## NCJRS

This microfiche was produced from documents received for inclusion in the NCJRS data base. Since NCJRS cannot exercise control over the physical condition of the documents submitted, the individual frame quality will vary. The resolution chart on this frame may be used to evaluate the document quality.


MICROCOPY RESOLUTION TEEST CHART

Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101.11.504

Points of view or opinions stated in this document are those of the author(s) and do not represent the official position or policies of the U.S. Department of Justice.

## U.S. DEPARTMENT OF JUSTICE LAW ENFORCEMENT ASSISTANCE ADMINISTRATION NATIONAL CRIMINAL JUSTICE REFERENCE SERVICE WASHINGTON, D.C. 20531

X semi-automaten computfer fingerprint menconting and matching systey

## Robert B. Soliosko omputer Systems Department

 :lcectronic systemsCalspan Corporation

Introduction
One of the major prohlems facing snciety today
the hich crime rate. Local, state and fedcral is the hich crime rate. Local, state and fedcra
law enforcement agencies, restricted by limited hudgets and manpower. resources, have had a difficult
time maintaining effective law en forcement. The us of me mantaining effective law en forcenent. The us
of advanced computer technolegy can aid in coping
with the rising crime rate. The task of with the rising crime rate. The task of corsonal identification in law enforcement is a key the use of computer technology,

Fingerprints have 1ong heen recognized as one of
nost effctive means of personal identi fication. he most effective means of personal identification.
Since legal restrictions prevent the detainnent of Criminal suspects for lon periods of time, it is vitally important to rapidly estallish positive identi-
fication. The use of advanced computer technology can redice t.i.e tine required for senrch and retricval
of fingern rints in a large fingerncint file from of fingerprints in a large fingerprint file from
several hours or several days down to several minutes tern substantial savings in cost and manpower. The use of the manual lienry classification system has
impeded the development of automated computer fingerrint identification techniques. For several years, SIIS has been look ing for a new fingernrint encod patible with autumated computer processes. The zoni of the work presented in this parcr was to
develop and evaluate several concents and techniques eve top and evaluate several concents and techniques
or a semi -automated conputerized systen for the encoding of fingerprint dita and for the search an
fetricval of matching duplicate fingerprint cards
 trated the feasibility of usinr a nov sot of fingerprint descriptors which is compat.
include the llenry classification.
The prinary limitation of the presently used manual finnerprint classification systems, such as the llenry and American Systems, is that large fingcr-
print filos are not sufficiently subdivided to allow for the quick retrieval of dupli inte fingerprint card Extensive manual verification is required to locat
the duplicate fingerprint card within the several the diund catc fingerprint card within the several ith in an individual llenry classification suluNision. This project considered the use of several
dditional fingerprint descriptors to provide an xpansion of the prosent classification systems $t$ urther subdivide large finge mrint files. These
ingerrint descriptors were chosen on thic basis of mnatili ility with prescont manual classification techniques and sui talai ility for
autonatic readinn techniques.

## 1 0 $1 \rightarrow$ $\square$

The questions snecifically addressed in this project were (1) do such additional fingerprint lescriptors adequately characterize indivi iduat fingerprints and fingerprint cards; (2) is th
process for encoding these additional finger-
$*$ This wiork was nerformed at Calspan Corporation and
was sponsored by the Office of Crime Control Planwas sponsored by the envice of Crime control plan
ning, New York state nivision of Criminal Justice Services under Contract C.6015

