversive in some way, treatment group subjects drop out at a
higher rate; in other studies where the treatment is a plum and nothing is
done to compensate the control group, the opposite occurs. In substance
use prevention siudies, high-risk subjects are more likely to drop out
(Hansen et al. 1985). Attrition can even reflect a political problem as, for
example, when an institution like a school or a school district drops out of
a study (Hansen et al. 1990). Researchers should become familiar with
the studies that have examined retention of subjects (Ellickson et al.
1988) and political units (Goodman et al. 1991; O’Hara et al. 1991) to
gain an understanding of how to manage attrition in practical terms.
Every prevention effort should include funds in its budget for tracking
and collecting data from subjects who have dropped out of the study.

Missing Data Analysis

Missing data analysis (Graham et al., this volume) is an exciting new data
analysis strategy that recovers some (but not all) of the loss of power
incurred through attrition. This is not a way of replacing missing data;
rather, it is a way of making the most out of the remaining data. This
methodology provides a way for the user to model the mechanisms
behind attrition, allowing for estimation of what the resulis would have
been if the full sample had been maintained. The chapter by Graham and
colleagues (this volume) presents an in-depth look at this important topic.
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MAXIMIZING EFFECT SIZE

Take a closer look at effect size:

Bi~Hp

effect size =

M

s}

The numerator of equation (1) is the difference between the population
mean for the treatment group (u,) and the population mean for the control
group (Mg). The denominator is the population variance (assuming homo-
geneity of variance, that is, the two populations have identical variances).
The strategies suggested here are intended to increase effect size either by
increasing the size of the numerator of equation (1), that is, increasing the
difference between the mean of the treatment group and the mean of the
control group, or decreasing the denominator of equation (1), that is,
decreasing the population variance.

STRATEGIES TO INCREASE THE MAGNITUDE CF GROUP
DIFFERENCES

Targeting (and Affecting) Appropriate Mediators

All prevention programs seek to change behavior by changing some
mediating process. The choice of which mediating process to intervene
on is the key to a powerful intervention. Only if the researchers
developing a program understand the basic underlying processes that
accournt for substance use behavior can they hope to identify the most
appropriate mediators. Such an understanding is gained by examining
very carefully and thoroughly existing theory and empirical evidence
about the modifiable predictors and determinants of substance use
behavior.

For example, in a series of studies conducted by Hansen and colleagues
(1988, 1991), two mediating processes were targeted: the development
of normative beliefs intolerant of alcohol and drug use and the
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development of skills for resisting overt offers to use substances. Two
programs were compared, each designed to address one mediator specif-
ically and, to the extent possible, to not affect the mediator associated
with the other program. The results consistently have shown success in
achieving differential impacts on behavior.

Some program developers prefer aless systematic emphasis on which a
mediator is targeted for change, basing program content and strategy on
strongly held personal beliefs rather than on empirical evidence about
which components offer potential for change in particular mediators.
Such programs developed solely from instinct or good intentions will,
over the long run, fail to have as much power as programs developed
more scientifically.

Identifying the appropriate mediators is a necessary but not sufficient
condition for increasing statistical power—the intervention must be strong
enough to have an effect, ideally a large one, on the mediators. It is
difficult to give advice on how to achieve this goal. It seems that, even at
their best, researchers have little more than an intuitive understanding of
what it takes programmatically to change mediating processes. Although
the literature in this area can be of some help, the best methods for
reachirig school-age children change constantly. The impact of
interventions probably could be increased, thereby increasing statistical
power, by making better use of input from the people who know best
how to teach youth, namely teachers, counselors, and youth workers.

Maintaining Program Integrity

Program integrity, the degree to which the program is adhered to in
delivery, has predictable effects on outcome (Botvin et al. 1990; Hansen
et al. 1991; Pentz et al. 1990); when program integrity is compromised,
the treatment is less effective and differences between treatment and
control shrink. Researchers have yet to develop a complete under-
standing of program integrity. For example, integrity to date has been
defined by researcher standards rather than target andience-centered
standards. Researchers may need to account for issues that they have not
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considered when defining integrity, such as the need to tailor a program
for specific audiences.

For some programs, there is a tradeoff between N and program integrity.
In fact, Tobler (1993) found in a meta-analysis that effect size was re-
duced in prevention studies involving more than 400 subjects per
condition. If the sample size is so large that a large staff must be hired to
deliver the program and the researcher, therefore, cannot be highly
selective about this staff and cannot supervise them closely, it is unlikely
that the program will be delivered uniformly well. It is important for the
researcher to be aware of this tradeoff, because there may be times when
power is maximized in the long run by choosing a smaller N and a more
manageable intervention.

Appropriate Timing of Longitudinal Followup

The magnitude of the difference between treatment and control groups
partly is a function of the length of time between program implemen-
tation and followup. Hansen (1992) concluded that many prevention
studies are conducted for too short a period of time. Prevention
researchers sometimes argue that long-term impacts cannot be expected
from prevention programs. The authors disagree for two reasons. First,
the goal of prevention is to maintain existing nonbehavior. There is

~ reason to be much more sanguine about the possibility of prevention to
have long-term effects, especially if the forces that foster experimentation
with alcohol and drugs have really been changed. Second, the outcome
of interest in prevention studies is based, not only on the treatment group
maintaining its level of use or nonuse, but on the control group changing
its behavior. Since this change takes time, it makes sense to measure
behavicral outcomes repeatedly over a long period of time in order to
increase the potential for observing differences between treatment and
control groups when they reach their peak. For more about timing of
observations and its effects on results, see Cohen (1991) and Collins and
Graham (1991).
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STRATEGIES FOR REDUCING VARIANCE

Sampling Control

There often is some pressure on prevention researchers to make sure the
studies they are planning involve heterogeneous samples. There are two
reasons for this. One reason is the need to maximize external validity.
The more representative the sample is of the population at large, the
better the external validity of the study is. The second reason is political;
for example, it is important to make sure that women and minority groups
are not excluded from prevention studies.

These two reasons for using heterogeneous samples are very good ones.
However, researchers should balance these considerations with the effects
of heterogeneity on statistical power. When heterogeneity is enhanced
and homogeneity is diminished, power is reduced. The reason for this is
straightforward: All else being equal, a heterogeneous population has
more variance than a homogeneous population. Consider two popu-
lations with identical variances, o°, but with different means. If these
two populations are combined into one, the new variance, of', will be:

2

Ly K

o= 02+( A2 B] (2)
2

Thus, the larger the diffeience in means between the two populations is,
the larger the variance of the combined popnlation will be. This larger
variance results directly in a decreased effect size (see equation [1]) and,
therefore, decreased power.

The problem is compounded if analyses then are conducted separately on
subgroups in the data because these analyses necessarily will be based on
a smaller N and may have dramatically reduced power. Where appro-
priate, covariates can be used to model subgroup differences. This
maintains degrees of freedom and, therefore, can reduce the threat that
sampling from heterogeneous groups brings.
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Using Reliable and Appropriate Measures

The disciplines of psychology and epidemiology have both greatly
influenced the field of substance use prevention research. These fields
have different, and at times opposing, methodological traditions, par-
ticularly with respect to measuremernit. Epidemiology has emphasized
relatively straightforward measurement and the use of manifest, and often
dichotomous, variables. In contrast, psychology has a long tradition of
measurement theory, emphasizing scale development, multiple indicator
models, latent variables, and continruous variables. Classical test theory,
including reliability theory, came from psychology.

An immediate question that is raised by contrasting these two approaches
is, "Which is more appropriate, using continuous measures of substance
use or using dichotomous measures?" Of course, the answer depends
partly upon the research question that is being posed. The ramifications
of this question for statisticat power are complex. Cohen (1983) showed
that dichotomizing a normally distributed continuous variable essentially
throws away information and leads to a considerable loss of power. The
situation is less clear with the skewed distributions that are more the rule
in substance use prevention research. In general, though, unless the
distributions are severely nonnormal, a loss of power can be expected if
continuous variables are dichotomized.

It also is worth noting the relationship between measurement reliability
and statistical power. This relationship is more complex than it may
appear at first glance. Recall that according to classical test theory, the
total variance in a measure is made up of true score variance and error
variance. Measurement reliability is defined as the proportion of total
variance that is made up of true score variance. Zimmerman and
Williarus (1986) showed that the direction of the relationship between
reliability and power depends upon which of the three components—total
variance, true score variance, or error variance—is held constant while the
others are varied. If a constant true score variance is assumed, it follows
that the greater the reliability (that is, the less error variance there is in a
measure), the greater the statistical power will be. This is true because,
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because, under these conditions, when the error variance decreases, the
total variance decreases, resulting in a decrease to the denominator in
equation (1). However, if a constant error variance is assumed, when
reliability is increased, the true score variance is increased and, therefore,
the total score variance is increased, leading to a decrease in power.

Zimmerman and Williams (1986) pointed ont that the answer to this
seeming paradox lies in how reliability is increased in practice. If a
measure is improved by, say, discarding a few items that do not belong in
the instrument, then generally this improves reliability by decreasing
error variance. This strategy can be expected to improve statistical
power. On the other hand, if reliability is improved by changing the
sample so that it is more heterogeneous and, therefore, there is more true
score variance, this is likely to result in an overall increase in variance
and, hence, a loss of power.

CONCLUSIONS

This chapter argues that, while obtaining a sufficiently large sample is
important, it is not all there is to statistical power. Other strategies are
important if statistical power is to be maintained over the course of a
substance use prevention study. The authors made seven suggestions for
ways to improve power without increasing N in prevention research.
Except for missing data analysis, none of these suggestions are new.
Most of them are based on common sense, and many of them will be
recognized as recommendations often made to colleagues and students. It
is ironic that scientists, researchers, and social advocates have largely
failed to use these principles systematically to improve the power of
research. They persist in thinking of statistical power only in terms of
sample size but must adopt a wider view, as suggested here.

The suggestions made here do not translate directly into formulas that can
be inserted "as is” into proposals or research designs. Instead, they
represent principles that can be used to guide decision-making in practice.
In the end, it is not the proposal or the research report that is the essence
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of science, but increased understanding of the phenomenon of substance
abuse and the procedures employed to prevent it. If researchers are ever
to develop a thorough understanding of substance abuse and highly
effective methods for preventing it, they must be aware of how research
decisions affect statistical power.
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Designing and Analyzing Studies
of Onset, Cessation, and Relapse:
Using Survival Analysis in Drug
Abuse Prevention Research

Judith D. Singer and John B. Willett'

ABSTRACT

Many questions arising in drug abuse prevention and interveniion studies
focus on whether and, if so, when events occur. When do adolescents
start using drugs? Does participation in a drug prevention program at
school decrease the risk that high school students will initiate drug use?
Does failure to participate in a relapse prevention program at a commu-
nity health center increase the risk that newly abstinent ex-abusers will
start using drugs again? Research questicns about event occurrence
present unique design and analytic difficulties. The fundamental problem
is how to handle censored observations, observations of those people who
do not experience the target event during data collection. The methods of
survival analysis overcome these difficulties and allow prevention
researchers to describe patterns of occurrence, compare these patterns
among groups, and build statistical models of the risk of occurrence over
time.

In this chapter, the authors present a nonmathematical introduction to sur-
vival analysis for drug abuse prevention researchers. After developing
the basic concepts, they focus on two topics—study design and data anal-
ysis—and identify for each the key issues researchers face and provide
guidelines for making informed decisions about them. In the process, the
authors review how prevention researchers have used the methods to date
and point towards new directions for the application of these methods.
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INTRCDUCTION

Many questions arising in drug abuse prevention and intervention studies
focus on whether and, if so, when events occur. Researchers investi-
gating pathways into alcohol abuse, for example, have examined the age
at first use (Adler and Kandel 1983), age at first abuse (Yohnston et al.
1989), how long people continue to use alcohol over extended periods of
time (Hawkins et al. 1991), how long successfully treated individuals
remain abstinent before relapse (Hunt and General 1973), and whether
participation in a treatment program affects the risk of relapse (Cooney et
al. 1991). Similar questions about event occurrence arise in studies of the
onset, cessation, and relapse of other addictions (e.g., illicit drugs,
smoking, gambling, and criminal activities), as well as studies of the
efficacy of interventions in the prevention of drug use and addiction and
the effects of drug use on other event outcomes, such as unemployment,
premarital pregnancy, suicide, and withdrawal from school.

Research guestions about event occurrence present unique design and
analysis difficulties. The core problem is that, no matter when data
collection begins and no matter how long any subsequent followup lasts,
some people may not experience the target event before data collection
ends—some current nonusers may not initiate drug use, some current
users may not quit, and some former users may not relapse. Should the
researcher assume that none of these people will ever experience the
event? All the researcher knows is that, by the end of data collection,
usually an arbitrary point in time, the event has not yet occurred.
Statisticians say that such observations are censored.

The prospect of censoring complicates research design; the presence

of censoring complicates statistical analysis. Many researchers have
responded to these complications with ad hoc strategies, none entirely
satisfactory: categorizing the outcome and placing the censored obser-
vations in a single group (Condiotte and Lichtenstein 1981), restricting
attention to noncensored cases (Lelliott et al. 1989), deleting censored
cases (Litman et al. 1979), or using the censored outcome as a categorical
predictor of another outcome that varies over time (Coelho 1984). Others
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sidestep the "when" question entirely and ask only the "whether"
question: "Does the event occur by a particular point in time (Grey et al.
1986) or by each of several successive points in time?" (Glasgow et al.
1988).

Although researchers in the drug abuse field were among the first to
recognize the severe limitations of these strategies—most notably the
sensitivity to the length of data collection (Hunt et al. 1971; Nathan

and Lansky 1978; Sutton 1979)-—until recently, relatively few analytic
altzrnatives were available. However, new developments in statistical
theory, accompanied by new developments in statistical computing, have
changed how researchers can study time. The new methods—known as
survival analysis, event history analysis, or hazard-modeling—were
developed by biostatisticians modeling human lifetimes (Cox 1972;
Kaplan and Meier 1958) and have been extended by economists and
sociologists studying social transitions (Heckman and Singer 1985; Lan-
caster 1990; Tuma and Hannan 1984), Differences in labels aside, these
techniques use similar mathematical roots to reach similar goals: to help
researchers simultaneously explore whether events occur (do people start
using illicit drugs, stop smoking, begin drinking again?) and, if so, when.
Using specific techniques within the broad class of methods, researchers
can describe patterns of occurrence, compare these patterns among
groups, and build statistical models of the risk of occurrence over time.

Owing to its genesis in modeling human lifetimes, where the target event
is death, survival analysis is shrouded in dark, foreboding terms. How-
ever, beyond the terminology lies a powerful methodology that appropri-
ately uses data from all observations, noncensored and censored cases
alike. Data collection can be prospective or retrospective, experimental
or observational. Time can be measured continuously or discretely. The
only requirements are: (1) that, at every timepoint of interest, each indi-
vidual be classified into one of two or more mutually exclusive and
exhaustive states, and (2) that the researchers know, for at least some of
the individuais, when the transition from one state to the next occurs.
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In this chapter, a nonmathematical introduction to survival analysis for
drug abuse prevention researchers is presented; readers seeking a more
technical presentation should consult one of the references cited at the
end of the chapter (Singer and Willett 1993; Willett and Singer 1993).
After developing the basic concepts, the authors focus on two topics—
study design and data analysis—and, for each, identify the key issues
researchers face and provide guidelines for making informed decisions
about them. In the process, the authors review how prevention research-
ers have used the methods to date and point towards new directions for
their application. The presentation is based on the anthors’ experience
with the methods (Singer and Willett 1991, 1993; Willett and Singer
1991, 1993) and examples drawn from the recent literature.

THE CONCEPTS UNDERLYING SURVIVAL ANALYSIS

The concepts underlying survival analysis differ markedly from the
familiar means, standard deviations, and correlations of traditional
parametric statistics. These concepts are developed here using data
reported by Stevens and Hollis (1989), who evaluated the efficacy of
supplementing a smoking cessation program with followup support
sessions designed to help ex-smokers cope with abstinence. The re-
searchers randomly assigned 587 adults who successfully compieted a
4-day program to one of three conditions: (1) 3 weeks of coping skills
training; (2) 3 weeks of support sessions without skills training; or (3) no
supplemental sessions. For 1 year after quitting, participants returned a
monthly postcard noting their smoking status. Defining abstinence as
smoking no more than five cigarettes per month, Stevens and Hollis
asked whether the followup support helped people remain abstinent
and, if it did not, when people were most likely to relapse.
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Survivor Function

Survival analysis begins with the survivor function. When studying
abstinence after smoking cessation, as in this example, the population
survivor function indicates the probability that a randomly selected ex-
smoker will remain abstinent over time. Given a representative sample
from a target population, the sample survivor function estimates the
population probability that a randomly selected person will remain absti-
nent longer than each time assessed—in this example, 1 month, 2 months,
and so on—until everyone relapses or data collection ends (whichever
comes first).

Panel A of figure 1 presents the sample survivor function for the 198
people in Stevens’ and Hollis’ control group.? At the beginning of the
study (i.e., the beginning of "time"), the estimated survival probability
was 1.0, As time passed and people relapsed, the sample survivor func-
tion dropped toward 0. In this study, 82 percent successfully abstained
from smoking (i.e., "survived") more than 1 month following cessation,
66 percent abstained more than 2 months, 60 percent abstained more than
3 months, and so forth. By 12 months, when data collection ended, 38
percent remained abstinent. These individuals had censored relapse
times, either because they never relapsed or because, if they did, it was
after data collection ended. Because of censoring, sample survivor
functions rarely reached 0.

The sample survivor function helps researchers answer the descriptive
question, "On average, how many months pass before the abstinent
smoker relapses?” When the sample survivor function reaches 0.5, half
of the ex-smokers have relapsed, half have not. The estimated median
lifetime identifies this midpoint, which indicates how much time passes
before half of the sample experiences the target event. As shown in
figure 1, among ex-smokers without followup support, the answer is 4
months. The median lifetime statistic incorporates data from both the 123
uncensored individuals who relapsed within 12 months of data collection
and the 75 censored individuals who did not.

