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ABSTRACT

This paper presents an approximate procedure for computing selected
performance characteristics of an urban emergency service system. Based
on a recently developed hypercube queuing model , the procedure requires
for N servers solution of only N simultaneous equations, rather than 2N
as in the exéct model. The procedure relies on the theory of M/M/N
queues in which servers are selected randomly and without replacement
until the first available ZEEee) server is found. The underlying model
is intended for analyzing problems of vehicle locat.on and response dis-—
trict design in urban emergency services, includes interdistrict as well
as intradistrict responses, and allows computation of several point-specific

as well as area-specific performance measures.

Recent analytical and simulation studies [2,3,12,13] have suggested
ways of modeling certain spatially distributed emergency-service systems
such as police, ambulance, and fire. While significant progress has been
made in developing computer algorithms that calculate the performance
characteristics of these systems from such models, there remains a strong
need for more approximate methods that could be carried out either by
hand calculation or by an easy-to—program computer algorithm.

The model presented in this paper can be used to analyze a number of
resource allocation problems of urban emergency services, including (1)
the "districting problem," (2) the "location" problem, and (3) the "work-
load balancing problem."

Given a region with a certain spatial distribution of demands for
service and given N response units that are spatially distributed through-
out the region, the districting problem is often stated as follows: '"How
should the region be partitioned into areas of primary responsibility
(districts) so as to best achieve some level or combination of levels of
service?'" In the context of a spatially dispersed emergency ambulance
service, a district for a particular ambulance would consist of a region
in which calls for ambulance service would be handled by‘that ambulance,
providing it is available when the call is received. If the district's
ambulance is unavailable, then an cut—of-district ambulance would be
assigned by the ambulance dispatches. If all N ambulances should be simul-
taneously busy, then the dispatcher either enters the call in queue for
later dispatch or refers the call to a back-up service (e.g., police depart-
ment, other ambulance service).

In some cases more than one response unit may share the same district,

thereby dividing the workload of the district; this occurs, for instance,



1f several ambulances are garaged at the same location.

In the case of police patrol, our use of the word district applies to
a police car's '"sector" or "beat," which is the area that the car patrols
while not responding to calls for service. The police car's sector may or n
may not correspond to the region in which the car has primary responsibility
for responding to calls for service. Additionally, some cities provide
"backup'" cars to the regular sector cars, and these cars handle calls for
service only when all the sector cars are simultaneously busy. Having no
region of primary dispatch responsibility, the backup cars (which may be

sergeant's cars or police wagons or other specialty units) often patrol a

region covering several regular sectors,
The location problem, which is obviously closely related to the

districting problem, is often stated as follows: ''How should the N response

units be located or positioned while not responding to calls for service?"

In ambulance applications, it is usual to have one ambulance located in each
of the N districts. Each location is fixed, corresponding to a garage, fire
station house, point on a street, etc. In the case of shared disticts, two
or more ambulances may be stationed at the same location. For police patrol,

the "location" of each unit is mobile, corresponding to the areas that the

unit patrols in its sector. In order to specify statistically the unit's

location, one must know the relative amounts of time that it spends in

various parts of its sector.
The workload balancing problei, which is in turn related to the dis-

tricting and location problems, is as follows: "How should the units be
positioned and selected for dispatch in order to balance (equalize) the

workloads among units?" In effect, workload balancing may serve as an

objective, perhaps one of several objectives, for the districting and loca-

e S

tion probleﬁé. Due to cross—district dispatches, it is important to note
that workloads are not necessarily balanced by designing districts with
equal internally generated workloads.

Thus, in urban emergency services, the analysis of distuicting,
location, and workload balancing problems should include the possibility of
overlapping (as well as disjoint) districts and mobile (as well as fixed)
locations. Moreover, due to the dispatcher's desire to avoid delaying
calls in queue, any analysis of these systems should include cross-dis-
trict (or interdistrict) dispatches as well as intradistrict dispatches.

As applied to urban emergency services, most previous models and
analyses [1,7,8,9,10,18,21,22] of districting and/or location problems
have suffered from at least three deficiencies (see Note 1). First, most have
focused solely on intradistrict responses of units, while ignoring inter~-
district responses and design issues that relate to interdistrict response.
Second, most previous studies have focused on only one performance measure
(usually mean region-wide travel time or a closely related measure),
thereby ignoring many other performance measures that characterize the
operational effectiveness of these systems. Third, most previous studies
have failed to incorporate the probabilistic nature of an urban emergency
service system which is due to the Poisson nature of the call arrival pro-
cess and the variability in service times.

Some recent work for small numbers of units has overcome many of the
objections associated with the more traditional methods. Carter, Chaiken
and Ignall [3] analyze the case of two fixed-position response units and
rigorously derive the optimal districts for the two units, assuming a very
general distance metric and a simplified form of interdistyict cooperation.

The probabilistic and interdistrict behaviors of the system are fully
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incorporated in their model. In addition, two measures of effectiveness
are treated simultaneously: mean travel time and workload imbalance.
Concurrent work by Larson and Stevenson [15] investigated several insensi-
tivities of these and other location and districting models. But in all of
this analytical work it has been very difficult to obtain results or define
objectives for N > 3 units. Thus, although these models have provided
useful insights into certain aspects of location, districting and workload
balancing problems, they have not addresséd computational problems that
arise in practical situations with many response units.

