

### U.S. Department of Justice National Institute of Justice

This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.

Permission to reproduce this copyrighted material has been granted by

Public Domain.Jet Propulsion LAB/Padasena CA

to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permission of the copyright owner.

NATIONAL LAW ENFORCEMENT COMMUNICATION NETWORK (NALECOM) USERS INTERFACE GUIDELINES 1200-168 June 6, 1974

Approved by:

Gordon L. Brown Author

Approved by: Kenn W. Farrison

Glenn W. Garrison Task Leader

Approved by:

Patrick J. Ryg Project Manager

JET PROPULSION LABORATORY CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA





## FOREWORD

The following personnel contributed to preparation

Richard Cowdery Norm Reilly Glenn Garrison

Their consultation and advice has been most helpful, and the author wishes to extend his appreciation to them







. . •

| 1 | 2 | 0 | 0 | - | 1 | 6 | 8 |
|---|---|---|---|---|---|---|---|
|---|---|---|---|---|---|---|---|

## CONTENTS

|                                            | 1 - 1 |
|--------------------------------------------|-------|
|                                            | 1-2   |
|                                            | 1 - 2 |
| CUMENTS                                    | 1 - 2 |
|                                            | 1 - 3 |
| ESCRIPTION                                 | 2-1   |
| ATIONS                                     | 2-1   |
| IONS                                       | 2-1   |
| REQUIREMENTS                               | 2-3   |
| PROVIDED                                   | 2-4   |
| URATION                                    | 2-4   |
| URATION                                    | 2-4   |
| OALS                                       | 2-11  |
| Service                                    | 2-11  |
| ty                                         | 2-11  |
| Time                                       | 2-11  |
|                                            | 3-1   |
| R                                          | 3 - 1 |
| 5                                          | 3-1   |
| ocol                                       | 3 - 1 |
| ormats                                     | 3-2   |
| Prioritization                             | 3-6   |
| eneration Procedures                       | 3-6   |
| louting                                    | 3-8   |
| landling on Reception<br>of Line Protocol) | 3_8   |
| N                                          | 30    |
|                                            | 3 10  |
| col                                        | 3 10  |
| N SWITCHER                                 | 5-10  |
| 5                                          | 3-10  |
| ous Interfaces                             | 3-10  |
|                                            | · -   |

×.

· ·

## **CONTENTS** (Contd)

|        | 3.4          | EFFECT                 | IS OF SATELLITE COMMUNICATIONS      | 3-11  |
|--------|--------------|------------------------|-------------------------------------|-------|
|        |              | 3.4.1                  | Data Rates                          | 3-11  |
|        |              | 3.4.2                  | Line Protocol                       | 3-11  |
|        |              | 3.4.3                  | Message Handling                    | 3-12  |
|        |              | 3.4.4                  | Message Routing                     | 3-12  |
|        |              | 3.4.5                  | Video                               | 3-12  |
| IV.    | SECU         | JRITY/PI               | RIVACY                              | 4-1   |
|        | 4.1          | GENER                  | AL NETWORK ACCESS                   | 4-1   |
|        | 4.2          | DATA S                 | ECURITY                             | 4-1   |
|        | 4.3          | VIDEO S                | SECURITY                            | 4-1   |
| APPEN  | DIXES        | 5                      |                                     |       |
| Α.     | NAL<br>LINI  | ECOM HA                | ALF/FULL DUPLEX HIGH SPEED<br>FACES | A - 1 |
| В.     | ASY          | NCHRONO                | OUS LINE CONVENTIONS                | B-1   |
| FIGURI | ES           |                        |                                     |       |
| 2-1.   | Phas         | se III conf            | iguration                           | 2 - 5 |
| 2-2.   | Phas         | se IV conf             | figuration                          | 2-8   |
| TABLE  | <u>S</u>     |                        |                                     |       |
| 2-1.   | Esti<br>conf | mated lin<br>iguration | e rate assignments for Phase III    | 2-6   |
| 2-2.   | Esti<br>conf | mated lin<br>iguration | e rate assignments for Phase IV     | 2-9   |
| 3-1.   | NAL          | ECOM he                | eader                               | 3-4   |
| 3-2.   | Pric         | rity assi              | gnments                             | 3-7   |

### INTRODUCTION

Ι.

The National Law Enforcement Communication Network (NALECOM) Users Interface Guidelines has been prepared for the National Criminal Justice Information and Statistics Service, Law Enforcement Assistance Administration, United States Department of Justice, in response to a statement of work in JPL Proposal No. 51-213A, dated June 12, 1973. This statement of work has been incorporated into task order RD-152, Amendment No. 22 (basic) of contract NAS7-100 and the LEAA-NASA Interagency Agreement LEAA-J-1AA-037-73.

This project was supported by the Law Enforcement Assistance Administration, United States Department of Justice, under the amended version of the Omnibus Crime Control and Safe Streets Act of 1968. Points of view or opinions expressed herein are those of the authors and are not intended to represent the official position of the United States Department of Justice.

The NALECOM system, as conceived, is to provide for rapid interstate communication between criminal justice agencies. This communication is a combination of state-to-state communication including controlied automated access of state-based files, and stateto-national communication with automated access of a central national crime data file. The states retain control over crime data and determine which data can be accessed. Regional switching centers will be utilized to facilitate network linkage, but no regional data banks are being considered.

The NALECOM network is a network design intended to serve the interstate and national communication needs of criminal justice agencies for the next decade.

To be responsive to users and to be cost-effective, the NALECOM network is designed to be implemented in phases. The network is initially a two-region land line net later phasing into a one-region combined land line satellite net. The regional switcher message handler functions are primarily network control, error recovery, and network operational status communiques.

vi

.

### PURPOSE 1.1

The purpose of this document is twofold:

- 1) To provide the user with a description of the NALECOM system as presently conceived, and identify basic user requirements.
- To provide a focal point for user reaction. It is desirable for 2) users to review the document, identify potential user interface problem areas, and convey these concerns to JPL/LEAA via written reports. These reports can then be evaluated to provide development of a compatible network to serve the criminal justice agencies.

The final issue of this document will provide a refined definition of the interface guidelines. It should be noted that this document is not a "Users Guide" or an "Operators Manual."

### 1.2 SCOPE

This document provides a basic description of the NALECOM network's operational procedures, line protocols, message formats, configurations, and other features, as presently conceived.

Although some minor changes of the configuration are probable, the techniques should not be appreciably changed.

### APPLICABLE DOCUMENTS 1.3

Preliminary National Law Enforcement Telecommunications Requirements. JPL Document 1200-133, Jan. 7, 1974.

ALECS System Manual Automated Law Enforcement Communications System Mar. 26, 1973.

Teleswitcher System Operating Manual (LETS)

Updated National Law Enforcement Telecommunications System (NLETS) Users Guide. Dec. 15, 1973.

CLEAR/CJIS User Manual (with Updates). April 1, 1973.

1972 Directory of Automated Criminal Justice Information Systems U.S. Department of Justice, Law Enforcement Assistance Administration, Dec., 1972.

National Crime Information Center (NCIC) High Speed USASCII Interface Standards.

Proposed American National Standard for Advanced Data Communications Control Procedures (ADCCP). ANSI X3S34/475, 7th draft, Dec. 13, 1973.

IBM Systems Reference Library Publication GA27-3004-2, "General Information-Binary Synchronous Communications."

Method."

1.4 GLOSSARY

A free-form message used for information transfer not necessarily file oriented. An eight-level code entitled, "American Standard Code for Information Interchange." Transmission in which each information character (or sometimes each word or small block) is individually synchronized usually by the use of start and stop elements. The gap between each character (or word) is not necessarily a fixed length. This document assumes that teletype model No. 37 ASRs with a 150 word/minute line rate are presently used by all states not having computer interface.

Administrative Message ASCII Code Asynchronous Transmission

NCIC Operating Manual (plus revisions).