200



; Survival probability

05

0 T 1 T T { T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12
{a) Months
Hazard

0.2 -

0.1

0 T I t 1 i T T T T T T 1
6 1 2 3 4 5 6 7 & 9 10 n 12
(b) Months

FIGURE 1. Sample survivor (panel A) and hazard (panel B)
functions for 198 ex-smokers based on data reported by
Stevens and Hollis (1989)
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All survivor functions have a shape similar to that displayed in figure
1—a negatively accelerating extinction curve, a monotonically non-
increasing function of time. Well before the advent of modern survival
methods, Hunt and Bespalec (1974a, 1974b), Hunt and General (1973),
Hunt and Matarazzo (1970), and Hunt and colleagues (1971) noted this
generalization. After finding similarly shaped survivor functions in
nearly 100 studies of smoking, heroin, and alcohol cessation, Hunt and
colleagues (1971) presaged the utility of another plot (to which the
authors now turn) when they wrote that they "hoped to use the differ-
ences in slope between individual curves as a differential criterion to
evaluate various treatment techniques"” (p. 455).

Hazard Function

If a large proportion of successful abstainers suddenly relapses in a given
month, the survivor function drops sharply, as happens in figure 1, during
each of the first few months after smoking cessation. When this happens,
ex-smokers are at greater risk of relapse. Examining the changing slope
of the survivor function is one way to identify such "risky" time periods.
A more sensitive way to assess the risk of event occurrence is to examine
the hazard function, a mathematical function related to the survivor func-
tion that registers these changing slopes of the (negative log) survivor
function.

Mathematical definitions of hazard differ depending upon whether time
is measured discretely or continuously. If time is measured discretely,
hazard is defined as the conditional probability that an ex-smoker will
relapse in a particular time interval, given that the person has not relapsed
prior to the interval. As the interval length decreases, the probability that
an event will occur during any given interval decreases as well. In the
limit, when time is measured continuously, the definition of hazard must
be modified because the probability that an event occurs at any "infinitely
thin" instant of time will approach 0 (by definition). So, continucus-time
hazard is defined as the instantaneous rate of relapse, given uninterrupted
abstinence until that time. While hazard always is nonnegative, when
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time is measured discretely, it can never exceed 1; when time is measured
continuously, hazard can assume any value greater than or equal to 0.

Like the survivor function, the hazard function can be plotted versus time,
yielding a profile of the risk of relapsing each month, given uninterrupted
abstinence until that month. The magnitude of each month’s hazard
indicates the risk of relapsing in that month—the higher the hazard, the
greater the risk. Each month’s hazard is calculated using data on only
those individuals still eligible to experience the event during the month
(i.e., the risk set); individuals who already have relapsed are not included.

Panel B of figure 1 presents the sample hazard function corresponding to -«
the sample survivor function in panel A. The risk of relapse is high in
each of the first few months of the study and then declines over time.
Ex-smokers are at greatest risk of relapse immediately after they quit;
those who successfully abstain for several months are likely to abstain for
at least a year.

Use of the hazard function in prevention research was proposed well
before the use of modern survival methods but, because the associated
statistical models were not available yet, much information in the func-
tion remained unexploited. Litman and colleagues (1979), McFall
(1978), and Sutton (1979), all suggested that researchers examine relapse
on a period-by-period basis—as the hazard function does—and identify
who relapses, and when. These authors appropriately dismissed the
survivor function as too crude a summary because of its consistent shape
regardless of the distribution of risk.

The strength of the hazard function is that it effectively portrays the dis-
tribution of risk across time. To illustrate its utility, consider the three
hazard functions in figure 2, which depict the risk of first use of alcohol,
cigarettes, and marijuana by grade in school. These plots were con-
structed using data presented by Johnston (1991) ox. the age at first

use of these three drugs among members of a high school graduating
class of 1988.
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FIGURE 2. Three hazard functions depicting the grade-
by-grade risk of first use of selected drugs:
(panel A) cigarettes; (panel B) alcohol; and
(panel C) marijuana. This figure is based on
data reported in Johnston (1991 ) from a high
school graduating class of 1966.
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Because peaks in the hazard furction indicate periods of elevated risk,
they pinpoint when the target event (here, initiation of drug use) is most
likely to occur. Begin by examining the hazard function for cigarettes
(panel A). Its high elevation in the sixth and seventh/eighth grades indi-
cates that the risk of first trying cigarettes is greatest in these middle
school years. After this initial risky period, when many preadolescents
experiment with tobacco, the risk of trying cigarettes, among those who
have not already done so, declines steadily over time. Indeed, by 12th
grade, the risk of initial use of cigarettes is less than 0.1.

The risk of initial use of alcohol, in contrast, increases steadily over time
(panel B). Relaiively few students take their first drink in sixth grade, for
example, as indicated by the low level of hazard (< 0.10) in this period.
Over time, however, the risk of trying alcohol increases steadily so that,
by 11th grade (the period of greatest experimentation), hazard nears .5.

Now consider the hazard function for initial use of marijuana (panel C),
which differs from that of these other two substances in two important
ways. First, it consistently is lower, indicating that in every grade, the
risk of first use of marijuana is lower than the risk of first use of cigarettes
or the risk of first use of alcohol. Second, the risk of first use of mari-
juana peaks in the middle of the time axis--in ninth grade—not in the
beginning (as for cigarettes) or the end (as for alcohol). This indicates
that the time period when adolescents are most likely to experiment with
drugs differs by drug type. By examining the hazard function, which
illuminates such differential profiles of risk, researchers can learn when
to target specific types of prevention interventions for different types of
drugs.

Incidenc= and Prevalence: An Analogy for Hazard and
Survival

Because hazard and survival functions may be unfamiliar concepts, the
authors offer an epidemiological analogy to concepts that some readers
may find more familiar—incidence and prevalence. Incidence measures
the number of new events occurring during a time period (expressed as a
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proportion of the number of individuals at risk), while prevalence
cumulates these risks to the total number of events that have occurred
by a given time (also expressed as a proportion) (e.g., Kleinbaum et al.
1982; Lilienfeld and Lilienfeld 1980). Incidence and prevalence corres-
pond directly to hazard and survival: hazard represents incidence, and
survival represents cumulative prevalence.

This analogy reinforces the importance of examining both the survivor
and hazard functions. Epidemiologists have long recognized that, while
prevalence assesses the extent of a problem at a particular point in time,
incidence is the key to disease etiology (Mausner and Bahn 1974). Why?
Because prevalence confounds incidence with duration. Conditions with
longer durations may be more prevalent, even if they have equal or lower
incidence rates. To determine when people are at risk, epidemiologists
study incidence. When they study incidence, they are actually studying
hazard.

DESIGN: COLLECTING SURVIVAL DATA

The conduct of survival analysis requires data summarizing the behavior
of a sample of individuals over time. Data can be coliected prospectively
(as in Stevens’ and Hollis’ smoking cessation study) or retrospectively (as
in Johnston’s grade at initial drug use study). The best studies tailor the
timeframe to the target event. When studying the side effects of a nico-
tine patch, a 10-day or 10-week segment might suffice but, when study-
ing the link between drug use and coronary heart disease, even a

10-year window might not.

The following sections discuss eight questions that arise when designing
a study of event occurrence: Who will be studied? What is the target
event? When does "time" begin? How often should data be collected?
How can event histories be reconstructed from retrospective data? How
can attrition be minimized? What shovid be done with repeated events?
How long should data be collected? How many people should he
studied?
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Who Witl Be Studied?

As with any statistical method, getting the full advantages of survival
analysis requires a representative sample of individuals selected from an
appropriate target population. Although data collected from convenience
samples can be used, probabilistic statements, population generalizations
of sample summary statistics, or statistical inferences may be rendered
incorrect. Because many prevention researchers work with epidemiol-
ogists accustomed to using probabilistic sampling schemes, there are
many excellent examples of survival analyses using data collected from
representative samples (e.g., Kandel and Yamaguchi 1987; Rosenbaum
and Kandel 1990). The authors hope this standard will persist as survival
methods find their way into smaller-scale studies and in clinical settings.

A more probiematic issue concerns the need to define carefuily the target
population from which the sample will be selected. Subtle variations in
population definitions inadvertently can distort the distribution of time—
the very quantity of interest. Consider the tempting strategy of elimi-
nating censoring altogether by restricting the target population to only
those individuals with known event times. A simple example from the
research literature on the duration of foster-care arrangements illustrates
the problems that can arise. When studying discharge times for children
in foster care, Milner (1987) defined his target population as the 222
children in a State agency who were released from care between 1984
and 198> (thus disregarding those who were not discharged). Ina
random sample of 75 of these children, he found that 37 percent had
entered care within 5 months of discharge, 29 percent had entered care
within 6-11 months of discharge, 14 percent had entered care within
12-24 months of discharge, and the remaining 20 percent had entered
care over 25 months before discharge.

The estimated median time to discharge in this sample was 6-11 months.
Should it be concluded that the "average” child stayed in foster care for
under a year? Although this study used a probability sample from a well-
defined target population, the answer to this question is not known, for
the target population is unsuitable for answering it. Milner knew about
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discharge times only among children already discharged; he ignored
those who remained in care. Children in foster care for long periods of
time were most likely to be excluded from his study. Determining how
long the average child stayed in care requires a random sample of all
children in care. It is likely that Milner’s sampling strategy led to an
underestimate of the average duration of foster care in the full population.

Some definitions of the target population create more subtle biases.
Hidden biases are common especially in retrospective studies because a
population defined at a particular point in time excludes people who al-
ready experienced an event that made it impossible for them to enter the
target population. If a researcher conducted a retrospective study of age
at first cocaine use based on a random sample of high school seniors, for
example, he or she necessarily would exclude students who had died
already because of cocaine use or students who already had dropped

out of school.

When a sample excludes individuals who already have experienced the
event of interest before data collection begins, statisticians say that the
sample is left truncated. Left truncation has received very little attention
in the methodological literature, perhaps because the nature of the prob-
lem—the omission of any information—makes it difficult to evaluate the
extent or impact of the truncation. As Hutchison (19884, 19885) notes,
many methodologists ignore left truncation entirely or incorrectly fail to
distinguish it from another methodological difficulty discussed below—
left censoring. To avoid the complications arising from left truncation,
the authors offer some design advice: Whenever possible, define the
target population using delimiters unrelated to time and, if this is
impossible, fully explore the potential biases created by whatever
definition is used.

What Is the Target Event?
At every timepoint of interest, each individual under study must occupy

one, and only one, of two or more states. The states must be mutually
exclusive (i.e., nonoverlapping) and exhaustive (of all possible states).
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Each individual is either using drugs or not, smoking or abstinent, in
treatment or not. The target event occurs when an individual moves from
one state to the next.

States must be defined precisely, with clear guidelines indicating the
specific behaviors, responses, or scores constituting each state. The
definition of states is always difficult, even when clinical definitions
of event occurrence exist. When reviewing the literature on the onset,
recovery, relapse, and recurrence of depression, for example, members
of the MacArthur Foundation Research Network on the Psychobiology
of Depression concluded that "one investigator’s relapse is another’s
recurrence” (Frank et al. 1991, p. 851).

Fortunately for prevention intervention researchers, the specification of
criteria for defining states precisely has received much attention in recent
years (Brownell et al. 1986; Velicer et al. 1992). This can be seen in the
recent trend toward multiple classification systems that employ biochem-
ical assays, clinical judgment, and self-reports together. Many research-
ers who once relied solely on a clinical criterion, such as total abstinence,
for example, now augment this definition with a less rigid one that per-
mits temporary lapses (Baer and Lichtenstein 1988). Similarly, many
researchers who once relied solely on self-report now augment their
definition with biochemical data.

Regardless of the source of data, researchers must strike a balance
between restrictive definitions, which lead to underestimates of the time
to relapse, and less rigorous definitions, which bias estimates towards late
relapse. Brownell and colleagues (1986), for example, argue that preven-
tion researchers routinely consider at least two definitions when studying
recurrence—lapse (a temporary slip that may or may not lead to relapse)
and relapse. Velicer and colleagues (1992) provide a helpful review of
the issues arising in the definition of outcome in smoking cessation
studies.

Why do methodologists dwell on these definitional issues? They do so
because of their serious methodological ramifications. It is clear, for
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example, that some of the observed variation in relapse rates reported in
the literature is attributable not to the differential effectiveness of various
interventions but to variation in the definition of event states. Consider,
for example, the different conclusions that a research reviewer could cull
from just the first month of data on unaided smoking cessation collected
by Marlatt and colleagues (1988). By the end of the month, 23 percent of
the sample never actually had quit (they smoked again within 24 hours),
36 percent had quit for at Jeast 24 hours but subsequently relapsed within
the month, 16 percent had been primarily abstinent but smoked one or
two cigarettes, and only 25 percent had been successfully abstinent. In
no time at all, a research reviewer couid reasonably calculate at least three
different relapse rates: by setting aside individuals who never really quit,
by pooling the primarily abstinent individuals with the relapsers, or by
pooling them with the successfully abstinent individuals.

Given the important role of substantive issues in the definition of event
states, all measurement considerations necessary for deriving reliable and
valid definitions of event states cannot be reviewed here. Instead, the
authors offer more modest general advice: Collect data with as much
precision as possible so that transitions can be coded appropriately from
one state to the next. With refined data, individuals always can collapse
together to derive broader definitions; with coarse categorized data, it is
difficult (and often impossible) to recoup more differentiated definitions.
When describing results, operationalize definitions as precisely as pos-
sible (specifying the criteria for onset, recovery, relapse, and recurrence
as clearly as possible in terms of the number, intensity, and duration of
symptoms) so that others can compare their findings.

When Does "Time" Begin?

The problem of "starting the clock" is more complex than it may appear.
When studying the onset of addictive behaviors, birth certainly is the
logical choice. In their community survey of substance abuse among
adolescents and young adults, for example, Kandel and Logan (1984)
used chronological age (i.e., time since birth) to examine when
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respondents reported first using marijuana, alcohol, cocaine, and
psychedelic drugs.

However, chronological age is not the optimal metric for all research
questions arising in drug abuse prevention. Many are better addressed
by starting the clock after a precipitating event occurs. Coryell and col- *
leagues (1990), for example, started the clock when patients first pre-
sented to a therapeutic setting, Cooney and colleagues (1991) used the
date of discharge from an inpatient setting and others (e.g., Brownell

et al, 1986; Havassy et al. 1991) have used the date when individuals
stopped using a particular drug. Such alternative starting times should
be considered whenever an individual is at risk of the target event

(e.g., remission, relapse, or recurrence) only after experiencing the prior
event,

Consideration of the process under study usually leads to a defensible
decision. When it does not, an arbitrary time can be used. Researchers
conducting randomized clinical trials, for example, typically use the date
of randomization (Greenhouse et al. 1991; Peto et al. 1976) or the date of
intervention (Greenhouse et al. 1989), Beware of the measurement im-
precision created when the chosen precipitating event only approximates
the conceptual beginning of time. When modeling illnesses, for example,
the conceptual beginning of time is the onset of the illness episode, yet
medical researchers often use the date of evaluation or diagnosis. Since
the time between onset and entry into treatment can vary greatly across
individuals (Monroe et al. 1991) and the magnitude of this lag time may
be an important predictor «4f a treatment’s efficacy, use of these more
easily measured dates actually may add even more error into the
definition of event occurrence.

‘What happens if the start date is unknown for some individuals under
study? Statisticians say that such observations are left censored (to
distinguish them from right-censored observations in which the event
times are unknown). Statistical methods for including left-censored data
in analyses that also have right-censored data remain in their infancy.
Although Turnbull (1974, 1976) offered some basic descriptive
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approaches and Cox and Oakes (1984) and Flinn and Heckman (1982)
offered some guidelines for developing statistical models (under a very
restrictive set of assumptions), most methodologists dismiss the topic
soon after introducing the terminology (e.g., Blossfeld et al. 1989, p. 29;
Tuma and Hannan, 1984, p. 135). The most common advice is that
researchers should define the beginning of time so that left censoring
never arises, or they should set the left-censored spells aside from
analysis (Allison 1984; Tuma and Hannan 1984).

How Often Should Data Be Coliected?

Few researchers have the luxury of monitoring subjects continuously.
Financial and logistical constraints usually demand that researchers con-
tact subjects at a finite number of preselected intervals. Using these
"chunky" data, researchers then try to retrospectively reconstruct pseudo-
continuous event histories. Reconstruction can be made more effective if
researchers judiciously select the preselected intervals at which study
subjects will be contacted.

The collection of data in discrete time can add measurement imprecision.
If transitions occur in continuous time but data are collected in discrete
time, for example, a researcher will never know an individual’s mental
state at the moment of transition. Such imprecision has serious conse-
quences if information about the transition moment is critical for pre-
dicting the timing of events, as when the coping skills of the ex-smoker,
ex-gambler, ex-drinker, ex-overeater, or ex-drug abuser may determine
whether the person succumbs to temptation. Shiffman (1982) used an
innovative design to overcome this restriction; he interviewed 183 ex-
smokers who called a smoking cessation hotline because they were in
crisis. His design may be useful in other studies requiring data collected
at the precise moment of transition.

Carefully constructed interview questions can improve the quality of the
event history data. Bradburn and colleagues (1987) provide strategies for
helping respondents construct temporal autobjographies. They recom-’
mend letting respondents create their own timelines based on personally
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salient anchors (e.g., birthdays, anniversaries, or holidays) and then

sequentially placing other events (and symptoms) on this timeline (see

Young et al. 1991 for an application). In multiwave studies, bounded-

recall probes can enrich the quality of data describing behavior between

interviews. At the beginning of the second and subsequent interviews,

for example, Neter and Waksberg (1964) suggest that interviewers first

remind respondents of their responses during the previous interview.

Where should limited data collection resources be targeted? Although
collection at equally spaced time intervals is systematic, this strategy may
omit information about the periods of greatest interest. A simple but
effective strategy, which maximizes information on the occurrence of the
target event, is to collect data more frequently when events are the most
likely to occur.

