If you have issues viewing or accessing this file contact us at NCJRS.gov.

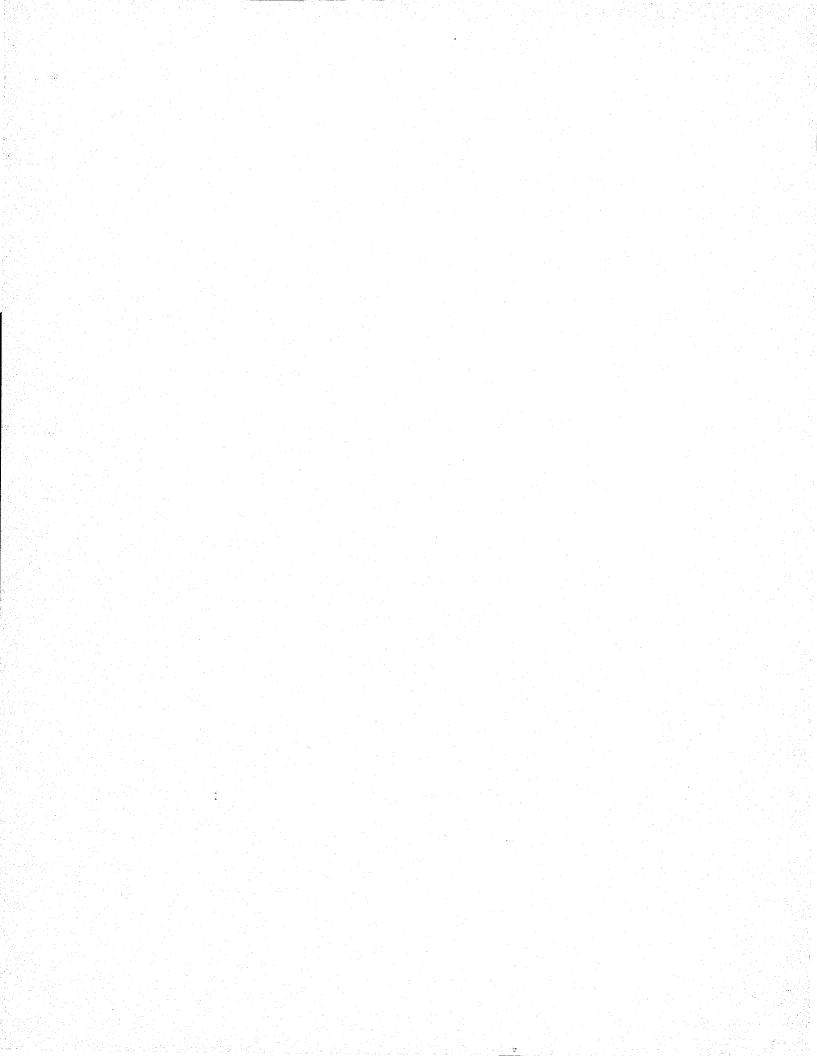
POLICE

PANS

PWC EVALUATION REPORT

EXPERIMENTAL DESIGN AND EVALUATION OF A BOMB DISPOSAL UNIT

INTERNATIONAL ASSOCIATION OF CHIEFS OF POLICE


RESEARCH DIVISION D POLICE CASUALTY ANALYSIS UNIT 11 FIRSTFIELD RD. GAITHERSBURG, MD. 20760 TELEPHONE (301) 948-0922

EXPERIMENTAL DESIGN AND EVALUATION OF A BOMB TRANSPORT UNIT

CONTENTS

rage
INTRODUCTION 2
DESIGN AND CONSTRUCTION 2
Design of the Containment Vessel2Material Selection6Fabrication6Trailer7
TEST AND EVALUATION 8
DISCUSSION 12
APPENDIX A
CERTIFICATION OF MATERIAL 15
APPENDIX B
WELDING PROCEDURES 18

This document was originally produced by the International Association of Chiefs of Police, Inc. for the National Institute of Law Enforcement and Criminal Justice (LEAA), U.S. Department of Justice. The dissemination of this document does not constitute U.S. Department of Justice endorsement or approval of content.

EXPERIMENTAL DESIGN AND EVALUATION OF A BOMB TRANSPORT UNIT

NCJRS

NOV 2 1977

ACQUISITIONS

Prepared by Batelle Memorial Institute Columbus, Ohio

For

International Association of Chiefs of Police

INTRODUCTION

As a result of a number of discussions with the International Association of Chiefs of Police, a joint program was initated by IACP and Battelle's Columbus Laboratories for the experimental design of a bomb disposal unit. It was anticipated that the design, fabrication, and evaluation of this unit would provide information for the design of a unit that could be utilized by law enforcement groups throughout the United States. Originally it was hoped that such a unit could be built for about \$3,000. However, as the program progressed, it became evident that this estimated cost would be low, primarily because of an increase in the cost of industrial prices since the fourth quarter of 1970 and the desire to establish ASME Code qualified procedures for the fabrication of the containment vessel.

An upper safe limit of explosive weight contained in the vessel was not specified because of the lack of valid data on the response of vessels of this type to explosive loading. However, 50 pounds of 60 percent dynamite were set as the desired goal, and design considerations were based on safely containing this amount of explosive.

Views of the complete bomb disposal unit are shown in figures 1 and 2. These pictures were taken at the test site near Athens, Ohio, before the final series of tests.

DESIGN AND CONSTRUCTION

Design of the Containment Vessel

The design of the containment vessel was based upon the most efficient utilization of materials, cost, repairability, and ease of and general availability of fabrication and fabricators throughout the United States. The design based upon these considerations evolved as a welded thin-walled cylindrical container open at the top and closed at the bottom with a dish-flanged head. A replaceable inner liner was mounted within the cylinder so that an annular layer of sand separates the liner from the main vessel. The bottom of the vessel is filled with sand to a height of about 4 inches above the lower end of the liner. The liner serves two purposes: to retain the annular ring of sand in position, and to provide additional protection of the primary load-bearing vessel walls against high velocity fragments.

Sand was selected as a filler because it was a low cost method for increasing the mass of the vessel to alter the response to explosive loading from one controlled by the peak pressure of the blast wave to one controlled by inertial forces.

The approximate dimensions of the vessel, selected on the basis of design calculations, were as follows: Vessel diameter -6 feet O.D., vessel height -6 feet, vessel wall thickness $-\frac{3}{4}$ inch, liner height -3 feet, liner diameter $-\frac{51}{2}$ feet, liner thickness $-\frac{3}{8}$ inch. Dimensions and details of the vessel are given in the working drawings, figures 3 and 4. The primary vessel was fabricated by the welding of one cy indrical section and two flanged-dished heads.

A flanged-dished head was selected for the bottom of the container because of its increased load carrying ability as compared to a flat bottom. The same shape was utilized for the top of the vessel to retain a greater number of fragments within the container by reduction of the top opening.

