NCIRS

This microfiche was produced from documents received for inclusion in the RCIRS data base. Since NCIRS cannot exercise control over the physical condition of the documents submitted, the individual frame quality will vary. The resolution chart on this frame may bie used to evaluate the document quality.

Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101-11.504

Points of view or opinoons stated in this document are those of the author(s) and do not represent the official position or policies of the U.S. Department of Justice.
U.S. DEPARTMENT OF JUSTICE

LAW ENFORCEMENT ASSISTANCE ADMINISTRATIOM antional criminal justice reference service WASHIHGTON, D.C. 20531

AUTOMATIC VEHICLE MONITORING SYSTEMS STUDY
 Report of Phase 0

Vol. 2. Problem Definition and
Derivation of AVM System
Selection Techniques

Prepared by
Jet Propulsion Laboratory
California Instifute of Technology Pasadena, California 91103

Prepared for

National Science Foundation

 Washington, D.C.
PREFACE

This document on Automatic Vehicle Monitoring Systems presents the results of work supported by the National Science Foundation. It was sponsored under an interagency agreement with the National Aeronautics and Space Administration through Contract NAS 7-100. Points of view and opinions stated in this document are those of the authors and do not necessarily represent the official position of the sponsoring agency.

FOREWORD

This report was prepared for distribution to public safety planners for the purpose of providing them with a compact source of information regarding improvements in effici.ncy and cost benefits obtainable with various classes of operational and proposed automatic vehicle monitoring (AVM) systems. An AVM systern can contribute to emergency patrol effectiveness by reducing response times and by enhancing officer safety as well as by providing essential administrative control and public relations information. This complete report and the Executive Summary (Vol. 1) were prepared by the Jet Propulsion Laboratory of the California Institute of Technology using the results of studies sponsored by the National Science Foundation.

Special computer programs are described which can simulate and synthesize AVM systems tailored to the needs of small, medium and large urban areas. These analyses can be applied by state and local law enforcement agencies and by emergency vehicle operators to help decide on what degree and type of automation will best suit their individual performance requirements and also the possible reduction in the number of vehicles needed which could substantially reduce operating expenses.

$$
\begin{aligned}
& \text { NRMRS } \\
& \text { NOY anta } \\
& B
\end{aligned}
$$

ACKNOWLEDGEMENTS

Appreciation is extended to the Users Group Advisory Committee (UGAC) members for their frieadly cooperation and help in the conduct of this study and their professionalism in representing their respective cities and police departments:

Lieut. Robert Zippel	Anaheim
Capt. Daniel Sullivan,	Los Angeles
Sgt. Howard Ebersole,	
Ofc. Louis Lozano	
Lieut. James Lance	Long Beach
Chief Raymond McLean	Montclair
Lieut. Allen Stoen	Monterey Park
Ofc. Luke Villareal	Pasadena
Lieut. Robert L. Walker,	San Diego
Sgt. Robert E. Ristau	

We should also like to thank the Chiefs of Police of the UGAC cities for their interest in the study effort:

Chief David Michel Chief Edward M. Davis Chief William Mooney Chief Raymond McLean Chief Raymond Warner (dec) Monterey Park Chief Robert McGowan Chief Raymond Hoobler (ret) San Diego
Page
EXECUTIVE SUMMARY $\therefore 1$
I. Introduction 1
1
II. Summary of AVM Systems Study Results 2
III. Classes of AVMí Systems 5
IV. Vehicle Location Technologies and Costs 14
V. Vehicle Polling and Location Performance 25
PART ONE. AVM COST BENEFIT INFORMATION BASE I-1
I. Performance and Costs of Proved AVM Techniques 1-1
II. Vehicle Polling Techniques and Location Performance 1-12
III. Urban Characteristics That Affect AVM Costs 1-15
IV. AVM System Accuracies and Cost Benefits. 1-20
V. Computer Programs for Analyses of AVM Needs 1-23
References and Bibliography 1-26
PART TWO. AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES 2-1
I. Cost Benefits of AVM Systems for Seven Cities. 2-1
II. Anaheim, CA, City AVM Cost Benefit Analysis Tables..... 2-4
III. Long Beach, CA, City AVM Cost Benefit Tables 2-5
IV. Montclair, CA, City AVM Cost Benefit Analysis Table 2-7
V. Monterey Park, CA, City AVM Cost Benefit Tables. 2-8
VI. Pasadena, CA, City AVM Cost Benefit Analysis Tables 2-10
VII. San Diego, CA, City AVM Cost Benefit Analysis Tables 2-11
VIII. Los Angeles, CA, City AVM Cost Benefit Tables 2-14
PART THREE. ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY $3-1$
I. Vehicle Location Accuracy for Class I and III Systems.........................
3-1
3-1
II. Markov Chain Model of Vehicle Location by Means of Proximity Sensors for Class II and IV Systems 3-17
PART FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE 4-1FEASIBILITY ANALYSES FOR AVM USE
Vehicle Location by Means of AM Broadcasting Station Carrier Signals - Station Carrier Signal 4-1
II. Vehicle Location by Means of Buried Loops 4-25
G. R. Hansen

ABSTRACT

A set of planning guidelines is presented to help law enforcement agencies and vehicle fleet operators decide which automatic vehicle monitoring (AVM) system could best meet their performance requirements. jmprovements in emergency response times and resultant cost benefits obtainable with various operational and planned AVM systems may be synthesized and simulated by means of special computer programs for model city parameters applicable to small, medium and large urban areas. Design characteristics of various AVM systems and the implementation requirements are illustrated and costed for the vehicles, the fixed sites and the base equipments. Vehicle location accuracies for different RF links and polling intervals are analyzed. Actual applications and coverage data are tabulated for seven cities whose police departments actively cooperated in the JPL study. Volume 1 of this Report is the Executive Summary. Volume 2 contains the results of systems analyses.

AUTOMATIC VEHICLE MONITORING SYSTEMS STUDY

EXECUTIVE SUMMARY

Prepared by

Jet Propulsion Laboratory California Institute of Technology

Pasadena, California 91103

Prepared for
National Science Foundation
Washington, D.C.

CONTENTS

EXECUTIVE SUMMARY Page
I. INTRODUCTION 1
II. SUMMARY OF AVM SYSTEMS STUDY RESULTS 2
A. Work Accomplished in Phase 0 2
B. Preliminary Conclusions 3
C. Program Recommendations 4
III. CLASSES OF AVM SYSTEMS 5
A. Classification Rationale 5
B. AVM Class Description 8
IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS 14
A. Proved AVM Techniques 14
B. AVM Cost Considerations 18
V. VEHICLE POLLING AND LOCATION PERFORMANCE 25

AUTOMATIC VEHICLE MONITORING SYSTEMS

George R. Hansen

I. INTRODUCTION

In this report, the results of the first phase of a three-phase program to aggregate existing information on Automatic Vehicle Monitoring (AVM) Systems are presented in terms of performance, urban characteristics operating modes, and cost in a way that will assist prospective AVM User Agencies to make valid comparisons and selections from among the many competing AVM techniques and AVM Systems. This phase (Phase 0) of the study was performed by the Jet Propulstion Laboratory (JPL) for the National Science Foundation (NSF). As originally conceived by NSF and JPL, the AVM Systems study program would include the following three phases:

Phase 0 Problem Definition and Derivation of AVM System Selection Techniques (in this Report).
Phase I Critical Research and Verification of the Efficacy of AVM System Selection Techniques Through Computerized System Simulation.
Phase II Proof of Concept Experiment Demonstrating the Efficacy of Selected AVM Systems in Urban Environments

In brief, the Phase 0 research was concentrated in three areas: (1) Compilation of a broadinformation base on AVM technology and urban characteristics, (2) adaptation of computerized analyticai techniques needed in the AVM System selection process and in cost benefit trade-offs, and (3) application of AVM System selection process by manual iteration to small, medium and large model cities.

Frequent reference is made in this Report to "AVM techniques" and
"AVM Systems". The term "AVM technique" is used to denote the technology required to acquire a fix on a vehicle, while "AVM System" is used to denote the integration of all functional elements required to locate and keep track of vehicles in some automated fashion.

II. SUMMARY OF AVM SYSTEMS STUDY RESULTS

A. WORK ACCOMPLISHED IN PHASE 0

A broad range of information concerning automatic vehicle monitoring (AVM) was compiled from the existing literature, including: (1) Various vehicle location sensing techniques, (2) all functional elements of the total AVM system, and (3) various sized cities with representative geography, topology, demography and urbanology. The information obtained from the iterature was supplemented by data obtained directly from police department representatives of seven Southern California cities that participated in the User Group Advisory Committee (UGAC).

Several computerized analytical techniques were developed. City models representative of those characteristics that affect AVM selection were developed for use in the general cost benefit solutions. An analytical technique for predicting vehicle polling rates achi vable for the various location sensing techniques in a full AVM system configuration was also developed. Algorithms were developed to estimate the accuracies achievable by a large variety of AVM systems using the probabalistic distributions for three independent variables: (1) vehicle speed, (2) inherent accuracies of location sensing techniques, and (3) vehicle polling intervals.

Preliminary analyses were performed to determine first-order cost estimates for $A V M$ Systems as a function of the various vehicle location sensing techniques when used in small, medium and large cities. Preliminary analyses of the accuracies achievable with various AVM systems were also performed. Various AVM system configuration options were developed, and promising ortions were examined for possible cost benefits to seven UGAC cities.
B. PRELIMINARY CONCLUSIONS

1. AVM Class should indicate effects on urban environment. From the viewpoint of the prospective AVM system user, the traditional classifications of vehicle locating systems (i.e., piloting, deadreckoning, triangulation, trilateration, and proximity) do not necessarily reflect the impact of an AVM installation on the local urban scene. It is believed that the prospective user's needs would be better met if vehicle monitoring classifications were based on system element types and functions as follows:

Class 0 Manual Monitoring. No AVM
Class I AVM. No modification to the urban environment. (existing RF links)
Class II AVM. Autonomous signposts throughout urban area
Class III AVM. Sparsely distributed special RF sites
Class IV AVM. Monitored signposts throughout urban area
2. AVM cost benefits obtainable by medium and large cities. The preliminary cost analysis indicates that the cost benefit break-even point occurs for a medium sized city with an area of about $100 \mathrm{~km}^{2}\left(40 \mathrm{mi}^{2}\right)$ and with roughly 50 vehicles. In other words, cities larger in size could expect a positive and increasing benefit with size, up to a certain point. Conversely, cities below this medium size probably would not realize any cost benefit. This conclusion was based on 5-year estimates of AVM system costs and savings.
3. No cost benefits derived from monitored signpost systems. None of the Class IV systems produced a cost benefit for the cities studied, generally because the rental rates on telephone lines raise the equipment costs excessively.
4. AVM System accuracies greater than technique accuracies. In
general, the 95% total system accuracy can be expected to be significantly greater than the inherent accuracy of the location sensing technique. Usually the system accuracy is no less than three times the inherent technique accuracy.
5. Vehicle polling intervals determine AVM system accuracies. It appears that the polling interval will dominate system accuracy and that the polling interval can only be shortened at the expense of RF resources dedicated to AVM purposes. Because of the present and predicted future demand on RF resources, this is one area that demands optimization.
6. Critical research required for verification of selection technique. The results of the first phase of the AVM study effort should be used with caution and should not be construed as specific recommendations at this point. The second phase of the analytical work should be completed to verify the results of the first phase.

C. PROGRAM RECOMMENDATIONS

1. It is recommended that the second phase (Phase I) of the AVM Systems study proceed.
2. It is further recommended that mission agencies such as the Law Enforcement Assistance Administration (LEAA) and/or the Department of Transportation (DOT) sponsor the Proof of Concept Experiment, or third phase. The tests presently plamed jointly by the city of Los Angeles and DOT could effectively serve this purpose. This could be accomplished by closely coordinating the analytical techniques developed in this study with the Los Angeles Police Department, the Southern California Rapid Transit District, LEAA and DOT and making the analytical tools available to the city for use in the design of the experiment.

III, CLASSES OF AVM SYSTEMS

A. CLASSIFICATION RATIONALE

Traditionally, AVM systems have been classified in the literature according to the method used to locate the vehicle within an urban area. Recognizing that all AVM systems have certain elements in common and that some systems have unique elements, an aliernate classification scheme was developed for the purpose of this study. This classification not only implies the type of AVM system but also suggests the physical impact that the system elements and functions will have on the local urban environment. The following groupings of system elements suggested the classification scheme:

Functional Elements Common to All AVM Systems

(1) Existing communications system.
(2) Vehicle polling subsystem.
(3) Landline data links.
(4) Telemetry data/polling handler.
(5) Telemetry link (common to most).
(6) In-vehicle equiprnent, such as data processor, telemetry data encoder, polling processor, and signpost sensor.
(7) Vehicle location computer.
(8) Information display subsystem.

Functional Elements Unique to Specific AVM Systems

(9) Autonomous signposts; signpost sensor in vehicle (Class. II).
(10) Fixed synchronized RF transmitter sites (Class III).
(II) Monitored signposts; vehicle sensor on signpost (Class IV).

A discussion of each of these AVM functional elements follows:

1. Existing cornmunications system. As a practical consideration, AVM systems will probably be integrated with the existing voice communication and vehicle polling RF links, especially for the telemetered location data between the vehicle and the dispatch center.
2. Vehicle polling subsystem. This interrogation device or procedure enables the vehicle location computer (VLC), described in Element 7, to know which vinicle corresponds to which set of location data. Polling may be either an operating procedure or an active element that allows the dispatcher to obtain locations of specific vehicles.
3. Landline data link. This data link is a landine supplying data to the VLC (Element 7). It may either be relatively short, leading from the telemetry data/polling handler (Element 4) to the VLC, or it may be quite extensive, collecting data from monitored signposts throughout the covered urban area, or it may be somewhere in between these in its extent, bringing data from a relatively small number of fixed RF sites.
4. Telemetry data/polling handler. This device is included because AVM systems deal with data that are different (e.g., digital) in character from that used by the dispatcher in voice communication with the vehicles. Furthermore, if the vehicle polling subsystem (Element 2) provides for selective polling, then there are likely to be corresponding additional requirements on the communication system.
5. Telemetry link. Since it is tacitly assumed that the AVM system will not restrict the mobility of the fleet vehicles, some kind of communication-at-a-distance is essential. In some systems, the telemetry link is assumed to share or be in addition to the $R F$ link now used for voice communications. In other systems the telemetry path might be between the vehicles and sparsely distributed synchronized RF sites. In still other AVM systems, the telemetry path may be relatively short, being only from the vehicles to signposts distributed throughout the urban area. In that case, the transmission medium could conceivably be sonic, optical, or even magnetic, instead of radio.
6. In-vehicle equipment. Depending on the AVM system, some or all of the four following devices may be carried in the vehicle:
a. Vehicle data processor. This device receives raw vehicle location data either from the officer or from signpost sensors. It does whatever data processing is done on-board, then adds the vehicle identification data, and passes this information along to the telemetry data encoder, described next.
b. Vehicle telemetry data encoder. This device puts the vehicle location data supplied by the vehicle data processor into the telemetry link (Element 5).
c. Vehicle polling processor. This device enables the vehicle to respond properly when polled, and may range in complexity from a clock to an RF signal decoder.
d. Signpost sensor. Where the densely distributed autonomous signpost concept is used (Class II), the signpost sensor must be carried in the vehicle. This sensor is required to read the signpost ID/location. Location data may be acquired by coded optical, infrared, sonic, or magnetic means besides radio.
7. Vehicle location computer (VLC). This device transforms the vehicle location data into location points or coordinates for use by the information display subsystem (Element 8). It also informs the display subsystem as to the identity of the vehicle to which the location data belongs. The VLC may also interface with the Computer-Aided Dispatch System.
8. Information display subsystem. This device indicates to the dispatcher where the vehicles are currently located (or were when last polled). It may also identify the vehicle's status. As in the case of manual aids used for vehicle location in Class 0 , the possible range of complexity and sophistication may range from a simple printer to an elaborate electro-optical device supported by a computer. It should be noted that the display subsystem is virtually independent of the location technique used.
9. Autonomous signposts used in Class II AVM. Each autonomous wayside or buried signpost has a location ID and must be recognizable and readable by the signpost sensor in the vehicle. The signpost telemetry link to the vehiele may be by radio, pulsed light, infrared, sonic, or magnetic means.

10. Fixed synchronized RF transmitter sites used in Class III AVM.

 These $R F$ sites are a relatively small number of special-purpose transmitters which broadcast synchronized signals that can be used to determine the locations of receivers on vehicles by means of navigation techniques. The characteristics of these signals could be FM phase, pulse, or noise correlation. Some of these sites may also receive retransmitted signals from the monitored vehicles.11. Monitored signposts used in Class IV AVM. Each monitored wayside or buried signpost requires a vehicle sensor that will transmit the vehicle's ID data received and also identify its own location to the central collection station. These signposts may sense vehicle motion, or they may detect pulsed light, infrared, or ultrasonic signals or receive $R F$ signals through buried antemas.

B. AVM CLASS DESCRIPTIONS

The vehicle location system classes, based on their physical impact on the urban environment, are shown in the following list and are described in greater detail in subsequent paragraphs and accompanying figures. For reference, the traditional vehicle location classifications are noted as indentures.
(1) Class 0 Manual Monitoring. No AVM
(a) Piloting
(2) Class I AVM. No Modification to Urban Environment (Existing RF Links)
(a) Officer Update
(b) Dead Reckoning
(c) Navigation (Using Existing R F Beacons)
(3) Class II AVM. Autonomous Signposts Throughout Urban Area
(4) Class III AVM. Sparsely Distributed Special RF Sites
(a) Triangulation
(b) Trilateration
(5) Class IV AVM. Monitored Signposts Throughout Urban Area (a) Vehicle Proximity

1. Class 0 Mfanual Monitoring; No AVM. This baseline (piloting) class is included in the listing of vehicle location techniques purely for comparative purposes. In Class 0, the location monitoring methods (Figure 1) range from those relying solely on the dispatcher's memory, through manually updated mechanical and visual aids, to keyboard-updated computer displays which keep current each vehicle's location and status based on verbal or digital communications between dispatcher and vehicle.
2. Class I AVM with no modifications to urban environment. All AVM systems require the installation of certain equipment in the command center to accomplish the automation of vehicle monitoring. All AVM systems also require the installation of some device in or on the monitored vehicles. But systems in Class I require nothing further, though they perforce utilize RF resources.

Figure 1. Class 0 Manual Monitoring, No AVM

A typical Class I AVM configuration is shown in Figure 2. Each AVM command center must contain a display subsystem, a vehicle location computer, a vehicle polling subsystem, and a telemetry data/polling handler, which are described in Section IV. Each vehicle requires location sensors, a data processor, a telemetry data encoder, and a polling processor. Class I AVM sysiems are based upon a variety of location techniques and algorithms which include the following: (a) Officer update techniques, in which the functions of the vehicle's sensors and its data processor are performed by an occupant of the vehicle. (b) Deadreckoning systems are included if the requisite updating does not require the installation of fixed location reference equipment in the environment. (c) If the AVM systems use existing navigation beacons or AM broadcasting stations, they are also included in Class I because the required stations are assumed to be part of the urban environment.
3. Class II AVM with autonomous signposts throughout urban areas. The defining characteristic of Class II AVM systems is the installation of autonomous signposts in strategic wayside or buried locations at intersections throughout the covered urban area. These location reference sites are autonomous in that they communicate their identity only to the vehicles and not to the command center.

Figure 2. Class I AVM; No INodifications to Urban Physical Environment

The location information provided by the signposts to the vehicle may be eithe an identification code or the geographic coordinates of the location. Since the vehicle location accuracy provided by systems in Class II is dependent upon signpost spacing, greater accuracy can be achieved in critical areas by locally increasing the signpost density to one per intersection or per lane. A typical Class II system configuration is shown in Figure 3. Signpost systems can be "pure", in that all location information is derived from the fact that a monitored vehicle is (or was) near a signpost; or they can be "hybridized", with the fact of signpost proximity used either to augment, calibrate, or reinitialize the determination of vehicle locations obtained by other means, such as odometers. If a hybrid system does not require a data link in the environment, it is placed in Class II. If the hybrid system requires a data link from the signposts but no special-purpose fixed RF sites, it belongs in Class IV. If it has both a data link in the field and special-purpose fixed sites, it is in Class III.
4. Class III AVM with sparsely distributed special RF sites. This AVM class includes those systems that require the installation of a celatively small number of special purpose fixed RF sites, where a "fixed site"' either broadcasts or receives over a relatively large urban area with a radius of 5 to 11 km (3 to 7 miles).

Figure 3. Class II AVM; Autonomous Signposts Throughout Urban Area

Data links in the environment are required to maintain synchronization for triangulation or trilateration purposes. Since the number of fixed sites is relatively small, these data synchronization links could be microwave rather than landíne. Figure 4 shows a typical Class III configuration, It is optional only in Class III systems whether the telemetry link from the vehicle be along the existing communication system or through the special-purpose $R F$ sites. In either case, RF resources are utilized for that link.
5. Class IV AVM with monitored signposts throughout urban area.

Systems in this class contain monitored signposts installed in strategic wayside or buried locations throughout the covered urban area for the purpose of sensing the proximity and identity of signals transmitted from vehicles. A Class IV data link does not share the use of RF resources with the existing communication system but uses telephone lines, which may make this class of AVM systems very attractive for some applications. A typical Class IV system configuration is shown in Figure 5.

Figure 5. Class IV AVM; Monitored Signposts Throughout Urban Area

Figure 4. Class III AVM; Sparsely Distributed Special RF Sites
IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS

A. PROVED AVM TECHNIQUES

This section contains a narrative description and a compilation of the cost and performance parameters of operational or proved techniques used for automatic vehicle monitoring (AVM). Schemes primarily intended for vehicle identification, such as those used in rail freight or extensions of point-of-sale methods are not included. In this report, the vehicle monitoring techniques are categorized into five broad classes, based on system element types and functions: Class 0 , Manual Monitoring, no augmentation of location information; Class I AVM, no additions to the urban environment; Class II AVM, densely distributed autonomous signposts; Class III AVM, sparsely distribsted special transmitting/receiving fixed RF sites; and Class IV AVM, densely distributed monitored signposts. In Table 1, the proved vehicle location methods are listed by AVM Class along with estimated costs (as of 1974) for unique system-required equipments installed in each vehicle and at each signpost or special fixed site.

1. Functional diagram correlating various AVM techniques. In order to make equipment and cost comparisons, a functional block diagram combining the elements that make up all of the AVM techniques was generated. This block diagram (Figure 6) demonstrates the equipment and functional commonality among the various techniques. In most techniques, the functional elernents can also be physically identical, such as the location/vehicle ID/status register. Variations in costing such elements are due to other factors, such as achievable location precision, fleet size, and amount of status telemetry desired which all affect register length but are technique independent.

Table 1. AVM Classes, Systems and Costs of Functional Elements Installed

Figure 6 illustrates the numerous optional methods available for performing the vehicle location function which make AVM system comparisons difficult. For example, the various Class I techniques can either process the location data on the vehicle or transmit the raw data to the base station. In the Class III techniques, the vehicles may be polled either through the normal 2 -way radio or through a special telemetry link used for vehicle location purposes.

Figure 6. AVM Systems Showing Common and Unique Equipments for Vehicles, Signposts, and Base Stations

Class I，II，and III techniques may use any of the various vehicle polling techniques．Polling does not apply to the Class IV monitored signposts．The consideration of which polling method is to be used may depend heavily on whether or not equipments requiring digitial communication have already been installed．

2．Technical and cost parameters．Virtually every technical perfor－ mance and cost estimate parameter of a particular vehicle location technique is system－dependent．The AVM system accuracy，the numbers of fixed sites， the message lengths，the data rates，the base station computing，the informa－ tion displays，software，and RF channel requirements are all functions of the particular application．Some functional elements and performance factors can be determined to a limited extent，such as the cost and coverage radius of the various signposts，RF beacons and traffic presence sensors in Classes II，III， and IV；and also the cost and minimum message requirements of the vehicle sensors and data processors in Class I．

In order that cost estimates could be made for the various AVM tech－ niques，extremely simplified block diagrams of the unique functional elements associated primarily with the vehicle location process were developed．That is，only the vehicle sensor and AVM fixed site＇s associated with the particular technique were considered．These cost figures accompany each of the descrip－ tions and considerations of the method in the following section．

B．AVM COST CONSIDERATIONS

In addition to the costs associated with the vehicular and fixed site functional elements required for the basic location process，there are the costs of yearly maintenance and vehicular radio additions or modifications for transmitting and receiving AVM signals．Estimates of the vehicular costs （as of 1974）for each class of AVM are presented in Table 2．In this table， the radio cost and the radio modification columns represent optional choices． That is，the radio modification cost is not applicable where a separate radio for AVM signals is selected．

The costs for fixed sites equipment，installation，operational mainten－ ance，data link，and mileage charges per mile per month are summarized in Table 3 for Classes II，III，and IV．

Table 2．Vehicle Equipment Costs＊for All AVM Classes and Syrstems

UEHCOST

$\text { ELRES }{ }_{\text {I }}^{\text {TELHHIOUE }}$	SETEMP：	FFios．	FHIIIG	FHITH10\％	IHET	1
KEVEARFI	45					
ET＇LISE HAF＇	246	4	150	51	15	15
E－AICELEFOHETEFS	46	196	120	54	4	
LHEEF UELOETHTE：	56	1F6日	150	260	10.1	100
ILTEABGHIE MELG	OR	Stat	124	CH0	185	150
COHFHCSMETETEF	20	H20］	1 cta	Cbe	184	150
DOHFH＇SMCAEF MEL	05	120	126	\％09	C！	1
CHFESUEDHIL UEL	38	1 cos	1 ELH	E）	151	4
OHETS		169	120	2010	160	H1
Lrimit	\％－761	\square	126	49	60	－
TECCA	为	b	1204	C1919	1	
FH1－ETATIOHE	4	\％	120	CH4	5	5
IIFFF：DHEGF	cta	1	16814	5	Sir	60
DIFF：LIFPH	\％）		che	614	1	－
IIFF，Fl－GTA．	315		12010	cut	1	\％
FELFIT UHETA	3		1－9 0	19	41	4
FELA＇t LDPAH	4	星	10 d	13	\％	10
Clage II	－4，	1	12del	159	$\therefore 1$	1 d
EUFIEI FEE，LUUFE	96	1				
FEFLESTIHE SIGH	486	\％	1060	5	\because	$\therefore 1$
FEFLESTIH FIGHI	\bigcirc	4	1261	\cdots	14	E15
B－BHtIFPOT	12.	H	1064	5	i	15
HF．IHF FOET	10	\％	156	51	4	14
LF FOET	10.1	\％	1506	51	H	10
LICHT I－F FOST	95	9	1－eg	54	＋	13
EUPIES HFGHETS	5	－	$1{ }^{\text {cos }}$	51	3	－
ULTFAEOUIE FIGT	85	10	1264	58	4	6
TFAFFIE SEHEGF	9	8	1208	51	8	\％
CLASS III	9	6	1200	Tix	41	10
HAF－EHHIT FH FHAEE	6.6					
WIII－EHIHII Fl FHAEE	2ers		150	185	41	4
FULSE T－I－HEFIUFL	20\％	1.	9	31	而	0
HOISE GOFPELATIOH	785	\％	0	9	15.1	S
DIEESTIDH FINIEE	35	8	4	9	166	5
LREES IU	0.	1	6	$\underline{\square}$	15	0
TEAFFIS LOIOFE						
HFteIIE FHIIIG			0	9	85	11.
FHOTGSI－F IIETECT			9	E	46	10
LLTEAEOHIC TETEGT	1Es	8	9	9	79	15
		0	0	$\underline{\square}$	E	15

[^0]Table 3. Fixed Site Costs* for Class II, III, and IV AVM Systems

* Costs as of 1974 .

