U.5. DEPARTRMENT OF JUSTICE
LAV ENFORCEMENT ASSISTANCE ADMINISTRATION

NATIONAL GRIMINAL JUSTICE REFERENCE SERVICE
WASHINGTOR, D.C. 20531

NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards® was established by an act of Congress March 3, 1901,
The Bureaus overall goal is to strengthen and advance the Nation's science and technology
and facilitate their effective application for public benefit. To this end, the Bureau conducts
research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific
and technologicul services for industry and goverament, (3) a technical basis for equity in trade,
and (4) technical services to promote public safety, The Bureau consists of the Institute for
Basic Standards, the Institute far Materials Research, the Institute for Applied Technology,
the Institute for Computer Sciences amd Technology, and the Qffice for Information Programs.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United
States of a complete and consistent system of physical measurement: coordinates that system
with measurement systems of other nations; and furnishes essential services leading to accurate
and uniform physical measurements throughout the Nation's scientific: comumunity, industry,
and commerce. The Institute consists of the Office of Measurement Services, the Office of
Radiation Measurement and the following Center and divisions:

Applied Mathematics — Electricity — Mechanics -— Heat — Optical Physics - Center
for Radiation Research: Nuclear Sciences; Applied Rudiation — Laboratory Astrophysics”
— Cryogenics © -~ Electromagnetics ¥ -~ Time and Frequency “.

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to
improved methods of measurement, standards, and data on the progerties of well-characterized
materials neéded by industry, commerce, educational institutions, and Governrent; provides
advisory and ressarch services to other Government agencies; and develops, produces, and
distributes standard reference materials, The Institute consists of the Office of Standard
Reference Materialy, the Office of Air and Water Meusurement, and the following divisions:

Analytical - Chemistry — Polymers — Metallurgy - Inorganic Materials — Reactor
Radiation - Physical Chemistry.

THE INSTITUTE FOR APPLIED TECHNOLOGY provides technical services to promote
the use of available technology and to facilitate technological innovation in industry and
Government: cooperates with public and private organizations leading to the development of
technological stundards (including mandatory safety standards), codes and methods of test;
and provides technical advice and services to Government agencies upon request. The Insti-
tute consists of the following divisions and Cemers:
Standards Application and Analysis - Electronic Technology — Center for Consumer
Product Technology: Product Systems Analysis; Product Engineering - Center for Building
Technology: Structures, Materials, and Life Safety: Building Environment: Technical Evaluu-
tion and Application -~ Center for Fire Research: Fire Science; Fire Sufety Engineering.

THE INSTITUTE FOR COMPUTER SCIENCES AND TECHNOLOGY conducts research
and provides technical services designed to aid Government agencies in improving cost effec-
tivertess in the conduct of their programs through the selection, acquisition, and effective
utifization of automatic data processing equipment; and serves as the principal focus within
the executive branch for the development of Federal standards for automatic data processing
equipment, techniques, and computer languages. The Institute consists of the following
divisions:

Comptiter Services — Systems and Software — Computer Systems Engineering — Informa-

tion Technology.

THE OFFICE FOR INFORMATION PROGRAMS promotes optimum dissemination and
accessibility of scientific information generated within NBS and other agencies of the Federal
Government; promotes the development of the Nutional Standard Reference Data System and
a system1 of information analysis centers dealing with the broader aspects of the National
Measurement System; provides appropriate services to ensure that the WBS staff has optimum
nceessibility to the scientific information of the world. The Office consists of the following
organizalional units:

Office of Standard Reference Data —~ Office of Information Activities — Office of Technical

Publications - Library —~ Office of International Relations —- Office of International

Stundards,

 Headguarters. and Laboratories at Gaithershurg, Maryland, unless otherwise nofed; mailing address
Washington, D.C. 20234,
* Located mt Boulder, Colorade 80302

Operating System Structures to Support
Security and Reliable Software

Theodore A. Linden

Institute for Computer Sciences and Technology
National Bureau of Standards
Washington, D. C. 20234

U.S. DEPARTMENT OF COMMERCE, Elliot L. Richardson, Secrefary
Edward O. Vetter, Under Secretary

Dr. Betsy Ancker-Johnson, Assistant Secretary for Science and Technology
NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Acting Direcior

Issued August 1976

National Bureau of Standards Technical Note 919

Nat. Bur. Stand. (U.5,), Tech. Note 919, 51 pages (Aug. 1976)
CODEN: NBTNAE

U.S. GOVERNMENT PRINTING OFFICE
WASHINGTON: 1976

Fot sale by the Superintendent of Documients, U.S. Government Printing Office, Washington, D.C. 20402
(Order by SD Catalog No. C13.46:919). Stock No. 003-003-01658-6 Price $1.25
(Add 25 percent additional for othér than U.8. mailing).

TABLE OF CONTENTS

ABSTRACT . vt it r e e e nas ettt e de i, 1
1. INTRODUCTION. .t i ine i it s ceranranens e e a et ars e ey 1
T.1 Security and Reliability. cu it it it e it i e tr et ianernananeeen 2

1.2 Overview............. st e a e pees 2

T.3 Introduction o Basic TarmS. . vy e i ieerierensanonneearaneesearonsnsens 4

2. SYSTEM SECURITY AND RELTABLE SOFTWARE ... et e vveiinnerinartenrrenenteanes 5
2.1 System Security RegUIiremENtS . . er ittt terersr et asaraesnnnnencnn 5

2.2 Reliable SoftWarE. c i it v e et s it s et e 6

2.3 Reliable Software for System SeCUrity.. vttt ittt eeeneennennenas 7

3. SYSTEM PROTECTION MECHANISMS . st ittt it i iievaey cverrirrnessesvnnsosncnsorannns 7
3.1 Protection Models and Protection Domains................ Cereees e 7

3.2 Small Protection Domains. ..viviieevicioccinieerrnenernncnonas e 8

3.3 Protection Domain SWwitChing. ..o e i erianrenraronernnrecosnnnsrscnanas 9

4. PROTECTIQON FOR RELIABLE SOFTWARE..........cv... i veasearrane e itaenceianasens 12
4.1 The Decomposition of Complex SyStemS ... cer i iiiiierivanrunnnanranns 12

4.2 Protection Should Be Distinct From Functionality...c.oovvieeiiiinnnnran, 13

4.3 Protection Information in System Design and Documentation................ 14

4.4 Value of Small Protection Domains. ... verrieienr e rrrvanvernrineincacanns 14

5., SMALL PROTECTION DOMAINS FOR SECURITY . ivit it i ctanernssvanaasonnsrnesnsrenns 15
5.7 Flexibility vs. SeCUritY. v e er it crinaaionnonenecen sovuavineraosens ih

5.2 The Trojan Horse Probiem...coor it rivrvencncnns D 16

5.3 INEermed iaries e i i e eronreraressassrononetnesnsenronarresiasossonassns 17

6. CAPABILITY~BASED ADDRESSING. .\t iurtcrrnevesr s e crenesssnsonnarensoscinsnsnsses 18
6.1 The General Concept of Capabilities.. vveiinrriinnnanins e, 12

6.2 The Use of Capabilities and Capability-Based Addressing.......iovuvenvans 19

6.3 Implementations for Capability-Based Addressing.......... civivnonanannan 20

7. IMPLEMENTING SMALL PROTECTION DOMAINS. (i it iieirn e iiia e irnains sl 22
7.1 Capability-Based Implementation of Efficient Domain Switching........ ceed 28

7.2 Directories for the Storage and Sharing of Capabilities........ Ceweeaaien 24

7.3 Correct Implementation of Protection..c..coiviviiiiiiiinsnnnn reraiaeses 25

7.4 Controls Qver the Movement and Storage of Capabilities..........ovvvivns, 26

8. FLEXIBLE SHARING.......cvvvivninennnnss e e e e e e e 27
9. EXTENDED-TYPE OBJECTS....... e ta it e et aE i Lo 29
8.1 Background on Typed Objects........ P e PPN e 29

9.2 Nature of Extended-Type Objects.......... et i et itene et aeas 30

9.3 The Implementation and Protection of Extended-Type Objects........coo.... 3

10. TYPED OBJECTS AND PROGRAM MODULARITY............. B Ferraae e, 32
10.1 Background--Horizontal and Vertical Modularity.......covvmvmivianvininy, 33

10.2 Programming lLanguage Support for Modularity............ R S 34

10.3 Extended Types as Modules for Reliability.......... i evestarraiaaens ceves 35

T1. CONTROLLING AND MONITORING ACCESS TO OBJECTS. .. vviiinvaverrvuneresnns eraas e 36
11.7 Non=Discretionary Controls......veus. PSS R 36

11.2 Security Classification Systems.c.vonianvsnnn v iesatteseabasaaariniacina 37

12, CONCLUSION. t vttt ittt tse s s nansrranranonssnnns Ceeraaniaas s 39
KN O EDGMEN T S v vttt eie et e teane e s ennsanconrasossonestonuesnsasseranssones coea 80
REFERENCES vt et evivi e aviscirr s vy ety ree ety s 41

iii

OFFRATING SYSTEM STRUCTURES TO SUPPORT
SECURITY AND RELIABLE SOFTWARE

theodore AL | inden

security has become an fmportant and challenging goal in the design of computer systems.
This survey focuses on two svstem structuring concepts that support security: namely, small
protection domains and extended-type objects. These two concepts are especially promising
because tney also suppoert reliable software by encouraging and enforcing highly modular
software structures--in hoth systems softwave and in applications programs. Small protection
dorains allow each subunit or mndule of a program to be executed in a restricted environment
that can prevent unanticipated or undesirable actions by that module. Extended-type objects
provide a vehicle for data abstraction by allowing objects of new types to be manipulated in
terms of operations that are natural for these objects. This provides a way to extend system
protection features so that protection can be enforced in terms of applications-criented
operations on objects This survey also explaine one approach toward implementing these
concepts thoroughly and efficiently--an approach based on the concept of capabilities in-
corpurated into the addressing structure of the computer. Capability-based addressing is
seen as 4 practical way *o suppert future requirements for security and reliable software
without sacrificing reguivements for pe: Tormance, flexibility, and sharing.

Key Words and Phrases: Capability, capabilitv-based addressing, computer security,
extended-type objects, operating system structures, protection,
veliable software, veliability, security, small protection
domainz, types.

1. INTROCDUCTION

For the year 1974, one source has identified 339 cases of computer-related crime. 1/
The average loss in tho 339 incidents was $544,000. This average ic not distorted by a
few exceptional ceses-~the median Toss was very cleose to the average. Most of the in-
¢cidents involved simple fraud by an ompTovee who had access to computerized financial
records. In 857 of the cases, management did not report the incident to the police-~~
often because publicity about it would have been embarrassing.

The fraud is usually possible bescause of some oversight in an applications system.
A simple oversight, for exawple, may allew a clerk to feed data to an accounts payable
system in such a way that no one notices when checks are diverted te a dummy corpor-
ation,

If the amount of computer-related fraud is to be controlled, then it is necessary to
avtomate the concepts of segregated duties, independent checking, and accountability for
actions that are typical in manual accounting systems. These concepts are often much
less rigorously applied when financial records are computerized., While the structure
of current computer systems may not be to blame for this neglect of sound accounting
practices, cirrent oparating systems do 1ittle to encourage the segregation and inde-
pendence that is desirable when processing fiuencial records. New operating system
structures could make it much easier and less expensive to enforce these basic principles
of sound accounting practice. Furthermore, white current instances of computer-related
fraud have not exploited security weaknesses in the underlying operating system, it is
well-known that such weaknesses exist and that a programmer could exploit them to bypass
the controls in applications programs. Thio rovements to security that do not con-
sider the security of the underlying operati»: —ystem may only deter the small-time

1/ This information is based on conversations with Robert Courtney. Courtney reports that
details on these cases are in his possession, but that they cannot be made public.
The work of [Parker 751, based on public reports, supports a similar conclusion about
the average loss in computer-related crime.

criminals. The increasing amount of valuable and private information processed by
computers implies a long-term need for much more rigorous security controls in the
operating system. Those responsible for protecting information affecting the National
Defense have been facing this problem for some time,

1.1 Security and Reliability

In the attempt to design computer systems that support more rigorous security, a
narrow focus on the security problem alone is not advisable. While the cost of inadequate
security controls may be several hundred million dollars a year 2/, these costs are
only a small fraction of the total costs attributable to faulty and unreliable software.
Furthermore, from the viewpoint of computer design, a technical breakthrough on both
the security and the software reliability problems appears to be as feasible as a
breakthrough on the security problem alone. While we are striving for secure computers,
we should also strive for more reliable computers and for computers that make it easier
to implement reliable programs--including but not limited to, the programs that do
accounting and auditing for security.

Many security controls might not be cost-effective if similar controls were not also
needed to improve th2 reliability and the overall performance of the system, In parti-
culars :

o The complexity and disorganization of -most existing operating systems

make it very difficult to achieve security. To guarantee security--

and especially to maintain security over the lifetime of the system--
operating systems must be structured so that interactions between system
modules are more clearly defined and more closely controlled. This same
contro] over the interaction of modules is also needed for reliability.
Furthermore, a well-structured system is easier to maintain and modify;
and in a well=structured system it js likely that overall performance
can be improved.

o The protection mechanisms needed for security can also be used to enforce
software modularity, Such modularity would improve the reliability and
correctness of the software. In particular, debugging and testing would
be sasier to the extent that the effects of an ervor can be con.ined within
the module where the error occurs.. Since debugging and testing often account
for half of a program's cost, these protection mechanisms might help reduce
programming costs.

o In some applications a system crash is a security problem, In any case,

an operating system that is built to provide security must eliminate

most of the sources of software-induced system crashes. Furthermore,
hardware malfunction and inadequate fault recovery strategies ¢ve po-
tential sources of many forms of security violations. Thus, there is
enough overlap between the requirements for security and the requirements
for high system availability so that it is reascnable to attempt to solve
both problems at the same time,

1.2 Qverview

It is an ambitious goal to desion a computer system that satisfies rigorous security
requirements, supports reliable soffware and at the same time meets the performance,
flexibility, sharing, and compatibility recuirements that are needed to make a computer
competitive in the marketplace. Decreasin: hardware costs are making these goals much
more feasible. This survay focuses on two system structuring concepts that promise
tgfhelp solve some of the remaining software problems. These two concepts are jden-
tified as:

2/ The cost of the frauds identified by Courtney was almost $200 million for the one year.
The total cost of all computer-related fraud may be far higher. Furthermore, the
increased computer processing costs reeded to protect classified defense information
has been estimated at $100 million a year [Anderson 72].

2

i
L

(1) small protection domains, and
{2) extended-type objects.

The survey also covers capahility-based addressing as a way of implementing these
two concepts,

SmaLL PROTECTION N SYSTEM
DomaINS SECURITY

] >

CAPABILITY-BASED _ ExTENDED-TYPE N RELIABLE

ADDRESSING OBJECTS SOFTWARE
\\

~
FLEXIBLE SHARING

Figure 1 - Overview

Figure 1 shows the interactions between the principal ideas covered in this survay,
Arrows between terms in the figure are to be read as meaning “"supports” or "facilitates.”
{Definitions of the ferms are given in Section 1,3.) Figure 1 will be repeated through-
out the survey with boldface terms and arrows indicating topics far current discussion,
and terms entirely in lower case and dashed arvows indicating topics covered previously.

Figure 1 is not meént to iqdicate that capability~based addressing is the only way
to support small protection domains and extended-type objects. It is the most frequently
advocated way for a system to suppart these concepts thoroughly and efficiently; and it

is the one covered in this survey. Research on compile-time support for these con-
cepts is also in progress, but it is not covered in this survey,

The arrows in Figure 1 must not be interpreted to mean "guarantees," Security
and r¢11ab1e software are both dependent on many other ideas that fall outside the scope
of this survey and are not listed in this figure. Nevertheless, the ideas discussed
here would go a long way toward building an.environment where it would be realistic to
expect that both security and very reliable software could be achieved.

Sections 3 to 5 of this survey cover small protection demains and their usefulness
for reliable software and security. Sections 9 to 17 cover the uses of extended-type
objects, In the middle, Sections 6 and 7 deal with capabilities and capability-based
addressing. The two sections on capability-based addressing give a brief survey of a
very comp1e§ subject. The reader who is interested in more details on capability-based
addressing is raferrved to [Fabry 74] and [Saltzer 75]. Section 8§ indicates that
flexwp]e sharing is not only compatible with the other ideas listed in Fiqure 1 but
even interacts favorably with some of them. Readers who are interested in reliable
software but not in security may skip Sections 5 and 11. Readers who are only con-
cerned about security in a narrow sense may omit Sections 4, 8, and 10.