The "hypercube' model represents a different approach to these problems
[13]. Here, the multi-server queuing model employed in Refs. [3] and [15]
that facilitates the study of probabilistic phenomena and interdistrict
interaction is extended for up to N = 15, andtjm:accompanyingIquteady—state
equations are solved numerically on a computer. Then, in an iterative user-
interactive spirit similar to that represented in Refs. [19] and [20], the
user can examine the numerical results and relocate and/or redistrict
accordingly. 1In this iterative fashion, a very reasonable set of locations
and districts can be found, incorporating a rich mixture of performance
criteria.

There are many situations, however, in which a set of approximate
solutions could suffice. For instance, data inaccuracies may not justify
use of a highly precise model. Or the system planner may not have access
to a sophisticated computer system necessary to perform calculations with
the exact model. Or certain nonquantifiable concerns, péxhaps involving
political, legal, spatial, or administrative constraints, ﬁay play an
important role in system design, thereby making preéise eséimates of

quantifiable performance measures unnecessary.

In larger cities a system may exist having more than 15 cooperating
units serving the city or a part of the city. 1In these cases the exact
model would require very large amounts of computer storage and execution
time, making costs of computation too great‘for most applications. The
techniques presented in this paper would still be applicable, however,
especially since it appears that the accuracy of the approximation im-
proves (or at least does not degenerate) with increasing numbers of units.
We find that the calculations in this paper are particularly convenient
for the purpose of balancing workloads among units. Because the values of
many performance measures, in addition to those for workloads, can be
estimated with this method, it would seem that more complex applications
(perhaps involving the reduction of inequities in the distribution of service)
might be feasible.

The purpose of this paper is to present one simple iterative procedure
for approximating the performance characteristics of such systems. The
method had two advantages as compared to the exact analytical model it can
replace: with N servers, it requires only N equations, rather tnan 2N as
is necessary in the exact model; and the calculations are often simple
enough to be performed manually with the aid of an electronic calculator.

The measures of performance computed by the model include the following:
region-wide: mean travel time, workload imbalance, and fractions of dis-

patches that are interdistrict dispatches; response unit specific: work-

load (measured in fraction of time busy servicing calls), mean travel time,
fraction of responses of each response unit that are interdistrict, district
specific: fraction of responses into each district that are interdistrict,

mean travel time; point specific: mean travel time, fraction of calls

handled by response unit n, n = 1,2,...,N. This mixture of performance



measures allows one to focus simultaneously on several region-wide objec-
tives #hile assuring that spatial inequities in the delivery of szervice are
maintained at an acceptable minimum. Previously, values of these performance
measures were available only from simulations, which are much more costly
to execute than analytical procedures and are more difficult to interpret
by decision makers due to problems of sample size and random statistical
fluctuations.
The following are the main features of the approximation procedure:
1. One assumes that the dispatcher has a rank-ordered list of
preferred units to dispatch to calls from each geographical
unit (cell or atom) of the region and that he always dispatches
the most preferred available (free) unit.
2, In addition, one assumes that the probability of dispatching
the jth preferred unit w0 a call from a particular atom can be
approximated to be proportional to the product of the utilization
factors (or "workloads'") of the first (j-1) preferred units and
the availability factor (see Note 2) of the jth preferred unit.
3. The constant of proportionality depends on j and is determined by
considering the simple M/M/N queuing model, assuﬂing a situation
in which j servers are selected randomly without replacement from
the M/M/N system.
4, Given features 2 and 3, one can generate N simultaneous nonlinear

equations relating the N unknowns (the utilization factors) to

the dispatch policy and the call rates from the various geographical

atoms.
5. The N simultaneous equations are solved iteratively, thereby

yielding estimates of the workloads of the units.

6. If one desires other performance measures of the system (for
instance, the mean travel time to each geographical atom or the
fraction of dispatches that are cross-district), then the values
of the utilization factors found in feature 5 may be used to
estimate the fraction of dispatches that send unit i to atom 3
for all i and j. These fractions are then entered into simple
equations (detailed'in Ref. [13]) to obtain estimates of the
values of the desired performance measures.

To illustrate the ideas, a simple 3-server example is worked out in
detail. Often the calculations are simple enough to be carried out by
hand with the assistance of an electronic calculator.

The paper concludes with a general discussion of the observed error
characteristics of the procedure. For most performance measures, th:
values estimated by the approximation procedure are within 2 percent of
the exact values as derived by the hypercube model.

Reference [14] contains mathematical details relating to sampling
servers without replacement in an M/M/N system. To assist in hand calcula~
tions, Reference [14] also contains tables of the values of the constant of
proportionality,

A computer program, written in PL/I, which implements both the exact
hypercube model and the approximation procedure, is documented in Ref. [15],
and duplicate card decks are available from the M,I.T. Operations Research

Center. Reports by Chelst [4] (in New Haven, Connecticut) and Jarvis
and McKnew [4,17] (in Arlington and Wellesley, Massachusetts) focus on
validity tests and implementation of these models. A preliminary case

example using the hypercube model in Boston is reported by Larson [16].



I. REVIEW OF MODEL ASSUMPTIONS

Here we briefly review the assumptions of the model under consider-

ation. A more extended discussion may be found in Ref. 13.

We assume that the system provides service to a certain geographical

region that is broken down into K cells or geographical atoms.

The fraction of region-wide workload generated from within atom k is

fk(z§=l fk = 1). The mean travel time from atom i to atom j ‘is denoted

by Tij .