New York State Identification and Inte 11 inence system Vew York State Identification and Inte
ivision of Criminal Justice Services. Alhany, New York
print descrintors practical for manual, semi-
automatic and automatic fincornint autonatic and automatic finncrnrint identifica-
tion systems and (3) cin a sufficiently fast and tion systems and (3) can a sufficiently fast and
accurate finnernrint search and matching nrocess be
implemented bised on the use of these addititional impemented hased on the use of these andilitional
fingerprint descrintors. These questions ware fingerprint descrintors. These questions were
answered by vevaluating the ability of the fincerprint descrintors to accuratcly match an inquiry card with the proncr duplicatc card in a finge
print file. The fingermint descrintors were evaluated on the hasis of matcher nerformance
on the individual descrintors and on various on the individurl descrintors and on various
combinations of descrintnrs. tiarintions due to specific fingers, Rrouns of finfers, and pattern tyne on
also considered.
The system implemented in this study character izes a fingerprint in terms of several identifinhic set of scyeral fincerprints fro This data, from a set of several fincerprints from a card is used
as a basis for matchine the set with sets of of previously encoded fingerprints contained in a fingerprint file. The datar required to
characterize a fingernrint is ohtained semiautomatically. The core, delta(s) and two noints
on the creasc are manualve located usino a curso on the crease are manual liv located using a cul
on an image of the fingernint disnlayed on a grey scale TV monitor. The ridtre count, dis tance and angle measurss hetween these pnints.
are then automatically computed bv a small are then automaticall compinted hy a small
compunter. For loon and whorl tyme finerrints the fingerprint descrintors include the ridre
count and distance between the core and delta(s), the distance hotween the core and the crense and the angle(s) formed by the core-delta line and the line throurh the core which is rer-
pendicular to the crease. Similar measures pencicular to the crease. Similar measures
are used to characterize arch type fingernrint patterns. Additional data for the finpernint
set such as sex, date of birth, and nattern type are entered. manual ly. The s.ts of those
descriptors from severnl fincernints are then lescriptors from several finncerncints are then
compared with corresmondini descrintors from fingerprints within the file. If the difference
between corresponding descrintors are within setween corresponotin? descrintors are, with
spocified thresholds, the fingerrint sets arc soocificd thresholds, the finnecrnvint sets are
consilcredt to match. The evaluntion of the ahility of the fincernint to provide a uni que
characterization of a fingerprint card wis hased on 73 pairs of duplicate fingerrint cards arranced
The results of thic atulus.

The results of this stady provide nractical additional fingerrorint descrintors in a finnernrint
identification scarch and retricval system The identification scarch and retricva1 svstom. The.
results showin? the tyncs of descrintors that are results showing the tyncs of descrintors that are
generanaly usahic, the effects of differences due.
 multinle fingor matching systems may he ann licd
the dosifn and develomment or selection of most types of fingerprint $i$ identification systems.

This proiect renresents an initial study for the deternination of the fensibility and the
techniques. No attompt was made to develop an operation.
system.

Fingerprint Technical Search Techniques
The process for performing a tochnical
ch of a large fingerprint file to find the Search of a arge fingerprint file to find the
matching card for an inquiry fingerprint card can
 is to encode sufficient information about the finger
prints on the card to provide a basis for comparing rints on the card to provide a basis for comparing
the inquiry card with previously encoded cards in a the inquiry card with previously encoded cards in a
fingerprint file. The second step is to scarch the
fingren fingerprint file and retrieve possible matching fingerprint cards. The third step is to match the inquiry
card against each of the possible matching file cards that have been previously been retrieved. This process
rasults in a selection of very few possible duplicate results in a selection of very few possible duplicate cards. The final stage is
matching duplicate card.

In a totally manual fingerprint technical search system, the fingerprint card may be characterized by
the determination of the llenry classification The the determination of the llenry classification. The search and retrieval process is is performed hy manually
pulling all the cards in the particular Henry classipulling all the cards in the particular Henry classi-
fication. Ench such card is manually matched against the inquiry card. The verification of the matching
card is also manually perforied ard is also manually perfortied. Large identifica-
ion bureaus using this completely mannal cannot ee expected to adequately process the normal daily identification work loads as the rate of crime
dincreases. One automation step which has bect taken ncreases. One automation step which has becn taken
is to autnmate the search and retrieval process based on the use of a manually determined Henry classification. Hovever, the matching and verification steps
are still manually performed requiring much manual labor. Additional classification parimeters are needed to reduce the number of fingerprint cards
that are retrieved and hence reduce the manual that are retrieved and hence reduce the manual labor
equired in the verification step.

