26730

PROGRAM CONFERENCE

JANUARY 1975

If you have issues viewing or accessing this file contact us at NCJRS.gov.

Conference for Planning an Evolutionary Police Car Improvement Program

MONDAY, JANUARY 13, 1975

2:00 INTRODUCTION

- 2:05 PRIORITIES FOR IMPROVING POLICE CAR SYSTEMS
- 2:15 LEAA SPONSORED EQUIPMENT DEVELOPMENTS
- 2:35 AN EVOLUTIONARY POLICE CAR IMPROVEMENT PROGRAM
- 4:15 RATIONALE OF THE PROGRAM

5:00 DISCUSSION BY ATTENDEES OF HOW THE PROGRAM MEETS POLICE REQUIREMENTS E.H. KRAUSE, SR VICE PRESIDENT, DEVELOPMENT THE AEROSPACE CORPORATION

R.W. VELDE, ADMINISTRATOR LAW ENFORCEMENT ASSISTANCE ADMINISTRATION

W.G. NANCE, ASSOC. GROUP PLANNING AND EVALUATION GROUP LAW ENFORCEMENT AND TELECOMMUNICATIONS DIVISION THE AEROSPACE CORPORATION

J.B. WOODFORD, ASSOCIATE GENERAL MANAGER LAW ENFORCEMENT AND TELECOMMUNICATIONS DIVISION THE AEROSPACE CORPORATION

J.C. DALY, GROUP DIRECTOR PLANNING AND EVALUATION GROUP LAW ENFORCEMENT AND TELECOMMUNICATIONS DIVISION THE AEROSPACE CORPORATION

Summary of Briefing Presented to the Conference on an Improved Police Car Development Program

JANUARY 13 1975 -

Equipment System Improvements Summary of LEAA Sponsored

4

Attendees

Mr. Scott Hovey Alameda 911 Project Alameda County Regional Criminal Justice's Planning Board 100 Webster Street, Suite 104 Oakland, California 94607

Deputy Chief Vernon L. Hoy Executive Director Police Chief Executive Project Kajima Building, Suite 809 250 East First Street Los Angeles, California 90012

Chief Rocky Pomerance President, International Association of Chiefs of Police Chief, Miami Police Department Miami, Florida

Chief Philip G. Tannian Commissioner, Police Department 1300 Beaubien Detroit, Michigan 48226

Sgnt. Claude Schlesinger New Orleans Police Department City Hall New Orleans, Louisiana

Mr. Gino M. D'Angelo Director of State Police Fiscal Management New York State Police State Campus Albany, New York 12226

Mr. O. J. Hawkins Executive Director SEARCH Group, Inc. 1620 35th Avenue, Suite 200 Sacramento, California 95822

Chief Edward M. Davis Chief of Police City of Los Angeles Los Angeles, California

Chief Glen King International Association of Chiefs of Police 11 First Field Road Gaithersburg, Maryland 20760

W. F. Kirtley and R. Owens Los Angeles County Sheriff's Office Los Angeles, California Col. C. Wayne Keith Chief, Colorado State Patrol 4201 East Arkansas Denver, Colorado 80222

Chief Theodore Von Minden Patrol Division Hall of Justice 211 West Temple Los Angeles, California 20012

Capt. George P. Day Director, Transportation Division Metropolitan Police Department 300 Indiana Avenue, N.W. Room 5080 Washington, D.C. 20001

Col. John R. Plants Group Manager Automobile Club of Detroit Auto Club Drive Dearborn, Michigan 48126

Mr. R. W. Velde, Administrator Law Enforcement Assistance Administration 633 Indiana Avenue N.W. Washington, D.C. 20530

Mr. J. T. Kochanski, Director Advanced Technology Division National Institute of Law Enforcement and Criminal Justice LEAA 633 Indiana Avenue N.W. Washington, D.C. 20530

Mr. Harry M. Bratt Acting Director, Systems Development Division National Criminal Justice Information Statistics Service LEAA Columbian Building Washington, D.C.

Dr. E. H. Krause Sr Vice President, Development The Aserospace Corporation P. O. Box 92957 Los Angeles, California 90009

Mr. John O. Eylar, Jr. General Manager, Law Enforcement and Telecommunications Division The Aerospace Corporation Suite 4040, 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Dr. J. B. Woodford, Associate General Manager Law Enforcement and Telecommunications Division The Aerospace Corporation Suite 4040, 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Mr. J. C. Daly, Director Planning and Évaluation Group Law Enforcement and Telecommunications Division The Aerospace Corporation Suite 4040, 955 L'Enfant Plaza, S.W. Mr. William G. Nance, Assoc. Director Planning and Evaluation Group Law Enforcement and Telecommunications Division The Aerospace Corporation P. O. Box 92957 Los Angeles, California 90009 Mr. W. D. Pittman, Director **Technology Development Group** Law Enforcement and Telecommunications Division The Aerospace Corporation P. O. Box 92957 Los Angeles, California 90009 Mr. E. A. Emerson **Communications and Control Systems** Law Enforcement and Telecommunications Division The Aerospace Corporation Suite 4040, 955 L'Enfant Plaza, S.W. Washington, D.C. 20024 Mr. H. R. Falck Planning and Evaluation Law Enforcement and Telecommunications Division Suite 4040, 955 L'Enfant Plaza, S.W. Washington, D.C. 20024

Mr. W. R. Preysnar Planning and Evaluation Law Enforcement and Telecommunications Division Suite 4040, 955 L'Enfant Plaza, S.W. Washington, D.C. 20024

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Statuatory Objectives

1968 ". . . TO ENCOURAGE RESEARCH AND DEVELOPMENT TO IMPROVE AND STRENGTHEN LAW ENFORCEMENT"

1973 "TO ENCOURAGE RESEARCH AND DEVELOPMENT TO IMPROVE AND STRENGTHEN LAW ENFORCEMENT AND CRIMINAL JUSTICE:

TO DISSEMINATE THE RESULTS OF SUCH EFFORTS TO STATE AND LOCAL GOVERNMENTS;

TO DEVELOP AND SUPPORT PROGRAMS FOR THE TRAINING OF LAW ENFORCEMENT AND CRIMINAL JUSTICE PERSONNEL."

SOURCE: PL 90 - 351; PL 93 - 83

6

Law Enforcement Assistance Administration National Institute of Law Enforcement and Criminal Justice Advanced Technology Division

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Advanced Technology Division

TOTAL TECHNOLOGY AND EQUIPMENT RELATED EXPENDITURES

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Advanced Technology Division

7

ANALYZE CRIMINAL JUSTICE PROBLEMS AND DETERMINE OPERATIONAL REQUIREMENTS

DEVELOP AND TEST NEW HARDWARE SYSTEMS

DISSEMINATE EQUIPMENT STANDARDS AND GUIDELINES

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Analysis Group

MITRE CORPORATION SELECTED TO

- DEFINE OPERATIONAL REQUIREMENTS
- IDENTIFY PROBLEM AREAS AND RELATIVE PRIORITIES
- PUBLISH PROBLEM IDENTIFICATION REPORTS

FOURTEEN MITRE ANALYSTS SPENT UP TO TWO YEARS WITH REPRESENTATIVE POLICE, COURTS, AND CORRECTION AGENCIES

E-0111

Initial Organization of ESIP

PROBLEM DEFINITION

OPERATIONAL

REQUIREMENTS

PROBLEM SOLUTION

DEVELOPMENT SUBCONTRACTS

• STANDARDS

• GUIDELINES

9

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Law Enforcement Standards Laboratory

NATIONAL BUREAU OF STANDARDS ASSIGNED RESPONSIBILITY TO

- TEST OFF-THE-SHELF HARDWARE AND EQUIPMENT
- DEVELOP GUIDELINES DESCRIBING PERFORMANCE; INFORMATION ON USE AND MAINTENANCE
- PUBLISH STANDARDS FOR SELECTION AND PROCUREMENT OF EQUIPMENT
- BY FY 1974 55 STANDARDS AND 12 GUIDELINES IN PREPARATION
 - SECURITY SYSTEMS
 - COMMUNICATION SYSTEMS
 - INVESTIGATIVE AIDS
 - PROTECTIVE EQUIPMENT AND WEAPONS
 - COURTROOM EQUIPMENT

