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On Searching For Events of Limited Duration 

Abstract 

An observer wishesto detect as many as possible of a set 

of events. The events arise at several discrete points accor-

ding to independent Poisson processes, and the lifetimes of 

individual occurrences are independent and identically distri-

buted random variables. The specific problem is: given that 

the observer can only "visit" one point per unit time, in what 

sequence should he make his "visits" so as to maximize the 

steady-state fraction of events he detects? Some results about 

the optimal search policy are obtained, and the best policy 

is found precisely in some circumstances. 
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FOREvl0RD 

The research project, "Innovative Resource Planning in 

Urban Public Safety Systems," is a multidisciplinary activity, 

supported by the National Science Foundation, and involving 

faculty and students from the M.I.T. Schools of Engineering 

Science, Architecture and Urban Planning, and Management. The 

administrative horne for the project is the M.I.T. Operations 

Research Center. The research focuses on three areas: 

1) evaluation criteria, 2) analytical tools, and 3) impacts 

upon traditional methods, standards, roles, and operating pro

cedures. The work reported in this document is associated 

primarily with c~tegory 2, in which a set of analytical and 

simulation models are developed that should be useful as plan

ning, research, and management tools for planners and decision

makers in many agencies. 

Richard C. Larson 
principal Investigator 
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Introduction 

There is considerable variety in the problems on search 

theory that have appeared in the literature. Some of the 

objects of search are assumed fixed in locationl while others 
2 

are moving on trajectories governed by random parameters. In 
3 

some cases decoys can frustrate the search effort; other times 

the object sought is a human being consciously attempting to 

evade the pursuers. 4 ,5 Yet common ".to many of these problems 

are the assumptions that only one object is being sought, and 

that there are no absolute time limits on the search except 

those that might implicitly arise in the constraints on avail-

able effort. 

In practice, however, one might \'lish to detect as many as 

possible of a set of events which arise randomly in time, can 

occur simultaneously, and are of limited duration. A major 

example involves the preventive patrol activities of police 

departments designed to intercept crimes in progress. 
6 Larson 

has applied traditional search theory to this problem to obtain 

useful results when the probability of more than one crime at 

any moment is small. In this paper, we consider a relatively 

simple problem on optimal search for events generated in random 

fashion over time (possibly at a high rate) at severaL points. 

While the model used is not itself greatly applicable to 

practical problems, it might have some value in indicating both 

the possibilities and limitations of analytical work in situa-

tions of this kind. 
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The Problem 

Events are assumed generated at N discrete poin'ts (1, ••• , N) 

according to independent Poisson processes with fixed parameters 

(ql, .•. ,qN). The durations of the events are independent and 

identically distributed random variables with cumulative dis

tribution function F(x). There is no limitation on the number 

of simultaneous occurrences at anyone point. At instants of 

time exactly one unit apart, an investigator visits one and 

only one of the points. He detects all events in progress at a 

location at the instant of his visit. The question is: what 

search strategy should he employ to maximize the steady-state 

fraction of events he observed at least once? An equivalent 

formulation would have him maximize the average number of events 

sighted per unit time; it is under this criterion that we ex-

amine the problem. 

Two Points 

We consider first the special case of exactly two points 

(1 and 2) with "event generation" parameters ql a.nd q2; we 

assume ql exceeds q2· Suppose ak is the e)r.pected number of 

events seen for the first time when the observer returns to 

point I after an absence of exa.ctly k units of time. Then 

ak satisfies: 

k 
ak = f ql (1 - F(t»dt 

o . 
a

k 
is clearly a nondecreasing function of K. Because F(t) is 

nondecreasing in t, the quantity dk = ak+l - ak is nonincreasing, 
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meaning that a concavity property characterizes the set of ak's. 

The com~arable quantity b
k 

for point 2 is of course given by 

bk = Aak where A = q2/ql· 

What we want to do is specify the pattern of visits to I 

and 2 which gives the highest "rate of return" in terms of the 

relevant ak's and bk's. It is fairly clear that the strategy 

should not be biased toward the slower point 2; we illustrate 

simply the general style of argumentation in this problem by 

the proof of the rather unsurprising remark below. 

Remark: If ql exceeds q2' it is never advantageous to visit 

point 2 two or more times in a row. 