Information on the anticipated shape of the hazard function is helpful in
selecting times for data collection. The idea is to collect data more
frequently when hazard is high and less frequently when hazard is low.
This allocation strategy was used effectively, for example, by Hall and
colleagues (1984) who, in their 1-year prospective study of smoking
abstinence following behavioral skills-training, placed their four data
collection periods at 3, 6, 26, and 52 weeks after treatment. If they had
spaced data-collection episodes equally, waiting until week 13 to first
collect followup data, they would have been unable to determine that the
risk of relapse was highest in the few weeks immediately following
cessation.

How Can Event Histories Be Reconstructed From
Retrospective Data Collection?

In 1837, William Farr wrote, "Is your study to be retrospective or pro-
spective? If the former, the replies will be general, vague, and I fear of
little value" (cited in Lilienfeld and Lilienfeld 1980). His words remain
true today. Whenever possible, researchers should collect data prospec-
tively. However, when studying infrequent events—initiation into opiate
drug use, for example—prospective data collection may be unfeasible.
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Many researchers, therefore, opt for a different approach: interviewing
people ¢ ad asking, "Has the event ever occurred?" and, if so, "When did it
first occur?" Retrospective data collection has been used successfully by
researchers studying the age at first use of many different addictive
substances and remains a fruitful strategy for drug abuse research

(e.g., Adler and Kandel 1983).

Researchers contemplating a retrospective data-collection effort should be
forewarned, however, that their data will be imperfect. Although rare
events—suicide attempts or hospitalization—may be remembered indef-
initely and highly salient events—initial use of drugs or first symptoms of
an illness—may be remembered for 2 or 3 years, habitual events like on-
going symptoms and substance use are too embedded in an individual’s
life to be remembered precisely (Bradburn 1983; Sudman and Bradburn
1982). The longer the time period, the greater the error. (As noted
earlier, if the target event can lead to death, the collection of retrospective
data from a cohort ensures that sampling will be biased by the omission
of those who already have succumbed.)

Three errors are common in retrospective data collection: (a) memory
failures—respondents forget events entirely; (b) felescoping—events are
remembered as having occurred more recently than they actually did; and
(c) rounding—respondents drop fractions and report even numbers or
numbers ending in 0 or 5. These errors create different biases: memory
failures lead to underreporting, telescoping to overreporting, and
rounding to both.

Supplemental aids and records can help reduce errors. Records control
overreporting due to telescoping but have no effect on omission; aided
recall, where the subject is presented explicitly with the possible options
and is asked directly whether any particular event happened, reduces the
number of omissions but may increase telescoping (Sudman and Brad-
burn 1974). Researchers developing items for retrospective recall would
do well to consult strategies described in the ongoing series Cognition
and Survey Measurement published by the National Center for Health
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Statistics (e.g., Lessler et al. 1989; Means et al. 1989) and in the recent
book Measurement Errors in Surveys (Biemer et al. 1991).

If retrospective recall is the only alternative, is it worth the effort? The
authors believe it is. In their retrospective study of suicide ideation,
Bolger and colleagues (1989) successfully used several approaches to
improve recall (see also Wittchen et al. 1989). Although studying a
"threatening" event, they couched the study in less threatening terms
about the development of the concept of death and suicide. They never
asked about respondents’ mental health or suicidal behavior—only about
thoughts and knowledge about others. Questionnaires were anonymous
and self-administered in a group setting. Respondents were college stu-
dents—close enough in age to the time period of interest (adolescence)
but old enough to be removed.

How Can Attrition Be Minimized?

Given the expense and difficulty of prospective data collection, research-
ers want to keep every case they can. It is well known that, as sample
size decreases, statistical power decreases and, if attrition is nonrandom,
generalizability may suffer as well. As Hansen and colleagues (1985)
clearly show, drug abuse prevention studies have been plagued by attri-
tion problems. Indeed, in their recent review of the attrition problem,
Biglan and colieagues (1991) noted several studies with attrition rates in
excess of 50 percent!

Researchers most successful at minimizing attrition have used some of
the following strategies: explain to respondents why they have to be
followed; ask them to contact a study representative if they move; visit
their homes and ask neighbors for information about them; pay them fot
participation in each interview; have them pay an earnest deposit refurd-
able at the end of the last interview; offer lottery prizes for those who
successfully complete all required interviews, mail a newsletter at regular
intervals, record the names and addresses of several relatives or friends
not living with them, record each respondent’s social security number,
convene reunion meetings, maintain contact at regular intervals even if
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data are not being recorded as frequently, send birthday and seasonal
greeting cards, and consult official records (e.g., jail, hospital, welfare, or
driver registration). Crider and colleagues (1971, 1973), Farrington and
colleagues (1990), and Murphy (1990) offer many helpful strategies for
minimizing attrition.

Despite diligent effort, most researchers lose some individuals to
followup. Researchers attempting to improve their study by using a
long followup period face a further conundrum: the longer the followup,
the greater the attrition. At first sight, attrition seems nonproblematic for
survival analysis because it leads to additional right-censored event
times—a problem that survival analysis was designed to handle. How-
ever, censoring due to attrition may not be the "noninformative" censor-
ing for which survival methods are valid. Individuals lost to followup
can differ substantially from individuals who continue to participate.

In their longitudinal study of drug abuse, for example, Biglan and
colleagues (1991) present clear evidence that those who remain in the
sample differed from those who did not.

What should a researcher do with the data on individuals lost to
followup? While multiple imputation methods offer much promise
(Little and Rubin 1987), three simple strategies sometimes can suffice.
One is to assign each case a censored event time equal to the length of
time the person was observed (without the event occurring). If an indi-
vidual participated for the first 6 months of a 12-month study before
attriting, censor the event time at 6 months. A second approach is to use
a "worst-case" scenario—assume that the event actually occurred when
the case was lost to followup. Under this strategy, the event time is not
censored. The findings from analyses carried out under both types of
recoding then can be contrasted with each other in a sensitivity ai..lysis.
Persistence of findings obtained under multiple strategies or explainable
differences between the findings reinforces the strength of the analytic
results. The third approach is to conduct a "competing-risks" survival
analysis, in which study attrition is treated as another event th»* "com-
petes” to end an individual’s lifetime (Singer and Willett 1991).
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The appropriateness of these alternative strategies depends, in part, upon
the target behavior under study. Be especially careful when assuming
that the event o curred at the time when the observation is censored, for
this converts a nonevent into an event. Of course, when studying relapse,
this conclusion may be sound because former drug abusers notoriously
are unfaithful subjects, and those who are "clean" are more likely to stay
in touch. The key idea is to let reason be the guide. Within 12 weeks
after beginning a study of 221 treated alcoholics, opiate users, and ciga-
rette smokers, for example, Hall and colleagues (1990) lost 73 people
(one-third of their sample) to followup despite valiant attempts to mini-
mize attrition. To ascertain the impact of attrition on their findings, the
researchers conducted extensive sensitivity analyses, including:

(1) coding of relapse as occurring the week after the last interview
completed, and (2) setting aside these cases from analysis. All the
analytic findings were similar in sign and magnitude, although the
standard errors of parameter estimates were higher under the second
strategy because of a loss of statistical power.

What Should Be Done With Repeated Events?

Many events marking the "careers" of drug abusers are repeatable.
Indeed, with the exception of initiation into drug use, most other events—
ongoing use, abuse, hospitalization, treatment, and relapse—can occur
over and over again. When studying the timing of potentially repeatable
events, make every attempt to note the "spell number" under study, for
the natural course of a first spell may differ from the natural course of
second and subsequent spells. So, too, the efficacy of treatment may vary
depending upon how many prior spells the individual has experienced.

Drug abuse prevention researchers can learn much about this issue by
examining the literature on depression. For example, Kupfer and
colleagues (1989) designed a study to investigate differential recovery
patterns across multiple spells when studying patients with recurrent
depression. Separately analyzing the time to stabilization in two
consecutive episodes, they found virtually identical median lifetimes
(between 11 and 12 weeks). They aiso found, however, that the efficacy
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of treatment varied across spells—early intervention in the second
episode, as opposed to the first episode, was what worked particularly
well.

The authors believe that the unidentified presence of multiple spells in a
single data set may help explain some of the major puzzles in prevention
research. This belief stems from a parallel finding in the literature on
depression, where Klerman (1978) demonstrated that some of the ob-
served variation in relapse rates was attributable to researchers’ failure to
note how many prior episodes of depression each subject had had. Given
the tendency toward renewed abstinence on the part of formerly abstinent
people who relaps: 1 early after quitting, it seems reasonable to hypoth-
esize that previous heatment, even if unsuccessful, may increase the
probability of success under subsequent treatments.

How Long Should Data Be Coliected?

Once the clock starts, it must stop eventually. Clocks in retrospective
studies stop on the date of interview; clocks in prospective studies can, in
theory at least, continue indefinitely. As a practical matter, though, most
prospective studies follow a sample for a finite, preselected period of
time. The length of data collection determines the amount of right cen-
soring (hereafter referred to as "censoring"). Because longer data collec-
tion periods yield fewer censored observations, the simple maxim is "the
longer, the better.” But beware—longer studies are more expensive, have
more missing data, and may lead to out-of-date results.

When deciding on the length of followup, remember that, to determine
when the event is likely to occur, it actually must occur for enough people
under study. If the target event never occurs during data collection, all
observations are censored. The researcher has little information, knowing
only that it generally takes longer than this period for the event to occur.

There is no universally appropriate length of followup. The answer

depends on many factors. To decide on a reasonable followup period, the
shape of the anticipated hazard function, the probable median lifetime,
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the sample size, and proposed statistical analyses must be considered. As
shown in the section on determining sample size, a good rule of thumb is
to follow participants long enough for at least half of them to experience
the target event during data collection. This ensures sufficient infor-
mation for estimating a median lifetime and provides reasonable
statistical power.

‘What have researchers done in practice? Noting that ex-smokers often
start smoking again soon after quitting, McFall (1978) suggested that
smoking-relapse studies use a 6- to 12-month followup. In a review of
smoking-relapse studies published during the 1980s, Singer and Willett
(1991) found that this guideline is accepted widely; the modal follownp
period was 1 year, and this period yielded an average censoring rate
below 50 percent. However, Nathan and Skinstad (1987) note that

"3- or 6-month posttreatment follow-ups are likely to be insufficient. . . .
2 years or more are probably necessary to determine the long-term effects
of a treatment program" (p. 333). Furthermore, when studying infrequent
events, even 5 years of data collection may be insufficient. In their re-
view of the link between alcoholism and suicide, for example, Murphy
and Wetzel (1990) lament the fact that many of the available studies "are
relatively short: less than 10 years" (p. 387).

Before deciding on the length of data collection, be sure to consider the
substantive ramifications of this choice. It is clear that variation across
studies in the length of followup explains some of the seemingly discrep-
ant conclusions about treatment efficacy that arise in the literature.
Length of followup has been identified as a major explanatory factor in
several literature reviews, including Murphy and Wetzel’s (1990) review
of suicidality among alcoholics. Even when it has not been identified as
a key explanatory factor, its impact seems certain. In their review of 26
longitudinal studies of teenage alcohol and other drug use, for example,
Flay and Petraitis (1991) found that the length of followup varied from a
low of 5 months to a high of 19 years. Although the link between length
of followup and study findings was not investigated, this design feature
may explain why some studies successfully predicted subsequent
outcomes while others did not.
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Because of the effect of design on conclusions, a researcher always must
note the length of followup. Any relapse rate cited must be linked to a
specific time period. What can be concluded, for example, from the
statement of Seltzer and colleagues (1982) that 65 percent of the mentally
retarded adults in their study were not reinstitutionalized, given that the
timeframe being referenced is not known? How can researchers know
whether this percentage is low or high? How can this rate be compared
to those found in other studies? Even well-documented longitudinal
studies using sophisticated analytic techniques occasionally omit this
important piece of information (Zatz 1985). The length of data collection
is key to understanding the ultimate course of survival.

How Many People Should Be Studied?

Having specified in broad outline the design of a study, the final step is to
determine how many people to include in the sample. Statisticians deter-
mine the minimum number of people a researcher should study by con-
ducting a statistical power analysis (Cohen 1990; Kraemer and Thiemann
1988). This requires specification of the particular hypothesis to be
tested, the desired Type I and Type II error rates, and the minimum effect
size considered important; for survival analysis, it also requires presaging
the anticipated distribution of the hazard function and the proposed length
of followup.

Biostatisticians have derived many methods for determining sample

size for survival analysis, each applicable under different circumstances.
Donner (1984) and Lachin (1981) review the literature; Freedman (1982)
provides tables for two-group comparisons; Makuch and Simon (1982)
provide formulae for multiple-group comparisons; Schoenfeld and
Richter (1982) provide monograms for the same purpose; Bernstein

and Lagakos (1978) and Dupont and Plummer (1990) describe computer
programs that perform these and other calculations for several designs;
and Lachin and Foulkes (1986), Moussa (1988), and Rubinstein and
colleagues (1981) provide formulae for complex designs with stratifi-
cation, covariate information, or allowances for loss of individuals to
followup. In the presentation that follows, the authors have computed
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minimum sample sizes using the computer program developed by Dupont
and Plummer (1990).

No single table or formula can cover all possible design configurations.
Here, ballpark estimates of sample size are provided that are similar to
those provided elsewhere for more familiar statistical analyses (Light et
al. 1990). This discussion does not replace consultation with a statistician
before data collection or, in Kraemer and Pruyn’s (1990) words:

Answers to questions as to what the optimal approach
depend on the specific research question to be addressed
and can and do not have simple answers. How to
demonstrate adequate power and how to assess power
when there are multiple outcomes are questions that must
be addressed, perhaps differently, in each research study,
and these questions require the participation of experts at
addressing such issues (p. 1169).

Rather, this discussion should provide researchers with a better sense of
the factors affecting the power of survival analyses, a general sense of
how many people they must study to ensure a reasonable chance of
detecting an effect that really exists, and a language for talking with a
statistical consultant. The need for improved design is clear. As Kazdin
and Bass {1989) note, too many studies of differences between alternative
treatments lack sufficient statistical power to detect the small-to-medium
effect sizes likely to occur in practice.

Table 1 presents the minimum total sample sizes necessary to achieve a
power of .80 for a simple two-group comparison at the .05 level (two-
tailed). The rows of the table indicate minimum detectable effect sizes
(R); the columns indicate the length of followup (F); the cell entries
indicate the minimum total sample size used in the analysis (N).
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TABLE 1. Minimum total number of individuals needed to detect
differences in survival between two groups

Foliowup period

Effect
size 0.5 1.0 1.5 2.0 2.5
1.25 >2,162 1,260 976 840 766
1.5 654 382 296 254 232
175 344 200 156 134 122
2.00 224 130 102 88 80

NOTE: Assuming a two-tailed test at the .05 level, at a power of .80,
and exponentially distributed survival times, all individuals
followed for the same period of time.

Researchers should inflate these sample size estimates appropriately to
adjust for cases lost to followup. The calculations were made assuming a
flat hazard function-—a restrictive assumption indeed, but the simplest,
and the one researchers generally assume in the absence of more detailed
information.

To use the table, first specify the smallest effect size deemed important
for detection. Although biostatisticians have developed several measures
of effect size, perhaps the simplest is the ratio of median lifetimes in the
two groups, denoted by R. Letting m, be the median lifetime in one
group and m, the median lifetime in the other, R = m,/m,. When

R = 1.25, the median lifetime of one group is 25 percent longer than the
median lifetime of the other; when R = 1.50, the median lifetime of one
group is 50 percent longer; and when R = 2.00, the median lifetime of
one group is twice as long (100 percent) as the other group.
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How can the minimum detectable effect size be specified in advance of
data collection? One way is to use prior research. Consider a two-group
experiment that might follow from the smoking-relapse study conducted
by Stevens and Hollis (1989). The median survival time in the control
group of this experiment was 4 months (m, = 4). If the median survival
time in a new experimental group is expected to be as high as 8 months
(m, = 8), the new study can be designed to detect an R of 2.00; if the
median survival time ir the new experimental group is expected to be
only 6 months (m, = 6), the study should be designed to detect an R of
1.50. In the absence of such prior information, Schoenfeld and Richter
(1982) suggest that R = 1.50 be used because a 50-percent increase in
survival is "clinically important and biologically feasible" (p. 163).

After specifying the minimum detectable effect size, the leng.: of
followup must be specified. Because the length of followup can vary a
lot across studies, a standardized measure is needed tat is applicable to a
variety of settings and metrics. This goal is achieved by dividing the
length of followup by the average anticipated median lifetime in the two
groups. More precisely, letting A = (m;+m,)/2 be the average median
lifetime in the two groups, and T the total length of followup, the stan-
dardized measure of followup, F, is T/A. If a study follows individuals to
only half the average median lifetime, F = 0.5; if a study follows indi-
viduals to the average median lifetime, F = 1.0; and if a study follows
individuals for twice as long as the average median lifetime, F = 2.0.

By using a standardized measure of the length of followup, the table can
be used with studies of widely varying length. It is equally applicable if
the average median lifetime is 6 minutes, 6 days, 6 months, or 6 years. If
the average median lifetime (A) is 6 (in any of these units), a followup
(T) of 3 yields an F of 0.5, a followup of 6 yields an F of 1.0, a followup
of 9 yields an F of 1.5, and a followup of 12 yields an F of 2.0. The
particular time units cancel each other out in the standardization.

Now examine the minimum sample sizes presented in table 1, focusing

first on differences in effect size displayed across the rows. Small effects
(R = 1.25) are difficult to detect. Regardless of the length of followup, a
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study must include many hundreds or well over 1,000 individuals to
have a reasonable chance of detecting such effects. Medium-sized effects
{R = 1.50 to R = 1.75) can be detected with moderate-sized samples;
approximately 200-400 individuals generally will suffice, depending
upon the length of followup. Large effects (R = 2.00) are relatively easy
to detect, even using small samples. If the median lifetime in one group
is twice as long as the median lifetime in the other, there is an 80-percent
chance of detecting this difference using only 100-200 individuals,

Table 1 also can be used for another purpose: to decide on the length of
data collection. Reexamine the table, focusing now on the variation in
sample sizes across the columns corresponding to followups of widely

differing lengths. The great variation in minimum sample sizes for a

given effect size emphasizes the importance of following individuals
under study for as long as possible.