The system evaluated in this research partially atomates the fingerprint encoding process and evalu
ates this process within the framework of a comPletely automated search and matching operation. This approach is potentially a faster and more accurate techniques. This approach also provides additionnal lassification information not easily obtainalle ith a manual encoding system. The hardware nocessary
for the implementation of this semi-automatic approach is less expensive than the hardware required for a completely automated encoding system al though it is one to two orders of magnitude slower. However, a
nteractive semi-automatic system can procoss poor uality or latent fingerprints more readily than resent completcly automated fingerprint encoding stems.
In the design and develonment of a somi-autonatic fingerprint identification system, the neces pecific speed and file size requirements of the individual identification bureaus. Simple interactive encodings systems may provide for only the
location of specific key points on the fingerprint whereas more sophisticated interactive terminal th image processing capatility may find use as ing system andling other identification problems in additio ofingerprints. Tho approach evaluated in this points on the fingerprint and of automated imas rocessing techniques to provide an automatic f such an interactive syctom is. That it betares utilizes the ahility of a human to reconnize
specific patterns or locations on the finer print image while using the computer to accurately prinnteage whe
compute and record the measurements.

The foncral system configuration for an inter-

shovin in Fipure 1 . The heart of the system is is small computer which perforss the functions is a trol, messare disnlav and measurement comnutation scarch, matchins and petrieval of duncticate of orint cards. The sensor provides a means for it on an interactive torming in order to disnlav an encode or locate specific points. The result of the encoding computation is the determination of the characterization of the fingernrint carch. This
characterization is either stored on a mass storen device such as magnctic tanc for later processing in a general purpose computer or is used as the hasis of a search of a fingerprint file which is resident Additionally, an operational fingerprint encoding. and identification system requires a means of mages sequentially under the sensor fingerprint entering additional jdentification data, and other peripherial devices for system support.

## The Experimental System Hardware

The Fipure 2 shows the hardvare configuration for system which was implemented and evaluated in this study. This systom utilized a general purpose flying spot scanner for sensing the finfernrint imane. The
scanner samples the fingerprint imare in a squre array consisting of $1024 \times 1024$ points. Each noint or sample of the fingerurint image is encoded into
one of 64 possible valucs reuresenting the of the fingernrint jmages at that point. This dirit-ized fincernrint imare is disnlayed for the operator



Figure 4 FINGERPRINT MEASUREMENTS FOR LOOP AND WHORL FINGERPRINTS POINTS A, B, AND C ARE MANUALLY I OCATED. THE MEASUREMENTS INCLUDE THE CORE.
DELTA RIDGE COUNT ROC. THE CORE-DELTA DISTANCE DDC. THE CORE TO CREASE DISTANCE DCH. DELTA RIDGE COUNT RDC. THE CORE-DELTA DISTANCE DDC, THE CORE TO CREASE DISTANCE DCH
AND THE ANGLE BETWEEN THE CORE-DELTA LINE AND THE CORE CREASE LINE $\theta$ DCH. WHRL AND THE ANGLE BETWEEN THE CORE-DELTA LINE AND THE CORE CREASE LINE $\theta$ DCH. WHORL
FINGERPRINTS HAVE THE CORE-DELA RIDGE COUNT, THE CORE-DELTA DISTANCE, AND THE CORE-
DELTA, CORE CREASE ANGLE COMPUTED FOR BOTH DELTAS. delta, core crease angle computed for both deltas.
on a high resolution TV imare storage disnlay system. Supcrimnosed on this imare of the finnerprint is
cursor dot whose position is controlled hy the operator by means of a track hall device. Messages are displayed for the onerator on a storare oscil-
loscope and the data is entered throush a teletyme
 all of the operational fumctions and werforms the measurement tasks. The fingernrint data file is stored on 9 track magnetic tape with all automatic hy reforence to this marnetic tane file.

Conmutation of the Finfernrint Descrintors
Figure 3 shows the flow of the encodine and matching process. The four hasic descrintors comFigure 4. The distance and ansle descrintors are computed from the manually entered locations of thi key points. The rilge count hetwen the core
and the delta is. computed he usino imane processand the delta is computed hy usine imane process-
ing techniques. Finpernrints exibibiting two deltas,
that is whorl and double loop twe finperimints, have the core-delt distance, the core-del ta rilpe count and the anglo mensurement compinted for hinth
deltas on the fingernrint. There are thus four deltas on the fingernint. There are thus four
descriptors characterizing loop type fingerprints and sever descriptors characterizin! whorl type
fingerprints.