Proof: We show first that one need never visit point 2 exactly 

twice in a row. Suppose the optimal policy includes exactly 

two consecutive visits to 2 at least once. Then the itinerary 

1 2 2 I X must arise over some 5-unit period; where X can be 

either 1 or 2. 

a) Suppose X = I, Then the average number of sightings in 

the last three units of this period is b l + a 3 + aI' If, how

ever, one switched the times of the second visits to I and 2 

to yield the sequence I 2 I 2 1, the average number of detections 

in the last three units would change to 2a2 + b2 , Now 

(bl + a 3 + al' (a2 
- a ) - (a3 - a ) + A(a2 - a ) 

(2a2 + b2) = - 1 2 1 

(1 + A) (a2 - a ) - (a3 - a 2) ~ 0, since d = ak+l - a is non-
1 k k 

increasing in k and A > o. Coupled with the fact that expected 

gain over the first two units of the period is unchanged, this 

means that the alteration has not weakened the policy, and thus 

= 
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that the double-visit to 2 was at best unnecessary. 

b) Suppose X = 2. Now the average number of sightings in 

the last three units is bl + a 3 + b2 " If the second visit to 

2 is replaced by a visit to 1 (i.e., sequence becones 1 2 1 I 2), 

the number of events observed in the last three units takes an 

~verage value of a 2 + a l + b3 · Now (a2 + a l + b 3) -

(bl + a 3 + b2 ) = (1 - A) (al + a 2 - a 2 ) = (1 - A) (al - d 2 ) ~ 0 

since d2 ~ a l • Thus once again the alteration has improved 

the policy, except in the special case F(t) = 0 for t < 3 when 

one can do just as well without consecutive visits to 2. 

Using similar arguments, one can establish that it is never 

advantageous to visit point 2 three or'more times in·a row. The 

proof consists in demonstrating that for any k ~ 3, one can at 

least match a policy calling for k successive visits to 2 by 

changing the second of these k trips to a trip to 1; we omit 

the details here. 

In the two point case, we can think of the observer's tra

vel pattern as a series of cycles from point 2 back to itself. 

What we have shown is that one can always achieve the highest 

possible detection rate under a policy in which every cycle time 

is at least two. Over a cycle of time k, the expected number of 

events detected per unit time is 

(where only the final return to 2 is counted toward the current 

cycle). It is clear that, except in the "degenerate" case when 

two values of k yield exactly the same average gain, there is 

one cycle length that should be used repeatedly to achieve the 

1 ; , , 

-5-

optimal detection rate. This optimal c must satisfy the rela 

tions: 

b + a~ + (c - 2)al b + a + (c - 3)a c ~ c-l a 1 > c - 1 c 

bc+l + a 2 + (c - l)a 
and " 1 > c + 1 

(A simple, argument based on concavity in the ak's and bk's 

establishes the concavity of the ek's, and thus assures the 

uniqueness of a c satisfying both inequalities.) This c follows: 

Summarizing, we have: 

Theorem I 

An optimal search policy for two points is a regular 

cyclical pattern under which the observer visits the slower 

point every c units of time and spends all other units at the 

busier point. The value of c is given by 

c = (max kl2al - a 2 > kbk_l - (k - l)bk ). The expected number 

of events observed per unit time under this policy is 

This result corresponds to one's intuitive expectation. 

We should note that the remark proved earlier could have been 

obviated in the proof of the theorem by the simple observation 

that a policy with 2-2 cycles of length I is necessarily inferior 

to one with cycles of length 2; we proved the remark only for 

illustrative purposes, as noted. In the next section
f 

we move 
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on to situations with several discrete points. 

Many points 

Suppose that now events are generated at N points designa-

ted (l, ••. ,N). The first thing we will do is show that, for 

our purposes, we can restrict our attention to cyclic policies. 

Theorem 
If all events have bounded duration, t:here exists an opti-

mal search policy that is cyclic. 

Proof: A search policy S is specified by a sequence of numbers 

{skI for k = 0,1,2, ... , where sk is the point visited at time 

k. For S, we define the N-tuple (alk,.··,aNk) as follows: at 

time k, let a
jk 

be the maximum possible age of an event then 

occuring at point j that has fiot been detected. If the observer 

is visiting point j at time k, a jk = 0; otherwise, a jk is the 

smallest of the following three quantities: 1) the time since 

the process began, 2) the time since the last visit to point 

j and 3) t, the maximum duration of any event (which is assumed 

finite). There must be some integer M such that a jk < M for 
A " all j ~ N and all k; clearly M ~ t, where t is the smallest 

integer not less than t. Note that because the visits occur at 

unit intervals, any a
jk 

can be only an integer from 0 to M or 

the number t. Thus, as k varies from 0 to 00, a jk can take on 

at most M + 1 different values, and correspondingly the N-tuple 
N ' , 

takes on no more than (M + 1) values over the entire evolution 

of the process. It is clear, then, that there must be some par

ticular N-tuple, P; that arises at one time and reappears infinitely 

often. 
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• ~ e event generation para-The crucial pOint is that s~nc~ th 