NATIONAL INSTITUTE OF LAW ENFORCEMENT AND CRIMINAL JUSTICE Development Group

GENERAL OBJECTIVE OF LAW ENFORCEMENT DEVELOPMENT GROUP

"... To Develop Improved or New Equipment Systems to Solve Law Enforcement and Criminal Justice Problems"

PROGRAM RESPONSIBILITIES

11

+

"... Propose Solutions to the Problems ... Analyze Programs to Determine Relative Priority ... Group Responsible for the Development of Equipment -- From Defining System Requirements to Completing Field Tests ... "

- DEVELOP DETAILED SYSTEM REQUIREMENTS AND SPECIFICATIONS
- GENERATE CONCEPTUAL DESIGNS AND PERFORM TRADEOFF ANALYSIS
- RECOMMEND SYSTEM CONCEPTS
- PERFORM OR SUBCONTRACT SELECTED FEASIBILITY DEMONSTRATIONS
- PERFORM OR SUBCONTRACT SYSTEM DEVELOPMENT, FABRICATION AND LABORATORY TESTING

Development Projects

FY 73 PROJECTS	FY 74 PROJECTS	FY 75 PROJECTS
■ LIGHTWEIGHT BODY ARMOR	LIGHTWEIGHT BODY ARMOR	LIGHTWEIGHT BODY ARMOR
CITIZEN ALARM SYSTEM	• CITIZEN ALARM SYSTEM	CITIZEN ALARM SYSTEM
BURGLARY ALARM	BURGLARY ALARM	BURGLARY ALARM
SPEAKER IDENTIFICATION	SPEAKER IDENTIFICATION	SPEAKER IDENTIFICATION
• ANTIHIJACKING SYSTEM	ANTIHIJACKING SYSTEM	ANTIHIJACKING SYSTEM
AERIAL VEHICLE	BLOOD ANALYSIS	BLOOD ANALYSIS
BODY MOUNTED ANTENNA	EXPLOSIVES DETECTION	EXPLOSIVES DETECTION
• REMOTE VEHICLE DISABLING	GUNSHOT RESIDUE	GUNSHOT RESIDUE
	POLICE VEHICLES	POLICE CAR SYSTEMS
	FINGERPRINT	FIELD EVALUATIONS
	o 911	· BODY ARMOR

· CITIZEN ALARM

Typical Candidate Development Projects

COST-EFFECTIVE SECURITY ALARM SYSTEM IMPROVED HARDENED DOORS AND WINDOWS RESIDENCE BUSINESS LOCK SYSTEMS ARCHITECTURAL DESIGN CONCEPTS POLICE EMERGENCY CALL WARNING SYSTEM STOLEN GOODS DETECTION SYSTEM INTEGRATED POLICE CAR EQUIPMENT SYSTEMS HARDENED CASH REGISTERS MODULARIZED COMMAND AND CONTROL SYSTEM COMMAND AND CONTROL EQUIPMENT SIMULATION CITIZEN'S ALARM SYSTEM GUARD AND INMATE SECURITY SYSTEM LIGHTWEIGHT BODY ARMOR BLOOD AND BLOODSTAIN ANALYSIS INTEGRATED POLICE CAR DESIGN POLICE AND WITNESS PAGING SYSTEM COURT VIDEO RECORDING SYSTEM CRIME LAB COURT COMMUNICATIONS SYSTEMS IMPROVED INSTITUTIONAL LOCKING SYSTEMS AUTOMATED INMATE ACCOUNTABILITY SYSTEM PROPERTY TAGGING AND IDENTIFICATION SYSTEMS 911 SYSTEM POLICE VEHICLE RF SIREN ADVANCED FINGERPRINT HOLOGRAPHY ADVANCED DIGITAL FINGERPRINT ENCODING CONVERSION OF NON-SECURE BUILDINGS COMMUNICATIONS HELMET AUTOMATIC POLICE CAR LOCATION SYSTEM SPRAY FILM EVIDENCE COLLECTION ACTIVE METAL-WEAPON DETECTION SYSTEM X-RAY WEAPON DETECTION IMPROVED CRIME SCENE RECORDING EQUIPMENT INDIVIDUALIZATION OF HAIR PERIMETER SECURITY SATELLITE APPLICATIONS FOR LAW ENFORCEMENT 900 MHz TECHNOLOGY IMPROVED AIRBORNE POLICING SPEAKER IDENTIFICATION

EXPLOSIVES VAPOR DETECTION

MOBILE DETENTION FACILITY VEHICLE EMERGENCY CALL SYSTEM DETECTION OF GUNSHOT RESIDUE INDIVIDUAL PATROLMAN LOCATION SYSTEM BULLET TRACING AND IDENTIFICATION LIGHTWEIGHT POWER SOURCES DATA SECURITY TECHNIQUES FREQUENCY MANAGEMENT STUDY TRUCK ANTIHIJACKING SYSTEM ROBBER TAGGING AUTO THEFT PREVENTION IMPROVED FINGERPRINT LIFTING TECHNIQUES EXPLOSIVES TAGGING AND DETECTION POSITIVE IDENTIFICATION CREDIT CARDS EVENT DATING TECHNIQUES AUTOPSY TECHNOLOGY THERMOLUMINESCENT TECHNIQUES POLICE WEAPON SAFETY SYSTEM TRAFFIC LIGHT REGULATION SYSTEM DIGITAL COMMUNICATIONS SYSTEM MOBILE VIDEO COMMUNICATION SYSTEM STEERABLE 450 MHz ANTENNA LOW-COST SECURE COMMUNICATIONS LESS-LETHAL WEAPONS LOW-COST TRANSMITTER IDENTIFIER ION MICROPROBE ANALYSIS REMOTE BOMB DISPOSAL TECHNIQUES MATERIAL COVERT TAGGING TECHNIQUES ANALYSIS OF NON BLOOD BODY FLUIDS RAPE COCOON UNDERCOVER AGENT COMMUNICATIONS SNIPER DISABLING AND APPREHENSION HIGH INTENSITY PORTABLE LIGHTS INTEGRATED LETHAL LESS-LETHAL WEAPONS NIGHT VISION AIDS NEW MASS SPECTROMETRY METHODS COMPUTER AIDED FACIAL FEATURE: IDENT/FICATION REMOTE WEAPON ARMING SYSTEM CONCEALED RECORDING SYSTEM

2.

BODY ARMOR FIELD EVALUATION

OBJECTIVE

Evaluate the performance and user acceptability of limited protection, continuous wear protective armor under operational conditions

GENERAL GARMENT TYPES

UNDERWEAR

PLAIN CLOTHES

EVALUATION TEST PLAN

- Fifteen urban police departments
- Approximately 3000 garments to be evaluated for one year
- FY 75 Implementation

PROTECTIVE ARMOR DEVELOPMENT

OBJECTIVE

Develop light weight, inconspicuous protective garments for law enforcement and public officials that protect against common handgun threats

ACCOMPLISHMENTS

Penetration protection and acceptable blunt trauma demonstrated for the .38 caliber handgun threat class at low armor weights (less than two pounds)

CITIZEN ALARM FIELD EVALUATION

OBJECTIVE

Evaluate system performance, effectiveness, and user/response agency acceptance in realistic scenarios

TEST SCENARIOS

EVALUATION TEST PLAN

- Multiple scenario types and locations
- Approximately 2,000 10,000 user units to be evaluated
- FY 76 implementation

CITIZEN ALARM DEVELOPMENT

OBJFCTIVE

Develop a personal means by which citizens may call for emergency assistance at the onset of a crime or other emergency occurring in either inbuilding or outside areas