IBM Systems Reference Library Publication GC30-2004-7, "IBM System/360 Operating System Basic Telecommunications Access





An assigned area in a message reserved for a specific type of data.

and Barris and Street

A predetermined arrangement of characters, fields, delimiters, lines, and punctuation marks with regard to messages.

A communication facility capable of transmitting in both directions simultaneously.

A communications facility capable of transmitting in only one direction at any given time.

> A set of characters in a predetermined arrangement, starting with the Start of Header (SOH) character. Used for message control by the switcher.

A common boundary between computers, or a terminal and a computer, enabling data exchange.

Those system terminations not possessing a binary synchronous interface capability.

A 2- or 9-character code identifying the message originator. Code identifiers are the same as Destination ORI.

The maximum number of characters to be transmitted prior to allowing contention for the transmission line. This differs from a message block as message blocks do not allow for line contention until all blocks are transmitted.

1-5

 $\mathcal{O}$ 



### Transparent Text Mode

A mode of transmission which allows normally restricted data-link line control characters to be transmitted as "bit patterns."

### İI. NALECOM NETWORK DESCRIPTION

### 2.1 SYSTEM TERMINATIONS

The NALECOM network is designed on the basis of 52 system "terminations. A "System Termination" is the point at which the network interfaces with a state data base or the National (NCIC) data base. These terminations shall be located in the state capitals, Washington, D.C., and at the National Crime Information Center, also in Washing-

ton, D.C. Each system termination having the capability will interface with a switching center at a line rate of at least 2400 BPS, using Binary Synchronous Communication (BSC) half duplex line control procedures and ASCII coding conventions.

The system termination interface with switching centers shall be dedicated to the criminal justice function and shall be located in controlled facilities which provide adequate physical security against unauthorized personnel.

It shall be the responsibility of each system termination user agency to provide screened operating personnel to operate the network equipment at his termination and the responsibility of the NALECOM controlling agency to provide operating personnel at the switching centers when required.

System terminations still using asynchronous devices will interface via the Western switcher.

NETWORK FUNCTIONS 2.2

> The prime function of the NALECOM network is to provide system users with a rapid reliable means of interstate/national communications routing of criminal justice digital data.

to other states.

With one system termination interface per state for the NALECOM network, each state will be responsible for routing intrastate data and for determining which data from their data bases may be made available

|          | 1200-168                                                       |          |      |                                |  |
|----------|----------------------------------------------------------------|----------|------|--------------------------------|--|
|          | The specific functions of NALECOM are as follows:              |          | 10)  | 10) Flexibility<br>of interfac |  |
| 1)       | Interstate communications routing of:                          |          | 11)  | Providing                      |  |
|          | a) Inquiries/responses.                                        |          |      | without deg                    |  |
|          | b) Administrative messages.                                    |          | 12)  | An asynchi                     |  |
|          | c) Digitized graphic data.                                     |          |      | users not y                    |  |
|          | d) Error messages.                                             |          |      |                                |  |
|          | e) Status messages.                                            | 2.3      | NEJ  | WORK USEF                      |  |
|          | f) Video.*                                                     | <b>)</b> | The  | NALECOM s                      |  |
| 2)       | State to NCIC communications routing of:                       |          | inte | rchange betw                   |  |
|          | a) Item 1) above.                                              |          | prov | vide minimal                   |  |
|          | b) Digitized fingerprint data.                                 |          |      | It will be t                   |  |
| 3)       | Routing capability:                                            |          | 1)   | Comply wi                      |  |
|          | a) Between any two system terminations.                        | T.       |      | NALECOM                        |  |
|          | b) From any system termination to five or less system          |          | 2)   | Ensure tha                     |  |
|          | terminations. **                                               |          |      | standard b                     |  |
|          | c) From any system termination to all other system termina.    |          |      | terminatio                     |  |
|          | tions. **                                                      |          | 3)   | Provide st                     |  |
|          | . d) From any system termination to all other system termina-  |          |      | interruptio                    |  |
|          | tions within the same region. **                               |          | 4)   | Segment al                     |  |
| 4)       | Priority handling of messages by type                          |          |      | History (C                     |  |
|          | Message and line usage statistics                              |          |      | other types                    |  |
| 5)<br>6) | Transmission error detection and retransmission (or request    | -        |      | numbering                      |  |
| 0)       | for retransmission) of messages                                |          | 5)   | Re-transm                      |  |
| 7)       | Maintenance of network routing status and provide status mes-  |          |      | to recipien                    |  |
| ()       | sages                                                          |          |      | not perform                    |  |
| 81       | A minimum service of a 2400 BPS synchronous transmission       |          | 6)   | Transmit 1                     |  |
| 0)       | half dupley. A wire system using contention type line control  |          |      | taking pred                    |  |
| ۵۱       | A 24 hour/day 7 day/week operation with a design goal of 0.993 | , ·      |      | is transmi                     |  |
| 71       | availability (Outage of less than 10 min/day for any single    |          |      | sage consi                     |  |
|          | availability. (Outage of less than to mill/day for any strigte |          |      | officer saf                    |  |
|          | routing. )                                                     |          |      | rather than                    |  |
|          |                                                                |          |      | top priorit                    |  |

\*Video usage and capabilities are presently undefined.

\*\*These routing capabilities are not provided for fingerprint or graphics data.

1200-168

for expansion including added interfaces or relocation es.

system users with ability to phase into NALECOM gradation or interruption of present usage capabilities. ronous interface, via the Western switcher only, for yet having a 2400 BPS or more line interface capability.

### R REQUIREMENTS

system is designed to provide rapid communication ween state and national agencies. NALECOM will also message content checks and storage.

the users responsibility to:

th the standard message header format developed for 1 system usage.

at message content complies with the message recipients by correctly formatting messages to the various system ons.

atus messages to the system when planned service ons are expected, and when service is restored. ll administrative messages and Computerized Criminal CH) messages into 1000 characters or less and all s of messages into 400 characters or less. Sequence of segments will also be done by the users. it messages when a transaction is not completed due it's inability to respond. (The NALECOM system will m a long-term store and forward capability.) messages in order of priority with officer safety items cedence over other types of messages, e.g., if a user itting an administrative, graphic, or fingerprint messting of a number of segments, he should transmit the fety message following the last segment transmitted n complete the total transaction prior to sending the ty messages.

## 2.4 FUNCTIONS NOT PROVIDED

- 1) Voice communication.
- 2) Unscrambling, decoding or modifying messages.
- 3) Interface with terminations not dedicated to criminal justice functions.
- 4) Intrastate message switching capability.
- 5) Message text editing or format checking of message content other than message header.
- 6) Capability to route a given message to more than five system terminations. The exception to this is the All Points Bulletin message which will go to all system terminations.
- 7) System termination service for users having less than a 2400 BPS bi-synchronous, half-duplex interface capability following the established line control procedures, will not be provided at the Eastern switcher.

# 2.5 PHASE III CONFIGURATION

The Phase III NALECOM network configuration will be a Terrestrial Line Communication system with two switching centers connecting system terminations. Phases I and II of NALECOM are study efforts leading to the network concepts to be implemented in Phases III and IV.

Figure 2-1 shows the typical Phase III configuration interface, and Table 2-1 depicts the line rate assignments for the system terminations. These assignments are present estimates only.

# 2.6 PHASE IV CONFIGURATION

The Phase IV NALECOM network configuration culminates in a combined terrestrial and satellite communication system with a single switching center. Figure 2-2 shows the typical phase IV configuration interface, and Table 2-2 depicts estimated line rate assignments for the system terminations.



2-5

ALL LAND LINE INTERFACES

NTH WESTERN TERMINATION

first Western

 $\sim$ 

HDX

ψ.