) Readers should be aware that the ideas discussed in this survey are quite contro-
versial. Many of my colleagues would disagree with one or more aspects of Figure 1.
While I feel that the interaction of all of these ideas is crucial in order to attain
the broad goals beirg addressed, many other approaches have been proposed which omit
parts of Figure 1 or give different interprotations to some of its terms. In particular,

3

system security is often pursued in a way which is much lesg closely linked withrve~
liable software. Less ambitious approaches to system security may be adequate i1 data
suaring is rettricted and security requirements are narvowly defined,

1.3 Introduction to Basic ierms

This section provides introductory definitions for the terms appearing in F}gurg 1
and for some related terms. These definitions may be skipped by rgaders who are generaltly
tamiliar with the subjects baing covered, Uther rea@ers can use tne?e d§f3n1t1on§ to
cbtain an initial understanding of the relations depicted GPJF}gurﬁ :.‘.«hx$ section
may also be used as a glossary while reading the remaindey of the survey.

. N . LY H v 3 Ayt
Geco daia ond pregrams) from accidental o

[RERATE A

SECHRITY - The protection of rosvurces Lined
malicious modificatian, desteuction, or di

SYSTEM SECURITY » The state of a canpuier fyston (hardware wnd ?vauaVHE thay make§ it pos-
sible to provide reasonabie assurance of soourity, systam aecinity p?@su??ﬁies_that
appropriate steps are taken for ghy }gaj pr§&tﬁ?10ﬁ RN tbc_ 3myu%e{3 rgr f“?’“t19gﬁd??
maintaining the system, and for idertivication and avthentication of users ot the =ysten.
RELTABLE SOFTWARE - Software that orovides services which ave [usaiie,
{3} trustworthy, and (4) available on demand,

PROTECTION MECHANISMS - Syste

goten Teatres that are desigred oo protecl against unauthyrized
or undesirable access to data.

qathor wiEh any ather active entities thal act on
SUBJECTS - Users of a computer systen togethar wils any athey JRLTV(Qﬂ:i‘tzﬁx ;ﬁffpz'w»?pm.,
behalf of users or on sehalf of the cystemy oy erample, profestet, JOUT, 20 Brocteiiifes nay
pe subjects. Subjects ave also objeobs of the systen.

Lo entities such
G OrBEIOUYCEs

gy the o

OBJECTS - ldentifiable rescuries o aﬁt" N :
a5 Files, progreps. semaphoves, and divectories dve obiod
such as tomery hlecks, disk tracks, termingls, contro

MODES OF ACCESS = The aot of distinct operations thaf the ﬂV“fgLEiﬂN mechide NG recogrize as
possible aperations on ap object. "Read,” Pwrite, " and “appﬁﬁnq are ible mgdgt ef
access to a procedure, and "debit account” 19 a poveible node ot acoess i A obiect of type
"hank account record.”

i { AT IEG o Semd modos 0L Ancess
ACCESS PIGHT - The vichi fo tee an ghlect aounrding Lo ong 01 106 reCugrifes TGy O dicass.

B X L eI F. [T FECRN S +

PROTECTION DOMAIN « An envivommanpt or contesh thal dufiees the s8? ol GLress rights that
@ subject has to ghisgts of the uysiea.

4 it . g Yeor T Ay G T

SMALL PROTEECTION GOMAINT « Pretection domains ihat Ly LLh aoensss

rights fur only those objects that ave nseded 0 2000

different
spetions apnticabia to ob-
a1 tagable neerations on the

TYPE - Ohjogts
types of objects. A type i 4
jects of that type. Two obieg
gbiects are different,

aye plaseifing

y typa,
Fined by dsoning i %
et Fyne d

1
g oape of ditd

[‘:
£
t

appticationg prayrass 10 du}jﬂ@ ew types and
to create obincts of these newly defined tvnes, then such abjacis ave gat;cw g;tendgu—f{pg
objects, The pratection mechanisms should conivn Gbe of oended Lype In

terns of the operatione defined by the extended type.

LEVELS OF ABSTRACTION - Compulers cap S0ive Ausdn prebaems eon o 3 thﬁar_cfagfruw;b
circuits only manipulate bits. The vap between the human probiems gnd the ?lts sbspréggid
by many concepts starting from concepts such as data bise models and qu?ry‘funggggts a
are fwplemented in terms of other concepts suc@ as SLacks, segnents, and sagueng}nq aper-
ations that are ultimately implementsd as machine words and then as bits. dne ugncepz is
said to be at o higher level of abstraction than other concepts if the concept organizes

4

ins?ances of the Tower-level concepts so that they can be manipulated effectively without
having to understand the details of how the Tower-level concepts interact. Levels of ab-

straction can be realized as types. The isolation of different levels of abstraction is a
current goal of much work on programming methods and on system design.

CAPABILITY - A token used as an identifier for an object such that possession of the token
confers access rights for the object. A capability can be thought of as a ticket. Modi-
fication of a capability {except to reduce its access rights) is not allowable; hawever,
unlike the case for tickets, reproduction of a capability is legal.

CA?ABILITY-BASED ADDRESSING - The use of capabilities to address and control access to
objects even when the objects are stored in the primary memory of a computer system,

USER - An individual who interfaces with the computer system and can be held accountable
for his actions. .The term covers all uses of the system whether to submit data, queries,
or other transactions; to execute programs; or to operate or maintain the system.

USER JOB - Used here as a general term for a unit of processing services performed on
behalf of an identifiable user.

2.. SYSTEM SECURITY AND RELIABLE SOFTWARE

Figure 2 indicates that this section introduces the terms system security and re-
liable software, and it covers the relation between them.

SMALL PROTECTION SYSTEM

/ DomaIns — SECURITY
| ><<

CAPABILITY"BASED—-} ExTeEnDED-TYPE S RELIABLE
ADDRESSING OBJECTS SOFTWARE

FLEXIBLE SHARING
Figure 2 - System Security and Reliable Software

2.1 System Security Requirements

Corporate financial records, personal information as defined by privacy legislation,
and classified military information are examples of information which must be protected
during computer processing., It is hard to give a precise definition of computer
security because specific security requirements depend so strongly on the larger human,
social, and financial systems that are served by the computer processing. In general,
security is concerned with any unauthorized or undesirable modification, disclosure,
or destruction of information. In some situations (e.g., air traffic control), it
is aeven concerned with a potential loss of service that would make critical information

unavailable. 3/ For many installations, the unauthorized modification of information
is the most serious security threat.

3/ Typically, computer security is also concerned with protecting the investment in the
computer itself; however, this is mostly a matter of physical protection and is not
discussed in this survey.

Security must be concerned with any path by which information could be modified, dis-

~losed, lost. For example, security requires that the system‘s errator interche be
éég?ggedogo that users aanﬁot easily spoof the operator by sending him a coupterfe1t mes~
saqe‘that appears te be a system message. Sgcur1ty must also be concerred with the 1
correctness of protedures for system initialization and for fau?t_recqvery and restart.
For example, on some current systems the checkpoint/restart fac11}ty is a.sgcur3ty
weakness because the checkpoint data is not adequately protected {rom modification by
users.,

While security nust be concerned with all paths which might provide unauthorized
accese to information, some aspects of the overall security problem are clearly beyond
the control of a central computer system and can @e‘reg§rded as separate prob]ems, ‘
Gengrally speaking, communication security, identification of users, and physical pro-
tecticn of the computer site are distinct problems, Othgr problems fa}l on the bordor-
line. For example, the security of most systems can easily be broken if an operator
can be bribed, This might seem to be autside the contrn! of the hardware/software
system. However, if a system is designed for security, it is reasonable to expect that

it should be designed so that the operator's command 1anguage.pr9vidgs a pratection
enviranment that carefully 1imits his privileges, Clearly this impiies a major re-
thinking of the role of the operator with respect:to the system. HNevertheless, it
will he necessary tu have some control over the damage that can be done by a corrupt
pperator--or an incongetent one, Similar comments apply to system programmers and
system administrators.

This survey does not describe specific solutions to the above_security pyuplems;
rather it describes operating system structures that support effective and’eff1c1ent
solutions to a wide variety of security problems, Other surveys and tutorials con-
tain more details on specific security problems [Saltzer 74, 75, Popek 74b].

2.2 Reliable Software

Reliable software plays a dual role in Figure 2. 1t is a weans to s&cuvity,
and it is an end in itself. Security depends in part on the veliability of software;
nowever, the general problem of unreliable software is much broader than the security
probien.,

Reliable software nrovides services that are adequate for the intended appiication
with respect to bedmyg

1} usable,

2) vorrect,

3} trustworthy, and

4} availahle on demand,

T~ T

Recent research on reliable hardware has been able to focus on the final aspect of
reliability; namely, the constant availability of services. With respect to sof&ygrf
seryices, a broader meaning tor "reliable" is needed because it 1S 5till nat‘rga stic)
to presuppose that softwere sarvices are usable, correct, and t?ustworthy. Ycuble means
that the user receives services that are effective for his application. gorvect means
that the software meets its functional specifications. If the specifications are in-
complete, then correct software may nof be usable. Trustvorthy means that there is a
minimum level of services that is provided correctly, and there is an gfieqt3ve way to
ovaluate or measure the performance of the software with vespect to this minimum fevel
of service. Softwarc may be corvect even if there is no effective way to demaqstrate
its corrpcinessy however, trustworthy software must be st?uctured s0. that testing,
auditing, and/or proofs of correctness can be used to achieve a reasonable level of
confidence in tho software,

There is wuch current research aimed at relieving the problem of unqelidble soft-
ware, This survey concentrates ou protection mechanisms and other operating system
structures that enhance the reliability of software--both systems software and appli-
cations software. MNevertheless, wark on operating system'structures to support reliable
software is almost inseparable from recent work on designing modular, well-structured

6

programs. furthermore, appropriate operating system structures can improve the results
obtainable from many other software developrient techniques--including techniques for
program management, testing, validatior, proof, and maintenance.

2.3 Reliable Software for System Security

Reliable software is not only an end in itself, it is also a means to support system
security. Typically, security depends on the reliability of much of the system software,
and that reliability must be preserved through many versions and modifications of the
software, Faulty system software is the system security problem that has been most
difficult to deal with,

Security's dependence on the reliability of software can be reduced if the hardware

and software are structured s¢ as to reduce the size and complexity of the software needed
to guarantee security. Security kernels that concentrate all the security-relaevant code
into a small, well~identified part of the system have been proposed [Schiller 73,
Popek 74a, Lipner 74]. Yet, even with ideal hardware and software, many security
concerns are dependent on a substantial amount of software, This survey describes
cperating system structures that support security directly--and also indirectly by
improving the reliability of the security-relevant software.

3. SYSTEM PROTECTION MECHANISMS

While security and reliability requirements vary greatly from one application to
another, the protection mechanisms that are built into the hardware and basic software
of the computer system cannot be redesigned to meet the needs of each application., Thus
it is desirable to have a basic set of protection mechanisms that are versatile enough
to meet the requirements of many diverse computer applications. Even a single in-
stallation usually has a wide variety of security and reliability requ’.-ements.

The protection mechanisms of most third-generation computers were designed to
confine user programming errors in order to prevent such errors from damaging either the
system or other users. These protection mechanisms are based on a distinction between
a privileged supervisor state and a non-privileged problem state {instructions that
halt the machine or modify certain registers cannot be executed from the non-privileged
problem state). This basic protection mechanism improves the reliability of system
software by protecting it from the most obvious source of unreliability; namely, user
programming errors. However, it does nothing to help the system protect itself against
its own errors. - Furthermore, while this protection mechanism could theoretically pro-
vide a basis for security against deliberate subversion of the system, in practice
the problems of securing a computer system are so complex that many researvchers have
concluded that more sophisticated protection mechanisms are needed before rigorous
security can be expected at a reasonable cost. 4/

3.1 Protection Models and Protection Domains

The versatility of a system's protection mechanisms can be characterized abstractly
in terms of a protection model. A protection model views the computer as a set of active
entities called subjects and a set of passive entities called objects, The protection
model defines the access rights of each subject to each object. This protection model

4/ A variety of other protection features such as passwords and activity logging have been
included in most computer systems. A combination of such protection features can be
used to provide deterence against some security threats; however,; these other pro-
tection features can be bypassed if the basic protection mechanisms are eihverted.
Despite many serious efforts to correct flaws in the protection mechaniums of current
computer systems, it is still true that no computer system has withstood determined
efforts to bypass its internal security controls by someone who 1S given user program-
ming access to the system, Such penetration efforts have been sucéessful against
virtually all commercially~available operating systems,

7

can be represented in the form of a protection matrix [Lampson 71, Graham 72] as ex-
emplified in Figure 3. In this protection matrix, subjects are associated with rows
of the matrix and objects are associated with columns. For each subject-object pair,
the corresponding entry in the matrix defines the set of access rights that the sub-
ject has to the object. Figure 3 shows that subject C may read or execute object X.

0BJECTS

o X

o

WO e G U S
o

execute
read

Figure 3 ~ A Protection Matrix

Access rights represented in the protection matrix also control changes to the
protection matrix itself; for example, a subject with "delete" access to an object can
eliminate that object from the protection matrix., Subjects also appear as objects in
the protection model so that one subject can have access rights to another subject.

For example, one subject may be allowed to transfer control to another subject by using
an "enter" access right to the other subject.

A protection domain defines the set of access rights that one subject has to.the~
objects of the system, A protection domain is represented as a row of the protection
matrix. The term “protection environment® is used as a movre general word that 1s.sxm11ar
to a protection domain except that a protection environment a}so includes everyth1ng ?hat
a subject might cause to be done on its behalf by another subject. A protection domain
is a more restricted concept and includes only access rights to ohjects that are accessible

by the subject.

Most third-generation computer systems support a protection model in which the sub-
jects are basically the authorized users of the system, ~The supervisor or operating
system is another subject that typically has total access to all objects in the system.
In these systems every subunit of a user’s program executes in the same protection domain,
and that protection domain has access rights to all objects that the user ever needs. With
this protection model, there is no easy way to lTimit the access rights of specific
subprograms executed on behalf of a user. While the access rights of a protecticn domain
can be increased or decreased, any such change is relatively permanent; and if access
rights are deleted before calling a subprogram, they cannot easily be retrieved when
the subprogram terminates.

Multics introduced thn concept of protection rings which allow each user to execute
in a linearly ordered set of protection domains. In Multics a protection subject is the
combination of the user ID and a ring number. Each user can execute in as many protection
domains as there are ring numbers. The different protection domains of a single user are
Tinearly ordered in that the protection domain of a lower ring contains all the access
rights of any higher ring. Hardware modifications for Multics that would eliminate this
ordering of a user's protection domains are described by [Schroeder 72a, 72b]. This
modified hardware should support the concept of small protection domains described in
the next subsection.

3.2 S$mall Protection Domains

The phrase "small protection domains” is used as a qualitative description of a
certain class of protection models. "The word small is not intended in.a rigid quanti-
tative sense. The basic idea is that the protection domains should be as small as possible
while sti11 allowing programs to access what ti:ey need to access. This idea has been
called the "principle of least privilege."

8

A small subunit of a program typically only needs access to a small number of
objects. If small subunits of a program execute in their own protection domains, then
the protection domains can be kept small., A large program usually needs access to many
obJect§. Thus, protection domains can be kept small only if a large program executes in
many different protection domains and constantly switches between these protection domains
during its execution.

Thg flexibility, ease, and efficiency of domain switching is the primary‘factor in
determining whether protection domains can be kept small and closely tailored to actual
needs. However, other factors are also important; namely:

(1) The size of the protectable objects in the system.

{2) The different ways in which the protection matrix is allowed
to change with time, and the ease of setting up new protection
~omains.

{3) The flexibility for defining different modes of access to objects.

Small protection domains characterize protection models that are very fiexible. The
protection matrix is large and sparse. The protection matrix is large because the pro-
tection system recognizes many distinct subjects (protection domains) and many distinct
objects, The protection matrix is sparse because subjects have access to relatively few
objects and with relatively limited modes of access.

Figure 4 indicates the role of small protection domains with respect to the other
concepts covered in this survey.

SMALL PROTECTION
DORMAINS

|

CAPABILITY-BASED N EXTENDED-TYPE “ RELIABLE
ADDRESS ING OBJECTS ?