SYSTEM CONCEPT

PROTOTYPE HARDWARE FABRICATED AND TESTED - FY 76 FIELD EVALUATION

SPEAKER IDENTIFICATION PROGRAM

OBJECTIVE

Develop computer assisted speaker identification system to accurately identify specific individuals from recorded speech

SYSTEM CONCEPT

CRIMINAL RECORDING IS COMPARED WITH SUSPECT EXEMPLARS USING QUANTITATIVE STATISTICAL TECHNIQUES

COMPUTER CALCULATES PROBABILITY THAT SUSPECT'S VOICE MATCHES CRIMINAL RECORDING

ADVANTAGES:

- Repeatable
- Quantitative
- logo Objective
- Faster and Cheaper

SYSTEM PRESENTLY UNDERGOING FEASIBILITY TESTS

COST EFFECTIVE BURGLARY ALARM SYSTEM

OBJECTIVE

19

Develop a low cost, low false alarm reliable, burglary alarm system for application to residential and small business needs

BLOOD AND BLOODSTAIN ANALYSIS

OBJECTIVE

Develop improved techniques to identify an individual by analysis of key genetic markers in blood and bloodstains

POTENTIAL IMPROVEMENTS

SEMI-AUTOMATIC ANALYSIS METHODS FOR HIGH ID PROBABILITY UNDER DEVELOPMENT

CARGO SECURITY SYSTEM

OBJECTIVE

Develop cost effective means to improve cargo security and reduce cargo losses in the trucking industry

SYSTEM CONCEPT

Monitor location and status of moving and parked vehicles

HARDWARE SYSTEMS CURRENTLY UNDERGOING FEASIBILITY TESTING

DETECTION OF GUNSHOT RESIDUE

OBJECTIVE

.07

.01

.17

Develop improved methods to reliably determine whether a suspect fired gun **ONE APPROACH**

WHILE THE WHOLE PARTICLE SUBPARTICLE SHAPE AND COMPOSITION PROVIDES INCONCLUSIVE DATA PROVIDES CLEAR IDENTIFICATION THESE AND OTHER METHODS ARE IN RESEARCH AND DEVELOPMENT

1.0

.6

1.2

CONTROL OF THE ILLEGAL USE OF EXPLOSIVES

OBJECTIVE:

To develop technology and equipment systems for the detection,

identification and disposal of tagged and untagged explosives

PROJECTS:

3

Police Patrol Car System Improvements I ONG RANGE OBJECTIVES

IMPROVE COST EFFECTIVNESS OF POLICE CAR OPERATIONS

O SAFETY AND RELIABILITY

O ANTI-LOCK BRAKES

O IMPROVE WARNING

O VEHICLE CONDITION MONITORING

O VEHICLE ECONOMY

20

O OFFICER EFFECTIVENESS

O ACCESS TO DATA BASE

O AUTOMATED COMMAND AND CONTROL

O COMPUTER - AIDED REPORTING

O EASE OF INTERFACING WITH CAR SYSTEMS

O SECURITY OF CAR AND DATA

O PROTECTION OF DATA FROM UNAUTHORIZED USE O PROTECTION OF CAR WHEN OFFICER IS AWAY

O CHANNEL CONSERVATION

O WHDE USE OF DATA TRANSMOSTON Instant of Lots o Formatting - Cosing

O DATA COMPRESSION

· 公司合法改革 增长期 通常局 网络小 医白色 有利 公司管理 化化化学 最多的变化

Police Fatrol Car System Improvements Program PHASED APPROACH

PHASE I

MINIMUM TIME TO DEMONSTRATION

OFF-THE-SHELF HARDWARE

● INCLUDES FULL DATA SYSTEM, IN-CAR DATA BASE EXPERIMENTS

● FIELD TEST TO DETERMINE BENEFITS, DESIRED REDESIGNS

TRANSITION TO OPERATIONAL USE

PHASE II

• STATE-OF-THE-ART TECHNOLOGY

REPACKAGING/RE-ENGINEERING FOR POLICE CAR APPLICATION

INCLUDES SLOW-SCAN TV, IN-CAR DATA BASE

• FIELD TEST

TRANSITION TO OPERATIONAL USE

PHASE III

ADVANCED TECHNOLOGY FOLLOW-ON

FLAT TV DISPLAYS

• VERY LARGE ($\approx 10^9$ word) IN-CAR DATA BASE

• REAL TIME IN AVAILABLE

 MODULARITY BEGUN IN PHASE I KEEPS OBSOLESCENCE TO A MINIMUM

Police Patrol Car System Improvements SHORT RANGE OBJECTIVES

- DEMONSTRATE QUICKLY WHAT PRESENT EQUIPMENT/TECHNOLOGY CAN DO AND WHAT LIMITATIONS ARISE
- PLAN FOLLOW-ON PHASES TO UTILIZE RESULTS OF FIRST DEMONSTRATION, REDESIGNED EQUIPMENT, AND NEW TECHNOLOGY
- UTILIZE FLEXIBLE, MODULAR APPROACH WITH STANDARDIZED INTERFACES TO MINIMIZE OBSOLESCENCE AT EACH STAGE
- GET DESIRABLE DEVICES QUICKLY INTO OPERATIONAL USE AT EACH STAGE

Vehicle and Safety

PHASE I

30

- FUEL ECONOMY INDICATOR
- VEHICLE SENSOR AND DIAGNOSTIC SENSORS
- SEAT DESIGN
- ANTI-SKID BRAKES ON REAR WHEELS
- LIGHTWEIGHT CAR -- OPTIONAL

PHASE II

- MODIFY CAR BODY AND INTERIOR TO MEET SPECIFIC POLICE REQUIREMENTS
- IMPROVED COOLING
- DUAL MODE AIR-FUEL MIXTURE RATIO
- ANTI-SKID BRAKING -- 4 WHEELS
- UPDATED PHASE I SENSORS

Vehicle Safety and Economy

E0259

94

Status of Anti-Skid Brakes

SEVERAL FOREIGN AND DOMESTIC SYSTEMS FOR PASSENGER CARS IN DEVELOPMENT OR PRODUCTION

> TOYOTA FORD HONDA GENERAL MOTORS MERCEDES-BENZ

- FORD, GM APPLICATIONS ON LARGE, LUXURY MODELS ADAPTABLE TO OTHER, SMALLER MODELS FOR REAR WHEEL CONTROL (at present)
 - KELSEY-HAYES (Ford line) DEVELOPING FOUR WHEEL HYDRAULIC ANTI-SKID BRAKE SYSTEM
- ANTI-SKID BRAKES MOST APPLICABLE TO LIGHTER CARS DUE TO HIGHER LIGHT/LADEN LOAD RATIO
 - COST MAJOR DETERRENT

Anti-Skid Brakes

PROVIDES IMPROVED BRAKING PERFORMANCE

31

- STABILITY FROM REAR WHEEL CONTROL
- STEERABILITY FROM FRONT WHEEL CONTROL
- REDUCED STOPPING DISTANCE UNDER MOST CONDITIONS WITH EITHER REAR OR FOUR WHEEL CONTROL

• FEDERAL REGULATIONS HAVE STIMULATED DEVELOPMENT

- STANDARD 121 FOR AIR BRAKE VEHICLES REQUIRES ANTI-SKID BRAKING FOR WET AND DRY SURFACES
- STANDARD 105 FOR HYDRAULIC BRAKE VEHICLES (passenger cars, light trucks) REQUIRES ANTI-SKID BRAKING ON DRY SURFACE ONLY (effective September 1975)
- LIGHT TRUCKS EXPECTED TO NEED ANTI-SKID CONTROL DUE TO HIGH LIGHT/LADEN LOAD RATIO

