
If you have issues viewing or accessing this file, please contact us at NCJRS.gov.

8

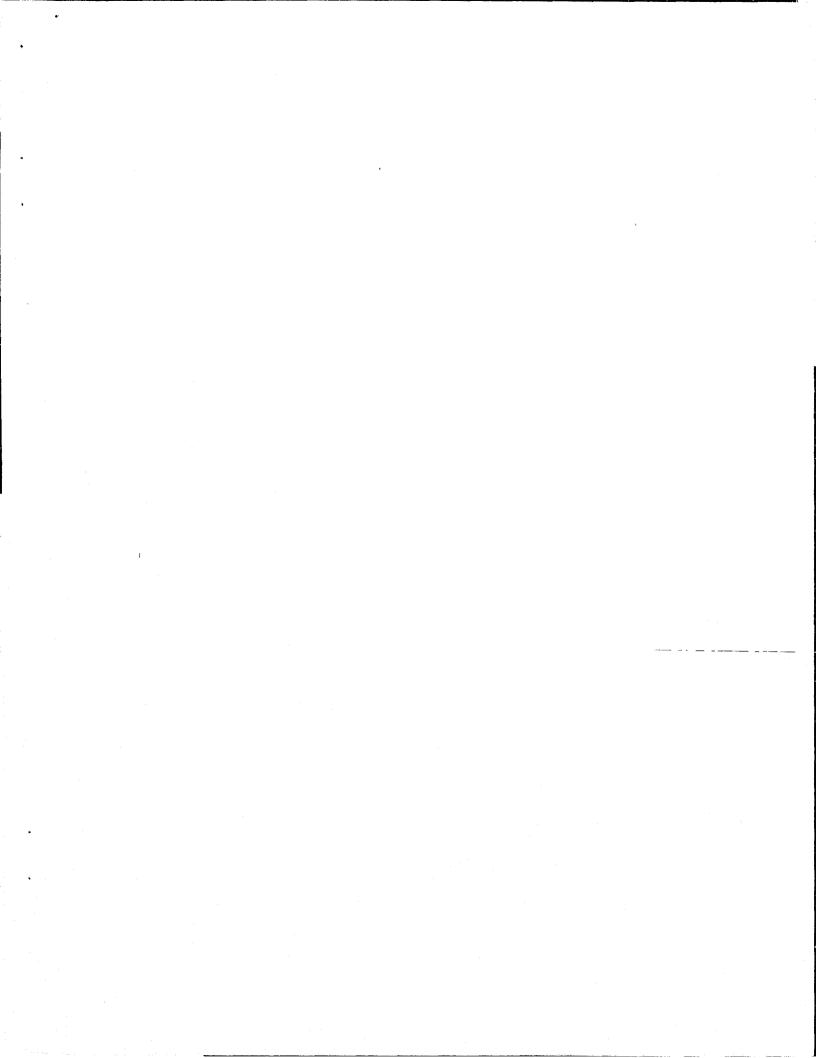
52885

CRIME IMPACT STATEMENTS: A STRATEGY SUGGESTED FROM THE STUDY OF CRIME AROUND BARS

Glenn M. Fishbine

and

Mitchell R. Joelson


For presentation to Criminal Justice Statistics Association's August meeting, Session D, August 4, 1978, Carolyn Shettle, moderator.

This research was supported by grant #77DF050003 awarded to the Minnesota Crime Prevention Center, St. Paul, Minnesota, by the Law Enforcement Assistance Administration. Points of view stated in this paper are those of the authors and do not necessarily represent the official position of the Minnesota Crime Prevention Center or the Law Enforcement Assistance Administration.

> Minnesota Crime Prevention Center 2344 Nicollet Avenue, South Minneapolis, Minnesota 55404 August, 1978

Copyright C 1978 by Minnesota Crime Prevention Center

All rights reserved. No part of this publication may be reproduced without prior written permission from the Minnesota Crime Prevention Center.

CRIME IMPACT STATEMENTS A STRATEGY SUGGESTED FROM THE STUDY OF CRIME AROUND BARS

by

Glenn M. Fishbine Mitchell R. Joelson

ABSTRACT:

Increasing concern is evolving over the predictive power of various criminalistic approaches to crime. The capacity to produce predictive and reliable estimates about the impact of various programmatic and strategic goals on crime and community is necessary to a scientific screening of these goals. The capacity to produce "crime impact statements" is a necessary component of this screening process. In this paper, we propose an approach to developing crime impact statements based on a microgeographic methodology. Empirically derived examples demonstrate how and to what extent we can predict the actual impact of various geographic factors in determining expected crime impacts.

CRIME IMPACT STATEMENTS: A STRATEGY SUGGESTED FROM THE STUDY OF CRIME AROUND BARS

Criminal justice planning is undertaken largely as a response to crime problems in a community. As a response oriented process, this planning is typically implemented to combat and offset the impact of crime and crime-related problems. The advent of crime prevention planning, however, has opened up a new vista of approaches for combating crime. The prevention of crime before it occurs is the basis of this type of planning. However, development of crime prevention programs is a difficult process without the development of guidelines and standards around which to develop programs and program evaluations. Part of the problem in developing guidelines and evaluation standards is the development of reliable *predictive* measures of crime and crime-related attributes. Until these predictive measures are developed, prevention planning and evaluation strategies are largely intuitive and subject to critique.