Figure 1 VIEW OF BOMB CONTAINMENT UNIT BEFORE FINAL SERIES OF TESTS

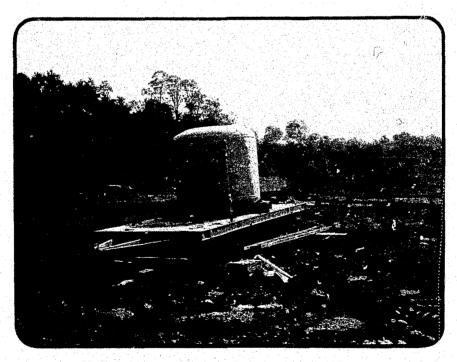


Figure 2 VIEW OF BOMB CONTAINMENT UNIT BEFORE THE FINAL SERIES OF TESTS

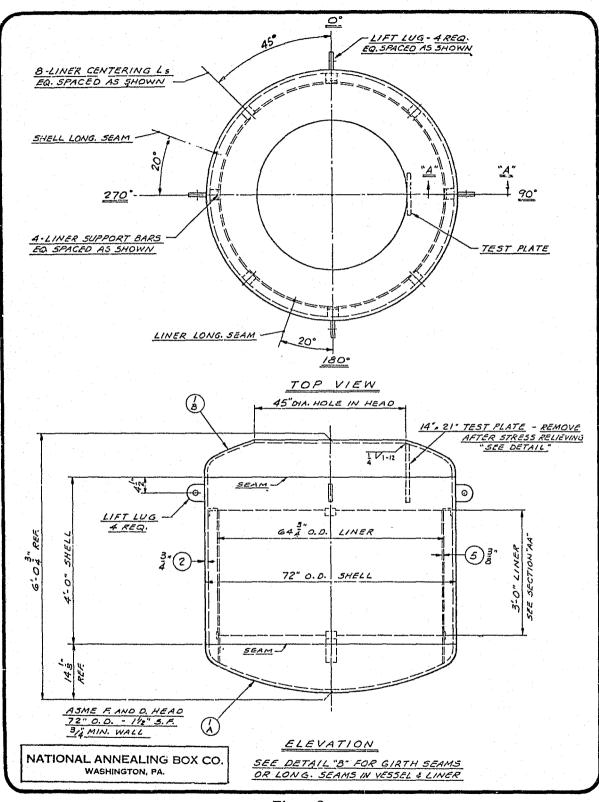


Figure 3 DESIGN SPECIFICATIONS

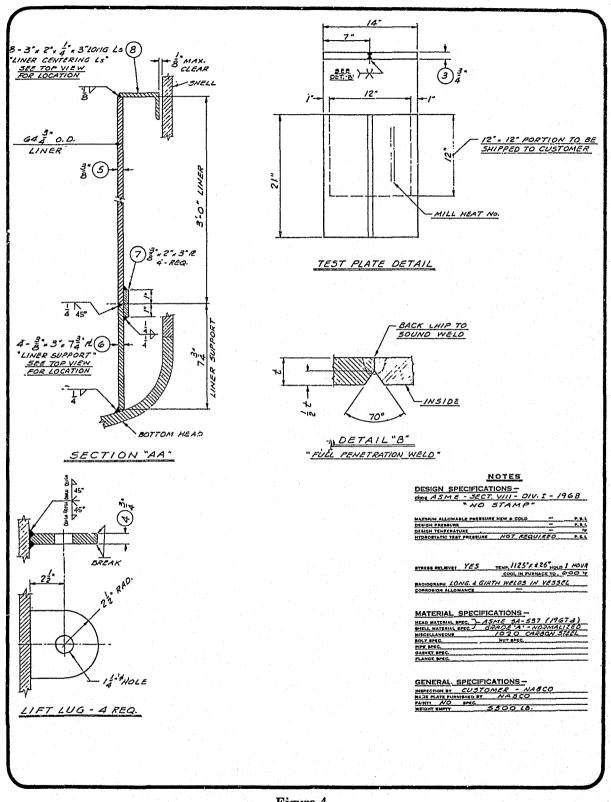


Figure 4 DESIGN SPECIFICATIONS

Flanged-dished heads are standard shapes readily available in the United States. The upper portion could also be produced by the forming and welding of plate.

Material Selection

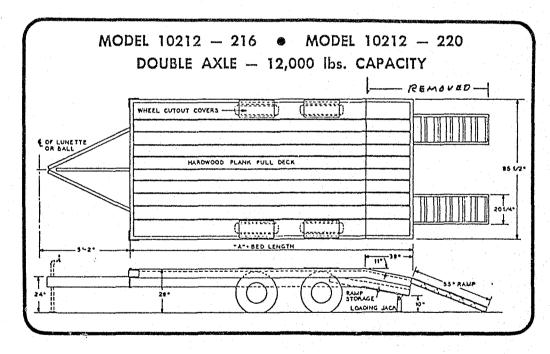
Steel was selected as the vessel material on the basis of cost, strength, fabricability, and availability. The selection of a specific grade of steel for the primary vessel was based upon five considerations: (1) a high level of toughness, as measured by the Charpy notch-bar impact test, at low ambient temperature, (2) weldability, (3) cost, (4) availability, and (5) the fact that steels with good impact properties at low temperatures must be high-quality steels. This provides additional assurance that deformation of the steels will not be adversely affected by unacceptable defects or improper processing.

The steel grade selected is designated as ASTM A537A or as ASME boiler steel SA-537A. This is a high-quality carbon steel with a nominal composition of 0.15-0.2 percent carbon, 1.2 percent manganese, 0.2 percent silicon, sulfur less than 0.02 percent, and phosphorus less than 0.01. The actual certified analysis and tensile properties of the steel used for the primary vessel are given in Appendix A. This steel, as specified by the American Society for Testing Materials (ASTM) or the American Society for Mechanical Engineers (ASME) holler code, will have a minimum yield strength of 50,000 psi and elongation in 8 inches of 18 percent. In addition, this steel will have guaranteed minimum Charpy notched-bar impact strength value of 12 foot-pounds at a temperature of -75 Fahrenheit, a temperature far below expected ambient temperatures. Nominal values for impact strength at -75F are about 30 foot-pounds, and at -50F about 55 foot-pounds. This is a steel characterized by high levels of toughness even in the normalized heat-treatment condition that was specified for the vessel. This type of heat treatment was specified because it only requires heating to the specified temperature for the correct length of time and air cooling as compared with the more complicated heat treatments involving heating, quenching, and tempering which yield higher levels of impact strength.

The steel used for the liner was a standard composition low carbon steel, AISI 1020. Since the liner is not a part of the primary structure, its properties and characteristics do not require specification. In fact any grade of low carbon steel available would be satisfactory. It is assumed that the liner would be patched when perforated with fragments, or replaced in whole or part when excessively damaged.

Fabrication

Fabrication of the vessel is as important as the selection of the material. Improper welding practices could readily degrade the excellent basic properties of the steel, and even introduce flaws that would lead to failure well below design levels.


Since one of the major objectives of the program was to develop commercial fabrication procedures, quotations were requested from three firms for the construction of the vessel according to qualified ASME boiler code requirements for pressure vessels. The National Annealing Box Company (NABCO) of Washington, Pennsylvania, won the contract on the basis of price and procedures.