There are N response units that provide service to the region. The

conditional probability that response unit i is located in atom j while

available is Eij(ig zij = 1). The Rij's can be used to depict the location

of mobile units, such a police patrol cars, in which case for each car i
several kij's are likely to be nonzero, corresponding to the atoms in the

car's patrol sector or beat. An Rij set equal to unity depicts a unit

whose location, while available, is fixed in atom j (perhaps a firehouse or
ambulance garage).

From a queuing point of view we assume that customers (ealls for
service) are generated from within the region in a Poisson manmner, at a
mean rate A per hour, with each atom k acting as an independent Poisson
generator with mean rate Afk = Ak'

If one is not concerned with the identity of busy servers, the queuing
system is simply the M/M/N system, with either zero-line eapacity (M/M/N/0)

or infinit.-line capacity (M/M/N/«). The following assumptions are implied

by the M/M/N model:

* Exactly one response unit is assigned to every call that is

serviced;

The service time of any response unit for any call for service
has a negative exporential distribution with mean 1/u (see Note 3);

. H
The service time is independent of the identity of the server

>
the location of the customer, and the history of the system;
H
For the zero-line capacity case, any call for service that arrives
while all N response units are busy is either lost or (more likely
in Practice) serviced from outside the Tegion or by special reserve
units from within the region;
For the infinite-line capacity case, any call for service that
arrives while all N Tesponse units are busy is entered at the end
of a queue of calls which is depleted in a first-come, first-served
(FCFS) manner, o
Given the geographical atom of the call, the dispatcher's selection
policy is assumed to be one of "fixed preference." For such a policy one
can always say that Some unit i, if available, would be the first prefer-
énce to dispatch to atom k, unit j would be the sacond preference, unit ¢
the third preference, etc. The dispatcher always selects the most
ferred available unit. o
Given the above assumptions, one can characterize tﬁe system as g
continuous~time Markov process with 2N States, corresponding to all combina-
tions of servers busyandidle; in addition, if the system has infinite-lipe
capacity, then the state Space is augmented by an "infinite tail," Obtain-
ing the steady-state ilitd
2N Simu1taneoz; linea:r:babl%lt%es of the system requires the solution of
quations, a formidable task even for many modern

digital computers,

1
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structured state space. In order to develop the detials of the procedure, i Table 1 —— Continued
|
t i stipate certain properties of the simple M/M/N model when I
ve must first investig prop [ Wi Event that unit i is working (servicing a call).
i iti f busy and idle servers are not required. .
the identities of busy a Ri Effective rate at which unit i is assigned to calls,
A summary of frequently used symbols is given in Table 1. -, given that unit 1 is idle.
: RE Total rate (assignments per unit time) at which unit i
o is assigned to calls.
Table 1 . .
- Ap Equals zero for zero-line capacity system; equals APN/N
SUMMARY OF FREQUENTLY USED SYMBOLS for infinite-line capacity system.
Pitr Fraction of dispatches which send unit i to geographical
atom k.
its.
N Number of servers or response units ak Exponential damping factor used in estimating the p.k's.
K Total number of cells or geographical atcms within the : i
region being modeled.
fk Fraction of region-wide workload generated from within
atom k (zk fk = 1).
Ty Mean travel time from atom i to atom j. I
L. Conditional probability that response unit i is located
] in atom j while available. '
A Mean rate at which callks for service are generated from
within the region.
Ak Mean rate at which calls for service are generated from
atom k; Afk = Ak'
u-l Mean service time for any call for service.
s, ~ State of an M/M/N queuing system indicating that exactly
k servers are busy.
p Equals A/Nu; called utilization factor for infinite-
capacity system. '
T Fraction of time that each server is busy, averaged over
all servers (r = p = A/Nu for case of the infinite-
capacity queuing system). =
Pk Probability that exactly k servers are busy, k = G,1,...,N. ) T
Bj Event that jth server selected is busy, j = 1,2,...,N. N g .
Fj Event that jth server selected is free, j = 1,2,...,N. é
Q(N,p,3) "Correction factor" for computing probability that the \

j + lst selected server is the first available server;

given a total of N servers and a utilization factor p, {
j=0,1,...,N-1.

Py Fraction of time that unit 1 is busy servicing calls.

e
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II.  SAMPLING SERVERS WITHOUT REPLACEME IN AN M/M SYSTEM = g€ _ . '
U L NT /M/N Fj = Bj = event that jth server selected is free (or available).
M/M/N : INFINITE-LINE CAPACITY, FIRST-COME, FIRST-SERVED (FCFS), P{Ble'-'Bij+l} = probability that the first free server is the
QUEUING SYSTEM » j + 1si server selected.
Consider the general M/M/N queuing system operating in the steady state. - iy

The server selection process here is a strictly random sampling without
The following development assumes that the system has an infinite-line

) - replacement. We wish to derive an expression for P{B,B

1 2"'Bij+l} that
capacity, i.e., is an M/M/N/ system. Later, the analogous results are will motivate an approximation procedure for the more complicated

hypercube del i
obtained for a zero-line capacity system (i.e., the M/M/N/0 system). P model in which servers are not alike (see Note 4).

By laws of conditional probability we can write
If the state Sk indicates the exactly Kk servers are busy, then the

steady-state probabilities are given by N

P{B,B,...B.F, .} =
1By ByF iy RZO PUB By B.F. S, 0P,
k k |
pls) =2, = EE%— P k=1,2, ..., N=1,
’ But
NN 1 {
(g} = p_ = ~P- ' P{B,B,...B.F, =

Pisyl < by = Fr 105 B (1) 182+ B 5 ) PFy (BB, 8,5, )0 (s, |38, By 18} BB s} .
pls } = p = 1 , Consider the conditional probability P{Bllsk}' This 1s the probability

oo " "o N-1 i N N B

y E*' i, N'p 1

that the first randomly selected server will be busy,
i=01,p N! l"p

given that a total
of k servers are busy.