Here we present a method for predictive analysis of crime at a limited level and propose a means for deriving *crime impact statements* which can feed directly into strategic planning for crime prevention. The method described is based on the distributional charactieristics of crime which can be attributed to the geographic location of individual sites.

PROBLEM DEFINITION

Crime patterns can be derived from the geographic distribution of offenses in a given area. Police planners have long viewed the geographic distribution of crime as a critical informational input for their tactical planning for patrolling and apprehension strategies. Further, these same planners have viewed long term patterns as critical for their strategic planning processes and have derived numerous programs focusing on the assignment of geographic boundaries for administrative units such as precincts, or patrol zones.

Additionally, the geography of crime has been proposed as the basis for the assignment of community resources for combating various types of crime problems, predominantly burglary and related crimes against property.

However, these approaches have focused on the global distribution of crimes over entire cities and have generally focused on distributing resources as a direct function of global patterns. Little attention has been paid to the less global characteristics of the distribution of crime around individual sites, i.e., the microgeography of crime.

The approach proposed here focuses on the types of crime patterns which can be derived from the analysis of the geography of crime with respect to individual sites. This approach has been intuitively approached for a long time and has been evolved from "common wisdom" assessments of causes of crime. Typical examples have included the assignment of cause to bars, group homes, halfway houses, adult entertainment establishments, book-making shops, and similar sites which theoretically attract criminals or act as points from which criminal acts are disseminated.

The theoretical basis for these assignments of "causality" are usually unformulated. For example, it is common wisdom that a drunk leaving a bar is more likely to commit a crime than are the gentry leaving the opera. The articulation of the theoretical basis for the assignment of causal relationships is crucial to understanding the microgeography of crime. Clearly, more attention must be given to these theoretical relationships before analysis can proceed much further. However, here we are less concerned with the articulation of theory and more concerned with the demonstration of the importance of deriving theory to aid in the understanding of the phenomena described here.

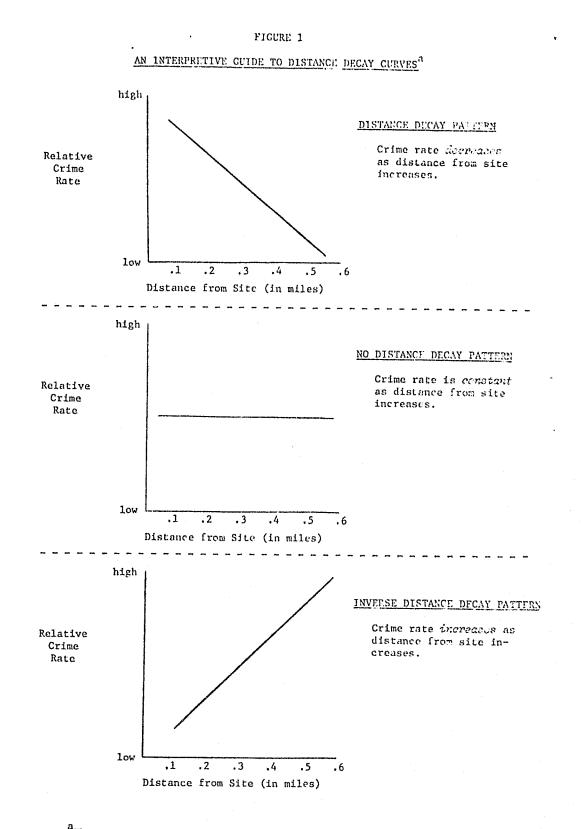
We have taken as a priori the assumption that for some types of crimes, and some types of sites, there is a distinct geographic pattern that can be derived for the distribution of crime around individual sites. Further, we assume that given the derivation of such a distribution, the actual impact of the site on crime can be derived and transformed into a crime impact assessment of individual sites, and sites of a similar character.

The approach taken for this evaluation is derived from *distance decay analysis* common to urban geographic studies. Distance decay analysis is a methodology which measures the density of events in relationship to the location of a single site or node.¹ The assumption

¹With the lack of well developed theory, it is difficult to determine the behavioral characteristics of a node determined to be associated with crime. Two possibilities exist: First, the node can serve as a site from which crime events emanate. In this case, would-be criminals are released from the node into the community. Such a model would be appropriate for an intoxication hypothesis which would suggest that people go to a bar as citizens, and leave intoxicated as would-be criminals. The second case suggests that a node serves as a site which attracts criminals. In this case, would-be criminals are attracted to the node as part of their occupational activity. Such a model would be appropriate for an entertainment class hypothesis which would suggest that criminals go to a certain type of establishment because the psychological attributes of that establishment are concomitant with their personalities. Having found and satisfied their entertainment needs, they then revert to their occupation proximate to the entertainment facility. Our differentiation between classes of bars based upon their entertainment licensing might tend to discount the second hypothesis to the favor of the first. Thus, it might be possible that a bar serves as a node from which criminal events emanate, rather than a node to which criminal events are attracted.

tested by distance decay analysis is that the closer one gets to the node, the more events, or crimes, occur. Thus, the node is theoretically assumed to be a point from which events or crimes emanate or are drawn toward. In order to develop a distance decay analysis, one generates a *distance decay curve* as shown in Figure 1.