Additional costs acsociated with each AVM technique when configured as a system are the base station costs and the vehicle polling system costs, given in Table 4. The base station is assumed to include the vehicle location computer, the peripherals, the dispatcher displays, software, and yearly operational maintenance

1. Vehicle cost parameters. Vehicle sosting for an AVM system is a straightforward multiplicative process of determining the total cost to equip all vehicles in the fleet with the appropriate AVM sensor, data processor, vehicle polling equipment, and radio modification; motorcycles are not considcred. If a separate radio link is deemed necessary for AVM purposes, then this additional cost must be added.

If the vehicle fleet has already been equipped with digital message entry devices (DiMED), keyboards, hard-copy printers, gas-plasma or cathode-ray displays, then some of the functional elements required for an AVM system have been established. Prior installation of digital message equiprient was not considered in the costing of vehicular equipment.
2. Fixed site costs. Site costs unique to AVM systems are considered only in Classes II, III and IV. In determining the system costs, the number of installed units must first be determined. The design algorithms for fixed sites are dependent on the density distributions of intersections, road segments, and lanes, and on the area to be covered.

Most of the Class II AVM techniques that rely on radio ID signals are configured and costed on the basis of one autonomous signpost per intersection. The exception is the HF signpost which is configured on the basis of one unit for each four intersections because of the greater coverage radius. The reflective pattern signs techniques require two installations for each road segment because of the geometry constraints between vehicle and sign, whereas the traffic presence sensors require one installation for each road segment because of the nature of the normal installation. Buried loops and magnets require an installation per lane in each road segment. In addition, each installation is actually a nultiple instaliation; i.e., there must be sufficient loops or magnets to provide adequate coding for each road segment. The cost estimates for fixed sites were based on an average of 2.4 lanes for each road segment, i.e., about 1 four-lane road for each 6 two-lane roads.

Table 4．Base Station Costs＊for All AVM Classes and Systems
shctosi
AHL BHE ETATIOH COETE IN THOUSHDE OF A^{5}

	CHPITEF						GIFTHARE		
CGintiout	312	「以I	Lise	IHET	－1－11	115F	$5 H 2$	HEII	LIEE
R16S				16	16 E	3	1 19	E 0	81
	01	46	E，	16	160	3	10	EV	36
	4	4	8	10	164	3	25	25	59
－hacterlletefs	4	E8	8	16	160	3	25	95	56
LHEF MLLCLTTF	41	G80	时	10	169	2	$\underline{5}$	5	51
OLTADSHE MELC	$+4$	Er	8	16	16 d	3	E5	E	59
GUlergs uhtueTEF	41	E	201	10	1610	3	2	95	5
GUTHES LIEEF UEL	4	Est	8	1.	1616	3	c	35	4
HITESUGHIL MEL	＋10	Es	10	$1{ }^{1}$	156	3	29	31	46
115	1	$\underline{18}$	3	10	196		2 B	31	49
Ledm	4	1	9	10	10 E	，	20	31	4
206日	－	\％	9	16	10 T	2	20	36	41
A，wTation	1	＋1910	－	1.4	1016	a	EG	961	4
	＋	9	－1	15	1 EG	3	2	30	4
SPFP LOEAH	1	5	\％	10	16.1	2	0	91	d
IIFF HI－STA．	4	0	－	10	1610	3	ct	31	－1
FELPG DEGA	\％	－	7	16	1615	3	C1	4	＋61
FTLM：LOEHT	1	0	－	1.					
LRES II		41	6id	11	164	\leq	13	2	0
\＃HIETFES LGF\％	3	4	20	16	169	3	14	－	819
PELLETIH 16 dG	4	＋61	0	16	161	－	10	21	8
	2	$4+1$	0	16	160	3	11	29	S
	d	4	－19	19	16 H		16	21	31
Hr M Hf Fotio	1	49	\％	16	1010	3	16	4	3 E
－1 Fus	－	4	0	1.	16 T		16	24	8 c
S－4T I－9TS	10	4	E	16	106	3	19	E	8
SHeTEO HATIETS		4	E，	10	16 Cl	3	18	20	31
MLPHEDIL FGET	4	49	E日	16	161		15	20	36
TAFPIE SEHEDE	1	4	EG	19					
Clase III				3	16 d		E＇0	48	ES
IHAF－SHHI FH FHHEE	49	8	176	10	2GE		E	59	169
HITI－SAHI FHEHASE	164	260	250	10	175		g	1－70	16 C
FULEE T－IT－AFFIUAL	106	50	E5E	16	175		35	7 76	164
HUISE GOFFELATIOH	16	0	ES	16	106		15	－ 30	69
IIFESTIUT FIHIEF	15	0	Fs	19	1.0				
CLFES IU		45		16	16.1		10	929	36
TFHFFIL Linfe	0	49	E，	16	1619		10	1 EQ	36
Whisine Fhind	8	49	E	16	160		16	1 E	30
FHOTO I－F TETECT	31	48	EV	16	166		11	3 C	36
ULTFHEUHIE JETECT	95	46	E						

[^1]The number of loops at each lane segment was that sufficient to provide a unique base -2 code for each road segment．The number of magnets used is half this value since spaces can be used to provide approximately half the coding bits（magnet for＂one＂，space for＂zero＂）．

Since the Class III synchronized RF sites are more sparsely distributed， their numbers are estimated on the basis of urban area for the selected phase and pulse time－of－arrival techniques．The radius of coverage for narrow－band and pulse systems，based on prior tests and experiments；is set at 5 km （ 3 miles）．In addition，the requirement that，wherever possible，four or more antennas should cover the given area is imposed．This procedure provides data for least－squares computation as opposed to the analytic＂flat earth＂solu－ tion of vehicle location．The wide－band antenna coverage radius is set at 11 km （ 7 miles），based on prior tests．Design algorithms were established from the rectangular model cities data as follows：

Number of narrow－band and pulse sites $=6+\frac{\text { area in } \mathrm{km}^{2}}{10}$

$$
\text { Number of wide-band sites }=4+\frac{\text { area } \mathrm{in} \mathrm{~km}^{2}}{40}
$$

The number of fixed sites in the southern California UGAC cities was determined from geometrical gridlined overlays superposed on outline maps of the cities．The outline and site locations for the cities are depicted in figures that accompany Part 2 of this Report．A minimum number of fixed sites for noise correlation and direction finding was established，recognizing that this number is probably insufficient for all but the smallest cities．

Class IV monitored signposts were configured and costed on the same basis as the equivalent Class II devices．Telephone line rental is，however， included in the site costs where applicable as the line should be considered an equipment cost as opposed to an operation cost．

3．Base station costs．Base station equipment costs were estimated on the basis of both urban area coverage and fleet size．The station＇s computer costs were estimated on the basis of area，and the software costs were based on fleet size．This separation of cost elements is only partially defensible．It is assumed that a minicomputer is usually used to support the AVM function with varying amounts of bulk storage（disc）to accommodate the city map for output display．

Exceptions are in the Class III time-of-arrival (TOA) methods, where arger machines are assumed. The pulse and noise-correlation techniques also require a larger computer with more speed and versatility than can be provided by a minicomputer because of the inherent capability of servicing many more vehicles per unit time and the need to accommodate a large number of inputs in real time. The software estimate based on fleet size is also difficult to justify totally. Much reliance wis placed on prior work estimates and on the judgements of systems analysts.

Three estimates each of base station computer and software costs were made based on model city parameters for small, medium and large cities. For the UGAC cities, the costs were determined based on the urban areas and the total fleet size, excluding motorcycles, using linear interpolation.

Display equipment costs are included in the base station costs on the basis of the actual number of dispatchers in the case of UGAC cities. For the model cities, the costs are estimated on the basis of 1 display console for each 50 vehicles or less.
4. Installation costs. Equipment installation costs were obtained by multiplying the cost per unit vehicle and the cost per fixed site installation by the appropriate zumber of units. Toegether with the base station installation cost, they make ip the tabulated total cost. A constant cost value is assumed for the base station, which is a rounded average value of prior estimates made in conjunction with AVM deomonstration tests.
5. Operation and maintenance costs. The estimates of $O-M$ costs for equipment installed in vehicles, at fixed sites, and the base station are based on experience values for both mobile and fixed equipments. In the base station, the principal cost element is for operation and maintenance personnel. Three persons (one per shift) were assumed in all AVM techniques to provide software support or equipment service. Although this assumption may not be justifiable, it was believed that AVM is a comparitively new technology which will probably interface with computer-aided dispatching and digital message systems and that additional service personnel would be required for a substantial time period after the initial installation.
V. VEHICLE POLLING AND LOCATION PERFORMANCE

Four classes of vehicle polling are considered for AVM Systems: (1) Synchronous, (2) Commanded or random access, (3) Synchronous with Command capability, and (4) Volunteer or contention. All four techniques are generally applicable to Class I and II AVM Systems. Synchronous polling and synchronous with command are used mainly in Class III Systems. For the Class IV monitored signpost systems, which use land lines, polling by radio is not applicable in the context used in this description.

All polling techniques are suitable for half-duplex (base station and vehicle on the same frequency), but when the base station relays all vehicle transmissions or when each vehicle monitors all other vehicles, then the Volunteer technique can only be used on full-duplex (base and vehicle on different frequencies).

1. Synchronous polling. In this technique, each vehicle transmits location data at a preselected time within the fleet polling sequence. Equipment on the vehicle keeps track of the start of the sequence and internally determines when its time to respond occurs. The cosi of the vehicle polling equipment installed (as of 1974) is about $\$ 270$.
2. Synchronous with command capability. This polling technique allows the base station to modify the position of each vehfcle in the polling sequence. The cost of the vehicle equipment installed is about $\$ 365$.
3. Commanded or random access polling. In this technique, the base station sends a request to each vehicle whenever location data is required. This tech nique is the most flexible but requires more use of available $R F$ time.
4. Volunteer polling. This contention method requires tilat each vehicle determine whether the channel is "clear" before transmitting. The cost of vehicle equipment installed is about $\$ 170$.

These vehicle polling techniques were evaluated with both a simple one-time radio message transmission and with redundant transmissions where every message is sent twice. The digital message rate is set at 1500 bps . Where equivalent RF channels are assumed, a channel spacing of 25 kHz is used. Message lengths are about 20 bits, or occupy about 15 millisec transmission time. Delays due to equipment turn-on times reduce the achievable polling rate.

PART ONE:
 AVM COST BENEFIT INFORMATION BASE

G.R. Hansen

CONTENTS

Page

PART ONF. AVM COST BENEFIT INFORMATION BASE. $1-1$

1. Performance and Costs of Proved AVM Techniques 1-1
A. Class O Manual Monitoring: No AVM. 1-1
B. Class I AVM: No Modification to Urban Environment... 1-1
C. Class II AVM: Autonomous Signposts Throughout

+

Urban Area. 1-5
D. Class III AVM: Sparsely Distributed Special RF Sites... 1-8
E. Class IV AVM: Monitored Signposts Throughout Area.... 1-10
II. Vehicle Polling and Location Performance 1-12
A. Vehicle Polling Techniques and Costs 1-13
B. Vehicle Polling and RF Link Evaluations 1-13
C. Location Performance Parameters. 1-1

III, Urban Characteristics That Affect AVM Costs. 1-15
A. City Model Parameters for AVM System Design 1-15
B. Small Model City AVM Cost Summary Tables 1-1
C. Medium Model City AVM Cost Summary Tables 1-1
D. Large Model City AVM Cost Summary Tables 1-19
IV. AVM System Accuracies and Cost Benefits 1-20
A. System Parameters That Affect AVM Costs1-20
B. Estimated Cost Saving Based on Urban Parameters . - 1-20
V. Computer Programs for Analyses of AVM Needs 1-23
A. AVM System Synthesis Computer Program

A AYM System Simulation Compter Proga
1-23

Bibliography.. $1-26$
PART TWO. AVM DATA FOR USER GROUP ADVISORY
COMMITTEE (UGAC) CITIES. .
PART THREE. ANALYTICAL TECHNIQUES FOR ESTIMATING
AVM SYSTEM ACCURACY.
PART FOUR, AM BROADCAST
ANALYSES FOR AVM USE

Class I AVM Officer Update Option, Using Keyboard

Class I A.
Update Option, Using Stylus Map... 1-2
Accelerometersematic Sensor Using Two
Accelerometers...
Class I AVM Magnetic Compass with Laser
Class I AVM Magnetic Compass with Ultrasonic
Class I AVM Magnetic Compass with
Class I AVM Normal and Differential OMEGA
Class I AVM Relay OMEGA Navigation System
Class I AVM Normal and Differential LORAN
Class I AVM Relay LORAN Navigation System
...... 1-
Class I AVM AM Broadcasting Station Navigation
Systems
Signposts
Class II AVM Citizen Band or VHF Wayside
Radio Signposts
Class II AvM X. Band Wayside Radio Signposts
Class If AVM Autonomous Ultrasonic Signposts 1-7
Class II AVM Flashing Visible or IR Light Signposts 1-7
Class II AVM Active Buried Antenna Traffic Sensors $1-7$
Class II AVM Buried Magnets as Location Identifiers $1-7$
Class II AVM Sensor of Reflective Patterns on
Signposts
Class II AVM Sensor of Reflective Patterns on
Roadway
Loops AVM Sensor of Passive Buried Resonant
Class III AVM Narrow-Band FM Phase TOA
Class III AVM Wide-Band FM Phase TOA
Trilateration................ $1-9$
Class III AVM Pue $1-9$
Havm $1-9$
Class III AVM Direction Finding from Special
Class IV AVM $1-10$
Montored Traffic Presence Sensors 1-10
Receptors. Ulored Ultrasonic Wave
Class IV AVM Monitored Photo or IR Detectors. 1-1
Vehicle Synchronized Polling for AVM Classes I, II, III ... 1-12
Vehicle Commanded Polling for AVM Classes I, II, III . . . 1-12
Vehicle Volunteer Polling for AVM Class II Systems. $1-13$

FIGURES (CONT)

I. PERFORMANCE AND COSTS

Costs and performance parameters of 36 operational or proved techniques used for auto-
matic vehicle monitoring (AVM) are described and illustrated in this section. Schemes that ar rimarily intended for vehicle identification, such point-of-sale methods are not included. In this Report, the vehicle monitoring techniques are categorized into five broad classes, based on
aystem element types and functions: Class 0 Manual Monitoring, with no augmentation of location information; Class I AVM, with no additions to the urban environment; Class II AVM, using ii AVM, using sparsely distributed special transmitting/receiving fixed RF sites; and Class IV AVM, using densely distributed monored signposts. Estimated special equipment

A. Class 0 Manual Monitoring. No AVM

This is the baseline vehicle location technique This is the baseline vehicle location technique A manual monitoring system consists of a disatcher, an existing real-time communication system, and a fleet of vehicles. The dispatcher's communications with the officers in the vehicles. Even in the manual vehicle monitoring class, the r re several options that affect bath performance
nd costs. The dispatcher can, for example, rely strictly upon his knowledge of each vehicle's designated location or patrol area and its subsequent assignments. Alternatively, he can use 0 interrogate and obtain actual vehicle locations vocally.
A relatively wide range of options is available to the dispatcher for use with Class 0 nonautomated vehicle monitoring. The simplest
visual location aid is just a map on which th assigned beat areas are permanently marked, the vehicles on relying on his mernoryagets or ights may be used which may be updated manally to augment his memory. Elaborate electroptical display devices are available, which anticipated destination, all driven by manual input
The dollar cost of a purely manual vehicle management system is almost bound to be com etitive, but the use of RF resources could be prohibitive, and the attainable dispatching persystem, the closest available vehicle can quickly be dispatched in response to a service request. nalyses indicate that response times are reduced itting a reduction in fleet size by up 7%, per解

B, Class I AVM. No Modification to Urban

1. Officer update. Vehicle location data may be encoded automatically by means of manually operated devices installed in the vehicle, such as keyboards or stylus maps.
a. Keyboard entry. This manual data input technique for providing automatic vehicle location data at the base requires the officer to enter some code or identifying numerical.
sequence on a digital keyboard (Fig. 1-1). I sequence on a digital keyboard (Fig. 1-1). The
keyboard can be either the device being used for sending digital messages or a separate unil The location code can relate to a particuiar
street segment and/or intersection and would street segment and or intersection and would vehicle location code is transmitted to the base station either by "Touch-Tone" or some othe
digital modulation lechniques. Volunteer or digital modulation lechniques. Volunteer or
random-access vehicle polling is most suitable for this technique. The AVM system accuracy is dependent on the code used; that is, either (1) the nearest intersection if only streets or on a street if each segment is coded, or (3) the location in a block if street segment is followe by address digits of closest property parcel. the automatic computational requirement iso geographical location. While this AVM technique is low in cost, particularly if a digital messige entry device (DiMED) is already memorization on the part of the patrolling officers If the car is out of the normal beat, either a map officer forme

Fig. 1-1. Class I AVM Officer trdate
b. Stylus map. This officer update tech nique is a manual method whereby the patrolling ing the appropriate spot on a special map (Fig. 1-2) with a stylus. The map-and-holder combination encodes the spot where the pressur is applied, and the digital code is sent to the be either in response to a request or volunteered
as part of a transmission from the vehicle. Location accuracy is dependent on the scale of the example, a $20 \times 25 \mathrm{~cm}(8 \times 10 \mathrm{in}$,) portion of a 7.5-minute U.S. Geological Survey topographic $\operatorname{map}_{4.8 \mathrm{~km}(\mathrm{scale}(1: 24000) \text {) would cover an area of } 6 \times 3 \mathrm{mi} \text {. If this information }}$ encoded by 5 binary bits (1 in 32) on each axis for a 10 -bit location code, then the location could be achieved within a rectangle of about 190×150 meters ($600 \times 500 \mathrm{ft}$). Ey increasing the encoding
to 12 bits or using a map with half the scale, the size of the vehicle's location rectangle could be decreased by one-hall in each dimension. Maps of other beats would probably be required by each officer together with some means of identifying
when these maps were in use. The base station computation requirement is a table look-up function to translate the code to a geographical location.

VEHICLE EQUIPMENT $\$ 2500$
INSTALLATION \$ 35

Fig. 1-2. Class I AVM Officer Update Option, Using Stylus Map
2. Kinematic sensors. Changes in vehicle by accele rometers whic Iwo accelerometers. Dead reckoning Which can measure the change in location of a vehicle, can be mechanized with two accelerom-
eters (Fig. 1-3). These devices would measure the rate of change of velocity of the vehicle in the norizontal plane of the vehicle in both the fore-and-aft and sideways directions. The outputs of velocities attained as well as changes in direction and distance during a selected time interval. The vehputations can be performed on-board the station, or the outputs of the accelerometers can he encoded and transmitted directly to the base station.

A U-turn made at a speed of $10 \mathrm{~m} / \mathrm{sec}(23 \mathrm{mph})$ about the street about 18 m (60 feet) wide is This turn would result in about a $0.8-\mathrm{g}$ indication of lateral motion for just over 3 seconds. If the accelerations are sampled and transmitted every 0.03 second, then the 16 data bits each time would lead to a data rate of $4800 \mathrm{bits} / \mathrm{sec}$. Based
on personal rapid transit studies, the "comfort"
one of vehicle operation is in the less than 0.2 ange. If most accelerations experienced by the 1% full-scale error during a low-g maneuver causes these normal measurements to be in error by 4% or more.
b. Orthogonal laser velocimeters. This by G. Stavis echnique is based on prior有 Stavis (Ref. 1), which used a laser velocimeter (Fig. 1-4) and compass (Fig. 1-5). ure not only the forward velocity of the vehicle, but also that velocity component which occurs during turns and is at a right angle to the fore-and-aft motion. All portions of the vehicle whic re not located on the turning axis experience
ome side velocity during a turn. The sign an magnitude of this velocity component is a function f the distance from and location with respect to he turning axis. If both forward and side velocithe turning radius, then the velocities at this point provide a means to keep track of the vehicle motion. The operation of the laser velocimeter reflection of coherent laser light from a surface that moves relative to the source. The speckles tend to move in the opposite direction to the rela-
tive motion between the laser source and the reflecting surface. By passing the reflected laser light through a diffraction grating and then to a photodetector, a signa can be derived with a fre quency that is a direct measure of the velocity of
the reflecting surface. The velocity measured is that at right angles to the rulings on the grating. Iwo photo detectors and two gratings with the ulings at right angles provide the means to mea ure the two components of motion of a single
aser spot. Investigators in the cited work Ref. 1) indicate that a lase x velocimeter's dynamic range is of the order of 2500 to 1 and that he maximum and minimum measurable velocities rating. For example, a vehicle velocity range $0 \mathrm{~m} / \mathrm{sec}$ to $2 \mathrm{~cm} / \mathrm{sec}(115 \mathrm{mph}$ to 0.05 mph) ould be accommodated, and turning rates of 0.01 adian $/ \mathrm{sec}(0.6 \% \mathrm{~s})$ could be detected, Maximu
data bit rates of about $5000 / \mathrm{sec}$ for speed and $00 / \mathrm{sec}$ for turring may require in-vehicle computation.
c. Ultrasonic velocimeters. The use of ultrasonic waves for intrusion detectors, motion ensors, and distance measuring is well estadound wave the ruency shik of a reflec he basis of a velocimeter (Fig. 1-6). An ultraonic wave directed at angle at the road surace will reflect a doppler-shifted frequency pro ortional to the cosine or the angle of incidence $33-\mathrm{kHz}$ frequency is chosen which has a wave length of about 1 cm directed at a 45 -degree angle (115 mph) will yield a doppler shift of mbout f a dynamic range of $2000: 1$ can be achieved, a minimum velocity of $2.5 \mathrm{~cm} / \mathrm{sec}(0.05 \mathrm{mph})$ can be detected. If the velocimeters are mounted on ach side of the vehicle and the differential veloc
ties are measured to the same $2.5 \mathrm{~cm} / \mathrm{sec}$, the minimal directional changes of 12 mrad (about 0. 7 deg) can be detected. This precision is on the odometer, described later

VEHICLE EQUIPMENT $\$ 265$
INSTALLATION 30
Fig. 1-7. Class I AVM Magnetic Compas
3. Wide-area navigation. The three principal 3de-area navigation schemes use synchronized radiolocation beacons, in they different modes OMEGA, LORAN, and DECCA.
a. OMEGA. This navigation scheme (Fig. 1-8) uses very low frequency ($10-13 \mathrm{kHz}$) time-

Vehicle equipment siso installations 80

Fig. 1-8. Class I AVM Normal and
signals, transmitted on the same frequency in sequence from several sites, defines a soint of the of position (LOP). At the intersect There are ambiguities in position since the phase patterns repe every 15 km or so. Differential technique for reducing the e precisely known localies. A fixed receiver these anomalies over a 15 to 30 km radius through continuous monitoring the received signals.
b. Relay OMEGA. In this technique (Fig 1-9), the vehicle rebroadcasts the raw OMEGA signals on another frequency to the base se differ The base station then measures This is a timeences and computes the each vehicle would have consuming operation omEGA sequence lasting several seconds

VEHICLEEQUIPMENT S37S
INSTALLATION 58
Fig. 1.9. Class I AVM Relay OMEGA Navigation System
c. LORAN. This technique (Fig. 1-10) uses combined pulse and phase time- Pulsed signals RF signals 0 moen
VEHICLE

$$
\nabla
$$

VEHICLE EQUIPMENT $\$ 2600$ INSTALLATION $\$ 80$

Fig. 1-10. Class I AVM Normal and
Differential LORAN Navigation

3 times a second in coded groups. The receive measures the time of arrival difference from No measures the tiven pairs of signals to determine the LOP. ambiguity exists, and each LOP is unique geographically. Difore remove local propagation site receive.
anomalies.
d. Relay LORAN. In this system (Fig. 1-11), the received signals are retransme bandbase station width compression is required and is used in a technique called LOCA AN over voice comsunicathe 90 to 110 kHz LORAN over vore width signals are tion channels. 7 kHz for retransmission. The higher repetition rates of LOR.

VEHICLE EQUIPMENT $\$ 425$
Installation $\$ 80$
Fig. 1-11. $\underset{\text { Navigation System }}{\text { Clay }}$ I AVM Reran

1-12) is a DECCA. The DECCA system (Fig. 1-12) is a continuous-wave phase-difference tech different, but harmonically related, signal to other transmitters. The location is determined by simultaneous reception and comparison of the
phase of the signals. Since the LOPs determine phase of the signals. Since the LOPs determine by the phase measurements are not unique, spe-
cial signals are transmitted frequently to enable the determination of the correct one.

$\$ 950$

VEHICLE EQUIPMENT 9950

NSTALLATION $\$ 60$
Fig. 1-12. Class I AVM DECCA Navigation System
f. $A M$ Broadcasting stations as radiolocation beacons. Carrier signal frequencies, being stations located around a city's perimeter, can each be separately received and multiplied by
relatively low-cost in-vehicle equipment to syn relatively low-cost in-vehicle equipment to syn-
thesize a new common frequency. These three identical frequencies can be made relatively phas coherent. Virtual hyperbolic patterns of naviga-
tional LOPs are generated by the signals received
from each pair of AM stations. These LOPs can erve as the basis for a reliable AVM system noted and recorded at the central command base. When the vehicle moves, the phase differences produced in the three signal frequencies are meaphase pattern is repeated can be counted hat the This digital information is then sent to the base where a minicomputer converts it to the vehicles ,

NORM
differentia installation
g. 1-13. Class I AVM AM Broadcasting Station Navigation Systems
C. Class II AVM: Autonomous Signposts

All autonomous signost location techniques ely on the vehicle coming near or passing over an instrumented geographical location. The instrument, located at an intersection or road
segment, is usually a continuously radiating device sending out a uniquely coded message, either radio, light, IR, ultrasound, or magnetic. The vehicle is equipped with a suitable receptor
to receive and store the message for subsequent to receive and store the message for subsequent
retransmission to the base station and in this way inform the base as to the last instrumented location passed.