Clearly,
where, for the infinite-line capacity system, we assume

P[5, ) = & .

©
!
2‘>
=
A
H

Given that the first selected server is found to be busy and that there
are k busy servers,
Defining r to be the fraction of time that each server is busy, aver~

aged over all servers, for the M/M/N/® system we have r = p.

_ k-1
P{leBlsk} =

N-1°
Now suppose we start randomly sampling servers in the system until

we find the first server who is available or free (if there is one).
Let

Bj = event that jth server selected is busy (not available).

) : 2 ps——EL S S
o
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in general,
k- (-1 i=1, 2 , k+ 1
P{B |BB,...B; (S} = F T D) ,
Similarly,
A N~k i = 0. 1 k .
q = - J = ey
PtFj+l]BlB2...Bjok} N3 > s

Combining these results-we have the desired probability

N-1 o o
Kk - 1 k- (j -1) N o
B,B,...B,F, .} = o e e T Py
P{B;By..-BsFyy kzj NN -1 N = (5 - 1) 3
5=0,1, .., N=1. (2)
Rewriting Eq. (2), we have
k k
Mlygk-1  k=-(G-1N-kNp ,
P(B)By---BFi )= ) §FCI N (G- N-3 k! ‘o
=3
3
S S R DY T I 515 i 5 1 RS PRI o
=11 (k - 9! Fr P | Pa-eTT
=
or,
) )
= N, ’ 1 - )
P{Ble...Bij+l} Q(N,p,3)p ( p)
where
— k .
Nl oy -3 -1iw-x 8 Jk-d
kz. (k - 3! N -
Q(N,p,3) = — - 5 , i=0, 1, enu, .
N1 1 &
N1 0
Q- ) 70|+
Lo 1 N

(5

~15=

It is convenient to isolate the term Q(N,p,j) for the following reason:
One may argue that by randomly selecting servers in a sequential manner,
without replacement, the probability of each being busy is simply p and
thus the probability that the j + lst is the first available server is
simply pj(l - p). BSuch an argument assumes independence among servers.
The factor Q(N,p,j) indicates the extent to which the result of the in-

dependence argument must be '"corrected" ian order to obtaln the exact
result.

Since by conditional probability

P{Ble...B F...} = P{F

P j+llBlB2...Bj}P{Bj]Ble...Bj_l} o {3},

we can write

p{F. .|B,B,...B.} 7(P(B,|B,B,...B, .} P{B,}
oy k2 L a5 j 3'71720 T 9-1 o 1
Q(N’psj) "[ 1 - D ][ P } M [: 0 ] '(6)

Each of the terms in this product can be considered to be a "correction

factor" indicating the relative amount by which p or 1 - p overestimates

(or underestimates) the respective conditional probabilities of being

busy or free. Checking the function Q for a limiting case, direct com-

putation shows that Q(N,p,0) = 1, indicating that the probability that

the first selected server is free 1s exactly 1 - p. To investigate the

case of the second, third, and in general the j + lst selected server,
we reguire the following inequality:

P{Fj+l[BlB2...Bj} < P{Flele...Bj_l} <1-p

where the right-hand inequality is an exact equality only for the case
j = 1. This result, which is proved in Reference 14, states that as more

servers are found to be busy, the chance that the next selected server

will be found to be free becomes less and less. Intuitively, the con~

ditioning event that the first j selected mervers are busy provides
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information that the entire M/M/N system is in a relatively congested

state. Obwviously, for the complementary event, there is an analogous
inequality:

- e =
PiB,  [B;By.. B, piB,|B;B,...B,_} =0

1=1,2, coes) N=-1, (8

where the right-hand inequality is an exact equality only for the case
i =1, .
Combining the results of Egs. (7) and (8) for the case of the

second selected server, we have
QN,p,1) < 1, (9

reflecting the facts that (1 - p) is an overestimate of P{FZ!Bl} and
p is an exract expression for P{Bl}, thereby making p(l1 - p) an over-
estimate of P(FZBI}. Some additional insight may be gained here by
examining the revised state probabilities, given Bl' Direct calcula-

tion using conditional probabilities yields

=k -
pis, |B;} = % Pk k=0,1, 2, ..., N. (10)

Those familiar with the theory of random incidence in renewal processes
will notice that the biasing toward states with greater numbers of
servers busy is equivalent to the biasing one observes in a random in-
cidence situation toward interrenewal gaps with greater durations.
Thus, since the system is more likely to be in a relatively busy state,
the second selected unit is less likely to be free, hence P{FZ‘Bl} <
1~ p.

Continuing the above reasoning, we may be tempted to think that
Q(N,p,3) would be a monotonically decreasing function of j. However,
this may not always be the case, Examining Eq. (6), we note that
Q(N,p,j) is a product of j + 1 terms, one equal to unity, another less

e st 3 e AT T T
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than unity, and the remaining j - 1 all greater than unity., If the "iess-
than-unity" term always dominates, then Q(N,p,j) is indeed a monotonically
decreasing function of j; if not, then Q(M,p,j) is a unimodel function of
j, reaching a minimum for some value of j, say jo, and then increasing for
all j > j°.

The test for unimodality, which can be proved by examining first

differences of Q(N,p,j), is

psS 1-%. (11)

2|

If p< 1 —-%, then Q(N,p,j) is unimodal, If p > 1 - %3 then Q(N,p,])
is monotonically decreasing.