The uses of a Distance Decay Analysis are:


- a) to ascertain whether the crime rate
 changes systematically as one approaches a specific geographic location;
- b) to ascertain the direction of this change, i.e., whether the crime rate increases or decreases as the site is approached; and
- c) to estimate the magnitude of the change in the crime rate as one approaches the site.

For crime analysis, various statistics can be generated which tend to confirm conclusions based on the slope of a distance decay curve. A chi-square test can be utilized to indicate whether or not the distribution of events is nonuniform. Further, a signs test can be used to estimate the probability of a slope being positive, negative, or zero. The application and implications of these tests are discussed more fully in Appendix A.

Armed with distance decay analysis, and an understanding in the limitations of such an analysis, it is relatively easy to assess both the relationship between an individual site and crime, and the probable impact of the site on crime in the area.

AN APPLICATION: CRIME AROUND BARS

Our project utilized a distance decay analysis to assess the impact of various types of "on sale" liquor establishments, or bars, on various types of crimes. Our analysis was based upon the crude theory discussed earlier, that persons leaving bars were more likely to commit crimes than persons leaving other sites. Bearing with the conventional wisdom, we focused on the analysis of assaults and their relationship to bars. One hundred and fifty-seven bars in Minneapolis were analyzed in this study. Data for the study was derived from 4,357 assaults recorded by the Minneapolis Police Department for the period July 1, 1974, through June 30, 1975. The addresses of both bars and offenses were processed to compute X-Y location coordinates for analysis by specially developed **distance** decay analysis software. Bars were divided into license classes: A, B, and C, corresponding to the class of entertainment and the alcohol

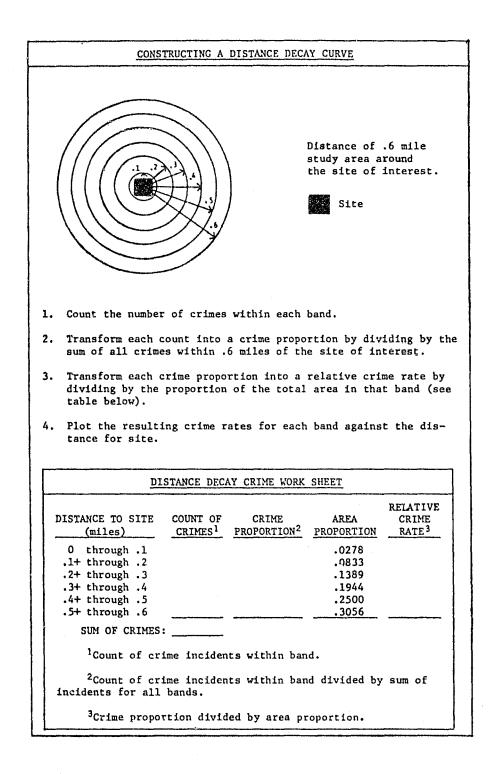
^aThese are pure types. Actual curves may display some amount of random variation and/or curvilinearity.

service licensed for each bar. (In Minneapolis, Class A indicates full entertainment, and C indicates beer sales only.)

Distance decay characteristics were generated for each bar, as well as aggregate characteristics for each class of bars, and for all bars. Summary data for this analysis is given in Appendix C.

Generally, we found that between 2 and 3 times the expected level of assault occurred proximate to the average bar in the city. As shown in Appendix C, this varied from bar to bar. We further observed that about half of all bars did not display the characteristic negative slope indicated by the theoretical assumptions of this method of analysis. Thus, we were able to conclude that although the average bar had a clear impact on the geographic distribution of assault, not all bars had an observable impact. Indeed, some bars can easily be classified as "safe" in that they seem to have been located at sites not characterized by the occurrence of assaults.

This analysis served to demonstrate both the utility of distance decay analysis in assessing the crime impact of classes of sites, as well as giving an estimate for the impact of crime generated by individual sites. In order to develop an estimate for the crime impact of the site, we developed a hypothetical model of how the geography of crime would be distributed in the absence of a bar. The methodology for this analysis is discussed in Appendix B.


For individual sites, it is possible to make an impact assessment for how many crimes would not occur in the absence of the site. For the average bar, we were able to estimate that 12 assaults would not occur if the bar site were vacant. For individual sites, estimates ranged from zero assaults to as high as 90. Unfortunately, we were unable to obtain time-series data which included opening and closing dates of various establishments. Such data is critical as baseline data for verifying the assumptions discussed here and determining a precise value for the crime impact of individual bars, or classes of bars. Collection of this type of data and application via the methodology discussed here is a critical step toward the final formulation of crime impact assessments for bars as well as other sites believed to be causally linked to crime.