Fig. 2-1. Phase III configuration

WESTERN SWITCHER

EASTERN SWITCHER

FDX

HDX

FDX



0



| Table 2-1. | Estimated line | rate assignments | for Phase III | configuration |
|------------|----------------|------------------|---------------|---------------|
|------------|----------------|------------------|---------------|---------------|

Switch 2400 4800 7200 HDX FDX State Center BPS BPS BPS 1. Alabama Ε х х w Х х 2. Alaska 3. Arizona w Х х Ε х Х 4. Arkansas 5. California W XX XX х 6. Colorado W х х Ε х 7. Connecticut х 8. Delaware Ē х х 9. Florida E х Х XX 10. Georgia Έ XX Х Х ll. Hawaii W х 12. Idaho W Х Х 13. Illinois E х х Х 14. Indiana Е х Х Ε х Х 15. Iowa W Х 16. Kansas х 17. Kentucky Е х Х 18. Louisiana Ε х Х 19. Maine E Х Х E 20. Maryland х Х 21. Massachusetts E XX х 22. Michigan E Х XX 23. Minnesota Е Х х 24. Mississippi Ε Х Х E 25. Missouri XX х 26. Montana W Х х 27. Nebraska W х Х 28. Nevada W х х



2-6

.

2 1

1200-168

| Switch<br>Center | 2400<br>BPS | 4800<br>BPS | 7200<br>BPS | HDX | FDX |
|------------------|-------------|-------------|-------------|-----|-----|
| E                | x           |             |             | x   |     |
| E                |             | xx          |             | х   |     |
| w                | x           |             |             | х   |     |
| E                |             | x           | xxx         | x   |     |
| E                |             | xx          |             | x   |     |
| w                | x           |             |             | х   |     |
| E                |             | x           | x           | x   |     |
| w                | x           |             |             | x   |     |
| w                |             | x           |             | х   |     |
| E                |             |             | xx          | x   |     |
| E                | x           |             |             | х   |     |
| E                | x           |             |             | х   |     |
| w                | x           |             |             | x   |     |
| E                |             | x           |             | х   |     |
| w                |             | x           | xx          | x   |     |
| W                | х           |             |             | x   |     |
| E                | x           |             |             | x   |     |
| E                |             |             | Х           | x   |     |
| w                |             |             | х           | x   |     |
| E                | x           |             |             | x   |     |
| E                |             | x           |             | x   |     |
| W                | x           |             |             | x   |     |
| E                | x           |             |             | x   |     |
| E                |             |             | (14)X       | x   | *   |
| E                |             | x           | xxx         |     | x   |

Table 2-1. Estimated line rate assignments for Phase III configuration (contd)





| 1 | 2 | 0 | 0 | - | 1 | 6 | 8 |  |
|---|---|---|---|---|---|---|---|--|
|---|---|---|---|---|---|---|---|--|

|       |                  |             |             | ·····       |     |                                        |
|-------|------------------|-------------|-------------|-------------|-----|----------------------------------------|
|       | Switch<br>Center | 2400<br>BPS | 4800<br>BPS | 7200<br>BPS | HDX | Satellite<br>Data Links<br>28 KBPS-FDX |
|       | ੱਜ               |             | v           |             | v   |                                        |
|       | ב<br>ד           | v           | л           |             |     |                                        |
|       | E<br>E           | ^           | v           |             |     | v                                      |
|       | E.<br>F          | v           |             |             | X   | X                                      |
|       | E.<br>F          | ^           |             | VVV         |     | v                                      |
| a     | E<br>F           |             | 37          | XXX         | X   | X                                      |
|       | E<br>D           |             | X           |             | X   |                                        |
| ut    | E                |             | Х           |             | Х   |                                        |
|       | E                | X           |             |             | Х   |                                        |
| 1     | E                |             |             | XX          | Х   | Х                                      |
|       | E                |             | XX          |             | Х   | Х                                      |
|       | E                | Х           |             |             | Х   |                                        |
|       | E                | х           |             |             | Х   |                                        |
|       | E                |             | Х           | х           | х   | Х                                      |
| 1     | E                |             | х           |             | х   |                                        |
|       | E                | х           |             |             | х   |                                        |
|       | E                |             | х           |             | х   |                                        |
|       | E                |             | Х           |             | х   |                                        |
| 1     | E                |             |             | х           | х   |                                        |
|       | E                | x           | ø           |             | x   |                                        |
|       | E                |             |             | х           | х   |                                        |
| setts | E                |             | XX          |             | х   |                                        |
|       | E                |             |             | xx          | x   | x                                      |
| a     | E                | x           |             |             | x   |                                        |
| pi    | E                | x           |             |             | x   |                                        |
| -     | E                |             | xx          |             | x   | x                                      |
|       | E                | x           |             |             | x   |                                        |
|       | E                | x           |             |             | x   |                                        |
|       |                  |             |             |             |     |                                        |
|       | 1                | 1 1         |             | 1           | 1   | 1 1                                    |

Table 2-2. Estimated line rate assignments for Phase IV configuration

Yest .

| T   | able 2-2. Estim    | ated line        | rate as<br>(c | signmen<br>ontd) | nts for l   | Phase IV | / configuration                        |
|-----|--------------------|------------------|---------------|------------------|-------------|----------|----------------------------------------|
|     | State              | Switch<br>Center | 2400<br>BPS   | 4800<br>BPS      | 7200<br>BPS | HDX      | Satellite<br>Data Links<br>28 KBPS-FDX |
| 28. | Nevada             | E                | x             |                  |             | x        |                                        |
| 29. | New Hampshire      | E                | x             |                  |             | x        |                                        |
| 30. | New Jersey         | E                |               | xx               |             | x        | x                                      |
| 31. | New Mexico         | E                | x             |                  |             | x        |                                        |
| 32. | New York           | E                |               |                  | xxx         | x        | x                                      |
| 33. | N. Carolina        | E                |               | xx               |             | x        | x                                      |
| 34. | N. Dakota          | E                | x             |                  |             | x        |                                        |
| 35. | Ohio               | E                |               | x                | x           | x        | x                                      |
| 36. | Oklahoma           | E                | x             |                  |             | x        |                                        |
| 37. | Oregon             | E                |               | x                |             | x        |                                        |
| 38. | Pennsylvania       | E                |               |                  | xx          | x        | x                                      |
| 39. | Rhode Island       | E                | х             |                  |             | x        |                                        |
| 40. | S. Carolina        | E                | x             |                  |             | x        |                                        |
| 41. | S. Dakota          | E                | x             |                  |             | x        |                                        |
| 42. | Tennessee          | E                |               | x                |             | x        |                                        |
| 43. | Texas              | E                |               | x                | xx          | x        | x                                      |
| 44. | Utah               | E                | x             |                  |             | x        |                                        |
| 45. | Vermont            | E                | x             |                  |             | x        |                                        |
| 46. | Virginia           | E                |               |                  | x           | x        |                                        |
| 47. | Washington         | E                |               |                  | x           | x        |                                        |
| 48. | W. Virginia        | E                | x             |                  |             | x        |                                        |
| 49. | Wisconsin          | E                |               | x                |             | x        |                                        |
| 50. | Wyoming            | E                | x             |                  |             | x        |                                        |
| 51. | Washington<br>D.C. | E                | x             |                  |             | X        |                                        |
| 52. | NCIC               | E                |               |                  | (14)X       | х        | XX                                     |
|     |                    |                  |               |                  | J           |          |                                        |

| 2.7   | PERFORMANCE        |
|-------|--------------------|
|       | The perform        |
|       | on the system of a |
| 2.7.1 | Period of Service  |
|       | The Networl        |
|       | week.              |
| 2.7.2 | Availability       |
|       | The Networl        |
|       | any system termin  |
|       | to communicate w   |
| 2.7.3 | Response Time      |
|       | The respons        |
|       | between the time a |
|       | time the message   |
|       | Response time go:  |
|       | The response time  |
|       | Messa              |
|       | Officer Safety (p  |
|       | Graphics and fin   |
|       | Administrative a   |

These response times are the maximum time allowed for transmission of 90% of the messages at the level given. However, they will not be valid for users interfacing with line rates less than 2400 BPS.

message.