In the development of qualified welding procedures, the fabricator submits procedures for the type of welding process involved and the results of test plates welded by a specific welder following the procedure. The welder who performed those tests is then qualified to weld with the submitted procedure in accordance with ASME Code requirements. The welding procedure includes all of the aspects involved in welding, such as weld joint design, welding machine, welding parameter (voltage, amperage, polarity, welding speed), the number of welding passes, type of welding (machine or manual), type of electrode and flux, preheat, and post-heat. The detailed qualified procedures submitted by NABCO and accepted by us for two welding processes, submerged arc welding and shield arc welding, are given in Appendix B. These procedures can be used for the welding of other containers.*

The Trailer

The trailer used for this experimental bomb disposal unit was supplied by the Fayette Manufacturing Company of Fayette, Ohio – Grand Island, Nebraska, and Americus, Georgia. The trailer selected was a Model 10212, double axle with 12,000 pounds capacity. This is a standard trailer and was not modified. This trailer, equipped with electric brakes, retails for about \$1,000. A schematic sketch of the trailer is shown in figure 5. As will be discussed subsequently, a stronger trailer will be required, such as another model of the Fayette line with modification that will withstand the impulsive short-time-duration load generated by the detonating explosive.

245

Figure 5 SCHEMATIC SKETCH OF THE TRAILER USED IN THE EXPERIMENTAL BOMB DISPOSAL UNIT

*It should be mentioned that if a fabricator is given the task of fabricating the vessel from a specified steel grade including the ordering of the steel, the fabricator is obliged to handle any discrepancies in the material with the steel supplier. If the fabricator is supplied the steel, the persons who purchased the steel are responsible for any negotiations with the steel supplier.

TEST AND EVALUATION

Two series of tests were conducted on the bomb disposal unit (container and trailer) using 60 percent dynamite as an explosive. In addition, two pipe bombs (2 inches in diameter and 10 inches total length) containing 60 percent dynamite were detonated in the bomb disposal unit.

In the first series of tests, four charges were detonated in the unit in 5-pound increments: 5, 10, 15, and 20. Measurement of the container showed no change in dimensions — no plastic (permanent) deformation. The liner, however, showed some plastic deformation at charges of 15 and 20 pounds at a position about parallel with the explosive charge. (The explosive charges were set on end on the sand in the center of the container) Deformation of the liner increased as the charge was increased. At 15 pounds the liner was bulged outward about 3/8 inch over a distance of about 7 inches quite uniformly around the circumference of the liner. At 20 pounds the liner was bulged about 1 to $1\frac{1}{4}$ inches uniformly. The initial thickness of sand between the liner and the outer container was originally about 3 inches. After the tests, the thickness of sand at this portion of the container was only about $1\frac{3}{4}$ to 2 inches.

The trailer began to show significant effects of the blast load at 15 pounds of dynamite. At this point the trailer platform was striking the axles, and at 20 pounds, deformation of the axles and bending of the cross-members was evident.

The tests with 5 through 20-pound charges were run in Battelle's explosive facility at West Jefferson, Ohio. The detonation of larger amounts of explosive necessitated moving to the remote site near Athens, Ohio. Figure 4 shows the unit after the detonation of the first 50-pound charge. Note the bending of the trailer frame and the position of the trailer.

In the second series of tests, two pipe bombs and two 50-pound charges of 60 percent dynamite were detonated. The persons involved in these tests were Thompson Crockett and C.R. Newhouser of IACP, Thomas Brodie of the Dade County Department of Public Safety; and Joseph Dunleavy, Dr. Dale Trott, and Vernon Petry of the Columbus Laboratories. The results of the tests are as follows.

- (1) Pipe bomb, 1 pound of 60 percent dynamite. Pipe 2-inch O.D. Total length 10 inches. Approximately 60 percent of the bomb was recovered within the bomb container (these were pieces large enough to be readily recognized). There was evidence that the restricted opening at the top of the container was responsible for the retention of some of the fragments in the container. This was particularly apparent with respect to fragments that had ricocheted off the sloping top of the container and remained on the annular sand ring between the liner and the container shell. Several deep indentations were made in the liner, some of these reaching a depth about ¼ of an inch or about 2/3 of the liner thickness. This type of fragment damage is one of the basic reasons for an internal repairable or replaceable liner which will absorb fragment impact and protect the principal container walls.
- (2) **Pipe bomb** a duplication of the first bomb. Motion pictures taken of these tests may give some indication of fragment pattern.

After both tests (1) and (2), no measurable change was noted in the container. The liner was also unaffected by the blast wave (no additional bulging).

(3) Fifty-pound charge of 60 percent dynamite. The detonation of this charge expanded the liner a total distance of 2 inches from the vertical, leaving about 1 inch of sand between the liner and the container wall. The container wall underwent plastic deformation at this point of about 0.57±0.04 percent and at a distance of about 9-10 inches above the bottom weld of the container, as shown in figure 6. At a distance of 24 inches above the bottom weld, the strain was about 0.1±0.04 percent, and at a distance of 39 inches above the bottom of the weld, there was no measurable strain.

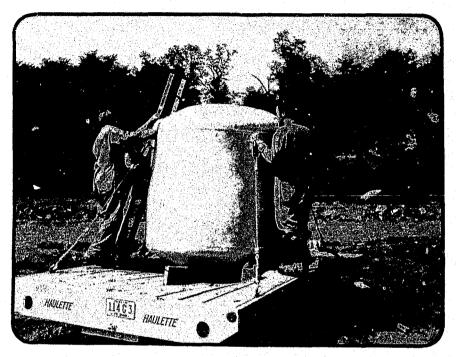


Figure 6 BOMB CONTAINMENT UNIT AFTER DETONATION OF THE FIRST 50-POUND CHARGE

The trailer was badly damaged: axles and main supporting members under the container were bowed.

(4) The second 50-pound charge of 60 percent dynamite. Detonation of this charge split the liner in two places for a length of about 10-14 inches. Fracture of the liner occurred at the point of previous bulging about 9-10 inches above the bottom weld seam of the container. The entire liner was bulged in this area to the extent that less than 1 inch of sand remained between the liner and the container wall. The plastic strain at the bottom, middle, and top positions is 1.67±0.04, 0.3±0.04 percent, and no measurable strain respectively. Measurements of the flanged-dished bottom section showed no significant change in dimension. The trailer was completely incapacitated by this detonation. Axles were down to within 1 or 2 inches of the ground. Main supporting members were badly bent.

Figures 7, 8, 9, and 10 are views of the container and trailer after the detonation of the second 50-pound charge. The fracture of the inner liner and the bulge (plastic deformation) of the container are clearly shown; however, the container shows no evidence of fracture.