The process for automatically counting the ridges is shown in Finures 5 and 6. Once the loca-
tion of the core and deltas is manually determined, tion of the core and deltas is manually determined,
the fingernint imape is rescinned in a band lietween these two points. The actual scanning, process involves moving a window containing as rridge valley
filter" process alone al line letween the core and filter process alone a ine letween the core and
deita. This process is used to enhance the ridec structure on the line betwen the core and delta. The cunancement converts the grey scale imare to a
binary image based on the fingcrprint ridge inforination within the square window. This enhancement process was originaly developed for use in a coni-
pletely automated fingerprint minutiac reader built pletely automated fingerprint minutiale reader built
for thic FBI ${ }^{3}$. The result of this enhancement operation is shown in Figure 6 . This figure shows the
orininal prev invel of the fingermint inane and
the resultant binary produced by the ridge valley filter enhancement process. As implemented in this
study, the process for counting the ridges is merely the process of counting the number of binary ridges roduced by the ringe valey fiter operation.
Initial results on the accuracy of this process Initial results on the accuracy of this process
indicates that the occurrence of creases or scars across the line betwen the core and delta are not adenuatcly considered. A more ontimum implementatio
would include the in formation that the ridge width s approximatcly constant over the area between the ore and the detc. ridfce counting,
of this study.


Figure 5 DISPLAY OF A LOOP TYPE FINGERPRINT SHOWING THE AREA OF THE FINGERPRINT CORE-DELTA RIDGE COUNT

Since arch type fingerprints do not have a core puted for loop type fingerprints cannot be made on arch type fingerprint patterns. To provide some information on arch patterns to provide for their use in a fingerprint identification system, severnal
Simi lar descriptors were considered. Figure 7 shows these descriptors. The operator initialiy enters
the location of the point of maximum curvature of the ridge flow and two points on the crease. The three descriptors for arch fingerprints are the istance between the point of maximum curvature and the crease, the ridge count along this line
and the angle formed between the ridge direction patterns on each side of this point of maximum The arch type fingerprint shown in Figure 7 has
a we ll defined point of maximum curvaturc.
However, many arch type fingernrints exhibit patterns for
which this point cannot be accurately selected manuahily. Hence, only 1 mimited accuracy in the computa-
ald of these arch descriptors would be expected.

The Fingerprint Matching Procoss
Since the purpose of this study was to evaluate the fingerprint descriptors, a fingerprint matcling process was needed which wnilld provide for the direct conparison of derived similarity scores when the
scores were based on single finceprints, prouns of sores were based on single finverprints, frouns
fingerprifts, single measurements, etc. The sini1arity measure choson for this function is the iormalized average difference between corresponding
lescriptors from corresnondin? fincermrints. That is, the difference in the corresponding descriptors is computed and this difference value is normalized hy dividing it by the average of these two descriptor factor. This sinilarity score is promortional to the percentaye variation in corresnonding
 values varies considerahly for the different tynes of descrintors, the value of the similarity scores
for different tynes of descrintors are approximately on the same range for fingernrints that are matching and similarly for finferprints that are not matching Matching duplicate fingerprints would be exnected
to give very low similarity scores indicating the to give very low similarity scores indicating
very high degroc of simi larity and non-matchin
fingerprints would he fingerprints would be expected to give a high similarity score

figure 6 GRay level and binary produced by the ridge valley filter along a lin FROM THE CORE TO THE DELTA ON THE FINGERPRINT SHOWN IN FIGURE 5





The score of sinilarity is comnuted for each
crintor from each fingerprint in the sets heing descriptor from each fingerprint in the sets he
compired. $A$ similarity score for individual fingers is commeted by averapine the individual descrintor similarity scores. The similarity score for several fingerprints or all ten finger scores from the individunl fincers that are heine considered.

The similarity score for the ancle tyne
criptors cannot he determined in the same way


Figure B THE FINGERPRINT SEARCH AND MATCHING Process
as for the nther Neserintime sime the neremtane variation of angles his a different mesuine similarity score for anyles is computed as the sinple mannitule of the difference of corressondity angles scaled hy an anprompinte factor so that it is in approximately the same range for matching or
for non-matcling fingerprints as the similarity scores from the other descrintors. Therefore, in this study, when several different descriptors are used as a group to determine the average si
score, each descriptor is equally weighted.