meters and event duration d' t 'b ' ~s r~ ut~on are unchanging with time, 

the N-tuple at any instunt contains all the ' ~nformation from 

the past relevant to the average "rate of return" under any 

policy in the future. Now suppose S is an optimal search poli-

cy. Let t, be the J'th ' J ~nstant when the N-tuple equals P under 

policy S; also let 9 be the t d 'j expec e gain per unit time between 

(slightly after) tj and (slightly after) t, under the strate-
)+1 , 

gy and g = max g S4n s' j' • ce ~. ~s an optimal strategy I g is the 

l
' , j 

upper ~m~t on the overall detection rate one can achieve. But 

since g is the expected rate of detection between tx and t x+l 
for some x, one can obtain this average rate over the infinite 

time horizon by a simple expedient.· . Just apply the policy S 

search-sequence between t and t - t ( x x+l x except perhaps for an 

~,,1 ~ 0 the process); since "edge-effect" period at the beg~.""", n 4 ng f 

it yields the optimal "rate of return ll the theorem is proved. 

As a practical matter, the restriction that all events 

have durations below some finite upper bound is no restriction 

at all. Unfortunately, the theorem is of limited usefulness 

since We have no indication what the optimal cycle length is. 

The next result is more directly valuable, for it identifies some 

points the observer need not visit at all. 

The IIExclusion ll Theorem 

o new sightings at Suppose that Ak is the expected number f 

point H after a k-unit absence, and that h I' h 00 = ~m k' Then to 
, . k+oo 

max~m~ze the expected number of events detected per unit time, 

one should never visit H if h < 2a -
00 1 a.2' (ak and dk are as 
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defined earlier; ql is still assumed the largest of the genera

tion rates.) 

Proof: Suppose that the best policy included at least one 

visit to H, which is m units since the last visit to busiest 

point 1 and n units before the next scheduled visit there. 

the expected number of events sighted in the visit to Hand 

Then 

the next trip to 1 is at most hco + am+n . If the visit to point 

H were replaced by anuther trip to 1, the average number of 

observations in the two time units changes to a + a . m n 

Now, writing am = a l + d l + ... + dm- l , a = a l ~ d l + ". + 

dn- l and am+n = a l + d l + 

change in expected gain (a + m 

+ d + l' the upper bound on m n-
a ) - (hco + - ) follows: n Q;m+n 

(a + a ) - (hco + a ) = m n m+n 

Since the dk's are nonincreasing in k, the quantities in paren-

theses are nonnegative and d < d l " Therefore, m+n 

a + a - a - h > a - d l - h = 2a - a - h m n m+n co - I co 1 2 co· 

Hence if hoo < 2a
l 

- a 2 , the average gain has increased because 

of the policy alteration, implying that the policy involving 

the visit to H was not optimal, which proves the theorem. 

The theorem gives us a basis for excluding some points 

from possible visits at once. But, except in the case of exact-

ly two points, the requiremert hco > 2al - a 2 , while a necessary 
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condition for visiting P, is not a sufficient one. This is 

shown by the three-point situation 1 1 ql = ,q2 = -E, q3 = EI 

where E > 0 bl.'.t is very small. If F(t) = 10 for t < 2 then 
for t L 2, 

o and h = 2E. co Yet despite the fact that 

hco > 2al - a 2 , the best strategy calls for alternating between 

1 and 2 and never visiting 3. 

The ",exclusion 11 theorem tells us which points we can 

ignore at once and, if only two points are not excluded, the 

we ave 0 cons~der what to do if more Problem is solved. But h t ' 

than two points remain. That is the subject of the balance of 

the paper. 

coexistence and Interference 

Some implications of the concavity property are important 

in the forthcoming discussion. If the observer's visits to any 

given point have a mean time 3pacing of s, his mean detection 

rate there is easily sho~m to be highest when the intervals 

between successive visits vary as little as possible around s. 

Thus, if s is an integer, these intervals ideally should be 

exactly s, where by "ideally" we mean best for the point con

sidered in isolation (although not necessary for the whole set 

of points among which the observer must "compromise"). If 

s = k + Y where k is an integer and 0' < y < 1, the k + 1 and 

1 - Y at k. Now we are ready to prove a ncoexistencell theorem. 
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The "coexistence" Theorem 

Suppose that for each of the N discrete points besides 

the busiest one (still 1), the best two-point search policy for 

points 1 and k is found. Let wk be the time between two con

secutive visits to point k (k > 1) under this policy. Suppose 

one can devise an N-point search policy under which 

1) For each k, the observer visits point k everywk units (k > 1). 