SOFTWARE

SYSTEM
SECURITY

FLEXIBLE SHARING

Figure 4 - The Role of Small Protection Domains

The usefulness of small protection domains for reliable software is discussed in Section 9.
A way of implementing small protection domains with efficient switching between them is
sketched in Section 7. The remainder of this section discusses some of the complexities
that are involved in the concept of protection demain switching.

3.3 Protection Domain Switching

It is natural to integrate protection domain switching with the calling of a procedure.

This means that each procedure could have its own protection domain, although every pro-
cedure call does not necessarily involve a domain switch. The phrase "protected procedure"

is‘zs§d when it is necessary to emphasize that the procedure call does involve a domain
switch.

A protected procedure has its own protection domain associated with it. Thus, thé

right to access certain objects may be available during the execution of that procedure--
and possibly only during executions of that procedure., Furthermore, each execution of
that procedure possesses these access rights independent of the calling environment.

9

This is analogous to the concept of an own variable from ALGOL., It also means that a
protected procedure can have a state which is preserved between calls to the procedure--
and that state is independent of the calling environments. In this sense a protected
procedure has a characteristic which has commonly been associated with the word process.
Nevertheless, in this survey the word process is being used for a thread of sequential
execution. A single process is allowed to execute in many different protection domains,
and multiple processes are necessary only when there is the possibility of parallel
execution, . .

A protected procedure appears as both a subject and an ohject in a protection matrix.
It is an object because other subjects may have the right to call it. The right to call
the procedure requires a special access right such as an "enter" right to the procedure.
The protected procedure is also a subject in the protection matrix because it executes in
its own protection domain, : .

A switch to a different protection domain involves a call to a protected procedure.
1f there are no access rights passed as parameters in the call, then everything 1is quite
simple. If the caller has the right to call this protected procedure, then the call takes
place and execution begins in the:protection domain of the called procedure. A return in=
struction triggers a return to the previous protection domain.

The protection matrix in Figure 5 illustrates this situation, User A, executing in
his basic domain, can call the editor. A dictionary (which may be a proprietary fije) can
only be read while executing in the editor's domain. The user can read or write files X
and Y either from his basic domain or after calling the editor; however, he can use the
dictionary to check the files for apparent spelling mistakes only when he has transferred
control to the editor, ’

OBJECTS
EpiTor FiLe X Fice Y DICTIONARY
SUBJECTS
3]
2]
ReEAD READ
User A ENTER WRITE WrRITE
READ ReaD
EpiToR WRITE WRITE Reap
Q
0

Figure 5 - Simple Domain Switch

The domain switch is more complex if access rights to objects are to be passed as
parameters and if the protected procedure is to be reentrant. In this case the call of
the protected procedure results in the creation of a new protection domain--conceptually
this means that a new row is created in the protection matrix. The new protection domain
contains both the permanent access rights of the protected procedure (these are defined by
a template domain associated with the pracedure) and the access rights that are passed as
parameters in the call. The new protection domain is destroyed by the return from the pro-
tected procedure. This situation is illustrated by Figures 6 and 7. In Figure 6 the user
is executing in his basic domain, and the editor's template domain only has the right to
read the dictionary. If the user then calls the editor in order to edit file X, he passes
access rights for file X to the editor. This creates a new domain labeled "“instance of
editor" in Figure 7. Note that other users may be editing other files using other in-
stances of the same editor.

10

OBJECTS : : X
DITOR ILE Fio
SUBmes EY DicTIioNARY
e
8
ReaD READ :
User A ENTER WrRITE' WRITE
EpiTor
TEMPLATE ReaD
0
0
Figure 6 - Protection Matrix Before Call to Editor
OBJECTS EpiTor Frie X Fre Y DicTIONARY
SUBJECTS
e
0
- REaD READ
User A ENTER WRITE WRiTE
EDITOR
TEMPLATE % Reap
INSTANCE OF ReaD
EpiTor I WRITE READ
0
0

Figure 7 - Protection Matrix During Call to Editor

__The gxample in Figures 6 and 7 illustrates a situation invalving mutual suspicion.
If file Y is sensitive, the user does not have to allow the editor access to it, and the
ed1tor can protect the dictionary from direct access by the user, Implementation of domain
changing is simpler when the domain changes involve cnly an increase in accesSs rights
(e.g., a system call) or a decrease in access rights (e.g., a testing program that calls
the programs to be tested). The more general form of domain changing, where Some new
access rights are abtained while others are lost, is needed if the principle of least
privilege is to be enforced.

11

S A S gy

The domain change for a re-entrani protected procedure sounds cumbersome when it
is explained in terms of an abstract protection model. Section 7 suggests an implemen-
tation that allows protection domains to be oreated and destroyed easily and efficiently.

If a procedure has permanent access rights to an object, and if access to that pro-
redure is shared by asychronous processes, thep distinct activations of the procedure
could lead to synchronization problems. In this case 1t would be the responsibility of
the procedure code to handle the synchronization problem. The concept of a monitor
[Hoare 74} ran be viewed as a multiple-entry procedure of this sort which is invoked
precisely to handle synchronization problems.

4. PROTECTION FOR RELIABLE SOFTWARL

1t 45 far more 4ifficult to build a 50,000 Vine proaram than jt is to wri?e 1,000
programs that are each 50 lines long. This phenanencn Teads to rapydTy a@caXat}ng_ccstu
for the development and maintenance of large sefiwere §ystems, @ﬂd it leads to serious
reliability problems due to the difficulty of adeyuateiy debugging and testing a l@rgg ‘
program. Both the reliability and the cost of aﬁftwqre c?u}dvha qyeatly Imprgwed‘xf the
complexity of large programs could be kept more ir line with the size of the program.
5mall proiection domains are one of the wost prowising ways to achieve a breakthrough in
reducing the complexity of large software sysfems.

The emphasis of this sectien is on the re?iﬂbi}ifg uf Targe seftwars sy%teqs. Sinatl
protection domains will not greatly fwmprove the vealiapility of @ %znul? gwa}i program.
{1t is an untortunate retlection on the star ~programming that prugras of a few
hundred lines can take-on the characteristics of daroe COpiex systems,

4.1 The Decomposition of Compiex systens

The complexity of any large cystem is mﬁr&’mandgﬁablg when it is degﬂmpgﬁeq 1ntu
relatively stable subsystems, These subsystems interact with each other, and each %gpj
system is itself made up of parts which interacts however, to a«ctdraxnes§1vg camplgx1ty,
a part of one sybsystem must have negligible 1nteracﬁ1aqa with partaAof dist1nct Subf .
systems. This decomposition of the system can then be 1§efated.gn pach of th? subsyatems
to result in'a hierarchically structured system, Stwon {Bimon 697 has gugges&ed ;hat
this is a common organizing principle of all complex systems, and that if can be observed
throughnut the physical, biclngical, and social sciences,

Hierarchical decomposition or a complex system has fregquently been advocated by
programmers--both under the name of program modularity and of gtrugtured programwming
[Dijkstra 68, 72, Parnas 72b]. while much progress has been wade n recent'yearg,-ﬁhe
programming profession has had a difficult time decomousvng_iarge programs in such a
way that the interaction of distinct subprograms can be detined and anticipated, This
problem has two aspects:

{1) 1t has been very difficult to structure large programs in such a

way that the decomposition does not result in longey and sub-
stantially less efficient programs.

{(2) There is no way of knowing that distinct subsystems are inter-
acting only as planned. The usefulness of progran decomposition
is greatest when there are errors in the system, Qnd it is pre~
cisely these errors that are likely to cause distinct subsys tems

to interact in unanticipated ways.

Some recent -ideas with respect to the first point will be qiscussed in §ection 10.
The second point is the primary reason why a protection system will make a major contri-
bution to more reliable and less costly software.

12

4.2 Protection Should e Bistinct From Functionality

When a large system is decowpesed inte interacting subsystems, it is iwportant to
have limits on the interaction of the subsystems. These limits should not be dependent
on the proper functioning of all of the subsystems. Otherwise, the subsystem interactions
may change precisely when one of the subsystems fails, thus causing the whole system
to degenerate into chaos. Simon {Simon 697 notes that in physical and biological
systems, extraneous interaciions awong subsystems are often limited by physical distance.
Physical distance also provides reasonable isvlation of computer hardware modules. In the
case of large software systems, there has been no equivalent of physical distance to help
control extranecus interactiuns between subsystems, The result is that malfunctions in a
softwere module nore easily propagate throughout the whole system,

It is not feasible to eliminate alt melfunctions from software subsystems, On a
case-by-case basis, careful defensive programming can 1imit the effects of potential
maifunctions. A more general solution is possible by introducinrg a protection mechanism
which 1s distinct from the proper design and functionality of the cubsystems. The
role of the protection mechanism is precisely to prevent malfunctions from spreading
beyond the subsystem where they occurred. To achiasve the desived protection, alwost
every procedure should be run in a protecticn domain that gives it access to exactly
what it needs to accomniish ifs function and nothing more. This is called the principle
of least privilege, Furthermore, protection domain switching must be easy and efficient
because the protection must not inhibii the desirable interactions between subsystems.

A protection mechanism will not prevent every ervor from propagating ocutside of the
erroneous module, Many erraneous rosults of a wodule will appear to be normal results,
and the protection wechanism will have no way of distinguishing these from correct results.
However, with good system design, erroneous results that leok like expected results should
not cause cther modules to behave in unpredictable ways. As long as other wodules con-
tinue to behave in predictable ways, there is & much better chance of finding the origin
of the error, The protection wechanism will guard mostly against the errors that result
from unexpected interaclions ot the modules, These are the errors that are usually the
hardest to trace.

_ Much recent Titerature on progremming sucgests various seans of preventing program
modules from interacting in unanticipated ways. These generally fall into three categories.

{1} Defensive programming practices - Programmers can include extra
code that s designed to detect errors and to check whether modules
are interacting as plasned. For example, parameters and global
data structures can sometimes be checked for consistency and
reasonableness before they are used. The value of defensive
programming is now well recognized; however, it must be used
with discretion for it can increase the camplexity of a program
as well as its execution time.

(2) Language-enforced protection - The procedure, as it exists in many
current programming languages, is a unit of modularity and it can
prevent some unwanted interactions between modules. Qther compile~
time protection features have been advocated in [Morris 73,

Paime 74, Liskov 74, Wulf 74b, 76a] and elsewhere. Much pro-
tection against unanticipated interactions between modules can
be enforced at the time of compilation and linking. Other pro-
tection features--especially those dealing with access to shared
data structures~-are very difficult to implement at compile time.

{3} Protection mechanisms supported hy ‘he operating system - Small
protection domains with the system enforcing protection at run
time have been advocated in [Lampson 69, Needham 72, Price 73,
Wulf 74a, England 74, Spier 73] and elsswhere. Sections 6 and
7 sketch the argument that protection checking for small pro-
tection domains can be enforced efficiently at run tipe.
Efficient system enforcement of small protection domains requires

13

redesign of very fundamental parts of the computer system in-
cluding the addressing mechanism,

4.3 Protection Information in System Design and Documentation

Most current programming practices do not require that the access rights of each
module of a system be explicitly defined. While the definition of this access control
information would be an additional programming requirement, this redundant information
would be very useful as part of a formal system design document since it defines all the
allowable interactions between modules. The definition of the access rights should be re-
garded as an important step of the system design, it would constitute an important system
design document, and it would be executable in the sense that the protection mechanisms
would enforce these controls at run time.

4.4 Value of Small Protection Domains

Small protection demains will be of the most value for the following aspects of the
programming process:

o Debugging Programming errors will be edsier to find because errors
in one module are less likely to manifest themselves by anomalous
behavior of a different module. The correction of one error is also

less Tikely to cause other modules to begin to malfunction.

o Testing Testing one module at a time will be easier since the exe-
cution enviromment of the module is move rigorously defined. Further-
wore, since that environment is enforced at run time, module inter-
actions that were not anticipated in the fests should be prevented.

o Fault detection, recovery, and retry It will be easier to contain
the effects of either hardware or software errors within the exe-
cution environment where the ervor occurred. Since the execution
environment is rigorously defined it will be easier to incorporate
additional redundancy or run-time tests to protect against the re-
maining potential sources of error. Recovery and retry procedures
are critically dependent on discovery of the error before things
have gotten out of control.

0 Maintenance and modification Protection information defines the
set of modules which could be affected by & wodification to the
system. This identifies the modules which have to be examined
to guarantee that any modification will not have unexpected

side-effects.

o Proving properties of programs The origin of the author's interest
in protection was partially to make it feasible to prove properties
of moderate size programs, The length and complexity of a proof
typically grows much faster than the length of the program. This
is because each subunit of the program makes many assumptions
about its execution environment. Typically, much of the rest of
the program has to be used in order to prove that these assumptions
are always valid every ‘time the subunit is entered. If proofs are
to be simplified, it is clear that ways must be found to prove the
validity of these assumptions without using large amounts of other-
wise irrelevant code. Protection mechanisms can provide a simple
basis for this.

Small protection domains cannot be used effectively without some substantial modi-
fications to most existing programming languages. Programs written in existing languages
could still be run on such a system, but they would generally be compiled to execute in a
few large protection domains. - To take advantage of the small protection domains, pro-
gramming langwages would have to incorporate additional features that make it possible to
define and control the protection domains.

14

5. SMALL PROTECTION DOMAINS FOR SECURITY

The economics of building large computer systems is such that the basic protection
mechanism incorporated in the system must be able to satisfy many diverse security re-
quirements. Small protection domains provide a flexible basis for implementing many
different security requirements,)

5.1 Flexibility vs, Security

~ Flexibility is not necessarily desirable for security. In general, security
provisions must be as simple and rigid as possibie in order to minimize the danger of
oversights and of human error, HNevertheless, for security in a computer system, the
flexibility of small protection domainsg is desirable for the following reasons:

(1) System security will be attacked at its weakest point. It makes
little sense to build extramely rigorous security barriers:if there
is a back door into the system that is left open. Some common
security problems are very difficult to solve without a flexible
protection mechanism; for example, small protection domains are
useful if there are to be any software controls to protect against
a fraudulent system programmer or operator, and they are often needed
tc handle the Trojan Horse problem described later in this section.

{2} A serious danger to security arises whenever the need for flexible
protection is underestimated. If protection mechanisms are so
rigid that they prevent efficient processing of information, then
the protection is usually circumvented. A single general protection
mechanism that is used without exception is better than a rigid
one that has many exceptiens.

—
Ak
e

Sound accounting and auditing principles require a system of
independent checking where each individual is accountable for his
actions and no individual is able to modify information in such a
way that the modifications are not detected. S$mall protection
domains would provide a good base for restoring the segregation
of duties and the independent checking that is often bypassed
during computerized record handling. '

{4) Flexible and efficient switching between protection domains
makes it more feasible to build redundant security controls.
As long as the basic protection mechanism itself is extremely
reliabie, redundant security checks incorporated in sofiware
can provide very rigorous security control. The use of redundant
security controls is discussed in subsection 5.3 on intermediaries.
Extended types provide a natural way of implementing this vedun-
dancy and are discussed in Section 11.

{5) Even though the generality of small protection domains may he
hard to understand, specific security contrals can still be simple
and easy to understand. In particular, a flexible protection
system shouid make it easier to build user interfaces that are
tailored to the specific needs of the user. Thus, users of a
specific security system should see a simple security system.

(¢} In the overview {Figure 1 or 4} there are arrows leading indirectly
from small protection domains to system security via reliable
software and extended-type objects. These indirect paths require
very flexible protection mechanisms, and they-are as significant
for overall security as the divect path, For . zmple, the pro-
tection mechanisms that support reliable software make it easier
to build reliable software to monitor security.