1. Radio frequency signposts. Most of the echniques use RF signals as the medium for the short-range link from wayside or roadway signpost to vehicle. These signals, which may range
from low frequencies (190 kHz) through VHF to rom low frequencies (190 kHz) through VHF to
X-band (10 GHz), require the equipment shown in Figs. 1-14, 1-15, 1-16. Elevated locations for he signposts are usually selected to achieve a arger coverage area, freedom from blocking b vandalism. Vehicle lication accuracies of the Class II AVM systems are a function of the radius influence and density of the signposts, and
post must increase as the radius of influence decreases to ensure complete message reception ya fast moving vehicle.

> VEHICLE EQUPMENT $\$ 100$ INSTALLATION $\$ 45$ FIXED EQUUPMENT $\$ \$ 25$ INSTALLATION $\$ 45$

Fig. 1-14. Class II AVM Low-Frequency Wayside Radio Signposts

VEHICLE EQUIPMLNT SIOS
INSTALLATION $\$ 40$
INSTALLATION $\$ 45$

Fig. 1-15. Class II AYM Citizen Band or VH Wayside Radio Signposts

LOCATION

VEHICLE EQUPMMENT S120
INSTALAATION $\$ 40$
FixED EQUIPNENT 5230
II AYM X-Band Wayside Fig, 1-16. $\underset{\text { Radio Signposts }}{\text { Class II }}$

Since active electronic signposts require some rimary power source, difficulties may be is tered in general applications if relaits or yraffic placed on either streetications, alternate yowe signals. In some apessary. Options other than utility power are long
2. Ultrasonic and photo or IR signposts, 2. Ultrasonic and photion are fossible prac tical approaches to the message angestion and interference to other further RF congestion and waves (Fig. 1-17) are services. Tength to X-Band RE (iess for focusing
similar in led and "horn" antennas can be desired coverage area. The tlashing sound to a desi red coverage area, wisible or light approach also a practical short-range infor
infrared, is ander infrared, are, however, some fog, rain, and wind.
ande The buried antenna app roach using existing traffic-presence sensor oops as electronic signposts (encisco and New York rently being tested billing technique for equipped
as a toll authority buses. In these systems, the andenna receives loop) interrogates continualed buses so that the responses from billed for toll fees without hantennas buses. The use of traffic sensor loops as anic signis a practical implemen advantage in that weatherposts and has an added advantage available in the proof encignal controller.

VEHILLE EQUPMENT 5430

INSIALLATION $S 150$
HED EQUIPMENT $\$ 55$
.

installations 30

Fig. 1-21. Class II AVM Sensor o

> YEHKLE ERUPNENT $\$ 75$ INTTLLATATON $\$ 50$ EXEDEOUPMENT:

IXED EQUPMENT S 5
Fig. 1-22. Class II AVM Sensor of
6. Passive buried loops. The passive buried loop (Fig. -2.2) requires that the vehicle, equipped with under-car antennas, pass over and a detailed analysis of the buried loop coupling are included in Part Four of this report
D. Class III AVM. Sparsely Distributed Special -
This slass of AVM systems encompasses those vehicle location techniques of the trilateration
rho-rho (range-range) and triangulation thetatheta (angle-angle) types with sparsely distributed RF sites primarily intended for medium or small urban area coverage, $7 \mathrm{~km}(4 \mathrm{mi})$ to $11 \mathrm{~km}(7 \mathrm{mi})$ radius.

1. Trilateration Systems. Included in the rho-rho systems are trilateration techniques
which measure the time-of-arrival (TOA) of a which measure the time-of-arrival (TOA) of a receiving sites. Each pair of time differences

location

Fig. 1-23. Class II AVM Sensor of
Passive Buried Resonant Loops
forms a hyperbolic line-of-position (LOP). The intersection of these LOPs establishes the position of the vehicle. This information may be sent to the base station from the site by leased tele
phone lines or by microwave transmissions.

Hyperbolic trilateration methods tested have used either a pulsed (or keyed) carrier from the vehicle or an audio-tone frequency modulating a
carrier. The pulse systems measure the TOA of the signal and establish the range differences directly. The tone trilateration systems measure ing sites, and the phase difference measurement then determines the range difference

The tested tone phase TOA trilateration methods used 2.7 kHz and approximately 18 kHz frequencies
whose phase patterns repeat at 111 km and 16 km , whose phase patterns repeat at 111 km and 16 km ,
respectively. These AVM systems have ben termed narrow-band (Fig. 1-24) and wide-band
(Fig. 1-25) since the first can be accommodated
in a narrow-band $F M$ voice channel (25 kHz) while in a narrow-band $F M$ voice channel (25 kHz) whil four adjacent channels (100 kHz). In comparison the pulse TOA method (Fig. 1-26) utilizes up to
10 MHz of bandwidth to preserve the leading edge of the pulse.

Another wide-band trilateration method is based on interferometer techniques. As currently envisaged, each vehicle would transmit a carrier signal modulated with either white or P-N
sequence noise (Fig. 1-27). These signals would again be received at the several sites, and by correlation computation the time differences arrival would be established. Since only the
signals from one vehicle would show substantial signals from one vehicle would show substantial
correlation, it would be possible but not necessary to have all vehicles broadcasting the noise modulated signals simultaneously. The effects of multipath on trilateration techniques have been

2 T finding $\frac{\text { Triangulation Systems. The direction }}{\text { methods proposed would measure the }}$ azimuth angle of the vehicle signal at several fixed sites (Fig. 1-28). The intersection of the extension of these bearing angles would be the position of the vehicle. Multipath in this method
would probably cause uncertainty in the angle of arrival of the vehicle signal leading to
approximately the same accuracy limitations as
those for trilateration. Of the Clas systems delineated, the direction finding avM narrow-band phase TOA would allow the use of
the normal vehicle trans band phase, and noise moiver. The pulse, wide would require an additional AVM TOA methods

Vehicle equipment s ∞ INSTALLATION $\$ 40$
FIXED STIE EQUIPMENT $\$ 4,500$
INSTALLATION \$ 500
Fig. 1-24. Class III AVM Narrow-Band FM

VEHICLLE EQUIPMENT S2875 (CUBIC) INSTALLATION $\$ 90$
FIXED SITE EQUPMENT 5950 installation $\$ 1500$

Fig. 1-25. Class III AVM W Phase TOA Trilateration

VEHICLE EQUIPMENT \$ 3,285
EIXED ITITE EQUUPMENT \$ 150 INSTALLATION $\$ 2,500$
Fig. 1-26. Class III AVM Pulse TOA

VEHICLE EQUIPMENT $\$ 785$ INSTALLATION $\$ 100$
FIXED SITE EQUIPMENT $\$ 7500$ INSTALLATION $\$ 1500$

Fig. 1-27. Class III AVM Noise Correlation

E. Class IV AVM, Monitored Signposts Throughout Urban Area This class of AVM techniques is an inversion
of the Class II autonomous wayside or buried signposts and removes the data collection link
 maintained, but the information flow is the vehicle's identity to the monitored signpost. The data link to the base station or central collection
point is based either on telephone lines rented point is based either on telephone ines rented from the tocal fire usity of Since individual lines from, each signpost are usually not considered economi cally practical, it is usually proposed to group
the signposts on "party lines". The "party line" approach requires that each signpost not only transmit the vehicle ID data received but also identify itself to the central collection point at
the base station. The telephone line is an addithe base station. The telephone line is an addi-
tional complication to the Class IV installation tional complication to the Class IV installation,
and a prime power connection is still required.

A technique of using the buried loop-sensors which actuate traffic signals, as receiving which actuate traffic signals, as receiving
antennas (Fig. 1-30) can be used in the monitored Class IV as in the autonomous Class II signpost method. This is an especially attractive approach if the signals are centrally control
because dedicated communication lines are usually already installed. Ultrasonic as well as photo/IR detectors could also be usea on monitored signosts (Figs 1-31, 1-32)

In Class IV, the vehicle polling function is replaced either by line-finding, as is used in normal telephone service, or by a continual scanning of the lines to find an "off hook" indication that a signost on one of the party lines
has information to forward.

VEHKLE EQUIPMENTS 95
INSTALLATION 540

29. Class IV AVM Monitored

Wayside Radio Receivers

> VEHCLE EQUPNENT $\$ 80$ INSTLLALAON $\$ 65$ LOCATION SENSOR $\$ 165$ INSTALLATION $\$ 100$

Fig. 1-30. Class IV AVM Monitored Traffic Presence Sensors

.

IXED ERUPMENT SI80
INSTALLATION SIOO

Fig. 1-31. Class IV AVM Monitored Ultrasonic Wave Receptors

VEHICLIE EQUPMENT SIIS
INSTALAATION $\$ 70$
FIXED SITE EQUPMENT SIZ
installation 5100
Fig. 1-32. Class IV AVM Monitored Photo or IR Detectors

VEHICLE EQUIPMENT SI2S
INEDAALLATION $\$ 65$

A. Vehicle Polling Techniques and Costs

Four general classes of vehicle polling are considered for AVM Systems: (1) Synchronous, nous with command capability, and (4) Volunteer or contention. All four techniques are generally applicable to Class I and II AVM systems. Synchronous polling and synchronous with command sparsely distributed special signposts. Volunteer polling is usually considered only for low density Class II autonomous signpost systems. For the Class IV monitored signpost systems. not applicable in the context used here.

All of the polling techniques are suitable fo frequency), but when the base station relays all vehicle transmissions or when each vehicle monitors all other vehicles, then volunteer polling can different (requand)

In
In Class I and II AVM systems where the curpurposes, speed-way radio is to be used for AV These changes to antenma switching, transmitter stabilization time, and squelch delay are necessary to reduce the substantial guard time required the polling sequence or to reduce the transition time interval from receive to transmit in Commanded or random access polling.

A modification of the Volunteer polling method only allows location data to be transmitted as a precursor os brief interruption of voice transtion. Interrupted speech as a technited applicapolling methods relies on very short transmit onpolling methods relies on very short transmit on
off-on sequences for a vehicle currently using voice when another vehicle responds with data.

1. Synchronous polling. In this technique, each vehicle transmits location data at a pre-
selected time within the polling sequence. The equipment on the vehicle keeps track of the start
of the polling sequence and internally determines of the polling sequence and internally determine
when the appropriate time to respond occurs. The functional elements of Synchronous polling are shown in Fig. 1-33. The fact that the start of the polling sequence must be periodically transmitted to each vehicle for correction purpose
leads to the capability of the base station to modify the time when the vehicles are to respond in the polling epoch. 2. $\frac{\text { Synchronous with command capability }}{\text { This technique allows the base station to modify }}$ the position of each vehicle in the polling sequence. The additionai functional elements for nected by dashed lines to the elements required or synchronous polling.

VEHICLE EQUIPMENT (S165 + S4n)
installation 540
FAST TURN-ON
-
Fig. 1-33. Vehicle Synchronized Polling for

Fig. 1-34. Vehicle Commanded Polling fo
3. Commanded or random access polling, Commanded polling requires that the base station
send a request to each vehicle whenever location data is required. This random access technique is the most flexible but requires substantially
more use of available RF time than the synchro nous method or the synchronous with command capability. The elements required for the com-
4. Volunteer polling. This contention method of sending location data requires that each vehicle determine if the channel is "clear" before transmitting. A mechanization is shown in Fig. 1-3 each vehicle after determining that the channel is clear and before transmitting is usually necessal
to preclude certain vehicles from dominating the
channel.

VEHICLE EQUIPMENT $\$ 130+\$ 4 n$
INSTALLATION 530
Fig. 1-35. Vehicle Volunteer Polling for
AVM Class II Systems
B. Vehicle Polling and RF Link Evaluations

The three vehicle polling techniques: Synchronous (SYN), Volunteer (VOL), and Random a simple or commanded were evaluated with both and with redundant transmissione where every message is sent twice. In all cases, the digital message rate is set at 1500 bps . Where equivalent RF channels are assumed, a channel spacin

Any delays in the polling processes will tend to reduce the number of vehicles which can be accommodated by an RF channel. Therefore all of Iurn-on time. Thirty two of the Class I, II and imple and redundant modes of the throth the imple and redundant modes of the three polling was from 0 to 0.3 second, in five steps. This ange is sufficient to estimate the performance uits relative to half-duplex with ele antenna cir echanical antenna transfer relays. Tab ations of the vables 1-1 plled per second Pr RF chan the vehicles includes a theoretical maximumel. Each table the 1500 bps rate divided by the number which is echniquestion message. Included under Class II cation message length large entries as the number of instrumented intersection of the data are provided for both small and la the urge urban
areas. Since then are not amenable to voluntechniques in general methods, no Vol to volunteer (VOL) polling class. Also, with the exception of direction this
finding and inding and narrow-band phase location, trans does not have the same order of required which

Table 1-1. Vehicles Polled/Second/RE Channel For 0 Sec Turn-On

Table 1-2. Vehicles Polled/Second/RF

Table 1-4. Vehicles Polled/Second/RF
Table 1-4. Vehicles Polled Secon
Channel For 0.1-Sec Turn-On

Message lengths of most vehicle polling techniques are about 20 bits or occupy about 15 mil liseconds or less of transmission time at the
selected bit rate. Turn-on times of this order selected bit rate.
will the refore reduce the achievable polling rate
and will therefore redua half the theoretical value. Turn-on
to less than times quickly dom
above 0.03 second

Class IV AVM systems, with monitored signposts, do not require radio polling. The vehicle polling function is replaced either by line finding as is used in nontinual scanning of "party lines" to find an "off-hook" indication on one of the party lines that one of a group of signposts has somet inehicle that is passing its vicinity.
C. Location Performance Parameters

Several technical performance parameters of individual vehicle location techniques, including accuracy, quantity of location data, affect both the design and expeccuracy of the locaion infcrmation is the parameter which usually elicits the most interest. This ultimate achievable accuracy for a given technique is, however,
almost always degraded when the technique is almost always degraded when in location accuracy is caused by the vehicle's motion, the delay in vehicle-to-base transmi the computer proceived to a physical location, and
the delay in displaying the location on a map or other computer output device. In dead-reckoning systems, the the distance travelled (\% dist).

The amount of location data which must be sent to or from the vehicle is another parameter that affects performance. Not only is it a function of
the location technique, but also of the number of vehicles in the system, the area of the urban coverage, the density of streets or intersections in each direction. The quantity of location data, together with the polling technique used and the availability of RF channels, determines the delays
in receiving vehicle data at the base, which in turn in receiving vehicle data at the bas
affects the AVM system accuracy.

Another parameter is the "fix' time require: for the vehicle to receive or generate whatever determined elsewhere, which is primarily technigue dependent. Similarly the interval between successive messages from the vehicle is also
technique dependent. That is, no new iocation information will be forthcoming until a definite time period or travelled distance has elapsed or

A tabular compilation of four location perfrmance characteristics has been developed demonstrations, and performance estimates by buth system developers and other evaluators. 4: Table 1-6, the performance values for the Docuinn accuracy or radius, the amount of location data, and the fix time parameters are
listed for the four AVM classes and 36 systems. an explanation of each parameter follows:

1. Accuracy. This tabular entry represents ether the estimated or test-result accuracy of
vehicle location for Class I and Class III AVM systems. Since the accuracy cannot always be stated as a single value, a range of values is given in some cases. In the case of Class II and in signpost systems, the term accuracy
2. Kadius, In Class II, III, and IV AVM systems, this radius figure represents the esti
mated coverage of the individual signpost or the special purpose fixed site.
3. Fixtime This value is the time in seconds required for the vehicle to receive or generate new location data. In Class I AVM systems, the fix time is determined by the updating rate of the gational aid. In Class repetition rate of the nav time is a comparative number only and represents the time interval required such that a vehicle
near the signpost will receive at least two location messages while moving at a speed of $50 \mathrm{~m} / \mathrm{sec}$
$(113 \mathrm{mph})$. In Class III systems, the fix time represents only the time of transmission of a location signal from the vehicle to the special
$R F$ site.
4. Location data. This tabulated number equirent the minimum quantity of raw dat Class I AVM dead-reckoning methods, the location data figure is the combined number of bits. required to represent a change in vehicle position
to the indicated accuracy. In Class I navigational to the indicated accuracy. In Class I navigati
aids, the figure is either the number of bits required to indicate the time or phase difference of the received signals or the actual RF bandwidth (BW) required in the relay systems. In Class It
or IV AVM systems, the location data value is the number of bits required to uniquely identify each signpost or each vehicle, respectively. The
Class III location data is the RF bandwidth for the tone pulse or noise location signal.
iII. UREAN Characieristics that AFFECT AVM COSTS

\section*{A. City Model Parameters For AVM System

In order to develop a basis for AVM System cost comparisons it was necessa"y to establish baseline ystem design parameters applicable to each tech three model cities were developed, based on the populations and physical parameters of the seven representative UGAC cities in Southern California, Characteristics of the smali, medium, and large or rationalization for the model city parameters and the other factors considered in the system design are as follows:

1. City Shape: One characteristic of the model $\frac{\text { City shape }}{\text { cities that is difficullt to justify of shape. }}$
In this Report, the assumption is made that the In this Report, the assumption is made that the
cities are rectangular with a 2 -to- 1 aspect ratio The development of most cities either along a river, railway, or coastal harbor usually results in one fimension being significantly greater than he other. The choice of a rectangle is believed
obe more realistic than the square or circular city scmetimes chosen.
2. Urban area. The areas chosen for the three city models are 10,100 , and 1000 km
$(4,40 \text {, and } 400 \mathrm{mi})^{2}$, which compare with Montclair and Monterey Fark as the smallest cities; Anareim, Pasadena, and Long Beach as as the large cities. (See Part Two of this Report, as. 2-1.)
3. Population. The populations of the model cities are based on population densities in the
actual cities, which average 3000 people per square kilometer ($7800 / \mathrm{mi}^{2}$).
4. Vehicle fleet size. Two classifications of vehicles are assumed for each city. These are instrumented vehicles. An assumption is mad remainder is involved in investigg while

Table 1-6. Location Performance Parameters for All AVM Classes and Systems

Technique	Accuracy or Radius	Value used, (m)	Location Data, bits or BW	Fix Time sec
CLASS I AVM	Accuracy			
Keyboard update	10-100 m	(33)	6-20 bits	-5 5
Stylus map update	30 m	(30)	14-20	
2 -Accelerometers	$2^{\%}$ dist	(34)	14	0.3
Laser velocimtr	0.5\% dist	(13)	16	0.3
Ultrasonic velo	$3 \%_{\%}^{\prime}$ dist	(40)	14	0.3
Compass/orlometer	1% dist	(20)	14	0.3
Compass/laser vel	0.6% dist	(15)	14	0.3
Cmpss/u-sonic vel	0.8% dist	(17)	14	0.3
OMEGA navigation	1600 m	(1600)	27	3-10
LORAN navigation	$0.4 \mathrm{~m} / \mathrm{km}$	(160)	32	0.06-. 2
DECCA navigation	$0.5 \mathrm{~m} / \mathrm{km}$	(200)	30	
AM-Stations nav	$150-250 \mathrm{~m}$	(200)	12	$0-3$
Diff OMEGA nay	160 m	(160)	27	3-10
Diff LORAN nay	$120-400 \mathrm{~m}$	(400)	32	0.06-. 2
Diff AM-Stations	$150-250 \mathrm{~m}$	(250)	21-32	0.3
Relay OMEGA nav	$200-600 \mathrm{~m}$	(500)	3 kHzz BW	3-10
Relay LORAN nav	800 m	(800)	10 kHz TWW	0.06-. 2
CLASS II AVM	Radius m			
Buried res loops	10	-	10-18 bits	1-2 s
Reflecting signs	10		10-18	1-2
Feflecting road	3	-	10-18	1-2
X-Band signposts	12-100	-	9-17	1-2
HF, VHF signpost	15-100	-	7-15	2-5
LF Signposts	100	--	9-17	1-2
Light/IR post	30		9-17	1-2
Buried magnets	10	-	10-18	1-2
Ultrasonic post	20	-	9-17	1-2
Traffic sensor	10		10-18	1-2
CLASS III AVM	Accuracy			
Nar-band FM phase	$800-1300 \mathrm{~m}$	(1000)	3 kHzz BW	0.015 s
Wid-band FM phase	1000-1500	(1200)	$15-40 \mathrm{kHz}$	0.01
Pulse T-O-Arrival	100 m	(100)	10 MHz	0.0001
Noise correlation	100 m	(100)	$5-10 \mathrm{MHz}$	0.001
Direction finder	$3^{\% \% \%}$ dist	(700)	3 kHz	0, 2-1
Class IV AVM	Radius, m			
Traffic loops	10	-	N/A	1-2 s
Wayside radio	100	-	N/A	1-2
Photo/IR detect	30		N/A	1-2
Ultrasonic detect	20	-	N/A	1-2

Table 1-7. Model City Parameters That Affect AVM Costs

Parameter	Small	Medium	Large
Area, km^{2}	10	100	1000
Dimensions, km	2.2×4.5	7.1×14.2	$22.3 \times 44,7$
Vehicles, patrol/total	$5 / 10$	$50 / 100$	$500 / 1000$
Intersections:	350	3500	35000
Road segments \times lanes	1600	16800	128000
Road distance, km	125	8275	
Telephone lines, km	83	828	$3,000,000$
Population	30,000	300,000	
*Based on $25 / 75 \%$ ratio of $50 / 30$ blocks $/ \mathrm{km}^{2}$ in the urban area.			

5. Intersections. The number of intersections in each city is based on two business area street in ensities. They are based on actual measurements of randomly selected areas of the UGAC
cities, and the values cities and the values sssumed are $30 / \mathrm{km}^{2}$ for
75% of the area and $50 / \mathrm{km}^{2}$ for 25% of the are
6. Road distance, For the purposes of the models, the blocks are assumed to have the same aspect ratio as the city, namely $2: 1$, and to be in each road segment was assumed, based on UGAC city averages.
7. Telephone line distance. Class IV AVM systems require land line monitoring; and for the purposes of comparison, an equal division of sensors is assumed of up to a maximum of 100 party lines are assumed to parallel the long street. so that the total mileage of lines is about wo thirds of the total road distance.
8. Building distribution and topography. A uniform low-rise building distribution is as sumed
ar location accuracy comparison purposes. The for location accuracy comparison purposes. The
topography of the model cities is assumed to be topography of the model cities is assumed to be
essentially flat without "blind" radio areas or special areas that might unduly affect any particu-
9. Radio The only information sent from th ocation, either as a bison is that required for lent RF bandwidth for the Class I, II, and III ystems. Radio modifications are also assume Additionally, transmitter turn-on stabilizatio time, squelch delay, and antenna transfer are ssumed constant at several values
10. Model city AVM cost and periormance simmaries, Tables 1-8 through 1-16 summarize he AVM system costs in each of three model thirty six location techniques and for three polling methods.
a. Small city summary. The costs of all dominated by the operation-and-maintenance ($0-\mathrm{M}$) cost with the result that there is a great ocation technique. costs regardiess of the vehicle costs are higher because the signposts and the associated costs are relatively greater than the ehicle costs (see Tables 1-8, 1-9, 1-10).
AVM Class I I in the city summary. The costs of ncrease which is almost all due to vel show an quipment. The almost all due to vehicular reater factor due again to signcrease by a costs of the buried resonant loons are substan any higher than those of any other Class II chnique because of installation costs. The more sparsely distributed RF posts, either HF of the techniques which use a post at each intersection. In the Class III techniques that require ment accounts for about one-third the tular equip

In Class IV techniques, the telephone line rental cost factor (see Table 11 , 12 the primary
C. $\frac{\text { Large city summary. }}{}$ The AVM costs in the large model city show eme sarne trend with Class
costing some 2 to 4 times the Class I technique and about twice the cost of Class III systems. The Class II techniques systems costs are reduc ible by less dense placement of posts (see Tables

The method of vehicle palling has only a slight niques in Any of the moder costs in any of the techof the AVM cost analysis to actual cities in Southern California are presented in Part Two of this Report (p. 2-1).
B. $\frac{\text { Small Model City AVM Cost Summary }}{\text { Tables }}$

Table 1-8. Small Model City Parameter Used in AVM Cost Analysi

mbith south mimphice is ay hles.
total fots mligige is \rightarrow nues.
me nuige ge intersections re ma:

thepe ffe is cips in the fleet
hits thepe afe a mothacteles.
the inicef of mehicle dithench shift is
FIFET SHIFT InA. :
TIFST SHIFT HII. 5
:ecoul shift mit:- -
SELINL SHIFT HIM. 5
thifd shift hin:- 5
THIF SHAFT MIH. 5

he niti mold pecture + hide-benid or

Table 1-9. Small Model Cit M Cost Summary
 chicle Polling
C. Medium Model City AVM Cost Summary Table

Table 1-11. Medium Model City Parameters Used in AVM Cost Analysis AFEA IS 40 SOUAFE HLES.
chet inst instane is 4.41 mle.

tathl fatal milefige is tha hile
the humef of intepections ie zeans

thefe fife tog chire ih the fleet

the mimef of mehicles bin ehich ahift is

Table 1-12. Medium ModelCity AVMCost Summary

$$
\begin{aligned}
& \text { fat maft hif: cin }
\end{aligned}
$$

Table 1-13. Medium City Vehicle Polling

1. Large Model City AV M Cost Summary Tables

Thie 1-14. Large Model City Parameters Used in AvM Cost Analysis
amtis Min While miles.
hat het methice is harmiles
ath mouth mitatice is er. 3 mles.
Total font mleate is ree niles.