2) Each visit to k is immediately preceded by and followed by 

a visit to l. 

Then the strategy just described is the optimal N-stage policy. 

Proof: For notational ease, we deal with exactly three points: 

the extension to more points is immediate. Both w2 and w3 are 

assumed finite; otherwise the problem is trivial. Consider 

a strategy under which trips to 2 and 3 have average spacing s 

and v respectively. All other trips are to (busiest) point 1 

so the mean spacing y there follows 

1 
Y = (1 - - -s 

1 -1 -) v 

From the discussion immediately preceding this theorem, an 

ll.'ml.'t on the overall detection rate is upper 

b 
~+ 
s 

- -c a 
v + ...:i 

v y 

_ expected no. of sightings at 2 after a k-unit absence where bk 

and bs ~ (1 - y)bk + ybk+l ; where s = k + y, k an integer 

o ~ y < Ii etc. 
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The theorem's requirement that each visit to 2 and 3 both 

precede and follow a trip to 1 implies that both w
2 

and w3 must 

be at least 4. To compare the "coexistence" policy with all 

others, we divide other policies into two groups based on their 

s and v values. 

a) Suppose lIs + l/v < 1/2 for a pa~ticular .strategy. Then 

.!.+ 1 
s v 

1 1 - - -s v 

the concavity property at point 1 allows us to express the upper 

limit on expected sighting rate as: 

which can be rewritten as 

-b + a 2 + (s - 2) a l c + a
2 

+ (v - 2) a
l ( s s ) + (_v v ) - a 1 

Now the first quantity in parenthesis is the best detection 

rate under a two-point strategy for 1 and 2 with mean cycle time 

s. But this quantity is maximized when s = w
2

; likewise, v = w3 

maximized the second quantity. Thus the "coexistence ll policy, 

when it exists, is the best of all pOlicies for which 

lIs + I/V' ~ 1/2, (i.e., at least ha.lf the visits are to the 

busiest point). 
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b) 1/2 < lis + l/v ~ 2/3* 

In this situation, y falls between 2 and 3. Using arguments 

analogous to those of part (a), we obtain as an upper limit on 

the average sighting rate the quantity 

5 + 2a3 + (s - 3}a
2 

c + 2a
3 

+ (v - 3}a
2 ( s s ) + ( v v ) - a

3 
• 

(1) 

At least one, and possibly both, of s and v falls between 

2** and 4. We consider below the case when both of them do; 

the argument for the case when one of s and v exceeds 4 is not 

very different. 

If we write s = k + y where k = 2 or 3 and 0 < y ~ 1, 

the first quantity in parenthesis can be expressed as: 

(1 - y)bk + ybk+l + 2a3 + (s - 3)a2 
s = 

Since we know w2 is at least 4, our Theorem 1 about two-point 

best policies implies that (k + l)b
k 

- kb
k
+

l 
< 2a

l 
- a 2 . 

* The upper limit 2/3 arises because under any policy with 
lis + l/v > 2/3 the busiest point is not the one visited most 
frequently. Clearly the best overall strategy cannot have this 
property, so demonstrating that coexistence is best whenever 
lis + l/v ~ 2/3 is sufficient for our purposes. 

** The case s = 2 is not directly considered in this discussion 
but the extension to this case is straightforward. 
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Hence the numerator in the fraction on the right of (2) is at 

most 2a
l 

+ 2a
3 

- 4a
2

, which is itself nonpositive because of 

concavity. 
2a + 2a

3 
- 4a

2 Thus 1 can not decline as y is 
k + y 

increased to 1, and therefore the s-related term in (l)' is 

bounded by the value of that term when s = 3 or when s = 4 

depending on k's value. When s = 3, the relevant part of (1) 

becomes (b
3 

+ 2a
3
)/3; when s = 4, it is (b 4 + 2a3 + a 2}/4. 

The latter (yes, concavity again) is the larger expression, 

and thus (b
4 

+ 2a
3 

+ a
2
)/4 bounds the "s-component" of (1) for 

all 2 < s ~ 4. 

Identically, for v between 2 and 4, the second quantity 

in parenthesis has an upper bound of (c 4 + 2a3 + a 2)/4, and 

'thUS the total sum in (I) is bounded from above by 

But this quantity is exactly the upper limit 

which arose in part (a) for s = 1/4 and v = 1/4; since we 

showed in (a) that the "coexistence" observation rate is at 

least that large, our work is complete. 