2-10

.4

### 1200-168

## GOALS

nance goals are based on an estimated traffic load approximately 90 thousand BPS by 1983.

k will be in operation 24 hours per day, 7 days per

k will be available for use 99.3% of the time; i.e., nation shall have a probability of 0.993 of being able ith any other system termination.

se time of the network is defined as the time interval a line is requested at a system termination and the is completed at the addressed system termination. bals are established by the priority of the message. e goals for a given message type are listed below.

| age Type            | Response Time Goal      |
|---------------------|-------------------------|
| priority message)   | 3 seconds               |
| ingerprint data     | 30 seconds per segment  |
| and all other types | 7.5 seconds per segment |

Delay incurred on input or output by system terminations for line change of direction response are estimated to be <4 milliseconds/

|                                                                                                                               | an a |        |
|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------|
|                                                                                                                               |                                          |        |
| III. SYSTEM INTERFA                                                                                                           |                                          |        |
| This section<br>description include<br>interface for those<br>interface capabilit<br>switcher interface<br>interface is a NAL |                                          |        |
| The defined<br>minal side of the n                                                                                            |                                          |        |
| 3.1 NETWORK TO US                                                                                                             | 3.1                                      |        |
| 3.1.1 Data Rates                                                                                                              | 3.1.1                                    |        |
| Each system<br>minimum service<br>configuration and T<br>each system termi<br>have multiple lines<br>accommodate their        |                                          | · · ·  |
| Line rates of<br>are not shown.                                                                                               |                                          | ,<br>, |
| Although the<br>service, it is reco<br>to handle the minin<br>ted to interfacing v<br>able to use the sys                     |                                          |        |
| 3.1.2 Line Protocol                                                                                                           | 3.1.2                                    |        |
| NALECOM s<br>or greater will inte<br>Appendix A.                                                                              |                                          | •      |
|                                                                                                                               |                                          |        |
|                                                                                                                               |                                          |        |

## ACES

n describes the NALECOM system interfaces. The les a paragraph for asynchronous communication e users that may not initially have a synchronous ty at system implementation time. The switcher/ e paragraph is included for user information. This LECOM responsibility.

6

boundary at the system termination is the data termodems.

## ER

itions apply to both network and user.

n termination will be expected to have at least the of 2400 BPS half-duplex capability. The Phase III Table 2-1 depict the present plan for line rates for ination. Some system terminations are expected to s with line rates of 2400, 4800 and 7200 BPS to r state traffic.

f 9600 BPS are also under consideration, but they

system is designed to provide a minimum 2400 BPS ognized that some users may not have the capability mum line rate or higher line rates and will be restricvia 150 BPS asynchronous lines. These users will be stem by interfacing via the Western switcher.

system users having interface capability of 2400 BPS erface using the half duplex protocol described in

,

Although the Phase IV interface for satellite communication will be full duplex, the user interface will still be half duplex to the HDX/ FDX converter (see Fig. 2-2). However, use of full duplex protocol with system terminations is desirable, if feasible.

Fingerprint and graphic messages may be transmitted using transparent text mode. All other messages normally will be transmitted using non-transparent text mode.

Conversational and reverse interrupt (RVI) modes of binary synchronous transmission are planned to increase line efficiency.

Users interfacing with the system via asynchronous devices will be required to use the 8A1 line conventions described in Appendix B.

3.1.2.1 Error Checking. A combination of vertical and longitudinal redundancy error checking (VRC/LRC) will be used for non-transparent text transmission error checking.

> Recoverable error conditions will be retransmitted. (Refer to Appendix A.)

Cyclic Redundancy Error Checking (CRC) will be used for transparent text mode transmission.

### 3.1.3 Message Formats

A NALECOM message will consist of a message header and message text. Message text may consist of any ASCII characters the user wishes to send, including control characters. The message header will be checked for valid state ORI characters.

The NALECOM system does not intend to add, modify, or delete any data from messages.

NALECOM expects normal message lengths of 400 characters or less. The message type will be checked against the message segment length. A segment is defined as the maximum number of characters that a sender may transmit before allowing line contention. The segment therefore may be a complete message or a portion of a complete message. Messages exceeding 400 characters will be rejected unless they are Administrative or Criminal History Records. In this case, the message segment length must not exceed 1000 characters.

1)

b)

- a)
- c)
- d)
- Indicate type of message. 2)
- 3)
- 4)
- 5)

when needed.

The switchers will require the header on all messages and will transmit the header as received with the exception of multiple destination ORI and All Points or All Region indicators. Multiple destination ORI indicators in the header will result in the messages being transmitted to the destinations specified.

The All Points and All Region messages will be identified as special message types. These messages will be routed by the switcher to a control console. The message will be confirmed or denied by the Regional Switching Manager. If confirmed, the switcher will be notified to send the message to all applicable system terminations. If denied, the switcher will be notified to send the originator a denial message.

The NALECOM header is described in Table 3-1. The header will consist of message type, originators ORI, destination ORI, message sequence number, and message segment (block) number.

3.1.3.1 Message Header. The NALECOM message header is intended to accomplish the following functions.

Provide routing information for:

Originating ORI.

Destination ORI.

All points/all region indicators.

Multiple Destination ORI (5 or less).

Provide message continuity for multi-segmented messages (message number identifier).

Provide segment number for multi-segmented messages (message segment number) and an indicator of last segment. Provide efficient transmission by minimizing the amount of data required to be transmitted for routing (variable length header).

The NALECOM system switchers will utilize the header data for message routing but will not assemble segmented messages for sequen-

tial transmission. The message number identifier and the message segment number are optional header fields included for user utilization



The message header fields are of variable lengths and will require a period (.) between fields for a delimiter. The last field will be followed by a "start of text" (STX) character.

The type, originators ORI and destination ORI fields, are required. The message sequence number and message segment (block) number fields are optional and are normally used only for messages that have multi-segments. Each segment of a message will require a message header. The message sequence number will be the same for all segments of any one message. The message segment number field will be incremented by one for each segment of any one message, and the last message segment will contain an "L" in the leftmost position of the message segment field followed by the segment number of the last segment.

The NALECOM header contains all the required data presently in the NCIC and National Law Enforcement Telecommunications System (NLETS) headers except the NCIC numeric type indicator. The NALE-COM header does not provide for an optional control field. The data added to the header by NLETS was not considered in the NALECOM header.

3.1.3.2 <u>Message Text.</u> All messages received from state or national sources will be routed as sent, with no modification. It will be the responsibility of the state or national recipient to check the message text, determine whether the message is acceptable, and generate error messages for unacceptable messages. It is incumbent upon each user to provide a description of what message types and/or text is acceptable at his termination and to keep such description current.

Messages addressed to the switcher will be restricted to status messages and all points/all region bulletins. It will be the switchers responsibility to maintain the status of system terminations and to notify other system terminations of current status based on the latest status message from individual system terminations. Status of individual terminals within a state will not be kept by the switcher. 法国を見たいというないで





Transparent text mode of transmission may be used for fingerprint and graphic data. All other messages will use non-transparent text mode for transmission.

### Message Prioritization

A message transmission priority system will be utilized by NALECOM for all output messages. All system terminations should prioritize their transmissions by the same standards.

Message priority will be determined by message type with first priority given to officer safety messages (inquiries/responses on wanted persons, stolen vehicles, guns, license checks, etc.). Administrative messages (those messages not involving specific file access) and criminal history file messages will have second priority. Lowest priority will be assigned to lengthy messages such as fingerprint and graphic data. Table 3-2 gives the priorities of messages, types of messages, and files that may be accessed presently and potentially. Potential files are not given a transmission priority. Such priority will be determined when these files become available.

The switcher will check the message type of all incoming messages and transmit the outgoing messages in order of priority based on the type and on a non-preemptive basis. Non-preemptive means that any message segment being transmitted will not be prematurely terminated in order to send the higher priority message.

Users having the capability for message queuing should send the higher priority messages first. If a long message is being sent (multisegments), the user should send the higher priority message following the message segment presently being sent (interleave).