Thefe ffe 16100 cifs in the flegt
WL THEFE APE a hutoftcles.
ht mideef of uehicles on each shift is:
rifit shift mis: 500
TEST SHIFT HIN SIG
EECOHD SHIFT HA:. SDO
vecind shift min sag
thifes shift mik. 560
thify shift mith. siga

Tabla 1-14. Large Model City Parameters Used in AVM Cost Analysis (Cont'd)

The city hould feruipe ag hide-behi or
LLEE T-ü-h mittemifi sites aid loe narpou
salid atitemif sites hith? bind 3 mle couerage kadit.
Table 1-15. Large Model City AVM Cost Summary Lituc noit

Table 1-16. Large City Vehicle Polling

V. AVM SYSTEM ACCURACIE

T RENEFITS
A. System Parameters That Affect AVM Costs The prediction of the expected accuracies of AVM systems is essentially a probabilistic prob
lem. Actually the re are two distinct problems. one a precursor to the other, depending on the class of AVM system. Classes I and III are loosely referred to as "random route" systems vehicle location anywhere with in their surveillance areas. Classes II and IV are called "fixed route" systems because the location capability
exists only in the vicinities of signposts that ar distributed along the wayside or on the roadway at intersections within the covered area. Besides the inherent range of uncertainty in the location neasuremensses I and III are subject to another location error, which is the shift in the moving vehicle's position during the interval between the instant of polling and the display of location data echniques provide location information only at the time when the vehicle passes within the sensing radius of a wayside or bu ied signpost. This hat tine vehicle enters the sensing radius of another signpost. A measure of this uncertainty in location is required to determine the "inherent" accuracy of the signpost AVM techniques. This is particularly true when the signposts are less than
maximally dense; that is, when the signposts are placed two or more intersections apart.
It is intuitively reasoned that if the signpost sensors in Classes II and IV are placed at each be found to plus-or-minus one block. It also follows that if the sensors are placed in a diamond
pattern at every other block in each direction, then the accuracy is plus-or-minus two blocks. This reasoning is valid only if every passage, hrough instrumented intersections by all vehicles is known. If the polling technique or RF channel assured, then the achievable accuracy is not as well known. A tutorial treatment of the less dense signpost placement by Markov, or randomReport. The analysis technique leads to a prediction of the mean and variance of the distance raveled by a vehicle starting at an unsensed intersection before it passes a sensed intersecsignpost densities are as follows:

Ratio (Sensed/Unsensed)	Mean	Variance
$1 / 1$	1	1
$3 / 8$	1.778	1.778
$3 / 9$	2	2

The second approach to the system accuracy prediction considers not only the inherent error in the vehicle location technique but also the ad
tional inaccuracies introduced by the delays in
uccessive pollings of the vehicles and by the leet are moving at various speeds. In Part The eet are moving at various speeds. In Part Thre tion, and the tabular results are presented.
The technique for predicting the location accu acy was used to generate the family of curves correlate the independent variables of the polling aterval and the standard deviation of the inheren rror. The accuracy contour yields the 95% con-
idence interval for vehicle fleets that move with an exponential velocity distribution such that mor han hall the vehicles are moving at speeds less arves that either the polling interval or the inhe ent error can quickly dominate the achievable sysmaccuracy if either is very large. The curves 0.1000 meters (0.1 to 0.6 mile). The curves fo ess than 100 and greater than 1000 meters are epetitions of those shown and can be derived with es (equivalent to divis a unt constant on bo the interval or deviation by a factor of 10).
B. Estimated Cost Savings Based on Urban

1. System accuracy estimation. The accuracy to be expected from any given AVM system in a irst, from the data provided for the process. city, the maximum and minimum number of vehicles deployed is obtained. Next, the number of bits in the location message required from eac vehicle for each technique is determined. The 0.1 -sec radio turn-on time is then computed for he redundant mode of the random polling process. his value yields very conservative (or pessimis deployed. These intervals together with the value btained from the table of technique accuracies rovide the entries to the graph of system accuputer program. A rather simple linear interpola ion program yields a maximum and minimum estimation of the 95% confidence level of system ccuracy for the maximum and minimum vehicie usually greater than the standard deviation value
2. Vehicles saved estimation. Based on the and Doering (Ref. 4), a quantitative measure of efficiency increase in responding to calls for ser vice should be determinable from the accuracy of he AVM system. One of approaches to th esponse to a call for service, the dispatcher always sends the vehicle responsible for a beat to at where the location of the vehicles is known scene.

The efficiency comparison is made either in excess time closest located vehicles. The conclusions of thi approach are generally that a vehicle location

Fig. 1-36. Vehicle Polling Intervals vs 95% AVM System Accuracy
suficient. Additionally the service improvement fole for the locator system di vehicle dispatches "center of mass" or bea

The more recent study of Doering (Ref. 4) situation with differesponse time performance in the AVM system and a given fleet size with the number of vehicles required to provide the same esponse time with no AVM. Doerings study indiFlorida), 34 vehicles in the AVM city of Orlando curacy is 240 meters (800 ft) would provide a in a non-AVM fleet would require 35.8 vehicles presented by Doering indicates that of the curves vhicles in an AVM system fleet with perfect feet) accuracy can provide the same respon a non-AVM fleet of less accurately known location, indicates that there is little improvement in response time with location accuracies of 450 meters (1500 ft) or about 0.3 km (0.2 mile) beat side dimension in the orlando simulation. AVM . A plot of the increase required in a nontime performance ve equal AVM vehicles response early decreasing value as the AVM accuracy

For the purposes of this study, a 7% increas in efiriciency is assumed for a perfect AVM sys-
em, with the percentage decreasing linearly to beat side length. The average teat is the average y dividing the area by the number of vehicles deployed.
For maximum and minimum deployments, th Ficiency increase assumption yields different alues for the same AVM technique accuracy ases where the minimum deployment is substan size may be increased to the point where an beat technique which yields no efficiency increase with raximum deployment may display a marked mprovement in response. Additionally, the minin additional improvem system accuracy.
The calculation of cars inve easonable reciprocity assumption that fewer with AVM can yield the same performance as that btained now with a given fleet size. The number percentage efficiency value, obtained from the eat dimension and system acuicy the ber of vehicles deployed. Savings of less than one ehicle are allowed by the calculation. As stated are such that, in some cases, the number of cars
3. Estimated 5 -year cost saving. The 5 -year through $1-20$ is an attempt to place a dollar value on the efficiency increase whicandidate AVM sys tems. The calculation assumes that each car saved is worth $\$ 150,000$ annually, which is pri-
marily salaries and overhead (as of 1974). This marily salaries and overhead as an average value for a 1 -man cased on 5 salaries and 100% overhead. The saving for small, medium, and large cities is a straightfor-
ward multiplication of the maximum of the cars ward multiplication of the maximum of the cars saved times the annual value or or the AVM technique. The value

Table 1-17. Small Model City Cost Benefits
from AVM System Usage

Table 1-18. Medium Model City Cost Benefits

obtained is then multiplied by 5 years for the tota saving.

The 5 -year saving is positive only if the value of the car saving exceeds the annual $\mathrm{O}-\mathrm{M}$ cost. The calculation is performed for a given technique
only if a car saving is indicated, and the result is presented regardless of sign. No calculation is performed if no car saving is indicated

A simple summation of savings rather than a present worth of an anuity calculation is justified on the basis that it is less speculative and might
be more nearly inrect if salaries rise at a perbe more nearly onrect if salaries rise at a percan be realized on 5 -year municipal investments The 5 -year saving estimation is presented solely Tor AVM system comparison purposes. Table 1-19. Large Model City Cost Benefits
from AVM Systems Using One RF Channel

Table 1-20. Large Model City Cost Benefits
from AVM Systems Using Two R Channels

COMPUTER PROGRANS FO

The cost estimates for the AVM techniques are in almost all cases precisely that-estimates as f 1974. They have the additional shortcoming that large-scale production is assumed, whi
accounts for the gene rally low system cost mounts. Therefore, additional studies are necssary to refine these estimates in view of the rapidly changing technology and costs.
Although the cost estimation procedure for $\mathrm{A} V \mathrm{VM}$ ystoms in model cities is a valid technique, it oes not take into account the individual differen
oreal cities. That is, the system engineering spect where the vagaries of a particular city an perational methodology are conside red has not and particularly the performance estimation and eentant estimated savings are essentially averag hng processes. Since each city differs in detail, performance, and impact depend on these differnces. final selection of an AVM system wil equire an individual analysis such as those pre art Two

An individualized ana ysis for a particular cit VMires the two following steps: (1) Synthesis of concepts as they would be configured for the physical, political, and cost environment of that city, and (2) evaluation of the effects of each of those systerns. The process of synthesizing aparticular requiring detailed technical knowledge that may, not be readily available in real cities. It can be ment of an AyM system synthesis computer program, as is described later. The expected effects can then be assessed by using the resultan systems in a system simulation computer pro-
gram, which is described in more detail in Section B. Since thesa two programs were planned to be developed in Phase One of this AVM
Systems Study project, they do not yet exist.
A. AVM System Synthesis Computer Program

The synthesis program will be based on design data base developed in Phase Zero of this Study These program components include antenna siting Igorithms for time-of-arrival systems, message ngth equations for equations for various reporting intervals or si post densities, and life-cost equations. A preliminary concept of the basic elements of the AVM system synthesis computer program is shown in
Figure 1-37. A concept of the operations sequence in using the synthesis program is presented in able 1-21. Salient features of the synthesis pro ram are listed in the following subsections

1. City and fleet data for AVM System Synthesis Program. The synthesis program will fie The purpose of tha provided from the input user with an opportunity to review the input before antually running the synthesis program Table $1-22$ lists some of the parameters that will
be included in the data input summary.

Step 1. The user will supply the values of those parameters that describe his particula city. Some of the data may be fairly extenRive, for example, geocoding data or DMME street/block system in detail. For informafion of this type a computer-readable data file will be used. An auxiliary program, separate from the AVM system synthesis program.
be developed to facilitate the interactive. be developed to facilitate the
development of the data file.
Step 2. The synthesis program will read the figurations suited to the city. If any data is missing or incomplete, the program will indicate which systems cannot be evaluated and

Step 3. The program will present basic com parison data for each system configuration option.

Step 4. After selecting the viable configura Step 4. After selecting the viable conf rade-off" or compromise mode in which the the options available within a particular choice of system concept

Table 1-22. City and Fleet Input Data Lor AvM System Synthesis Program

City name: AAAAAAAAAAAAAAAAAAAAAAAA

 rea monitored: XX.X sq. mile XX.XX miles X dimensions: Street length: XXX, X milesNumber of intersections: NNNN Number of intersections: NNNN Number of vehicles instrumented: NNN Average number or whit NN, NN, NN
Number of beats per shift; NN, NN, NN
Shift hours: HH-HH, HH-HH, HH-HH umber of dispatcher consoles: tilization factor by shift: FFF, FFw, FFo
to respond to calls for service). Average call for
$\mathrm{HH}, \mathrm{HH}, \mathrm{HH}$
$\mathrm{HH}, \mathrm{HH}, \mathrm{HH}$. RF channel utilization factor: $\mathrm{P} \%, \mathrm{P} \mathrm{P}^{\%}, \mathrm{P} \%$ RF channel assigned: N Planned: N
LORAN coverage in area? : Y-N; DECCA? $\mathrm{Y}-\mathrm{N}$
M stations in area: K-l, W--, K--, W-
2. AVM Configuration options for AVM Sysby the selection process will be described briefly In narrative form. Each will be tagged with an dentity code for later use. Then for each of the pplicable options, the risoning gross data will
e presented for comparison:
a. Cost estimates. Total system cost,

Figure 1-37. Concept for AVM System Sy. nesis Computer Program
ill be for comparison purposes only. A
breakdown follows:)
One-time costs
\$XX XXX XXX
(development, conversion, facilities)
Installation costs $\quad \$ \mathrm{XXXXXXXX}$
Recurring costs $\quad \$ x X X X X X$ per year (operations, maintenance, training)
Replacement $\quad \$ \mathrm{XXXXXX}$ per year (equivalent annual payment at 10% year)
Upgrading costs
ITisplay consoles
$\$ X X X$ XXX plus $\$ X X$ YXX per year (each) Fixed sites
$\$ X X X X X X$ plus $\$ X X X X X$ Signposts
XXX plus $\$$ XXX per year (each) Vehicle equipment
$\$$ XXXX plus $\$$ XXX per year (each)

[^2]b. Resource utilization estimate Radio channels required; XX.X Microwave or dedicated telephone lines needed: XXX

Computer memo
XXXXXX bytes
c. Performance estimates.

Median location accuracy: XX ft Median location accuracy: XXft
(effective polling rate $=X X$ vehicles second)
Fraction of fleet with error
\qquad _ft: XX\%
less than _ft: XX\%
\qquad ft Xx\%
d. Comments. Design features and other elevant considerations will be noted. Typical comments that might apply to specific systems are as follows:
"Vehicle status is monitored".
"Field unit alarm capability is present" "Polling procedures are inflexible".
"Shared usage by several agencies would be difficult to implement".
UEffect of weather on performance expected to be small".
"Fleet locations easily monitored by public"
"Each 90 vehicles monitored requires an additional radio channel".
"Sensors may require protection from vanda
e. Trade-off potential. This portion of the Uuput will identify significant trade-off possibilrom those trade-offs. The trade-off relationships will be accessible during Step 4 (Table 1-21) he frogram. Typical trade-offs that might be

Location accuracy vs nimber of radio channels (via the polling optior and rate).
Computing at the command center vs computing on-board the vehicles. (This affects
the costs and accuracy vs radio spectrum the costs an
trade-off.)

Display characteristics us cost. (These trade-offs may be indepande
descriptors of the system.)
Locaticn accuracy vs cost (via the spatial
density of signposts, the number of fixed
sites, etc).
f. Cost benefit estimate, A preliminary estimate of efficiency increase with AVM will also be derived from the estimated increase in efficienc and data such as that listed below:

Patrolman average salary
$\$ \mathrm{XX}$, XXX per year
Patrolmen required for each vehicle: N Support personnel for each vehicle: N.N
Replacement cost of vehicle: $\$ \mathrm{X}, \mathrm{XXX}$
Maintenance cost of vehicle:
$\$ \mathrm{X}, \mathrm{XXX}$ per year
Based on the size of the fleet and these parameters, a cost benefit (deficit) first estimate will
be provided such as:

Number of vehicles saved by shift: $\mathrm{X}, \mathrm{X}, \mathrm{X}$
Vehicle cost saving equivalent: $\$ \mathrm{XXX}$, XXX
AVM capital investment equivalent,
$10 \mathrm{yr}: ~ \$ \mathrm{XXX}, \mathrm{XxX}$
$5 \mathrm{yr}:$
The information provided by the AVM system ynthesis program will not in itseif provide suf icient justification for selection but will be a
ery important first step that eliminates obvious non-competitive techniques and allows for more detailed consideration of the viable techniques.
B. AVM System Simulation Computer Program

Much work has already been done by others in
gard to AVM simulation (see Bibliography). regard to AVM simulation (see Bibliography).
The intent of this study effort is to utilize as much The intent of this study ef
of that work as possible.
There is one aspect of the prior work where it in the area of AVM system accuracy estimation. Prior AVM simulation work has investigated the overall command and control function to deter mine the effect of AVM system accuracy on
"wrong dispatches" and the average distance travelled as a result of these "wrong dispatches." A "wrong dispatch" results when the closest
available yehicle is not the one directed to respord to the call for service. This to action results from not knowing precisely the vehicle locations, and thus the entire system performance is degraded owing to unnecessary distance travelled and time consumed in respond-
ing to calls for service.
In these prior simulations of the command control functions, the investigators assigned error of X feet to the AvM system accuracy. I has been assumed that this error distribution is normal and constant with time. The computer simulation programs determine the exact location
of each vehicle from a mobility routine or driver scenario. Then, in order to test the system response to a call for service, each of the exact locations is corrupted in some random fashion
with either X and Y or with an angle and range to the exact location. The apparent location is then used by the dispatching routine in the search for the vehicle closest to the call for service assumes a constant value for the AVM system accuracy which may be misleading for all but those techniques that use very short intervals between vehicle location determinations. Short
interval interrogation of location 3 not a requisit interval of operation in many AVM techniques and is impractical or inappropriate in others.
A more realistic approach to AVM accuracy simulation is to model the actual vehicle location process, including the expected or appropriate polling technique and taking into consideration the motion of the vehicles, and the resultant effect on closest car determination. In this mode of simulation, the vehicle mobility or driver location routine can be altered by a time-varying
location uncertainty, if that is appropriate for the particular AVM system concept. The exact nature of this uncertainty or modification to the exact location may also be a function of sther factors
in addition to time. These factors may be vehicle speed, physical location at time of interrogation, distance travelled since last location, or distance travelled since last signpost proximity update. These factors will be explici
the AVM simulation program

An accurate measure of the reduction in response time requires that a reasonably accua part of the simulation prograrn. Simulations a part sum the absolute values of the differences
to the location of the call for assistance give a correct solution only for idealized rectangular
cities. Geocoded descriptions of the coverage area will allow an accurate measure of distance in each instance, since the optimum trevel routes
can be used in the simulation.

The advantage of using the more accurate AV simulation models is that a more realistic can be determined. In addition, the possible variations in system configuration that affect performance parameters of the entire system can be
investigated with the assurance that the influence of the variation has been considered.
Other technical performance parameters that will be considered in the simulation program
include the data links involved in the vehicle location process and the effects of errors in reception; the effects of entry of new vehicles into the cover age area; and the re-establishment of the position
of "lost" vehicles in relative location techniques. In addition, the actual location algorithm for each echnique can be exercised with the expected input ponents of the AVM system simulation programare shown in Fig. 1-38. As already indicated, the intent is to develop this program around prior work insofar as possible.
Heretofore, simulation has been used almost exclusively in regard to reducing response time The proposed simulation program will allow the investigation of other aspects of vehicle location.
The utility of post data analysis can be evaluated, and the effects of an officer-needs-assistance incident can be assessed, both for the impact on subsequent calls for service and on the respons time improvement to the officer in trouble.

References

1. Stavis, G., General Precision Aerospace Technical News Eulletin, 8:4, 1965.
2. Larson, R.C., Urban Police Patrol
3. Task Force Report: Science and Technology. daw Enforcement and Administration of Justice, Sept.. 1974
4. Doering, T.D., Vehicle Locator Feasibility Conference on Crininal Justice Tallahosse Florida, Mar. 1974.
5. Turin, G.L., et al., "A Statistical Model of No. 1, IFEE Transactions on Vehicular Technology, Feb. 1972.
6. Moody, A.B., Capt, USNR, "The National Plan for Navigation, " Navigation; J. Inst. of
Nav., Vol. 16, No. $1, \frac{\text { Spring } 1969 .}{}$
7. Davis, E.M., Dept. Chief LAPD, "Police Communication and Rentrol," speech presented before the IEEE, Panorama City
Calif., Nov, 16. 1966 .
8. Terman, F.E., Radio Engineering, McGr til Book Co., R,
9. Henney, K., Editor-in-Chief, The Radio Engineering Handbook, Third Ed., McGra
10. Kramar, E., "Hyperbolic Navigation-Histor and Outlook, "Interavia, Vol. XXIV, No. 2, p. 174-177, Feb. 1969
11. DeGroot, L. E., and Larsen, J., "Extended Capability from Existing Navaids, "Interavia,
Vol. XXIV, No. 2, pp $391-405$, Feb, 1969 .
12. Kuebler, W., "Marine Electronic Navigation Systems - A Review," Navigation: J. Inst.
of Nav., Vol. 15, No. 3, pp, 268-273, Fall $\frac{\text { Nav. }}{} 1968$.
13. Stringer, F.S., "Hyperbolic Radio Navigation Systems," Wireless World, Vol. 75, No. 1406,
pp. 353 - 357 , August 1969. (T)
14. Shapiro, I. D., "Time Synchronization from Loran C, " IEEE Spectrum, Vol. 6, No. 8,
pp. $46-55$,
15. Yonezawa, Y., Shinomiya, H., Kobayashi, T, Yonezawa,. " Shinomiya, "Evaluation of Loran C
and Nishitani, Yanal
System by a Manual Receiver - Indicator System by a Manual Receiver - Indicator Accuracy of Time Difference Readings and its Position Lines, " IEEE Spectrum, Vol. 6 , No. 8, pp. 61-70, Augast 1968.
16. "Symposium Paper Assesses Accaracy of Timing from Loran-C Ground-Skyways," $\frac{\text { Communications Designe 's Dig., Vol. } 3 \text {, }}{\text { No. 7, pp. 21-23, July 1969. }}$
17. Burgess, B., "Propagation Effects and Lane Ambiguity Resolution in OMEGA, " Proceed$\frac{\text { ings of the Institution of Electrical Engineers, }}{\text { Vol, 116, No. 8, pp. 1297-1303, August 1969. }}$
18. Dauguet, A., "Certain Universal Systems of Navigation via Satellite, "NASA-TT-F-12092, No, Jan,
19. "NASA Evaluates Omega System for Lo cating Fixed and Moving Platforms, " Communication
Designer's Dig., Vol. 12, No. 11, pp. $34-36$, $\frac{\text { Designer's Dig }}{\text { Nov. } 1968 .}$

Figure 1-38. Concept for AVM Syster: Simulation Computer Program
15. "Closely Watched Buses," Electronics,
Vol. 42, No. 22, p. 204, Oct. $27,1969$.
16. Quinn, C.E., Stevens, J.E., and Trabold, W.G., DAIR - A New Concept in Highway Communications for Added Safety and Driving Convenience, "
Vehicular Technology, VoE Transactions on
VT-16, No. 1 , $\frac{\text { Yehicular }}{\text { Oct. } 1967 .}$
17. Turin, G.L., Clapp, F.D., Johnston, T.I. Model of Urban Multipath Location " V Vol VT-21, No. 1, IEEE Transactions on Vehicular Technology, Feb. 1972.
18. Turin, G.I., Jewell, W.S., and Johnson, T.L., "Simulation of Urban Vehicle-Monitoring Systems, "Vol. VT-21,
No. 1, IEEE Transactions on Vehicular No. 1, IEEE Transactions on Vehicular
19. Staras, H., "The Accuracy of Vehicle Location by Trilateration in a Dense Urban Transactions on Vehicular Technology Nov. 1971 .
20. Ziolkowski, F.P., and Tsao, C.K.H Antennas Buried in a Roadway for Vehicu
lar Traffic Communications, " Vol. VT- 20 , No. 4, IEEE Transactions on Vehicular
21. Myer, J.H., "VEPOL - A Vehicular Plani metric Dead-Reckoning Computer," Vol. VT-20, No. 4, IEEE Transactions on
Vehicular Teehnology Nov. 1971 .
22. Kaplan, G.S., "Analysis of an Electronic Fence Element for a Vehicle Location
System," Vol. VT-20, No. 2 IEEE T System, "Vol, VT-20, No. 2, IEEE Trans-
actions on Vehicular Technology, May 1971.
23. Braun, W.V., and Walker, D. L., "Vehicle Location and Information Systems, " Vol. VT-19, No. 1, IEEE Transactions on
. Knickel, E.R. and Van Horn, A.W.. timproving Police Command and Control with a Patrol Car Emitter-Call Box Sensor IEEE Transactions on Vehicular Technology, May 1970.
25. Shefer, J. and Kaplan, G.S., "An X-Band Vehicle-Location System, "Vol. VT-21,
No. 4, IEEE Transactions on Vehicular Technology, Nov. 1972.
26. Warren, W.T., Whitten, J.R., Anderson, R. E., and Merigo, M.A., "Vehicle Loca-
tion System Experiment, " Vol. VT- 21 , tion System Experiment, "1 Vol. VT-21, No, 3, IEEE Transactions on Vehicular
Technology, Aug. 1972 .
27. Kaplan, G.S. and Schiff, L., "Data Rate Require ments for Relay Links in Vehicular Location
Systems, "Vol, VT-18, No, 2 , tions on Vehicular Technology, Aug 1969
28. Figel, W:G., Shepherd, N H W.F ., "Vehicle Location by a Signal Attenua-tion Method,"Vol. VT-18, No. 3, IEEETrans actions on Vehicular Technology, Aug. 1969.
29. IPL Literature Search 73-018, Sep. 1973.

PART TWO:

AVM DATA FOR USER

 GROUP ADVISORY COMMITTEE CITIESG.R. Hansen

PART TWO. AVM DATA FOR USER GROUP
ADVISORY COMMIT TEE CITIES
Cont Benefits of AVM Systems
A. Rationate for seluction of
A. Rationale for Selection of
B. Parameters Used in
C. Descriptions and Summar Analyses of UGAC Cities
Anaheim, CA, City AVM Cost
Anahenefit Analysis Tables $+\cdots$ Cost
long Beach, CA, City AVM Cost

Vong Beach, CA, City AVM Co
Venefit Analysis Tables
..

V. Monterey Park, CA, City AVM
VI. Cost Fenefit Analysis Tables....
VI. Pasadena, CA, City AVM
III. San Dieno. CA. Gity AVM Mables.... 2-i0

Cost Benufit Analysis Tables 2-1
ViII, Los Andeles, CA, City
AvM Cost Benefit Analysis
A. Los Angeles Central Bureau
B. Los Angis Tables South Bureau
B. Ans Angeles South Bureau
C. Los Angeles West Bureau
D. Analysis Tables.
D. Los Angeles Valley Bureau

Figurfs

Fig. No.		Pag
2-1.	Anaheim, CA, AVM Pulse or Nar row- Band Antenna Locations.	2-4
2-2.	Anaheim, CA, AVM Wide-Band	
2-3.	Long Heach, CA, AVM Pulse or Varrow- Band Antenna Locations	
2-4.	Long Beach, CA, AVM Wide-Band Antenna Locations	
2-5.	Montclair, CA, AVM Pulse or Narrow- Band Antenna Locations.	$2-7$
$2-$	Montclair, CA, AVM Wide-Band Antenna Locations	2-7
2-7.	Monterey Park, CA, AVM Pulse or Narrow-Band Antennas	$2-8$
Table No. Pa		
Anaheim, CA, City AVM		
	Physical Parameters	2-4
2.	Anaheim, CA, AVM Systems Cost Aralyses	2 m
2-3.	Anaheim, CA, AVM Polling Cycle	
2-4.	Min/Max Times Anaheim, CA, AVM Accuracies and Cost Benefits.	$2-5$ $2-5$
2-5.	Long Beach, CA, City AVM Physical Parameters	
2-6.	Long Beach, CA, AVM Systems	
2-7.	Long Beach CA, AVM Polling	
	Cycle Min/Max Times ...	$2-6$
$2-8$.	Long Beach, CA, AVM Accuracies and Cost Benefits	
2-9.	Montclair, CA, City AVM	
2-10.	Physical Parameters.	2-7
	Cost Analyses	$2-7$

Fig, No
2-8. Monterey Park, CA, AVM
2-9 Pade-Band Antenna Locations
Paren, CA, AVA Muls: of
2-10. Pasadena, CA, AVM Wide-Band
2-11. San Diego, CA, AVM Pulse or
12. Narmo, AMM Puse 2-1

2-12. San Diego, CA, AVM Wide-Band
2-13. Los Angeles, CA, AVM Pulse or
2-14. Los Argeles, CA, AYM Wide-Band
Antemna Locations....

TABLES
Table No.
2. Anaheim, CA, AVM Systems
2-3. Anaheim, CA, AVM Polling Cycle
2-4. Anaheim, CA, AVM Accuracies
2-5. Long Beach, CA, City AVM
Physical Parameters $\ldots \ldots$
Long Beach, CA, AVM Systems Long Beach, CA, AVM Polling Long Beach, CA, AVM Accuracies Montclair CA CA City AVM...... Montclair, CA, AVM Syster ost Analyses - 2-7

Table No.
2-11. Montclair, CA, AVM Polling Cycle
2-12. Montclair, CA, AVM Accuracies
-13. Monterey Park CA City AYM
2-14. Monterey : ark, CA, AVM Systems

2-15. Monterey Park, $\mathrm{CA}, \mathrm{AVM}$ Polling
Cycle Min/Max Times 2 -
2-16. Monterey Park, CA, AVM
Accuracies and Cost Benefits $2-0$
2-17. Pasadena, CA, City AVM
2-18. Pasadena, CA, AVM Systems 2-10
2-19. Pasadena, CA, AVM Polling Cycle
-19. Pasadena, CA, AVM Polling Cycle
2-20. Pasadena, CA, AVM Acciracies
2-11

Lable so

2-21, San Diego, CA, City ArM
2-22. San Diego CA, AVM Svstems
2-22. San Diezo, CA, A'M Systems
2-22. San Deigo, CA, A M Polline Cycle

2-24. San Diego, CA, AVMACcuracies
and Cost Benetts wit
2-25. San Dego, GA, AVM Abcuracies

$$
\begin{aligned}
& \text { an Coot Bentits with } \\
& \text { Two Radio Channels. }
\end{aligned}
$$

Page
2-11

Table No.