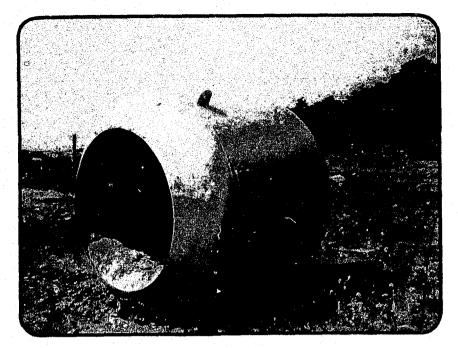


Figure 7 FRONT VIEW OF THE CONTAINER AFTER DETONATION OF SECOND 50-POUND CHARGE

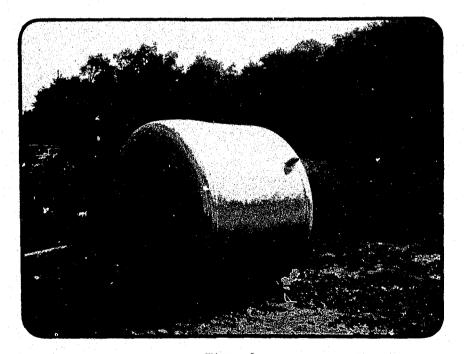


Figure 8 REAR VIEW OF THE CONTAINER AFTER DETONATION OF THE SECOND 50-POUND CHARGE

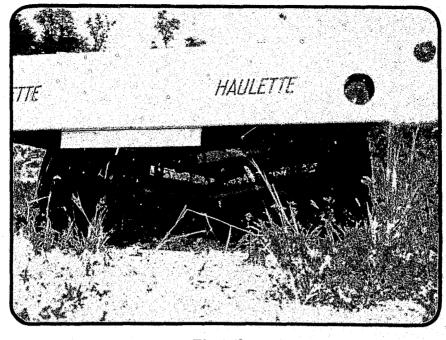


Figure 9 REAR VIEW OF THE TRAILER AFTER DETONATION OF THE SECOND 50-POUND CHARGE

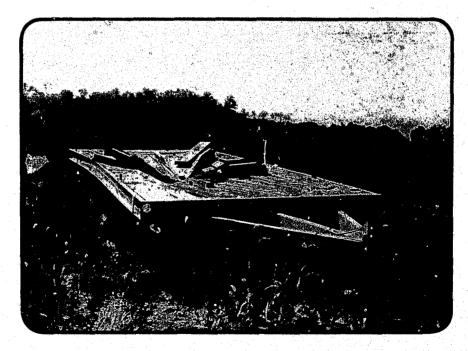


Figure 10 FRONT VIEW OF THE TRAILER AFTER DETONATION OF THE SECOND 50-POUND CHARGE

DISCUSSION

The evaluation of the bomb disposal unit showed that the container safe limit is *at least* 50 pounds of 60 percent dynamite. If the liner had been replaced prior to detonation of the 50-pound charges it appears that very little, if any, deformation of the container shell would have occurred. With a new liner, deformation of the shell at the point of maximum load, approximately 9 inches above the bottom weld of the vessel, would have been less than the deformation at the middle measurement position (24 inches above the bottom weld) — less than 0.1 percent strain. Nevertheless, the 50-pound tests were conducted under these severe conditions so that significant plastic strain would occur, and the integrity of the container could be assessed. After a plastic strain of 1.67 percent, the container showed no evidence of cracking or fracture. Deformation that occurred was ductile in nature and uniform over the area of maximum load. With a new liner, this vessel could be safely used for charges up to 50 pounds. Inspection of the container would be necessary, however, after each detonation of this magnitude to determine whether plastic deformation was continuing. At this point it appears that the limit of this container, before fracture would occur, would probably be in the range of 75 to 100 pounds of 60 percent dynamite.

The trailer used in this bomb containment unit was definitely inadequate. It appears from the approximate amount of deflection noted during detonations, 8 to 10 inches with the 50-pound charges, that significant strengthening of the structure under the container, springs, and axles is required. The results of the tests were transmitted to Fayette Manufacturing Company, and quite probably they will have recommendations for improvement.

The following discussion comments were prepared by C.R. Newhouser of the NBDC staff and were not a part of the original Battelle research report.

• During the testing phase of the bomb transporter, it was decided to develop and employ less than ideal conditions in relation to the type of sand employed, its moisture content, and the degree of compactness which would be allowed. This was done to determine if the bomb transporter could survive under less than ideal conditions which might inadvertently occur during heavy work load periods and under adverse weather conditions. Consequently, ordinary fine gravel sand was employed with no attempt made to control its moisture condition. After the damp sand was placed inside the bomb transporter, no attempt was made to prevent its compacting under the force of the test detonations. No breakup of compacted sand was performed after the detonation of 5, 10, 15, and 20 pounds of 60 percent strength dynamite. During the movement of the bomb transporter from West Jefferson, Ohio, to Athens, Ohio (approximately 100 miles), some shifting and settling of sand was noted due to normal road shock and air passage across the sand through the uncovered vent opening.

• The detonation of the two dynamite-filled pipe bombs may have caused some breakup of the packed sand in the bomb transporter, but during the fragment recovery operation, it was noted that the sand was hard packed at a depth of approximately 2 inches.

• Detonation of the first and second 50-pound charges of 60 percent dynamite produced additional compacting of the sand to produce an almost solid sandstone-like aggregate. At the completion of the tests, the tank was pulled from the damaged trailer with a bulldozer and tumbled and almost turned upside down upon impact with the ground. Inspection of the inside of the tank revealed that approximately 2/3 of the sand was still packed in position on the bottom of the tank

after this tumbling action, indicating that a high degree of sand compacting was present during testing. In spite of these adverse conditions, the tank survived the test explosions and was deemed fit to contain additional detonations of similar magnitude.

• In operational bomb transporters, silicon sand should be employed as the shock absorbing medium inside the tank body. Silicon sand has excellent free flow and moisture resistant qualities. In addition, steps should be taken to protect the sand from exposure to rain or moisture by providing a lightweight removable rain cover for the vent opening of the bomb transporter.

• After any detonation occurs in the bomb transporter, the entire sand load should be dug through and turned to ensure that all compacted portions are restored to a free flow condition. If this is not accomplished, the shock absorption qualities of the sand may be almost totally lost and the blast pressure will be transmitted through the packed or caked sand directly to the outer container walls. This increases the possibility of plastic deformation of the outer body.

• Prior to detonation of the second charge of 50 pounds of 60 percent dynamite, Mr. Brodie, Mr. Donleavy, and Mr. Newhouser positioned themselves in the open at a distance of 100 feet from the bomb transporter and remained in that position during the test detonation.

• They reported that the shock wave was minimal at that position due to the highly directional and columnar venting of the exploding force in an upward direction.

• When detonation of an explosive charge in the bomb transporter occurs, a loud eerie rushing and whistling sound is produced (noticable after the sound of the detonation diminishes) which is heard for 5 seconds or longer. This sound is accompanied by a visible smoke ring which is rapidly projected upwards in a vertical line from the open end of the bomb transporter, and indicates that the vented gases and shock waves are being projected in a narrow column from the mouth of the tank. It is this feature, shown in figure 11, which provides a margin of safety in employment of the bomb transporter in congested high rise building areas. The majority of the explosive force is columnated and does not, therefore, tend to create structural or glass damage to the surrounding buildings.