Consider, for example, how the minimum sample size needed to detect an
R of 1.50 depends upon the length of followup. If a sample is followed
only halfway to the average median lifetime, F = 0.5, 654 people are
required to detect the 50-pe.- 2nt difference in median lifetimes. How-
ever, if people are followed for longer periods of time, fewer people are
needed. If the fol'nwup can be extended to the average median lifetime
(F = 1.0), the same power of .80 can be achieved with almost half as
many individuals (N = 382). If the followup is extended further to twice
the average median lifetime (F = 2.00), the same power can be achieved
with only one-third as many individuals (N = 254).

The message for research design is clear, Much statistical power can be
gained by following people for longer periods of time. Researchers
would do well to follow people for at least as long as the average median
lifetime (F = 1.00). By doubling the length of followup, the same statis-
tical power can be achieved with approximately one-third fewer indi-
viduals. If the length of followup is less than the average median
lifetime, only studies of many hundreds of individuals will have
adequate statistical power.
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ANALYSIS: EXAMINING SURVIVAL DATA

Most researchers begin their data analyses with exploratory and
descriptive approaches; they move on to fitting statistical models and
testing hypotheses only after a full exploration of the data (Ehrenberg
1982; Mosteller and Tukey 1977). In the following sections, the authors
present an array of strategies for analyzing survival data, beginning with
simple descriptive approaches and moving on to statistical model
building.

How Can Survival Data Be Described?

There is much to be learned by straightforward "eyeball” analysis.
Inspection of sample survivor and hazard profiles and comparison of
these profiles computed separately for substantively interesting sub-
samples can be very informative. Figure 3 illustrates this using
hypothetical data on time to exit from a residential treatment facility.

The figure presents the sample survivor and hazard functions describing
time to exit for two groups of patients—those who had "severe" addiction
problems and those who had "mild" addiction problems.

These sample survivor and hazard profiles contain a great deal of
information. Examining the sample survivor profiles by severity shows
that those with mild problems have better long-term cumulative prospects
for release than do those with severe problems. About half of those with
mild problems left the facility 2-3 months after admission; those with
severe problems wait a month longer on average.

The subsample hazard profiies disentangle these exit patterns month by
month and provide a more sensitive magnifying glass for identifying
when patients are likely to be released. Immediately after entry into the
facility, the risk of leaving rises as patients improve. After a few months,
however, the risk of leaving declines. In every month, the hazard for
those with mild probleins is higher than the hazard for those with severe
problems, indicating that the former group is more likely to be discharged
at all times.
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FIGURE 3. Sample survivor (panel A) and hazard (panel B)
functions for time to exit from a residential treatment
facility, for those with "mild" and "severe" problems
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When hazard profiles for the two groups of people are compared, level of
severity implicitly is treated as a predictor of the entire hazard profile.
The comparison of profiles illustrates how the risk of leaving is related to
severity. The sample could be divided in other ways, and these divisions
could be treated as predictors of huzard as well.

Exploratory comparisons of sample survivor and hazard profiles provide
simple persuasive descriptions of when events occur and how the timing
of event occurrence varies across groups. Descriptive statements then can
be buttressed by simple statistical tests of between-group differences.
Lawless (1982) and Lee (1980) provide a compendium of tests for com-
paring survivor and hazard profiles among groups, tests that are the sur-
vival-analytic equivalent of the t-test and one-way analysis of variance
(ANOVA). The most popular are the Wilcoxon and Log-rank tests of
homogeneity of survivor function across populations—the former test
placing more weight on early survival times, the latter on later survival
times when the test statistic is computed.

Graphical displays and multigroup comparisons are limited, however,
because they do not help researchers address the complex questions
arising in prevention research. The examination of the effects of
continuous predictors on hazard would yield a cumbersome collection

of profiles, one per predictor value. Simple bivariate methods are ill
suited for exploring the effects of several predictors simultaneously or for
evaluating the influence of interactions among predictors. In their study
of the relationship between adolescents’ length of stay in a psychiatric
hospital and two categorical predictors—diagnostic category (i.e., affec-
tive, organic, or conduct) and number of prescribed medications

(i.e., none, one, two, or more)—Borchardt and Garfinkel (1991) er:
countered these problems. While these authors elegantly display survival
profiles for each of these two predictors separately, they do not examine
the joint effect of buih variables simultaneously or the effects of each
after controlling statistically for the other. They do not investigate the
possibility of a two-way interaction between the predictors. Nor do they
extend their survival analyses to explore the effects of other predictors,
such as funding sources, even though their preliminary exploration
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suggested that such additional variables were associated with length of
stay. To conduct further analysis, researchers require a comprehensive
approach to the modeling of event occusrence, a topic discussed next.

How Can Statistical Models of Hazard Be Built?

Statistical models of hazard express hypothesized population rela-
tionships between entire hazard profiles and one or more predictors.

To clarify the author’s representation of these models, examine the two
sample hazard profiles in panel B of figure 3 and think of the level of
severity as a dummy variable, MILD, which can take on two values (0 for
severe, 1 for mild). From this perspective, the entire hazard function is
the conceptual outcome, and MILD is a potential predictor of that
outcome.

Ignoring minor differences in shape, now consider how the predictor
seems to affect the outcome. When MILD = 1, the sample hazard func-
tion is higher relative to its location when MILD = 0. So conceptually,
the predictor MILD somehow displaces or shifts one sample hazard
profile vertically, relative to the other. A population hazard model for-
malizes this conceptualization by associating this vertical displacement
with variation in predictors in much the same way as an ordinary linear
regression model associates differences in mean levels of a continuous
(noncensored) outcome with variation in predictors.

The difference between a hazard model and a linear regression model,

of course, is that the entire hazard profile is no ordinary outcome. The
continuous-time hazard profile is a profile of risks bounded by 0. Meth-
odologists postulating a statistical model to represent a bounded outcome
as a function of a linear combination of predictors generally transform the
outcome so that it becomes unbounded. Transformation prevents deri-
vation of fitted values that fall outside the range of theoretical possi-
bilities—in this case, fitted values of hazard less than 0. When time is
measured continuously, researchers build statistical models of the natural
logarithm of hazard; when time is measured discretely and hazard is a
conditional probability, a logit transformation is used for the same reason,.
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The effect of the logarithmic transformation on hazard is illustrated in
figure 4, which presents sample log-hazard functions corresponding to
the plots in panel B of figure 3. The log transformation has its largest
effect on rates near 0, expanding the distance between values at this
extreme. Nevertheless, in the transformed world of log-hazard, the pre-
dictor MILD works as it did before. When MILD = 1, the log-hazard
function consistently is higher, relative to its location when MILD =0,
indicating that, at every possible time among individuals still in resi-
dence, those who have mild problems are more likely to leave. Still
ignoring the minor differences in the shapes of the profiles, then, the
predictor MILD essentially displaces the log-hazard profiles vertically,
relative to each other.

Inspection of the sample relationship between the predictor MILD and the
entire log-hazard profile in figure 4 leads to a reasonable specification for
a population model of the hazard profile as a function of predictors.
Letting h(t) represent the entire population hazard profile, a statistical
model that captures this vertical displacement relates the log transfor-
mation of A() to the predictor MILD as follows:

log h(t) = B (O)+p,MILD n

The model parameter, B(t), is known as the baseline log-hazard profile.
It represents the value of the outcome (the entire log-hazard function) in
the population when the predictor (MILD) is O (i.e., because of the way
the predictor MILD has been coded, it specifies the profile for individuals
with severe problems). The baseline .s written as B(t), a function of
time, and not as B, a single term unrelated to time (as in regression anal-
ysis), because the outcome (log h(t)) is a temporal profile. The model
specifies that differences in the value of MIL.D "shift" the baseline log-
hazard profile up or down. The "slope" parameter, [3,, captures the
magnitude of this shift; it represents the vertical shift in log-hazard
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FIGURE 4. Sample log-hazard functions for residents with "mild"
and "severe" problems

attributable to a one-unit difference in the predictor. Because the pre-
dictor in this example (MILD) is a dichotomy, 3, captures the differential
risk of leaving between individuals with mild and severe problems. If the
model] were fitted to these data, the obtained estimate of f3; would be
positive because those with mild problems are at greater risk of leaving in
every month.

Hazard models closely resemble familiar regression models. Several
predictors can be incorporated by including additional variables ex-
pressed as linear (or nonlinear) functions of additional unknown "slope"
parameters on the right-hand side of the equation. This model expansion
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allows examination of one predictor’s effect while controlling statistically
for others’ effects. Inclusion of cross-product terms enables examination
of statistical interactions between predictors. It does not seem excessive
to argue that hazard models provide the powerful, flexible, and sensitive
approach to analyzing event occurrence that many drug abuse prevention
researchers should be using. The goodness of fit of a hypothesized
population model can be evaluated with data, allowing inferences about
population relationships between hazard and predictors. As shown later,
reconstructed survivor and hazard functions and estimated median
lifetimes can depict the effects of predictors, providing answers to
research questions in the original metric of interest—time.

Are the Hazard Profiles Proportional or Nonproportional?

Simple hazard models like equation (1) implicitly assume that all the log-
hazard profiles corresponding to successive values of a predictor differ
only by their relative elevation (described here by $,). Under such
models, but in the antilogged world of raw hazard, all the hazard profiles
simply are magnifications or diminutions of each other—they are propor-
tional. Under this proportionality assumption, which in continuzous-fime
survival analysis is called the proportional hazards assumption, the entire
family of log-hazard profiles represented by all possible values of the
predictors share a common shape and are mutually parallel. Singer and
Willett (1991, 1993) draw an analogy between this assumption and the
assumption of homogeneity of regression slopes in the analysis of
covariance.

Proportional hazards models are among the most popular survival
analysis approaches used today, in part because most major statistical
packages now provide programs for estimating their parameters using a
method developed by Cox (1972). (Computer software for fitting hazard
models is discussed in the Where To Go To Learn More About Survival
Anaiysis section.) This ingenious strategy allows estimation of param-
eters like B; without the specification or estimation of the shape of the
baseline hazard function, B(t). For this reason, analogous to traditional
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nonparametric methods (which make no distributional assumptions), Cox
regression is called semiparametric.

However, the tremendous boon of the semiparametric method—its ability
to evaluate the effects of predictors without estimating the shape of base-
line hazard profile-—also is its principal disadvantage. The method is so
general that it works for an unspecified baseline hazard prefile of any
shape. Without needing to explore the baseline hazard, investigators can
examine effects of predictors without exploring absolute levels of risk.
Because the baseline hazard function can be easily ignored, researchers
may fail to recognize substantively and statistically impor:ant information
contained only in the baseline hazard function,

‘What kinds of information can be found? The baseline hazard function
and, under the proportionality assumnption, its magnified and diminished
cousins, describe the pattern and magnitude of risk over time—it indi-
cates when the target event will occur and how likely that occurrence is
(as in figure 2). The hazard profiles in figure 3, for example, show that
individuals still in residence are most likely to be discharged in the third
and fourth months after admission. All the predictor does is magnify or
diminish this basic pattern of risk.

The ease with which the hazard function’s shape can be ignored under
the semiparametric method has a further ill consequence: it promotes the
unthinking and dubious acceptance of the proportional hazards assump-
tion. Currently available computer software makes it all too easy to
examine the effects of predictors without examining the tenability of the
underlying proportional hazards assumption. Notice, for example, that
the sample log-hazard profiles in figure 4 are neither identical in shape
nor parallel, suggesting that the proportional hazards assumption might
niot be tenable.

The tenability of the proportional hazards assumption must be viewed
with some circumspection because those few researchers who have exam-
ined its tenability have found clear evidence of its violation. In their own
research on employee turnover, for instance, the authors have found that

232



violations of the assumption are the rule rather than the exception
(Murnane et al. 1991; Singer 19934, 1993b). A similar conclusion was
reached by Bolger and colleagues (1989) in their study of adolescent
suicide ideation.

This is an important issue because violation of the proportional hazards
assumption is far more than a methodological nuisance. The magnitude
and direction of the effects of predictors may be estimated incorrectly if
the hypothesized statistical model inappropriately constrains the log-
hazard profiles to be parallel with identical shapes. Ignoring such under-
lying failures can lead to incorrect substantive conclusions. In a very
informative paper, Trussel and Hammerslough (1983) document differ-
ences in interpretation that arise when the proportional hazards assump-
tion injudiciously is assumed tenable in a study of child mortality
(compare their tables 3 and 4, particularly the effects of gender, birth
order, and age of mother at birth). So uncertain is the veracity of the
proportional hazards assumption that the anthors always begin their own
data analyses with the entirely opposite view. Along with unicorns and
normal distributions (Micceri 1989), the authors regard the proportional
hazards assumption as problematic in any set of data until proven other-
wise. Before adopting a proportional hazards model, researchers at least
should subdivide their sample by substantively important values of
critical predictors and inspect the shapes of the sample hazard profiles
within these subgroups. Arjas (1988), Harrell and Lee (1986), Kalb-
fleisch and Prentice (1980), and Willett and Singer (1993) provide
methods for exploring the tenability of the proportionality assumption.
Finally, as discussed below, researchers easily can adopt a broader ana-
lytic approach—one that tests the proportional hazards assumption

and fits nonproportional hazard models if they are required.

What Different Types of Predictors Can Be Included in Hazard
Models?

One important advantage of the hazard-modeling framework is that it

permits the simultaneous study of both time-invariant and time-varying
predictors. As befits their label, time-invariant predictors describe
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immutable characteristics of individuals; the values of time-varying
predictors, in contrast, may fluctuate over time. While investigating the
monthly risk of initiating marijuana use in late adolescence, for example,
Yamaguchi and Kandel (1984) examined predictors of both types. In the
study, 1,325 adolescents were interviewed once in high school and rein-
terviewed 9 years later at age 24 or 25. In the followup interview,
respondents retrospectively reconstructed monthly charts of their drug
and life histories. The researchers examined the effects of truly time-
invariant predictors, such as race, whose values are immutable over time,
but other variables such as friends’ use of marijuana, involvement in
delinquent activities, and belief that marijuana use is not harmful also
were treaied as time-invariant predictors of the risk of initiation of mari-
juana use because they were measured on a single occasion during the
initial high schooi interview.

The researchers also examined the effects of time-varying predictors,
such as current alcohol use and current cigarette use, whose monthly
values were obtained during life-history reconstruction at followup.
Using hazard models, the researchers were able to present convincing
evidence that the "current use of alcohol and cigarettes have strong effects
on the initiation of marijuana use among men and women" and "control-
ling for selected antecedent behavioral, attitudinal, and environmental
factors measured in adolescence, . . . friends’ use of marijuana has the
strongest positive influence on initiation of marijuana” (Yamaguchi and
Kandel 1984, p. 675). Interestingly, when the initiation of prescribed
psychoactive drug use was examined later in the paper, Yamaguchi and
Kande] found that "multiple factors are involved in the progression to
prescribed drugs, with adolescent depressive symptomatology and use of
other illicit drugs important for both sexes, and maternal use of psycho-
active drugs, dropping out of school, and prior use of marijuana of addi-
tional importance for women" (p. 673). These same authors also have
used hazard-modeling to study links between time-varying drug con-
sumption and the risk of premarital pregnancy (Yamaguchi and Kandel
1987) and the risk of job turnover (Kande! and Yamaguchi 1987).
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The hazard model in equation (1) includes a single time-invariant predic-
tor, MILD. The information contained in this predictor—whether the
patient suffers mild or severe problems-—~remains constant over time.

B, quantifies the time-invariant effect of this time-invariant predictor on
the risk of discharge. Hazard models like equation (1) can be extended
easily to include time-varying predictors. Such extensions can be helpful
particularly in prevention research, where the values of important
predictors often vary naturally over time.

Hazard models with time-varying predictors closely resemble the model
in equation (1). In Yamaguchi and Kandel’s study (1984) of the risk of
marijuana initiation, for example, one possible population hazard model
might include: (1) HSDEPRESS, a predictor treated as time invariant
because it describes whether the individual ever suffered clinical depres-
sion during high school (authors’ coding: O = never clinically depressed,
1 = suffered clinical depression during high school); and (2) ALCOHOL,
a time-varying predictor whose monthly values are known throughout
adolescence (0 = not currently using, 1 = currently using). Such a model
might be:

log h(t) = B (t)+B,HSDEPRESS+B,ALCOHOL(2) 2)

The parenthetical "t" in the predictor ALCOHOL(z)indicates that

the values of this predictor may vary over time. Unit differences in
ALCOHOL correspond to shifts in the log-hazard profile of f3,. Al-
though the values of the predictor ALCOHOL may differ over time, each
one-unit difference anywhere produces the same shift of {3, in the appro-
priate part of the log-hazard profile. So, while the model includes a time-
varying predictor, the per-unit effect of that predictor on log-hazard is
constant over time.

Another way to understand the effects of time-varying predictors is to
conceptually regard the outcome in equation (2)—the log-hazard profile—
as a temporally sequenced list (a vector) of marijuana-initiation risks.

The predictors also can be viewed as an ordered list of values that, for
each person, describes the values of HSDEPRESS and ALCOHOL over
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time. Each element in the hazard list corresponds to an element in each
predictor’s list. For a predictor treated as time invariant, such as
HSDEPRESS, all elements in each person’s predictor list are identical—
1 for every person who was ever clinically depressed in high school,
and 0 for every person who was not. For a time-varying predictor like
ALCOHOL, in contrast, the values in the predictor list may differ from
month to month. If an individual does not use alcohol initially, the early
elements in the ALCOHOL vector are 0; when alcohol use begins, the
values change to 1. If alcohol use persists, the values stay as 1; if it ends,
the values revert to 0. Each person has his or her own alcohol use pat-
tern; the number of patterns across individuals is lirnited only by the
number of possible states and occasions of measurement. The hazard
model simply relates the values in one list (the hazard vector) to the
values in the other (the predictor vector), regardless of whether the
elements in the latter list are identical to each other.