2-3b. Los Angeles, South Bureau AVM Accuracies and Cot
Benefits with Two Radio
Channels. . South Burean
2-37 Los Angeles, Sour and Co Henefits with Three Radi

2-38. Los Angeles, West Bur
39. Los Angeles, West Bureau AVM

Systems Cost Analyses....
-40. Los Angeles, West Bureau A. $\begin{aligned} & \text { Polling Cycle Time. }\end{aligned}$
-41. Los Angeles, West Bureau AVM Accuracies and Cost Benefits with One Radio Channel. . $\dot{\text { AVM }}$
-42. Los Angeles, and Cost Benefits with Two Radio Channels. .
2-43. Los Angeles, West Bureau AVM Accuracies and Cost Benefits
with Three Radio Channels
2-44. Los Angeles, Valley Bureau AVM
Physical Parameters........
2-45. Los Angeles, Valley Bureau AVM
2-40. Los Angeles, Valley Bureau AVM
-40. Polling Cycle Times.
2-47. Los Angeles, alley Bureau A Accuracies and Cost Benefits
with One Radio Channel....
2-48. Los Angeles, Valley Rureau AVM Accuracies and Cost Benefit
with Two Radio Channels. with Two Radio Channels. . AVM
2-49. Los Angeles, Valley Bureau Accuracies and Cost Benefits with Three Radio Channels

Physimat parmeters
-1. Los Angeles, South Bureaw aim
24. Los Angeles, South Eureau AOM
-35. Los Angeles, South Bureau AVM Accuraries and Cost B nefits
with One Radio Channe:...

- COST BENEFITS OF AVM SYSTEMS

A. Sationale for Selection of UGAC Cities
in order that a more realistic appraisal of the corts and expected performance of ADM
tem, coull be estimated, police department repront itives from several citites were invited to paticipate in a ${ }^{\text {ser }}$ Group Advisory ConmitA set of nine criteria was estabished for selectin. A set of nine critcria was established for selectin
typical southern California cities for the UGAC study. Some criteria are obvious and were estab lisber time and conomic considerations,
while thers were arrived at by heuristic pro-
cess... In this listing, the future tense is used cessume the criteria were established before city selecton began. A brief rationale'is presented
(1) City Size. Cities in three categories, Th Less than 20 sq miles, (b) between 20 anc Wo sq miles, and (c) greater than 100 sq
Miles, will be solicited to determine the at ou urban areas to be covered by M Systems.
(2) Geferaphy Topography. Essentially flat as A as hilly areas in the communities are Whouls as well as the communication thata Hes

Whation Density/Land Use. These cri Breas, industrial centers, and suburban as part of the cities. This criterion will minate those cities formed to be wholly seriontural or industrial areas for tax crposes
(4) Aritg Sizes. The inclusion of high-rise a $0-10$ stories , mixed business and
sident:al, and suburban areas is desirable "natch and extend prior AlM work and to
:Mude the effects of these structure distribitions on the communication links.
क) Popalation. Cities with populations of $2000 \mathrm{methan} 1,000,009$, (b) between $20 \%, 000$ and $1,000,00$, and (c) less than
200,000 will he solicited. These number 20, 000 will he solicited. These numbers are arbitrary and are not firm, but the pop-
ation somewhat determines the size of the minicipal government. It is felt that this cherion is desirable as differing governine ohes will require AVM information to diftent in the user group will probably have bifterent authority within their city governhents as a function of population. It is maved, that those from smaller cities than those from major cities.
(6) Willingness to Cooperate. This is an
difficult to assess beforehand itisessential because the participants will be required to regular in meeting attendance.
(7) Pursiving or Contemplating AVM. This Prerest in the stedy effort
(x) Close to JPL. Economic considerations equire this rriterion since expense momies pants. Additionally, regular frequent meat ings are required and extensive travel time. pating city.
(9) Mast Have Public Safety Department. This is an obrious and perhaps trivial requirament, but is necessary to eliminate those another government agency. These citips would probably fail Criterion (7) as well. This criterion is a natural outgrowth of the
principal thrust of the proposed work whic principal thrust of the proposed work whir
will focus on pubic safety velicle location. None of the foregoing criteria were intendec
o prechude participation by governmental bodics Sh, only Los Angeles and possibly, San Bernarino, lentura and Riversinte counties could have mo, contdered
seven cities were selected which met the majority of the criteria. Small cities were Mc.Itclair and Monterey Park. Medum citie, elected were pasadena, Long Beach, and Los Angeles.

Senior police officers from each of these ities participated in the UGAC and providet as well as statistical data for the individual cities.
B. Parameters Used in AVM Cost Analyses

Each UGAC city had different modes operation and requirements regarding the implepontation of Alepartments operate on a three-shift soms while others use the ten-four plan where the officers work four 10 -hour days in sequence. In esponding to calls for service, some police epartmers dispatch the plain colored (i, e., pastels) n response to citizen calls. The inclusion of moturcycles, either two- or three-wheelers, in the AVM system was planned by some cities, but ufficient commonality of parameters to allow for automation of the AVM cost and performance estimation procedures

1. Number oi vehicles in the fleet. The total nuriber of vehicles to be instrumented is the basis for the car cost estimates. Motorcycles message capability for motorcycles does not yet
xist. Vehicles, which in general do not espon o calle for service were also not hift vas determined and normalized to a threehift operation. This parameter is eter ine hi polling intervals.
2. City area, street mileage, number of interstctions and road segments. This inform MAC cities. The beat area is an important racy estimation, but no standard or common method of deternining this paramoter could be fomad. In some cities, the beats are In thers, th sith the crime reporting technique. In othermied by the average number of vehicles deployed on par ticular shifts. The beat size parameter is in Sndependent variabt int prowld accrue with 1 given time improvement that and For the purposes of thi study, the heat size was placed at the values resulting from dividing the city area thy the num ber of rencles not be wholly justified whet, tor assumption camnot be whomy blocks to 49 square miles in size a they do in San Diego
. Number of sigyposts or fixed sites required. The fixed site entemeration parameter Che the and AV AVM systems was determined tersections or rwad segments. Where the tech icque was dependent on the number of lanes in the segment, the average value of 2.4 lanes per street ce Class III AvM techniques, the placement and/ or the number of widely distributed fixed sites required was determined by an algorithm which Was only a function of the area in the model city GAC cities seemer to dictate a more realistic tpproach. Doundary cotline maps of each city were prepared, and the most optimum placemen and wide-bad antemnas was determined. the minimum number of sites that would be neces fary was thereby determind. The assumptions made were that there were n. difficult RF area hat woild require additional coverage, and that a ixed site colld bu placed where neederaphical restrictions.
3. Costing procedure for AVM Systems in UGAC cities. The costing of the varioys AVM svstem confieurations for the UGAC cinies was
accomplished through the use of the APL computer programining language (see Part Threel. . The costs of whiphts, and poling elements were stored in the table form by technique and cost category (e. \&., equipment, installation, operms the cost maintenancel. This assemblage forms the cos
data nase. The various parameters for each data base. The various parameters for each
UGAC city are alsn stored in a prescribed maner as Eollows:
(1) Uuban area in square miles
(2) East to West extent in miles
(3) North to South extent in miles.
(4) Road mileage
(5) Number of intersections.
(6) Number of road segments.
(7) Number of vehicles in AVM fleet
(8) Number of motorcycles.
(9) Maximum number vehicles deployed in fir shift
(10) Minimum number of vehicles deployed in first shift.
(11) Maximum number of vehicles deployed in second shift.
(12) Minimum number of vehicles deployed in second shitt.
(13) Maximum number of vehicles deployed third shift.
(14) Minimum number of vehicles deployed in third shift.
$15)$ Number of dispatcher consoles
16) Number of small coverage (or nar row bat Class II AVM sites.
Number of wide coverage (wide-band
Clase 111 ArM sites.
The cost estimates as of 1974 are con piled into the cost categories after multiplying py the appropriate parameter. The program is simple, being reall automatic input. The rationale for programming was to avoid a repititious procedur calculating fine cost categories and obtaining three totals for each of 36 At M techniques in the
seven UGAC and three model cities and to simplify future cost estimations.

C. Descriptions and Sommary Analyses of

In Sections If through VIII, outline maps if each UGAC city are pressented along with detaifed 1 :sting of each city physicalparameters, A
cost summaries, vehicle polling cycle times, nind cost summar the AVM system accuracies and 5 -year cost savings. The seven selected cities were Anaheim, Long Beach, Montclair, Mones. Park, Pasadena, San Diego, and AVM classe Thirty-six techniques in the four Anch of the seven cities was treated as an entity, with the exception of Los Angeles which was evaluated for each or our geographical bureaus. Aches deployed in the cities of San Diego and the four Los Angeles bureaus, the system accuracies were determine
for shorter cycle times or polling intervals. Tha ior shorter cycle times or poling (half-duplex) was allowed for these areas

In this Section, the summary analyses for each UGAC city are based solely on a comparison of the estimated 5 -year saving and the estimate
costs (as of 1974) of particular AVM systems.

The 5-year saving is predicted on only one facto mprovement. There are many other aspects AVM systems which should enter into the decision process. Many of hich appear viable have never been developed or tested in typical urban environments. Therefore, only the developed and/or tested concepts will be discussed tabulations are siven in Sects. Iiptions.

1. Anaheim, CA. This city might be charinprovement such that cost savings just equal mprovement such that cost savings just equal
AvM costs, but only for the dead-reckoning techniques in Class I. Anaheim is slightly smaller than the medium model city (see Part One, ect. Im in both area and neet size, and the cost dead-reckoning techniques of about $\$ 280,000$. The 5 -year saving is about $\$ 300,000$ for a magneticcompas odometer system with a system accuracy

The Class II AVM systems which indicate some car saving are the wide-spaced signposts nd burferly 250 meters and 50 to 75 meters respectively. The cost of the Class II wide-spaced fignposts is about twice the saving, while the ouried magnets may cost four times the 5 -yea

The most accurate Class IIf and all Class IV ysterns resulted in car saving, but the cost saving was negative. (See Sect. II.)
niques Long Beach, CA. The same AVM techbecause the city is slightly larger in area with a about $\$ 50,000$ more for the Class i deadreckoning techniques. The 5 -year savings are wer, about $\$ 16,000$, because the maximum There is a large difference between Anaheim
and Long Beach in the Class If AVM systems as Long Beach has almost four times the road mile-
age and almost twice the number of intersections Long Beach is unique in having a large number of named dedicated alleys in the central area which per square mile). This factor causes the Class in and Class IV techniques to have a greater numbe of installations than are really required. Widespaced signposts and buried magnets indicate car savings, hat the 5 -year figure is well below the
systems cost. If the high central density were reduced to a more reasonable value, the disparity between cost and saving would lessen to the point
where the saving would be half the cost.

The pulse TOA Class III technique and all the Class IV systems indicated car savings, but
cost savings were regative. (See Sect. III.)
3. Montclair, CA. In this city, the deadreckoning techniques of Class I AVM and most o the techniques in the other classes indicate car very high. This is a direct result of a very shor polling cycle time. The 5 -year savings for all exceed a that indicate a saving are negative and
in the order of 5% of the deployed vehicles (4 to 7) that is, 0.2 to 0.4 cars.

Despite the fact that Montclair has a widespaced signpost AVM system installed and opera-
tional for over a year, this analysis indicates that the cost is substantially greater than the saving. The reason this analysis is faulty in this case is hat Montclair does not have either a computer in $(0-M)$ personnel indicated as required for al systems.

The system accuracy indicated for the widespaced Class II signposts is about 250 meters,
which is quite close to that achieved in Montclair. The installed system has an accuracy of 0.2 kn system costs are cuite similar for the tecine the $\mathrm{O}-\mathrm{M}$ category is omitted ($\$ 60 \mathrm{~K}$ versus $\$ 71 \mathrm{~K}$). (See Sect. IV.)
indicated Morterey Park, CA. Car savings ar Again as in the other small city, or small model, the cost saving is near zero or negative. This city, because of the great difference between
maximum and minimum deployment and short polling cycle shows a greater car saving when fewer vehicles are deployed. If the $O-M$ costs were greatly reduced, the 5 -year saving would
5. Pasadena, CA. This city is roughly
way between the small and medium mode half-way between the small and medium models with negative 5 -year cost savings. Again, the short polling cycle causes little degradation of achievable accuracy. The $O-M$ costs are the saving, and the value for cars saved is less than a whole car. (See Sect. VI.)
6. San Diego, CA . In this city, virtually saving. The Class I dead-reckoning techniques system costs are exceeded by the estimated savings, and the Class III costs are close to the tem accuracies caused by relatively long polling cycles. There is a substantial car savings becaus the averaging of beat areas leads to results in which apparent response time improvements with
very inaccurate techniques occur. More than half the area of San Diego is covered by five northern beats which causes the average beat to be 40% larger in side dimension than the average beat invoived were not considered. The reduction in beat dimension would cause a decrease in apparen response time improvement.

In an attempt to reduce cycle time effects, the system accuracy and cost savings calculation were also performed for three RF channels for
AVM. The cost savings under these conditions for Class I systems were doubled. The saving for Class II were uniformly increased by about $\$ 1.8$ million to the point where the cost of the buried magnet system was equalled, as were the costs of the Class Set. VII.)
cost saving. (See Sect.
7. Los Angeles, CA. Los Angeles was

Central，South，West，Valley），which range in Again as in the medium model city，all bureaus show a 5 －year saving for most of the AVM techniques．All bureaus operate about the same number of cars，so the effect of beat size on the the larger bureaus．In overall cost savings the Valley bureau shows the greatest saving，followed in order by the West，Central，and South Bureaus

The AVM system accuracy and 5－yea． saving calculations were performed for 2 and 3
RF channels for the AVM systems for each of the bureaus．As expected，the accuracy improved to channel case．The 5－year saving with 3 chan showed an increase when changing from 2 to 3 RF channels that was almost twice that obtained in
changing from 1 to 2 RF channels．The increase changing from to 2 RF channels．The increas thereby reducing the effect of the constant 0 expenses．（See Sect．VIII．）

II．Anaheim，CA，City AVM Cost
Table 2－1．Anaheim，CA，City AVM Physical Parameters

atil fohid illenge is rye mles．

bl fothmite munef of fori segints is tegh Hert dre thes ill the fleet

HIA PheFE AFE Q MOTGFCHLES．

1．I MLFT hat： 14
EOT HIFT MIH． 14
faitio shaft min：－ 12

tilfol shift hill． 19
fin hunief of hisfatchefs is

igure 2－1．Anaheim，CA．AVM Pulse o Narrow－Band Anten：．．．Locations

Figure 2－2．Anaheim，CA，AVM Wide－Band Antenna Locations

Table 2－2．Anaheim，CA，AVM Systems Cost Analyses

Mitatas								
Wilerybe								
	\％		$\frac{3}{3}$	霜	17	臓	$\frac{198}{181}$	发
			零	\＄5s	cicl	\％${ }^{4}$		

Table 2－3．Anaheim，CA，AVM Polling Cycle

CLASS I TECFHTME RETOARD			sume	cond	ル	кедиирант	
strus inp	4.93	1	\％${ }^{\text {¢ }}$	¢ 4	H	，	
	3.94 3.98			－	速	\％	
utpexutic we	3.48	1：	）		T，	1：35	
capass wemeries	S．	E，as		\％ 413	שax	T：	
Cupess wiek ici	3，94	20	\％is	5．tis	Test	，	¢t
	2.34	既．	\％	1	\％	Lis	
Hitcum	\cdots	， 4	\％	4	1．5	4	
Uspan	4.5	\％ 3	䢒	4	15	\％	
${ }^{\text {ctica }}$	4．3：	20	\％ 3	4	4	1	\％
Athinem	\％	1.45	E．13	4：\％	1，	\％	
دifr．mitui		1	\％	\％	ta	\cdots	
3iff．	\cdots	＋1	\％	4.5	1	1	
\％ffr． mot	\cdots	d	\％	\％	1.8	＋1	
fithei meat	3.60	$\xrightarrow{\text { Hind }}$	${ }^{10}$		\％itic	\％．75	
	Sto	，	\cdots	S．	24，	，	＋1：
						＊	
serteitras cins	\％ 4	\％	\％	\％	fit	d	＊
netheertus fums	2．94	\％	\％	4	tes	Hith	
\％mo	3.4	\％	\％	8		16	？
	\％．it	\％	\％	\％	1．45	19	\％
${ }^{4}$ fost	3.4	\％is	¢0：	＋14	，1／if	W	
Ster	$\cdots 4$	（1）	4	\％		\％	
atreame ers		\％id	\％	＋1．	\％	\％	
Triffle itw	3	（1）	12	4	\％	H	
		1－3	\％	＋	\％	f：	

Table 2－4．Anaheim，CA，AVM Accuracie and Cost Benefits

III．Long Beach，CA，City AVM Cost
Tzble 2 Benefit Analysis Table
Physical Parameters City AVM
Tren is gae dolife mies．
Gitat Hest meTtitice is 10 miles WHTH EOHTH ITETAHEE IS A．E HILES．

 THEFE AFE E1 chas IH the fleet．
ath thefe hfe gi ntofticles．
the humef of hehigles gi efilh shift is
fipst mift met：－de
$\because I F S T$ HIPT MIH． $1 E$
Coble biff has： 15
EGOLD HIFT MH． $1:$
thipe mift Mat：is
thifi ghift miti． 16
tite minzef of tefatchefs ise

Figure 2-5. Montclair, CA, AVM Pulse of Narrow-Band Antenna Lecations

\qquad
Figure 2~5. Montclair, CA, AVM Wide-Band Antenna Locations

Table 2-9. Montclair, CA, City AVM

 Physical Parametersifer is $5 . a$ soluffe miles. East mest methice is e. 3 miles.
Hofth south intanice is 2.5 miles
total porid mlefge is bi miles.
THE HIMIEEP OF Intepsections is 333 ,
the estimfted humeer of forid segments is sag
thefe mpe ig caps in the fleet.
atit thepe fre a motopcicles.
the humeef of vehicles ghe ehich shift is
FIFSt Shift Mis:. S
fifist shift min
EECOH SHIFT MER: 5
serohe shift min. 4
THIFD SHIFT MF: : :
Thifi zhift nim.
THE IUUIEEF of Dispatchefs is 1
HE GITY HuLD FEDIFE 3 IIDE+EAMD

Table 2-10. Montclair, CA, AV
Systems Cost Analyses

$\begin{aligned} & \text { CLASS I } \\ & \text { TEGITICUE } \\ & \text { MEBOWD } \end{aligned}$		\％mucter		\％ent		
Stava hep	${ }^{2} 12$			des	dep	dita
mast	1.49	：		dish	cos	－${ }_{\text {dem }}$
（ prisalic ullo	1.97	8．7．4	0.25	－	\％：33	8：8
cxpass onotrice	1.93	茄	\％	1．E6		bis
ISEPVEL	1.19	0	0．0．20	1：56	Smb	8：5
aimstu－swic oth	1.68	\％	0	1：50	0.45	5：5
${ }^{125}$	1.15	1.3	0	䢒	0，59	－
IvPent	12.	，		\％is	\％ 5	－
thastritioks	1．6	\％	Sas	\％	\％．	\％：
miff．witcas	1.15	）	郎	1．5		\％
jiff．Lowert	1.4	3，	\％	1．7	t．es	\％
urfe felusfor	F	\％as	\％．$\cdot 14$	㖪	\％ 4	\％， 6
vethe mitua	．en	\％ 6	\％ay	－1．4．4		140.8
	4.33	㫛	1，4	3	S	
	1.46	0.4			\％	4 \％
	1．06	\％	\％	\％	\％	\％
－－Eatic $\mathrm{FO}_{2} \mathrm{t}$	1， 1,0	\％	\％	\％	\％	\％
Hf Mut pogit	10\％	4	\％	1．t．f	304	\％
Lf mit	1，\％	\％	\cdots	\％	\％	\％
wewt t ，	（．，	＋	\％	1．45		
	1．＊	＋	\％	4	\square	300
mithersang met	1.10	＋	\％	i，		
uff	L．010		no．	6\％	\ldots	\％

Table 2－12．Montclair，CA，AVM Accuracies Montclair，CA，A

$\frac{\text { V．Monterey Park，CA，City Cost Benefit }}{\text { Analysis Tables }}$
 Table 2－13．Monterey Park，CA，City AVM

HFEA IS 7.3 STIUAFE MILES
EASt hest arstaice is 4．e illles
morth solith distaice is a miles
total pori hilefige is 1 b1 Miles
THE Hultider of Intersectionts is seg．
the estimited minger of poad sebients is ece
there fre 15 cifs In the fleet．
Gid thepe rape a motarchiles．
HE thumef af vehicles oll EACH SHIFT IS
IFET SHIFT MAS： 14
－IFST SHIFT HIN． 4
：ECOMIS GHIFT MEM： 14
ECOHIE SHIFT MH．
THIPI SHIFT HAB： 14
HIFD SHIFT Mil．
the funger of oispatcheps is
 PULSE RHTENHA SITES AHID 5 Miffolu Emio

Figure 2－7．Monterey Park，CA，AVM Pulse
or Narrow－Band Antemas． Polling Cycle Min／Max Times

Figure 2－8．Monterey Park，CA，AVM
Wide－Band Antenna Locations

1e 2－14．Monterey Park，CA，AVM Systems Cost Analyses

	3te	${ }^{\text {Hfut }}$	${ }^{\text {faps }}$	a^{\prime}	tert
1．6	，	－	\％	1	\％
1.64	1	Hist	\％	\％	\％
1．te	Li：s	1．t6	d．	\％	，
leat	\％	\％	\％	迷	d
．en	1	1，	\％	）	，
1.4 ＋	1．5］	1，	Sim	，	\％
$1.6+$	1	1，	3ir	\％	，
：－	\％．．．	1.4	1	\％	\％
1.56	129	\％ 56	\cdots	5．	\％
（1）0	\％	\％	5．tat	\％	\％
（1．0）	\％．．．	\％	\％	4	t
1.92	\％ife	）	3if	dit	\％
1．06	，	$1{ }^{1}$	\％		，
1．50	cititas	1＋141	${ }^{148.08}$	\％ay	4t
c． 56	\％	in	ate	\％	imer
1．60	1	1.5	\％ct	15	\％
${ }^{1 . t a s}$	2，	1.4	\％	1．54	1.4
1.6	\％	为	W	1．5	）
1.5	1．43	\％ist	\％	5，	\％
i．tou	10\％	1：t	，	，	Het
1．00	dita	Tim	\％	迷	\％
1.68	1，4	\％	4	\％	4
1.60	1．49	\％	\％	4	4
1.00	1.4				

Table 2－16．Monterey Park，CA，AYM Accuracies and Cost Benefits

$\frac{\text { VI．Pasaderia，CA，City AVM Cost Benefit }}{\text { Analysis Tables }}$ Table 2－17．Pasadena，CA，City AVM Physical Parameters

 AbEA 15 as andife mles． forth solth jetalie is s miles． wital fond hlehee is to mles．
 The estinited hulief of pohd segilits is seco： theFe fre ys thr：im The fleet
atio thefe mfe o natofctrles
the lunter of nehicles on Efich shift is：
fIFst EHIFT Hist． 16
RIF：T ：HIFT MH： 10

ECOME SHIFT Mil． 16
thes shift mat，10
THFT EHIFT MIH． 10
fat minzer of gispatchers is

Table 2－18．Pasadena，CA，AVM Systems

CA AVM Pulse o Figure 2－9．Pasadena，CA，AVM Pulse
Narrow－Band Antenna Locations

Figure 2－10．Pasadena CA AVM Wide－Band Pasadena，CA，A

Table 2－19．Pasadena，CA，AVM Polling Cycle Min／Max Times

Sticimine		nc．	uric	same			
revemer	3.6	10，	H	\％	1．4．	枸	
$z+$ cicaleanieres	2.63	1：12	der	\％	H	\％	
L AESR velicilitp	3，0\％	1：11	H	1.	，	\％	
utrasanic elo	43	Ha	，	\％	\％	－	
cxipsis opontiter	3,63	\％	，	${ }^{15}$	Ha	\％	
	3．33	\％	\％	1	H：	\％	
ctas		（10ay	4	1	H	\％	
uetcia	4.	1：	\％	－	128	－	
＊	＋．45	1，${ }^{1}$	\％	\％		4	
sccte	\cdots	18	\％	\％	\％a	4	
qutsfatious	3.78	1：0，	1：12	4t	\％	＊	
aiff．Oitca	4	1\％	＋		\％		
3fF．	4．25	$1 \cdot 1$	1.6	\％	1．4\％	d	
en－51	4.11	1	\％	\％	1%	\cdots	
ar ortea	5	${ }^{\text {易，} 2000}$	fitiof	10ew	201．		St
Lorant	15.15	${ }^{4}+3$		\cdots	\％		
	8.43			\％	1	\because	
ctrac siom	3.0	\％	，	\％	（1t	\cdots	
Ectinc	\cdots	12，	\％	\％	d	4	
\cdots－Brat post		108	：11	W	\％		
	7	＋	， 1		\％	\％	
aratip fost	\cdots	＋	（11	\％	\％	\％	
\％ure nexers	\cdots	，	，	\％	\％	．	
mat for	\therefore	＋	俍	1	\％	\％	
Whime emar	\cdots	\％	\％i1	W	H：		

Table 2－20．Pasadena，CA．AVM Accuracies and Cost Benefits

Table 2－21．San Diego，CA，City AVM

hat hest motane to eng MiLe
hofth outh misthce is 41．ẽ mles

－awe ar mitesectrats is 1 mas
 thepe hfe got cifs ill the fleet
and thepe mee sa mitherales．
The ruhteef of IEhicles ou Efich shift is
FIFsT EHIFT Mitis．EE
tiEt Ehift Min．be
ECOHI SHIFT Hí：s
coloud shift ilim．as
THIFI ZHIFT MFR：Bit
THFil HLFT HIH． Ea
the citi moula feguife as mide－mahd up
 semm antenth sites mith \rightarrow ato 3 mle conerage kanit．

Table 2-22. San Diego, CA, AVM
Systems Cost Analyses

Table 2-24. San Diego, CA, AVM Benefits with One Radio Channel

$$
\begin{aligned}
& \text { O. } \\
& \text { - Cherer }
\end{aligned}
$$

Table 2-23. San Diego, CA, AVM Polling Cycle Min/Max Times

Table 2-25. San Diego, CA, AVM Accuracies and Cost Benefits with
\qquad wry

Table 2-26. Los Angeles, CA, Centra Bureau AVM Physical Parameters
Weit 1 , ors sulife nle
tict ISTAME I\% a HLE:

4 mater ar miterections is acou

ih minef of :ehicles an efin hift
H.t mitathem
$18+$ Hat CH .

int mirt her. ind

anmer ar mefatcres

1able 2-27. Los Angles, CA, Central
Bureat AVM Systems Cost Analyses

Table 2-28. Los Angeles, CA, Central

Table $2-30$. Los Angeles, CA, Central
Bureau AVM Accuracies and Cost Benefits with Two Radio Channels

Table 2-31. Lns Angeles, CA, Central Bureau AVM Accuracies and Cost Benefits
with Three Radio Channels

Fugre 2-13. Los Angeles, CA, AVM Pulse or

Figure 2-14. Los Angeles, CA, AVM

Table 2－ 32 ．Los Angeles，South Bureau
 AVM Physical Parameters

Table 2．34．Los Angeles，South Bureau
AVM Polling Cycle Times

East uest bistalice is a hiles
HFFTH SOUTH DISTAKEE IS E3 HLES．
Tathil pofd hileage is gre hles．
THE HMIEEF OF HTEFSECTIOHS 15 B
THE ESTMATED HMIEEF DF ROAD SEGMEITS IS 12150 ：
Thefe gre les chfs in the flegt．
ina thepe are a motorctage
The rumeef of mehicles on each shift is
TJF：T BHIFT MET．ES
FIFET CHIFT MM． 53
Traid shift mes： 94
Thatemift Mil． 84
THIFS GHIFT ME：．That
Thise chift Hith \＆
THe HREEF of DISFATCHEFS IS
THE citi what remife 5 Hiveterta dif

Ay 2－36．Los Angeles，South Burea VM Accuracies and Cost Benefits

Ex															
	Fs，														
							cill								
\％umititers															
UFF：															
			\％	瑯	S	i：	\％								
				近		过									
Werst															
	cit	5	4			8	－								

Table 2－38，Los Angeles，West Burea AVM Physical Parameters

het ifet itstance is 19 miles
Mifth siuth instatice is 1e miles．

 refe hfe 183 gife in the fleet． Hta Thefe haf a motarcicles．

IFST GHIFT ME：．SA
POET EHFTHM． 2
arda Bhift has． 10 s
Edond zhift min．ay
thime shift hias． 110
HFJ EHIFT Min．

Table 2-40. Los Angeles, West Bureau
AVM Polling Cycle Times
Table ${ }^{2-42 \text {. Los Angeles, West Bureau }}$ with Two Radio Channels

AT: hemens	Rtititict	\%	$\mathfrak{m b l}$	tit	\ldots	
STams mot	\%s	+	$1 \times$	¢	\cdots	Pr
- -matemer	0	\cdots	\cdots	4		\%1.
 ${ }^{\text {\% }}$	\ldots	\%	\bigcirc	\%	5
atoremen	A.	\cdots	ctis	r	es
	Ls....	\cdots	\%	\cdots	\bigcirc	1.
Ms, wimem	(1..0)	\%-	1.	-	5	\%
M, min	.4.a	1	1	4	6	mim
m,	¢..	\%	\cdots		\cdots	0
"m"	\checkmark	4.4	\%	\%	\%	1
such	\cdots	-1.4	1	\cdots	\%	\%
Ster atiow	\cdots	,	'..'	B	\%	\%
4\%\%	:-.,	:	. 1.	\cdots	\%
Wre	…	ค.:	\cdots	\cdots	\because	,
Crimi min	4.	4 C	15	S	4
Matw mat		\%...	A.	a.	\%	W\%
	\cdots	\%	\cdots	4	\cdots	\%
matrime	':	\cdots	\cdots	S	\cdots	\%
(entam 4	-	\%	\square	\cdots	\cdots	\%
-	\cdots	\ldots	\%		\bigcirc	
\% \cdot. \cdot	\cdots	\square	4	\cdots	\cdots	
2tan mem	…"	\cdots	1.	3		¢
	\cdots	\%	\cdots	¢	\cdots	
(ants) en :	…:	\cdots	.			\square

Table 2-44. Los Angeles, Valley Bureau
A IE elB. 3 SNAFE MLES
CHT HEST HETAHEE IS EO MLES.

othl forid milemige is aee hiles.

thi esthited mulieer of fond segmente is suan:
HEFL GFE 189 CAPS IH THE FLEET
?HO THEFE AFE O HDTOPCHLES

Ehal shift hims. 169

MF゙ EHIFT MFS. $1 E 1$

WI Minef of IIsfatchers is

Table 2-45. Los Angeles, Valley Bureau AVM Systems Cost Analyses

Fere	
	thentexareme

Table 2-46. Los Angeles, Valley Bureau AVM Polling Cycle Time

Table <-41. Lus Angeles, West Bureau with One Radio Channel

able 2-48. Los Angeles, Valley Bureau with Two Radio Channels with Two Radio Channels

PART THREE:
ANALYTICAL TECHNIQUES FOR ESTIMATING AVM SYSTEM ACCURACY
J.E. Fielding
M. Perlman

CONTENTS

PART THREE, ANALYTICAL TECHIOUES FOR DSTIMATING
and
I. VEHICLE LOCATION ACCURACY FOR CLASS I
A. Parameters for AVM System Accuracy Analysis 3-1
B. Derlvation of Accuracy Analysis Algorithm 3-2
C. Results of AVM System Accuracy Analysis 3-3
II. MARKOV CHAIN MODEL OF VEHICLE LOCATION BY SYSTEMS PROXIMIT SENSORS
A. Classifications of Finite Markov Chains.
C. Model Absting Markor Chan
. Model of Absorbing Markov Chain for Class II

FIGURES

Abstract

Fig. No. Page

3-1 Main AVM Accuracy Analysis Program 3-1
3-2 Compulative Distribution Function. 3 .

En 3
3-5 Urban Distribution Pattern for Monitored \quad.
3-6 Submatrix Q of Absorbing Chain Model for $\quad . . .$. $3-11$
3-7 Submatrix R of Absorbing Chain Model for
3-8 Monitored Subarea with Sensor Density of 3/9. $3-12$
3-9 Submatrix Q of Absor bing Chain Model for \quad Monitored Subarea in Fig. 3-8
3-10 Submatrix R of Absorbing Chain Model for 3-
3-11 Fundamental Matrix N Corresponding to Fig. 3-8 \quad 3-13

Table No. \quad Page		
3-1	Vehicle Location Accuracy at 80% Level for SIGMA $=0$ Meters	3-4
$3-2$	Vehicle Location Accuracy at 80% Level for SIGMA $=100$ Meters	3-4
3-3	Vehicle Location Accuracy at 80% Level for SIGMA $=1000$ Meters	3-5

$3-1 \quad \begin{aligned} & \text { Vehicie Location Accuracy at } 80 \% \text { Level } \\ & \text { for SIGMA }=0 \text { Meters } . ~\end{aligned}$
3-2 Vehicle Location A"ccuracy at 80% Level
3-3 Vehicle Location Accuracy at 80% Leve for SIGMA $=1000$ Meters.

Fig. 3-3. Error in Knowledge of
There is a discrete probability FO, associated with zero speed. Between speeds zero 0 and maximum M , the speed is distributed exponentially. The stopped, FO, plus the fraction whose speed falls stopped, FO, plus the fraction whose speed falls

The last of the AYM system parameters is time. After the location of the vehicle is determined,
there is a delay before the information becomes available. This delay is referred to as computation time. ${ }^{\mathrm{T}} \mathrm{C}$. Thus, if the symbol T denotes the
polling interval, the probability density functio g(t) is a uniform distribution over the time interval rcthrough $\mathrm{T}_{\mathrm{C}}+\mathrm{T}$.
B. Derivation of Accuracy Analysis Algorithm Probability distribution functions have been defined for ϵ_{0}, θ, s, and t, and from Fig 3 . 3 the location, ϵ, is:

$$
\epsilon \sqrt{\epsilon_{0}^{2}+s^{2} t^{2}-2 \epsilon_{0} s t \cos \theta}
$$

The distribution of errors is given by:

$$
\operatorname{cdfy}=\operatorname{Prob}(\epsilon \leq y)=\iiint \int_{R} \Phi\left(\epsilon_{o}\right) g(t) \cdot
$$

$$
f(s) p(\theta) d \theta d s d t d \epsilon_{0}
$$

where R is the region such that $\epsilon \leq y$. Due to the complexity of R, it is not practical to evaluate this integral analytically or by numerical quadrature.
Therefore a Monte Carlo integration of cdfy is used.

The Monie Carlo integration generates values or the four random variables, ϵ, s, t, θ and uses these variables to calculate ϵ by the above formula. By checking whether $\varepsilon \leq$ yi for
$i=1, \ldots, 20$, when the yi's are a pre-specified array of points on the abscissa, it is possible, if eriough trials are run, to determine an ancurate estimate

The methodology used to generate the random niform varione on 10 11: $r_{1}, r_{2} \quad r_{3}, r_{4}$. In verting the cumulative density functions leads to the expressions needed to calculate the desired the expres
variables:
$\epsilon_{0}=\sigma \sqrt{-2 \ln r_{1}}$
$t=T_{C}+r_{2} T$

$$
\begin{aligned}
& s=\left\{\begin{array}{ll}
0 & 0 \leq r_{3} \leq F O \\
\frac{\ln \left(1-r_{3}\right)}{-\lambda} & F O<r_{3} \leq 1 \\
\theta=u\left(2 r_{4}-1\right) &
\end{array},\right.
\end{aligned}
$$

Of prime concern in the Monte Carlo integration is the number of trials needed to ensure an acceptdenotes the real value of cafy for a particulary y_{i} then the process becomes a long sequence of success (i.e., that $\epsilon \leq \mathrm{p}_{i}$). Since the number of sucess
trials will be "large", the Bernoulli distribution
can be well approximated by the Gaussian distribution with mean, $\mu=P$
Standard deviation,

$$
\sigma=\sqrt{n p(1-p)} / n
$$

where $n=$ number of trials, and p_{i} has been re laced by p for simplicity.

Since the distribution of the number of trials for which e exceeds any particular value of y is ability (of the event that the absolute error in the distribution function, cdfy, is less than some specified maximum value, E) to be at least G, the o-called "confidence level. That is a fraction
Cof the distribution must be contained within the interval $\mathrm{p}-\mathrm{k} \mathrm{\sigma}$ thru $\mathrm{p}+\mathrm{k} \mathrm{\sigma}(\mathrm{Fig}, 3-4)$. Thus, a
value of C determines a value for k . In addition,
ensure an acceptable absolute error, F it is requit

$\mathrm{k} \sigma \leq \mathrm{E}$.

Substituting the expression for the standard devia tion d into this last equation gives
$\mathrm{k} \sqrt{\mathrm{np}(1-\mathrm{p})} / \mathrm{n} \leq \mathrm{E}$
which may be rewritten

$$
n \geq k^{2} p(1-p) / k^{2}
$$

This value for in represents the minimum number of trials needed to ensure an absolute error of mplies that a larger fraction of the gaussian dis implies hat a larger fraction of the gaussian di $\pm \mathrm{k}$, thus leading to a higher confidence C. How rials in order to satisfy the error criteria.

The accuracy algorithm specifies the maximum interval C The program proceeds to run 1000 rials, and p_{i} is then estimated as
(number of times $\left.\& y_{i}\right) / 1000$ for $i=1, \ldots, 20$.
these approximate values of p_{i} are used to calcutate the required number of trials, n, needed to
asure (with confidence C) that none. of the error frms will be greater than the maximum allowabl rror E. If in found to be less than 1000 , no more runs are required and the calculation of $\left(y_{i}\right.$
cify) is complete. However, if n is greater than dfy is complete, However, if n is greater than
1000 , additional trials are needed.

In order to prevent an excessive number of runs introns of computer time, a constant NMAX is
introduced which serves as the maximum allowable number of trials. Thus, if it is determined that nore than 1000 runs are needed, the algorithm wil ufficiently small or until the maximurn allowable number of trials is reached, whichever comes first in the case where the number of trials reaches Mim, he resulting crrors using the improved execution of the program, the number of trials is almost always extended to NMAX with resulting

The accuracy program is interactive, the user heing free to set the system parameters of varianc in inherent error, polling interval, computation mum' ${ }^{4}$ vehicle speed. The program then computes the mean of the exponential speed distribution such that 99% of the probability is included between,
speeds 0 and maximum speed M. The program speeds 0 and maximum speed M. The program is
specifies the 20 values to be used along the absciss of the cumulative distribution function of AVM system errors. These values are determined as a
nction of the variance of the inherent error as can assume that the variance of system errors is
somewhat correlated with this parameter. The in tent is to cover the full range from 0.0 to 1.0 of the against failure of full coverages, the programallows the user to calculate the cumulative distribution fanction for 20 additional values of y where the user specifies the initial point and the interval between peated as many times as the user desires. After the cumulative distribution funetion is computed, the user may reset the system pasameters, and the tion function is repeated.
C. Results of AVM System Accuracy Analysis

The algorithm described in the previous section as cxercised by running 42 cases, each one with SIGMA $=$ Standard deviation of inherent error in x and y directions
1 = Polling interval
C Consutation time
FO Maximum speed
Originally, all combinations of the following paran: ter values were to be run

$\frac{$| SIGMA |
| :---: |
| (meters) |}{0}$\frac{$| T |
| :---: |
| (seconds) |}{2}$\frac{$| TC |
| :---: |
| (seconds) |}{0.01}$\frac{$| M |
| :---: |
| (meters/sec) |}{40}$\frac{\mathrm{YO}}{0}$

$100 \quad 10 \quad 0.1 \quad 60$

1000
60
120
300
which would have required 60 cases. However, after the first 14 runs, it becarae cvident that thi AVM system error was stable ar computation

A value for the standard deviation of the inherent rror of zero serves as a bcundary condition for nherent accuracy of AVM hardware systems. eromates of system error using STGMA equal to invests in extremely accurate hardware systems in erms of pinpointing location, assuming there is no motion. At first glance, a maximum speed of little high; however, the speed of the vehicles of the Heet is assumed to be distributed exponentially. near maximum speeds: one-half of the fleet is travg ling at a speed of less than (maximum speed/6) or 22.3 miles $/ \mathrm{hr}$. The fraction of cars stopped is set 0 because the algorithm is designed to specifically test system accuracy assuming moving vehi-
cles. Later, if individual users need results that reflect their mode of operation, they can supply non-zero value for this parameter they can supply
of crunges in the above variables on AVM system curacy follows.

No modeling effort is necessary to determine rate given the direction of change of any input rate given the direction of change of any input
variable. As the variance in the inherent erro he polling interval, the computation time, and the naximurn speed increase, system accuracy deterio
rates. Howeyer, the designer requires a more rates. Howcyer, the designer requires a more
detailed knowledge of the interaction between the system parameters and AVM system accuracy. He
is faced with an accuracy constraint such as 80% is faced with an accuracy constraint such as 80_{0}°
of the vehicles must be located to within 150 meters. of the vehicles must be located to within 150 meter
In order to satisfy this constraint, he must be in order to satisfy this constraint, he must be that can meet his requirements. The above analyprovide is informidetion for the designers' next step, which is to determine the proper balance with
ruspect to inherent accuracy, polling interval respect to inherent accuracy, polling interval, well as satisfy accuracy constraints.
The best accuracy results are obtained when polling in sterval equal to to 2 seconds, 80% of the fleet is located to within 20 meters and this is not
strongly dependent on maximum speed or computato 10 seconds, 80% of the fleet is located to within 65 meters at maximum speed of 40 meters/second and to within 105 meters at 60 meters/second. Thus, as polling intcrval increases, accuracy Again, the accuracy is not dependent on computaion time. Table 3 -1 presents similar results fo the remaind r of the cases with SIGMA equal to polling interval increases, the $80^{\prime \prime}$ distance grows

$$
\begin{aligned}
\text { Table } 3 \text { 3, Vhicle Iocation Accuracy } \\
80 \\
\text { Level for SIGMA }
\end{aligned}
$$

T (sec)	TC ((eec)	M (meters/sec)	Accuracy (meters)
2	.01	40	15
2	.01	60	20
2	.1	40	15
2	.1	60	22
10	.01	40	65
10	01	60	105
10	1	40	70
10	1	60	105
60	.01	40	420
60	01	60	620
60	1	40	420
60	1	60	620
120	01	40	820
120	01	60	1350
300	01	40	2100
300	.01	60	3080

Table 3-2, Vehicle Location Accuracy a

$T(\mathrm{sec})$	$\mathrm{TC}(\mathrm{sec})$	M (metcrs/sec)	Accuracy (meters)
2	.01	40	180
2	.01	60	183
2	.1	40	180
2	.1	60	183
10	.01	40	195
10	.01	60	212
60	.01	40	448
60	.01	60	650
120	.0	40	850
120	.01	60	1250
300	.01	40	2100
300	.01	60	3160

the dependence on maximum speed increases, and accuracy is not dependent on computation time.
Table 3-2 presents similar data for the case IGMA equals 100 meters. With a polling interva
of 2 seconds. 800_{0} of the vehicles in the fleet are located to within 180 meters. The trends evident n the SIGMA equal zero cases can also be seen is Table 3-2. One major difference is that, in this increases from to 10 seconds is rather insignificant. Thus, if the system hardware has a stand ard deviation for inherent accuracy in the x an gained by specifying a polling interval showter the.t 10 seconds. In comparing the results of Table $3-1$ it is apparent that the accuracy o than a SIGMA $=100$ meters system when the pollin interval is greater than 60 seconds. Thus, if a error is installed, it requires a short polling inter val to realize significant benefits.
The most striking difference between the cases with inherent error equal to 0 and 100 meters and Table 3-3) is that the interval betwe en the mini accuracies is much more con onclude that as the resolution in inherent error deteriorates, the system is less dependent on th emaining parameters. The accuracy figure in
rable $3-3$ for polling intervals of $2,10,60$ and 120 seconds are significantly higher than the cor responding values in Tables $3-1$ and $3-2$, while he accuracy at a polling interval of 300 seconds is over all three Tables.

These results presenting accuracy estimates for AVM system errors can serve as a tool to be

Table 3-3. Vehicle Location Accuracy at 80% Level for SIGMA $=1000$ Meter

T (sec)	TC (5 (\%)	M (meters/swe)	Accuracy (meters)
2	. 01	40	1790
2	. 01	60	1790
2	. 1	40	1790
2	. 1	60	1790
10	. 01	40	1795
10	. 01	60	1810
60	. 01	40	1880
60	. 01	60	$19 \underline{0}$
120	. 01	40	2210
120	. 01	60	2500
300	. 01	40	2985
300	. 01	60	3500
300	. 1	40	2780
300	. 1	60	3650

One approach to automatically locating specified vehicles in an urban area involves the employm
of proximity sensors. The proximity sensors of proximity sensors. The proximity sensors
(which may be active or passive) are distributed throughout a given area. Once installed, the position of a sensor is fixed. A vehicle, properly
equipped, will interact with a sensor when the distance between the vehicle and the sensor is within prescribed limits. Interaction results in communicating the identity of the vehicle and the loca-
tion of the sensor to a central system. Not considered in this anatysis are the proximity sensur's characteristics, the required equipment for the
vehicle, or the means of communicating to the vehicle, or the means of communicating to the
central system. This analysis presents a Markov chain model of the interaction of fixed proximity sensors with moving vehicles whose locations are A.
A. Classifications of Finite Markov Chains

1. Concepts and definitions. A stochastic process probalistic analysis. A stochastic process is said to be finite if the set of possible foutcomes is finite. An independent process is a finite stoof any preceding experiment in no way affects the prediction of the outcome of the present experimen
A finite Markov chain process is a finite stochastic proccss where knowledge of the outcome of
the immediate past experiment does affect the prediction of the outcome of the present experime.at. Furthermore, the dependence of the outcome of ately preceding experiment only is the same at each stage of successive experiments. A finite
Markov chain is characterized by a finite set of states $\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$. The state of a Markoy chain is the outcorse of the last experiment. Thus
a Markov chain is in one and only one state at a given time and advances from one state to another a priori transition probabilities. The transition protability $p_{i j}$ is the probability that the (Markov chain) process will move from state s_{i} to s_{j}, an
$p_{i j}$ depends only on s_{i}, Associated with every
ordered pair of states is a known transition prot Pij depends only on s_{i} Associated with every
order a known transition proba
bility bility. An $n \times n$ transition probability matrix P
contains as entries the transition probabilities correspording to each of the respective n^{2} ordere pairs of states as follows:
$s_{1}=$
$s_{2}\left[\begin{array}{cccc}s_{1} & s_{2} & \cdots & s_{n} \\ p_{11} & p_{12} & \cdots & p_{1 n} \\ p_{21} & p_{22} & \cdots & p_{2 n} \\ \cdot & \cdot & \cdots & \cdot \\ \cdot & \cdot & \cdots & \cdot \\ p_{n} & \cdot & \cdots & p_{n 2} \\ p_{n 1} & \cdots & p_{n n}\end{array}\right]$

Each row in P comprises a probability event space
$\mathrm{i}_{\mathrm{ij}} \geq 0$
for all i, j
and

$$
\sum_{i=1}^{n} p_{i j}=1 \quad \text { for every } i
$$

The transition probability matrix P and an initial (starting state completely describe a finite Markov chain proces.
2. $\frac{\text { Regular Markov chains. A Markov chain }}{\text { s defined to be regular if and only if }}$ (i. e., experimets) for some n, it is possible fo
the process to be in any state regardless of the the process to be in any state regardless of the
starting state. The entry $\mathrm{p}_{\mathrm{f}} \mathrm{f}_{\text {in }} \mathrm{p}^{\mathrm{n}}$ (:he $\mathrm{n}^{\text {th }}$ power of the transition matrix) is the probability that the process is in state s_{j} after n steps given that it regular transition matrix P such that $P n$ contains
 not the entries in $P^{2},\left(P^{2}\right)^{2},\left(P^{4}\right)^{2}, \dot{a r e}$ are
positive assuming P has one or more 0 entry.
bility) maxtix $\frac{\text { Example 1. Given the following (proba- }}{}$

$$
\mathrm{P}=\begin{aligned}
& \mathrm{s}_{1} \\
& s_{2} \\
& s_{3} \\
& s_{4}
\end{aligned}\left[\begin{array}{cccc}
\mathrm{s}_{1} & s_{2} & s_{3} & s_{4} \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0.5 & 0.25 & 0 & 0.25 \\
0 & 0 & 0.5 & 0.5
\end{array}\right]
$$

Successive squaring of P, P^{2}, P^{4}, \ldots quickly
results in large powers of P. When testing for
regularity, tiie actual values of the entries need not and each zero entry 0 gives

$$
P=\left[\begin{array}{llll}
0 & x & 0 & 0 \\
0 & 0 & x & 0 \\
x & x & 0 & x \\
0 & 0 & x & x
\end{array}\right]
$$

$\mathrm{P}^{2}, \mathrm{P}^{4}$ and P^{8} are, respectively
$\left[\begin{array}{cccc}0 & 0 & x & 0 \\ x & x & 0 & x \\ 0 & x & x & x \\ x & x & x & x\end{array}\right],\left[\begin{array}{cccc}0 & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x\end{array}\right]$ and $\left[\begin{array}{cccc}x & x & x & x \\ x & x & x & x \\ x & x & x & x \\ x & x & x & x\end{array}\right]$
Thus P is a regular $t \mathrm{c}$ nsition matrix.
3. Ergodic Markov an ins. A Markov cha is defined to be ergodic if ant only if it is possibl
for the process to go frum every state to every for the process to go from every state to every
other state. Clearly a regular Markov chain is Aways ergodic. However, an ergodic Markov
chain is not necessarily regular chain is not necessarily regular. That is, for
every n, ph contains some 0 entries. However every ph contains some 0 entries. However
p^{n} for different values of n, will contain different locations. As n increases, the perositions of the zeros change cyclically. In this case, the chain is termed a cyclic Markov chain. Thus an ergodic Markov chain is either cyclic or regula
but not both.
tion matrix Example 2. Given the following transi-

$$
\begin{array}{r}
\quad \begin{array}{l}
s_{1} \\
s_{2} \\
s_{3} \\
s_{4}
\end{array}\left[\begin{array}{llll}
s_{1} & s_{2} & s_{3} & s_{4} \\
0.25 & 0 & 0.75 & 0 \\
0 & 0.25 & 0 & 0.75 \\
0 & 0 & 1 & 0
\end{array}\right] \\
P=\left[\begin{array}{llll}
0 & x & 0 & 0 \\
\mathrm{x} & 0 & x & 0 \\
0 & x & 0 & x \\
0 & 0 & x & 0
\end{array}\right]
\end{array}
$$

where x denotes a positive entry. For even $\mathrm{n}>0$,

$$
P^{n}=\left[\begin{array}{llll}
x & 0 & x & 0 \\
0 & x & 0 & x \\
x & 0 & x & 0 \\
0 & x & 0 & x
\end{array}\right]
$$

For odd $\mathrm{n}>1$,

Starting in an odd numbered state (s_{1} or s_{3}), the process is in an even-humbered state (s_{2} or s_{4}) numbered state after an even number of steps

P in Example 2 is an ergodic transition matrix
which is nonregular. The process characterized by F is a cyclicu(ergodic) chain.
4. Absorbing Markov chains. An absorbing once entered. An absorbing Markov chain is a Markov chain that has at least one absorbing state and from every nonabsorbing state it is possible to
move to an absorbing state in one or more stes) The nonabsorbing states (of an absorbing chain) are of an absorbing chain tates. The transition matrix F p that is absorbing.
matrix characterizes an absorbing transition

$P=$| s_{2} |
| :--- |
| s_{3} |
| s_{3} |
| s_{4} |
| s_{5} |\(\left[\begin{array}{lllll}s_{1} \& s_{2} \& s_{3} \& s_{4} \& s_{5}

1 \& 0 \& 0 \& 0 \& 0

0.5 \& 0 \& 0.5 \& 0 \& 0

0 \& 0.5 \& 0 \& 0.5 \& 0

0 \& 0 \& 0.5 \& 0 \& 0.5

0 \& 0 \& 0 \& 0 \& 1\end{array}\right]\)

States s_{1} and s_{5} are absorbing; whereas, states s_{2},
any given Classification of states. The states of equivalence classes. An be partitioned into. prises either an ergodic set ofstace class com$\frac{\text { set of states. Once the process enters an } \frac{\text { ergodic }}{\text { set, }} \text { it rand }}{}$ set, it remains in the set. Once the process leaves a transient set, it never reenters the set

If a chain has two or more ergodic sets of state osite transient sets, he chain in effect is a come posite of two or more unrelated chains. Each of set and may be treated separately. Without any
loss in generality, ever y ergodic chain (regular no consistin of one and only one state. Such an ergodic set is referred to as a unit set. Thus an absorbing hain has one or more unit sets and one or more transient sets.