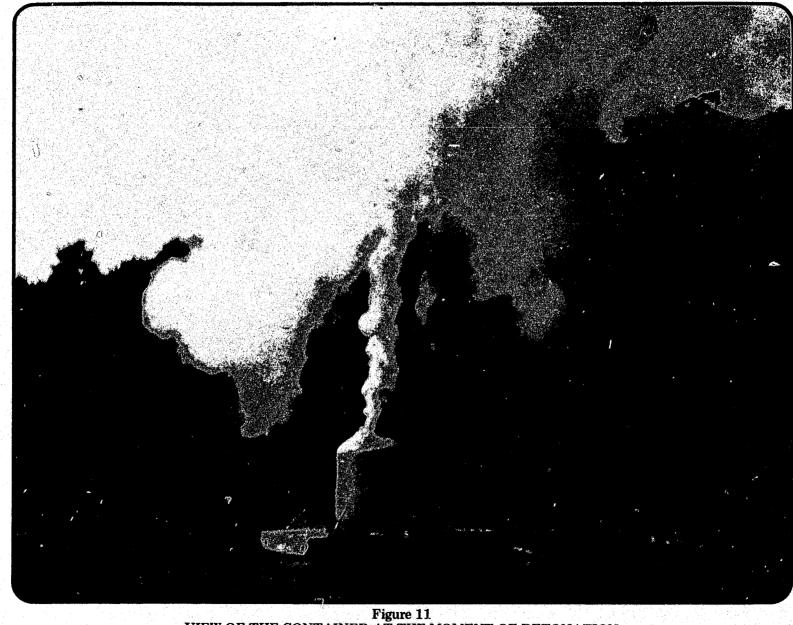
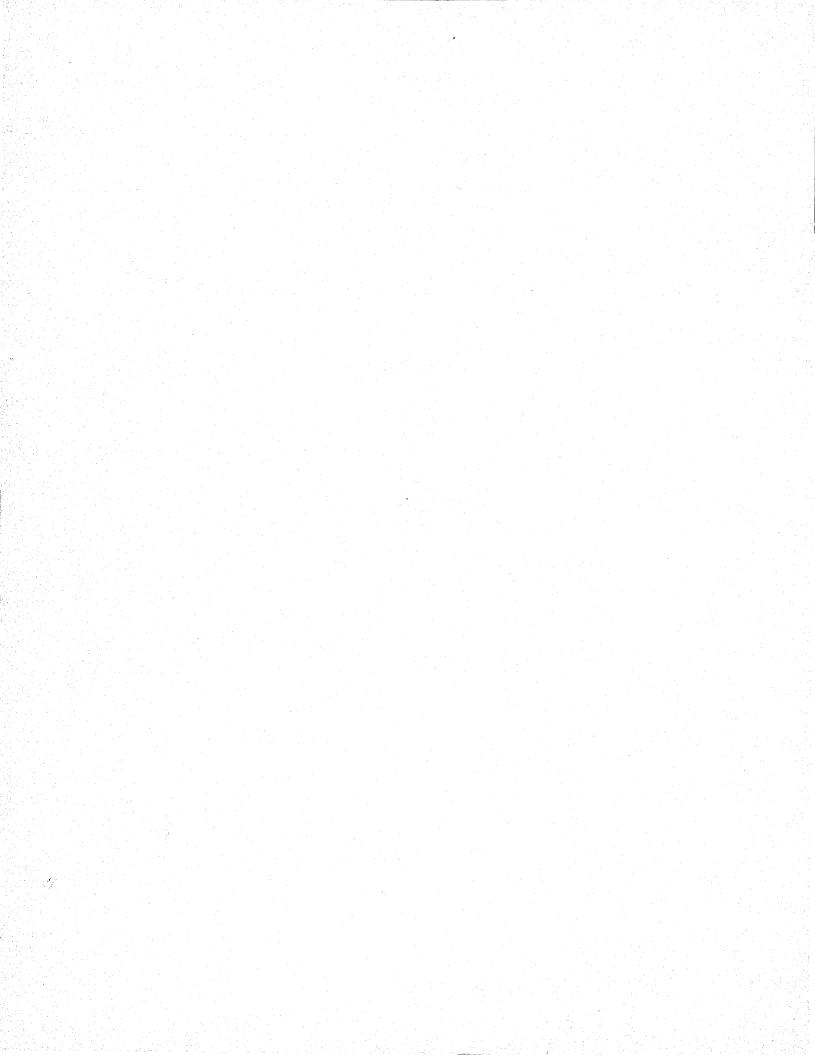



Figure 11 VIEW OF THE CONTAINER AT THE MOMENT OF DETONATION OF FIFTY POUNDS OF 60 PERCENT DYNAMITE

APPENDIX A

÷. •

CERTIFICATION OF MATERIAL

PURCHASER: 1 National Annealing Box Co.				LUKENS STEEL COMPANY COATESVILLE, PA. 19320 TEST CERTIFICATE					DATE: 5-20-71 FILE NO. 5536-01 CONSIGNEE:								
National An	nealing B	ox Co.		1	MILL ORDER	LL ORDER NO. CUSTOM			CUSTOMER PO.								
Pur. Dept., F	rur. Agen				48612-1	50918			MP 51471 LK								
PECIFICATIONS	: 37-67A (Gr. A															
BEND TEST	0.К.	ном	OGENEITY	EST		· · · · · · · · · · · · · · · · · · ·											
MELT NO.	c	Mn	P		C H	EMIC					Mo	v	TI	AI	в		
MELINO.		IVID			5	Cu					10			AI			
7999	18	1.22	008	017			20									F.G.P.	
star i se s																	
		,													·		
••••••••••••••••••••••••••••••••••••••			L		P H	YSICA	L PRO	PERT	IES	l					L	.	
MELT NO.	SLAB NO.	YIELD PSI X100	TENSILE PSI X100	% ENL IN 8"	0G %R.A.	BHN		MPACTS						DESC	RIPTI	ON	
7999	5A	526	742	24				1 1 . 1					2-72	OD x 3/4	" Min.	Ga.	
								İ	i .								
							· .										
the Article																	
						a de Nacional								Affirm day o	ed and s f May 20	ubscribed before), 1971	me this
eads and test	s norm.								APPR	OVED							
									MAY	27, 197	/1			Phillip	A. Roma	Indino Jr.	
									 3y					My Co	mmission	Notary Pub Expires April 1	lic , 1972
									1			-					

PURCHASER: 4. National Annealing Box Co. Pur. Dept., Pur. Agent).		LUKENS STEEL COMPANY COATESVILLE, PA 19320 TEST CERTIFICATE					DATE: 5-20-71 CONSIGNEE:				FILE NO. 5536-01-01			
	•				MILL ORDEF	RDER NO. CUSTOMER P.			ł								
				48612-2		50918		MP 51471 LR									
SA-537-67	A Gr. A			· · ·		· .		· · · · · · · · · · · · · · · · · · ·		-				,			
BEND TEST	0.K.	HOMOG	ENEITY TE	ST													
151 7 110			P	1		CHEMI		NALYS					·	·····	······	1	<u> </u>
IELT NO.	с	Mn	μΥ		<u>s</u>	Cu	St	<u>N1</u>	Cr		Mo	v	<u>TI</u>	AI	B		
										1							
47999	18	1.22	008	017			20				، . بالانتاني					F.G.P.	
										·						and the second second	
			1	<u> </u>						·			1		1		
							1			- 1							
								<u> </u>	<u> </u>			L	l	L	l	<u> </u>	
	· ·					PHYSI	CAL P	ROPER	TIES	;							
IELT NO.	SLAB NO.	YIELD PSI X100	TENSILE PSI X100	% ELO	NG % R.A.	BHN		IMPACTS						DESC	RIPTI	0 N	
				ľ												and the second	
47999	4A	543	751	- 34									(1-2	25-1/2 x 2 x 7 x 3	48-1/2 /4''	x 3/4″	
				Ì				n de la composición de	1.	Ì							
Plates and tes	ts norm.	1650° F.,	±25° F., h	eld 3/4	1 hr. per inc	h min. a	hd air co	dled		. 1							
														Affirmed	and sul	bscribed before me	
-							а. 						thi	s (lay of	MAY 20, 1971	
									ÀPPR	ove	D						
			*						MAY	27	1971			Pi	nillip A.	Romandino Jr.	
									1.	-''		I.				Notary Public	
					, , , , , , , , , , , , , , , , , , ,			Ву		•	*** ****	1	My	Commiss	sion Ex	pires April 1, 1972	