## Message Generation Procedures

All messages handled at the NALECOM switcher will require a header. The ASCII character set will be expected for message composition.

The system will interface with each state via one system termination. This enables the switcher to route messages by the two-character system termination identifier. It will be the responsibility of the 

# Table 3-2. Priority assignments

|                          | Query   |          | File Manipulation |       |        |        |        | Adminis | Service |         |        |        |
|--------------------------|---------|----------|-------------------|-------|--------|--------|--------|---------|---------|---------|--------|--------|
|                          | Inquiry | Response | Test              | Entry | Modify | Cancel | Locate | Purge   | Clear   | trative | Error  | Status |
| NON-FILE DATA            | x       | х        | x                 | х     | x      | x      | x      | x       | x       | 2       | f      |        |
| FILES                    |         |          |                   |       |        |        |        |         |         |         |        |        |
| Vehicle Reg. (STATE)     | 1       | 1        | x                 | х     | х      | x      | x      | x       | x       | x       | 1      | 1      |
| Drivers Lic. (STATE)     | 1       | 1        | х                 | x     | x      | x      | x      | x       | x       | x       |        | ,      |
| Stolen Veh. (NCIC)       | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       | 2       | x       |        | 1      |
| Stolen Lic. (NCIC)       | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       |         | x       |        | ,      |
| Stolen Art, (NCIC)       | 1       | l        | 2                 | 2     | 2      | 2      | 2      | x       | 2       | x       | 1      | 1      |
| Stolen Gun. (NCIC)       | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       | 2       | x       | 1      |        |
| Stolen Sec. (NCIC)       | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       | 2       | x       | ı<br>T | 1      |
| Stolen Boat. (NCIC)      | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       | ,       | Ŷ       | 1      | 1      |
| Wanted Persons (NCIC)    | 1       | 1        | 2                 | 2     | 2      | 2      | 2      | x       | 2       | v l     |        | 1      |
| Criminal History (NCIC)  | 2       | 2        | 2                 | 2     | 2      | 2      | 2      | 2       | 2       | · · ·   | 1      | 1      |
| Fingerprint Proc.        | 3       | 3        | 3                 | 3     | 3      | 3      | 3      | 2       | 2       | × ×     | 1      |        |
| Crime Lab. Graphics      | 3       | 3        | 3                 | 3     | 3      | 3      | 3      | 3       | 2       | × I     | 1      | 1      |
| POTENTIAL FILES          |         |          |                   |       |        | -      |        | ,       | , I     | ^       | 1      | t      |
| Crime Trend              |         |          |                   |       |        |        |        |         |         |         |        |        |
| Crim. Assoc.             | ·       |          |                   |       |        |        |        |         |         |         |        |        |
| Modus Operandi           |         |          |                   |       |        |        |        |         |         |         |        |        |
| Org. Crime               |         |          |                   |       |        |        |        |         |         |         |        |        |
| Uniform Crime Rep.       |         |          |                   |       |        |        |        |         |         |         |        |        |
| Missing Pers,            |         |          |                   |       |        |        |        |         |         |         |        |        |
| Warrant Cont.            |         |          |                   |       |        |        |        |         |         |         |        |        |
| Research/Stats.          |         |          |                   |       |        |        |        |         |         | ļ       |        |        |
| Case Control             |         |          |                   |       |        |        | Í      |         |         |         |        |        |
| Assig. Att. Court, Judge |         |          |                   |       |        |        |        |         |         |         |        |        |
| Inmate records           |         |          |                   |       |        |        |        |         |         |         |        |        |

X = Not applicable.

3-7







originating system termination controller to identify and route the reply messages for intrastate terminations.

All messages will be segmented (see Para. 3.1.3). The segmenting allows messages to be handled on a non-preemptive priority basis per segment. Higher priority messages must be interleaved with lower priority messages to maintain rapid response time.

### 3.1.6 Message Routing

Message routing will be accomplished by the switcher, utilizing the destination ORI Code in the message header. The ORI Code should match the code as specified for NCIC Agency Identification System termination for the desired states destination termination. Any detected errors in ORI will result in an error message being sent to the originating termination by the switcher and the message in error being disregarded by the switcher.

It is the message recipients responsibility to accept or reject messages and provide response, if required.

When multiple destination ORI(s) are indicated in the message header, it will be the switchers responsibility to generate separate messages and transmit the message for each system termination.

When an All Points or All Regions message is indicated, it will be the switchers responsibility to route the message to a console at the switching center for confirmation. If confirmed, the switcher will then generate and transmit the message to all system terminations. If the message is not confirmed, an error message will be generated and sent to the originating system termination.

System termination status messages will be routed to the switcher where the status of all system terminations will be maintained.

3.1.7 Message Handling on Reception (Exclusive of Line Protocol)

3.1.7.1 <u>Switcher</u>. The NALECOM switcher will accept input messages, check the header for destination ORI, and transmit the message, including header, to its destination, if the destination ORI is valid and system termination is up. The switcher will handle multiple ORI destinations and All Point and All Region messages as described in Para. 3.1.6.

No message editing or content checks will be made by the switcher. It will be the receiving terminations responsibility to accept or reject the message content.

The switcher will maintain a queue for messages that cannot be sent immediately due to line usage conflicts; however, the switcher will not maintain a long-term store and forward capability. If the queue is full, the switcher will not accept any more messages for that destination.

If a system termination is out of service and a message is received for that termination, the switcher will respond to the originator with the message header and a status message.

It is anticipated that all users will have automated interfaces with the switcher and will insert the proper control characters necessary for their terminal interfaces. However, the Western switcher will consider asynchronous input from manual system states prior to acquisition of an automated interface.

3.1.7.2 <u>System Termination</u>. The system terminations will provide any message editing or reformatting that may be required for communication with intrastate terminals or systems.

> Reordering of message segments that may have been transmitted out of sequence will be the system terminations responsibility.

> System terminations will generate error messages for any message they receive that does not agree with their required format or contents.

Intrastate terminal status will be maintained by the system termination and any response necessary will be generated by them.

3.2

and the stand of the second stand

and a second second second second second

Initially, the NALECOM system will consist of two switching centers. These switching centers are referred to as the Western and Eastern switchers. The switchers will interface via high speed, full

3-8

### **REGION TO REGION**

3-9

and the second and the second s

duplex, land line communication. The Western switcher will be phased out when satellite communication is phased into sufficient states. All system terminations still on land line communication will be routed to the Eastern switcher.

### 3.2.1 Data Rates

The full duplex interface between switchers will be sized to handle the western state traffic for the life span of the Western switcher.

Data rates of 2400, 4800, 7200, 9600, and 50K BPS are being considered for interregion usage.

## 3.2.2 Line Protocol

The same full duplex line protocol is required between switchers and between the Eastern switcher/NCIC FDX/HDX interfaces. This protocol, when fully developed, will also serve for satellite communication. Each state with satellite communication will interface via FDX/HDX converters. Preliminary information regarding the full duplex protocol is available in Appendix A.

### SPECIAL WESTERN SWITCHER CHARACTERISTICS 3.3

The Western switcher and the Eastern switcher will provide the same switching functions, except the Western switcher will also provide the user with an asynchronous interface capability.

### 3.3.1 Asynchronous Interfaces

The NALECOM system designers are presently considering the use of the current NLETS method of interfacing with the manual states, with the following exceptions: (1) NALECOM requires its header on all messages; (2) the characters TXT will not be supported as a delimiter between heading and message text. This will require the state system termination to strip all extraneous data following the header and preceding the message text, when inputting messages to the NALECOM system. (3) Input and output messages will start with SOH; and (4) the STX symbol will be used to delimit the header and message text.

3-10

It is expected that the manual system states will update to automated systems with a minimum line rate capability of 2400 BPS as rapidly as possible and thereby eliminate the need for asynchronous considerations. The response times given for NALECOM are not valid for users employing line rates of less than 2400 BPS.