15

P

5.2 The Trojan Horsa Problem

Most access controls only guarantee that one user’s information is protected fvgw
access by other users. Unfortunately,.it is often not realistic for a user to trust ail
the programs that execute as part of his own processing. Most users mqke ca]]s to a farge
number of service routines and other programs that the user has not written hgmgéWf.“ 02
most systems, all these reutines and programs execute with the full access privileges ?.
the user. It is possible for these programs to perform actions totally unrelated to the
caller's intent; for example, they may access any file accessible by the user, and on
many systems they can even give away access yights to these files. H?an1e1 Edwargs
has given this general class of problems the very descriptive name “Trojan Horse
because it invoives a foreign or gift program that is brousht within the walls of a
protection domain [Branstad 731, The gift program can then subvert the security of
evarything accessible from that protection domain,

Many discussions of computer security have paid as muc@ att§ntjnn to the Trojan Horse
problem as the Trojans did. When building thick secuv1ty.waf1s, it is conyenwent“to fogget
about this problem; however, it will do little good <o bgilq a new generation of "secure
computers if their security can easiiy be bypassed by a Trojan Horse attack,

The Trojan Horse problew is an extremely ceneral and diff&uult problem. Prograws
that could have subversive routines in them ave wsed constantly. Prograumers and -
systems personnel vroutinely try out vew programe that play sames, print'pxgtures{ 0r.§?3
in the development of better programs. The most gcute danger from thg Trojan Uowse R)njlem
nccurs when someone exscuting with system privileges runs a program given to him by "a
friend"; however, the Trojan Horse problem arises Tor all programs that are e§ecgted o
the system. This includes support programs such as editors, compilers, and library
routines, A user may choose to believe that vrograms supplied with the system are un-
1ikely to act like a Trojan Horsee-but thic shouid he vecounized as a caloulated visk,

It might seem that the Trojan Horse probien ﬁhnu?d-he sq}ved by administrative cun=)
trols. Systems personnel and anyone whg has very senyrtive daia S?nuld gchﬁ run a progra
in their protection enviromment unless they trust it. Unfortunately, this aum1n1atrai7vg
solution is often not practical uniess the system-makes {1 easy to Puﬂ“gntfustﬂd prograns.
in a restricted protection envirament where thoy can do 1itile harm. Finding a reasonchis
solution to the Trojan Horse problem is probably the wost challending espect of develoaing
an adequate set of sysiem security controls,

Three distinct gspects of the Trojan Hovoe problem sus o be distinguishod when o
forgign or untrusted program is to be vun an a system:

(1} The foreign program is expected fo modify censitive data, In this
case the foreign program wust be thoroughly examined =o that it oAt @n
trusted, If the program 15 te alter data, then 1" wmust e trasfed wwﬁh
respect to that data--at least with respect to the particular types of
modifications it is expecied to make,

{2} The foreign program is expected to recd sensifive data but not digc1§se
its contents except to the caliing program. This is called the confine-
ment problem {Lampsen 733, It is difficult encugh to prevent a program
from hiding the information in a file or gther form of stovages howover,
it is even more difficult to prevent it from commmnicating fhe infors
mation via a4 covert chamel. Covert communizations channels can be
created by encoding the information in the pregram's restUras util.
Tization. For oxample, & progran night commmicate ons bit &
anather pregram by using 10 winutes of CPﬁ‘kime if the hitis 1, and
only using a fraction of a second if the bit is 0. The other progran
has to be able tu detect or estimate the execution tiwe of the Tirsi
program--passibly by simply observing the pertarmance Gf the system.
Much higher data rates can be achieyed by encoding the 1nf0rwat1on in
paging rates, disk utilization, or in the locking and unlocking of

16

files. A formal way of approaching this problem is proposed by
[Lipner 751, and partial solutions appear to he feasible. The partial
solutions would reduce the data rate of the communications channels
that a program can use to disclose the information, and they would
increase the probability that various forms of monitoring {edther

of the system or of the program) could detect the communication.

(3) The foreign program is run en behalf of a user who has access to
sensitive data, but the untrusted program i5 not expected to access
any sensitive data. This problem should be easy to solve: however,
the solution is difficult to enforce with the protection mechanisms
available on most existing computer systems.

Security always involves trusting or believing something, "solutign® to the
Trojan Horse problem means that the amount of trusted software is minimized. For a
secure system, solutions to the third aspect of the Trojan Horse problem should be
natural and routine, A solutign to the second aspect--the confinement prohlem--should
be possible and a matter of system tradeoffs. Some help can be provided with the
first aspect of the problem by making it possible to distinguish different modes
of write access to the data. The amount of software that still has to be trusted
depends. on the processing and seécurity requirementsy however, when the amount of
trusted software is minimized, it may be feasible to audit, certify, or prove the
integrity of that software which is to be trusted,

There are twe approaches that have been taken o the Trajan Horse problem, The first
approach is applicable when the primary securit: requirement 45 fo prevent unauthorized
disclosure outside of fixed, relatively broad security classifications. In this case
the Tirst aspect of the Trojan Horse problem is not relevant, and the third can be elimi-
nated by running each user process ina fixed but Timited enviromment, Efforts can thus
be concentrated on solving the confinement problem for the process -as a whole,

The second approach toward selving the Trojan Horse problem is more general, but
it requires frequent changing between protertion domains, . Whenever a partially untrusted
procedure is cailed, that procedure should be executed in an environment that gives it
a winimun nuuber of access privileges-- while ¢till allowing it to carry out its assigned
tasks, This approach to selving the Trajan Horse problem is based on the principle of
least privilege, and is attributable to Daniel Edwards [Branstad 737,

Note that the Trajan Horse praoblem differs from the general software reliability
problem only over the question of whether the called program may be malicious or whether
it may be incorrect. Thus it should not be surprising that solutions to the two problems
involve the same featureg~-frequent switching hetween protection domains to enforce the
"principle of least privilege,”

5.3 Intermediaries

A large class of security probloems can be zolved by putting a Tevel of indirection
between a subject and the object it is sceking to access., Protected procedures that act
as intermediaries can be programmed to control access to an object by checking the calling
process's identification, by checking for spacial capabilities which indicate authorization,
or by performing any -other programmable operation [Hoffman 70, Conway et al. 72]. For
example, an intermediary can implement any of the following security controls:

(1) Redundant controls. Assuming that access to the intermediary is already
controlled, the intermediary can implement a second and redundant check
to guarantee that all access to the object is authorized. Redundant con-
trols are especially useful to contain the effect of errors made by those
administering, waintaining, or using the system. Of course, redundant
controls are useful only if no single act can bypass both contrals [Fabry 73].

17

{2) Restricted access, The intermediary can restrict access to parts of
the object. Field and record level security controls could be handled
in this way. s

{3) Data dependent contrgls. The intermediary can check the contents of the
object before deciding what information to return to the caller,

(4) Auditing and monitoring. The intermediary can create an audit trail or
Tog of all accesses to the object, or it can try to identify suspicious
nr undesirabls patterns of access tn the object.

All these forms of indirect or mediated access are easy to implement as long as the
intermediary can execute in its own protection domain and as Tong as there is no way to
bypass the intermediary. Of course, the intermediary does result in some additional
overhead. Extended types as discussed in Sections 9 and 11 provide a convenjent and
“natural way of dmplementing intermediaries.

6. CAPABILITY-BASED ADDRESSING

Systom support for limited forms of protection domain switching has been implemented
by the ring structure of Multics and by a protection feature in UNIX that allows the
effective user identification to be changed to that of the owner of a program file when
that program file is called [Ritchie 74]. Other approaches to implement domain switching
have been proposed in. [Schroeder 72a, 72b, Price 73, and Spier 733; however, capability-
hased addressing appears to be the simplest, most thorough, and most frequently proposed
way to enforce small protection domains while a program is executing.

Much can ¢lso be done at compile time to enforce the concept of small protection
domains~=in particular, much of the modularity needed for reliable software can be
enforced at compile time. The Tlimitations on compiler-enforced protection appear to be
the following:

(1) Compilers cannot handle many of the problems involved in real~time
sharing of data between independent programs.

(2} Protection enforced at compile time would not help to detect
and recover from failures in the hardware or in the system,

(3) The compiler could only handle part of the protection needed for
security. Isolation of users and some control aver resource
sharing would still have to be handled by the system. &/

Most of the limitations on compiler-enforced protection can be avoided in a network
of small computers if there is relatively 1ittle resource sharing and if most data sharing
is handled by making copies of the data. In such a network, compilers can enforce pro-
tection between program modules, and the reduced amount of resource sharing avoids many
{not all) security problems. Capability-based addressing should be most effective for
large, closely-coupled systems--especially for systems designed to support centralized
data management services or large software development activities.

65/ Tn addition, if security depends in part on the compilers, then the compilers would
also have to be validated for security. While it may be easier to validate a compiler
than to validate an operating system, the validation of several compilers in addition
to the validation of parts of the operating system would make security validatiaon more
difficult, Note, however, that compiler correctness cannot be completely eliminated
as a security concern. 1f the operating system is written in a high level language,
then the correciness of the compiler for that lTanguage i$ a security concern. Further-
move, the Trojan Horse prablem applies to any compiler that is used by anyone with
sensitive information.

18

This section introduces the concept of capability-based addressing, and the next
section covers its use for an efficient implementation of small protection domains. Figure
8 indicates the relation of capability~based addressing to other terms yet to be covered.

SMALL PROTECTION __ SYSTEM
DOMAINS ~

P ~ SECURITY
=7 =
>

CAPABILITY-BASED EXTENDED-TYPE RELIABLE
ADDRESSING _ 7 geuecrs 7 sormuare

7

Fiquré B - Capability-Based Addressing

FLEXIBLE SHARING

h.1 The General Concept of Capabilities

A capability may be thought of as a protected name for an object. While different
systems use capabilities in quite different ways, capabilities generally have the follow-
irg properties:

{1} Capabilities are system-wide names for an object. A subject has
access to an object only if it possesses a capability for that
object. 6/

12} A part of the capability determines the access vights that the
capability allows to the gbject that it names.

—
fad
S

Capabilities can be created only by a special low-level part

of the system, and modification of a capability {except to reduce
its nccess rights) is not allowable. Hevertheless, any subject
in possession of a capability has some freedom to move it, to
copy it. or to pass it as a parameter.

When an object is created, a capability for that object is also created, This initial
capability includes all access rights to the newly-created object.. The creator of the
obiect way give a copy of the capability to other subjects. Recipients of a copy of a
capability may use it to access the object, or they may make other copies of it to give to
gther subjects. When a capability is given to another subject, the access rights of the
rapahility wmay be restricted. Thus each copy of a capability may allow differing access
rights to the object, Except for the idea of amplification as discussed in Section 9.3,

a capability that is passed to another subject cannot have wore access rights than the
capahility fron which it was copied.

6.2 The Use of Capabilities and Capability-Based Addressing

Capabilities as a gencral addressing and protection mechanism were first proposed
by Neanis and Van Horn [Dennis 66]. Since then some version of capabilities has been
used in the CAL-TSS system [Gray 72, Lampson 761, the BCC 5000 of the Berkeley Computer
Corporation [Lampson 697, the SUE system for the 360 at the University of Toronto

" [Sevick 721, the HYDRA system [Wulf 74a, Cohen 75], the Cambridge Capability System

[Heednam 72, 74], and the Plessey System 250 [Cosserat 72, 74, England 741, The reader
should note that wost of these systems are experimental in nature, several of them are no

6/ In the Cambridge Capability System [Needham 73], capabilities are interpreted
relative to the capabilities insuperior processes; and hence, they are not system-
wide names for an object. ,

19

longer in use, and none has yet developed into a successful commercial product. Neverthe-
less, the idea of a capability has encugh appeal so that many different experimenters
continue to davelop and use it. Furthermore, capabilities are similar to descriptors as
jmplemented in systems such as Multics [Organick 727 and the larger Burvoughs systems
[Organick 73].

Soveral systems have used capabilities to facilitate sharing and protection of
objects that are not loaded in primary memory. In these systems, interpretation of
capabilities is done by software, and the primary memory is addressed and controlled by
whatever means i5 available., Calls to the system software are needed in order to)
use a capability or switch to a different protection domain., Typically these calls require
a millisecond or more. 7/

Other systems have integrated capabilities into the memory addressing mechanisms of
the hardware, In this case a capability is inte?preted on each reference to primavy
memory. This is called capability-based addressing.

The following explanation of capability-based addressing assumes that memory is
organized into segments where a segment is a variable length sequence of memory words.
A word in a segment is addressed by supplying an .identifier for the segment and an gffset
that specifies the particular word of the segment. (For simplicity, fixed-size paging
is being omitted from the present discussion since it is easy to add into any of the
addressing schemes discussed,) A descrirtor, as implemented in Multics and the Burroughs
systems, is a protected identifier that points to a segment (or possibly to another object
such as an I/0 device). The descriptor also specifies the access rights that are allowed
to the segment, An instruction references a memory word by pointing to a descriptor for
the segment and by providing an offset to specify the desired word of the segment. The
access rights of the descriptor are used to prevent any undesired access to the segment.

Capabilities used for the purpose of addressing segments of memory are almost
indistinguishable from descriptors. They serve the same functions of i@ent1fy1ng the
segment and specifying the access rights to the segment. The primary difference between
capabilities and descriptors arises because descriptor-based systems usually provide littie
freedom to manipulate the descriptors, and the hardware and Tow levels of the systewm softe
ware control all movements of the descriptors. Capability-based systems allow the capa-
hilities to be moved and copied. This freedom to manipulate capabilities greatly simpliw
fies the implementation of parameter passing during a domain switch; however, it also
creates some security problems that must be handled by approaches discussed in Sections
7 and 11,

The Plessey System 250 [England 72, 74] and the Cambridge Capability System
[Needham 72, 74] have implemented capability-based addressing, and system designs
using capability-based addressing are reported in [Fabry 66] and [Neumann 74, 75].

6.3 Implementations for Capability-Based Addressing

Implementations of capabilities differ considerably; however, a capability usually
consists of an identifier that can be used to find the object, a field defining the type
of the object, and a field defining the access rights. A capability that allows 0n1y
read access to a segment is illustrated in Figure 9, The access rights field is probably
a set of bitg--one bit for each mode of access. The interpretation of thesa bits depends
on the type of the object. In some implementations the type field and/or the access
rights field can be determined during interpretation of the capability, and they are nat
stored as part of the capability itself [Redell 74a, Neumann 757,

7/ This statement is supported in [Spier 757 and through verbal comments by B. Lampson
about CAL-TSS, by K. Sevick about the University of Toronfo SUE systew, and by
W. Wulf about HYDRM,

20

] TyPe oF Access
[DENTIFIER THE OBJECT RIGHTS
POINTER TO THE SEGMENT SEGMENT READ

Figure 9 - Internal Structure of a Capability

Control over capabilitfes is necessary to prevent a user from creating a capability
that he ther could use to gain unauthorized access te an object. There are two approaches
to achieve this control:

iy Alway§ have the capabilities stored in special locations such as
capability segments and capadility registers.

{2} Include an extra tag bit with each memory word. The tag bit must
he inaccessible to the user. It identifies whether the word
containg {part of] a capability, and the hardware then controls
the modification of words that are identified as capabilities.

The advantages of each approach are discussed in [Fabry 74]. The second implementation
avirtds any rigid restrictions on how capebilities can be stored, moved, or copied.

{1} The identifier may be a pointer to the cbject--1t may contain the
qddyess and a bounds for the cbiect, or it may point to the object
indirectly through an indirection table or a nage table,

23 The tdentifier may be a unique code that is permanently asscciated
with the object. This is called a unique identifier,

‘ The pointer approach makes it simpler to use the capability to reach the object;
however, it means that the capabilities have to be updated periodically. If the identi-
fier points directly to the object, then it must be updated whenever the object is moved;
if it points indirectly then some of this gverhead is reduced, but the capability still
gust be updated when the entry in the indirection table ic changed. If the capabilities
are not updated properly, then a capabitity for one object way end up pointing to a
different object.

The second approach, based on unique identifiers, makes it unnecessary to keep track
of cagg@i}iti@s and to update them, A unijue identifier cannot be reused unless all
capabiiities for the previous object have heen destroyed. It is usually bast not to re-
ase identifiers, This weans that the unique identifiers must be about 50U bits long.

ggifty bigs allows the system to generate a new identifier every microsecond for about
ah years.

The'unique jdentifier approach requires that the current address of the object must
be determined from the unique identifier esch time the capability is used to address the
abject. This would be implemented by maintaining a large hash table to associate the
current address of objects with the unique identifiers of ihe capabilities. Associative

reqisters would be used to bypass the hash table search for subsequent accesses to the
same object.

- The disadvantages of the unique identifiers are the abvious space and time ineffi-
ciencies that are inherent in the searching and saintenance of the hash table. With proper
hardware to optimize this, it appears . that these disadvaniages can be minimized., In ex-
change, the system is relieved of any need to modify the contents of capabilities (except
to reduce its access rights), and shared access to objects is simplified.

o Unique identif@ers have been usad in wost software-based implementations of capa-
bilities. The capability-based addressing used in the Plessey System 250 and the Cambridge

21

- ‘ A . g

Capability System do not use unique identifiers. Appropriate hardware to support the unique
identifier approach to capabilify-based addressing hdas not yet been built. 8/ For further
discussion on the efficiency of capability-based addressing and on the use of unique identi-
fiers in particular, the reader is referred to [Fabry 74, Neumann 75].