~

APPENDIX B

WELDING PROCEDURES

NATIONAL AN WASHINGT		1 BOX 00.			NG PROC		Base Material Process SMA		
ISSUED 3.28.67	REV.	5-9-67		÷ · · · · ·	OT-6704	UN		·	. <u>.</u>
ISSUED 3-28-67	REV.	7-14-67 8-18-67			· · ·		Page 1 of 2 Pa	ges	
		8-18-67							
Base Material			Fille	er Metal		Wel	ding Process		
		Electrode Group		Deposit Ar Group	nalysis				
•	1) 🔽	F1		A1	\mathbf{X}		tal Arc (SMA)	X	
• •	P3)	F2		A2		Submerged /			
	P4) □ P5) □	F4 F5		A3 A4		Metal Inert (
	28) 🗆	F7		A4 A7		Flux Cored N Spray Arc	wire		
	v) 🗆	F		A8		Short Arc			
Special		Special		Analysis					
		·		Not Reqd.		Tungsten Ine	ert Gas (TIG)		
						Manual		X	
						Semi-Autom	atic		
						Full Automa	itic		
welding shall be cle		on or grease and	CXC6	aane amount	a ur scale i	or rust.			
Smearing	[]]	Gas Cuttin	a		(v)	Powder Burn	ning	Γ-1	
Smearing Machining Grinding		Gas Cuttin Air Arcing	-			Powder Burr Plasma Cutti	ing		00
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag c Defects: Any crack	교 교 ding Layers ndercutting or flux rema ss or blow h	Air Arcing The welding con on the side walls aining on any beau noles that appear	urren s of tl ad of	he welding gr welding shal he surface of	I of depos roove or th l be remov any bead	Plasma Cutti iting the weld m he adjoining base wed before laying of welding shall	ng etal shall be such e material. g down the next :	that there successive t	
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag c Defects: Any crack grinding, or gouging	IX IX ding Layers dercutting or flux rema so or blow h g before dep	Air Arcing The welding con on the side wall aining on any be noles that appear positing the next	urren s of tl ad of ⁻ on tl t succ	he welding gr welding shal he surface of	I of depos roove or th l be remov any bead	Plasma Cutti iting the weld m he adjoining base wed before laying of welding shall	ng etal shall be such e material. g down the next :	that there successive t	
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag c Defects: Any crack	IX IX ding Layers dercutting or flux rema so or blow h g before dep f welds sha	Air Arcing The welding con on the side walls ining on any bea noles that appear positing the next ll not be allowed	urren s of tl ad of r on tl t succ l.	ne welding gr welding shal he surface of essive bead o	छ r of depos roove or th l be remov any bead f welding.	Plasma Cutti iting the weld m he adjoining base ved before laying of welding shall	etal shall be such e material. g down the next : be removed by c	that there successive t	bead.
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai	IX IX IX Idercutting or flux rema so or blow h before dep f welds sha r welding w r welding w side of Weld s allowed at clean, sour	Air Arcing The welding ci on the side walls aning on any be toles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel	urren s of ti ad of r on ti t succ J. dures parati id me	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pend	I be remove any bead f welding. points sha laterial".	Plasma Cutti iting the weld m ne adjoining base yed before laying of welding shall of another quali Il have second si Such preparatio ing may or may	ng etal shall be such e material. g down the next : be removed by c fied procedure co de of welding pro n shall include pe not be used as ar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of eguar
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of eguar
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of eguar
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of eguar
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of eguai
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of egua
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of egua
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g of egua
Machining Grinding Appearance of Weld be practically no ur Cleaning: All slag o Defects: Any crack grinding, or gouging Peening: Peening o Repairs: Any repai base material. Treatment of Under applicable processes first side welding to Single welded butt	IX IX IX dercutting or flux rema so or blow h g before dep f welds sha r welding w r welding w side of Weld s allowed at clean, soun joints, qual	Air Arcing The welding ci on the side walls aning on any bea- tooles that appear positing the next ll not be allowed will follow proceed ding Groove: Do pove under "Pre- nd and fused wel- ified under doub	urren s of ti ad of r on ti t succ J. dures parati id me ble we	ne welding gr welding shal he surface of essive bead o of original w welded butt on of Base M tal. Dye pene lded tests, m	In of depositions of depositions of depositions of the removel of	Plasma Cutti iting the weld m he adjoining base yed before laying of welding shall of another quali ll have second si Such preparatio ing may or may a backing strip	ing etal shall be such e material. g down the next : be removed by c fied procedure co fied procedure co de of welding pro n shall include po not be used as ar or else be separar	that there successive to shipping, overing pro epared usin enetration of added saf	per g cof egua

NATIONAL A	NNEALING gton, pa.	BOX CO.	1	DING PROCEDURE		PQT-6704 Sketches
			1	PQT-6704		
SUED 3-28-67		-9-67 -14-67	-		Pag	e 2 of 2 Pages
	8	-18-67				
Radiographic Exa Magnetic Particle	e Material A- er Metal A-3 ∴ 3½″ t Gas □ usec Flat 200°F. Min. 1125°±25°F amination Pe Examination	516 Gr. 70 to 7 16-64T E-80 1 Hold 26 Hrs. r Par. N-624 S Per Par. N-62 JOINT DI	18-C3 Hold 4 Hrs. ection III ASM 26 Section III 4 ESIGN AND W	Tks. Range Qualified Max. Interpass Temp Also as Welded IE Code And/Or Cust And/Or Cust. Specs. /ELDING PROCEDU	Gas Rate . 300°F. . Spec.	
Ultrasonic Test -	- Per Par. N-62	25 Section III	And/Or Custo	mer Specs.		
WHEN REQ		50°		<u>1/4"</u>	1"' to 5"'	"T" "X" $1''-1-1/4''$ $3/8''$ $1-1/4''-1-1/2''$ $1/2''$ $1-1/4''-1-1/2''$ $1/2'''$ $1-1/2''-1-3/4''$ $5/8''$ $1-3/4''-2''$ $3/4'''$ $2''-2-1/4''$ $7/8'''$ $2-1/4''-2-1/2''$ $1'''$ $2-1/4''-2-1/2''$ $1'''$ $2-1/2''-2-3/4''$ $1-1/8'''$ $2-3/4''-3''$ $1-1/8'''$ $2-3/4''-3''$ $1-1/4'''$ $3''-3-1/4''$ $1-3/8'''$ $3-1/4''-3-1/2''$ $1-1/2'''$ $3-1/4''-3-1/2''$ $1-1/2'''$ $3-1/4''-3-1/2''$ $1-1/2'''$ $3-1/4''-3-1/2''$ $1-1/2'''$ $3-1/4''-3-1/2''$ $1-3/4''$ $4-1/4''-4-1/2''$ $1-3/4'''$ $4-1/4''-4-1/4''$ $1-7/8'''$ $4-1/4''-4-1/2''$ $2''''$ $4-1/2''-4-3/4'''$ $2-1/8'''''$ $4-3/4''-5'''$ $2-1/4''''$
Pass Numbers	Elec. Dia,	Amperage Range	Voltage Range	Speed or Technique	Elec. Char.	Miscellaneous
1&2	5/32"	150-220	22-25	Stringer Bead	DC-RP	
3	3/16"	240-300	23-26	Stringer Bead	DC-RP	
. 4	1/4″	320-400	24-27	Stringer Bead	DC-RP	
·	Technique Re	quired for Imp	roved Charpy	Impacts Results.		