Figure 8 indicates the general flow of these search and matching process. This flow diagram
assumes that at the heginning of the scarch proces the inquiry carcil has already been encoded. Initially, the encoded data from a file fingernrint card
is read from magnetic tape and a comparison of the is rind from magnetic tape and a comparison of inquiry and scarch carts are made. This chassifias the primary Henry classification would in a large system, that is, to reduce the amount of
scarching required for matching purnoses. Next searching renuired for matching purposes.
the similarity scores between corresnonding the simi arity sores hetwen corresnonding
descriptors of corresponding finfernrints are computed. When all ten fingernrints have been
considerel then the averane similarity senres for the single individual finfers and for various grouns of fingers, includin! ail ten fingers, are computed and the scores are printed ont. The
process is repeated until all fingernrint cards in the fingerprint file on the file tane have heen read and compared to the inquiry card. Finaly, the
likely matching fingernint cards that is the throe fingerprint cards in the file with the lowest similarity scores are printed the process is terminated

The data that is printed out as a result of the search and retricwal oneration is the
similarity scores for cach individual fincrer the similarity scores for the combination of the two index finsers, the combinnation of the two fingers, thumbs and middle fingers, for all cisht Hingers excluling the little fingers and for a1t
ten fingers. For each min of the search and retrieval process the derivation of the similarity senres may on the use of an individual type of fingerpr descriptor or group of the different finnerprint
descrintors, or an indivi dual tyme of fingerprint nattern type or group of pattern types.
In evaluating the fingerprint descriptors in this study, the wailiable data base was divided
into three grouns. The first group was composed of 28 pairs nf duplicate fingerprint cards for which the pattern typos were all lons on all ten fingers. The secont froup was composcal of whe pairs of
duplicate fingerprint creds for which all fingerprint exhibited arch type patterns. The third grolip was a set of 20 pairs of duplicate cards of mixed
pattern type with approximately 40 percent of the fingerprints heing whorls, 35 percent being toons and 25 percent of the fingerrints heins
archics. Since these various suberrous of the arches. Since these various subgroups of data base represent different primary llenry formula classifications, they were considere separately. Thus the scarch and retrieval. process ising the fingerpint descrintors was
evaluatcd on the hasis of heing nhle to sclect
the nioner matching card within a single llenry

|  | Percent duplicate fingerprints with ridge counts |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SAME | DIFFRRENT BY 1 | DIFFERENT BY 2 | DIFFERENT <br> BY | DIFFERENTBY mORE THAN 3 |
| MANUALLY COUNTED RIDGES ON DUPLICATE FINGERPRINTS (WRITTEN ON CARD |  |  | 3.3\% | 1.1\% | 0\% |
| automatically counted <br> RIDGES ON DUPLICATE <br> FINGERPRINTS |  | $\underbrace{28.4 \%}_{71 \%}$ | 23.2\% | 12.9\% | 17.6\% |
| automatically counted RIDGES COMPARED TO MANUALLY COUNTED FINGERPRINT | 26.0 | $\underbrace{\int_{8.2 \%}^{32.2 \%}}_{79.1 \%}$ | 20.9\% | 9.7\% | 11.3\% |

Table I
evaluation of the matcher performance of the individual FINGERPRINT DESCRIPTORS AND GROUPS OF DESCRIPTORS

| descriptor | PERCENTAGE DUPLICATE ${ }^{\top}$ CARDS WITH THE LOWES SIMILARITY SCORE | percentage duplicate CARDS WITH SIMILARITY SCORES THAT ARE ONE OF THE THREE LOWEST SCORES |
| :---: | :---: | :---: |
| FINGERPRINT CAROS Composed of all Loop patterns, ALL. 10 Fingens lz duplicate paliss |  |  |
| all measurements ${ }^{2}$ | 100.0 | 100.0 |
| core delta distance only | 96.5 | 96.5 |
| CORE CREASE DISTANCE ONLY | 32.0 | 2.0 |
| core delta rioge count only | 87.5 | ${ }_{98.3}$ |
| core delta, core crease angle only | 55.4 | 75.0 |
| Fingerprint cards composed of all arch patterns, all 10 fingers (20 duplicate paiss) |  |  |
| all measurements ${ }^{2}$ | 12.5 | 30.0 |
| abch angle only | 10.0 | 27.5 |
| center of rotation to crease ridge count only | 17.5 | 27.5 |
|  |  |  |
| CENTER OF ROTATION TO CREASE Distance | 10.0 | 35.0 |
| center of rotation to crease distance |  |  |
| AND RIDGE Count | 20.0 | 35.0 |
| FINGERPRINT CARDS COMPOSED OF LOOP, ARCH, AND WHORL, PATTERNS, ALL 10 FINGERS IWHORLS 40\%, LOOPS $35 \%$, ARCHES $25 \%$ OF THE CARDS, 20 DUPLICATE PAIRS |  |  |
| ALL MEasurements ${ }^{2}$ | 100.0 | 100.0 |

notes


 COMBINATIONS OF FINEERS.