7. IMPLEMENTING SMALL PROTECTION DOMAINS

Capahilities provide one reasconable way to implement very flexible protection models.
A capability corresponds to a set of access rights for a single object in . the protection
madel. A protection domain, which is a row of the protection matrix, is realized as the
set of capabilities that are accessible to the subject. This is iljustrated in Figure 10
where part of a protection matrix is given on the left and its realization in terms of
capabilities is depicted on the right. Note that User A can call the editor and pass
access rights for File X by passing a copy of the capabitity for File X.

CAPABILITIES OF USER A

\\NQEJECTi ' ? f .ID for Editor Proc.| enter
SURJECTO~ || Editor { Fite x | File ¥ (Dictionary 1D for File X |File read,urite
A b P . I - Ty
i t 11D for File ¥ File {read,write
|
i e .Th_ e S s [e S ST SN
e B orae | rvead read
User A enter 4 Gte | write CAPABILITIES OF EDITOR TEMPLATE
USRSV § SRRV SNV N R S
Editor | d -
Template) red {ID for Dictionary [File jread

Figure 10 - Protection Matrix Stored as Capabilities

If capabilities are used to address all objects in the system, then the concept of
a protection domain corresponds tu an address~space or a name space. Any object that is
not accessible to a subject cannot even be addressed by the subject.

This section describes the fmplementaticn of fwo aspects of small protectiun domains;
namely:

{1} bfficient switching butween protection domains.

{2) The storage and maintenance of protection domains in a way
that allows them to be established and changed easily--yet
under strict controls.

The .potential reliability and correctness uf a capability-based implementation of
protection is discussed in subsection 7.3, and possible restrictions on the movewent of
capabilities are given in subsection 7.4.

87 Tn the BCC 5000 computer, unique identifiers were used in capabilities for pages.

22

7.1 Gapability-Based Implementation of Efficient Domain Switching

With capability-based addressing it is reasonably straightforward to implement domain
switching as part of the hardware implementation of the call and return operations. With
appropriate hardware support, the overhead to switr% orotection domains could be comparable
to that of a simple procedure call in existing computer systems. Furthermore, calil-by-
reference parameters can be included in these cross-domain calls by including capabilities
as parameters. The called domain does not need any additional addressing information or
access authorization in order to use the passed capability. Since the capability is a
system-wide address for the object, there is no danger that the called domain can misin-
terpret the capability. The capability also automatically provides access authorization
to the object and enforces Timitations on the authorized access.

The most efficient implementation for domain switching is probably achieved by using
stacks [Neumann 75]. The process stack is divided into frames. At any point in its
execution, the process only has access to the stack frame associated with the most recent
protected procedure activation. In calling another protected procedure, parameters for
the call are pushed onto the stack, and the call instruction delimits the new stack frame
to be used by the called procedure. Figure 11 ililustrates this by using the examplie of
a call to an editor. For this illustration, stack frame markers are used to delimit the
stack frames. After the call to the editor, only that part of the stack above the highest

staﬁk frame rarker would be accessible. Note that parameters may be either capabilities
or data.

STATE OF THE STACK BEFORE

CALL TQ THE EDITOR AFTER CALL TO THE EDITOR

CAPABILITY FOR FILE X
STACK FRAME MARKER %
CAPABILITY TO ENTER THE EDITOR

CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE Y

CAPABILITY FOR FILE X

TEMPORARY DATA AND CAPABILITY FOR FILE Y

OTHER CAPABILITIES

CAPARILITY FOR FILE X

]

STACK FRAME MARKER

TEMPORARY DATA AND
OTHER CAPABILITIES

STACK FRAME MARKER %

Figure 11 - State of the Stack Before and
After a Protected Procedure Call

When the editor issues a return instruction, the editor's stack frame is deleted--
except for any return data or capabilities. The return data is left on the top of the
stack (see Figure 12). If the editor has copied a capability for the dictionary onto
the stack, then this copy of that capability is automatically deleted by the return
instruction.

23

RETURN DATA AND
CAPABILITIES

CAPABILITY TO ENTER THE EDITOR

CAPABILITY FOR FILE Y

CAPABILITY FOR FILE X

TEMPORARY DATA AND
OTHER CAPABILITIES

| STACK FRAME MARKER

Figure 12« Return From the Protected Procedure Call

The protection dowmain of the called procedure is defined by the capahilities that

are:
{1} passed to it on the stack:
{?7) embedded in the procedure code;)
{3) available to the procedure from a directory system {see next subgecz1on);
(4) otherwise accessible to the procedure; e.g., if they are stored in a segment

that is accessible to the procedure.

Thus, when viewed in terms of its capability-based implementation, the cre§tion_of a rew
protection domain for each activation of a re-entrant protected procedure is guite simple.

7.2 Directories for the Storage and Sharing of Capabilities

In 4 protection system which allows & large number_nf independent protection domains,
the protection domains must be stored and maintained eff1cwent1y. @f each protection sub-
ject had to store large 1ists of capabilities--one for each object it 1s allowed o access~-
then the maintenance of all this information could be a serious problem.

There must also be provisions for controlled sharing of capabilities between distinct
users of the system, If capabilities are stored in data segments, then any segment can be
used to store and share capabilities. To maintain control over capab111t1es, most !oqg—
term storage and sharing should be handled by a system of directories that are specifically
designed for these purposes,

A directory is basically a table of entrics that associate user-chosen names with
capabilities. Directories can have three distinct roles in a capability-based System:

(1) They simplify the storage and maintenance of the information required

to implement a protection mafrix, and they preserve the capabilitias
of inactive users.

24

{2) They allow objects to be addressed by user-chosen names rather than
by the system-generated capabilities. They also make it possible
to alter the association between a name and an object.

{3) They can be used to solve the lost object problem. If it were
possible to erase the last capability for an existing object,
then that object could never be accessed or deleted. The directory
system could guarantee the existence of at least one capability for
every existing object [Neumann 75].

A subject with access to a given directory is.allowed to request the capability
associated with a given name. To facilitate controlled sharing, it is desirable
to have a means of aliowing subjects access to some of the capabilities stored in
a directory without necessarily allowing them access to all the capabilities in
the divectory. In Multics, this was accomplished by using access control lists
[Saltzer 74]. For a system where each program activation of each user may be a distinct
subject, a generalization of this approach has been suggested based on the idea of locks
and keys [Lampson 71]. A request to the directory system requires both a capability for
that directory and a key. The request is fulfilled only if the key matches a lock that
has been associated with the named entry in the directory. The key can be implemented
as a capability. In this case, the capability is simply a non-forgeable identifier which
is not meaningful to the addressing mechanism. It would be meaningful only to the programs
that implement directories.

Divectories themselves are protected objects of the system, and a specific directory
can be accessed only by a subject possessing a capability for that directory. Capa-
bilities for directeries can be stored in other directories, thus creating a network
structure amony the directories. The network structure is usually restricted to be
partially ordered.

Directories are the primary repository for long-term storage of capabilities. Thus
directories play a key role in storing and maintaining protection domains., (Fach sub~
Ject's protection domain includes all the capabilities that the subject can retrieve
from the directory system.) Directories are also useful as a way of modifying pro-
tection domains when users share access to objects. - The stack handles the relatively
short-term modifications to protection domains that occur when capabilities are passed
as parameters during domain switches.

7.3 Correct Implementation of Protection

Much of the cowputer security problem is due to our inability to design and implement
iarge computer systems that are correct. Correct implementation of the basic protection
mechanism is clearly critical te all security. While different objects may be given
different degrecs of protection according to their relative sensitivity, no object
in the system can be more secure than the basic protection mechanism. Even objects
that are protected by redundant security controls are not safe if the basic protection
and addressing mechanisms can be broken or bypassed. Thus the correctress of the
protection mechanisms must be quavanteed with-a very high degree of confidence,

The implementation of a very flexible protection system is more complex and more
difficult than the implementation of e more rigid and Timited protection system. In a
capability~based system the amount of hardware and software that supports the protection
mechanism is greater than that needed to implement a security kernel. However, capa-
bility-based addressing simplifies some of the system software, and the small protection
domains make it easier to control the interactions between different system modules.
Furthermore, capability-based addressing automatically avoids many of the common in-
tegrity flaws that have been found in existing computer systems, For example, a
common integrity flaw occurs when an address that 13 passed to a system routine is
changed between the time the system routine checks it for validity and the time it is
used, Similarly, the integrity of several systems has been broken because the system
gives special privileges to anything with a certain name, such as FORTRAN COMPILER.
Capabilities prevent inese types of integrity compromises from occurring.

25

The implementation of capabilities using unique identifiers can alse handle the
danger that a hardware error might alter a few bits in an address so that the address can
now be used to access a different object. Such a change would usually be detected by the
error-detecting codes that can be expected on any larger future systems. However., in a
system using unique identifiers for capability-based addressing, even if the hardware
does not detect an error, the probability that a capability would be transformed into
capability for another existing object could easily be made exceedingly small--probably
less than 2730 {f the unique identifier is 50 bits long. 9/ '

It is still a difficult task tao implement a capability-based systen with the
degree of reliability and inteuyrity that is desirable for security. Nevertheless, if
the modularization and reliability techniques discussed in Sections 4 and 10 are used
in the design of the system itself, then a very high level of confidence in the in-
tegrity and correctness of the protection systems should be passible. This confidence
might be based in part on proofs of properties of the system. A system desian that
uses capabjlity-based addressing and is siructured so that proufs about it ave
feasible, is reported in Neumann [75].

7.4 Controls Over the Movement and Storage of Capabilities

If the addressing of all objects in the system s based on capabilities, and if
the protection mechanisms associated with this addressing ave corvect and reliable, then
the restrictions of a protection watrix can be quaranteed if each subject has access only
to those capabilities that corvespond to entries in the protection matrix, This repree
sents a major step toward being able to handle security problems. It weans that one onty
has to control the movements of capabilities. This 15 much better than having a variety
of poorly defined concerns about almost everything that happens within the computer
system, Nevertheless, the problem of controlling the movement and copying of capa-
bilities s far from trivial--especially since capahilities ave designed to be moved
and copied easily in order to support small protection Adomains. ‘

With a tagged architecture where extra "tag" bits on each remory word are used o
distinguish capabilities from data, it would be possible to intermix capabiliting and
data freely. This has some advantages for Tmplementing multi-deguent dats structures
with the capabilities used for cross-segment pointers. Nevertheless, to maintain con-
trol over capabilities, it mey be necessary to prevent capabilities from heing stored
in most user data segments. If enough specific facilities are provided for indirect]
manipulating capabilities, ther direct manipulation or storage of thom mav not Le
necessary by most users of the system, The stack that handles capabilities passed
parameters, the directory system, a linkage mavagsr, and an evtended-type manager {soe
Section 9) may nake direct manipulation of capabilities unnncessary Tor most usersy,

i
5

%S

For security it would be useful if ihe systew could guarantee that the direciory
system is the only means to share capabilities bebween distinct users or to store them
for relatively long perinds of tine. This would make it much cosier to sonitor the
security status of the system. It would be wseful even if it only applied to capa-
bilities for especially sensitive ehiccts. Additional protection features that miqght
be used for this purpose are:)

0 Capabilities restricted to the stack - Situations arise fairly
frequently where access rights must be passed to an activation
of some service routine, but the service routine should not be
able to preserve those access rights for later use. An option
probably should be available so that specific capabilities
passed as parameters on the stack can be restricted from being
copied off the stack., This would not be so restrictive as to
prevent the capability from being passed as a parameter in a
further procedure call; however, it would guarantee that no copy
of the passed capability could exist after the service routine
returns. The right to move the capability off the stack could
be controllad as an access right of the capabitity.

a Restriction on lvading or storing capabilities - If direct manipulation
of capabilities by users is allowed, then the right to load a capa-
Bility from g segment or store one into a segment should be distinct
from the right to read or write data in the segment. This distinction
is useful to implement provisions of the security classification models
proposed in [Bell 73] and [Walter 75].

o Interprocess communication channels - It must be possible to impose
restrictions on the direct passage of capabilities between processes
via interprocess communications channels.

& Revocation of capabilities - For some security problems it is necessary
to revoke access rights which have previously been given to another
subject. If all relatively long-term storage of capabilities is handled
by the directory system, then the directories might be able to handle
this problem, If not, then selective revocation of an access right
requires special features because the capabilities that represent
the access rights may have been copied many times. Access rights to
an gbject can always be revoked by deleting the object (after making
a copy of it}), but this may destroy the access rights of other. subjects.
It may be desirable to revoke the access rights of a single subjecte-
and of any other subject that received the access rights from that
subject, Selective revocation of capabilities can be implemented
by creating revocable capabilities that point to an object indirectly
through the main capability for the object. The revocable capability
can thus be distributed to other subjects who can use it to access
the shared object, Access via the revocable capability can be efficient
since associative registers can bypass the indirection on all hut the
first reference to the object. The revocable capability can later be
made ineffective without disturbing the access rights of those subjects
who possess either the main capability or an independent revocable
capability. For a full discussion on the revocation of capabilities,
see [Redell 74a, 74b, Neumann 7571.

8. FLEXIBLE SHARING

In this survey, the discussion of capabilities has focused on their usefulness to
promote security and reliable software. Nevertheless, one of the primary motivations for
capability-based addressing is to facilitate sharing. This other motivation for capability-
based addressing is not covered here. (It is covered in detail in [Fabry 74].) This brief
gruential sequence (see [Knuth 69], pages 9-19.) flote also that if the unique section is intended to indicate that the approaches to security and reliable software
identifiers are generated using a linear conuruential sequence, then the hash address discussed in the rest of this survey are not only compatible with flexible sharing but also
for a unique identifier may he taken as some subset of the bits in the identifier. enhance it.

Furthermiore, the veqular patterns that occur in the final ity of words generated by a
Tinear conyruential relation might allow some optimization in distributing the unique
identifiers among hash buckets,

9/ This assumes that there arc less than 2-¢0 extant shjects at any one time. It also
assumes that unique identifiers are scattered throughout the gpace of poasible bLit
patterns; for example, they could he generated by using an appropriate Tinear con-

Figure 13 indicates that capability-based addressing supports flexible sharing and
that: flexible sharing supports reliable software. The arrow from flexible sharing to
reliable software is based on the argument that software would be more reliable if
programmers -could more easily build on the work of other programmers rather than con-
stantly reinventing the whael. (Reinvented wheels often turn cut to be not quite round.)

26 27

SMALL PROTECTION _ _ _ _ > SYSTEM

3 DOMAINS SECURITY

e A

P !

P |

}
CAPABILITY=BASED ~ey ExTEnDED-TYPE RELIABLE
SOFTWARE

ADDRESSING OBJECTS

FLEXIBLE SHARING

Figure 13 -~ Flexible Sharing

In general, sharing is opposed to both security and reliability--it is especially
opposed to security. The simplest way to improve system security is to reduce the amount
of sharing. For example, an especially sensitive applications program can be run on its
own dedicated computer. Unfortunately, sharing and security are often concurrent require-
ments. Indeed, if there is no requirement for any form of sharing--not even resource
sharing--then there is no need for internal system security. In many situations--especially
situations involving privacy concerns--security is needed in the presence of very flexible
sharing of both resources and data.

Reliable software is also more difficult when there is extensive sharing; in partic-
ular, time-critical sharing of data can result in deadlocks or inconsistent data. 0n the
other hand, the sharing of program modules could lead to more reliahle software. The idea
of building programs by piecing together modules from a program library is not new; however,
it has always been difficult to make this idea work unless the modules perform isolated and
easily definable functions. The difficulty occurs when one tries to integrate the different
modules. In particular, it has been difficult to develop useful library modules that deal
with complex data structures.

Despite the above difficulties, a building block approach to reliable software may
soon become feasible. Recent evolution of the concept of extended types is lTeading toward
a unit of modularity that is more general and easier to integrate as part of a larger
program. Furthermore, these modules can be used to specify and implement common data
structures such as stacks, queues, trees, and symbol tables. Such a module can be quite
general; for example, a single module that implements trees may be used to obtain a tree
of integers, a tree of stacks, or a tree of any other data structure. Furthermore, the con-
cept of a generator, as is proposed in [Wulf 76b], allows another module to iterate over
the elements of any of these trees without making the other module dependent on the internal
workings of the tree module. Two other concepts interact with this approach to program
modularity and re-enforce it. First, very flexible protection is useful to keep one module
from becoming dependent on the internal workings of other modules. Second, specification
and proving techniques are more effective in conjunction with this new approach to modular-
ity [Wulf 76a]. To achieve reliable software, it is clearly important that modules obtained
from a 1ibrary be fully specified and verified.