E0251

Warning System Selection

PHASE I

COMPARE EXISTING SYSTEMS TO NBS STANDARDS AND EVALUATE

• USE TOP RANKED COMPONENTS FOR PROGRAM

• DESIGN INTEGRALLY PACKAGED SUBSYSTEM

PHASE II AND III

ASSESS ALTERNATIVE CONCEPTS AND DEVELOP IMPROVED SYSTEM

PROVIDE DIRECTIONALITY AT INTERSECTIONS

• TRAFFIC LIGHT REGULATION

RADIO FREQUENCY SIREN

Emergency Vehicle Warning Systems

• SYSTEM OBJECTIVES

- ALERT DRIVERS AND PEDESTRIANS
- CLEAR PATH FOR EMERGENCY VEHICLES

DETECT WARNING AND GIVE ATTENTION TO PROBLEM

DRIVERS AND PEDESTRIANS TAKE APPROPRIATE ACTION

- EFFECTIVENESS OF DETECTION AND ATTENTION PHASES OF WARNING SYSTEMS ARE IMPACTED BY:
 - PHYSICAL CONDITIONS ROAD AND TRAFFIC TYPE OF DEVICE WEATHER VEHICLE DESTINATION
- LIGHT AND NOISE DISTRACTIONS FLASHING NEON LIGHTS CAR RADIOS AND TAPES AIR CONDITIONERS CLOSED WINDOWS

PROBLEMS IN SIGNAL INTERPRETATION AND INITIATION OF APPROPRIATE ACTION RELATED TO:

- MOST WARNING SIGNALS ARE NON-DIRECTIVE
- INAPPROPRIATE OBSERVER INTERPRETATION
- NO CLUE TO APPROPRIATE ACTION

Instrumentation Applications on Police Cars

• USE SAFETY, PERFORMANCE/ECONOMY RELATED SENSORS ON VEHICLE

CANDIDATE SENSORS

BRAKE LINING TEMPERATURE AND WEAR ENGINE COOLANT TEMPERATURE ENGINE OIL TEMPERATURE, LEVEL TIRE PRESSURE BATTERY VOLTAGE DWELL/TIMING

- USE PREVENTIVE MAINTENANCE/DIAGNOSTIC SENSORS ON FIXED STATION SYSTEM
 - "AUTOSENSE" SYSTEM ONLY IDENTIFIED SYSTEM AVAILABLE
 - COST ABOUT \$8K
E0239

Instrumentation Systems

• INSTRUMENTATION SYSTEMS CAN PROVIDE A COMPREHENSIVE INDICATION OF THE OPERATIONAL CONDITION OF A VEHICLE

PROVIDES SAFETY RELATED WARNINGS

35

- WARNS OF IMMINENT COMPONENT WEAROUT/FAILURE
- MONITORS STATE-OF-TUNE FOR GOOD PERFORMANCE, FUEL ECONOMY, LOW EMISSIONS
- PROVIDES DIAGNOSTIC CAPABILITY FOR FAULT ISOLATION
- TWO BASIC APPROACHES TO VEHICLE SENSOR USE FOR MONITORING/ DIAGNOSING CONDITION OF VEHICLE
 - ON-BOARD SENSORS DISPLAYS
 - FIXED STATION SYSTEMS COMPUTER AND PRINTER

Patrol Vehicle Economy

- ECONOMY CONSIDERATIONS INCLUDE INITIAL COST, OPERATING COST, MAINTENANCE, RESALE VALUE
- ENERGY CRISIS STIMULATED INTEREST IN SMALLER CARS
- STUDY PERFORMED TO ASSESS USE OF SMALLER CARS FOR POLICE
 - COMPACT NOW NEARLY AS LARGE AND HEAVY AS STANDARD 10 YEARS AGO
 - REDUCED VEHICLE WEIGHT IS PRIMARY FACTOR IN IMPROVED FUEL ECONOMY (beyond driver)
 - COMPACT SEDAN FOUND SUITABLE FOR URBAN, SUBURBAN APPLICATIONS
- LOS ANGELES COUNTY SHERRIFF/MOTOR TREND TESTS OF COMPACT CARS SHOW SUITABILITY FOR POLICE PATROL
 - CHEVY NOVA ONLY DOMESTIC COMPACT WITH POLICE PACKAGE

Driver Station Seat Design

• POTENTIAL IMPROVEMENTS IN SEAT DESIGN FOR SAFETY, COMFORT

- INTEGRAL SEAT BELT AND SEAT
- ADEQUATE SEAT ADJUSTMENT TRAVEL
- PROVISIONS FOR OFFICER BELT-GEAR AND INSTALLED EQUIPMENT
- OPTIMUM POSTURE CONTROL
- CONTOURING FOR LATERAL STABILITY

• NO IDENTIFIED SOURCE FOR SPECIAL POLICE CAR SEAT PROCUREMENT

- DEMONSTRATION UNIT COST ESTIMATED AT \$5,000
- LOW VOLUME PRODUCTION ESTIMATED AT \$250-500
- INFORMATION OBTAINED FROM MAN-FACTORS, INC
 - HUMAN ENGINEERING R&D FIRM
 - SUPPORTS SAN DIEGO POLICE DEPARTMENT

In-Car Data System – Phase I

40

Integrated Data System

- OFFICER EFFECTIVENESS
- SECURITY
- CHANNEL CONSERVATION
- GROWTH

S S

E0138

42

In-Car Data System – Phase II

41

E0139

Remote Terminal – Phase II

Remote Terminal – Phase I

Remote Terminal – Phase III

Data Bases Accessed by LAPD Field Officer

AUTOMATED WANT/WARRANT SYSTEM (LA county wide)

• STOLEN VEHICLE SYSTEM (California DOJ data base)

CALIFORNIA DMV INFORMATION SYSTEM

• NCIC

Total Potential Data File Storage

- STOLEN/WANTED AUTO LICENSES 10⁹-10¹⁰ BITS
 ALL AUTO LICENSES 10¹¹ BITS
 WANTED/MISSING PERSONS 10⁸ BITS
 STOLEN PROPERTY (non-auto) 10⁹-10¹⁰ BITS
 FIREARM REGISTRATION 10⁹ BITS
 PERSON IDENTIFICATION 10¹² TO 10¹⁵ BITS
 NAME, ALIAS
 SOCIAL SECURITY
 DRIVER'S LICENSE
 MILITARY RECORD
 - FINGERPRINTS
 - PHYSICAL DESCRIPTION, MARKINGS
 - PHOTOGRAPH(S)
 - VOICE
 - BLOOD, HAIR, ETC
- CRIMINAL RECORDS 10¹⁰ BITS
 - HISTORY
 - MODUS OPERANDI
- REAL PROPERTY 10⁹ BITS
 - **OWNERSHIP**
 - STATUS

- CRIMINAL INTELLIGENCE
- POLICE SYSTEM COMMAND AND CONTROL
 - ASSESSMENTS
 - STATUS OF CARS
 - SPECIAL TEAMS
 - COURT CALENDAR
 - COMPLAINTS OUTSTANDING
 - DAILY LOG
- ANALYZED DATA AND STATISTICS
 - CRIME STATISTICS
 - HIGH RISK AREAS
 - TRAFFIC STATISTICS
 - REPORT COMPILATION
 - EFFECTIVITY EVALUATION
- TRAFFIC CONDITIONS
- WEATHER AND WEATHER FORECAST
- UP-TO-DATE CITY MAP (including construction)

Applications of Modest In-Car Data Base

- REVIEW OF INFORMATION ISSUED AT ROLL CALL (data media given to officer at roll call)
- PROVIDE OFFICER WITH AUTOMATED QUESTIONNAIRE FOR MOST SITUATIONS

• STORE ROUTINE BROADCAST DATA FOR REVIEW AND REFERENCE

- ACCEPT AND STORE UNIT ACITIVITY REPORT FOR AUTOMATIC PRINTING (data media returned to headquarters)
- LOG ALL MESSAGE TRAFFIC FOR REFERENCE