APPENDIX A

DISTANCE DECAY ANALYSIS APPLIED TO CRIME ANALYSIS

Distance decay analysis is drawn from urban geography as a class of analysis which associate points with distributions of events. The basic assumption tested by a distance decay analysis is that a single point can be demonstrated to be associated with related events by measuring the density of events as a direct function of the distance of the events from the point. If we think in formal terms, we are stating that the density of crimes is a function of the distance from the site. In order to derive this function, we must first select measures of distance and density. Our research has indicated that from crime-related geographic associations, distance increments of tenth miles out to roughly one-half or 6 tenth miles are appropriate for discerning microgeographic patterns. Density measures are taken to be the proportion of crimes per square mile in each incremental band radiating from the site to be analyzed. The appropriate coefficients derived for this analysis are shown in Appendix B.

6

The relationship between crime density distance is assumed to be of the form:

D = F (distance)

where D is the density of crime, and F denotes the function relating distance to density. For our purposes, it is unnecessary to derive

the empirical function F, which can easily be derived using simple or polynomial regression techniques. Our primary concern is with deriving the characteristic slope of F, or F'. We can simplistically observe that if F' < 0 then a distance decay effect is present. If $F' \ge 0$ then a distance decay effect is not present. Our analysis has focused on determining the degree to which we can assert that F' < 0.

Two tests have been employed to derive indications of the nonrandomness of F'. The first is a classic chi-square statistic which reports whether events in the space are uniformly distributed. A significant chi-square is taken to indicate nonuniformity in the space.

The second test is the signs test applied to the difference between distance decay coefficients in a band of lesser radius and a band of greater radius. Since we have six bands, we are making five comparisons and trying to assess the degree to which the coefficients vary in relation to each other. Where the signs of all five comparisons are negative (i.e., each band's coefficient is less than that of the band immediately inscribed to it), then we can assume a probability of $1/2^5$ to the observed slope of the overall distance decay curve.

Where all three tests, the distance decay curve, the chi-square, and the signs test indicate significant negative slopes, a distance decay effect is assumed to be observed in the data.

APPENDIX B

CRIME IMPACT ASSESSMENT USING DISTANCE DECAY ANALYSIS

In order to assess the impact on crime that a site has in a community, we ideally need to have a baseline analysis which details how crime rates have changed when a new site has been established within a community. Such analysis would allow us to pin point the exact change in crime caused by the introduction of a new site in an area.

However, it is often the case, as in our analysis, that such baseline data and analysis is not available. It is still possible to *estimate* what the impact of a site might be given certain assumptions based on distance decay analysis.

Recall that distance decay analysis is based upon the division of the proportion of crimes by the proportion of area in bands of increasing radii from a site. In the perfect case where crime is unrelated to the site, we would find a distribution like that shown in Table 1.

TABLE 1												
DISTANCE DECAY COEFFICIENTS FOR THE PERFECTLY UNIFORM DISTRIBUTION												
RADIUS FROM SITE (IN MILES)												
	<u>.1</u>	<u>.1 .2 .3 .4 .5</u>										
Proportion of crimes Proportion of area	1.0	1.0	1.0	1.0	1.0	1.0						
Proportion of area	.0278	•0833	.1389	•1944	.2500	.3 056						

The average Class A, B, and C bar in Minneapolis has a distribution like that shown in Table 2.

TABLE 2									
DISTANCE DECAY COEFFICIENTS FOR THE AVERAGE MINNEAPOLIS BAR									
RADIUS FROM SITE (IN MILES)									
	<u>1</u>	.2	.3	.4	.5	.6			
Proportion <u>of assaults</u> Proportion of area	2.721	1.484	1.110	•975	.877	.777			

If we assume that this nonuniform distribution of assaults is due solely to the bar, then we can make an estimate of how many assaults are "caused" by the presence of the bar. For a conservative estimate, let us assume that only the assaults within the first tenth mile band are caused by the bar. In order to calculate the impact of the bar on assaults, we perform the following computational steps:

- Find the average assaults per square mile for all bars (for Minneapolis the value is 244 per square mile)
- 2. Find the expected number of assaults in the first tenth mile band for the bar: (multiply 224 times the proportion of a square mile represented by a ring of 0.1 mile radius: 0.0314) = 7.037
- 3. For the average Minneapolis bar, the bar's impact on assaults is: 2.721 X 7.037 7.037 = 12.11.

In other words, the average bar was statically related to an additional 12 assaults per year, given the assumptions made above.

For a particular bar, we can do similar types of analysis, relating the bar to either bars of the same class, or bars in the immediate vicinity, or in relation to all bars. For example, one bar studied could be calculated to have had the following crime impact when related to all other bars.

- 1. Average assaults per square mile for sample bar = 377.083
- 2. Expected number of assaults in the first tenth mile band = 0.0314 X 377.083 = 11.840
- 3. The calculated impact of this bar is now the total number of assaults observed within the first tenth mile ring, l01, minus the expected number of assaults, 11.840 or: 101 11.840 = 89 assaults.