Classita artion. These cards wore supplice as
Minolta copics of the carls and not the origin inked fingerprint cards.

Results
To fully understand the results of the fingerprint matching experiments, it is necessary
to know the accuracy of the measurement computation. Gienerally, the distance and angle measures
were accurately and repeitat 1 c computed. the ridge count measurement was not computed as accurately as is normally determined in a manual
ridre countin? process. Whice manual ridge ridfe counting process. Whine manual ridge
counting results in approximately 95 percent of counting results in approximately 95 percent o
dunlicate cards havinf ridge counts which are
either the stme or differcont by only one only either the same or different by only one, only
47.8 percent of automatically counted ridges 4. 8 percent of automaticalhy counted ridges
from duplicate cards had this accuracy. All of the duplicate cards on which manuanlyy counted
ridgas were shown within the avai 1able data base ridges were
had ridge counts which were no different on duplicatc cards than three whereas 17.6 percent of the duplicate prints had ridge counts dif-
ferent by more than 3 when counted. These data are shown in Table I Thus the automatic ridpe count process as impl cmented in this experiment was not very
accurate compared to manual ridpe count processes.

Table II shows the results of the search and descriptors and combinations of descriptors for the throe different data groups used. The result are expressed as the percentafe of matcher rens
in which the proper duplicate card was selected as the most ilikely matching card and the percentage for which was selected as one of the three mes
likely mitching cards. On loop type finferprints using all four descriptors, there was 100 percent accuracy in selecting the correct duplicate card
in the file. Considering each of the descriptors in the filc. Considering each of the descriptors
individuallw, the corce dolta distance and the sorr della ridpe count both produced a very high
accuracy in the selection of the proper dupli accuracy in the sclection of the proper duplicat accurate than the ridse count indicating the hish degree of accuracy with which an operator can
manually locate the ker points. It is expected that a more sophisticated ridge count algorith than the simple one implemented in this study should result in matching hased on the ridge count to delta distance since these two descripitors are very hishly correlated. The core to crease disaccuracy in selecting the proper duplicate match from the filc. Other data indicated that this measurencnt could be very accurately made hetwee
duplicate impressions of the same finerrent However, the difference in this descriptor between non-duplicate fingerprints was not
si pni ficant cnough to provide adequate discrin ination of matchin! and non-matching fingerprints. Since the corc-crease distance descrip-
tor could be accurately conputed the
tor could be accurately computed, the consistenc in locat ing or using the crease as a mensure
feature is accurate enough to find use as the basis of othor descriptors. The angle measure-
ment for loops by itself also does not provide ment for loops hy itself also docs not provide
sufficient discrimination information betwoen


In ennciderine the resulta on the dumpicate

(a) SCORE DERIVED USING THE FOUR DESCRPTTORS FOR THE CARDS

simlaaity scoar value

Rgure 9 THE DIISTRIEUTIONOF THE SIMILARITY SCORES FROM SINGLE
pairs of arches, none of the cases resulted in adequate matcling, thus indicating that the set
of featuros chosen for arches does not provide adequate matching in formation. In cases for which the arch angle measurement was not used,
the combination of the center of rotation to the comhination of the center of rotation to
crease ridge count and the center rotation to crease distance exhibits greater matching accuracy
than is ohtained when all threc measurements are used. This indicates that the arch anmle measure ment is providinn, no matchine in formation and is just adding noise to the matcher process thus
somewhat masking the differences between matching somevhonashing arch type fingerprint.
and non-matching

In considering the significance of the results on these arch type fingerprints it should be not all fingcrprint patterns and cards containing all
archos are only a smanl fraction of 1 percent of all fingerprint cards. Thus even thoursh the matching results on arches indicate that these arch descriptors do not adequately characterize
arch patterns for use in a finperprint matching system, there is generally enough other information available for other type of patterns on a