The description of extended-type objects in the following two sections may give the
reader some additional insight into why the building block approach to reliable software
could become a reality. For a more thorough treatment of some of the supporting jdeas,
the reader is referred especially to [Wulf 76a, 76b, 76¢c]. It should be noted that this
approach to reliable software is arising mostly from research on programming languages;
and the required support for these new concepts can be handled largely by a compiler;
however, capability-based addressing would extend the usefulness of these concepts and
facilitate their implementation.

28

9. EXTENDED-TYPE QBJECTS

As indicated by Figure 14, this section introduces the final concept covered by this
survey. It aiso explains how small protection domains and capability-based addressing
support the implementation of extended-type objects.

1

SMALL PROTECTION _ _ _ _ N SYSTEM
DOMAINS SECURITY
- 3 \\ N
- ; ~ i
-
g 2 AN !
o >§ i
CAPABILITY~BASED ... EXTENDED-TYPE RELIABLE
ADDRESSING OBJECTS E SOFTWARE
\\ _ -
~ e
~ -

FLEXIBLE SHARING

Figure 14 ~ Overview on Role of Extended-Type Objects

4.1 Background on Typed Objects

The previous discussion of capabilities focused on the addressing and protection of
information in memory, A protection system is simplified if 1/0 devices are addressed
and protected in the same way as memory. For example, in the PDP-11, I/0 devices are
addressed as 1if they were words of memory, and they can be protected by memory protection
reqgisters, This simplifies and unifies the protection mechanisms; however, in the PDP-11
the flexibility of this protection +is limited since the protection of an I/0 device is
not independent of the devices with neighboring addresses.

A capability can easily be used to address and protect individual 1/0 devices.
When a capability is used to address I/0 devices, the access rights of the capability
are interpreted differently for each different type of 1/0 device. For example, a capa-
bility for an object of type "tape drive" might have "rewind" as one of its modes of
access, while a capability for a card reader would not recognize rewind as a possible
access right, 10/

Capabilities can be used in an even more general way to address and protect all
objects in the system--not onily memory and I/0 devices but also software-created
virtual objects, For example, procedures and-directories may both be implemented as
segments of mevory; howeveyr, they are different from ordinary seuments because the pro-
tectable modes of access te them are different. Procedure objects have an additional
mode of access not applicable to data segments; namely, “enter” access. It is critical
to security that this operation be separately protected. Similarly, directories must
be recognized by the protection mechanisms as a different type of object even though

107 Many systems will do strange things in response to requests for undefined actions sucb
" as "rewind the card reader!" Such requests can frequently be used to break the security
of a system [Edwards 73]. In a system based on capabilities and typed objects, it is

not even possible to formulate such a request in terms of a capability.

29

the hardware does not distinguish directory segments from data segments. Operations such

as add an entry, delete an entry, and change the protection of an entry should all be
separately protectable eperations on a directory. These operations on a directory are not
reducidble to the usual operations of read, write, append and delete for a data segment, and
the protection systems nmust be prepared to handle these different operations on directories.

In most systems the operations on directories are protected by implementing tkém
as part of the operating system. In this case the operations on directeries are system
calls, and the directories themselves are implemented as system data. Thus, the imple-
wentation and protection of directories is accomplished entirely by the system software.
Divectories are a good example of the way additions to the system software are often used
fo extend the protection system and make it more flexible:; however, directories could alse
e implemented as one instance of extended-type objects,

A system that directly supports many different object types would be baroque and
complex. Before asking how many different cbject fypes a system should support, one
should first ask whether there has to be a fixed set of object types and whether different
types have to be supported and protected directly by the system. Possibly the system
should just provide a mechanism for creating, defining, and protecting new types. Such
a mechanism has two principal advantages:

{1} 1t eliwinates the need to incorporate into the system the code
and data which support different types of objects. Even the code
and data which implement the directory systems could then be inde-
pendent of the rest of the system. In fact, there would no longer
e a clear distinction between "the systen” and applications.

{2; The protection system can be extended to support applications pro-
grams divectly. If applications programmers can create new object
types, then they can extend the protection system and protect
ehjects in ways that are tailored to a specific application. This
would greatly increase the Tlexihility of the protection system,
and it would provide a very natural sclution to a wide ranga of
protection problems.

Objects of a type that are not directly implemented by the system are called extended-type
chiects [Gray 72, dones 73, Wulf 74a, Fevvie 74, Neumahn 757,

Wulf et al. [Wulf 74a] give an example of a system for creating, maintaining
and accessing special bibliographic files. They describe a set of reliability and
security concerns that arise naturally, and they argue that these concerns can most
easily be solved by creating a new extended type and then having bibliographic files
be objects of that extended type. As another example, in a payroll system it might
be desirable to provide distinct access controls for operations such as: modifying
salary, reading salary, changing an address, and totaling all salaries. These
access controls can be provided easily if the payroll files are declared to be objects
of a new extended type.

9.2 Nature of Extended Type Objects

Much current research on operating systems structures and ohn programning languages
is focusing on generalizations of the concept of a data type. The term "extended-type
ohjects” 15 taken from work on operating system structures, The vord "extended" i$ added
to emphasize thet new types are definabhle and that the protection system can be extended
to handle these vewly defined types. When it is not needed for euphasis, the word "extended”
can be dropped with no change in meaning. As discussed in Secticn 10. recent research on
pragramuing languages has led to. a similar concept, but quite different terminology is ofter
used.

From the viewpoint of this survey, a type is defined by the set of operations that
are allowed or objects of that type. This view is consistent with most research on
yeneralized data types., Thus, segments and directories are different types of objects
because different operations are possible on them, {These operations often correspond to

30

the modes of access to the cbject; although many cperations could be associated with
a single protectable mode of access.)

An extended type is defined by specifying and implementing a set of operations appli=-
cable to objects of that type. These operations should include operations for rreating
and deleting ¢bjects of the type. A1l these operations could be implemented as software
procedures, These operations normally have a parameter that indicates the object on
which the operdation is to be perforned.

Objects of a new type can be created once the type has been defined. These ob-
Jects are distinct from the type itself. 11/ The objects may be viewed abstracily simply
as primitive entities that can be manipulated only by the operations of the type. For ex-
ample, a directory is defined as an entity that allows the operations of adding and de-
leting entries, changing the accessibility of an entry, etc. ’

Objects must alsc have an implementation or an underlying representation which is
defined in .erms of other objects. The representation of a directory may be a linked
Tist in a segment. The implementations of the operations on a directory manipulate
the linked 1ist in this segment. Ideally, the subject that initiates this operation
does not need to know how the divectory is represented and can take an abstract view
of it. Furthermore, if the operations on the typed object are to be individually pro=-
tected, then the subject that initjates the operation to add an entry to a dirvectory
must not be allowed write access to the segment that implements the directory, lrite
access to the segment must be available only during execution of the procedure that
implements the add operation,

Extended-type objects arve implemented or represented in terms of nmore primitive
objects=wsegments, [/0 devices, or objects of other previously~defined types. The
axtended~type object should be thought of as distinct from the objects uscd to yep-
resent 1t--the representation exists at a different “level of abstraction.” In
particular, subjects that initiate operations on an extended-type object should
normally not have direct access to the representation. - The value of protecting
the representations is not just for security; as discussed in Section 10, the
protection also separates distinct levels of abstraction and protects the repre-
sentation from undesirable modifications by the code of other modules.

9.3 The Implementation and Protection of Extended-Type Objects

Only the operations of an extended-type object are to have access to the objects
that are used to implement or represent the extended-type object. Thus, each call
to one of the operations requires a domain switch, This domain switch is straight-
forward when there is only une underlying object that contains the representations
of the extended-type objects. In this case, the operations of the extended-type may
have the access rights for the underlying representation, and all that is required
is & simpie domain switch. In the more general case there may be many objects of the
extended type (e.g., many directories) and each may be represented by its own under-
lying object(s) (e.y., a segment that represents a single directory), An instance
of an operation does not need access to the underlying representation for all the
agbjecls of the type, it only needs access to the representation of the object that
it 1s to operate on. If each instance of the operations had access to the represen-
tation of all the objects, then the entire burden of selecting the right represen-
tation would be placed on the code of the operation. This might be dangerous for
security. It is preferable if the access rights for the object that contains the
representation object are passed to the operation as a parameter., The problem with
this is that the caller does not have the right to access the representation eithers
the caller only has the right to call the operations on the extended-type object.
Three methods to handle this problem have been proposed in the literature:

11/ The new type may be treated as a distinct object of the protection system. This allows

- the same protection matrix to control access to the type itself; in particular it can
control modifications to the operations of the type. The type itself then has a type
which may be taken as a special system-supported primitive type called TYPE [Wulf 74a].

A

(1) Amplification - The HYDRA system [Jones 73, Wulf 74a] allows a
called procedure to amplify the access rights of certain
capabilities. Amplification allows extended-type objects such as
directories to be handled along the lines of the following example.
A subject that has a capability with "add" access to a specific
directory, calls the "add" operation and passes the capability for
the directory, The add operation has a special "template” capa-
bility that allows it to amplify the access rights of capabilities
for objects of type "directory," In this case the template capa-
bility would allow the add operation tc obtain read and write
access to the directory. (Amplification of access rights is actually
more general than just what is needed just to implement extended-type
objects.) In HYDRA, domain switching and amplification are done
entirely in software; ideas for a hardware supported implementation
of amplification are discussed in [Ferrie 74],

(2) Indirection - The Plessey System 250 [Cosserat 74] allows a procedure
to be called indirectly through another object. This provides most
of the features of extended types. 7o perform an operation on an
extended type object, the caller would use an indirect "enter" right
for the object. This transfers control to a procedure that implements
the gperations on the object. Using this indirection facility,
directories could be implemented as follows. Stored at special
Tocations in each divectory are pointers to the code that implements
operations such as the operation of adding an entry to a directory.
To add an entry to a directory, a subject can use a capability with
indirect "enter" access for the directory, and control is transferred
to the procedure indicated by the pointer in the directory, This
approach does not provide separate controls over the rights to add,
delete, or read an entry,

{3) Extended-type manager - In the system designed by Neumann et al.
[Neumann 75?, there are different capabilities for an extended-type
object and for its representation. The mappings from capabilities
for objects of extended type to capabilities for their representation
are maintained by a special module in the system called the Extended-
Type Manager. This module returns a capability for the representation
object if it is passed a capabi1lity for an object of extended type
and if the request is made by an operation defined for that type.

An efficient implementation of extended-type objects clearly requives small pro-
tection domains with very efficient switching between protection domains. A domain
switch is required with each call to an operation on an extended-type object. Capa-
bility-based addressing is useful for implementing extended-types because it pro-
vides a uniform and general way of naming and addressing all objects in the system.
With capability~based addressing, extended-type objects can be addressed and pro-
tected as if they were primitive objects,

10.. TYPED OBJECTS AND PROGRAM MODULARITY

The general concept of a typed object can be used as a primary means to decompose and
modularize software., ~Section 4 discussed the value of protection in a well-structured
and modularized program. This section discusses the use of typed objects to obtain that
structure and modularity. Many recent approaches to structured programming involve a
generalization of the concept of typed objects. An operating system with an efficient
extended-type mechanism would facilitate these approaches to structured programming.
Indeed, the assembly language of such a system would have many of the data structuring
features that are desirable in a high Tevel language [Cosserat 74].

32

The role of this section with respect to the general terms of the overview is indi-
cated by Figure 15, Since small protection domains are such an integral part of extended-
types, many of the discussions in this section also apply to the arrow from small protection
domains to reliable software.

®

SMALL PROTECTION SYSTEM

2 DOMAINS SECURITY

7 | N

-, 7 ! |

P e | '

N\]
CAPABILITY-BASED . _ _ EXTENDED-TYPE RELIABLE
ADDRESSING N OBJECTS SOFTWARE

S
~
~

FLEXIBLE SHARING

Figure 15 -~ Extended-Type Objects to Support Reliable Software

10.1 Background-~Horizontal and Vertical Modularity

A careful statement of a programming prablem usually leads to a decomposition of the
problem into a number of separate tasks. The decomposition of a program into distinct
prohlem-level tasks is called horizontal modularization. Unfortunately, horizontal
modularity alone does not lead to an adequately modularized program for the following
reasons:

o The decomposition into problem-level tasks usually does not divide
the program into small modules. When the problem is described in
user terminology, the smallest units or tasks which are meaningful,
often turn into quite large programs. An input module, an input
validation module, or an updalte module are meaningful in user terms,
but they are only a first step toward dividing the program into small,
independent modules.

o Different problem-level tasks or modules often need access ta common
information. If the data structures for this information are declared
as global to the entire system, then there is 1ittle hope that modules
can be independent of each other or that the interactions between
moduyles can be clearly defined [Wulf 73],

o Ideally, a module should only deal with one level of abstraction. A
module may implement operations that are meaningful at the user
level, or it may deal with the idiosyncracies of the menhine, or it
may handle some intermediate concepts or data structures; but it should
not implement concepts frem different levels of abstraction., A module
is very difficult to comprehend if one program statement implements
a problem requirement and the hext statement handles some subtle
efficiency concern arising from pecularities of the hardware.

33

The division of a program into modules according to different levels of ahstraction
is called vertical modularity., Both horizontal and vertical modularity are needed if
modules are to be small and clearly defined, and if significant benefits are to be obtained
from protection between modules. Vertical modularity is closely related to the concept of
hierarchical structure; however, the latter term has been used with many different specific
cannotations [Parnas 74]. The term vertical modularity is used here as a general term that
does not connote a specific approach.

10.2 Programming Language Support for Modularity

Yertical modularity of programs is hard to achieve because current computer systems
and programming languages do not support an appropriate unit of program modularity.
The procedure is the most common unit of program modularity and is supported by most
computer systems and programming languages; however, as a unit for vertical modularity
it is often inadequate because:

(1) The Algol scope of variables rule is wrong when procedures are used
as the unit of vertical modularity. Variables generally do not need
to be global across different levels of abstraction, A unit of ver-
tical modularity should not automatically have access to variables
declared at higher levels of abstraction,

(2) A procedure cannot easily preserve information between successive
calls, and thus it canuot be used as a unit of modularity to an-
capsulate & data base. Furthermore, it is, at best, difficult for
a procedure to gather statistics about its use, or to incorporate
redundancy checks based on the consistency of successive calls to
the procedure.

{3) A unit of modularity often needs many entry points. It is awkward
to use a parameter to obtain the effect of wany entry points.

Recent research on programming languages has addressed the problem of providing
a wore generally useful unit of program modularity; for example:

o The class concept was introduced into Simula 67 [Dahl 68] as an
aid to modularity, The main features of a class are: (1) it
can define data objects that are normally preserved between calls,
and (2) a class consists of several procedures or entry points.
Thus, a class defines a set of operations each of which may
operate on data objects. The original version of a class did
not protect its data objects from direct access by other parts
of the program; however, wore recent versions do include pro-
tection [Palme 74].

o Liskov and Zilles have developed the language CLU which im-
plements a concept called function clusters [Liskov 74, 75].
These clusters are similar to classes except that the represen-
tation of the cluster's data objects 1is not accessible from
outside the cluster. Clusters implement the same idea of typed
objects that was discussed in Section 9. Enforcement of the
‘access restrictions is done by the compiler.

o The language Alphard has incorporated a concept called a form
[Wulf 74, 76a, 76c]. It provides the features of a cluster
described above, but is more general. For example, a form can
accept parameters that allow only Timited access rights to the
object passed. Alphard also introduced the concept of abstract
sequencing operations that allow a program to iterate through
a data object without making the calling program dependent on
the length or structure of data object [Wulf 76b].

34

o Parnas has proposed a nethed for decomposing pragrams into rigorously
specified modules [Parnas 72a, 72b, 72c]. He suggests that a mpdule
can be defined in terms of a set of operations and a set of value
functions supported by the module. (Value functians return a value
but do not change the state of the wodule.) Parnas makes sure that
the representation of the module's state {or its data) is hidden
from other wodules. At the Tevel of specifications he accomplishes
this by not defining the representation at all. The module is de-
fined abstractly by defining the effect of all the operations on the
value~returning functions and by defining all ervor conditions.

The search for the most effective unit for program modularity is still going ong
however, based on recent research trends, it seems safe to conclude that a unit of
modularity should have the three properties listed below. These three properties cor-
respond (in reverse order) to the three reasons why a wrocedure is not adequate as a
unit of vertical modularity.

{1} A module can have many operations or enti. points which can
be called fron orher modules,

{2} A wodule car have a set of data ohjects (or a state) which
15 proserved hetween successive operations,

{3} Interactions between mudules can be explicitly defined and
rigorously contralled. In particular, the representation of
the date objects maintained by the module is not directly or
autonatically accessible by other modules.