### 3.4

The goal for the addition of satellite digital data channels to the NALECOM network is to make the use of the satellite capability transparent to the network users. That is, data interface to the network will be identical to that used without the satellite. Video capability provided by the satellite system, plus the possibility of using the satellite for intrastate data transfer, may be new capabilities which must be incorporated into the system. All satellite usage will be through leased satellite transponders or segments of transponders, as required.

### 3.4.1 Data Rates

Satellite data channels will be designed for a standard data rate. or a few standard rates, in order to provide standardization of coding and modulation equipment. The initial estimates are for 28 KBPS channels with one full duplex channel from each system termination (to be implemented with the satellite capability) to the Eastern switcher. The exception to this is the NCIC which will have two full duplex channels.

### Line Protocol 3, 4, 2

and a second 
The satellite data channels will use full duplex line protocol. This protocol is mandatory to provide efficient communications with the approximate 1/4 second one-way transmission delay through the satellite link.

Full duplex line protocol will be used from the Eastern switcher to the state, where a full- to half duplex converter will be provided in order to interface with the states using half duplex protocol. If the state can update to use a full duplex interface, dollars will probably be saved and system complexity reduced.

### 1200-168

### EFFECTS OF SATELLITE COMMUNICATIONS

### Message Handling 3.4.3

No changes in data message handling procedures will be incurred due to data routing through satellites.

### 3.4.4Message Routing

The Eastern switcher will be the master satellite ground station. As system terminations are equipped with ground stations, they will communicate only to the Eastern switcher for digital data transmission/ reception. Thus a state which may have had a direct interface to the Western switcher, once equipped with satellite communications, will interface to the network through the Eastern Switcher. Routing to Western states from a satellite state will be through the Eastern switcher, via a second communications link to the Western switcher then to the desired state.

### 3.4.5 Video

The exact usages for video have not been identified. A followup study to identify video usages is planned. The study may lead to usage of analog or digital video with full or slow scan capability. If the usages require security, then techniques for preventing undesired access to video transmission will be developed. In any case, it is expected that video transmissions could be initiated at any system termination that has satellite transmission capability and received by all other stations. Video usage could also be provided for intrastate transmission, if desired.

### IV SECURITY/PRIVACY

### GENERAL NETWORK ACCESS 4.1

The NALECOM system will only interface with those system terminations dedicated to the criminal justice function. The system termination interface location will be determined by the responsible state agency. The system termination will be located in controlled facilities meeting the security constraints of deterring unauthorized personnel admittance.

### DATA SECURITY 4.2

Security of the communication lines to guard against clandestine devices being used to monitor, create, or alter system communication will not be considered as a portion of network design; however, NALECOM will not be responsible for the information content of the messages routed over the network.

Only screened personnel will be allowed physical access to the NALECOM operating equipment.

VIDEO SECURITY 4.3

T

As discussed previously (Para. 3.4.5), a full definition of possible video usage has not been completed. As video usages are defined, security requirements will be identified, and system characteristics necessary to provide the security will be outlined.

# 1. NALECOM Half Duplex High Speed Line Interface

This section contains line control conventions to be used in establishing the high-speed (2400 baud minimum) interface between the NALECOM switching centers and system termination points.

The interface is a point-to-point contention system guided by the conventions and standards of the IBM binary synchronous communications procedures as defined in IBM Systems Reference Library Publication GA27-3004-2, "General Information - Binary Synchronous Communications."

Specific input/output commands to be employed by system terminations interfacing with NALECOM are defined at the macro level within IBM publication GC30-2004-7, IBM System/360 Operating System Basic Telecommunications Access Method.

It is recognized that the exact input/output macro commands used by a particular interfacing state computer may deviate to some degree from those defined in this section, depending upon computer manufacturer and hardware/operating system configuration employed. However, the macro functions (as described in the above referenced manual) must be supported at a system termination to successfully interface with the NALECOM network.

### NALECOM Half Duplex Data Link Conventions and Restrictions 1.1

| 1.1.1 All mes | sag      |
|---------------|----------|
|               |          |
| 1. 1. 1. 1    | Ī        |
| 1. 1. 1. 2    | <u>.</u> |
|               | n        |
|               | 1        |
|               | n        |
|               | te       |
|               |          |

34.

N. TI

### 1200-168

### APPENDIX A

NALECOM HALF DUPLEX HIGH SPEED LINE INTERFACE

14

ges transmitted through the network will be subject wing message length restrictions:

Inquiry and Response - 400 characters/message Administrative Messages - 1000 characters/ message. Administrative information more than 1000 characters in length will be transmitted as multiple complete message segments, each terminated by an "End of text" (ETX) character.

1. 1. 1. 3 CCH Input Messages - 1000 characters.

CCH Responses - 1000 characters/message. A 2000 character response will be transmitted as two 1000 character segments, each terminated by an ETX character.

- 1.1.1.4 Fingerprints and Graphic Data Each type will be transmitted in 400 character segments, terminated by an ETX character. Provisions will be made for segment sequence numbering, and inclusion of a final segment indicator for fingerprints, graphics, CCH responses, and any other multiple segment message. Determination of successful transmission of any multi-segment message will be made by receipt of all contiguously numbered segments and the final segment indicator, rather than receipt of an ETX character.
- 1. 1. 1. 5 Other Message Types All other message types will be subject to a 400 character/message restriction.
- 1.1.2 ALL messages, as defined in restriction one, will be transmitted as complete messages, terminated by an ETX character.
- 1.1.3 All messages transmitted through the NALECOM network will use the USASCII transmission code. All messages with the exception of fingerprints and graphic data will be transmitted in a non-transparent text mode. System terminations having the operational requirement to transmit or receive fingerprints or graphic data must support transparent text read and/or write functions.
- 1.1.4 Transmission Error Checking For non-transparent text transmissions, a combination of vertical and longitudinal redundancy error checking (VRC and LRC) will be used.

- otherwise.
- sections.
- 1.2 Conversational Transmission Mode

The Conversational Transmission Mode is an extension of the "Limited Conversational Mode" defined in the IBM Binary Synchronous Communications procedures. The Limited Conversational Mode is designed to permit a station to send an inquiry message to another station, which then sends back an answer message. Instead of being handled with two separate transmissions in opposite directions, conversational mode permits the direction of transmission to reverse following a message, within a single transmission. One or more text or transparent text messages may then be transmitted in the usual fashion. At the completion of reply transmissions, the new transmitter sends the EOT signal to terminate message transfer state.

And because with and the design of the second

in the second se

### 1200-168

When the transparent text mode is used, all blocks of text, transparent text, and header information are checked with a 16 bit Cyclic Redundancy Check (CRC). Retransmission of all recoverable errors will be attempted three times.

1.1.5 Breaking Line Contention Deadlocks - To provide for situations in which the NALECOM switcher and a system termination simultaneously bid to become the transmitter. the NALECOM switcher is denoted as the primary station and any system terminations as a secondary station. To overcome these contention situations, the switcher ignores an enquiry received after sending its initial bid enquiry and repeats the enquiry until an affirmative or negative reply is received. The system termination, on the other hand, replies affirmatively to received enquiry signals if ready, and negatively

1.1.6 An important element in the NALECOM network's requirement to meet specified response times for priority one and two message is the support of conversational and reverse interrupt modes of transmission, as defined in the following

To achieve a conversational mode of transmission within the NALECOM network, all interfacing computers must issue commands to transmit of the form described by the "Write Initial Conversational" and "Write Continue Conversational" macros (see Para. 1.4).

These write commands prepare the message sender to receive either an ACK0/ACK1 or a message containing text as the affirmative response to his message.

While the conversational mode is primarily defined in BSC for inquiry/response transmissions, it has also been successfully used within the framework of the NALECOM network's intended purpose; NALECOM will use the conversational mode to expedite the transmission and receipt of high priority messages and responses. Since the issuance of a conversational reply as an affirmative response to a message received reverses the direction of transmission, the following conventions/restrictions are established to maintain proper transmission sequencing within the message priority and response time requirements of the network.