Every state of a given set whether it is ergodic
or transient can "communicate" with every other or transient can "communicate" with every othe toward the ergodic sets when the chain contains transient as well as ergodic sets
B. Properties of Absorbing Markov Chains

1. Canonical Form of P and P^{n}. The transition matrix P of an absorbing chain can always be arranged to have the
(by relabeling states)

$$
P=\left[\begin{array}{l|l}
I & 0 \\
\hline R & Q
\end{array}\right]
$$

The submatrix I is an $\ell \times \ell$ identity matrix whose entries are the transition probabilities for every
ordered pair of absorbing states $\left(s_{i}, s_{j}\right)$ where

$$
p_{i j}=\left\{\begin{array}{l}
0 \text { if } i \neq j \\
1 \text { if } i=j
\end{array}\right.
$$

The submatrix Q is an $m \times m$ matrix whose entrie are the transition probabilities for every ordered pair of transient states. The submatrix R is an mx matrix whose entries are pair of states (s_{i}, s_{j}) where s_{i} is a transient state and s_{j} is an absorbing stata. The submatrix 0 is an $\ell \times m$ matrix whose entries are zeros corresponding to
the zero transition probabilities of moving from any absorbing state to any transient state. Powers of P have the canonical form

$$
P^{n}=\left[\begin{array}{l|l}
I & 0 \\
\hline M & Q^{n}
\end{array}\right]
$$

where
$M=\left[I+Q+Q^{2}+\cdots+Q^{n-1}\right] R$
Note that the expression for M is a matrix equation

Theorem 1. In any finite Markov chain, regardlessoorem the initial (starting) state, the probability that the process is in ergodic state after n steps approaches 1 as n approaches infin
proof of Theorem 1 appears in Ref. 1.)
A Corrolary to Theorem 1 is that are real
numbers b and c where $b>0$ and $0<c<1$ such that $p_{i j}^{(n)} \leq b c^{n}$
or any ordered pair of transient states $\left(s_{i}, s_{j}\right)$
This gives the rate at which $p(n)$ approaches 0 .
Every entry in Q^{n} in the canonical form of P^{n} an ary erbing chain approaches 0 as n increases without limit.
2. Fundamental matrix. The fundamental matrix of $\frac{\text { Fundamental matrix. }}{\text { an absorbing chain is defined as }}$

$$
\begin{equation*}
N=[I-Q]^{-1} \tag{1}
\end{equation*}
$$

Note that

$$
\frac{I}{I-Q}-\frac{Q^{n}}{I-Q}=I+Q+Q^{2}+\cdots+Q^{n-1}
$$

and since $Q \neq I$ and $\lim _{n \rightarrow \infty} Q^{n}=0$

$$
[I-Q]^{-1}=\lim _{n \rightarrow \infty}\left[I+Q+Q^{2}+\cdots+Q^{n-1}\right]
$$

the inverse of $I-Q(i, e ., N)$ always exists
The submatrix M in P^{n} as n approaches infinity may be expressed as

$$
\begin{equation*}
M=[I-Q]^{-1} R=N R \tag{2}
\end{equation*}
$$

The fund probabilistic interpretation.
Let $u_{i j}^{(k)}=1$ if the process starts in transient state s_{i} and is in transient state s_{j} after k moves.
Otherwise $u(k)=0$. Let $t(n)$ denote the number of times the process is in trinsient state s_{j} starting and during n moves given that it started $j_{i n}$ tranand during n moves

$$
t_{i j}^{(n)}=u_{i j}^{(0)}+u_{i j}^{(1)}+\cdots+u_{i j}^{(n)}
$$

The probability that the proce
state s_{j} after the k th move is

$$
p\left(u_{i j}^{(k)}=1\right)=q_{i j}^{(k)}
$$

given that sis is transient and the starting state.
The mean of $u_{i j}^{(k)}$ is

$$
m\left(u_{i j}^{(k)}=1 \cdot q_{i j}^{(k)}+0 \cdot 1-q_{i j}^{(k)}=q_{i j}^{(k)}\right.
$$

The mean of $t_{i j}^{(n)}$ is

$$
m\left(t_{i j}^{(n)}\right)=q_{i j}^{(0)}+q_{i j}^{(1)}+\cdots q_{i j}^{(n)}
$$

the $i, j^{\text {th }}$ entry of

$$
Q^{(0)}+Q^{(1)}+\cdots Q^{(n)}
$$

where $Q^{(0)}=I$

Then

$n_{i j}=\lim _{n \rightarrow \infty} \operatorname{mon}\left(t_{i j}^{(n)}\right)$
is the $i, j^{\text {th }}$ entry of the fundamental matrix expressed in (1). The value of $n_{i j}$ is the mean
number of times the chain is in transient $\frac{\text { state }}{}$ given that it started in transient'state s_{i} and continues until the process is absorbed (i.e., reaches an absorbing state)
3. Statistics on the number of times the $\frac{\text { process is in a transient state. }}{\text { Let } v_{i} \text { denote the }}$ s_{i} is in an absorbing state, then v_{i} state is s_{i}. If the absorbing chain contains a transient set denoted by T, and s_{i} is a transient state if and only if
$s_{i} \pi T\left(i . e ., s_{i}\right.$ "is a member of T). Then

$$
\begin{equation*}
m\left(v_{i}\right)=\sum_{s_{j} \in T} n_{i j} \tag{3}
\end{equation*}
$$

Since
which is the ith row sum of the fundamental matrix N. Each row sum of N appears in the $m \times 1$ matrix $\alpha=$ NC
(4)
where C is a $m \times l$ column vector whose entries are all l's.
The variance of the function v_{i} is

$$
\operatorname{var}\left(v_{i}\right)=m\left(v_{i}^{2}\right)-\left(m\left(v_{i}\right)\right)^{2}
$$

where

$$
m\left(v_{i}^{2}\right)=\sum_{s_{j} \notin T} p_{i j} \cdot 1+\sum_{s_{j} \in T} p_{i j} m\left[\left(v_{i}+1\right)^{2}\right]
$$

Note that the original position is necessarily

Continuing,
$m\left(v_{i}{ }^{2}\right)=\sum_{s_{j} \in T} p_{i j}+\sum_{s_{j} \in T} p_{i j} m\left(v_{i}{ }^{2}+2 v_{i}\right)+p_{i j}$

$s_{1}\left[\begin{array}{c}s_{5} \\ s_{2} \\ s_{3} \\ s_{4}\end{array}\left[\begin{array}{ccccc}s_{1} & s_{5} & s_{2} & s_{3} & s_{4} \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0.5 & 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0 & 0.5 \\ 0 & 0.5 & 0 & 0.5 & 0\end{array}\right]\right.$

The braces denote a column vec or where eac entry corresponds to a different value of i. Therefore,

$$
\left\{m\left(v_{i}^{2}\right)\right\}=Q\left\{m\left(v_{i}{ }^{2}\right)\right\}+2 Q \alpha+c
$$

$[I-Q]\left\{m\left(v_{*}{ }^{2}\right)\right\}=2 Q \alpha+C$
$\left\{m\left(v_{i}{ }^{2}\right)\right\}=[I-Q]^{-1}[2 Q \alpha+C]$
$=2 \mathrm{NQ} \alpha+\mathrm{NC}$
$=2 \mathrm{Ne} \alpha+\alpha$

$$
\begin{aligned}
& N=\frac{I}{I-Q} \\
& N-N Q=I \text { and } N Q=N-I
\end{aligned}
$$ and

$$
\begin{aligned}
\left\{m\left(v_{i}^{2}\right)\right\} & =2[N-I] \alpha+\alpha \\
& =[2 N-I] \alpha
\end{aligned}
$$

Finally, the variance of v_{i} for each i expressed as entries in m×1 column vector is

$$
\left\{\operatorname{var}\left(v_{i}\right)\right\}=\left\{m\left(v_{i}^{2}\right)-\left(m\left(v_{i}\right)\right)^{2}\right\}
$$

$$
=[2 N-I] \alpha-\alpha_{S Q}
$$

$$
=\sum_{s_{j} \in T} p_{i j}\left[m\left(v_{i}^{2}\right)+2 m\left(v_{i}\right)\right]+1
$$

$\left\{m\left(v_{i}^{2}\right)\right\}=\left\{\sum_{s_{j} \varepsilon T} p_{i j}\left[m\left(v_{i}^{2}\right)+2 m\left(v_{i}\right)\right]+1\right\}$

The fundamental matrix is

$$
\mathrm{N}=[\mathrm{I}-\mathrm{Q}]^{-1}=\mathrm{s}_{2}^{s_{2}}\left[\begin{array}{lll}
\mathrm{s}_{4}
\end{array}\left[\begin{array}{lll}
1.5 & 1 & 0.5 \\
1 & 2 & 1 \\
0.5 & 1 & 1.5
\end{array}\right]\right.
$$

Thus, for example, if the process starts in state s_{2}, the mean number of time it is in state s_{2}, s^{3}

Furthermore,

$$
\lim _{n \rightarrow \infty} p^{n}=\left[\begin{array}{l|l}
I & 0 \\
\hline N R & 0
\end{array}\right]
$$

since
$\lim _{n \rightarrow \infty} Q^{n}=0$
and
$\lim _{n \rightarrow \infty} M=N R$
as shown in (1) and (2).
In example 4

$$
R=s_{3}\left[\begin{array}{ll}
s_{4} \\
s_{4}
\end{array}\left[\begin{array}{ll}
0.5 & 0 \\
0 & 0 \\
0 & 0.5
\end{array}\right]\right.
$$

and

$$
\mathrm{NR}=\mathrm{s}_{2}\left[\begin{array}{cc}
\mathrm{s}_{3} \\
\mathrm{~s}_{4} & \mathrm{~s}_{5} \\
0.75 & 0.25 \\
0.5 & 0.5 \\
0.25 & 0.75
\end{array}\right]
$$

Hence, for example, if the process starts in state s_{2}, it will be absorbed in state s_{1} with probability 0.75 or in state $s 5$ with probability 0,25 . The row
sums of NR are necessarily 1 in accordance with sums of NR are necessarily 1 in accordance
Theorem 1. The mean number of steps before Theorem 1. The merption including the original position for each transient starting state appears in α as shown in (4)

The mean number of steps before absorption is 3 if the process starts in s_{2},
the process starts in s_{4}.

The variance of the number of steps (including the original position) before absorption for
starting state appears in the column vector
$[2 N-I] \alpha-\alpha_{s q}$
from expression (5). In example (4)

$$
2 N-I=\left[\begin{array}{lll}
2 & 2 & 1 \\
2 & 3 & 2 \\
1 & 2 & 2
\end{array}\right], \alpha=\left[\begin{array}{l}
3 \\
4 \\
3
\end{array}\right] \text { and } \alpha_{s q}=\left[\begin{array}{c}
9 \\
16 \\
9
\end{array}\right]
$$

$$
\left.\begin{array}{rr|r}
\text { Thus } \\
{[2 N-I] \alpha-\alpha_{s q}} & s_{2} & s_{3} \\
s_{4} & 8 \\
8
\end{array}\right]
$$

The mean number of steps before absorption is greatest for starting at s_{3}. However, the vari-
ance is the same for each starting transient state ance is the same for (Note that when the variances are quite large com pared to the corresponding entries in α sq, that particular chain.)
C. Model of Absorbing Markov Chain for Class II and IV Systems
Consider a portion of an area to be monitored as shown in Fig. ${ }^{3-5}$. Subareas are 5×5 square layout.' A (monitored) vehicle entering a sensed intersection corresponds to an absorbing state. This is to be interpreted as update process is in o the vehicle's location, When the processitored ehicle is known (to within the detection radius of the sensor). A vehicle entering an unsensed intersection corresponds to a transient state. The section corresponds to a markov chain models a sequence of experiments for locating a vehicle to within prescribed limits of accuracy.
Given that a vehicle starts at any given interection (sensed or unsensed), what is the mean and variance of the number of blocks the vehicle moves
until being sensed? Once the vehicle is sensed, a until being sensed? Once the vehicle is sensed, a
new experiment begins. Thus, between sensings, an uncertainty exists as to the vehicle's location. This is reflected in the magnitude of the mean and variance of the number of blocks the vehicle moves between sensings.

submatrices Q and R in Figs. 3-6 and 3-7 respectively. (Note that states s_{1} and s_{4} are
reflecting boundaries in Example 2 .)
The matrix N and coluran vectors $\alpha=N C$ and 2N-I] $\alpha-\alpha_{\text {sq }}$ were computed on an IBM $360 / 65$, The compo the number of states in the Markov chein mirections the number of states in the Markov chain mode
would increase fourfold. Each state would be associated with a pair of labels. The intersection entered would be designated by one label and the Such a transition matrix would be meaningful if the transition probabilities were accurately known. That is, the probability that a vehicle upon leavin a particular intersection will go straight, make a
left turn, a right turn or a U-turn is a priori infor mation. Without this information, equiprobable direction of travel (to any of the four adjacent intersections) is assumed. The resulting statistica accuracy establishes achievable bounds on the

Returning to Fig. 3-5, only the subarea with ary intersections need be considered. Boundary intersections (of the subarea) act as reflecting
boundaries in the Markov chain model. A vehicle in intersection 1 corresponds to the process being in transient state 1 . The transition probability from state 1 to the intersection due North is 0.25 tion in its subarea as does intersection F in the subarea under discussion, an upward move (due North) is equivalent to a reflection to intersecis clearly required. This permits the use of a small transition matrix (25×25 in Fig. 3-5) fo Markov chain model of an entire area where with characters are sensed and are associated wid absorbing states. Unsensed intersections are labeled with numbers and are associated with tran sient boundary intersections are appar ent in the

$\cdots 1$	1.667		2.778
2	2.667		7.111
3	1.667		2,778
4	1.667		2.778
5	1.667		2.778
6	1.667		2.778
7	2.667		7.121
8	1.667	$\alpha_{\text {sq }}=$	2.778
9	1.667		2.778
10	2.667		7.111
11	1.667		2.778
12	1.667		2.778
13	1.667		2.778
14	1.667		2.778
15	2.667		7.111
16	1.667		2.778

Fig. 3-6. Submatrix of Absorbing Chain Model
Submatrix Q of Absorbing Chain Mode

$$
\left[\begin{array}{ccccccccc}
.25 & 0 & .25 & 0 & 0 & .25 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & .25 & 0 & .25 & 0 & 0 & .25 & 0 & 0 \\
.25 & 0 & .25 & .25 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .25 & .25 & .25 & 0 & 0 & 0 & 0 \\
0 & .25 & .25 & .25 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & .25 & 0 & .25 & .25 & 0 & 0 & 0 \\
0 & 0 & 0 & .25 & .25 & 0 & .25 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .25 & .25 & .25 & 0 \\
0 & 0 & 0 & 0 & .25 & .25 & .25 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & .25 & .25 & 0 & .25 \\
0 & 0 & .25 & 0 & 0 & .25 & 0 & .25 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & .25 & 0 & 0 & .25 & 0 & .25
\end{array}\right]
$$

Fig. 3-7. Submatrix R of Absorbing Chain Model for Monitored Subarea in Fig. $3-5$

Thus, starting in a transient state or an unsensed ntersection, the mean number of blocks a vehicle
moves before being sensed is 1.667 or 2.667 . The variance of the number of moves for each starting state (1 through 16) is 1.778 which are the entries state
of

$$
[2 \mathrm{~N}-\mathrm{I}] \alpha-\alpha_{\mathrm{Sq}}
$$

Since 1.778 is a fraction of 2.778 and 7.111 (the distinct entries of $\alpha_{s q}$), i.ie means given in α ar eliable estimates
Note that the probability of being sensed cannot be computed. The probability of being sensed by a sensor in the same relative location as say B (Northeast corner of a suba
from NR. See Example 4.
The ratio of sensedintersections to the total number of intersections in a monitored area is of inter est. In Fíg. 3-5, 4 sensors are each sharing 4 , subareas. These are sensors at intersections A, B, H and J. Thus the total number of sensors J per
subarea for 5 (interior) +4 (each shared by 4 subsubarea for 5 (interior) 4 (each shared by sub-
areas) $/ 4$ or 6 . The total number of intersections per subarea is 9 (interior) +4 (each shared by 4 subareas) $/ 4+12$ (each shared by 2 subareas) $/ 2$
or 16 . Thus the ratio of sensed intersections to total intersections is $3 / 8$.

Fig. ${ }^{3-8 .}$ Monitored Subarea
with Sensor Density of $3 / 9$

Consider a monitored area with identical sub areas as shown in Fig. 3.8 where the ratio of sensed intersections to total intersections is $3 / 9$ Its associated submatrices Q and R appear in
Figs. 3-9 and 3-10, respectively. For complete Figs. $3-9$ and $3-10$, respectively. For complete
ness the fundamental matrix $\mathrm{N}=[\mathrm{Q}]-\mathrm{Corre-}$ sponding to Fig. $3-8$ appears in Fig. $3-11$.

The mean and variance of the number of blocks a vehicle moves before detection starting from each of the unsensed intersections is 2 and 2 , espectively.
1
2
3
4
5
6
7
8
9
10 $\left[\begin{array}{cccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 0 & 10 \\ 0 & .25 & 0 & 0 & 0 & 0 & .25 & 0 & 0 & 0 \\ .25 & 0 & 0 & .25 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & .25 & 0 & 0 & 0 & 0 \\ 0 & .25 & 0 & 0 & .25 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & .25 & 0 & 0 & 0 & .25 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & .25 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & .25 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & .25 & 0 & 0 & .25 \\ 0 & 0 & 0 & .25 & 0 & 0 & 0 & 0 & .25 & 0\end{array}\right]$

Fig. 3-9. Submatrix Q of Absorbing Chain
Model for Monitored Subarea in
Fig. 3-8

A	B	c	D	E	F
. 25	0	. 25	0.	0	0
0	. 25	0	. 25	0	0
. 25	0	. 25	0	0	0
0	0	. 25	. 25	0	0
0	. 25	. 25	0	0	0
0	0	0	. 25	. 25	0
0	0	. 25	. 25	0	0
0	0	0	. 25	0	. 25
0	0	. 25	0	. 25	0
0	0	0	. 25	0	. 25

Fig. 3-10. Submatrix R of Absorbing
Chain Model for Monitored Subarea
in Fig. 3-8

```
[\begin{array}{llllllllllll}{1.073}&{0.29}&{0.021}&{0.089}&{0.624}&{0.054}&{0.341}&{0.006}&{0.083}&{0.027}\end{array}]
0.087 1,05 0.0065 0.0.0.0.083 (0024 -.0.0.0.0.083 0.0.023
0.087
lllllllllllllllll
```



```
llllll
llllllllll
|
|0.006
```


Fig. 3-il. Fundamental Matrix N Corresponding to Fig. $3-8$

REFERENCE

1. Kemeny, J. G., and Snell, J. L., Finite Markov Chains, D. Van Nostrand Co., Inc.

PART FOUR:
AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES
G.R. Hansen
L.J. Zottarelli

PART FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY
I. Vehicle Location by Means of AM Broadcasting Station

Carrier Signals
A. Introduction
B. Hyperbolic Location Principles 4-3
C. Vehicle Equipment Requirements . 4 4
D. Vehicle Location Method $4-5$E. Accuracy Analysis4-5
F. System Data Requirements and Polling Intervals4-5
G. Computer Simulation Programs4-7
H. Conclusions4-8
II. Vehicle Location by Means of Buried Loop 4-8
B. Magnetic Field Generated by Rectangular Loop 4-9
C. Computer Programs for Calculating Mutual 4-9D. Optimum Relative Configuration of Throe-Loop AVMSystem

FIGURESFig. No.Zero Degree Phase Difference Hyperbolic ContoursZero Degree Phase Difference Hyperbolic Con
Produced by Pair of Synchronized RE Signals.4-1
Apparent Motion of Hyperbolas Due to Slight
Difference in Two Signal Frequencies4-2
Change in Receiver Location from Hyperboli 4-3Phase-Locked Loop AM Receiver on Vehicle for4-3Hyperbolic AVM Technique
4-4
Up-Down Co
Techniqueonfiguration of Vehicle's Transmitting and Receiving4-8

oops Relative to Buried Loop

Table No.TABLES$4-6$
ehicle Hyerbalic Lane Count Generator Program$4-2$4-6Station Locations and Baseline Lengths$4-6$
por Mutual Inductance of Buried/Picku4-4Loops, and Sample Run4-9CARCUP Program for Mutual Inductance of$4-5$4-10

1. VEHICLE LOCATION BY MEANS OF AM TION GARRIFR Signals Carrier signals of commercial AM broadcasting stations can be used as the source of vohicle location information." As in well-known navigation systems, the sighats rabating rom pairs of
stations will form an hyperbotic grid or coordinat system, and vehicles which are equipped with phase-lock receivers and phase repetition counters can kerpolic coordinate grid. This information is then periodically transmitted to a central comman base where the transformation from hyperbolic to geographic coordinates is performed, and the displayed.
A. Introduction

Most vehicle location and navigation systems require dedicated transmitter-receiving equipmen combinations and frequency allocations for the
location function. A particular advantege location function. A particular advantage of the is that commercial station signals $(0.53$ to 1.60 MHz) are used to furnish the vehicle location infor mation. Thed

Carrier signals from three AM stations located near the urban perimeter are used to form a co difference between the signals from pairs of stations (Fig. 4-1). Therefore, this vehicle location technipe thares nany OMEGA, LORAN, and particularly DECCA. In this location method, however, the transmission frequencies from the AM stations need not be syn tion systems. It is more akin to the differential versions of the foregoing systems. In the differential verisons, mobile location equipment is utilized at fixed geographical sites for the purpose o neighborhood by determining the signal phase or delay variance at the known site from that predicted and this variance is un correct the location data received by the vehicle

The AM broadcast vehicle location technique relies on a frequency transformation method broadcasting stations are separately normalized to a common frequency, and the relative phases of these common frequencies are compared to provid hationship between the carrier frequencies of the AM stations is not required, although harmonic ally related frequencies would result in a stationary "virtual hyperbolic pattern" and would some ion process.
phase-locked loop receivers to extraci the carrie
U.S. Patent 3, 889, 264.

Fig. 4-1. Zero Degree Phase Difference Hyperbolic Contours Produced by
Pair of Synchronized RF Signals
frequencies and also a second set of three phase locked loop frequency multipliers to generate the common frequency. Phase comparators and digital counters are used to keep track of the vehicle The hyperbolic coordinates are stored for subs quent transmission to a central command and control base.
Central equipment required consists of a lim ited arithmetic processor or table look-up computer which is needed to relate the hyperbolic
pattern coordinate information to an actual geographical location
B. Hyperbolic Location Principles

If two separated and synchronized sources of radiation transmit signals in an isotropic medium a receiver positioned midway between them, or on transmitter, will detect no difference in the time of-arrival or the phase of the signals from the separate sources. The locus is the perpendicular bisector of the connective between the two sources
(See Fig. 4-1.)

If the receiver is at one side or the other of the bisector, the signal from the nearer transmitter
will arrive at some finite amount of time before the signal from the farther source. If the signals are will lead the phase of the farther. Another locus of constant time or phase difference can be generated by maintaining the same difference in distance
from the receiver to each transmitter. for constant: time or phase difference will be confocal hyperbolas that are symmetric around the bisector (see Fig. 4-1)

A line-of-position (LOP) can be determined relative to a pair of RF transmitters by noting the corresponds to one of arrival of the signals, which be ambiguity as to which branch of the hyperbola represents the true LOP. If the signals are continuous wave and only the phase differences are many-fold since the phase pattern is repeated whenever the cumulative distanse change to the two transmitters equals one wavelength. The resolu-
tion of the ambiguity is described later.

If the two stations are transmitting on slightly different frequencies, the relative phase between the carriers will change cyclically at a rate dewill be the same anywhere that the two signals can be received. If the locus of lines of constant phase difference are now considered, they again comprise a family or confocal hyperbolas, but instead
of being stationary, they will sweep through the of being stationary, they will sweep through the
area covered by the two stations (Fig. $4-2$). The hyperbolas, as a function of time, will tend so

Fig. 4-2. Apparent Motion of Hyperbolas Due to
Slight Difference in Two Signal Frequencies
form acutely around the station radiating the higher quency station; straightening as they reach the midpoint, then curving around the lower frequency stajoining the stations. A. receiver capable of counting the passage of hyperbolas representing a particular phase difference will accumulate the same
count in the same time interval regardless of the location within the service area of the two stations.
If the constant phase difference counting reno counts will be accumulated as long as the receiver's location is fixed. If the receiver is moved in such a manner as to cause the difference in the length, then one count will be accumulated. Similarly, in a moving field, a one-unit difference in counts will be accumulated by a stationary receiver as compared to a receiver that is moved by a wave-

The AVM system based on AM broadcast signals is discrete as opposed to continuous location sysgrid which can be transformed into specific urban area locations corresponding to these intersections. Interpolation between grid lines is not used. Therefore it is somewhat like a proximity system with physical devices or signposts located at intersections or at fixed points. Continuous systems pro-
vide somewhat uniform coverage of the service vide somewhat uniform coverage of the service
area and allow any geographical locations within this area to be determined to some limiting pre cision dictated by the technique. The grid described by the intersection of the hyperbolas allows
the actual geographical location of the vehicle to be somewhere within the hyperbolic triangle described by the coordinates of a particular triad vertex. The dimensions of this triangle are a function of the distance to the foci of the two families of hyper-
bolas and also of the wavelength of the common frequency. In most continisous AVM systems, the precision diminishes with the distance from the AVM system, the location precision can be adjus ted in the principal service area by the choice of the common frequency.

Established navigation systems such as OMEGA LORAN, and DECCA refer to the areas between adjacent hyperbolas of constant phase as lanes. These navigation lanes vary in width from 1.5 to tem, and the principal goal of these methods is to maintain a vehicle's location precisely within a se-
lected lane. In contrast, the AM broadcast vehicle lected lane., In contrast, the AM broadcast vehicl 0.15 km) lanes and keeps track only of the ID. number of the hyperbola of constant phase difference
that the vehicle has crossed and in which sirectio that the vehicle has crossed and in which Birectio the hyperbola was traversed. Therefore, the and will vary with the distance from the AM station pair. This system is intended for use in metropoled size compared to the much larger service areas of navigation systems. Since AM transmitting sites are usually loc, ed near the outskirts of the area they serve, the divergence of the hyper-
bolas and the consequent loss in location precision can be held to reasonable values.

In many prior studies and developments con(see Bibliography), a general goal has been to pors vide a location capability to one city block, or
roughly 0.16 km (0 . mile roughly 0.16 km (0.1 mile). Lane widths of this
size can be generated with a frequercy of 1 MHz .