Time itself is the fundamental time-varying predictor. So, conceptually at
least, one might argue that it, too, should be included as a time-varying
predictor in equation (2), mapping intrinsic changes in the risk of mari-
juana initiation over time. Although intuitively appealing, this approach
produces complete redundancy in the model because this time-varying
effect already is captured by the baseline log-hazard function, B4t). Bg(t)
describes the chronological pattern of baseline risk—the differences in
log-hazard attributable solely to time. Estimation of the baseline hazard
function is tantamount to estimation of "the main effect of time." This
analogy reinforces the need to examine the shape of the baseline hazard,
for it provides information about the effects of the fundamental time-
varying predictor—time itself.

Can Predictors in Hazard Models interact With Time?

Not only can predictors themselves be time invariant or time varying,
their effect on hazard also can be constant or vary over time. By in-
cluding a main effect of the predictor HSDEPRESS in equation (2), the
vertical displacement associated with clinical depression in high school is
assumed to be the same at age 16 and age 24 (and equal to ;). However,
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the assumption of temporally immutable effects may not hold in reality—
the effects of some predictors will vary over time. The impact of depres-
sion in high school on the risk of marijuana initiation might decline as
time passes and the individuals mature. If so, the distance between the
hazard profiles associated with different values of the predictor
HSDEPRESS would narrow over time.

When the effect of one predictor on an outcome differs by levels of
another predictor, statisticians say that the two predictors interact. If

the effect of a predictor like HSDEPRESS on an outcome like the risk of
marijnana initiation differs across time, the predictor HSDEPRESS is said
to interact with time. Predictors that interact with time have important
substantive interpretations, allowing researchers to build complex models
of the relationship between predictors and risk. If a predictor primarily
affects early risks, the hazard profiles will be separated widely in the
beginning of time and converge as time passes. If a predictor primarily
affects late hazards, it will have little effect at the beginning of time but
will widen the distance between hazard functions on each subsequent
occasion.

One’s understanding of event occurrence can be improved vastly by
exploring whether the effects of predictors remain constant or vary over
time. As Verhulst and Koot (1991) note, "what may be a risk factor at
one developmental phase may not be at another” (p. 363). Some recent
studies that look for such interactions indeed are finding their presence.
In their study of the age at first suicide ideation, for instance, Bolger and
colleagues (1989) detected interactions between two key predictors and
time. Dividing time into two broad periods—adolescence and preadoles-
cence—they found that the effects of respondent race and parental
absence in childhood both differed across these periods. With regard to
race, during preadolescence, Bolger and colleagues (1989) found that
white children were less likely to consider suicide than nonwhite children
but, during adolescence, they were more likely to do so. With regard to
parental absence, they found that, during preadolescence, children who
experienced a parental absence were more likely to consider suicide than
those who did not experience such absence, but, during adolescence,
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parental absence had little impact on the risk of suicidal thought. In a
reanalysis of the National Institute of Mental Health Collaborative Study
of Maintenance Treatment of Recurrent Affective Disorders, Greenhouse
and colleagues (1991) found that the efficacy of selected antidepressants
in preventing recurrence was pronounced only during the first few weeks
after treatment initiation. By including interactions between predictors
and time, researchers can better identify the predictors of risk over time.

If a predictor interacts with time, the proportionality assumption is vio-
lated, and models such as the proportional hazards model introduced

in equations (1) and (2) do not represent reality. The proportionality
assumption is tested easily by adding an interaction with time to the
hazard model and assessing the effect of this new predictor, If the
assumption holds, the interaction term will have no effect and can be
removed. If the interaction term proves to be an important predictor of
the hazard profile, then a violation of the proportionality assumption has
been detected and the interaction with time must remain in the model to
ensure the appropriate estimation of predictor effects. It is recommended
that researchers routinely examine the effects of such interactions in their
hazard models, just as they would routinely examine interactions among
other predictors in traditional linear models.

What is Discrete-Time Survival Analysis?

The hazard models posited above, which assume that time can take on
any nonnegative value, represent the hazard profile as a continuous func-
tion of time as reflected, for example, in the parenthetical inclusion of the
symbol "t" in the expression for the baseline hazard function, B(t).

‘When data are collected in discreze time, however, either because the
events occur or are measured only at specific times-——perhaps every week,
month, academic semester, or year—researchers should consider a differ-
ent class of survival methods known as discrete-time survival analysis.
The method is easy to apply, facilitates the estimation of the baseline
hazard function, encourages the testing of the proportionality assumption,
and enables researchers to fit hazard models using procedures available in
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most statistical computer packages. For all these reasons, the authors
encourage its wider application to studying questions about time.

The discrete-time survival analysis approach is described in detail in two
recent papers (Singer and Willett 1993; Willett and Singer 1993); this
chapter simply gives an overview. A researcher conducts a discrete-time
survival analysis by altering the data structure, transforming the standard
one-person, one-record data set (the "person” data set) into a one-person,
multiple-period data set (the “person-period” data set), In the new
person-period data set, a dichotomous variable is created to summarize
the pattern of event occurrence in each discrete time period for every
person in the sample. If relapse into cocaine use were being studied, for
instance, this variable (RELAPSE) would be coded "0" if no relapse
occurred and "1" if it did occur, in each discrete time interval. So, for
instance, an ex-addict who relapsed in the sixth month after treatment
would have six lines of "data" in the new person-period data set and, in
each line, RELAPSE would take on a value specific to that interval—the
first five being "0," the last being "1." The researcher also creates a set of
“time indicators" that index and distinguish the discrete time intervals
themselves.

Under the discrete-time approach, the relationship between the dichot-
omous event sumrnary (REL.APSE) and predictors (including the time
indicators) can be fit using a modification of standard Jogistic regression
programs. Interactions among predictors, and between predictors and the
time indicators, are included easily by forming cross-products in the
person-period data set and using them as predictors. Adding these inter-
actions to main-effects models facilitates easy testing of the proportional
hazards assumption, and, if the assumption is violated, retention of the
interactions in the fitted model ensures the appropriate estimetion of the
effects.

The use of a standard logistic regression computer package to fit discrete-
time hazard models eliminates the need for dedicated software and, con-
sequently, brings the new methodology within the grasp of all empirical
researchers. The logistic regression parameter estimates, standard errors,
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and goodness-or-fit statistics are exactly those required for testing
hypotheses about the effect of predictors on the discrete-time hazard
profile (Singer and Willett 1993). Allison (1982, p. 82) comments that
these estimates are "consistent, asymptotically efficient, and asympto-
tically normally distributed" and that, despite the apparent inflation of
sample size on creation of the person-period data set, the estimated
standard errors are consistent estimators of the true standard etrors.

Because of the frequency with which prevention researchers use discrete-
time data collection strategies, readers are encouraged to learn more about
discrete-time survival methods. In the Yamaguchi and Kandel (1984)
study of drug use described earlier, for example, participants recon-
structed their life histories on a month-by-month basis. Many other
researchers follow subjects at discrete points in time. Morgan and col-
leagues (1988), for example, conducted followups 2, 3, and 8 weeks after
cessation. Harackiewicz and colleagues (1987) used 3-month intervals
after an initial 6-week followup. Marlatt and colleagues (1988) con-
ducted followups after 1 and 4 months and 1 and 2 years.

How Can Fitted Models Be Interpreted?

Fitting statistical models is of little use unless the researcher can interpret
the resultant information clearly and persuasively. Interpretation includes
at least three components: identification of "statistically significant”
effects, computation of numerical summaries of effect size, and graph-
ical display of the magnitude and direction of the effects. In traditional
ANOVA, for example, a researcher first might determine whether the
difference in average outcome between two groups is statistically signif-
icant, and if it is, he or she then might express one group’s advantage in
"standard deviation" units and provide data plots comparing the distri-
bution of the outcome across groups.

The interpretation of survival analysis also must include the same three
components. However, because hazard models may be difficult to con-
ceptualize (describing, as they do, variation in entire hazard profiles),
graphical techniques may provide a better vehicle for reporting findings.
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Graphics can help communicate complex and unfamiliar ideas about
whether an event occurs, and, if so, when. Yet, even the most effective
graphical displays must be supported by documentation of parameter
estimates and associated standard errors. So the discussion of interpre-
tation begins with the computer output commonly generated by statistical
packages.

Computer output that documents the results of fitting hazard models
closely resembles output that documents the results of other statistical
techniques. Most programs output estimates of the "slope" parameters,
the standard errors of these estimates, the ratio of each parameter estimate
to its standard error (a "z-statistic"), and a p-value based on the s-statistic
for testing the null hypothesis that the corresponding parameter is 0 in the
population (given that the other predictors are in the model). Soine
programs output a x2 statistic in lieu of a ¢-statistic; the accompanying
p-value assesses the improvement in fit resulting from adding the pre-
dictor to a reduced model containing all the other predictors.

Researchers frequently provide tables of some, or all, of these summary
statistics in the accounts of their analyses (e.g., Yamaguchi and Kandel
1984, tables 1, 2, and 3). When doing so, however, researchers should
not ignore the sign and magnitude of the "slope” estimate by focusing on
the associated p-values. Although p-values can help identify critical
predictors, they indicate nothing about the direction and relative
magnitude of effects.

Because hazard models represent relationships between the entire hazard
profile and predictors, specifying an understandable effect size is not
easy. One useful approach is to interpret the parameter estimate associ-
ated with each predictor in a way similar to interpreting a regression
coefficient. In continuous-time survival analysis, the parameter estimate
represents a difference in elevation of the log-hazard profile correspon-
ding to predictor values one unit apart. The parameter estimate’s sign
indicates the direction of the movement, indicating whether positive dif-
ferences in the value of the predictor correspond to positive or negative
differences in the risk of event occurrence. It may be helpful to imagine
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the profile on a log-hazard plot "moving" up (or down, if the estimate is
negative) for a one-unit difference in the predictor. Predictors with larger
parameter estimates produce larger elevation differences per unit differ-
ence in the predictor. (In discrete-time survival analysis, the conceptu-
alization is identical but the interpreter of the findings is dealing with
differences in the elevation of the logit, rather than log, hazard profile.)

Even after considerable experience with hazard models, however, ready
visualizations in the transformed world of log-hazard may remain
tortured. A mathematically complex but intuitively simple approach
involves the transformation of the outcome back into the more familiar
metric of "risk" antilogging parameter estimates as necessary. Of course,
a researcher must use different transformations and interpretations de-
pending on whether continuous- or discrete-time models have been fitted.

These ideas are illustrated with the continuous-time hazard model in
equation (1). Antilogging bott: sides:

nt)=e" e PipiLp 3)

Because MILD = 1 for individuals with mild problems and MILD = 0O for
those with severe problems, the hazard functions corresponding to these
two groups are:

P and n (t: mild)=¢ Pol) P 4

h(t: severe )=¢
The risk profile in the mild group simply is the risk profile in the severe
group multiplied by ™. This multiplicative rule applies to both categor-
ical and continuous predictors. So in continuous-time hazard models,
antilogged parameter estimates yield numerical multipliers of risk-per-
unit difference in the predictor. If the antilogged parameter estimate is
greater than 1, risk is higher in the reference group; if it is less than 1, risk
is lower.

This transformation strategy enabled Hall and colleagues (1991) to

document the strong effect of commitment to abstinence on the risk of
relapse to cocaine use. After controlling statistically for selected
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demographic covariates and route of administration, the researchers
obtained a parameter estimate of 0.42 for a time-varying covariate indi-
cating whether the former cocaine users had a goal of absolute abstinence
(x2 (1, N =103) = 7.14, p = .0076). Hall and colleagues (1991) inter-
preted the antilog of this estimate (e>*° = 1.5) by writing that "subjects
who endorsed abstinence were less than half as likely to lapse subse-
quently as were subjects who endorsed less stringent goals” (p. 529).

Another way to interpret hazard-model parameter estimates is in terms of
percentages difference in risk. Doubling the baseline risk (multiplying by
a factor of 2) is equal to a 100-percent increase in risk; halving the base-
line risk (multiplying by a factor of .5) is equal to a 50-percent decrease.
So, in the cocaine relapse study conducted by Hall and colleagues (1991)
above, multiplying the baseline hazard by .5 corresponds to a 50-percent
decrease in the risk of relapse for those with a commitment to total absti-
nence. The general rule is simple: The percentage difference in risk-per-
unit difference in the predictor is 100(e”-1). Some researchers automat-
ically add these estimates of e (or IOO(ep-l)) to tables reporting param-
eter estimates, standard errors, ¢-statistics, and p-values.

Similar but modified interpretations can be made after fitting discrete-
time hazard models. Since discrete-time hazard is the conditional prob-
ability that an event will occur in a particular time interval (given that it
has not yet occurred before the interval), the discrete-time hazard model,
which uses logit-hazard as the outcome, expresses the relationship be-
tween predictors and the log odds of event occurrence. Estimates of e’
or IOO(e‘3 -1), therefore, are multipliers of, or percentage increases or
decreases in, the odds of an event occurring (Rosenbaum and Kandel
1990).

As these illustrations document, numeric and algebraic strategies are not
the last word in the clear communication of the findings of survival anal-
ysis. Apart from being arithmetically convoluted, they have at least two
other drawbacks. First, they ignore the shape of the baseline hazard func-
tion—they indicate only the extent to which one risk profile is a magnif-
ication or diminution of another. As argued earlier, the shape of the
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hazard profile—the temporal placement of its peaks and valleys—indi-
cates much about the survival process under investigation. Second,
algebraic interpretations are useful only if the proportionality assumption
is met. If the effect of predictors differs over time, risk profiles no longer
will be parallel in log- or logit-space, and so it makes little sense to talk
about one profile being "rescaled" to generate the other. If the shapes of
the risk profiles differ dramatically, algebraic interpretations may not
only oversimplify findings, they may even misrepresent them completely.

Presenting fitted hazard plots, fitted survival plots, anid estimated median
lifetimes resolves these problems. Most computer programs provide
procedures for recovering fitted profiles from parameter estimates. By
appropriately substituting back into the hazard model, a researcher can
generate fitted hazard profiles at substantively interesting values of the
predictors for the range of time values spanning the data collection
period. The use of fitted hazard profiles is clear, comprehensive, and
intuitively meaningful. Fitted profiles demonstrate the effect of predic-
tors on risk and pinpoint whether these effects rise, fall, or remain con-
stant with the passage of time. By presenting fitted hazard functions, a
researcher need not struggle to describe effects using abstract scaling
factors and percentage increases that ignore important interactions with
time.

Researchers should consider their original questions and analytic findings
when selecting predictor values for constructing fitted plots. Questions to
ask include: "Which predictors were emphasized in the research ques-
tions?" and "Which predictors were significantly associated with hazard?"
Use predictors that are substantively and statistically important when
generating the fitted profiles; lesser variables can be included as
“cuntrols" by equating their value to their sample averages.

Fitted survivor functions and estimated median lifetimes also can be
reconstructed from the fitted hazard profiles in order to illustrate the
magnitude and direction of important effects. However, fitted hazard
profiles generally are more informative because they identify the specific
times when the events of interest are most likely to occur. It usually is
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more difficult to discerrs differences between fitted survivor profiles than
between fitted hazard profiles because the survivor function is
"smoothed" by the cumulation of risk over time.

The advantages of this graphical approach are illustrated in figure 5 using
data from Hall and colleagues (1991), who studied the risk of relapse to
cocaine use among 104 former users who participated in a treatment
program. Among the many predictors Hall and her colleagues studied,
there was a strong and statistically significant effect of the route of
administration prior to entry into treatment (ROUTE), here divided into
two groups: those who used cocaine intranasally and all others. Figure 5
presents fitted hazard and survivor functions based upon a discrete-time
hazard model that included this single predictor. Because a discrete-time
hazard model has been fitted here, the fitted values of the survivor func-
tion and hazard function are joined using line segments rather than a
smooth curve.

Comparison of the two fitted hazard functions in figure 5 demonstrates
the large differential in risk of relapse associated with route of adminis-
tration. In every week after treatment, intranasal users are far less likely
than other users to relapse. These fitted functions have the same basic
shape, and one appears to be a magnification of the other.” Were these
hazard functions to be replotted on a logit-hazard scale, they would have
a constant vertical separation. The functions have been constrained to
appear this way by the proportionality assumption, which was tested for
arid found to be met.

The fitted survivor plots in panel B of figure 5 show the cumulative
effects of the large weekly differentials in risk. Unlike the fitted hazard
functions that emphasize large and consistent differences in risk, the fitted
survivor functions condense the effects of these weekly risk differentials
together to reveal a substantial difference between the groups. Focusing
on the last fitted survival probability, for example, it is estimated that 12
weeks after treatment ended, 63 percent of the intranasal users remained
abstinent, as compared with 28 percent of other users.
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FIGURE 5. Firted hazard functions (panel A) and survivor
functions (panel B) describing the risks of relapse for
104 former cocaine abusers following treatment, by
route of cocaine administration prior fo treatment
(intranasal versus all others).

SOURCE: Based on data reported by Hall and colleagues (1991)

246




A third perspective on the divergent relapse patterns of these two groups
comes from comparison of the estimated median lifetimes displayed in
panel B of figure 5: more than 12 weeks for intranasal users versus 5.1
weeks for all other users. Even though censoring prevented estimating a
median lifetime precisely for intranasal users, the large difference
between these "average" relapse times powerfully communicaies the
analytic results.

IS SURVIVAL ANALYSIS REALLY NECESSARY?

The methods of survival analysis provide a powerful and flexible set of
tools for studying many questions arising in drug abuse prevention and
intervention. Although increasing numbers of researchers are using the
methods, many others studying onset, duration, recovery, recidivism,
relapse, and recurrence have yet to exploit this new analytic tool.

One reason survival methods have not yet been used widely when
studying questions about event occurrence is that many researchers still
wonder whether the methods really are necessary. Although this view
rarely is expressed explicitly, reading between the lines suggests that
many researchers believe that traditional analytic approaches usually will
suffice.