Reference 14 contains a table of values of Q(N,p,j) for N up to 15
for the M/M/N/w queuing system. For illustrative purposes, plots of
Q(8,p,j) are given in Fig. 1. Note in Fig. 1 that Q(8,0.7,j) is a unimodal
function of j, whereas Q(8,0.8,31) is not. The test shown by Eq. (11) indi-

cates that the critical value of p in this case is p = 0.75.

M/M/N/O: ZERO-LINE CAPACITY QUEUING SYSTEM

We now consider the case of the M/M/N/0 system, The line of reasoning
is directly parallel. The steady-state probabilities of the M/M/N/0 system

are given by

¢ Nk k ’
p{s, )} = B = —E%—-PO k=0, 1, c.., N
(12)
ool 1
P{So} N Po N ii
Z‘NQ
. it
i=0
where
p=2\——<+oo_
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L p=0.1

Fige 1~ Graphs of Q (B,p,j)
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In the M/M/N/O system the actual fraction of time r that each server is
busy is less than p = A/NU, because of the fact that calls which arrive
when all N servers are simultaneously busy are lost., In fact, the

expression for r is easy to compute,

N
. _ n!
Z k P o= p(1 Py) - (13)

In this case we would like to develop a correction factor Q'(N,p,j)
that, when multiplied by r3(1 - r), gives the exact probability

P{Ble...Bij+l} for the M/M/N/0 system.

Following the same reasoning that was used for the M/M/N/~ system,

we arrive at an expression for P{BlBZ...Bij+l} that is directly analo-

gous to that obtained in Eq. (3). The result is

P{BlBZ...Bij+1}
(14)
'
) f[‘fl (N -3 - DIN -1 & pk—j] Fo ( 1 i 1 Irj(l )
. - 1 — - '
l k=1 k ~ 3)! N! 1-p{1-Pg L. PPL ;
1-0p
Thus, 1f we define Q' (N,p,j) as
P{B.B,...B,F. .}
Ql(Nsp)j) = 12 IR ’ {15)
rJ(l - )
then
3
, . 1
Q’(N,D;J) = Q*(Nyp:J‘) (l i Pl) + (16)
pP
N 1+ N
1 ~0p

where Q*(N,p,3) 1s equal to Q(N,p,j) as gilven in Eq. (3) but with B
replaced by P;.
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The function Q'(N,p,j), which is tabulated in Reference 14, has
properties similar to those of Q(N,p,j). For illustrative and comparative

purposes, plots of Q'(8,p,j) are given in Fig. 2.

Fig. 2 — Graphs of Q' (8,p/])
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IITI. THE ITERATIVE PROCEDURE FOR ESTIMATING WORKLOADS

We can now derive an iterative procedure for estimating workloads
of units. A second procedure using the workload estimates is then

developed for estimating travel times, frequencies of cross-district

dispatches, and other performance measures that can be obtained from the

exact hypercube model. Both procedures rely on estimating dispatch

probabilities as products of utilization and availibility factors and the

appropriate correction terms as derived in the preceding section.

Let

p, E fraction of time that unit 1 is busy servicing calls,
i

i=1,2,...,N.
We call Py the workload of unit i. Define

W,
i

i

event that unit i is working.

Clearly,
P{Wi} =Py

P{W(} = P{unit i is idle} =1 - p, .

For convenience we set M = 1, thereby equating the unit of time to
the mean service time. Then for unit i we have the state transition

diagram showa in Figure 3.

Figure 3: State Transition Diagram for a Single Unit

Mo I e e
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where

Ri = effective rate at which unit i 1s assigned to calls, given
~that unit 1 4s 1dle.

(The "one" on the branch from state Wi to state wi reflects the mean
service rate of U = 1.) The difficulty in analyzing this 2-state pro-
cess is that it 1s not a Markov or even a semi-Markov process. This
is due to the fact that assignments of unit i from state wf do not
constitute a Poisson process with rate Ri' )

However, by steady-state arguments,

R,
-— :':—-——:L—-—
P{Wi} Py =TT R, 5 @an

Thus the problem of determining Py is reduced to the problem of deter-
mining Ri'
It is convenient to derive our approximation procedure in terms of

T
Ri = the total rate (assignments per unit time) at which

unit 1 is assigned to calls,

and then, by recognizing that unit i is available for assignments only
a fraction of time (1 - pi), to use the relation
R? = R, (1
i - i( - pi) b4 (18>
Let

G? = set of geographical atoms for which unit i is the kth
preferred dispatch alternative, i, k = 1, ..., N.

nij = ddentification number of jth preferred response unit

for atom 1.



YA -25~
Now an exact expression for RE can be written as follows: Using Egs. (17), (18), and (20), we can now write the desired
&
relationship,.
T= Cc [ W wc}
] jgcl A RS+ jgcz g p.{wnjlwi}l+ jZGB A P {W“jl aj'i
i 1 i L-p, =|1+ ] A + ] ,X Q@pe,l)p. + ] oA QN,p,2)p  p
. ‘ﬁ i L1 Le2 7 n, 637 n,, n,
2 jeG; jeG, jl jeG, il j2
i i i
++ ] X.P{W W ... W w?}+A : (19) : )
jech J nip By ny(N-1) D N
) + + 7o A QPN - Dp o vt p + A/ (1 - p ﬁ
jecy 41 M2 hyN-1) P 1
where the term AD accounts for delayed dispatches from a queue:
i=1,2, ..., N. (21)
0, for zero-line capacity case
AD =9 P Equation (21) represents a set of N simultaneous nonlinear equations
N N ’ ' 2 - .
l for infinite-line capacity case (see Note 5). in the pi's that can be solved iteratively.
A solution algorithm for the M/M/N/® model is given below. It
The approximation we now make in order to simplify Eq. (19) is depends on a convergence parameter € which must be specified. The
that the required dispatch probabilities can be estimated as products same algorithm can be used for the M/M/N/0 model, provided that {Pi}
, . / X . ‘ .
of utilization or availability factors and the appropriate correction is replaced with {Pi}’ the function Q is replaced with Q , and AD is

term. For instance, we approximate set to zero in Eq. (21).