The number of crimes statistically associated with the average bar may vary slightly by the class of the bar or the geographic location within the city. For classes of bars, the distance decay coefficients derived for the Minneapolis sample are shown in Table 3.

TABLE 3 DISTANCE DECAY COEFFICIENTS BY CLASS OF BAR											
Proportion	· · · · · · · · · · · · · · · · ·		RAD	IUS FRO	M SITE	(IN MILI	ES)				
of assaults	CLASS	<u>1</u>	<u>.2</u>	<u>.3</u>	4	.5	.6	<u>N</u>			
Proportion of area	Α	2.866	1.741	1.160	.933	.878	.698	55			
	В	2.345	1.448	1.054	1.002	1.052	.687	9			
	С	2.644	1.318	1.073	.995	.861	.848	93			
	TOTAL	2.721	1.484	1.110	.975	.877	.777	157			

APPENDIX C

DISTANCE DECAY CHARACTERISTICS OF ALL SAMPLED MINNEAPOLIS BARS

	NUMBER										
	OF CRIMES	•	Radius from Node								
SITE	ANALYZED	1	.2	.3	4	.5	<u>6</u>	CHI- SQUARE	P	CRAMER'S V	
Al's Place	34	1.1	0.4	1.3	0.9	0.7	1.3	2.0		0.1726	
Anchor Inn	359	2.0	0.9	0.9	1.3	1.0	0.9	8.0		0.1054	
Andrews Hotel Cocktail	445	4.2	2.4	1.3	1.2	0.3	0.7	103.5	*	0.3410	
Andy's Place	49	2.2	3.2	0.7	1.5	0.5	0.5	10.7		0.3297	
Archie's Bunker	74	0.0	0.5	0.5	0.8	0.9	1.8	11.4	+*	0.2772	
Arthur's	43	1.7	1.1	0.7	0.8	1.4	0.8	1.6		0.1376	
Augies Theatre	450	4.2	2.5	1.4	1.1	0.3	0.7	106.0	_*	0.3432	
Beamish's Bar	42	1.7	2.3	1.0	0.7	1.1	0.6	3.5		0.2051	
Beanie's Lounge	304	6.4	0.9	0.9	0.4	1.0	1.0	51.7	*	0.2915	
Bears Den	315	2.3	1.2	0.7	1.1	0.8	1.1	10.8		0.1309	
Bill's Place	83	0.0	0.6	1.0	0.6	0.7	1.7	10.0	+	0.2456	
Bismark Corporation	313	1.7	1.0	1.1	0.8	0.9	1.1	4.2		0,0823	
Black Angus	724	0.5	0.4	0.9	1.7	1.0	0.8	51.0	*	0.1877	
Boyds Bar	264	1.1	0.4	0.6	1.1	0.7	1.5	19.6	*	0.1925	
Bradys Bar	480	7.8	2.9	0.9	0.9	0.6	0.3	176.4	-*	0.4287	
Brass Rail	450	4.2	2.5	1.3	1.1	0.3	0.7	105.8	_*	0.3429	
Busters Northstar Bar	506	0.9	1.1	2.6	1.2	0.7	0.3	111.3	*	0.3346	
С С Тар	373	1.1	1.0	0.7	1.3	1.1	0.9	8.5	-	0.1070	
Cafe Di Napoli	529	5.7	2.8	1.5	0.6	0.6	0.5	149.8	-*	0.3763	
Cafe Di Napoli Lounge	529	5.7	2.8	1.5	0.6	0.6	0.5	151.0	*	0.3777	
Calhoun Apts Co	10	0.0	1.2	2.2	1.0	0.4	1.0	0.5		0.2765	
Calhoun Beach Rest.	14	2.6	1.7	1.5	0.0	0.3	1.6	5.5		0.4425	
Carousel Lounge	563	4.2	1.4	1.0	1.3	0.7	0.6	56.4	-*	0.2238	
Cassius Bar and Play	362	3.2	0.5	0.6	1.1	1.1	1.0	22.6	*	0.1767	
Charlies Cafe	508	0.2	0.3	1.1	0.9	1.7	0.7	60.0	*	0.2431	
Chatter Box II	38	0.9	0.9	0.6	1.2	0.9	1.1	0.9		0.1078	
Club 46	38	5.7	1.9	0.6	0.8	0.2	1.3	10.4		0.3705	
Copper Squirrel	445	4.2	2.4	1.3	1.2	0.3	0.7	102.4	_*	0.3392	
Cork and Fork	503	2.1	3.8	1.6	0,6	0.7	0.4	143.4	*	0.3775	
Cos and Steves Bar	34	3.2	1.4	0.4	0.2	0.9	1.5	7.7		0.3369	
Court Bar Cafe	571	0.4	0.7	0.9	2.2	0.8	0.6	79.5	*	0.2639	
Cozy Lounge Inc.	251	0.7	0.5	0.4	0.8	1.0	1.6	25.1	*	0.2235	
Dannys Bar	50	0.7	1.9	0.1	0.4	1.8	0.9	11.4	*	0.3376	
Dannys Bar and Cafe	302	6.4	0.9	1.0	0.3	1.2	0.8	58.9	*	0.3124	
Dantis Bar	509	5.9	1.4	0.8	0.5	1.0	0.8	72.9	*	0.2676	
Daytons	545	2.1	3.2	1.4	1.1	0.5	0.5	118.5	_*	0.3297	
Donaldson Medical Bl.	556	2.0	2.3	1.9	1.1	0.5	0.5	103.7	*	0.3054	
Duffs Inc.	544	3.6	3.1	1.6	0.8	0.5	0.5	138.2	-*	0.3565	
Duffys Tavern	72	10.0	0.5	0.4	0.9	0.7	0.9	19.4	*	0.3666	
Dulonos Pizza	289	0.9	1.7	1.0	0.7	0.9	1.1	8.4		0.1207	
Dustys Bar	61	0.0	0.8	0.7	0.5	1.8	0.9	8.0		0.2561	
Eden Fruit Market	205	1.2	1.7	1.0	0.9	1.0	0.8	4.3		0.1029	
Edgewater Inn Corp.	33	2.2	1.5	0.2	0.5	0.7	1.7	6.3		0.3088	
Elis Bar	561	4.5	0.5	1.0	0.9	1.3	0.6	61.5	*	0.2341	
Elks	36	2.0	1.3	0.2	0.4	1.3	1.3	5.5		0.2772	
Elks Lodge	285	0.8	1.3	0.9	0.8	1.0	1.1	2.5		0.0667	
Elsies Liquor Lounge	36	0.0	0.7	0.4	1.6	0.6	1.5	5.4		0.2750	
First & Last Chance	41	2.6	0.9	0.9	0.4	1.3	1.1	3.6		0.2086	
Fitzs Bar	42	1.7	1.7	1.2	0.5	1.2	0.8	3.0		0.1899	
Flame Cafe Inc.	469	5.1	2.2	0.8	0.7	0.6	1.0	77.2	_*	0.2868	
Fountain Room Inc.	649	0.7	0.7	2.4	0.9	0.8	0.7	74.2	*	0.2390	
Franks Bar	136	7.9	0.6	0.8	0.4	1.1	0.9	29.6	*	0.3301	
Fuji Ya	189	0.2	0.1	0.8	1.0	1.3	1.2	19.4	*	0.2267	