- 1.2.1 System terminations will only issue conversational replies to transmit priority one messages.
- 1.2.2 System terminations will not be limited in the number of successive priority one messages that may be transmitted following the conversational reply. The NALECOM switcher, however, may in turn interrupt this sequence by another conversational reply to transmit a priority one message.
- 1.2.3 The initial response to a conversational reply may not be another conversational reply. After the conversational reply is acknowledged, and transmission direction reversed, any subsequent messages may be replied to in the conversational mode.
- 1.2.4 The NALECOM switcher may issue conversational replies to transmit a message of any priority level, subject to the following conventions:

| 1.2.4.1 | Subs                           |
|---------|--------------------------------|
|         | repl                           |
|         | tran                           |
|         | its o                          |
| 1.2.4.2 | If a                           |
|         | in tł                          |
|         | tion                           |
|         | anot                           |
|         | or t                           |
| 1.2.4.3 | $\operatorname{Th} \mathbf{e}$ |
|         | tion                           |
|         | res                            |
|         | hibi                           |
|         | one                            |
|         |                                |

### Reverse Interrupt Transmission Mode 1.3

The Reverse Interrupt (RVI) control sequence is a less efficient means of obtaining line control than that provided by the conversational mode. The RVI command is a request on the part of a receiving facility for interruption of the current transmission sequence, to permit transmission of a higher priority message in the other direction.

The sending facility treats the receipt of RVI as a positive acknowledgement to its last transmitted message. The sending facility responds by sending one or more subsequent messages (as established by convention) and goes into the receive mode.

messages.

A system termination which has the functional requirement to receive priority three message sequences (multi-segment transmission of large files) must have the capability to interrupt this low priority sequence in order to transmit priority two messages.

A-4

1

sequent to its issuance of a conversational ly, the NALECOM switcher will attempt to ismit (in proper queue rank) ALL messages in queues for the particular system termination.

101015

NALECOM switcher transmission is replied to he conversational mode by the system termina-, the switcher will (as soon as possible) issue ther conversational reply for any priority one wo messages queued for that termination.

NALECOM switcher will not use the conversaal mode to transmit a priority three message in ponse to a priority one message. This proits the interruption of a flow of incoming priority messages except for the transmission of priority one or two messages.

The usage of the conversational mode by system terminations is defined as being restricted to the transmission of priority one

The Reverse Interrupt sequence of BSC will be implemented within the NALECOM network in the following limited manner:

- 1.3.1 Since the NALECOM switcher can interrupt an incoming message sequence to transmit a message of any priority level via a conversational reply, there is no requirement for generation of a reverse interrupt sequence by the switcher.
- 1.3.2 System Terminations in the process of receiving priority three message sequences will use the RVI command to request the NALECOM switcher to cease transmission as soon as possible, in order to allow priority two message transmission in the other direction.
- 1.3.3 The NALECOM switcher will honor the reverse interrupt request as follows:
  - 1.3.3.1 All queued up priority one and priority two messages for the system termination will be transmitted and an EOT issued.
  - 1.3.3.2 If any priority three messages are queued for output to that termination, a maximum of one block will be transmitted prior to the EOT.
  - 1.3.3.3 After the RVI has been honored and transmission from the System Termination to the NALECOM switcher initiated, the switcher may interrupt the sequence to send a priority one or two message in the conversational mode.

### Input/Output Macro Commands 1.4

The following macro level input/output commands are required for interface with the NALECOM system:

1.4.1 Write Initial Conversational

Writes an ENQ to gain use of the line, and if the response to ENQ is ACK-0, writes message text and reads a response. If the response is message text, the text is read; otherwise the operation is posted complete.

|     | 1.4.2                     | Read Initial                                                                                                   |
|-----|---------------------------|----------------------------------------------------------------------------------------------------------------|
|     |                           | Monitors the li                                                                                                |
|     |                           | response, and                                                                                                  |
|     | 1.4.3                     | Write Reset                                                                                                    |
|     |                           | Writes an EOT                                                                                                  |
|     | 1.4.4                     | Read Continue                                                                                                  |
|     |                           | Writes a positi<br>and reads a mo                                                                              |
|     | 1.4.5                     | Write Continue                                                                                                 |
|     |                           | Used by the sta<br>text and read a<br>the text is read                                                         |
| · • | 1.4.6                     | Read Interrupt                                                                                                 |
|     | 1.4.7                     | Writes a Rever<br>sending compu-<br>stop receiving<br>read text comm<br>messages or a<br><u>Write Wait Ber</u> |
| •   |                           | Writes a WAC<br>order to tempo<br>It may be issue<br>or in response<br>sender.                                 |
|     | 1.4.8                     | Read Repeat                                                                                                    |
|     | · .                       | Writes a NAK                                                                                                   |
| 1.5 | Transp                    | arent Text Inpu                                                                                                |
|     | Th<br>for inte<br>tion of | ne following ma<br>erface with the<br>message trans                                                            |
|     |                           |                                                                                                                |

A-6

### 1200-168

ine for an ENQ from a sender, writes a positive reads the message sequence that follows.

to relinguish use of the line.

ive response to a previously received message essage sequence.

### e Conversational

ation having control of the line to write message a response. If the response is message text, d; otherwise, the operation is posted complete.

rse Interrupt (RVI) sequence to indicate to the ter that the receiver wishes temporarily to message text. The receiver then issues a mand and receives back either additional text in EOT.

### fore Transmit

K sequence to the sender and reads an ENQ, in orarily halt transmission from the sender. ed in place of a Read Continue or Read Repeat to a conversational mode reply from the

to the sender and reads a response.

### ut/Output Macro Commands

cro level input/output commands are required NALECOM system upon operational implementamissions in the transparent text mode.

- 1200-168
- 1.5.1 Write Initial Conversational Transparent

Functions as Write Initial Conversational Command for transparent text transmissions.

### 1.5.2 Write Continue Conversational Transparent

Functions as Write Continue Conversational for transparent text transmissions.

### Communication Control Characters 1.6

### 1.6.1 SYN-Synchronous Idle

This character is used to establish and maintain synchronization and as a time fill in the absence of any data or other control character. Two sync characters are required to precede each message to permit a receiver to establish character phase for a message. To ensure that the SYN SYN (referred to in examples as  $\emptyset\emptyset$ ) will not be transmitted before a receiver within the network is prepared to receive, a leading pad character of the SYN bit pattern will also precede each message transmission within the NALECOM network.

## 1.6.2 Trailing Pad Character

BSC standards specify that a trailing pad character of all ones be added following each transmission, to ensure that the last significant character is sent before the data set transmitter turns off. It is the responsibility of the System Termination to ensure that its transmitter clock is not turned off prior to the final character of the message if the trailing pad convention is not followed.

### 1.6.3 Start of Header and Start of Text Characters

The Start of Header (SOH) Control Character will be the first character of each message transmitted through the NALECOM network. The Start of Text (STX) control character will end the variable length NALECOM header and signify start of actual text.

# are defined in Table A-1.

### 1.7 Transmission Control Sequences

Figures A-1 through A-4 exemplify typical transmission control sequences within the NALECOM network. Figure A-1 includes all control characters contained within each message. Subsequent figures contain only those control characters relevant to the action to be taken on the message.

### NALECOM REGION TO REGION FULL DUPLEX PROTOCOL 2.

The full duplex data link between the NALECOM Eastern and Western switching centers is defined within the scope and procedures of the American National Standard for Advanced Data Communication Control Procedures (ADCCP). The seventh draft of this standard will provide the baseline specification for the full duplex NALECOM data link until such time that it is demonstrated that modification or enhancement of a given procedure will significantly improve the NALECOM network's ability to provide the following capabilities:

- Full transparency and code independence
- Efficient two-way simultaneous operation
- boundaries.