c . e
PfW3W6W5} R’Q(N,p,z)p3p6(1 - ps) . Step 0: Initialization

a. Compute from the M/M/N queuing model the exact value for
Given this assumption, Eq. (19) can be rewritten,

. : 1 N 1 N
, r = average utilization factor = = Z p. = T2 Z kP, .
T © N =1 1 Nk’:l k
Ry= ] M@ =-p)+ ], A QW,p,)p (1 -p)
i jEGl i i jer j njl i
i i A/N  for the M/M/N/« system
| (AW (1L - Pﬁ) for the M/M/N/0 system.
‘ - + 2 3 >\J Q(NsD,Z)Dn. pn. (l - Dl) (20) - s
| jeG i1 §2
i b. Set n = 0.
) c. Define Bi(n) = estimate of p, at nth iteration.
+ oo+ z A, Q(N,p,N - 1)p_ p ) @ -p,)+ 2. ~ . .

3 jeG? J‘ nj1 nj2 nj(N—l) i Set pi(O) = r, i=1, 2, ..., N.

Step l: Iteration

a. n+<«mn+ 1.
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b. Tor all i = 1, 2, ..., N compute pi(n) from Eq. (21), using
pj(n - 1) for pj on the right side of the equation.

il

Step 2: .Xormalize (so that L ) Si(n)
i=1

N

a. Compute

A ~1
Di(n)/r] .

I o~122

i=1

b. Bi(n) «p Bi(n).

Step 3: Convergence Test (see Note 7)

MAX[p, (n) - p,(m - 1] > e?
1

If yes, return to Step 1.

Otherwise, STOP.

This algorithm is very easy to program on a digital computer, and

with the aid of an electronic calculator.

T)

for small or moderate values of N and K, can be carried out manually

Y
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IV, ESTIMATING OTHER PERFORMANCE MEASURES

All the remaining performance measures of the hypercube model can be
calculated when the 6i‘s computed above are used to estimate
Pik = fraction of dispatches which send unit i to geographical atom k.
For instance, the region-wide fractiom of dispatches which are interdistrict

dispatches is
N

it

Puvr o
i~1 k¢ district 1 ¥

The other algebraic formulas for travel times, cross—-district dispatch fre-
quencies, etc., are given in terms of the pik's in Ref. 1.

To estimate P> We use the same approximation we have used previously:
dispatch probabilities can be approximated as products of utilization fac-

tors, availability factors, and correction factors.

THE INFINITE-LINE CAPACITY SYSTEM

Examining the M/M/N/w system first, we require an estimate for

(1]

Pix fraction of dispatches which send unit i to geo-

graphical atom k aund incur no queue delay.

(The analogous term for dispatches that do incur a queue delay is'

[2] =-kaN/N; see Note 5 and Ref. 13.) To estimate the pik's, we use the

Pik
ordering of dispatch preferences, and initially set
i=-1
it <& qane, - D) 1-0p (22)
n, .k k PE. Pn o, /"
ki -l K kj
To calibrate the pii]‘s, we can obtain a set of normalization conditions
from the M/M/N/« model,
N
J ol o a-rpE . k=1,2, .0, K, (23)
121 ik N "k

a set of equations which is not automatically satisfied by applying Eq. (22).
There are numerous ways to accomplish the normalizations implied by Eq. (23),

and the author has tried three.
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1. The first is simply to scale, for each atom k, the results
found by applying Eq. (22) so that Eq. (23) is satisfied.

This results in larger-than-necessary errors in estimates of
cross—district dispatch frequencies; the magnitude of the
@rror, however (usually not greater than 0.05 in absolute
value), may be acceptable for certain applications.

2. The second is to retain values for Bil]k found from Eq. (22)
for all k =1, 2, ..., K, and then simply to scale the remain-
ing N - 1 values of aiiqk for each atom k. This results in
very accurate Fstimates of cross-district dispatch frequencies,

but slightly greater-than-necessary errors in travel time

estimates.
3. The third is to find a factor oy 80 that, 1if
i-1

~[1] . %
8 = £ Q(N,p,j - 1) o p 1-p ’
nkjk k L ] k Oy g nkj
N .
NS A

then iil pik = (1 PN) fk"

The quantity oy is an "exponential damping factor," which, if
greater than unity, will damp out at an accelerated rate the
higher~order terms in Eq. (22); if less than unity, use of o
will slow the geometric rate of decay of the higher-order
terms in Eq. (22). The numerical value of o, can be computed
by a converging trial-and-error process. The author has found
this method of normalization the most preferred in terms of
minimizing approximation errors, but least preferred in terms,

of computational ease.

One's choice of a normalization method depends on balancing the

demands for accuracy, on the one hand, with computational expediency,

on the other.

w

U U ———
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THE ZERO-LINE CAPACITY SYSTIM

For the M/M/N/0 system we require an estimate for

pik = fraction of assignments that send unit i to geo~

graphical atom k (see Note 8).