Į

26 Hr. Stress Relief Sect. 111 RECOMMENDED FORM Q-1 MANUFACTURER'S RECORD OF WELDING PROCEDURE QUALIFICATION TESTS

Specification No. P.O.T. 6704 Welding Process Shielded Metal Arc Material Specification A-516 Gr-70 to A-516 Gr 70 of P-No. 1 to P-No. 1 Thickness (if pipe, diameter and wall thickness) 3%" Thickness Range this test qualifies 3/16" to 5" Filler Metal Group No. F-4 Weld Metal Analysis No. A-1 Describe Filler Metal if not included in Table Q-11.2 or QN-11.2

For oxyacetylene welding-State if Filler Metal is silicon or aluminum killed.

Welding Procedure

Date 10-5-67 Manual or Machine Manual

Flux or Atmosphere Flux Trade Name or Composition -Inert Gas Composition -Trade Name -Flow Rate -Is Backing Strip Used? No

Preheat Temperature Range 200°F

Postheat Treatment 1150°F±25°F Hold 26 Hrs.

Single or Multiple Pass Multiple Single or Multiple Arc Single Position of Groove Flat (See Pars. & Figs. Q-2 & Q-3, or QN-2 & QN-3) (Flat, horizontal, vertical, or overhead; if vertical, state whether upward or downward)

Filler Wire-Diameter 5/32" - 3/16" - 1/4" Trade Name Atom Arc 8018-C3 Type of Backing Double Welded Forehand or Backhand Backhand

For Information Only Welding Techniques

Joint Dimensions Accord with P.Q.T. 6704

amps 150-400 volts 22-27 inches per min. Manual

Round Tensils Test (Fig. QN-6(c))

Specimen No.	Dime	ensions	Area	Ultimate	Ultimate unit	Character of	
		Diameter	-	Total Load, lb.	Stress, psi	Failure and Location	
1	-	.502	.198	14,800	74,750	Base Metal	
2		.504	.199	15,000	75,375	Base Metal	
3	-	.500	.196	15,000	76,530	Base Metal	
4	-	.501	.198	15,200	76,770	Base Metal	

Guided Bend Tests (Figs. Q-7.1)

Type and Figure No.	Result	Type and Figure No.	Result
Side Bend No. 1	No Defects	Side Bend No. 3	No Defects
Side Bend No. 1A	No Defects	Side Bend No. 3A	No Defects
Side Bend No. 2	No Defects	Side Bend No. 4	No Defects
Side Bend No. 2A	No Defects	Side Bend No. 4A	No Defects
Welder's Name G. Ward	Clock No. 52	Stamp No.	Af

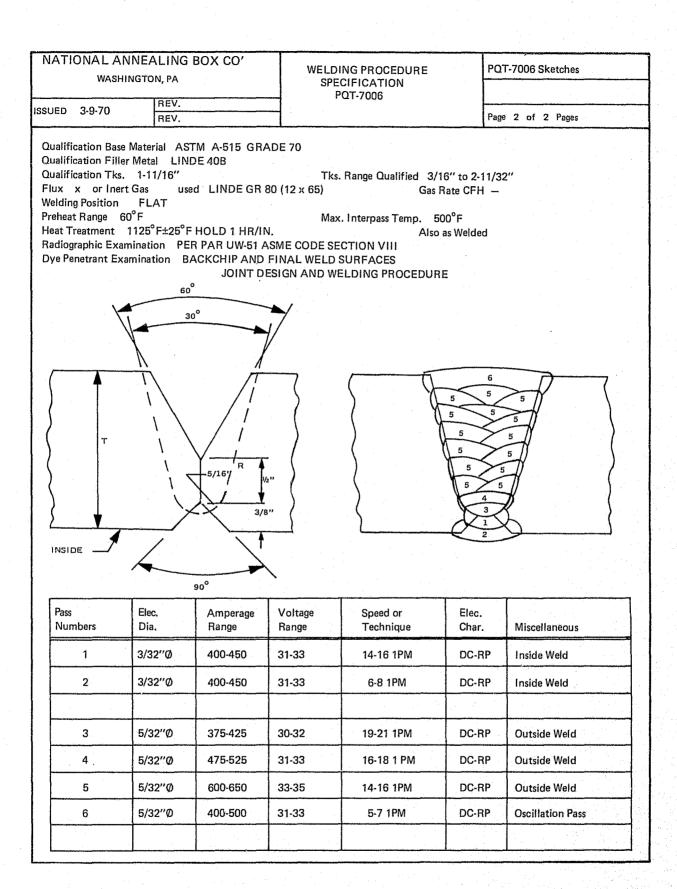
Welder's Name G. Ward Clock No. 52 Who by virtue of these tests meets welder performance requirements.

Laboratory-Test No. (SO. 8694-8) (PQT. 6704-1)

Test Conducted by NABCO per W. Porter

We certify that the statements in this record are correct and that the test welds were prepared, welded and tested in accordance with the requirements of Section IX of the ASME Code.

Date 10-5-67


Charpy Impact -- "V" Notch @+ 10°F (PTL43591) - 146 - 128 - 49- 44 - 55 Weld Metal 135 Heat Affected Zone

Signed: National Annealing Box Company Manufacturer

By: J.S. Loughrian, Welding Engr.