The authors agree that some skepticism is healthy. Why bother with
complex methods if simpler methods will do? Unfortunately, the prob-
lem when studying event occurrence is that simpler methods will not
always suffice. To illustrate this point, this chapter is concluded by
describing five ways in which traditional methods can obscure important
information about event occurrence—information that sensitively and
assuredly is revealed by survival analysis methods.

First, answers obtained by researchers using traditional methods inextric-
ably are linked to the particular timeframe chosen for data collection and
analysis; yet, in prevention intervention research, these timeframes rarely
are substantively motivated. Researchers comparing 6-month, 1-year, or
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5-year relapse rates for individuals participating in different treatment
programs, for example, simply are describing cumulative differences in
behavior until these times. All other vuriation over time in the risk of
relapse is lost. The literature is filled with examples of disparate risk
profiles that lead to comparable relapse rates at specific points in time
(e.g., Cooney et al. 1991, figure 1; Ha ackiewicz et al. 1987, table 2).
Just because two groups of subjects have identical relapse rates at one
point in time does not mean that they followed similar trajectories to get
there—most of those in one group might have relapsed in the first month
while those in the other might have been equally likely to relapse at all
points in time. The 6-month, 1-year, and 2-year cutpoints used in the past
are convenient but not purposeful. By documenting variation in risk over
time and by discovering what predicts variation in risk, researchers can
better understand why people relapse. Traditional methods disregard this
information; with survival methods, variation in risk becomes the primary
analytic focus.

Disregard for variation in risk over time leads to a second problem with
traditional methods: seemingly contradictory conclusions can result from
nothing more than variations in the particular timeframes studied. Had
Stevens and Hollis (1989) computed only 1-month and 12-month relapse
rates when evaluating the efficacy of their individually tailored skills-
training technique for preventing relapse to smoking, for example, they
would have reached opposite conclusions: the 1-month rates would have
shown that subjects in the skills group were more likely to relapse (in
comparison to those in a discussion-oriented group) while the 1-year rates
would have shown that they were Jess likely. By thoughtfully presenting
sample survivor functions, Stevens and Hollis showed that the effective-
ness of the skills-training approach revealed itself only after several
months. Researchers using traditional methods constantly must remind
themselves that conclusions can change as the timeframe changes. While
such caveats usually appear in the "Methods" section of an article, they
often disappear in the "Discussion” section. In survival analysis, the
timeframe itself is integral to the answer; it highlights rather than
obscures variation over time.
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Third, traditional analytic methods offer no systematic mechanism for
incorporating censored observations in the analyses. If all the censored
observations occur at the same point in time, traditional data analysis can
collapse the sampled individuals into two groups: those who experience
the event before the censoring point, and those who do not. In their
longitudinal study of unaided smoking cessation, for example, Marlatt
and colleagues (1988) compared ex-smoker subjects who relapsed and
those who did not at each of four points in time: 1 month, 4 months,

1 year, and 2 years after quitting. If the first days and weeks following
cessation are the hardest, individuals who relapse soon after cessation
may differ systematically from those who relapse subsequently. Dichot-
omization conceals such differences; survival methods, which focus on
the risk of event occurrence over time, bring such differences to light.

If censoring does not occur at the same timepoint for every individual -
under study (as when researchers follow cohorts of patients admitted over
time until a single fixed point in time), traditional methods create a fourth
problem: If censoring times vary across people, the risk periods vary as
well. People followed for longer periods of time have more opportunities
to experience the target event than do those followed for shorter periods
of time. This means that observed differences in rates of event occur-
rence might be attributable to nothing more than research design. In the
study by Goldstein and colleagues (1991) of suicidality among 1,906
Iowans with affective disorders, the followup period ranged from 2 to

13 years. As they note, "The highly variable period of follow-up is also
a potential limitation, because those patients followed up for the shortest
periods may not have been given the opportunity for their suicidal out-
come toemerge" (p. 421). Had the researchers used survival methods
instead of logistic regression, they would have been better able to address
this concern because each person who did not commit suicide simply
would have been censored at followup.

Fifth, traditional analytic methods offer few mechanisms for including
predictors whose values vary over time or for permitting the effects of
predictors to fluctuate over time. To overcome this limitation, research-
ers studying the effects of time-varying variables tend to use predictor
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values corresponding to a single point in time, the average of predictor
values over time, or the rate of change in predictor values over time.

This is not necessary in survival analysis. The analytic effort is identical
whether the study is including predictors that are static over time or
predictors that change over time; so, too, it is easy to determine whether
the effects of predictors are constant over time or whether they differ over
time. There is no need to create a single-number summary of the tem-
poral behavior of a changing predictor. Traditional methods force
researchers into building static models of dynamic processes; survival
methods allow researchers to model dynamic processes dynamically.

Researchers in prevention research are encouraged to investigate the
design and analytic possibilities offered by survival methods. When
these methods were in their infancy and statistical software was either
not available or not user friendly, researchers reasonably adopted other
approaches. However, experience elsewhere in medicine and in the
social sciences shows that these methods, originally developed to model
human lifetimes, lend themselves naturaily to the study of other phenom-
ena as well. While software lags behind, this is an area of active research
with rapidly improving options (Harrell and Goldstein, in press).

Researchers rarely ask questions that they do not have the analytic
methods to answer. Many researchers who have been interested in the
timing of events have madified their questions because they did not know
how to build appropriate statistical models. The authors hope that this
presentation of survival analysis will help researchers reframe these mod-
ified questions and provide them with strategies for answering those
questions as simply and as directly as possible.

Where To Go To Learn More Abcut Survival Analysis

In the body of this chapter, the discussion of technical statistical issues
that arise in survival analysis has been purposefully avoided; indeed, the
authors have gone to great pains to ensure that the text is relatively free of
technicality. The goal of this chapter has been to make a strong case for
the use of survival methods in prevention research. For readers actually
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considering the use of survival methods, this section provides references
to written materials to consult before embarking on a study.

Readers interested in acquiring a more sophisticated background in these
methods can choose from among a wide range of published material, both
in books and in scholarly journals. An introductory monograph (Allison
1984) provides an excellent starting point for readers familiar with regres-
sion. It is a well-documented, accessible, and largely nontechnical intro-
duction to a broad range of survival methods. In less than 100 pages,
Allison touches on most of the important issues facing the user of sur-
vival analysis, including discrete- versus continuous-time methods, the
proportional hazards model and partial likelihood estimation (Cox regres-
sion), the analysis of competing risks, and repeated events.

Scattered through the scholarly literature are a variety of accessible arti-
cles that can be used to supplement Allison’s overview. Many of these
provide nontechnical reviews of the application of survival methods in
particular substantive areas. Anderson and colleagues (1980) use a
medical setting to present a readable introduction to many aspects of
survival analysis, ranging from displays and single-number summaries
through life-table testing and hazards-modeling. And in a recent pair of
papers, Singer and Willett (1991) and Willett and Singer (1991), expand
on the nontechnical overview offered here by reviewing applications of
survival analysis in psychological and educational research.

Readers wishing to supplement these introductions with greater technical
detail should consult one of the several "standard” texts. Although math-
ematically complex, Kalbfleisch and Prentice (1980) is a thorough and
well-written source. Other texts of similar stature are Cox and Oakes
(1984) and Miller (1981). In addition, there has been important method-
ological work on survival methods (known in sociology as event history
methods) pioneered by Mayer and Tuma (1990), Petersen (1991), and
Tuma and Hannan (1984).
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Researchers collecting data in discrete rather than continuous time should
learn more about discrete-time survival analysis. In addition, because
discrete-time hazard models are easy to apply, facilitate the recapturing of
the baseline hazard and survivor functions, can be estimated with stan-
dard logistic regression software, and allow the testing and, if necessary,
the relaxation of the proportionality assumption, even researchers with
continuous-time data also might want to explore this approach more fully.
In a pair of articles, Singer and Willett (1993) and Willett and Singer
(1993) provide an overview of discrete-time methods written for empir-
ical reses—chers. - The article by Willett and Singer (1993) is the place to
start for those seeking a data analytic perspective; the article by Singer
and Willett (1993) offers a more mathematical presentation. Readers
seeking further technical details on discrete-time methods can consult
Allison (1982), Efron (1988), or Laird and Olivier (1981).

NCTES

1. The order of the authors was determined by randomization. This
chapter was completed while the authors were American Statistical
Association/National Science Foundation Fellows at the National
Center for Education Statistics. Some of the material presented in
this chapter is taken from two earlier papers (Singer and Willett 1991;
Willett and Singer 1991). Address correspondence to either author at
Harvard University, Graduate School of Education, Appian Way,
Cambridge, MA 02138.

N

The authors estimated the sample survivor function in figure 1 using
summary data kindly supplied by Dr. Victor J. Stevens (Stevens and
Hollis 1989, figure 1, p. 422) using the Kaplan-Meier product limit
method (Kalbfleisch and Prentice 1980). The authors then smoothed
the obtained discrete estimates using a spline function (after the
recommendation of Miller [1981]). The same method was used to
create figures 2, 3, and 4. Their intentions were strictly pedagogic.
They wished to use continuous-time survivor and hazard functions
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to introduce the concepts of survival analysis before discussing the
differences between continuous-time and discrete-time methods.

3. Strictly speaking, this apparent magnification of one hazard profile to
give the other is only approximate in the discrete-time hazard model
and only holds when h; is small. For further discussion, see Willett
and Singer (1993).
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Time Series Models of Individual
Substance Abusers

Wayne F. Velicer

ABSTRACT

Time series analysis is a statistical procedure appropriate for repeated
observations on a single subject or unit. The goal of the analysis may be
to determine the nature of the process that describes an observed behavior
or to evaluate the effects of a treatment or intervention. Model identi-
fication involves specifying which of several alternative Autoregressive
Integrated Moving Average (ARIMA) models best describes the series
and may be used to investigate basic processes. This is illustrated by an
example involving selecting the model of nicotine regulation that best
represents smokers. Intervention analysis involves determining if there
are any changes in level or direction for the series as a result of the
intervention. Two types of applications have potential for the substance
abuse area: (1) evaluation of the effects of an intervention on a single
individual, and (2) evaluation of organizational-level changes (i.e.,
program evaluation). This is illustrated by an example that examines the
effect of relaxation therapy on blood pressure. Pooled time series
procedures are employed to combine the data from several different
individuals or units, either by cross-sectional analysis or meta-analysis.
In addition, several other issues are discussed that are critical to perform-
ing a time series analysis: selection of an appropriate computer program,
alternative procedures for handling missing data, procedures for multiple
observations at each occasion, and corrections for seasonal data.

INTRODUCTION

Time series analysis involves repeated observations on a single unit
(often a single subject) over time. In the area of prevention and treatment
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of substance abuse, the analysis of interest usually is an interrupted time
series analysis. The interruption corresponds to the occurrence of an
intervention, and the goal is to evaluate its effect. Traditional between-
groups statistical procedures cannot be employed because repeated
observations on the same unit cannot be assumed to be independent. The
presence of dependency may substantially bias a statistical test that does
not take it into account. The direction of the bias will depend on the
direction of the dependency. The most widely employed methods of
analysis for time series designs are based on the Autoregressive
Integrated Moving Average (ARIMA) models (Box and Jenkins 1976;
Box and Tiao 1965). These procedures permit the effects of dependency
to be statistically removed from the data (Glass et al. 1975; Gottman
1973; Gottman and Glass 1978).

Time series analysis has generated widespread interest for a number of
reasons. First, time series are applicable particularly to the study of
problems in applied settings where more traditional between-subject
designs are impossible or very difficult to implement and may not
accurately reflect the situations involved. Many prevention and treatment
programs for substance abuse occur in school or clinical settings.
Second, time series designs are appropriate particularly for dealing with
questions of causality because of the temporal occurrence of both the
intervention and effect of the intervention. Third, time series designs
possess the additional advantage of permitting study of the pattern of
intervention effects (i.e., temporary effects versus permanent effects,
changes in slope as well as change in level) over and above the usual
question of the existence of a mean treatment effect. The study of
substance abuse and the prevention and treatment of substance abuse
provides many situations where time series designs are the optimal
choice.

The employmeuit of time series methods also suffers from several
drawbacks. First, generalizability cannot be inferred from a single study,
only through systematic replication. Second, traditional measures may be
inappropriate for time series designs; measures are required that can be
repeated a large number of times on a single subject, usually at short
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intervals, Third, a large number of observations is required for accurate
model identification. Model identification is a necessary step in order to
remove the dependency present in the data. Advances in methods of
analysis in the last decade have provided partial solutions to the
generalizability issues and the sample size issues.

To illustrate the use of time series analysis, consider two examples. In
the first example, the effects of assertion training and muscle relaxation
therapy on blood pressure (hypertension) were studied (Printz 1978).
Figure 1 presents the results for a single subject. The baseline phase (A)
involved a series of regular (3 days/week) observations of the subject’s
blood pressure. After the 10th observation, the treatment phase (B)
started, which involved training in assertiveness and relaxation therapy,
and 16 more observations were taken. The followup phase (C) refers to
the end of active assertiveness training and relaxation therapy training;
only 11 regular measurements occurred, However, the subject was
expected to continue to employ -assertiveness and relaxation techniques
on his or her own.

The analysis estimates two parameters for each phase: level and slope.
Conceptually, a straight line is fitted to the data, with the level referring to
the intercept of the line and the slope referring the rate of increase or
decrease of the line. The slope refers to the rate of increase or decrease of
the series over time. A slope near 0.0 is common and would be presented
graphically as a nonincreasing line parallel to the time axis. In the case of
a near-zero slope, the level also can be interpreted as the mean. During
the A phase, the level of the series is 145.02, and the slope is increasing.
The introduction of the relaxation therapy results in a decrease of 27.09 in
the level of the series (in the figure, A Level = change in level) and a
decrease in the slope of the series (in the figure, A Slope = change in
slope). Both changes are significant and represent a positive outcome for
relaxation therapy. During the C phase, there is a further (nonsignificant)
decline in the level of the series and an additional decrease in the slope of
the series, which was significant. This indicates that the positive effects
of the relaxation therapy were maintained after the end of the
intervention.
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FIGURE 1. Example of an interrupted time series analysis

This study illustrates several of the strengths and weaknesses of time
series analysis. First, the study involved eight different subjects (seven in
addition to the one illustrated here), each treated as part of a therapist’s
regular practice over a period of approximately 1 year, each during a
different timeframe. This design illustrated how time series can be
incorporated into an applied setting. Second, the abrupt change in the
level of the series that occurred at the same time the intervention started
permits a strong causal inference about the relation between intervention
and the outcome. Third, the change in slope provides information about
the nature of the intervention. The drawbacks of time series analysis also
are illustrated by this study. The issue of generalizability was addressed
by employing multiple subjects to replicate the effect. In this case, the
treatment was effective in three of the cases. A potential explanation was
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that the treatment was effective only when the onset of hypertension was
rather recent in origin and less effective when the problem was of long
duration. The measure in this case was appropriate for repeated
observations. The length of the series was too short to permit model
identification. This stedy followed the Simontess (1977) approach (see
below) and assumes that a single model was the appropriate model for all
subjects.

The most widely used interrupted time series procedure is described by
Glass and colleagues (1975), Gottman (1973), and Gottman and Glass
(1978), following the approach of Box and Jenkins (1976) and Box and
Tiao (1965). It involves a two-step process: First, the researcher iden-
tifies which of a family of ARIMA (p, d, q) models is appropriate for the
data; then the researcher employs a specific transformation appropriate to
the identified model to transform the dependent observed variable (Z)
into a serially independent variable (Y)). Intervention effects then can be
evaluated by a generalized least squares estimate of the model param-
eters. This procedure suffers from a number of drawbacks, including:
(1) the requirement of a large number of data points for accurate model
identification; (2) excessive mathematical complexity; and (3) problems
with accurately and reliably performing the model identification task,
even when the recommended minimum number of observations are
obtained (Velicer and Harrop 1983). Alternative procedures that avoid
model identification have been proposed (Algina and Swaminathan 1977,
1979; Simonton 1977; Swaminathan and Algina 1977; Velicer and
McDonald 1984, 1991).

A key concept for time series analysis is dependence, This is assessed by
calculating the autocorrelations of various lags. A typical correlation
coefficient estimates the relation between two variables measured at the
same time. An autocorrelation estimates the relation between the same
variable measured on two occasions. For example, if researchers have a
series of observations and pair the second observation with the first, the
third observation with the second, and so on until the last observation is
paired with the second from the last observation, and they then calculate
the correlation between the paired observations, the lag 1 autocorrelation
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has been calculated. If the third is paired with the first and each
subsequent observation with the observation two occasions behind, the
lag 2 autocorrelation is calculated. The lag of an autocorrelation refers to
how far in the past. Typicaily, autocorrelations are between 1.00 and -
1.00. In the behavioral sciences, the size of the autocorrelation typically
will decrease as the lag increases. The exception is seasonal data. The
pattern of the autocorrelation and the related partial auto-correlations
(which will not be defined here) are employed as the basis for identifying
the specific ARIMA model. A white noise model is one where there is no
dependency in the data; i.e., the autocorrelations and partial
autocorrelations for all lags are O.

In this chapter, model identification and intervention analysis are treated
separately. Model identification can be the goal of a study. The first
section will discuss the problems of model identification and some of the
recent solutions to those problems and will present an example of the us
of time series model identification to the problem of theory-testing in the
addictive behavior area. The second section will review the analysis of
interrupted time series data, v hich is appropriate when an intervention is
present. The Box-Jenkins approach (Box and Jenkins 1976) will be
described in detail. Several alternative approaches also will be reviewed
with an emphasis on procedures that bypass the model identification step.
In contrast to the first section, this section will assume that model
identification is not a primary goal of the study. The third section will
describe procedures for generalization, including testing effects across
multiple units (subjects) and meta-analysis procedures. The last section
will review some specific problem areas for time series analysis: cyclic
data, missing data, software available for the analysis, and multivariate
procedures.