PROVIDE TRAINING MATERIAL FOR PERIODS OF LOW ACTIVITY

Examples of Inquiry to Data Bases

- 1. ENTER: VEHICLE LICENSE NUMBER ABC 123 (CAassumed) ABC 123 NJ (NJ specified) OBTAIN RESPONSE FROM RCF, SVS, NCIC, AWWS, OR DMV AS APPLICABLE DELAY 5-30 sec
- 2. ENTER: DRIVER LICENSE NUMBER AND/OR NAME PLUS ID DATA OBTAIN RESPONSE FROM AWWS, APIF, AS APPLICABLE DELAY 10-30 sec
- 3. ENTER: BICYCLE ID NUMBER OBTAIN RESPONSE FROM DOJ
- 4. ENTER: VEHICLE IDENTIFICATION NUMBER OBTAIN RESPONSE FROM SVS, NCIC, DMV

Los Angeles Police Department Dispatch Center

Command and Control

Mobile Keyboard/Display Terminals

STATUS, INQUIRY, AND DISPATCH

MANUFAC- TURER	PD LOCATIONS	SIZE (cu in.)	FUNC- TION KEYS	DISPLAY CHARAC- TERS	OPTIONS	PRICE
ATLANTIC RESEARCH	DEARBORN HEIGHTS, MICH.	902	10	16	PRINTER	\$4000
E SYSTEMS		1 543	12	64	PRINTER	2900
KUSTOM	BROWARD CITY, FLA	1349	13	256	PRINTER	3200
	CLEVELAND					
	LAS VEGAS					
	NEW YORK, N.Y.					
	OAKLAND					
-	PINELLAS CTY, FLA					
	SARASOTA, FLA					
MOTOROLA	ATLANTIC CITY	579	10	32	PRINTER	3175
	HAMPTON, VA					
SUNRISE	TRIAL - LAPD	468	5	32		2095

Proposed Data System Experimental Developments BASE STATION

- EQUIP ONE RADIO TELEPHONE OPERATOR WITH CAPABILITY FOR
 - MESSAGE ENTRY

'3

- MESSAGE DISPLAY
- STATUS DISPLAY
- RECORDING PRINTER
- PROVIDE DATA PROCESSOR AND SOFTWARE WITH CAPABILITY FOR
 - IN-OUT INTERFACES
 - STORE AND FORWARD OF DOWN LINK AND UPLINK MESSAGES
 - STATUS MONITORING
 - ERROR CONTROL/SECURITY
 - MESSAGE FORMATTING FOR INQUIRY TO L.A. BASES
- DEVELOP COMMUNICATIONS
 - UTILIZE APPROPRIATE AVAILABLE RADIO
 - PROVIDE MODEM

A Standardized Interface

1.	PIN CONNECTION	No. (to be specified) OR EQUIV. 25 PIN LOCKING CONNECTOR
2.	SIGNAL LEVEL	LOGIC TRUE 10 MA, 4.5 volts LOGIC FALSE 1 MA, 0.5 volts ISOLATED FROM GROUND ON INPUT
3.	CHARACTER CODE	8 BIT ASCII PARALLEL (1 parity bit), PARALLEL TO EACH PORT
4.	DEVICE ENABLE/STROBE	1 BIT, SEPARATE TO EACH PORT
5.	DEVICE READY TO TRANSMIT	1 BIT
6.	DEVICE READY TO RECEIVE	1 BIT

Comparison of Manufacturers and Experimental In-Car Data System

5

E0134

Integration of Car Subsystems

• THE FOLLOWING SPECIAL CONTROLS COMPETE FOR SPACE IN THE CAR:

- RADIO CHANNEL, ON/OFF, MODE
- SIREN
- EMERGENCY LIGHTS
- PUBLIC ADDRESS
- DATA LINK CONTROLS
- THE COMPUTER CAN INTEGRATE CONTROL, AS DESIRED, THROUGH SPECIALIZED BUTTONS ON THE DATA TERMINAL OR THROUGH TYPED-IN COMMANDS

Advantages of Standardization of Interfaces

- EQUIPMENT FROM DIFFERENT MANUFACTURERS CAN BE INTERCONNECTED
- INDIVIDUAL EQUIPMENTS CAN BE REPLACED WITH IMPROVED VERSIONS
- NEW TYPES OF DEVICES CAN BE ADDED AS DEVELOPED
- INSTALLATIONS CAN BE TAILORED FOR SPECIAL PURPOSE VEHICLES

THE ABOVE SAVES MONEY BECAUSE OF

57

- INCREASED COMPETITION IN FOLLOW-ON PROCUREMENTS
- INCREASED FLEXIBILITY
- DECREASED OBSOLESCENCE
- RAPID UTILIZATION OF NEW DEVELOPMENTS
- EASIER MAINTENANCE

Communication Security

@ CLEAR TEST + KEY = CODE CODE + KEY = CLEAR TEXT

• PROCESS CAN BE IMPLEMENTED IN A COMPUTER

Car Security

• COMPUTER INTEGRATION OF:

-9

ELECTRICALLY CONTROLLED WINDOWS AND DOOR LOCKS

STATUS TRANSMISSION TO HEADQUARTERS

ACCESS BY KEY OR VIA HAND-HELD DATA TERMINAL

BREAK-IN ALARM TRANSMISSION TO HEADQUARTERS

COUPLED CAR LOCATOR SYSTEM (when available)

A Procedure for Preventing Unauthorized Use

- ALL CAR TRANSMISSIONS EXCEPT SIGN-ON REQUIRE CORRECT TRANSMISSION PASSWORD
- ALL SIGN-ONS MUST CONTAIN CORRECT PASSWORD FOR THE WATCH
- TRANSMISSIONS WITHOUT CORRECT PASSWORDS WILL BE ANSWERED WITH STALLING DECOY MESSAGES

E0190

Error Detection - Simple Example

61

• ERROR DETECTION CAN BE READILY IMPLEMENTED IN A COMPUTER

Software

, A

Channel Conservation

NEW RADIO CHANNELS ARE DIFFICULT TO OBTAIN

- DATA TRANSMISSION AT LEAST 20 TIMES AS EFFICIENT AS VOICE (1/20 the duration per message)
- CAREFUL FORMATTING OF THE MESSAGES CAN MAKE FURTHER IMPROVEMENTS
- IN-CAR DATA BASE CAN BE ARRANGED TO HANDLE MOST FREQUENT DATA NEEDS

ADVANCED DATA COMPRESSION METHODS CAN MAKE FINGERPRINT AND/OR PHOTOGRAPH TRANSMISSION OVER PRESENT LINKS FEASIBLE

£

Software Development – Base System

OPERATING SYSTEM

66

 INTERRUPT, SCHEDULING, TIMING, POWERFAIL, DEVELOPMENT AIDS, BOOTSTRAP

INPUT DRIVERS AND PROCESSORS

- RADIO FROM CAR, INCLUDING ERROR DETECTION
- OPERATOR CONSOLE INPUT
- RESPONSES FROM FECS
- SUPERVISOR CONSOLE INPUT
- EMERGENCY DISCRETES

OUTPUT DRIVERS AND PROCESSORS

- RADIO TO CAR, INCLUDING MESSAGE ASSEMBLY
- DISPATCHER DÍSPLAY MESSAGES, STATUS, HITS FROM CAR INQUIRIES
- SUPERVISOR DISPLAY STATUS
- INQUIRY TO FECS
- TRANSACTION LOG
- PRINTER

SUBSYSTEMS

- EDIT REPORTS FOR LENGTH
- GENERATE PROMPTERS
- SIGN-ON AUDIT
- INTERPRET KEYBOARD INPUT
- ERROR CORRECTION REQUEST FOR CAR TO RETRANSMIT
- ERROR CORRECTION RETRANSMIT LAST TRANSMITTED MESSAGE
- BUFFER MANAGEMENT
- COMMUNICATIONS SECURITY
- MESSAGE FORWARDING TO OTHER MOBILES

Software Development – Car System

OPERATING SYSTEM

.5

• INTERRUPT, SCHEDULING, STATE MONITORING, TIMING, POWERFAIL

INPUT DRIVERS AND PROCESSORS

- RADIO FROM BASE, INCLUDING ERROR DETECTION
- KEYBOARD, INCLUDING VERIFY MEANINGFUL ENTRY
- RADIO FRÓM REMOTE TERMINAL
- STATUS DISCRETES
- MONITORING DEVICES