APPENDIX C--(Continued)

....

NUMBER PROPORTION OF CRIMES/PROPORTION OF AREA

	OF		F	Radius f	rom Nod	le	······			
6 T M P	CRIMES	,					<i>c</i>	CHI-	-	
SITE	ANALYZED	-1	.2		4	.5		SQUARE	P	CRAMER'S V
Gay 905 Happy Hour	443	4.2	2.4	1.3	1.2	0.3	0.7	103.7	*	0.3421
Gayety Annex Goofys Bar	348 455	0,4 1.7	1.2	0.9	1.3	1.3	0.6	18.8	*	0.1645
Guthrie Theatre Foun.	305	0.1	3.2 0.1	1.7	1.0	0.4	0.5	113.3	*	0.3528
Haberdashery Restaurant	51	4.9	1.6	0.1 1.6	0.8 1.5	1.3	1.6	69.3	+*	0.3372
Halek Hotel	155	6.7	1.6	0.3	0.9	0.3 0.6	0.4 1.0	14.1	_* *	0.3717
Harrys Cafe	657	0.4	0.6	2.1	1.3	0.8	0.6	30.9 72.8	*	0.3156
Hennepin Square	21	1.7	0.6	0.7	1.5	1.0	0.9	0.9	Ŷ	0.2353
Hexagon Bar	70	10.8	0.5	0.7	0.5	0.8	0.8	20.0	*	0.1439 0.3778
H1 Lo 29	527	5.7	3.5	1.0	0.6	0.6	0.5	163.5	_*	0.3939
Hills Cafe	710	0.6	0.4	0.5	2.0	1.1	0.7	83.3	*	0.2423
Howies Bar	121	4.5	0.8	1.5	0.9	0.9	0.7	11.9	*	0.2214
Hub Cap Pub	524	5.6	1.8	1.6	0.8	0.7	0.5	108.7	*	0.3221
Ichabods Restaurant	544	2.4	3.3	1.3	1.1	0.4	0.5	125.1	*	0.3391
Irvs Bar	133	7.8	0.8	0.8	0.4	1.1	0.9	26.9	 *	0.3179
James Broiler	529	5.7	2.7	1.6	0.6	0.5	0.5	147.9	-*	0.3739
Jax Cafe	54	2.0	0.2	0.7	1.0	0.6	1.6	6.8		0.2504
Joe and Petes 2 1/2	51	4.9	0.9	1.7	1.5	0.4	0.5	11.8	*	0.3407
King of Clubs	59	0.6	0.4	1.1	1.0	1.1	1.1	1.6		0.1159
Knight Cap Bar	56	1.9	1.5	1.4	0.9	0.9	0.8	2.2		0.1411
Lees Liquor Bar	488	0.1	0.2	2.0	1.3	0.7	0.9	69.3	*	0.2666
Little Jacks Steak House	27	0.0	0.9	2.9	0.6	1.2	0.4	7.5		0.3726
Lyndale Recreation	298	1.2	1.3	1.2	0.9	0.6	1.2	11.2	*	0.1370
Mama Rosa Deli Restaur. Mannings Cafe	100	5.0	0.7	0.8	0.2	1.4	1.0	19.8	*	0.3144
Maurers Cafe and Bar	16 211	0.0	0.8	1.8	1.6	0.7	0.6	2.0		0.2522
Maurets care and bar Mayslack	54	0.2	0.1	0.1	0.3	1.3	1.9	70.2	+*	0.4077
Mikes Bar	155	7.0	1.5	2.0 0.3	1.0 0.9	0.7	0.6	6.2		0.2390
Mill Inn Bar	201	0.2	1.3	1.5	0.9	0.6 0.6	1.0	31.4	**	0.3185
Minneapolis Club	583	0.5	0.7	0.8	2.3	0.8	1.5 0.6	26.7 87.7	**	0.2576