NATIONAL A	NNEALIN	G BOX CO.	WELD	ING PRO	CEDURE	Base Mater	ial P-1
WASI	HINGTON, PA.			CIFICAT		Process SA	· ·
ISSUED	REV.			°QT-7006	, ,	Page	of Pages
			L <u></u>			Fage	OI Fages
Base Material			Filler materi	al		Weld	ing Process
		Electrode Group	Deposit A Grou	•			
Carbon Steels Low Alloys Low Alloys Medium Alloys High Alloys Special	(P1) 👿 (P3) 🗆 (P4) 🗆 (P5) 🗆 (P8) 🗖	F2 C F4 C F5 C F7 C F C	 ☐ A1 ☐ A2 ☐ A3 ☐ A4 ☐ A7 ☐ A8 ☑ Analysis Not Reqd 		Submergec Metal Inert Flux Corec Spray Arc Short Arc Tungsten I Manual	: Gas (MIG) I Wire nert Gas (TIG)	
					Semi-Auto Full-Auton		
shall be cleaned of Shearing Machining Grinding Appearance of W be no undercutti Cleaning: All sla Defects: Any cr	of all oil, grea /elding Layers ing on the side ag or flux remand acks or blow i	se, scale, rust and a Gas Cutting Air Arcing : The welding curn e walls of the weldi	rent and manne ng groove or th of welding sha n the surface o	rials. IXI IXI er of depo le adjoinin Il be remo f any bea	Powder Bu Plasma Cut esiting the weld ng base material oved before layi d of welding sha	rning ting metal shall be s ng down the ne	e joined by welding
Peening: Peenin	g of welds sha	ll not be allowed.					
Repairs: Any re base material and		vill follow procedu	res of original v	welding o	r of another qua	lified procedur	e covering proper
Remarks:							
	1997 - 1997 1997 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1						

ş

RECOMMENDED FORM Q-1 MANUFACTURER'S RECORD OF WELDING PROCEDURE **OUALIFICATION TESTS**

Specification No. PQT-7006 Date 3-9-70 Welding Process Submerged Arc Manual or Machine Material Specification SA-515 Gr. 70 to SA-515 Gr. 70 of P-No. 1 to P-No. 1 Thickness (if pipe, diameter and wall thickness) 1-25/64" Thickness Range this test qualifies 3/16" TO 2-25/32" Filler Metal Group No. F-Weld Metal Analysis No. A-2 Flux Trade Name or Composition Linde Gr-801 Describe Filler Metal if not included in Inert Gas Composition -Table Q-11.2 or QN-11.2 Linde 40B Trade Name -

For oxyacetylene welding-State if Filler Metal is silicon or aluminum killed

Welding Procedure Single or Multiple Pass Multiple

Single or Multiple Arc. Single Position of Groove Flat

Preheat Temperature Range 60°F

Is Backing Strip Used? No

Flux or Atmosphere

Postheat Treatment 1125°±25°F Hold 1 Hr/In.

Machine

(12 x 65)

Flow Rate

(See Pars. & Figs. Q-2, & Q-3, or QN-2 & QN-3) (Flat, horizontal, vertical, or overhead; if vertical, state whether upward or downward)

For Information Only

Filler Wire-Diameter 3/32" & 5/32" Ø Trade Name Linde 40B Type of Backing Double Welded Forehand or Backhand Backhand

Welding Techniques Joint Dimensions Accord with PQT-7006

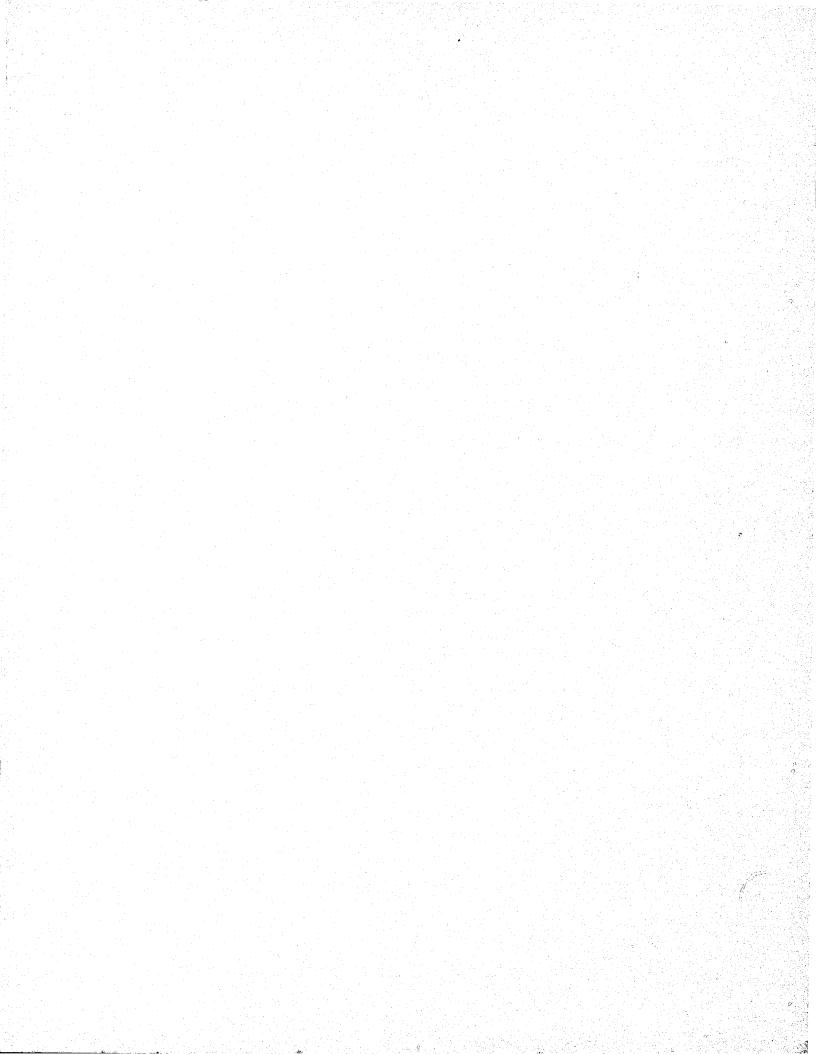
amps 375-500 volts 30-35 inches per min. 5-21 1 PM Reduced Section Tensile Test (Fig. Q-6 and QN-6)

Specimen No.	Din	nensions	Area	Ultimate	Ultimate unit	Character of
	Width	Thickness		Total Load, lb.	Stress, psi	Failure and Location
1	.745	1.340	.998	78000	78160	Base Metal
2	.745	1.332	.992	78000	78630	Base Metal

Guided Bend Tests (Figs. Q-7.1, Q-7.2, QN-7.1, QN-7.2, QN-7.3)

Type and Figure No.	Result	Type and Figure No.	Result
Side Bend No. 1	No Defects	Side Bend No. 3	No Defects
Side Bend No. 2	No Defects	Side Bend No. 4	No Defects

Welder's Name D. Welling Clock No. 518 Stamp No. BM Who by virtue of these tests meets welder performance requirements.


Test Conducted by NABCO Laboratory-Test No. (R-0208A) (PQT 7006)

We certify that the statements in this record are correct and that the test welds were prepared, welded and tested in accordance with the requirements of Section IX of the ASME Code. Signed: National Annealing Box Company

	4-28-70 ND TENS		ALL WELDS)		,	nufacturer) hran, Welding Eng	,		
No.	DIA.	AREA	YIELD(LOAD)	YIELD(PSI)	TENSILE(LOAD)	TENSILE(PSI)	ELONG.	RED. OF AREA	
1	.504	.199	12900	64820	15700	78940	30%	40%	
2	.503	.199	12500	62810	15700	78895	28%	40%	

. .

per J. Manion