TIME SERIES MODEL IDENTIFICATION: GENERAL ISSUES

Model identification can be the goal of a time series analysis. Deter-
mining the specific model can identify a basic process. However, model
identification is a difficult and problematic procedure. In interrupted time
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series analysis, model identification often represents a first step, prelim-
inary to the goal of the analysis, which is the estimating and testing of the
preintervention and postintervention parameters (Box and Jenkins 1976;
Box and Tiao 1965, 1975; Glass et al. 1975; McCleary and Hay 1980;
Velicer and McDonald 1984, 1991). A variety of procedures have been
developed to identify the model (Akaike 1974; Beguin et al. 1980;
Bhansali and Downham 1977; Glass et al. 1975; Grey et al. 1978;
Hannan and Rissanen 1982; Kashyap.1977; McCleary and Hay 1980;
Parzen 1974; Pukkila 1982; Rissanen 1978, 19864, 19865; Schwartz
1978; Tsay 1984; Tsay and Tiao 1984). However, model identification
has been problematic because of the large number of data points required
for accurate identification, the complexity of the procedures, and
problems with accuracy and reliability, even under ideal circumstances
(Velicer and Harrop 1983). This section will illustrate the use of model
identification to answer a substantive question and illustrate the
procedures and inherent problems in model identification.

Definition of Model Identification

The ARIMA (p, d, q) model represents a family of models with the
parameters designating which specific model is involved. The first
parameter (p) is the order of the autoregressive parameter, and the last
parameter {q) is the order of the moving average parameter. The middle
parameter (d) represents the presence of instability or stochastic drift in
the series. Each of the parameters of the model may be of order 0, 1, 2, 3,
or more, although higher-crder models are unusual in the behavioral
sciences (Glass et al. 1975). A parameter equal to O indicates the absence
of that term from the model.

Model identification involves a number of aspects that can be determined
with varying degrees of accuracy. Selection of the model involves deter-
mining which specific model from the ARIMA (p, d, q) family of models
most parsimoniously describes the data. This is a difficult task to
accomplish accurately because the different models, under certain
conditions, can appear very similar. For example, a first-order moving
average model is identical to an autoregressive model of high order.
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Order refers to how many preceding observations must be considered in
order to account for the dependency in the series. Accuracy is difficult
because higher-order autocorrelation terms typically are closer to 0 than
first-order terms and, therefore, are more likely to be included within the
bounds for any error estimate. Order reflects how far into the past one
must go to predict the present observation.

Degree of dependency refers to how large the autocorrelations are on a
scale from 0.0 to 1.0. As with other dependency indicators, this can be
interpreted as the strength of relationship between consecutive measure-
ments. The accuracy of estimation is largely a function of the number of
observations with numbers of observations over 100 providing reason-
ably accurate estimates (Box and Pierce 1970; Glass et al. 1975; Ljung
and Box 1978). The degree of dependency indicates the extent to which
an observation at any point in time is predictable from one or more
preceding observations. For example, if data were collected every 12
hours, then finding an order I model would suggest that the previous
observation (z-1 = 12 hours ago) was more important than the second
previous observation (-2 = 24 hours ago) in predicting the level of the
series at time £.

Direction of dependency refers to whether the autocorrelation is positive
or negative. This can be determined with a high degree of accuracy when
the dependency clearly is nonzero. The direction is of less interest as the
degree of dependency approaches 0. The direction of dependency has
clear implications. If the sign of the autocorrelation is negative, a high
level for the series on one occasion will predict a low level for the series
on the next occasion. If the sign is positive, an above-average level of the
series on one occasion will predict a higher-than-average level on the
next occasion.

lilustrations of Alternative Time Series
Figure 2 illustrates four different types of models with computer-

generated data (N, = N, = 20) for an ARIMA (1, 0, 0) model. Graph (a)
represents an ideal interrupted time series example with no error and an
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immediate change in the level of one unit at the time of intervention.
Graph (b) is the same model with the same change in level but with a
random-error component added. The variance or the random error is
1.00. There is no autocorrelation in this model. Graph (c) is a model
with the same change in level and error variance but with a large negative
autocorrelation (-.80). Graph (d) is a model with the same change in
level and error variance as (b) but with a large positive autocorrelation
(+.80). The impact of dependency can be observed easily. The negative
dependency results in an exaggerated "sawtooth” graph with increased
apparent variability. The positive dependency resuits in a smoother graph
with decreased apparent variability. The inclusion of an intervention
effect (the change in level) illustrates how difficult it is to determine by
visual inspection alone if an intervention had an effect.

Example

To illustrate the use of model identification in theory-testing, the author
will present briefly the results of a recent study (Velicer et al. 1992a)
designed to determine which of three models of nicotine regulation best
represented most smokers. These models seek to explain the mechanism
that determines how smokers increase or decrease their level of smoking
in order to maintain a certain level of nicotine in their systems. Three
measures were employed in the study but only one, number of cigarettes,
is described here.

Nicotine Regulation Models. Three alternative models have been
employed to account for nicotine’s effectiveness in maintaining smoking:
(1) the nicotine fixed effect model, (2) the nicotine regulation model, and
(3) the multiple regulation model. Leventhal and Cleary (1980) provide a
review of the literature and a description of each of the three models.
Each of the three models is identified with one of three broad classes of
time series models: (1) a positive dependency model, (2) a white noise
model (no dependency), and (3) a negative dependency model.

The nicotine fixed effect model assumes that smoking is reinforced
because nicotine stimulates specific reward-indncing centers of the
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FIGURE 2. Illustrations of four time series using computer-
generated data for ARIMA (1, 0, 0) models

SOURCE: Reprinted from Addictive Behaviors, 17; W.F. Velicer,
C.A. Redding, R.L. Richmond, J. Greeley, and W.
Swift; A time series investigation of three nicotine
regulation models, 325-345; Copyright (1992), with
kind permission from Elsevier Science, Ltd., The
Boulevard, Langford Lane, Kidlington OX5 1GB, UK

nervous system. These have been identified as either autonomic arousal
or feeling of mental alertness and relaxation or both. There is not a large
body of evidence or a gobd formal statement available for this model.
Following this model, an increase on one occasion should be followed by
an increase on the next occasion, or 2 decrease on one occasion should be
followed by decreased consumption on a subsequent occasion if the same
level of arousal is to be maintained. In time series model terms, this
would result in a positive antocorrelation.
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The nicotine regulation model assumes that smoking serves to regulate or
titrate the smoker’s level of nicotine. Departures from the optimal level,
or set point, will stimulate an increase or decrease in smoking to return to
this optimal nicotine level. Jarvik (1973) presents a review of a large
body of evidence which supports this model (also see Schachter [1977]
and Russell [1977]). The model suggests that any increase or decrease in
smoking caused by events in a person’s environment should be tem-
porary. The person should return immediately to their personal set point
when the environment permits. This would result in a white noise model
with an autocorrelation of 0.

The multiple regulation model represents a more complex model
designed to overcome soine of the problems of the nicotine regulation
model—specifically, how the nicotine set point develops and how devia-
tions from the set point generate a craving for cigarettes. Leventhal and
Cleary (1980) summarize some of the evidence the nicotine regulation
model cannot adequately account for, and they suggest the multiple
regulation model as an alternative. This model is an elaboration of similar
models by Sciomon and Corbit (1973, 1974) and Tomkins (1966, 1968);
also see Solomon (1980). This model assumes that the smoker is regu-
lating emotional states. Drops in nicotine level stimulate craving. One
way to link craving to nicotine level is the opponent-process theory
(Solomon 1980; Solomon and Corbit 1973, 1974), which posits that
nicotine gives rise to an initial positive-affect reaction that is followed
automatically by a slave opponent negative-affect reaction. The oppo-
nent state becomes stronger with repeated activation and can be
eliminated by reinstating the initial positive state. External stimulus
provides an alternative source for craving. The theory would predict that
an increase (or decrease) in smoking rate caused by events in a person’s
environment should be followed by an opposite decrease (or increase) in
smoking rate. This would result in a negative autocosrelation at lag 1 and
alternating positive and negative autocorrelations at subsequent lags.

As an analogy, view each model as positing a predetermined level for

each smoker. The environment (both internal and external) produces a
"shock" to the system, causing nicotine intake to exceed or fall below the
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predetermined level. The three models differ on the strength of the forces
that return the smoker to his or her level. Researchers can think of this as
a physiological or psychological "rubberband.” The nicotine fixed effect
model proposes a weak rubberband so that some of the shock remains in
the system at the next observation. This would result in a positive depen-
dency. The nicotine regulation model assumes that the rubberband is
perfectly accurate, returning the system to its original level at the next
observation. This would result in a white noise (or zero dependency)
model. The multiple regulation model proposes a very strong rubberband
that carries the system past the level in the opposite direction on the next
observation. The system would osciliate around the individual’s set
point, slowly damping down to that level. This would result in a negative
dependency model.

Subjects. In order to achieve stable autocorrelations, time series analysis
requires a minimum of 100 data points (Box and Jenkins 1976; Glass et
al. 1975). The study (Velicer et al. 1992a) employed 10 smokers (4 male
and 6 female), from whom measures were collected twice daily for two
months (62 days). Deletion (i.e., deletion of the missing observation and
closing up the series) and mean value were both used for missing data.

Measure: Number of Cigarettes. Having subjects monitor their own
smoking behavior is one of the most commonly employed measures in
smoking research (McFall 1978; Velicer et al. 1992b). This is an inex-
pensive and convenient means of gathering data. The accuracy and
reliability of data gathered through self-monitoring are not always as high
as that of data gathered through other techniques. However, the advan-
tages of using self-monitoring typically outweigh the disadvantages.
Heatherton and colleagues (1989) have found the number of cigarettes
smoked per day to be a valuable index of heaviness of smoking (also see
Velicer et al. 1992b).

Model Identification Procedures

Model identification involves determining if autoregressive terms or
moving average terms must be included to describe the data fully. The
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distribution of the autocorrelations and partial autocorrelation provides
the basis for making such decisions. For an autoregressive component,
the autocorrelations will decay slowly to 0 for increasing lags, and the
partial autocorrelations will drop abruptly to O when the appropriate lag
(p) is reached. For the moving averages component, the autocorrelations
will drop abruptly to O when the appropriate lag (p) is reached, and the
partial autocorrelations will drop slowly to 0. Model identification in this
study was restricted to autoregressive models only, a procedure consistent
with current practice (Djuric and Kay 1992; Gottman 1981; Velicer and
McDonald 1984, 1991). Diagnostic checks on the residuals were per-
formed to test the appropriateness of this procedure. A third component,
drift, was set equal to 0 a priori for all identification problems based on a
preliminary evaluation of the data. Models that demonstrate no depen-
dence are called white noise models and are described as ARIMA

(0, 0, 0) models.

Five different procedures were employed for model identification. Fisst,
traditional visual analysis of the autocorrelations and partial autocorre-
lations was performed. The visual analysis required the consensus of
three raters. Then four different automated methods for order identi-
fication of autoregressive models were employed: (1) predictive
minimum descriptive length (Rissanen 1986a); (2) predictive least
squares (Rissanen 1986b); (3) predictive least absolute value (Djuric and
Kay 1992); and (4) predictive density criterion (Djuric and Kay 1992).
Two additional methods were considered and rejected: (1) Akaike
information criterion (AIC) (Akaike 1974), and (2) minimum descriptive
length (MDL) (Rissanen 1978; Schwariz 1978). A recent simulation
study evaluating these six criteria (Djuric and Kay 1992) found that AIC
and MDL tended to overestimate the order of series. In this study, these
two criteria were inconsistent with either visual analysis or the other four
criteria, typically finding a much higher order, so they were eliminated
from consideration.

For the majority of model identification, all five procedures converged on

the same answer. When disagreement occurred, it typically was a differ-
ence of one in order, and all models were reviewed. Disagreements
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typically involved a low autoregressive coefficient that was approx-
imately equal to the critical value for statistical significance. The more
parsimonious fit (lower order) was employed when the evidence for the
higher-order model was weak and the inclusion of the additional term
would not result in a change in interpretation.

Results

Seven of the subjects were described by a first-order autoregressive
model with a high degree of negative dependence (-.30 to -.80). All
subjects reported on their smoking behavior in the morning and after-
noon. The autocorrelation resulted in a very clear, easily identified model
with a high degree of autocorrelation. This pattern is consistent with the
multiple regulation model, and the study was interpreted as supporting
that model.

Three of the subjects did not show the same pattern. One of the subjects
worked some weeks during the day and some weeks at night. This
subject also missed a number of sessions and terminated prematurely.
One subject was a very controlled smoker, smoking 15 cigarettes at
predetermined intervals. All three averaged less than a pack a day.
However, two subjects who demonstrated the pattern of high negative
dependence also smoked less than a pack a day.

Figure 3 presents the data graphically for four subjects. Two of the
subjects (BEN and RIC in panels [a] and [b], respectively) were
representative of the seven subjects characterized by a high negative
dependence. The exaggerated "sawtooth" shape of this type of time
series is clearly observable. Two subjects (JXIVl and WON in panels {c]
and [d], respectively) were representative of the three subjects who
demonstrated either a zero or low positive dependence. The time series
graphs for these two subjects are much smoother and more regular. The
positive dependency subject (WON) produced a smoother pattern than
the zero dependency subject (JIM).
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FIGURE 3.

SOURCE:

Hlustrative time series graphs of the number of
cigarettes for four subjects

Reprinted from Addictive Behaviors, 17; W.F.
Veljcer, C.A. Redding, R.L. Richmond, J. Greeley,
and W. Swift; A time series investigation of three
nicotine regulation models, 325-345; Copyright
(1992), with kind permission from Elsevier Science,
Ltd., The Boulevard, Langford Lane, Kidlington
0X5 1GB, UK
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INTERRUPTED TIME SERIES ANALYSIS

The simplest interrupted time series analysis is a design that involves
repeated observations on a single unit followed by an intervention that is
followed by additional observations of the unit. The purpose of the
analysis is to determine if the intervention had an effect. The example
presented earlier and figure 1 illustrate this approach. The analysis
involves some preprocessing of the data to remove the effects of depen-
dence. Several alternative procedures will be described below. The
analysis then involves a general linear model analysis using a generalized
least squares or Aitken estimator (Aitken 1934; Morrison 1983). The
intervention can be an experimental manipulation, such as a drug or
treatment for an addiction, or it can be a naturally occurring event, such
as a change in policy or funding for a public program. If the intervention
effect is significant, it frequently is of prime interest to cvaluate the form
of the effect. One of the advantages of time series analysis is the ability
to assess the nature of change over time.

-

The next section will describe the Box-Jenkins pracedure (Box and
Jenkins 1976). Several variations on this procedure have been pro-
posed to eliminate the problematic model identification step and will be
described afterward. Some of the more technical material has been
placed in italics so that readers may skip over this material and still
follow the presentation.

Box-Jdenkins Intervention Analysis

An intervention for the prevention or treatment of substance abuse can be
evaluated using a Box-Jenkins analysis. The Box-Jenkins procedure
(Box and Jenkins 1976), as adapted by Glass and colleagues (1975), is a
two-step process. First, the autocorrelations and partial autocorrelations
are calculated for various lags. This information is the basis for
identifying the specific ARIMA model (i.e., specifying the value for p, d,
and q). Model identification determines the specific transformation
matrix to be used. The purpose of this transformation is to remove the
dependence from the data so that they can be analyzed by the usual
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statistical procedures. Second, the data are analyzed with a modified
general linear model program, and the parameters are estimated and
tested for significance. The general linear model is the general analytic
procedure that includes multiple regression, analysis of variance, and
analysis of covariance as special cases. After the dependence in the data
is accounted for, the analysis follows standard estimation and testing
procedures.

A typical probleml would be to determine if the level of the series has
changed as a result of the intervention. The analysis will be described
without the transformation first. For the simplest analysis, this would
involve the estimation of two parameters: L, the level of the series, and
D, the change in level after intervention. A test of significance then could
be performed on the hypothesis of prime interest, H :D = 0. This could
be expressed in terms of the general linear model as

Z=Xb+a (1)

where Z is the NxI vector of observed variables (N = n+n,), where N is
the total number of observations with n, occurring before intervention; X
is the Nxp design matrix, where p is the number of parameters estimated;
b is the px1 vector of parameters; and a is the NxI vector of residuals.
For this example, the vector of parameters contains two components,
namely L and D. The design matrix is presented in panel A in table 1.

The usual least squares solution is
b=(X'X)"'Xx'2 (2)

and a test of significance for the null hypothesis H,: b, = 0
(i.e., H,: D = 0 is given by

t,=bls,, (3)
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TABLE 1. Examples of common design matrices (X) for single-unit analysis

(N,=N,=5)
(a) Immediate and constant (b) Immediate and constant

changes in level changes in level and slope
1 0 1 0 1 0
1 0 1 0 2 0
1 0 1 0 3 0
1 0 1 0 4 0
1 0 1 0 5 0
1 1 1 1 6 1
1 1 1 1 7 2
1 1 1 1 8 3
1 1 1 1 9 4
1 1 1 1 10 5

(¢) Delayed change in level {d) Delayed change in level

1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 0 1 0
1 1.0 1 0
1 .5 1 0
1 25 1 1
1 13 1 1
1 07 1 1

281



where
st =sic (4)

and .s‘za is the estimate of the error variance and C' is the ith diagonal
element of (X 'X)"!. The test statistic would have a t distribution with
degrees of freedom N-p.

Figure 4 illustrates eight different outcomes for a simple one-intervention
design. In a typical between-two-groups experimental design, only one
assessment occurs after treatment. By inspecting the different patterns of
change over time, researchers can see that selecting different points in
time for the single assessment would result in very different conclusions
for five of the examples (D, E, F, G, and H). The evolutionary effect (D)
is a good example of where the intervention results in a temporary
negative effect, perhaps while a response pattern is unlearned, followed
by a positive effect. An early assessment would conclude that the
treatment had a negative effect; a somewhat later assessment would find
no treatment effect, while an even later assessment would find a positive
treatment effect.