In order to generate a hyperbolic coordinat system from AM station signals, these signals is phase coherent to the AM carrier. To be which without restraints requires that this common frequency be a multiple of the highest common divisor quency should therefore be a The common fre-

The individual AM carrier signals are receive re each used to separately shese signals in turn mon frequency. The common frequencies con herefore phase-coherent with the original AM ach of the AM statively change the radiation from A virtual hyperbolic pattern is common frequency ach pair of AM stations received; and it the AM stationary measure the phase differences and count thary to ber of times the phase pattern has repeated as the vehicle travels in order to determine a new locasignals (three station) are sufficient three pairs of any ambiguity in the determination of the new loc tion from the old location (Fig. 4-3). Since the

Fig. 4-3. Change in Receiver Location
from Hyperboli: Area $5-9-5$ to $10-2-7$
spacing of the hyperbolic patterns is a function of e distance from the station pair, the relationshi tances traveled would have to be computed. In this AVM system, the computational ability need not be
laced in each vehicle. The computation of loca here the location for the central command base

It is immaterial whether the hyperbolic arid pattern is fixed or moving as far as the location process is concerned. If fixed, then only the essary to determine the new positions from the old. if the grid is moving, then the difference in counts eitveen the moving receivers and a stationary retude of the counts, it is also necessary the magnidirection" of passage of the hyperbola of constant phase difference. The hyperbolas always move requency. If the hyperbolas are toward the lowe ehicle's movement toward one source will tend crease the apparent frequency from that source Therefore an assignmequency of the other. direction is to be called a positive count and which a negative count
C. Vehicle Equipment Requirement

A block diagram of one of the receivers to be

Fig; 4-4. Phase-Locked Loop AM Receiver
on Vehicle for Hyperbolic Three of these receivers are required for each provide selectivity and gain of the desired $A M$ sia al applied to the phase detector of the phase-lock opency in the PLL is adjusted to run oscillator frerequency as the AM station carrier. The oscillaor uutput is divided by a variable modulus counter (10 kHz . The 10 kHz produce an output frequency. lop which provides a square-wave of 5 kHz used as the reference input to the phase detector of the requency multiplying PLL. A 1 MHz voltageontrolled crystal oscillator is phase-locked to the
5 kHz reference by dividing the oscillator frequen cy by 200 to produce a second 5 kHz signal which s compared to the reference. Therefore, the 1 MHz signal is phase-locked to the AM carrier frequency so that the phase relationship between the
MHz and the carrier is repeated at least every 3 to 160 cycles of the AM carrier.
Three such receivers, each tuned to a differen
signals, each phase-coherent with the appropriate AM carrier
The problem then remains to determine the ID number and direction of the hyperbola that is either
traversing or being traversed by the vehicle. As stated previously, the measurement of the frequency difference and the determination of which is the
greater frequency are required. The technique selected to determine the frequency difference and also to yield information as to which is the higher or lower frequency is to use an up-down counter in which one frequency provides incrementing pul-
ses and the other decrementing pulses. The state of the counter shoild then indicate the integrated frequency difference between the two frequencies
which is the algebraic sum of the hyperbola of which is the algebraic sum of the hyp
constant phase difference traversed.

The up-down counter must respond to every incrementing and decrementing pulse because any
nulse missed will displace the measured location by one unit in the hyperbolic grid. In order to prevent the uncertainty in the up-down counter which could be caused by the simulteneous arrival of up
and down pulses, resynchronization of the 1 MHz pulses was required. A synchronizing frequency at least four times the frequency to be counted is required to assure that no pulse is lost or split.
The logic for resynchronizing to 4.192 MHz is The logic for resynchronizing to 4.192 MHz is
shown in Fig. $4-5$. The logic discards both incrementing and decrementing pulses which are inputs to the same up-down counter and arrive in the same
synchronizing interval.

Fig. 4-5. Up-Down Counters Sync Logic
for Hyperbolic AVM Technique

Each of the three counters in the receiver main ins a count which is the integrated algebraic sum of the apparent frequency difference between a pair
of AM stations each nominally radiating at the com mon frequency. Part of this frequency difference is due to the AM stations not being phase coherent
(i. e., not exactly on the assigned frequency) and

D. Vehicle Location Method

 If three $A M$ stations, A, B, and C, are moni-tored (Fig. 4-3) and the transformation of the carriers yields three common frequencies f_{a}, f_{b}, and cumulate counts N in a time t in accordance with:
$N_{a}=\left(f_{a}-f_{b}\right) t+v_{a b}(f) t \times F(x, y) \div C$
$N_{b}=\left(f_{b}-f_{c}\right) t+V_{b c}(f) t \times G(x, y) \div C$
$\mathrm{N}_{\mathrm{c}}=\left(\mathrm{f}_{\mathrm{c}}-\mathrm{f}_{\mathrm{a}}\right) \mathrm{t}+\mathrm{V}_{\mathrm{ca}}(\mathrm{f}) \mathrm{t} \times \mathrm{H}(\mathrm{x}, \mathrm{y}) \div \mathrm{C}$
where f is the common frequency, V is the vehicle velocity component parallel to the baseline of the station pair, and F, G, and H are general equations
of the second degree (describing the three families of the second degree (describing the three familie
of hyperbolas) in terrns of X and Y which are the geographical location of the vehicle in an arbitrary orthogonal coordinate system. This system of equations does not yield an explicit analytic solu indicate the separability of the counts due to slight differences in the common frequency and the counts caused by vehicle motion. Counting is neg-
ligibly influenced by the difference in frequency of f_{a}, f_{b}, or f_{c}.

At the base, the location process is initialized by first receiving the actual geographical location the three coutters (called $N_{a i}, N_{b i}$, and $N_{c i}$, respectively). The coordinates in X and Y and the
counter states are stored. The counter states of counter states are stored. The counter states of instant. An explicit calculation is then made using the X-Y location and the coordinates of the AM stations which yield the location of the vehicle in Each hyperbola in each family is numbered, and the results of this calculation give the location in three integers which represent the nearest hypera of each family Subsequent locations are determined by receiv-
ing the current state of the three counters from the vehic!e. First, the initial state of the vehicle second, the change in the state of the stationary receiver counters (from the initializing time to the
current time) is determined and subtracted to yield current time) is determined and subtracted to yiel
the change in each of tine hyperbolic coordinates caused by vehicle motion. The new $\mathrm{X}-\mathrm{Y}$ coordinates of the vehicle location are then calculated with an iterative least-squares algorithm. The al-
gorithm uses the old $X-Y$ location and develops the required changes in X and Y so that the calculated new position will have the same hyperbolic coordinates as those determined for the vehicle from the
current counter states. This method was chosen over an analytic technique as it yields a "most likely" solution in less time than an analytic method which has the additional disadvantage of having

Only two of the three available hyperbolic co-
ordinates are necessary in all of the calculation
as the third coordinate is not independent. The sum of the hyperbolic coordinates should be the stant plus or minus one. Additionally, for locations near the vertex (the one AM station common come divergent and another se algorithm may be

E. Accuracy Analysis

All AM broadcast stations in the United States operate on assigned carrier frequencies which ar tween 530 and 1600 kHz . The FCC requizes that the actual carrier frequency be within 20 Hz or the assigned frequency. It all the AM stations within a given geographical area were exactly on the as-
signed frequency, the relationship between any two stations could be expressed as
(1) $f_{1} / f_{2}=(n+p) / n$, where n and p are both integers.

The carriers could be said to be phase-coherent in riers are reat ier and every n cycles for the other. If this carondition is maintained, it is then possible to hesize another frequency, which is also a multipl carriers within the area. coherent to each of the

The 10 kHz
nency, say 1 MHz , which will be another freent with the original carrier. Since the coherfrequency tnlerance of 20 Hz , the synthesized
(2) $\pm \mathrm{XHz}= \pm 20 \mathrm{~Hz}(106 \mathrm{~Hz}) / \mathrm{f} \mathrm{Hz}$, where

$$
f \text { is the } A M \text { carrier frequency. }
$$

Therefore X can vary between 39 and 12 Hz , dearrier. It is therefore possible that a pair of AM ations could cause a beat frequency between the mpact of the frequency difference is $\mathbf{t i n c t i n g}$ pon the equipment design, the sampling rate for cation purposes, and the amount of information fat must be transmitted from the vehicle. Thes

A secondary effect of the AM carrier being off slightly off is that the causing the 1 MHz to be duced in precision. A wavelength of the actual requency will be slightly shorter or longer than would be on the order of 1 per million. This error connecting a station pair with a on the baseline and up to 2 meters some 60 km away from either
F. $\frac{\text { System Data Requirements and Polling }}{\text { Intervals }}$
\longrightarrow
System considerations determine how much in-
formation is needed from each vehicle and how often it should be sent. Prior work in automatic vehicle monitoring has usually emphasized the fixed-rate polling method of interrogating vehicle
odetermine locations. If the polling method peed and still be located to the trel at maximum he information flowated to the ultimate precision, hicle. If an average speed is assumed for the eet of vehicles, then high-speed vehicles will no or slowly moving vehicles will be transmitting much redundant data. Volunteer methods wherei significa initiates a data transmission uire means to avoid contention and must also send mitting. An adaptive polling technique wherans mithin. An adaptive polling technique whereb shorter intervals and where average and slow moving or parked vehicles are infrequently sam-
pled is quite easily mechanized. The polling technique requires that the central control ransmit incrementing pulses (tones, or tone these incremental signalich count and accumulate signals received matches the number assignod the vehicle, a data transmission is initiated from the vehicle. The inclusion of a respond or do-not-
respond puise, tone, or burst with the incemen respond pulse, tone, or burst with the incremen-
ting signal will tell the vehicle whether data required or not. Conversely, a vehicle which had
been immobile could iequest been immobile could request inclusion in the next polling sequence by responding with an appropriate

The amount that the AM carriers are off frequency together with the sampling intervals of the be sent to the central command for location purposes. The length of each of the up-down counter is therefore determined by this number of bits. tions could cause an 80 Hz beat frequency in stasynthesized 1 MHz signals which would cause a total count of about 288,000 per hour to be accubaseline of a station pair would accumulate a count of 200 per hour due in a stationary pattern. A recent Department of Transportation requirement for vehicle monitoring required that 25% of the
vehicle fleet be located each 15 sec and the remainder located each minute. The total counts for each station pair under these requirements would interval. To accommodate this requirement the length of the up-downodate counters would have to be 13 bits each. Some 40 to 50 bits per interrogation would have to be transmitted from each vehicle if a preamble, parity checks, or error detection in-
formation was added to the basic 39 bits of ion data. Assuming the higher number over a oice channel from the vehicle which could conehicles could be interrogated and located each second. Again using the DOT requirement, 820 vehicles could be located eack minute, with 205 of times each minute for a total of 14 seconds, or four ach minute (1440 maximum). It should be real zed that these are theoretical maximum numbers nd neglect the practical realities of turn-on stasumes another mobile transmitters and als purposes.
The amount of data required from each vehicl
stations being utilized for location maintained phas coherency. A stationary location pattern would be be reduced substantially as only counts due to. vehicle motion would be accumulated. Only a rela
tively small amount of equipment would be necessary at each AM station to maintain the carriers
coherent to one another. This could be done by coherent to one another. This could be done by tation referencing the carrier frequency to the other two carriers by counting and phase-locked loop techniques. In either case, the control range of the added equipment must not allow the carrier o be pulled outside of the 20 cycle FCC tolerance limit.
Some operational difficulties that might occur with this type of vehicle location system could be riers, or transmitter switchover when power is ncreased or reduced. In some smaller metro-
$r^{\prime \prime}$ broadcast stations with appropriate geometr and different configurations may have to be used for
a.
G. Computer Simulation Programs

Two computer programs, a location simulator
Table 4-1. Vehicle Location Simulator Program, LOCATE
generator called PIG (Table 4-2) were written to est the location method. A SETAUP program Table 4-3) was also written which stores the locasystem and determines the lengths of the baselines connecting the stations.
In order to make the simulation more realistic, three AM stations in the Los Angeles, CA, metropolitan area were chosen: KFI (640 kHz) located in he Buena Park-La Mirada area southwest of the
Los Angeies Civic Center; KNX ($107 \mathrm{C} / \mathrm{kHz} \mathrm{)} \mathrm{in}$
Torrance which is south and slightly west of the
Civic Center; and KMPC (710 kHz) with transmitte
In North Hollywood which is northwest of the Civic enter. The baseline distances are; KFI-KNX

Table 4-3. AM Broadcast Station Locations and Baseline Lengths Program, SETAUP
the change in counts of the hyperbolic coordinate
H. Conclusions

A vehicle location method for use in metropolian areas is available, which uses the carrier sig nal information from three currently operating AM
broadcasting stations located near the ters. Two advantages of the method urban perim
dedicated transmitters for location purposes ar not required and that (2) the phase-lock-loop count ing receivers installed in the vehicles are inexpensive.: The mathematical technique for vehicle
location is relati- ly simple and requires the initial loca a be known. While the technique is not explicit, location can be determined with gequetric configurations of the AM station by the and the frequency of the synthesized signal used or phase comparison.

An arbitrary origin for the coordinate system was located some 8 km (5 miles) in the Pacific west of
the Palos Verdes peninsula such that most of the area of interest for location purposes would be in the first quadrant of the X - - system. The ori-
gin is at $118^{\circ} 30^{\prime} \mathrm{W}$ and $33^{\circ} 45^{\prime} \mathrm{N}$.

The location (LOCATE) program and the vehicl APL computer langua program were written in erator requires two input variables. These are the initial and terminal values in meters of the $X-Y$ coordinates representing each change of posi-
tion of the vehicle. The hyperbolic coordinates of each location are calculated and the integral differ ence determined. The difference represents the counts that would be accumulated by a vehicle in
traveling from the initial to the terminal location of each leg of travel. The count difference and the initial location are the inputs to the LOCATE routine which determines the new location. The new location is determined by a reiterative technique
whereby the deltas of X and Y which would satisfy
II. VEHICLE LOCATION BY MEANS OF BURIED LOOPS*

With the exception of the cut-to-fit development nethod, the evaluation of the buried loop" AVM system requic relations. Since such relations do not seem readily available in the open literature, an analytic approach was developed to deternhee height affects of loop spacings, dim enseans, tification of the vehicle's location.
A. Relationships of Three-Loop Vehicle Location System
The approach is to find the mutual inductance of the vehicle's transmitter and receiver loops through the intermediary of the passive buried
loop. A typical three-loop configuration is shown in Fig. A-6. The as sumptions are:

1. The XMTR and RCVR are sufficiently remote from each other so that direct mul
inductance is of secondary importance.
2. The buried loop is tuned with a capacitor to the vehicle transmitter frequency, and the buried loop resistance is dire

The loops are in an isotropic medium.

$H(T)=$ XMTR CURRENT
$K_{1}=$ XMTR/BL COUPLING
$K_{2}=$ RCVR/BL COUPLING
$N_{R}=$ RCVRTURNS
$\mathrm{N}_{\mathrm{T}}=$ XMTR TURNS
$N_{B L}=$ BURIED LOOP TURNS
$\mathrm{R}_{\mathrm{BL}}=$ BL RESISTANCE

Fig. 4-6. Configuration of Vehicle ransmitting and Receiving Loop
Relative to Juried Loop

1. Analytic Relations of Loop Mutual
(1) The magnetic flux lines Φ coupling The magnetic flux innes the buried loop (BL) due to the XMTR current $I(T)$ at point P is

$$
\Phi_{B L}=K_{1} \cdot N_{T} \cdot I(T)
$$

where
$\mathrm{I}(\mathrm{T})=\mathrm{I}_{\mathrm{P}} \sin (\mathrm{wt}), \mathrm{K}_{1}=\mathrm{XMTR} / \mathrm{BL}$ coupling, and $\mathrm{N}_{\mathrm{T}}=\mathrm{XMTR}$ turns.
(2) The voltage E coupled to the buried loop with width W is
$E_{B L}(T)=N_{B L}{ }^{d \Phi_{B L}} / d t=$

$$
\mathrm{W} \cdot \mathrm{~K}_{1} \cdot \mathrm{~N}_{\mathrm{T}} \cdot \mathrm{~N}_{\mathrm{BL}} \cdot \mathrm{I}_{\mathrm{P}} \cdot \cos (\mathrm{wt})
$$

(3) The current in the buried loop (which is at resonance), with resistance R,

$$
\mathrm{I}_{\mathrm{BL}}(\mathrm{~T})=\mathrm{E}_{\mathrm{BL}}(\mathrm{~T}) / \mathrm{R}_{\mathrm{BL}}=
$$

$$
\left[\mathrm{K}_{1} \cdot \mathrm{~N}_{\mathrm{T}} \cdot \mathrm{~N}_{\mathrm{BL}} \cdot \mathrm{w} \cdot \mathrm{I}_{\mathrm{P}} \cdot \cos (\mathrm{wt})\right] / \mathrm{R}_{\mathrm{BL}}
$$

(4) The flux lines coupling K_{2} the RCVR
due to the buried loop is due to the buried loop is
$\Phi_{R C V R}(T)=K_{2} \cdot N_{B L} \cdot I_{B L}(T)$
substituting
$\Phi_{\text {RCVR }}(T)=$

$$
\begin{aligned}
& \Phi_{\mathrm{RCVR}}(1)= \\
& {\left[-\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot \mathrm{~N}_{\mathrm{T}} \cdot\left(\mathrm{~N}_{\mathrm{BL}}\right)^{2} \cdot \mathrm{~W}^{\mathrm{W}} \cdot \mathrm{P} \cos (\mathrm{wt})\right] /}
\end{aligned}
$$

$R_{B L}$
(5) The voltage at the RCVR due to the buried loop i

$$
\mathrm{E}_{\mathrm{RCVR}}=\mathrm{N}_{\mathrm{R}} \cdot \mathrm{~d}_{\mathrm{RCVR}} / \mathrm{dt}=
$$

$$
\left[\mathrm{K}_{1} \cdot K_{2} \cdot N_{\mathrm{C}} \cdot N_{B L} \cdot N_{R} \cdot\left(W I_{P}\right)^{2} \cdot \sin (w t)\right] /
$$

$\mathrm{R}_{\text {LOOP }}$
allowing now the resistance per turn (R/turn)

$$
\begin{aligned}
& R_{\text {loop }}=(R / \text { turn }) \cdot N_{B L} \\
& \text { QED: } E_{R C V R}=\left[-\mathrm{K}_{1} \cdot \mathrm{~K}_{2} \cdot N_{T} \cdot N_{B L} \cdot N_{R} .\right. \\
& \left.\left(\mathrm{W} \mathrm{I}_{\mathrm{P}}\right)^{2} \cdot \sin (\mathrm{wt})\right] /(\mathrm{R} / \text { turn })
\end{aligned}
$$

2. Comments. The reasoning involved in deriving the relationship permit the geometrical le and simply multiplicative. If $\mathrm{E}_{\text {rev }}$ is to be of the form MdI/at then :
$M_{\text {equivalent }}$ becomes $\left[K_{1} \cdot K_{2} \cdot N_{T} \cdot N_{R} \cdot N_{B L} \cdot(\right.$ WIP $\left.)\right] /$ (R/turn)
and
$I(t)$ becomes IP $\cos (w t)$
B. Magnetic Field Generated by Rectangular
3. Development of Flux Density Equations. $P(x, y, z)$ generated by the rectangular loop of wire, with the X-axis direction across the lane travel.
Given:
(1) A rectangular loop of wire of length L and width W, with the lane width equal to the buried loops length.
(2) The loop is in a free-space plane (of x, y, z rectangular coordinates) having equations $\mathrm{z}=0$
(3) The loop has a DC current of I.
(4) The coordinate space has its origin at $(0,0,0)$, which is the center of th
loop wire.
(5) The linkage or mutual inductance of two parallel planar loops (not neces sarily coplanar) lying in x, y-plane ases only the z-component of flux
rethod
(1) Decompose the loop into four linear segments
(2) Apply the Biot Savart law from each segment to the point of interest

$$
\left|B_{p}\right|=\left(\frac{\mu}{4 \pi}\right) \cdot\left(\frac{I}{a}\right) \cdot(\cos \gamma-\cos \alpha)
$$

(3) Decompose the flux density into its vector components, and sum the components.

The complete mathematical analysis is pre
C. Computer Programs for Calculating Mutual Inductance
Two programs are used to generate the mutual inductance of rectangular wire loops. The prorams Loops and CARCUP are written in the tanford Artincial Intelligence 1

1. "LOOPS" and "CARCUP" Programs The "LOOPS" program is used to find (1) the
XMTR/RCVR direct mutual coupling, (2) the sel XMTR/RCVR direct mutual coupling, (2) the self
between the Buried Loop and the XMTR or between the Buried Loop and the RCVR or between two Buried Loops. The "CARCUP" program is used
to find the mutual coupling between the XMTR and the RCVR via the Buried Loop, the inner working of the two programs are similar; the program
"CARCUP" is, in effect, the program "LOOPS" run twice. Both of the programs have Input/Outpu
in common. in common. a. LOOPS Program. This program
(Table 4-4) $\frac{\text { ask the user: (1) }}{\text { if }}$ if wants more
detailed information, (2) to specify whow many detailed information, (2) to sperify "how many
steps," or data points, (3) where is he starting point of the pickup loop and what size is the loop (in terms of XMIN, XMAX, YMIN, YMAX) and how high above the buried loop, (in terms of Z), (4) t
specify the aspect ratio of the buried loop. K , The LOCPS program calculates and prints out
the mutual inductance for the number of data points specified. Each successive data point rep-
resents the mutual inductance of the buried loop and pickup loop moving along the positive Y direction (along the roadway lane) by $1 / 10$ of its
length (i.e. (YMAX-YMIN) $/ 10$). The mutual length (i.e. (YMAX-YMIN)/10). The mutual
inductance is in relative units. To find the answe in henrys, multiply the answer by half the lane width (in meters), by 10^{-7}, by the number of turns of the buried loop, and by the number of turns of the pickup loop. b. CARCUP Program. This program
(Table 4-5) asks the user: (1) if he wants more
detailed information, (2) to specify "how many detailed information, (2) to specify "how many point of the XMTR loop, and what is its size and how high above the buried toop (in terms of
XTMIN, XTMAX, YTMTM, YTMAX, ZT); als XTMIN, XTMAX, YTMTM, YTMAX, ZTI; also
where is the starting point of the RCVR loop an

Table 4-4. LOOPS Program for Mutual Inductance of Buried/Pickup Loops,

```
                N,
```

\qquad
\qquad
\qquad

"U.S. Patent $3,772,691$, "Automatic Vehicle Location System."

Edect Hit Jeo: 10 or or

Table 4-5. (Continued)
.eun crarcup.say

TOU MAINE. 45

${ }_{r=, 4}^{2 R=0}$

what is its size and how high above the buried loop (in terms of XRMIN, XRMAX, YRMIN, YRMAX,
ZR), (4) to specify the aspect ratio of the buried oop, K

The CARCUP program calculates and prints out the mutual inductance for the number of data point specifiea, Each successive data point represents the mutual inductance of the XMTR/RCVR through the buried loop by movirig along the positive Y -
direction (along the roadway lane) by $1 / 10$ of the XMTR length. The results are in units of relative mutual inductance and to get real answers, answer "yes" when the program asks if you want more de
2. Method of computing. The inputs to the program (XMAX, YMIN, etc.) describe the area program calculates the mutual inductance between he entire buried loop and portions of the swept-out rea using elements of area $1 / 10$ the pickup loop

$$
\begin{aligned}
& \Delta X=(X M A X-X M I N) / 10 \\
& \Delta Y=(Y M A X-Y M I N) / 10
\end{aligned}
$$

The swept-out area is divided into portions
dimensions $\triangle Y$ by (XMAX-XMIN) The having dimensions $\triangle Y$ by (XMAX-XMIN). There are ($10+$ "how many steps") portions. The mutua portions.
Summing the values of 10 successive portions one particular position of the pickup loop.
The CARCUP program sums the corresponding and multiplies them together to get the overall mutual inductances. There are two main subroune procedures us. WXCUP. Withe mutual induc

BIZ subroutine, the ilux density is calculated for that corner of the area XA by YA which is closest to the point (XMIN, YMIN). With respect to the
FLUXCUP subroutine, FLUXCUP in the LOOPS FLUXCUP subroutine, FLUXCUP in the LOOPS
program differs from FLUXCUP in the CARCUP program, the difference being in form only for the purpose of minimizing data handling.
D. Optimum Relative Configuration of ThreeLoop AVM System

1. Buried loop interaction with adjacent having aspect ratios of ≥ 1. However, the practical a spect of packing the buried loops as densely as possible is a primary consideration. At any rate, pacing of the buried loops of greater than $4 \times \mathrm{K}$ spacing of the buried loops of greater than $4 \times \mathrm{K}$
(i. e., 2 times the loop width along the lane) results in a coupling of less than 5% of the same loops superimposed
2. XMTR and RCVR direct coupling. If it is presumed that the XMTR and RCVR loops "ought to be the same," then the results seem to favor loops
having aspect ratios ≥ 1. That is, the loops should having aspect ratins ≥ 1. That is, the loops should toward one another. The XMTR and RCVR on the vehicle are small compared to the buried loop. avoid extending beyond the buried loop.

At any height, sensors having more turns on smaller loops are as effective as ones with
large loops having fewer turns. At any height the coupling varies with later position, being high near 0.8ℓ from center to end of the buried loop. The
about 10%.

If a sensor loop is placed lower than the optimum height, it results in overcoupling and relaloop packing density. This is most pronounced for buried loop aspect ratios much greater than pickup loop size. XMTR and RCVR coils of three-loop systems whereby the smallest movi coil may be made the optimal for signal to "noise" ratio.
3. Expected real-life signal levels. The following configurations and conditions are as-
sumed: (1) Roadway with lane width $2 \ell=3$ meters, (2) buried loops with aspect ratio $\mathrm{K}=0.1$ and separated by $4 \times \mathrm{k} \times \ell,(3)$ pickup loops (XMTR
and RCVR) having sides $\mathrm{P}=0$. 1ℓ, height $Z=0.1 \ell$ and separated by ℓ. (4) All loops have 10 turns each of $\# 27$ wire and resistivity of $1.36 \mathrm{ohm} /$ meter. (5) The transmitter is produeing 100 kHz at 1 am microhenrys. (7) Mutual inductance of two buried loops 20.25 microherrys. (8) XMTR/RCVR selfinductance 7.87 microhenrys each. (9) Direc microhenry. (10) Three-loop system maximu mutual inductance 1.24 microhenrys. (11) Voltage signals produced by XMTR/RCVR direct coupling three-loop system -0.78 mV sin wt.
4. Comments. The direct coupling of the the 4. Comments. The produces a valage at ransmitter and ent peak amplitude, having th
receiver of contan transmitter frecuency

0 degrees. The three-loop system response nvelope is a function of the vehicle speed. envelope squency is shifted 180 degrees
output freque
respect to the input current frequency. respect to the input cut

REFERENCE

Zottarelli, L. J. "Burried Loops, " PRL Tuteroffice Memo addressed to G. R. Hansen, 1974

END

[^0]: Costs as of 1974

[^1]: Costs as of 1974.

[^2]: Telephone mileage
 $\$ X X X X X X$ plus $\$ X X X X X$ per year (each)