OUTPUT DRIVERS AND PROCESSORS

- RADIO TO BASE, INCLUDING MESSAGE ASSEMBLY
- DATA DISPLAY
- PRINTER
- SWITCH DISCRETES
- RADIO TO REMOTE TERMINAL

SUBSYSTEMS

- COMMUNICATIONS SECURITY
- ERROR CORRECTION REQUEST FOR BASE TO RETRANSMIT
- ERROR CORRECTION RETRANSMIT LAST TRANSMITTED MESSAGE
- GENERATE TROUBLE INDICATORS
- INTERPRET KEYBOARD INPUT
- MESSAGE LOGGING
- GENERATE PROMPTER5
- SIGN-ON PROCESSOR
- ACTIVITY LOGGING
- MESSAGE FORWARDING TO REMOTE TERMINAL

RECORDER HANDLER

- WRITE OPERATION
- READ OPERATION

Capabilities to be Demonstrated

PHASE I	PHASE II	PHASE III
X X	X X X X	X X X
X	X X X	X X X X
×	v	Y
A Y	Ŷ	Ŷ
Ŷ	Ŷ	Ŷ
X	Х	X
X	X	X
X	X	X
X	X	X
×	X	X Y
DADTIAL	Ŷ	Ŷ
X	Ŷ	x
PARTIAL	Ŷ	Ŷ
PARTIAL	X	Х
STUDY/EXPERIMENT	Х	X
	X	X
PARTIAL	PARTIAL	X
		X
	v	X
	~	Ŷ
	PHASE I X X X X X X X X X X X X X X X X X X X	PHASE IPHASE IIXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXYXYXYXYXYXYXYXYYY

,8

Police Patrol Car System Improvements Program Schedule

E0256

507

\$

Phase I – Specification Preparation

Phase I — Test and Demonstration Objectives

• POLICE VEHICLE

1,9

EFFECTIVENESS OF:	- COMPACT CAR AND DRIVER TRAINING IN
	REDUCING GASOLINE CONSUMPTION
	- MAINTENANCE AND CONDITION SENSORS
	- ANTI-LOCK BRAKES
ACCEPTABILITY OF:	- COMPACT SIZED CAR
	- NEW SEAT
DESIGN CRITERIA FOR:	- CAR INTERIOR
	- SEAT
	- HUMAN ENGINEERING OF CAR

INTEGRATED DATA SYSTEM

- ACCEPTABILITY OF CONCEPT
- . UTILITY OF HAND-HELD REMOTE TERMINAL
- DEMONSTRATION OF IN-CAR DATA BASE
- FLEXIBILITY AND GROWTH
- DEMONSTRATION OF NEW FUNCTIONS: SECURITY
 - AIDED REPORTING
- AREAS OF IMPROVEMENT NEEDED

Phase I - Field Test

Phase I – Prototype Procurement and Test

71

+

E0132

Equipment Cost Estimates

ITEM	COST	ONE-TIME COST	LARGE BUY COST
POLICE CAR	4000		4000
WARNING SYSTEM	300		300
DIAGNOSTICS	100	10,000	50
ECONOMY GAUGE	100		50
RADIO	1800		1800
COMPUTER	4300	14,000	2000
SELECTOR	300	1,400	100
KEYBOARD-DISPLAY	3500		2500
HEADS UP DISPLAY	3000	20,000	700
PRINTER	1800		1800
REMOTE TERM RADIO	2500		2500
PORTABLE RADIO	1000		700
PORTABLE DATA TERM	700		500
TAPE RECORDER	2000		1500
BASE STATION PROCESSOR		26,000	
	25,400	71,400	18,500

P. gram Schedule

													MOI	NTH	IS					-	·					
	1	Ĩ	2	3 4	ŧ [5	6	7	8	9	10	11	12	13	14	4 1	5 10	5	7	8 1	9	20	21	22	23	24
PROGRAM PLAN APPROVAL																										
PROTOTYPE DESIGN				\diamond																						
EQUIPMENT DELIVERY							<	2																		
EQUIPMENT MODIFIED								K	\sim																	
SOFTWARE SPECIFIED																										
SOFTWARE WRITTEN								₹	5																	
SOFTWARE DEBUGGED	are subscription of the								4	2														•		
VEHICLE PROCUREMENT PLAN																										
VEHICLE DELIVERY										2									\mathbf{C}		.	2				
PROTOTYPE VEHICLE COMPLETE										. 1	2															
FIELD TEST EQUIPMENT SPECS											⊀	2														
FIELD TEST PLAN											4	\geq				•										
SELECTED FIELD TEST INTEG CONTRACTOR														-	\diamond											
DELIVERY OF EQUIPMENT	A CONTRACTOR OF																	\sim			r					
VEHICLES READY FOR FIELD TEST																					bar	•	\sim			
END OF TEST PERIOD	Statute (1997)																								1	5
FINAL EVALUATION REPORT																										4

Definitions

 \tilde{e}^{i}

S WHAT IS & MICROPROCESSERS

O DEL FORTION OF COMPUTER AS A CARE

o cos eanse to to to

<u>ر</u>.

E0340

レイ

Microcomputer Survey

MANUFACTURER/MODEL	TYPE	ADD TIME (Reg to Reg)	MOST COMMON APPLICATION	BOARD SIZE	PRICE
APPLIED COMPUTING TECHNOLOGY/UMPS-4	4-BIT PMOS	15 μs	INTELLIGENT TERMINAL	5 x 7	\$695
COMPUTER AUTOMATION	16-BIT SLICE, PMOS	9.6µs	NEW PRODUCT	4.5 x 4.5	\$950
COMSTAR SYSTEM 4	4-BIT PMOS	10.8 <i>μ</i> s	PROCESS CONTROL	4.5 x 4.5	\$950
DIGITAL EQUIPMENT MPS	8-BIT PMOS	10 μs	PROCESS CONTROL	10.4 x 8.5	\$410
DIGITAL EQUIPMENT PDP-8/A	12-BIT, TTL BIPOLAR	3 μs	PDP-8/E COMPATIBLE	15.75 x 8.5	\$895
- INTEL 8-83	8-BIT NMOS	2 µs	TERMINALS	6.18 x 8.0	\$590
NATIONAL IMP-16C	4-BIT SLICE, PMOS	4. 2μs	PROCESS CONTROL	8.5 x 11	\$950
PRO-LOG MPS-800	8-BIT PMOS	14 μs	TERMINALS	4.5 x 6.5	\$700
TELEDYNE TDY-52A	4-BIT PMOS HYBRID	10.8 μs	MILITARY	2 x 2	\$995

E0339

Microprocessor Chronology

FIRST GENERATION CHIP -- MARCH 1971

17 77

INTEL 4004 -- 4 BIT PMOS, 20 μs

SECOND GENERATION CHIP -- DECEMBER 1973

INTEL 8080 -- 8 BIT NMOS, $2 \mu s$

THIRD GENERATION CHIP -- JULY 1974

INTEL 3000 -- 2 BIT SLICE, BIPOLAR, 20 NS

80

E0337

Microprocessor Survey

COMPANY		TECHI	NOLOGY		INSTR CYCLE
COMPANY	MODEL NO.	TYPE	No. CHIPS	ARCHITECTORE	TIME
AMERICAN MICRO SYSTEMS	7300	PMOS	2	8 bit PARALLEL	4. 0 μ s
FAIRCHILD	F8	NMOS	1	8 bit PARALLEL	2.0 µs
GENERAL INSTRUMENTS	CP-1600	NMOS	3	16 bit PARALLEL	1.6 μ s
INTEL	0808	NMOS	1	8 bit PARALLEL	2.0 μ s
INTEL	3000	BIPOLAR	1	2 bit SLICE	200 ns
INTERSIL	ISD-8	CMOS	1	12 bit PARALLEL	2.5 μs
MONOLITHIC	6701	BIPOLAR	4	4 bit SLICE	300 ns
MOTOROLA	M6800	NMOS	1	8 bit PARALLEL	2.0 μs
NATIONAL	IMP	PMOS	1	4 bit SLICE	4. 0 μs
RCA	COS MAC	CMOS	2	8 bit PARALLEL	4 .0 μs
ROCKWELL	PPS-8	PMOS	1	8 bit PARALLEL	4.0 μs
RAYTHEON	RP-16	BIPOLAR	7	4 bit SLICE	4. 0 μ s
SIGNATICS	2650	NMOS	1	8 bit PARALLEL	5.0 μs