Alternative specifications of the design matrix permit the investigation of
different hypotheses concerning the nature of the intervention. Table 1
presents some illustrative examples for an N = 10 (N, = N, = 5) case.
Panel (a) is the design matrix for an immediate and constant treatment
effect. Panel (b) is the design matrix for testing a change in both level
and slope. Panel (c) is the design matrix for a decaying treatment effect.
Panel (d) is the design matrix for testing a delayed treatment effect.

Alternative specifications of the design matrix permit the investigation of
different hypotheses concerning the nature of the intervention. Table 1
presents some illustrative examples for an N = 10 (N; = N, = 5) case.
Panel (a) is the design matrix for an immediate and constant treatment
effect. Panel (b) is the design matrix for testing a change in both level
and slope. Panel (c) is the design matrix for a decaying treatment effect.
Panel (d) is the design matrix for testing a delayed treatment effect.
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(A) No treatment effect (E) Change in lcvcl/
(B) No treatment effect (F) Change in level

__1/ -—1/

(C) Change in level & slope (G) Delayed treatment effect
(D) Evolutionary effect (H) Decaying treatment cffect

FIGURE 4. Eight alternative outcomes for a simple intervention
design

The general linear model cannot be applied directly to time series
analysis because of the presence of dependency in the residuals. It is
necessary to perform a transformation on the observed variable, Z,, to
remove dependency prior to the statistical analysis. A transformation

matrix T must be found, yielding
Y=TZ (5)

and

X =TX (6)
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Given T, the estimate of the parameters, b, may be expressed as a
generalized least squares problem; that is,

b=(X'TTX)'X'T'TZ (7)

and
b=XXY'X'Y (8)

The purpose of the model identification step is to determine the appro-
priate transformation of Z into Y. Table 2 presents six common ARIMA
models. After model identification, an estimation procedure is employed
to determine the specific numeric values of @ and ©. Appropriate tests of
significance are based on asymptotic theory.

The Box-Jenkins approach to intervention analysis suffers from a number
of difficulties. First, the number of data points required for model identi-
fication often is prohibitive for research in applied settings. Second, even
for the required number of points, correct identification is problematic
(Velicer and Harrop 1983). Third, the method is complex, making
applications by the mathematically unsophisticated researcher difficult.
Three alternative approaches are described in the next section, all of
which attempt to avoid the problematic model identification step.

Alternative Approaches

Simonton (1977) proposed a procedure that avoids the problem of model
identification by using an estimate of the variance-covariance matrix
based on a pooling of the observations across all subjects observed. This
approach, however, requires a basic assumption. All series are assumed
to be (1, 0, 0). While the assumptions seem to be theoretically indefen-
sible, empirical investigations indicate that this procedure works well in a
wide variety of cases (Harrop and Velicer 1985).

Algina and Swaminathan (1977, 1979) and Swaminathan and Algina
(1977) have proposed an alternative to Simonton’s statistical analysis that
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TABLE 2. Common ARIMA models

Label (p,d, q) Descriptive Formula Comment
White noise (0,0,0) Z, =L+a, No dependency
in the data
Autoregressive (1,0,0 Z-L = elZ, ~L)+a, Predicted from
Order One previous
observations
Autoregressive (2,0,0) Z-L = o(Z ~Lj+ Predicted from
Order Two @)(Z,-L)+a, previous two
observations
Moving averages ©,0,1 Z~L=2a-0a, Proportion of
Order One previous shock
affects observation
Meving averages 0,0,2) Z~L=3a-0,3a ~23,, Proportion of two
Order Two previous shocks
affecting observations
Integrated o110 Z-Z =303, Stochastic drift and
average proportion of

previous shock
affect observation

employs a profile analysis. The sample variance-covariance matrix is
employed as an estimator for T /T in the modified least squares solution
(see equation [7]). This approach, however, requires the assumption that
the number of subjects is greater than the number of observations per
subject. This is not a condition that is likely to be met in most applied
research settings, where time series approaches are most appropriate.

The transformation of the observed variable, Z, is required because the
observed data contain dependence and, therefore, do not meet the require-
ments of the general linear model. All transformation matrices, T, have
an identical form—a lower triangular matrix with equal subdiagonals.
Instead of trying to determine the specific matrix, Velicer and McDonald
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(1984) propose a general transformation matrix with the numerical values
of the elements of T being estimated for each problem. Weight vectors
with five nonzero weights are accurate for most cases. A greater number
of weights can be employed where indicated by appropriate diagnostics
(Velicer and McDonzald 1984). The accuracy of this approach has been
supported by two simulation studies (Harrop and Velicer 1985, 19905b).

TIME SERIES ANALYSIS FOR MULTIPLE UNITS

One of the issues involved in time series analysis is generalizability.
How can the results from a single individual be generalized to a larger
population? Hersen and Barlow (1976) discuss the problems in terms of
systematic replication, The example discussed previously involving the
impact of relaxation therapy on blood pressure employed this approach.

However, this procedure involves logical inference rather than formal
statistical inference. Two approaches have been developed for statistical
inference on multiple units: pooled time series designs and meta-
analysis.

The next section will describe an approach to pooled time series analysis
that recently was proposed by Velicer and McDonald (1991). This
approach is an extension of the general transformation approach
described above. However, the same approach can be adapted with only
minor alterations to implement the procedures developed by Box and
Jenkins (1976), Glass and colleagues (1975), or Simonton (1977).

Pooled Time Series Analysis

This approach to time series analysis for multiple units represents a direct
extension of the analysis for single units and requires only the use of a
patterned transformation matrix. The specific choice of the design matrix
X and the number of units will be dictated by the particular questions of
interest. The procedure wili be illustrated by a two-unit example (K = 2),
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where the design employed involves only level and change in level (the
design matrix in panel A in table 1).

The observations for all the units can be represented by a supervector of

observations of length N, which is composed of the vector observations
(preintervention and postintervention) for each of the units, or

®

and where there are n, observations before intervention and n, obser-
vations after intervention on both unit 1 and unit 2, Table 3 presents an
example of the patterned general transformation matrix that would be
employed to transform the seriaily dependent Z, variables to the serially
independent variables Y. The transformation matrix always will take the
form

[ T* 0 6 . . 0
9 T o . 0
0 0 ™ 0
. . . . . . (10)
o 0o o ... T

where T is an NxN lower diagonal transformation matrix (N = n,+n,)
and 0 is an NxN null matrix. The occurrence of the null matrices in all
positions except the diagonal reflects the assumption of independence of
the different units.

The use of a properly parameterized design matrix will permit compar-

isons between different units. Table 4 presents an illustrative example.
The design matrix in panel (a) includes four parameters that reflect
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TABLE 3. Example of general transformation matrix (T) for cross-
sectional analysis (k=2:n;; = n,=n, =n, =4)

1 00 00 00O OO0 0O O 0O O
W,0 0 0 06 000 0 0 00 0 00 0
W,W,1 0 0 000 0 0 00 0 00 0
W,W,W,1 0 0 0 0 0 0 00 0 00 0
W, W,W, W, 1 0 0 0 0 0 00 0 00 0
W, W, W, W, W, 1 0 0 0 0 00 0 00 0
0O W,W,W,W, W, 1 0 0 0 00 0 0 0 0
0 0 W,W,W, W, W, 1. 0 0 00 0 0 0 0
0 00 00O OO 1 0 00 0 00 0
000 0 0 000 W1 00 0 00 0
0O 00 0 00O O 0 W,W,10 0 0GC0
0 0 0 00 0 0 0 W,W,W,1 0 020 0
O 00 00O 0O O 0 W,WyW,W,1 00 0
00 00 0 0 0 0 W,W, WW, W, 10 0
0 00 00O O 0 0 W, WW,W, W10
6 00 0 0 0 0 0 0 0 WW W, W,Ww,1

th
£
w
[ 5]
—

level and change in level for both units and the difference between the
two units on preintervention and postintervention change in level. If the
last parameter (i.e., the difference between the units on the postinterven-
tion change in level) is not significant, the design matrix in panel (b)
would be adopted, reflecting no difference between the two units in inter-
vention effects (change in level). Differences between units would seem
likely to be fairly common for most problems. However, if no such
differences exist, the design matrix in panel (c) would be appropriate.
The design matrix in panel (d) is appropriate if no intervention effects or
differences between units exist.



TABLE 4. Example of design matrix (X) for cross-sectional problem
with level and change in level analysis

(b) No difference (c) No difference (d) No

(a) Full model . . e e . .
in intervention in individual intervention
effects effects effects

1000 100 10 1
1000 100 10 1
1000 100 10 1
1000 100 10 1
1100 110 11 1
1100 110 11 1
1100 110 11 1
1100 110 11 1
1010 101 10 1
1010 101 10 1
1010 10 10 1
1010 10 10 1
1111 111 11 1
1111 111 11 1
1111 111 11 1
1111 111 11 1

The procedure can be generalized to any number of units and any choice
of design matrix. Implicit is the assumption that a common transfor-
mation matrix is appropriate for all units. This assumption seems reason-
able if the nature of the series is viewed as determined by an underlying
process specific to the construct under investigation. As with any of the
analytic approaches, diagnostic indicators like the Ljung and Box test
(1978) may be used to test the fit of the model. The basic form of the
design matrix should be based on the analyses of the individual units
and/or a priori knowledge when available.
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The approach described here has a number of advantages. First, it
represents a direct extension of the general transformation approach
developed by Velicer and McDonald (1984). This approach avoids the
problematic mode! identification step and has received a favorable
evaluation in several simulation studies (Harrop and Velicer 1985,
19900b).

Second, the approach described here also can be adapted to two of the
alternative methods of analysis. For the approach developed by Glass
and colleagues (1975), a specific transformation matrix could be specified
for a particular ARIMA (p, d, q) model and would replace the general
transformation matrix employed here. Following the Simonton (1977)
approach, the ARIMA (1, 0, 0) transformation matrix would be used for
all cases instead of the general transformation approach.

Third, the approach is a simple, direct extension of existing procedures. It
can be implemented easily by a slight modification of existing computer
programs like GENTS (Velicer et al. 1986) or TSX (Glass et al. 1974).
The problems of adaptation will involve problems of size and speed
created by the use of supervectors rather than an increased complexity

of the analysis.

Meta-Analysis

An alternative procedure to combining data from several individuals or
units is meta-analysis. Procedures for performing a meta-analysis have
been well developed for traditional experimental designs (Hedges and
Olkin 1985; Hunter and Schmidt 1990; Tobler, this volume). Meta-
analysis procedures have not been applied previously to single-subject
designs. Two problems exist in applying meta-analysis to this area:
(1) primary research reports often have relied on visual analysis rather
than time series analysis, resulting in a lack of basic statistical infor-
mation (O’Rourke and Detsky 1989), and (2) alternative definitions of
effect size must be developed. Allison and Gorman (1992) review some
alternative effect size calculations appropriate for time series designs.
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DISCUSSION

The topics discussed in the previous sections—model identification,
intervention assessment, and pooled time series analysis—represent the
three critical issues in time series analysis that have received the most
attention. There are several other topics that are either of less interest or
currently are under development. They will be discussed briefly in this
section.

Cyclic Data

A potential confounding variable in time series data is the presence of
cyclic or seasonal data, Ecuiyomic data frequently are affected by the
months of the year, or the "season." Daily data gathered on individuals
may have a weekly or monthly cycle. Three alternative procedures,
discussed below, have been proposed to deal with cyclic data.

Deseasonalization. In some content areas, the cyclic nature of the data
is well known. For example, in economics, many of the data are adjusted
for seasonal effects before it is reported. These seasonal adjustments,
based on a priori information, remove cyclic trends from the data prior to
any time series analysis.

Statistical Control. An alternative method of adjusting for seasonal
effects is to find some variable that is sensitive to the same seasonal
effects as the dependent measure but cannot be affected by the inter-
vention. This variable then could be used as a covariate. The cyclic
effects would be statistically controlled. Some of the problems in using a
covariate are discussed below.

Combined Models. A third alternative approach involves the use of
combined models. McCleary and Hay (1980) discuss this approach in

detail. As an example, suppose a time series is represented by a lag 1
toving averages model, as below:

Z-L=A-9, A, an
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Furthermore, assume that a seasonal component of lag 12 also’is present.
This could be modeled as

Z,-L=A-0,A,, (12)

The time series, therefore, would be described as an ARIMA (0, 0, 1)
(0, 0, 1),, model or

Z-L =A-BA DAFOLA ) (13)

Unlike the first two approaches, the combined models approach presents
difficulties for the extension of this procedure to either pooled procedures
or multivariate time series approaches and would require longer series.

Missing Data

Missing data are an almost unavoidable problem in time series analysis
and present a number of unique challenges. Life events will result in
missing data even for the most conscientious researchers. In the model
identification study described previously, missing data were a relatively
minor problem. Four subjects had no missing data (i.e., all 124 obser-
vations were available). For four other subjects, four or fewer
observations were missing. Only two subjects showed significant
amounts of missing data (115 and 97 observations).

The problem of missing data has received little attention in the behavioral
sciences area. Rankin and Marsh (1985) assessed the impact of different
amounts of missing data for 32 simulated time series modeled after 16
real-world data examples. They concluded that, with up to 20 percent
missing data, there is little impact on model identification, but the impact
is pronounced when more than 40 percent is missing. In an extensive
simulation study, Colby and Velicer (under review) compared four
different techniques of handling missing data: deletion from the analysis,
substitution of the mean of the series, substitution of the mean of the two
adjacent observations, and a maximum likelihood estimation (Little and
Rubin 1987). The mean of the series was judged unacceptable. The
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mean of the adjacent points and deletion worked well for a large number
of cases but not for all cases. The maximum likelihood procedure was
the best procedure across all conditions.

Computer Programs

Analysis of time series data requires the vse of a computer program.
Fortunately, a large number of programs have become available in the
last two decades. Unfortunately, the quality of the available programs is
quite variable. Harrop and Velicer (1990a, 1990b) evaluated five
programs: BMDP (Dixon 1985), GENTS (Velicer et al. 1986), ITSE
(Williams and Gottman 1982), SAS (SAS Institute 1984), and TSX
(Bower and Glass 1974). Simulated data from 44 different ARIMA
models were employed to assess the accuracy of the programs (Harrop
and Velicer 1990b). Three programs produced generally satisfactory
results (TSX, GENTS, and SAS). One was inaccurate across a wide
range of models (ITSE), and one was occasionally inaccurate and
occasionally failed to complete the analysis (BMDP). For all five
programs, the overall evaluation of the computation features and quality
of documentation was not very favorable (FHarrop and Velicer 1990a).
All suffered from at least one flaw, with documentation frequently being
either nonexistent or inadequate. In particular, SAS and BMDP did not
provide adequate documentation for most social science applications.
TSX and GENTS had no documentation aside from published research
reports and comments contained in the code.

Multivariate Time Series Analysis

Time series analysis on a single dependent measure involves many of the
procedures common to the multivariate statistics because two vectors of
unknowns must be estimated simultaneously; these are the vector of
parameters and the vector of coefficients, which represent the dependency
in the data. The term "multivariate time series” denotes the observation
of more than one variable at each point in time. If the additional
variables are conceptualized as being unable to be influenced by the
intervention, the appropriate analysis has been labeled a concomitant
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variable analysis (Glass et al. 1975) and is a direct analog of the analysis
of covariance. The covariate is employed to statistically remove some
variation from the dependent measure, thus increasing sensitivity. Two
problems arise: (1) What is the proper lag between the covariate and
dependent variable, and (2) how should dependency in the covariate be
handled? One application of this procedure is to control the effects of
seasonality in the data (see Cyctic Data section).

Alternatively, all of the observed variables could be conceptualized as
dependent measures. Molenaar (1985, 1987), Molenaar and colleagues
(1992), and Pefia and Box {1987) have presented two approaches to this
problem, but examples of the application of these procedures have not
appeared in the literature yet. The problems are direct extensions of the
covariate applications (i.e., determining the appropriate lag for relating
the dependent measures and dealing with the potential of different
dependency models). In addition, alternative approache~ could involve
dealing with all p dependent measures simultaneously, «..mbining the p
measures into a single optimum composite, or defining a set of m new
composites (m < p) and interpreting these composites.

Application Issues

A number of critical design issues must be addressed before applying
time series analysis to substance abuse problems. First, the unit of
analysis must be defined. For several examples discussed here, the unit
of analysis was assumed to be a single individual. Treatment outcome
studies, even if they involve multiple subjects, can be analyzed profitably
as a series of studies at the individual level. The outcome of the studies
can be treated as replications and combined using cross-sectional proce-
dures or meta-analysis procedures. If differences exist between subjects,
hypotheses can be generated and a systematic replication procedure
employed (Hersen and Barlow 1976). Alternatively, the unit can be an
aggregate group of people, and the interventions can apply only at the
group level, such as policy changes. The same methods of analysis can
be applied to the group data.
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Studies of this type typically are called evaluation studies {Cook and
Campbell 1979). A recent study of this type investigated the impact of
two interventions on narcotics use and property crime (Powers et al.
1991); the researchers concluded that methadone treatment has long-term
benefits in reducing drug use and property crime but that legal super-
vision had the contrary effect of increasing both property crimes and
narcotics use.

Second, only very simple designs have been described here. More
complex designs involving multiple interventions may be appropriate,
and the analysis procedures generally differ only with respect to the
design matrix employed. A variety of textbooks discuss alternative
designs and the relation of the designs to different threats to validity
(Campbell and Stanley 1963; Cook and Campbell 1979; Glass et al.
1975).

Time series analysis has a tremendous potential for applications to
substance abuse problems. During the last decade, a combination of
computational advances and alternative statistical procedures have
increased the ease of application and the range of potential applications.
Two of the early drawbacks, the large sample size required for model
identifications and problems with generalizability, have been largely
overcome in the last decade. Time series analysis should be viewed as
representing one of a variety of potential methods of analysis available to
all researchers rather than a novel and difficult procedure.

NOTES

1. TItalicized sections may be skipped without loss of continuity.

2. Requests for reprints should be sent to Wayne F. Velicer, Ph.D.,
Professor and Co-Director, Cancer Prevention Research Center,

University of Rhode Island, Flagg Road, Kingston, RT 02881-0808
(BITNET: KZP101@URIACC).
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