Minnesota Bar	132	1.4	1.1	0.3	1.6	0.5	1.3	17.1	*	0.2742 0.2541
Minnesota Music Hall	522	0.2	0.3	1.0	0.9	1.7	0.8	57.3	*	0.2343
Mister Arthurs Lounge	352	2.4	0.9	1.0	0.7	1.1	1.0	9.5		0.1164
Mister Nibs	72	10.0	0.5	0.5	0.9	0.8	0.8	18.4	*	0.3579
Moby Dick Inc.	491	7.4	3.0	0.9	0.9	0.5	0.4	167.1	~ *	0.4125
Monte Carlo Bar and Cafe	282	0.3	0.1	0.4	1.1	1.7	1.0	44.2	*	0.2801
Moose Lodge No. 38	60	0.0	0.6	1.0	1.1	1.1	1.1	2.4	+	0.1399
Mouseys Bar	563	4.2	1.4	1.0	1.3	0.7	0.6	58.3	-*	0.2275
Minneapolis Aerie No. 34	82	1.3	3.1	0.4	0.6	0.6	1.2	14.0	*	0.2923
Minneapolis Athletic Club	519	0.2	1.2	2.0	1.2	0.6	0.7	54.3	*	0.2286
Murrays Inc. My Brothers Place	501 186	2.2 3.3	3.7	1.7	0.5	0.8	0.3	157.6	*	0.3966
Nankin Cafe	545	2.1	2.2 3.2	1.1 1.4	0.6	0.7	1.0	20.3	*	0.2338
Northeast Patio	58	0.6	0.4	1.4	1.1 0.9	0.5 1.2	0.5 1.1	118.5	-*	0.3297
Nyes Bar	44	0.8	0.5	1.3	0.9	0.7	1.3	1.7		0.1207 0.1379
Old Triangle Bar	100	5.0	0.7	0.8	0.2	1.4	1.0	19.8	*	0.3144
One O One Bar	59	0.0	0.4	1.3	0.3	0.7	1.8	11.7	+*	0.3149
Pearsons Saloon	72	10.0	0.5	0.4	0.9	0,7	0.9	19.4	*	0.3666
Porkys Drive-In	94	2.3	1.7	1.3	0.8	0.9	0.8	4.4		0.1531
Procna on Main	52	0.7	0.0	1.2	1.3	0.8	1.2	5.6		0.2329
Rainbow Bowl	130	7.2	1.1	0.7	0.6	0.8	0.9	20.7	*	0.2823
Richards Cafe	375	2.9	1.0	0.3	0.6	1.8	0.9	70.6	*	0.3072
Richies Bar	603	0.2	0.3	1.3	1.2	1.0	1.0	35.2	*	0.1707
Roaring 20's	473	6.1	2.8	0.8	0.9	0.7	0.4	125.1	_*	0.3637
Ruscianos Inc.	355	3.0	0.6	0.6	0.9	1.3	0.9	24.3	*	0.1852
Rúss Pub	50	1.4	1.9	1.2	1.4	0.5	0.8	4.8		0.2200
Russells Bar	325	3.0	0.6	0.6	0.5	1.4	1.1	29.8	-*	0.2142
Scarpellis Schooner Tavern	442 74	1.1	1.5	1.9	0.9	0.5	0.9	37.6	*	0.2061
Skips Bar BQ Inc.	229	1.9 0.6	1.1	0.3	3.0	0.4	0.4	29.0	*	0.4423
Skyway Lounge	509	8.3	2.5	1.1 1.6	1.1 0.4	1.0	0.8	2.6		0.0754
Sokols Bar	47	0.0	1.5	0.5	0.4	0.6 1.3	0.4 1.0	200.6 3.5	 *	0.4439
				0.0	J. 7	5.4.2	1.0	ر . ر		0.1939

APPENDIX C--(Continued)