Large units of modularity have always had the first twn of these preperties. The
class concept from SIMULA extended these two properties to small units of modularity
by providing programming language support fovr them, - The third property adds protection
tp these units of modularity $o0 that interactions between modules can be explicitly
defined and controlled,

Terminology--and the underlying concepts--in this subject area is still in a state
of flux, The term "cstended type® arcese from work on operating systems. The term
“abstract data type" is a fairly general tern that is now widely but not universally
used by the prograwming languags community. Furthermore, the following terms have all
been used with an cguivaient or siwiltar meaning: class, cluster, form, opaque type,
type, space, mode, module, abstract machine, virtual machine, and procedure,

.3 Extended Types ar Modules far Reliability

Modularity achioved by extonded types is useful for software reliability in several
ways that have nob yet been sentioned:

o Proofs - The faplenentavion of a program as a hierarchy of typed objects
simptifies a proof of correctress [Wulf 74, 76a, Robinson 75],
Huch of the simplification comes because assumptions about the content
and structure of the vepresentation of a typed object depend only on the
correctness ot the pnerations of that type--thuey are not dependent on
the actions of any other modules.

o Redundancy - The type 15 a natural unit in which to incorporate redundancy
checks, -~ The ability to preserve information between successive operations
is important to implement this redundancy.

o Ervor detection and recovery - The definition of error conditions is
relatively easy when it is done as part of the specifications for a
type. Recovery techniques can be structured by defining appropriate
arror calls and error veturns as part of the external interface of
the modules [Parnas 72a].

35

o Modifications and maintenance - Since the representation of typed cb-
jects is hidden from other modules, the representation can be chqnged
without affecting other modules., Programs can be implemented quickly
as a hierarchy of types, and then the more critical tvpes can be tuned
for efficiency [Linden 761. The fact that the data structures can be
modified without affecting any module except the one that maintains
that data structure is critical to making this optimization work,

o Security - The extenued type is a useful unit for security as discussed
in the next section.

11. CONTROLLING AN MONITORING ACCESS TG OBJECTS

In order to encourage good programming practices and to support the concept qf siall
protection domains, protection mechanisms should not prevent a program from delegating N
subtasks to other protected procedures. Thus, a proyran should be able to pass any of 1ts
own access rights to another protected procedure. {n the other hanq, there are §1tgatzans
where one user of the system must be prevented from making access rights available to
another user,

Capabilities make it masy for one subject o pass access rights to any other subjec ..
They directly implement a reasonably complete set of disuwe@ianary protection mechanisms.
Discretionary protection mechanisms allow each subject, at 1ts own dxscret1an, to decide
which of its own access rights are to be given to other subjects. There 1s a]ge a need for
non-discretionary controls so that certain security policies can be enforced without de-
pending on the discretion of uther users of the system. Extended types provide « convonient
way to implement many ron-discretionary controls. Figure It indicates that this section
deals with the relation hetween extended-type ubjects and system security. Move specifically,
it discusses non-discretionary protection mechanisms--including classification systems. It
discusses both extended types and other means to support non-discretionary controls.

SMALL PROTECTION . SYSTEM
- DOMAINS T SECURITY
-7 ! . & 2N
-~ ! = xf’
P ! A i
- \V :§ |
CAPABILITY-BASED EXTENDED-TYFE S RELIABLE
ADDRESSING - OBJECTS < SOFTWARE
~ =
\\ - - Py
~ -

FLEXIBLE SHARING ~

Figure 16 - Extended-Type Objects to Suppart Systems Security

11.1 Non-Discretionary Controls

The most basic way to enforce non-discretionary controls is to restrict ?he users’
access rights for objects; however, simple restriction of access rights does not pravide
all the desired controls. For example, it is often desirable to monitor the way an object
is being used. Siwilarly, it may be desirable to prevent one user from giving his access
r%ggts %o another user. yThese examples can be handled easyly by using extended types. To
monitor and control access to certain objects, a new extended type 1is created for"the
objects and the operations of the type are programmed to enforce whatever caontrols are to

36

be maintained. If accesses to the objects are to be monitored and audited, the monitoring
and auditing controls are built into the operations of the new type. If redundant control
is to be maintained over the set of authurized users of the objects, then a check on the
user's identity can be programmed into the operations of the type. Thus, as long as the
users are only given access rights to the extended-type object, control can be maintained
over which users can access the object even if some of the users give away copies of their
capabilities for the extended-type objects. In general, extended-types provide a natural
way to enforce the forms of mediated access discussed in Section 5.3. !

With the extended type mechanism, users can be given very limited access rights that
allow them to perform only preprogrammed coerations on ¢bjects. Furthermore, additional
controls and monitoring can be built into the programmed operations that are allowed by
the access right. In most cases, a new type does not have to be created just to handle the
cogtro]s and monitoring. They can be embedded in the operations of an existing type
definition.

Non-discretionary controls implemented by using extended types involve some additional
cverhead to carry out the programmed checking. Unless tne object to be protected is a
primitive object with simple operations, the additional time required for the protection
checking should not cause an unreasonable increase in the time required to carry out an
operation on the object. If many relatively primitive objects, such as segments, have to
be protected against misuse by authorized users, then it may be necessary to use a more
centralized system of nnn-discretionary controls involving a security classification system
as weil as system monitoring and auditing.

1.2 Security Classification Systems

When non-discretionary controls are to be imposed in a centralized way, they usually
involve a classification system. In a classification system, all users and all objects
in the system are assigned a classification. A classification may be thought of as a
security tag. The classifications may have a partial ordering relation between themselves
s that they take on a lattice structure. Then any user is allowed access to an object
only if the user’s classification is either the same as the classification of the object
or else is higher according to the ordering of the classifications,

The basic military classification system forms a very simple lattice with all points
of the lattice being ordered along a single line (see Figure 17). In this system, a user
who i3 authorized access to secret information is also authorized access to confidential
and unclassified information, but not to top secret information. A corporation that wanted
to separate information according to different departments might use a very broad classi-
fication lattice such as that in Fiqure 18. In practice, the classification lattice would
have a more complex structure.

Torp SECRET

SECRET

CONFIDENTIAL

UNCLASSIFIED

Figure 17 - Simple Military Classification Lattice

37

15

MANAGEMENT
// \\\
FUTURE
ERODUCT ACCOUNTING PERSONNEL INTERNAL PAYROLL
LANNING AupiT

\

OpeN
INFORMATION

Figure 18 - A simple Classification Lattice for-a Corporation

The problem of enforcing a non~discretionary classification system is more complex
than it might seem at first. It is not enough to control the access rights that are
nassed from one user to another. If one user (A) has access rights for an object, and
if the classification system is to prevent ancther user (B} from accessing the object,
then it may do Tlittle good just to prevent A from giving the access rights to B. If A
wants to subvert the classification system and allow B to access the object, then A can
bypass restrictions on passing the access rights if he simply agrees to access the oh-
ject on behalf of B; that s, A can set up a service whereby A carries out operations
on the object whenever B requests them.

In general, if A has access to an object, and if B is to be prevented from accessing
it, then either A must be trusted, or else all communication between A and B must be
forbidden, If A, and all the programs executing on behalf of A, is trusted, then we
are back to a discretionary system. If one is only concerned about inadvertant error
on A's part, then it may be useful to prevent A from giving access rights to B;
however, in order to implement rigorous non-discretionary controls, it is necessary to
control all the potential communication channels between A and B, If the security con-
cern is only that information from the object must not be disclosed to B, then only
communications from A to B must be forbidden; and, conversely, if the object only needs
to be protected from modifications originated by B, then only communication from B to
A must be cut.

Classification systems are used primarily to protect information from being disclosed.

1t follows that, as long as users (or their programs) are not trusted, a user job should not
be allowed to write or modify an object with a classification lower than the classification
of any object previously read. The problem is that such objects could be used to disclose
information of the higher classification. A non-discretionary classification system was
incorporated in the ADEPT-50 system [Weissman 68], and classification systems have been
formally defined in [Bell 73] and [Walter 75].

In a capability-based system that supports extended-type objects there are several
possible approaches to implement a non-discretionary classification system.

In the first place, the protection matrix can enforce a classification system if the
protection matrix is initialized so that users have access only to objects of appropriate
classifications and have no way to obtain access to objects of another classification.
(This does not handle the problem of covert communication channels as discussed in
section 5.2.) In a capability-based system, this means the initial distribution of

38

capabilities to users would have to be done very carefully. If used by itself, this
approach probably would not lead to very high confidence that the desired classification
system was being enforced. A minor mistake in distributing capabilities couid have
unpredictable effects on the classification policy since seemingly unimportant access
rights might enable users of different classifications to set up a communications
channel between them. Furthermore, since the capabilities would be disbursed through-
out the system, it would be hard to reevaluate whether the current dissemination of
capabilities enforces the desired security policies.

A second approach is to maintain a much tighter control over the dispersion of capa-
bilities. For example, all users might be forced to obtain their capabilities from the
directory system, and they might be prevented from using any other means to preserve
capabilities for more than short periods of time, With all permanent capabilities stored
in the directory system, it would be relatively easy to determine who has access to any
given object; however, small changes in the directory system might still have disasterous
effects on the classification policy and would have to be very carefully controlled.

A third approach uses the extended type mechanism to enforce a classification system.,
A1l access to classified objects are explicitly controlled by a classified document
manager that is implemented as an extended type [Neumann 78]. This approach need not be
as inefficient as it might appear; however, it might work best when only a swall fraction
of the users are accessing classified objects.

The final approach is to build classification controls into the central part of the
hardware and software as a second, independent protection mechanism. The need for some
form of classification system seems to be sufficiently general so that it could legiti~
mately be incorporated into the basic design of the system, This means that each user
job and each object in the system would be tagged with a classification. These ¢lassi-
fications could be checked each time a new object is made accessible to a user job,

Note that this check on classifications would be in addition to the access controls
built into the capability-based addressing.

12.- CONCLUSION

Research has now progressed to the point where it is possible to discern the rough
outlines of a potential breakthrough on both security and reliable software.’ Nu one
idea will lead to such a breakthrough, but the proper combination of ideas that are
now emerging could revolutionize both of these areas. The changes in computer systems
that would help bring these ideas to fruition were outlined in this survey.

The reader should be aware that many of the {ideas covered in this survey are still
the subject of basic research, and before they can be put into practice they need a more
rigorous examination than they have been given either here or elsewhere in the literature.
However, further basic research is probably not the siost important element on the critical
path toward a breakthrough. - The most important problem is to overcome the inertia which
makes it easier to continue doing things as. they have been done in the past.

The ideas discussed in this survey involve a substantial amount of discontinuity
with the past. The basic addressing mechanisms of computer systems must be changed, and
new structures for protection and modularity must be introduced into programming languages.
These new ideas are not likely te be introduced into common practice unless there is a
very strong economic incentive to do so and unless the ideas can be introduced in evo-
Tutionary stages: .
(1) Econowic incentive - Lmproved reliability and security usually involve

higher costs. The new ideas promise ko promote security and lead
to substantially more reliable software while at the same time
reducing costs--especially software development costs., Hard
evidence to support this promise of decreased costs would go a
long way toward overcoming inertia. Unfortunately, this evidence
is very difficult to obtain without building a complete computer
system that incorporates the new featues.

39

RV S PR b e —-1

(2) Evolutionary stages - The current investment in computer systems and
software precludes the development of large computer systems that are
not compatible with older systems. Basic changes to a computer's
addressing and protection mechanisms inevitably result in a substan-
tially different computer. Nevertheless, the new addressing and
protection mechanisms might make it easier to support multiple
external interfaces. Compatibility with old systems could then be
maintained by providing an external interface which simulates the
interface of the old system,

A breakthrough on security and reliable software will not be easy to achieve.
Several new ideas must be put into practice-~and any one of the ideas may not succeed
if it is not properly supported by other equally new ideas, It will be a major under-
taking to achieve an effective combination of these ideas. Nevertheless, such a
breakthrough must be sought. Ever more critical software applications, skyrocketing
software costs, and the growing requirement for computer privacy all demand the
development of computer systems which are at Teast as new and different as those
discussed in this survey.

ACKNOWLEDGMENTS

The author became familiar with many of the ideas in this survey during the
Course qf discussions with Peter Neumann, Robert Fabry, Lawrenceé Robinson, Karl Levitt
and Daq1e1 Ldwards. When possible, their ideas have been referenced; however, many
of their ideas are such an integral part of the overall approach that they can no
1onggr be isolated from it. Suggestions that have helped to improve the accuracy and
clarity of the document have also been received from Jerome Saltzer, Butler Lampson,
Steven L1pngr, Stuart Katzke, Thomas Lowe, and the editor and referses., Nevertheless,
the author is solely responsible for any inaccuracies or lack of clarity that remain.
My thanks to the above and to my wife, Betty, whose patience has been ogutstanding and
whose editing was ruthless. Thanks also to Kathleen Durant and Anne Shreve for many
Tong hours spent typing various drafts of the manuscript.

30

REFERENCES

[Anderson 72] Anderson, J., Computer security technology planning study,
Air Force Elect, Systems Div., ESD-TR-73-51, ({(Oct, 1972).

[Bell 73] Bell, D., LaPadula, L., Secure computer systems. Air force
Elec. Systems Div.,, EBSD-TR-73-278, (Nov. 1973).

[Branstad 73] 8Branstad, D. K., Privacy and protection in operating
systems. Computer., Vol. 6, (Jan. 1973) pages 43-46.

{Cohaen 75} Cohen, E., Jefferson, D., Protection in the Hydra Operating
gystem, Proc, of the Fifth Symposium on Operating Systems
Principles., ACM Operating System Review, Vol., 9, No. 5, (Nov,
1975) pages 141-164.

[Conway 721 Conway, R. W., Maxwell, W. L., Morgan, H. L., On the
implementation of security measures in information systems. Comm,
ACM, Vol. 15, No. 4, (Apr. 1972) pages 211-2286.

[Cosserat 74] Cosserat, D. C., A data model based on the capability
protection mechanism. IRIA Internat. Workshop on Protection in
Qperating Systems, Rocquencourt, France, (August 1974) pages
35-54,

{pahl 68} Dahl, O.,~J., Myhrhaug, B., Nygaard, K., The Simula 67 Common
Base Language, HNorwegian Computing Center, Oslo, (1968),

ipennis 66} Dennis, J. B,, Van Horn, E. C., Programming semantics for
multiprogrammed computations. Comm, ACM, Vol, 9, No. 3, (March
1966) 143~155.

fpijkstra 68) Dijkstra, £. W., The Structure of the THE Multiprogramming
system, Comm, ACM, Vol. 11, No. 5, (May 1968) pages 341-346.

{Dijkstra 72 Dijkstra, B. W., Notes on structured programming,
Structured Pcogramminy, Dahl, 0.~-J., Dijkstra, E. W., Hoare, C.
A, K., Academlc Press, (1972).

{Edwards 73] EBdwards, D., private communication, (1973).

[Bngland 72] England, D. M., Architectural features of System 254,
International Switching Symposium, Cambridge, MA, (June 1972).

{England 74} England, D. M., Capability concept mechanism and structure
in Svstem 254. IRIA Internat. Workshop on Protection in Operating
Svstems, Rocquencourt, France, (August 1974) pages 63-82.

{fahrv 681 Pfabry, R, S.. Preliminary description of a supervisor for a
aachine oriented around gapabilities. ICR Quart, Rpt, 18, Univ.
of wiivago, favunot 1963) .

fvabry 73] rfabgy. R. . Dynamic verification of operating system decisions.
Comm, ACM, vol, 16, No. 11, (Nov., 1973) pages 659-663.

{rabry 74] #abry. R. 3., Capability~-based addressing. Comm. ACM, Vol.
17, Hu., ¢, {July 1974) pages 493-412.

{forrie 74} perrie, J., Kaiser, D., Lanciaux, D., Martin, B., An
extensible structure for protected systems’ design, IRIA
Internat, Workshop on Protection in Operating Systems,
Rocguencourt, fFrance, (August 1374).

41

[Graham 72} Graham, G. S., Denning, P, J., Protection-~principle and
practice, AFIPS Conf. Proc. 1972, SJCC, ArfIP3 Press, Montvale,
MJ, (1972) pages 417-424,

[Gray 721 Gray, J., Lampson, B. W,, Lindsay, B., sturgis, H., The control
structure of an operating system. Research report, IBM Watson
Research Center, (July 1972).