By definition, none of the dispatches in an M/M/N/O system incur any
queue delay. Our estimate for Py denoted Bik’ is initially deter-
mined by applying Eq. (22) with Q replaced with '/ - P&), However,

we now have the norma}ization conditions,

Each of the three normalization methods described ahove for the M/M/N/
system can be used for the M/M/N/0 system and, by and large, the same

comments regarding accuracy and computational ease apply to the M/M/N/O
system. '
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V. EXAMPLE

To illustrate the calculations, consider the simple 3-~distriect region
illustrated by Fig. 4. The region consists of éeven point geographical
atoms served by three response units. Unit L's district comprises atoms
1, 2, and 3; unit 2's district consists only of atom 5; and unit 3's dis-
trict comprises atom 4, 6, and 7. While available, unit 2 is always pre-
positioned at atom 5, while units 1 and 3 are mobile; unit 1 is equally
likely to be at atom 1 or 3 while unit 3 is equally likely to be at any
of its district's three atoms. To summarize, the Rij matrix is given as

follows:

1 1
5 0 5 0 0 0 0

!lzij l={o o o o 1 o0 o
1 101

o 0o 0o 3 0 3 3

Regarding the distribution of calls for service, we assume that atom
5 generates 25 percent of all calls, while the remaining calls are uniformly

v

distributed among the other 6 atoms. In other words, f£_ = 0.25 and

5
fj = (0.125 for j # 5.

We assume a strict center—of-mass dispatch selectien policy [12],
which yields the estimated travel distances shown in Table 2, assuming a

right—-angle or Manhattan distance metric. The fixed preferences implied

in Table 2 yield the G? sets given in Table 3.

%

t
1
.
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Now we execute the algorithm:

Tabie 2 Step 0: Initialization

MATRIX OF ESTIMATED TRAVEL DISTANCES: a. Trom the M/M/3/0 queuing model,

STRICT CENTER~OF-MASS DISPATCHING

r = (A/3)(1 - B})
Unit Number ; - = 0.4(1 - 0.0898) = 0.3641.

Atom Number 1 2 3 1 b. n = 0.

1 0.00 | 1.00 | 1.33 | c. p,(0) = 0.3641,  i=1,2,3,

2 0.0031.001}1.33

3 0.00]1.00} 1.33 {

4 1.33(0.33 ] 0.00 ! Step 1: Iteration

5 1.00{ 0.00 | 0.33 i

6 1.3310.33{0.00 ? a. n=1.

7 1.33]10.3310.00

b. From tables in Reference 14,

Q' (3,0.4,0) = 1,
To conclude the description of this example, we assume that the ? ‘
§ Q (3,0.4,1) = 0.862,
system is a zero-capacity queue with A = 1.2 (di.e., 1.2 calls per service % Q'(3,0.4,2) = 0.887.
!

time unit), or equivalently, p = A/3p = 1.2/3 = 0.4 (see Note 9). Applying Eq. (21) we get

We are now ready to carry out the algorithm developed in Section III 1 - 51(1) = [1+ 0.375 + 0 + 0;625(0.887)(0.3641)2]—1,
~ N . -1
for estimating workloads of the individual units. First, note that District , 1-p,(1) =11+ 0.25+ 0.75(0.862)(0.3641)]
1 - p3(1) = [1 + 0.375 + 0.25(0.862) (0.3641)

1 and District 3 each generate 37.5 percent of the region-wide worklead, 2 -1
+ 0.375(0.887)(0.3641)7]

while District 2 generates 25 percent. Thus, a procedure which claimed

or,
that p, is proportional to the workload of District i would set ~ . ~ A i
1 ‘ pl(l) = 0.3096, pz(l) = 0,3268, p3(1) =:O.3322.
pl = p3 = 0.375 * C and p2 = 0.25 *« C for some constant C. ]
{
Table 3 Step 2: Normalize ?
MATRIX OF G? SETS a. ['= 1.128.
. . b. 51(1) = 0.3491,
1: Unit Number b =
k: Preference . . 82(1) = 0.3685,
Number 1 2 3 . p5(1) = 0.3746.
1,2,3 5 4,6,7
t :
— 1,2,3,4,6,7 5 Step 3 Convergence Test
3 4.5,6,7 — 1,2,3 For any reasonably small €, the convergence test fails and

Key: Entry in box (i,k) shows G? = we return to Step 1.

set of atoms for which unit i is the kth
preference,
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For £ = 0.00033 the procedure converges in two more iterations,
yielding final workload estimates 81 = 0.351, 52 = 0.367, and 83 = (0.374,
The actual workloads as computed from the hypercube model are py = 0.3548,
Py = 0.3650, and Py = 0.3724.