	NUMBER	PROPO	RTION C	OF CRIME	ES/PROPC	RTION C	F AREA			
	OF CRIMES		Radius from Node							
SITE	ANALYZED	.1	.2	.3	.4	.5	.6	CHI- SQUARE	P	CRAMER'S V
Spaghetti Emporium	443	1.0	1.9	1.9	1.1	0.7	0.5	57.9	*	
Sprint Inn	60	0.0	0.8	0.6	1.2	1.6	0.7	5.8		0.2557 0.2200
Stardust Lanes Inc.	74	8.3	1.3	0.1	0.9	0.8	0.9	20.3	*	0.3707
Stockholm Bar	363	3.0	0.6	0.7	1.2	1.0	1.0	18.5	*	0.1596
Stub and Herbs Cafe	36	1.0	0.3	1.2	0.3	0.1	2.3	15.7	*	0.4672
Sun Saloon Inc.	57	1.3	0.8	1.9	0.9	0.7	0.9	3.2		0.1666
Sundance Inc.	359	1.4	1.6	1.2	0.7	0.6	1.2	19.0	*	0.1625
Swallow Cocktail Lounge	500	8.1	2.7	1.5	0.4	0.6	0.4	194.8	_*	0.4413
Tempo 21 East	174	1.4	2.6	0.4	0.5	0.9	1.2	24.6	+*	0.2660
Ten Twenty Nine Bar	37	1.9	0.0	1.6	1.0	1.0	1.0	4.0		0.2333
The Blue Ox	7.6	0.5	0.2	0.5	0.6	2.0	0.9	124.1	*	0.2944
The Corral	315	3.5	1.2	0.4	1.2	0.7	1.1	29.2	*	0.2153
The Curtis Hotel	752	0.4	0.2	0.4	0.7	1.9	1.0	126.8	*	0.2904
The Dark Room Inc.	311	3.2	1.8	0.8	0.6	0.8	1.1	26.2	*	0.2052
The Dutchmans Bar Inc.	530	2.6	2.3	0.8	1.1	0.8	0.7	45.5	*	0.2073
The Establishment	680	0.4	0.7	1.1	1.6	1.1	0.6	42.8	*	0.1775
The Guest House Hotel	508	0.2	0.3	1.1	0.9	1.7	0.7	61.1	*	0.2452
The Home	327	1.7	1.3	1.0	0.7	0.6	1.4	20.1	*	0.1754
The Joint	227	4.8	0.4	0.1	1.1	1.4	0.9	45.4	*	0.3161
The Little Wagon Inc.	371	2.6	1.1	0.3	0.4	1.5	1.1	56.1	*	0.2749
The Longhorn Inc.	478	4.6	2.4	1.5	0.9	0.6	0.4	107.2	*	0.3349
The Pine Tavern	63	1.1	0.6	0.5	1.4	1.5	0.7	5.4		0.2062
The Spinning Wheel	83	1.3	1.0	0.9	0.7	0.9	1.3	2.0		0.1099
The Womans Club of Mpls.	381	0.3	0.5	0.8	1.7	1.1	0.8	26.4	*	0.1862
Three O One Bar	329	0.2	0.1	0.9	0.9	1.3	1.2	29.3	*	0.2109
Three Thousand One Club	78	1.8	0.9	1.7	0.5	0.2	1.6	20.3	*	0.3609
Tonis M & M	60	0.0	0.8	0.6	1.2	1.6	0.7	5.8		0.2203
Tony Jards River Gar	34	2.1	0.7	0.8	0.5	0.5	1.8	6.1		0.7991
Tower Inn	680	0.4	0.7	1.1	1.6	1.1	0.6	42.5	*	r.1769
Uncle Sams	500	8.1	2.7	1.5	0.4	0.6	0.4	198.1	_*	0.4451
Union Bar Inc.	46	7.0	1.0	1.9	0.6	0.9	0.4	12.0	*	0.3608
Uptown Bar and Cafe	168	2.4	0.9	1.0	1.3	0.7	1.0	5.4		0.1265
Valli Pizza	47	10.7	0.8	0.8	1.0	0.3	0.8	14.9		0.3979
Vescios Italian Restaurant	47	7.7	1.8	0.8	1.0	0.3	0.8	11.8	*	0.3541
Viking Bar	100	5.0	0.7	0.8	0.2	1.4	1.0	19-8	*	0.3144
Walker Art Center	305	0.1	0.1	0.1	0.8	1.3	1.6	69.1	+*	0.3372
Whirlpool Bar	213	0.0	1.9	0.9	0.5	0.6	1.6	5.3	*	0.2712
Wig and Bottle	34	2.1	0.7	0.8	0.5	0.5	1.8	6.1		0.2991
Williams Pub	175	1.6	1.0	0.9	1.3	1.2	0.6	7.2		0.1435
Workas Bar	63	1.7	0.4	0.7	0.8	1.3	1.1	3.4		0.1631
200 Club	133	7.8	0.8	0.8	0.4	1.1	0.9	26.9	*	0.3179

* Signifies significance at less than or equal to 0.05 level for chi-square.
- Signifies significance at less than or equal to 0.065 level for negative slope.
+ Signifies significance at less than or equal to 0.065 level for positive slope.

14