{Hdoare 72} Hoare, C. A. R., Notes on data structuring. structured

programming, Dahl, O,-J., Dijkstra, E. W., Hoare, C. A. R.,
Acagemxc Press, (197:&).

[doare 741 Hoare, C. A. K., Monitors: an operating system structuring
concept, - Comm. ACHM,. vol. 17, No, 1d, (Qct. 1974) pages 549-557.

[Hoffman 71} Hoffman, L. J., The formulary model for access control.
AfIPS Conf, Proc, 1971 #JCC., AFIPS Press, Montvale, NJ, (1971)
537—€BI.

{Jones 73} Jones, A. J., Protection in programmed systems. Ph.D.
Dissertation, Carnegie~Mellon Univ,, Pittsburgh, PA.., (June 1973)
139 pages.

(Knuth 69} Knuth, D. E., The Art of Computer Programming, Vol.
Seminumerical Algorithms, Addison-Wesley Publ, Co., {136

¥

).

2
v

{Lampson 69} Lampson, B, W,, Dynamic protection structures. AFIPS
Proc, 1969, FJICC, AFIPS Press, Montvale, NJ, (196Y9) pages 27-

Cont.
34

{Lampson 711 Lampson, B. W., Protection. Proc. of the Fifth Annual
Princeton Conf. on Information Sciences and Systems., Princeton
Univ,, (March 1971} pages 437-443, (Reprinted in ACM Qperating
systems Review, Jan, l974)..

{Lampson 73} Lampson, 8, Ww., & note on the cunfinement problem, Comm,
ACH, vol. 16, No, 1€, (Oct., 1973) pages 613-615.

[Lampson 76| Lampson, 3. W., Sturgis, H., E., Reflections on an operating
system design, Comm. ACM, Vol., 19, No. 5, (May 1976) pages
251-266.

[Linden 76] Linden, T, A., The use of abstract data types to simplify
program modifications. Proc. of Conference on Data: Abstraction,
Definition and Structure, SIGPLAN Notices, Vol. 8, No. 2, (March
1976) pages 12-23.

[Lipner 74) Lipner, 8., Chm., A panel session=-security kernels, APRIPS
Cont, Proc. 1974 NCC, AFLPS Press, Moatvale, NJ, Vol. 43, pages
993997,

[Lipner 75} Lipner, 8. B., A comnent on the confinement problem. ACM
Operating System Review, Vol., 9, No. 5, (Nov. 1975) pages
192-196.

[Liskov 741 Liskov, B., 2illes, 5., An approach to avstractien., Proc. of
a symposium on Very High Level Languages, SIGr.AN Notices, vol. 9,
No, 4, (April 1974).

[Liskov 75} Liskov, 8., é4illes, 5., Specification technigues for Jdata
abstractions. IEEE Trans. on software Engineering., vol. 1, No.
1, (March 197%) pages 7-18.

[Morcis 73a) Morris, J. H., Protection in proéramminq languages. Comm.
ACM, Vol. 16, No. 1, (Jan. 1973) pages 15-21.

(Morris 73b} Morris, J. H., Types are not sets. ACM Symposium on
Principles of Proqramming Languages, Boston, MA, (1973) pages
12¢8-124.

[Needham 72) Needham, R., Protection systems and protection
implementations. AFIPS Conf. Proc. 1972 ©JCC, AFIPS Press,
Montvale, NJ, Vol. 41, pages 571-578,

[Needham 74} Needham, R, M., Walker, R, D. H., Protection and process
management in the CAP computer. IRIA Internat. Workshop on
Protection in Operating Systems, Rocquencourt, rrance, {Auqust
1974) pages 155-164.

[Neumann 74} Neumann, P. G., Fabry, R. 3,, Levitt, K. N., Robinson, L.,
wensley, J. H., On the design of a provably secure operating
system. IRIA Internat, Wocrkshop on Protection in Operating
Systems, Kocquencourt, France, {August 1974) pades l6l-176.

[Neumann 75} Neumann, P. G., Robinson, L., Levitt, K. N,, Boyer, K. d5..
Saxena, A. R., A provably secure operating system. Stanford
Research Institute final Report, Menlo Park, CA, (June 1975).

forganick 72] Organick, E. I., The Multics System: An Examnination of its
Structure, MIT Press, Cambridge, MA, (1372).

[organick 73] Organick, E, I., Computer System Organization--tha
B5708/B67d9 Ssries, Academic Press, New York, (1973).

{ralme 73] ~Palme, J., Protected program moduler in simupla 67. Resesarch
Inst. of National Detense, Stockholm 38 sweeden, (July 1973) 25
pages.

{parker 75]) Parker, D, ¥.. Computer abuse assessment., 3Stanford Research
Institute, Menlo pbark, CA, (Dec. 1975) 33 nages.

[parnas 72a] Parnas, D. L., A technigue tor software macdule
specification with examples. Comm. ACM, Vol. 15, No. 5, (May
1972) 33¢9-336.

{Parnas 72b} Parnas, D. L., On the ¢riteria to be used in decomposing
systems into aodules. Vol. 15, No. 12, (Pec. 1972) 1853-1853.

{parnas /2¢] rPacnas, D. L., Some conclusions from an experiment in
software engineering technigues, ArFIPS Tonf., Proc. 1372 £JCC,
ARIps Press, Montvale, NJ, (1972} pages 325~323.

{varnas 74] Parnas, D. L., On a “buzzword”: hierarchical structure.
Information Processing 74 - Software., IFfLP Congress 74, North
Aolland Publ, Co0., (1974Y pages 336-339.

[popek id4a] Popek, G. J., Cline, C, 5,, verifiable secure operating system
software. AFLPS Conf. Proc. 1974 NCC, APIPS Press, Montvale, NJ,
(1374) pages 145-151.

[popek 740} Popek, G. J., Protection structures. Computer., Vol., 7, No,
6, (June 1974) pages 22-31, . .

43

{Price 73} price, R. W., Implications of a Virtual Memory Mechanism for
Implementing Protection in a Family of Operating Systems. Ph,D.
dissertation, Carnegie-Mellon Univ., (June 1973} 244 pages.

{Redell 74a] Redell, D. R., rFabry, R. S., Selective revocation of
capabilities, IRIA Internat. Workshop on Protection in Operating
Systems, Rocquencourt, France, (August 1974) pages 197-218.

[Redell 74b] Redell, D. D., Naming and Protection in Extendible Operating
systems. (Ph.D. Thesis Univ., of Calif. Berkeley) MAC TR~14¥, MIT,
Cambridge, MA, {(Hov., 1974},

{Ritchie 74} Ritchie, D. M., Thompson, K,, The UNIX time-~sharing system.
Comm. ACM, Vol, 17, No, 7, (July 1974) pages 365-376.

{Robinson 75} Robinson, L., Levitt, K. N,, Neumann, P. G., Saxena, A. R..
On attaining reliable software for a secure operating system.
Inter. Conf, on Reliable Software, SIGPLAN Notices, Vol, 18, No.
6, {(June 1975}).

[Saltzer 74] Saltzer, J. H., Protection and the gontrol of information
sharing in Multics, Comm. ACM, Vol. 17, No. 7, (July 1974} pages
388-462.

[Saltzer 75) Saltzer, J. H., Schroeder, M. D., The protection of
information in computer systems., Proc. of the IEEE.,, Vol. 63, No.
9, (Sept. 1975) pages 1278-1388.

{Schiller 73] Schiller, W., Design of a security kernel for the
pDP~11/45. Air Force Elect. Systems Div,, ESD-TR-73~224, (Dec.
1973).

{Schroeder 72a]l Schroeder, M., Saltzer, J., A hardware architecture for
implementing protection rings, Comm. ACM, Vol. 15, No. 3, (March
1972) 143-147.

[Schroeder 72b] Schroeder, M., Cooperation of mutually suspicious
subsystems in a computer utility, pPh.D, dissertation, MIT,
Cambridge, MA, (1972).

(Sevick 72] Sevick, K, C., Project SUE as a learning experience. AFIPS
Conf. Proc., 1972 £JCC, AFIP3 Press, Montvale, NJ, (1972) pages
571"578 -

[simon 69] Simon, H. A., The Sciences of the Artificial. MIT Ppress,
Cambridge MA, [1959).

[Spier 73] Spier, M. J., Hastings, T, N,, Cutler, D. N., An experimental
implementation of the kernel/domain architecture. ACM Qperating
Systems Review, Vol. 7, No. 4, (October 1973) pages 8-21,

[Walter 75] wWalter, K. et al., Structured specification of a secvrity
kernel., Inter. Conf. on Reliable Software, SIGPLAN Notices, vol,
18, No. 6, (Apr. 1975) pages 285-293.

[Weissman 63] Weissman, C. , Security controls in the ADEPT-58 time-
sharing system.,. AFIPS Conf, Proc., 1969 FJCC, AFIPS Press,
Montvale, NJ, (1969) Vol. 35, pages 119~137,

{(Wulf 73} Wulf, W. A., Shaw, M., Global variables considered harmful,
SIGPLAN Notices, Vol. 8, No. 2, (Feb, 1973) pages 28-34,

44

[Wulf

{Wulf

{Wulf

[Wulf

[wulf

74a) WQIE, W. A., et al., BYDRA: the Kernel of a multiprocessor
gggrit;ng system. Comm. ACM, vol. 17, No. 6, (June 1974) pages
~-345.

74b] Wulf, Ww. A., Toward a lanquage to support structured programs.
Computer Science Dept., Carnegie-Mellon Univ., Pittsburg, PA,
(Apr. 1374).

76a)' ﬂulf, W. A., London, R, L., Shaw, M., Abstraction and
verification in Alphard: Intro. to language and methodology.
Tech, Report, Carnegie-Mellon Univ., (June 1Y78).

76b]A ﬁulf, w. A., London, R. L., Shaw, M., Apstraction and
verification in Alphard: Iteration and generators. Tech. Report,
Carnegie~Mellon Univ., (June 1976).

76c} wulf, W. A., London, K. L., Shaw, M., Abstraction and

verification in Alphard: A symbol table example. <Tech. Report,
Carneqgie~tellon Univ., (June 1976).

45

N A = N

oaee

Color In gur Daily Live
a pew consumar booh

step by step through the
fundamantal principles
of color and bght, familics
ot celor influence of colors
wran other coiors. and
coior harmony. This full-
cotor. 32-page iHustrated
buoidet highlights g/
practical z;ag;aplicahonsf‘&“
af golor, wmcluding:
o Your personal
color plan
o Your color
anvirgament.
o Golor plang
for the home. i
o Using color to drama-
tize or to hide.
o Coler and ilumination.
e Experimenting with color
This new basic guide can
serve as your handhook in
helping you make decisions
about how to use color in your
life and make it work for you
Order Color in Our Dally Lives
prepaid for $1.70 from the
Superintendent of Documents.
U:S: Government Printing
Office. Washington. D.C. 20402,
Use SD Catalog No. C13.53:6.

4

NBS TECHNICAL PUBLICATIONS

PERIDDICALS

JOURNAL OF RESEARCH reports Nationa]l Bureau
of Standards research and development in physics,
mathematics, and chemiutry. It ia published in twa gee-
tions, available separately:

¢ Physics and Chemintry (Section A)

Papers of interest primarily to scientista working in
these fields. This section covers & broad range of physi-
eal and chemical research, with major emphasis on
standards of physical measurement, fundamental gon-
stants, -and properties of matter. lssued six times a
ymu:é Annual subscription: Domestie, $17.00; Foreign,
$21.28.

o Mathematical Sciences (Section B)

Studies and compilations designed mainly for the math-
ematicisn and theoretical physicist. Topics in mathe-
matical statigtices, theory of experiment design, numeri-
¢al analysis, theoretical physics and chemistry, logical
design and programming of computers and computer
wystems, Short numerical tables. Issued quarterly. An-
nual subscription: Domestic, $9.00; Foreign, $11.25,

DIMENSIONS/NBS (formerly Technical News Bul-
Ietin)-~This monthly magazine is published to inform
scientists, engineers, businessmen, industry, teachers,
students, and consumers of the latest advances in
seience and technology, with primary emphasis on the
work at NBS. The magazine highlights and reviews such
1ssues as energy reseéarch, fire protection, building tech.
nology, metric conversion, pollution abatement, health
and safety, and consumer product performance. In addi-
tien, it repourts the results of Bureau programs in
meagurement standards and techniques, properties of
matter and materials, engineering standards and serv-
ives, instrumentation, and automatic data processing.

Annual subscription: Domestie, §2.45; Foreign, $11.85.

HOHPERIODICALS

Monographs-~Major contributions to the technieal liter-
ature on various subjects related to the Buresu’s scien-
tific and technical activities,

Handbooks—Recommended codes of engineering and
industrial practice (including safety codes) developed
in couperation with interested industries, professional
urganizations, and regulatory bodies.

Special Publications—-Include proceedings of confer.
ences sponsared by NBS, NBS annual reports, and other
speeial publications appropriate to this grouping such
as wall charts, pocket cards, and bibliographies.

Applied Mathematics Series—Mathematical tables,
manuals, and studies of gpecial interest to physicists,
engineers, chemists, biologists, mathematicians, com-
puter programmers, and others engaged in scientific
and technical work,

National Standard Reference Data Series—Provides
quantitative data on the physieal and chemical proper-
ties of materials, compiled from the world's literature
and critically evaluated, Developed under a world-wide

program codrdinated by NBS. Program under authority
of National Standard Data Act (Public Law 90-396}.

NOTE: At present the principal publication outlet for
these data is the Journal of Physical and TChemical
Reference Data (JPCRD) published quarterly Jor NBS
by the American Chemical Society (ACS) and the Amer-
ican Institute of Phygics (AIP). Subscriptions, reprints,
and supplements available from ACS, 1165 Sixteenth
St. N. W.,, Wash, D. C. 20058,

Buijlding Science Series-—Disseminates technieal infor-
mation developed at the Bureau on building materials,
components, systems, and whole structures. The series
presents research results, test methods, and perform-
ance criteria related to the struetural and environmen-
tal functions and the durability and safety character-
istics of building elements and systems.

Technical Notes—Studies or reports which are complete
in themselves but restrictive in their treatment of a
subject, Analogous to monographs but not so compre.
hensive in scope or definitive in treatment of the sub-
ject area. Often serve ag a vehicle for final reports of
work performed at NBS under the sponsorship of other’
government agencies,

Voluntary Product -Standards—Developed under pro-
cedures published by the Department of Commerce in
Part 10, Title 15, of the Code of Feders! Regulations.
The purpose of the standards is to establish nationally
recognized requirements for products, and to provide
all concerned interests with a basis for common under-
standing of the characterigtics of the products, NBS
administers this program as a supplement to the sctivi-
tieg of the private sector standardizing organizations,

Federal Information Processing Standards Publications
(FIPS PUBS)-Publications in this geries collectively
constitute the Federal Information Processing Stand-
ards Register. Register serves as the official source of
information in the Federal Government regarding stand-
ards issued by NBS pursuant to the Federal Properiy
and Administrative Services Act of 1948 as amended,
Public Law 89-306 (79 Stat. 1127), and as implemented
by Executive Order 11717 (38 FR 12815, dated May 11,
1978) and Part 6 of Title 18 CFR (Code of Federsl
Regulations).

Consumer Information Series—Practical information;
based on NBS research and experience, covering areas
of interest to the consumer. Easily understandable
language and illustrations provide useful background
knowledge for shopping in today's technological
marketplace,

NBS Interagency Reports (NBSIR)-—A special series of
interim or final reports on work performed by NBS for
outside sponsors (both government and non-govern-
ment). In gener.), initial digtribution is haadied by the
spongor; public distribution is by the National Technical
Information Service (Springfield, Va. 22161) in paper
¢opy or microfiche form.

Order NBS publications (except NBSIR's and RBiblio-
graphi¢ Subseription Services) from: Superintendent of
Documents, Government Printing Office, Washington,
D.C. 20402,

BIBLIOGRAPHIC SUBSCRIPTION SERVICES

The following current-awareness and liternture-survey
hibliographies are issued periodically by the Buresu:
Cryogenic Data Center Current Awareness Service

A literature survey issued biweekly, Anmual sub-
seription: Domestic, $20.00; foreign, $25.00.

Liguefied Natural Gas, A literature gurvey issued quar-
terly. Annual subseription: $20.00.

Supgrconducting Devices and Materials, A literature

survey issued quarterly, Annual subseription: $20.00.
Send subscription orders and remittances for the
preceding bibliographic services to National Bu-
reau of Standards, Cryogenic Data Center (2756.02)
Baulder, Colorade 80302,

@y

R

-t

A