T —
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Table 4

COMPARISON OF RESULTS COMPUTED FROM HYPERCUBE FORMULATION

AND FROM THE APPROXIMATION PROCEDURE

Average Fraction of
The maximum estimation error, MAX [81 - p,|, 1is 0.0036, correspond- " Unit Travel Dispatches
1 Number | Distance | Qut of District
ing to a percentage error of less than 1 percent. The average percent-
age error is about 0.7 percent. . 1 2,218 0.182 (exact value)
2.203 0.169 (approximate value)
Other performance measures of this 3-server system are shown in
0.792 0.478
Table 4, as computed both by the hypercube model and by the approxi- 2 0 735 0.483
mation procedure of Sec. V (using the third described normalization 1.422 0.249
method). The average error in the amcunt of interdistrict dispatches 3 1.414 0.245
is approximately 0.007, corresponding to an average percentage error
of approximately 1 percent, while the average percentage error in the Average Fraction of
average travel distances is approximately 0.6 percent. D;iggiit DZ;?Z:ie I;;:;ztiﬁZiCt
The workload palculations were performed on an electronic hand
calculator in approximately 2 minutes. Computation of the remaining ' 1 §°i§§ 8.§§§
performance measures using normalization methods 1 or 2 (see Sec. IV) 0.491 0.302
requires an additional 3 or 4 minutes. The third normalization method 2 0.479 0.305
usually requires computer assistance. é 3 1.450 0.311
1.433 0.311
Fraction of Calls from Atom
Average Serviced by Unit Number
Atom Travel
Number | Distance 1 2 3
1 2,318 0.71 0.21 0.08
2.314 0.71 0.21 0.08
2 1.790 0.71 0.21 0.08
1.790 0.71 0.21 0.08
. . 3 2.318 0.71 0.21 0.08
2.314 0.71 0.21 0.08
. ) 4 1.419 0.09 0.22 0.69
1.404 0.09 0.22 0.69
5 0.491 0.09 0.70 0.21
0.479 0.09 0.69 0.22
6 1.419 0.09 0.22 0.69
1.404 0.09 0.22 0.69
7 1.513 0.09 0.22 0.69
1.491 0.09 0.22 0.69

Key: 1In each cell of the table the top entry
is the exact value computed from the hypercube
model; the bottom entry is the approximate value.

it e A RN
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VI. DISCUSSION

While in our analyses of the error characteristics of the approxima-—
tion procedures of Sees. ILT and IV are far from complete, the following
general observations seem to hold.

First, the accuracies of both the workload approximation method and
the pij approximation method seem to increase with the number of servers N,
with error oftem averaging less than 1 or 2 percent. As an example, in one
typical set of calculations for an M/M/8/w system with p = 1/2, the average
errors (calculated as percentages) were 0.59 percent for workloads, 1.54
percent for cross-district dispatch frequencies, 1.55 percent for travel
times of the units, and 1.73 percent for average travel times to individual
atoms., (This set of runs used the second described procedrue for normali-

zing the pij‘s.)

From a practical point of view, greater accuracy for larger N is

just what we wish, since for small and moderate N we can "solve" the

hypercube model exactly. The approximation method is practical, how-
ever, at least for machine computations, for N = 20, 30, or even 100.
The hypercube model, requiring the solution of ZN simultaneous equa-
tions, is not readily solved for N greatcr than about 15. The increased
accuracy of the method for larger N is perhaps due to the fact that the
random process generating calls for service for unit i becomes more and

more like a Poilsson process with rate parameter R This 1s because

the often dominant component of the process is aniexact Poisson process,
generated from the set of atoms Gi. Also, the other components repre-
sent the "pooling" of several individual processes, and large poolings
often converge to a Poisson process with rate parameter equal to the
sum of the individual rate parameters [5].

Second, the method usually converges quite rapidly. TFor small N,
typically 2 or 3 or perhaps 4 iterations have been adequate. For
N ~ 10, 4 to 6 iterations is usual, even for quite stringent convergence

criteria. Thus, the method is well-suited for hand calculation for

small and moderate N, but requires computer assistance for larger values
of N.

-, SO ——
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Third, the method tends to be more accurate for systems in whlich
no units are markedly different from others--either in the amounts of
service demands they face or in the amount of area they cover. In
part, this 1s due to the fact that the theoretical underpinning for

the "Q" factors assumed that the workload was distributed uniformly

among servers. One should not conclude that the method will fail to

reveal large workload imbalances or differences in travel times; it
will reveal them, but the estimated values of performance measures in
such caeczs tend to have relatively larger errors.

For the task of balancing workloads among units it would seem to
be particularly appropriate to use the approximation procedures devel~
oped here. In other less homogeneous sltuations, the procedures would
appear to be valuable for providing a "first-cut" set of approximations,
This may be all that is required or reasonable if the data estimates or

the model assumptions are no more accurate than the numerical iteration
procedures.
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NOTES

1. Also, see the location theory bibliography by Francis and
Goldstein {6].

2. The utilization factor of a unit is the fraction of time that the
unit is busy servicing calls; the availability factor is the fraction of

time the unit is not busy servicing calls.

3. Thus variations in service time that are due to variations in

travel times are dignored.

4. In the hypercube model under a fixed-preference dispatching
policy, the dispatcher always assigns the most preferred available
server. Thus, the desired probability is the probability that the first

j preferred servers are busy and the j + 1lst is free.

5. TFor the infiniterlinc cap case, XD = %-PN, using the facts that
(1) all servers are assigned an equal proportion of the dispatches from
queue, due to the FCFS queue discipline and (2) the fraction of calls that
incur a queue is equal to the fraction of time that all units are simul-

taneously busy.

6. Equation (21) represents one of several ways of displaying the
final result. Another is found directly from Eq. (20) by recognizing

that p, = RY  (sipnce u = 1).

i
7. This form of the convergence test could also be replaced with a
test of relative errors or any one of numerous other reasonable conver-

gence tests.

8. Since there is a zero-line capacity, it is important to keep in

mind that the total rate of assignments is not equal to the total rate of

calls for service, some of which are lost when all units are busy simultaneously.

9. This p is not the utilization factor or average workload per unit

because of lost calls,
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