Computer Type Bus Design

ISSN 17781-51

E0266

23

Same I same

; ". 6 \$

BY 1977 THERE WHILE BE IN TERMEMALS WIGHT MEETORSORS

le re suigate tuite ser los sens frainteater

COMPLETE COMPUTER SYSTEM ON ONE 100 0×10

O 100 Insec ADD TIMES

 (\cdot)

6)

 $\langle \rangle$

ŧ,

O CAN WORDS INS BITS

O SW BITS DISK EQUIVALENT WITH CCD

o 530 in quartity of 130

Avionics Equipment and Computation (OPTIONS)

NAV & COMM

INERTIAL REF UNIT REF UNIT INTERFACE NAV COMPUTATIONS KALMAN FILTERING & PROCESSING GUIDANCE & FLIGHT PATH CONTROL RADAR INTERFACE

NAV AIDS (Vor. Tacan, Loran)

WEAPON DELIVERY

FIRE CONTROL SIGHT WEAPON DELIVERY COMPUTATIONS MISSILE & GUN

CONTROL

AIR/GROUND & AIR/AIR RADAR INTERFACE

ELECTRONIC WARFARE

RADAR WARNING THREAT SITUATION

JAMMING CONTROL & BLANKING

COUNTERMEASURE CONTROL IR disposable COCKPIT CONTROLS & DISPLAYS

PREPROGRAMMED CONTROL LOGIC KEYBOARDS, SHARED & DEDICATED WARNING INDICATORS INTEGRATED DISPLAYS EXCEPTION DISPLAYS SYMBOLOGY GENERATION FLIGHT INSTRUMENTS ENGINE, FUEL & OIL INDICATORS

COMMUNICATIONS DATA LINK

DIGITAL COMM VOICE COMM CRYPTO, SECURE DATA EXCHANGE IDENTIFICATION (IFF A/A & A/G) SATELLITE (Comm/NAV) ALL WEATHER LANDING AIDS COMMAND & CONTROL INTERFACE

FLIGHT CONTROLS

FL'OHT CONTROL COMPUTER FAILURE ANNUNCIATION REDUNDANCY MANAGEMENT AIR DATA COMPUTER INERTIAL SENSOR INTERFACE ENGINE SYSTEM INTERFACE POWER ACTUATORS INTERFACE

ENERGY MANAGEMENT

ENGINE CONTROL THRUST LEVEL CONTROL FUEL MANAGEMENT WEIGHT & BAL, C. G. CONTROL OPTIMUM ENERGY MANAGE-MENT CRUISE CONTROL AVOIDANCE OF STALL CONDITION

OTHER SYSTEMS

ELECTRICAL POWER CONTROL LANDING GEAR ENVIRONMENTAL CONTROL STORES MANAGEMENT INTEGRATED TEST

Trends in Avionics Procurement Cost

Patrol Car Applications

ADVANCED SENSOR/COMPUTER

- MECHANICAL OPERATION
 - Seconomy Gauge
 - MONITORING/DIAGNOSTIC CAPABILITY

SAFETY

- ANTI-LOCK BRAKES
- IMPROVED EMERGENCY WARNING (siren)
- EMERGENCY CALL -- REMOTE
- VOICE TO DIGITAL
- PERSONNEL EFFICIENCY
 - SUSPECT IDENTIFICATION SUSPECT DESCRIPTION SUSPECT MODUS OPERANDI SUSPECT PHOTOGRAPH SUSPECT FINGERPRINT SUSPECT VOICE
 - PROPERTY IDENTIFICATION PROPERTY AUTO AND CYCLES PROPERTY FIREARMS -- REGISTERED PROPERTY
 - CAR LOCATION
 - TIME TAGGING
 - AUTOMATIC REPORT GENERATING
 - IMPROVED TWO-WAY COMMUNICATION
 - IMPROVED SEAT DESIGN

Automated Avionics Functions

MECHANICAL OPERATION

- ENGINES
- SENSORS (e.g. radar)
- WEAPONS AND WEAPONS AUXILIARIES
- POWER SYSTEMS
- FUEL MANAGEMENT (gal, time, radius)

SAFETY

- WARNING (sensing, computing, display)
 - ENGINES
 - FLIGHT CONDITIONS
 - WEAPONS

PERSONNEL EFFICIENCY

- NAVIGATION
 - FLIGHT CONTROL HANDS-OFF
 - INERTIAL GUIDANCE CONTINUOUS POSITION LOCATION
 - TERRAIN AVOIDANCE PILOT RELIEF ALL WEATHER
 - LANDING GLIDE SLOPE/FLARE OUT

WEAPONS

- SEARCH, ACQUISITION, LOCK-ON
- TARGET I.D.
- ATTACK ENVELOPE
- READINESS STATUS
- LAUNCH

COMMUNICATION

STATUS REPORTING AND UPDATING

91

Patrol Car Annual Cost Breakdown REF: NBS

	EXISTING	PROPOSED
EXISTING HARDWARE	· ·	
VEHICLE DEPRECIATION	\$ 1800	
COMMUNICATIONS, etc DEPRECIATION	200	
GASOLINE	1800	
MAINTENANCE AND REPAIR	1000	
OIL AND TIRES	200	
	\$ <u> 5000</u>	
PROPOSED IMPROVEMENTS		
COMMUNICATION AND DATA SYSTEM (at 7 year lifetime)		\$ 2000
PERSONNEL		
1 MAN/UNIT (24 hours)	\$100,000	
2 MAN/UNIT (24 hours)	\$ 200,000	
EXISTING TOTAL (Personnel, Equipment, Overhead, etc)	\$ 258,000	
A 40% IMPROVEMENT IN MECHANICAL OPERA	TOR OR	

A 1% TO 2% INCREASE IN PERSONNEL EFFICIENCY JUSTIFIES THE IMPROVEMENT

TIME SAVINGS

Digital Communications

	VOICE	DIGITAL	PATROLMAN	RADIO CHANNEL
STATUS CODES* (e.g. 10-4)	3.6 sec	.9 sec	75%	95%
LICENSE PLATE** CHECK	2 min	10 sec	92%	93%

* "Locates" System - Montclair Calif.

** New Jersey Experience

CURRENT EXPERIENCE INDICATES A 400 - 1000 PERCENT INCREASE IN TRANSACTIONS WITH MOBILE DIGITAL TERMINALS (Ref JPL Study: 1974)

Projected Annual Mechanical Costs

	STANDARD	COMPACT
VEHICLE DEPRECIATION	\$ 1 800	\$ 1,000
EQUIPMENT DEPRECIATION	200	200
GASOLINE	1,800	1,200
MAINTENANCE AND REPAIR	1,000	900
OIL AND TIRES	200	180
TOTAL	\$ 5,000	\$ 3,480

PROJECTED SAVINGS - 1530 (31%)