When considering the cords which included whorl, loop and arch type patterns with whorls
heing approximately 10 percent of tion pattens

Table III
ERCENTAGE OF FINGERPRINT CARDS FOR WHiCH THE DUPLICATE CARD EXHIBITED T LOWEST SIMILARITY SCORES FOR INDIVIDUAL FINGERS AND SELECTED GROUPS OF FINGERS. RESULTS BASED ON
THE 28 DUPLICATE PAIRS OF LOOP DATA BASE CARDS

| Finger or group | percentage duplicate CARDS WITH THE LOWES SIMILARITY SCORE | PERCENTAGE DUPLICATE CARDS WITH SIMILARITY SCORES THAT ARE ONE OF the three lowest scores |
| :---: | :---: | :---: |
| individual fingers |  |  |
| 1 Right thumb | 17.8 | 46.5 |
| 2 might index | 28.6 | 53.6 |
| 3 RIGHT MIDDLE | 26.8 | 53.6 |
| 4 Right ring | ${ }^{26.8}$ | 57.2 |
| 5 Right little | 14.5 | 37.5 |
| 6 Left thumb | 10.7 | 35.7 |
| 7 Left index | ${ }^{26.8}$ | 57.1 |
| 8 Left midile | ${ }^{39.3}$ | 64.3 |
| 9 Left ring | 25.0 | 50.0 |
| 10 Left little | 26.8 | ${ }^{44.5}$ |
| $\underset{\substack{\text { combinations of } \\ \text { fingers }}}{ }$ |  |  |
|  |  |  |
| 2.7 | 64.3 | ${ }^{75.0}$ |
|  | 78.6 87.5 | 92.8 <br> 96.4 <br> 10. |
| 2, 7, 1, 6, 3, 8, 4, 9 | ${ }_{92.8}$ | 100.0 |
| ALL 10 Fingers | 100.0 | 100.0 |

on these cards, very hish matchine accuracy obtained. Ry comparing the distribution
Figure 9 for the case of all loons to the Eribution for case of the multinle class data group which contained a iarfee numher of whoris,
it can be seen that 11 ightly hetter senaration of the matching and non-matching groups were
 The case which containcl many whorl tyne
fingerprints would be expected to provide fingerprints would be expected to provide
sliehtly hetter matchinn since whorls are charicterized by seven descrintors rathe than by four descriptors as for loons. Thus there s more matchin! information for whori type fingerprints than for loop type fingerprint
Table ItI shows the results of considering oop case usine all four descriptors. The casos using the thurbs, fingers number 1 and 6 Individually resulted in much lower probability of accurntely matching on an individual finger
basis than any other cascs. This indicates that there is probably more plastic distortion in the than on the other fingers. Thus, a system hased on the use of less than 10 finsorperints should void the use of the thumbs duc to the increase in
distortion. When considering the results of distortion. When considering the results of
addin! groups of fingers, the results indicate that groups with six fingers or with eight fingers
mav he sufficient to adequately characterize nay he sufficient to adequately characterize

Conclusions
The study reported in this paper is an

Valuation of concepts for tho scmi-automati characterization of fingerprint cards. The
fingerprint descriptors that were considered rovide more detailiod finncerprint characteriza or American classification systrms but not as nich detail as is provided hy minutiae based finfermint encoding systems. Thus, finger-
print descriptors, such ns distance and angle ncasures between key noints on the fincernrint may he used to enhance the Menry or American the highly advanced computer systems required $y$ the practical hi, h-spect minutine base encodin! techniques.

The results of this study indi cated that the usc of the distance and anele mensures as fingerprint descriptors is fensihle for loop
and whorl type fingerprints. The encodin? of the descriptors has been shown to he practical
from a time and cost noint of view.

## Reforencos

CCinnis, P. D. The American Systom of Fingernrint Cllassificition, Sew York stat Repartment of c
Identification.
2. Curmins, 11. and C. 'ficllo, Fingorprints, alms and Soles, Dover fublications, :ion
. Stock, R. Y. "Automatic Fingerprint Reading" Proccedings of the 1972 Carnahan Con
on Elicetronic C.rime Countermcasures, n Ellectronic Crime
pri1 19-21, 1972.

END