We call this a "coexistence" theorem because fa.:'Lr1y strin-

gent compatability conditions on w2 and w3 must hold for the 

theorem to be relevant. In particular, both w2 and w3 must have 

a common factor at least 4. In the ranges 2 ~ w2 ~ 25 and 

2 ~ w3 ~ 25, for instance, this condition is satisfied for 

about 12% of the value pairs. When there are'four or more 

points to be searched, the rarity of "coexistence" increases 

sharply. 
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What does one do when IIcoexistence" does not occur? 

It would be pleasant to find some more general theorem of 

which the results we have obtained are just special cases. But 

the author has been unable to locate one, and is in fact doubt-

ful that such a theorem exists. However, common sense indicates 

a few approximation p~ocedures one might use when the wk's are 

not compatable in the necessary way and the total' number of 

points for potential search is relatively small. We restrict 

our attention now to the case of exactly three points. 

Suppose both w2 and w3 are at least 4 but have no common 

factor at least 4. (We ignore smaller values of w2 .and w3 

since simple trial-and-error methods are feasible in those 

cases.) One might approximate the best policy by the better 

of the two "adjacent coexistence policies" formed when each of 

the two numbers w2 and w3 is (separately) altered the minimum 

possible amount to be in coexistence with the other. (e.g., 

if w2 = 5 and w3 = 8, the two coexistence policies use w2 = 4, 

-w3 = 8 and w2 = 5, w3 = ID.} Or, .one might instead attempt to 

implement the two two-point policies with 1 as closely as 

possible (the II interference II policy); when "collisions" arise 

between the times of indicated visits to 2 and 3, one resolves 

them in favor-of 2 or 3 depending on how b(w2)* + c(2w3) com-

(Note tha~ under this approach, the 

intervalbetween consecutive visits to 1 will sometimes be 3.) 

Since, as we have seen, an upper bound on expected "gain" is 

= bw i this is just a notational change t,o avoid a 
2 double-subscript. 

------------------------------------------------------------
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one knows the maximum possible loss associated with any par

ticular estimation. We illustrate these approached with a 

simple example. 

~rical Ex~ple 

Suppose ql = 1, q2 = .057, q3 = .024 and F(t) = I - exp(.lt) 

t ~ O. The values of ak for k = 1, ... ,12 are given below; note 

that bk = .057ak and c
k 

= .024ak . 

k 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

.95 
1. 82 
2.59 
3.30 
3.94 
4.52 
5.04 
5~5l 
5.94 
6.33 
6.68 
6.99 

where F(t) = 1 - exp(.lt) 

Since boo = .57, Coo = .24 and a 2 - 2a1 = .08, both 2 and 3 are 

candidates for search. From T.heorem 1, 

w2 = (max k!kb
k

_l - (k - l)bk < 2a1 - a 2); here w2 = 7 and, 

similarly, w3 = 11. No coexistence. We thus consider the 

approximate policies discussed. 

-1) Adjacent Coexistence policy 1: w2 = 11, w3 = 11. 

Average gain g 
c ll + bll + 2a2 + 7al = 

= 11 .986. 
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-2) Adjacent Coexistence Policy 2: w2 = 7, ~3 = 7. 

3) Interference policy ("collisions il resolved in favor of point 2) 

= 5cll + c 22 + Ilb7 + 13a2 + 2al + 45a l 
g 77 = .985. 

4) Upper limit on g: 

= b 7 + a 2 + Sal c ll + a 2 + 9al 
M 7 + 11 - a l = .987. 

From (4) we see that our approximations did extremely 

well. There is no particular significance to the fact that 

coexistence trimuphed over interference here; under the dura

tion distribution function for which a 3 = 2.65 and the other 

ak's are unchanqed (note that the concavity requirement is 

still satisfied), interference is the best of the three 

approximationse The fact that coexistence estimates mayor 

may not be better than those from a very different approach 

suggests the difficulty of finding a unifying theorem to cover 

all crurcumstances. 

Conclusions 

We have considered a sequential-search problem involving 

the detection of as many 'as possible of a series of events, 

events that are random in their times and places of origin and 

in their durations. We solved the problem exactly in the case 

of exactly two generation points and showed that, more generally, 
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there is a cyclic optimal search policy. Then we proved 

"exclusion" and "coexistence" theorems that sometimes allow the 

reduction of problems \<Jlth many points to a series of two-

point problems. We also discussed some simple approximation 

methods. 

As noted, our results are useful primarily when the total 

number of points where events arise is relatively small. Thus 

an obvious area for further investigatjon is large-scale 

problems with the same underlying model. Another possible direc-

tion for further research involves the alteration and/or 

generalization of the assumptions we used. While it is unclear 

how far one can progress in these areas' using analytical methods, 

the successes we did achieve hint that further effort might 

indeed be fruitful. 
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