Vehicle Locator System "Locates" - Montclair California

• DISPATCH REACTION TIMES ~ LE35 THAN 1 min

• CRITICAL EVENTS 64% ---- 86%

• TOTAL EVENTS 63% --- 81%

• MOBILE RESPONSE TIMES ~ LESS THAN 3 min

• CRITICAL EVENTS 50% --- 82%

• TOTAL EVENTS 61% --- 80%

• TOTAL RESPONSE TIMES ~ LESS THAN 4 min

• CRITICAL EVENTS 58% ---- 78%

E0274

Estimated Arrest Probability vs Police Responsiveness

94

CONTINUED 10F2

Voice to Digital Application

Fingerprint Transmission EFFECT OF PRE-PROCESSING

FACSIMILE

360,000 BITS 150 sec TRANSMISSION

HADAMARD TRANSFORM

COMPRESSED TRANSFORM

QUANTIZED TO: 2000-3000 BITS ≈1 sec TRANSMISSION

IMAGE CODING

BANDWIDTH REDUCTION 60,000 BITS 25 sec TRANSMISSION

Summary

MAJOR COST OF PATROL OPERATIONS IS PERSONNEL -NOT EQUIPMENT, HENCE ANY INCREASE IN PERSONNEL EFFICIENCY HAS SIGNIFICANT PAYOFF

DIGITAL COMMUNICATIONS CAN REALIZE A 95% IMPROVEMENT IN RADIO CHANNEL CAPACITY AND A SUBSTANTIAL REDUCTION IN INQUIRY/RESPONSE DELAY

ON-BOARD COMPUTER PROCESSING HAS POTENTIAL ENHANCED CAPABILITY PRESENTLY NOT ACHIEVABLE

Par Phrase List With Criteria

Regular PAR Approach	Criteria for Issuance
Approaching glidepath	top of target touches glidepath cursor (10-30 sec prior to intercept)
Begin descent	target intercepts glidepath cursor
On glidepath	target bisected by glidepath cursor
Going above glidepath	center of target leaves the glidepath cursor (upward)
Going rapidly above glidepath	center of target leaves the glidepath cursor (upware, rapidly
Going slowly above glidepath	center of target leaves the glidepath cursor (upward), slowly
Slightly above glidepath	2/3's of target above glidepath cursor
Slightly above glidepath and holding	2/3's of target above glidepath cursor, unchanged
Slightly above glidepath and coming down	2/3's of target above glidepath cursor, with movement toward cursor
Slightly above glidepath and coming rapidly down	2/3's of target above glidepath cursor, with rapid movement toward cursor
Slightly above glidepath and coming slowly down	2/3's of target above glidepath cursor, with slow movement toward cursor
Slightly above glidepath and going further above	2/3's of target above glidepath cursor, movement from slightly above to above
Slightly above glidepath and going rapidly further above	2/3's of target above glidepath cursor, rapid movement from slightly above to above
Slightly above glidepath and going slowly further above	2/3's of target above glidepath cursor, slow movement from slightly above to above
Well above glidepath	bottom of target breaks contact with glidepath cursor
Well above glidepath and holding	bottom of target breaks contact with glidepath cursor, unchanged
Well above glidepath and coming down	bottom of target breaks contact with glidepath cursor, with movement toward cursor
Well above glidepath and corning rapidly down	bottom of target breaks contact with glidepath cursor, with rapid movement toward cursor
Well above glidepath and coming slowly down	bottom of target breaks contact with glidepath cursor, with slow movement toward cursor
Well above glidepath and going further above	bottom of target breaks contact with glidepath cursor, movement from well above to beyond
Well above glidepath and going rapidly further above	bottom of target breaks contact with glidepath cursor, rapid movement from well above to beyond
Well above glidepath and going slowly further above	bottom of target breaks contact with glidepath cursor, slow movement from well above to beyond
Going below glidepath	center of target leaves glidepath cursor (downward)
Going rapidly below glidepath	center of target leaves glidepath cursor (downward), rapidly
Going slowly below glidepath	center of target leaves glidepath cursor (downward), slowly
Slightly below glidepath	2/3's of target is below the glidepath cursor
Slightly below glidepath and holding	2/3's of target is below the glidepath cursor, unchanged
Slightly below glidepath and coming up	2/3's of target is below the glidepath cursor, movement toward cursor
Above glidepath	bottom of target touches glidepath
Below glidepath	top of target touches glidepath

*Target refers to radar return of controlled aircraft as shown on CRT

GCA Controller Training System Block Diagram

3 ---

Par Phrase List With Criteria (Cont)

Regular PAR Approach	Criteria for Issuance
Slightly below glidepath and coming rapidly up	2/3's of target below glidepath cursor, rapid movement toward the cursor
Slightly below glidepath and coming slowly up	2/3's of target below glidepath cursor, slow movement toward the cursor
Slightly below glidepath and going further below	2/3's of target below glidepath cursor, movement from slightly below to below
Slightly below glidepath and going rapidly further below	2/3's of target below glidepath cursor, rapid movement from slightly below to below
Slightly below glidepath and going slowly further below	2/3's of target below glidepath cursor, slow movement from slightly below to below
Weil below glidepath	top of target breaks contact with glidepath cursor
Well below glidepath and holding	top of target breaks contact with glidepath cursor, unchanged
Well below glidepath and coming up	top of target breaks contact with glidepath cursor, movement toward cursor
Well below glidepath and coming rapidly up	top of target breaks contact with glidepath cursor, rapid movement toward cursor
Well below glidepath and coming slowly up	top of target breaks contact with glidepath cursor, slow movement toward cursor
Well below glidepath and going further below	top of target breaks contact with glidepath cursor, movement from well below to beyond
Well below glidepath and going rapidly further below	top of target breaks contact with glidepath cursor, rapid movement from well below to beyond
Well below glidepath and going slowly further below	top of target breaks contact with glidepath cursor, slow movement from well below to beyond
On course	target bisected by azimuth cursor
Turn right heading	target left of desired course
Turn left heading	target right of desired course
Heading is	establish heading
Going right of course	target center leaves the azimuth cursor, right
Going left of course	target center leaves the azimuth cursor, left
Going rapidly right of course	target center rapidly leaves the azimuth cursor, right
Going slowly right of course	target center slowly leaves the azimuth cursor, right
Going rapidly left of course	target center rapidly leaves the azimuth cursor, left
Going slowly left of course	target center slowly leaves the azimuth cursor, left
Right of course	left edge of cursor touches azimuth cursor
Left of course	right edge of cursor touches azimuth cursor
Slightly right of course	2/3's of target is right of azimuth cursor
Slightly right of course and holding	2/3's of target is right of azimuth cursor, unchanging
Slightly right of course and correcting	2/3's of target is right of azimuth cursor, movement toward cursor
Slightly left of course	2/3's of target is left of azimuth cursor
Sugnitiv left of course and holding	2/3's of target is left of azimuth cursor, unchanging
Singhtly left of course and correcting	2/3's of target is left of azimuth cursor, movement toward cursor

Par Phrase List With Criteria (Cont)

Regular PAR Approach	Criteria for Issuance
Right of course and holding	left edge of target touches azimuth cursor, unchanged
Right of course and correcting	left edge of target touches azimuth cursor, movement toward cursor
Left of course and holding	right edge of target touches azimuth cursor, unchanged
Left of course and correcting	right edge of target touches azimuth cursor, movement toward cursor
Well right of course	target breaks contact with azimuth cursor (right)
Well right of course and holding	target breaks contact with azimuth cursor (right), unchanged
Well right of course and correcting	target breaks contact with azimuth cursor (right, movement toward cursor
Well left of course	target breaks contact with azimuth cursor (left)
Well left of course and holding	target breaks contact with azimuth cursor (left), unchanged
Well left of course and correcting	target breaks contact with azimuth cursor (left), movement toward cursor
Wind isat	surface wind
Cleared to land runway right.	tower clearance given, 3-4 miles from touchdown
Cleared to land runway left.	tower clearance given, 3-4 miles from touchdown
At decision height	2/3 miles from touchdown (published decision height)
No glidepath information available	loss of altitude information (glidepath)
miles from touchdown	range at point where leading edge to target touches mile marker
Over landing threshold, centerline is right/left	approximately 1/3 mile from touchdown
Over approach lights	approximately 1/2 mile from touchdown
Execute missed approach	 a. safety limits are exceeded b. radical aircraft maneuver is observed c. position of aircraft is in doubt d. identification of aircraft is in doubt e. radar contact is lost f. bad airport conditions g. bad airport traffic

7 aller Harris