### 2.1 Structure of the Region to Region Data Link

The NALECOM Eastern and Western switching centers comprise a primary/primary link configuration, where each center exercises both primary and secondary link control. The control of data transfer and link error recovery functions is shared between the two centers. Each center acts as primary for information initiated at its own site, and as secondary for information initiated at the other site. As a primary, each center is responsible for initialization, control of data flow, and initiation of error recovery functions

1.6.4 Acceptable control characters within the NALECOM system

Reliability of both system operation and data transfer

Adequate fulfillment of the NALECOM network's functional requirements, security and privacy constraints, or other constraints and

between the links. As a secondary, each center is responsible for executing commands received from the primary, and for responding when instructed by the primary.



The NALECOM regional switching centers will use the procedures defined for primary to primary Class 2-nondeferred response operations.

Commands and responses exchanged between the primary and secondary stations, as well as other message elements used to maintain line control, are defined in the seventh draft of ADCCP.

1 S. . . .

- A.

11



|      | Character | Name                                       | Control State                                                                                         | Message Transfer State                                                  |
|------|-----------|--------------------------------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
|      | ENQ       | Enquiry                                    | Can You Accept<br>Transmission?                                                                       | Between Blocks: Repeat Last<br>Response.                                |
|      | АСК 🖉     | Even Affirma-<br>tive Acknow-<br>ledgement | I can accept<br>transmission.                                                                         | Even Block Received And<br>Validated.                                   |
|      | ACK 1     | Odd Affirma-<br>tive Acknow-<br>ledgement  | None                                                                                                  | Odd Block Received and<br>Validated.                                    |
| A-11 | SOH       | Start of<br>Header                         | Change to Mess-<br>age Transfer<br>state; Start<br>Computing LRC                                      | Treat as data                                                           |
|      | NAK       | Negative<br>Acknowledge-<br>ment           | I cannot accept<br>transmission                                                                       | Block not validated, can accept retransmission                          |
|      | WACK      | Wait Before<br>Transmit                    | Enquire again<br>later; delay<br>transmission<br>until affirmative<br>acknowledgement<br>is received. | Delay transmission until<br>affirmative acknowledgement<br>is received. |
|      | ETX       | End of Text                                | None                                                                                                  | LRC follows                                                             |
|      | EOT       | End of Trans-<br>mission                   | Drop<br>Synchronism                                                                                   | Drop Synchronism                                                        |
|      | L         |                                            |                                                                                                       |                                                                         |

**U** 

Table A-1. Communication control characters



a



Table A-1. Communication control characters (contd)

|      |                     | 1                              |                                 |                                                                                                         |   |
|------|---------------------|--------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------|---|
|      | Character Name      |                                | Control State                   | Message Transfer State                                                                                  | A |
|      | PAD Trailing<br>Pad |                                | Line Turnaround<br>Time         | Line Turnaround Time<br>(Optional on Input Messages)                                                    |   |
|      | SYN                 | Synchronous<br>Idle            | Establish<br>Synchronism        | Establish Synchronism                                                                                   |   |
|      | RVI                 | Reverse<br>Interrupt           | Receiver wishes<br>line control | Block received and validated;<br>end transmission as soon as<br>possible                                |   |
| A_12 | DLE STX             | Start of trans-<br>parent text | None                            | End of Header. Transparent<br>text follows. Ignore control<br>characters unless preceded<br>by DLE CHAR |   |
|      | DLE ETX             | End of trans-<br>parent text   | None                            | CRC follows                                                                                             |   |
|      | STX                 | Start of text                  | None                            | End of header. Text follows.                                                                            |   |



0



























## APPENDIX B

## ASYNCHRONOUS LINE CONVENTIONS

## 8A1 LINE CONVENTIONS

The 8Al discipline described in this section reflects the polling and calling sequences utilized. Incorporated in this are the methods of hand-shaking and message transmission reception.

To initially set up the line for operation and to reinstate the line, the following character sequence will be sent:

DLE (Data Link Escape) 300 Milliseconds of spacing 200 Milliseconds pause EOT (End of Transmission)

Once this data has been transmitted, the line is ready for operation. If the line goes down, NALECOM will send this sequence prior to attempting to send or receive from their terminal.

The diagrams depicting the character control sequences assume that the line has been initiated and is operational.

Once the line is operational the control and message handling functions begin. Table B-1 is a list of the control characters used in the 8A1 line conventions. Table B-2 shows the polling and calling sequences to be used.

There will be no multi-block messages. All messages must begin with an "STX" and end with an "EOT." No lower case letters will be used. All lower case alphabetic characters will be translated to upper case alphabetic characters.



| Character                     | Function                                                                  | Generated By:                      | ASCII<br>Character                        |        | -1-1                                                     |             |
|-------------------------------|---------------------------------------------------------------------------|------------------------------------|-------------------------------------------|--------|----------------------------------------------------------|-------------|
| cknowledgement<br>ACK)        | Indicates "ready to receive" data or ready,<br>but no data to send        | Terminal                           | ZZ (2 alphas)                             |        |                                                          | a<br>Airean |
| all Directing<br>ode (CDC)    | Asks if terminal is ready to receive data                                 | Processor                          | Unique for<br>each terminal<br>(2 alphas) |        |                                                          |             |
| arriage Return                | Moves the carriage to beginning of page                                   | Processor or<br>terminal           | CR                                        |        |                                                          | y           |
| estart Tape                   | Starts up the tape reader after an "STX" and locks out keyboard           | 'Terminal                          | DC1                                       | 120    |                                                          |             |
| elete                         | An unprintable pause character, used after certain control characters     | Processor or<br>terminal           | DEL                                       | 00-168 |                                                          |             |
| ata Link Escape               | Used in a set to initiate or break a line                                 | Processor                          | DLE                                       |        | <b>)</b>                                                 |             |
| nd of Text                    | Used to end a message                                                     | Processor or<br>terminal           | EOT                                       |        | алан (талан)<br>19 — Салан (талан)<br>19 — Салан (талан) |             |
| ine Feed                      | Advances the paper a single line                                          | Processor or<br>terminal           | LF                                        |        |                                                          |             |
| egative Acknow-<br>ent (NACK) | Indicates a "not ready to receive" status,<br>but terminal is operational | Terminal                           | AA (2 alphas)                             |        |                                                          | ۰,          |
| egative Acknow-<br>ent (NACK) | Indicates an alarm condition; terminal is not operational                 | Terminal                           | BEL, BEL<br>(2characters)                 |        |                                                          | ÷           |
| art of Text                   | Indicates start of message                                                | Processor or<br>terminal           | STX                                       |        |                                                          |             |
| ransmitter Start<br>ode (TSC) | Request if a terminal has any data to send                                | Terminal                           | Unique for each<br>terminal (2<br>alphas) |        |                                                          |             |
|                               |                                                                           |                                    |                                           |        |                                                          |             |
| provide provide pro-          |                                                                           | 1 <i>[</i> ] <i>[</i> ] <i>[</i> ] |                                           |        |                                                          |             |
| de (TSC)                      |                                                                           |                                    | terminal (2<br>alphas)                    |        |                                                          |             |

B-2

![](_page_38_Figure_0.jpeg)

1.1

# Table B-2. Receiving messages from stations

| cessor            | Station (ASR 37)                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Z Z               | Operational; no traffic to send                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AA                | Off-line but operational, (i.e.<br>preparing a tape)                                                                                                                                                                                                                                                                                                                                                                                                                   |
| BEL, BEL          | Non-operational, alarm condition, cannot send                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STX, DC1, MSG.EOT | Sends a message. Machine will<br>pause to allow on-line keyboard<br>entry if entry is via paper tape. If<br>no pause is desired, "DC1" should<br>immediately follow "STX." This<br>pertains only to paper tape input.<br>After reception of "EOT" in the<br>message system will return to nor-<br>mal polling/calling sequence. If<br>no response is received within<br>10 seconds, Telecontroller will time<br>out and send an error message back<br>to the terminal. |
| C                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ZZ                | Ready to receive                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A A               | Operational, not ready to receive<br>(i.e. preparing a tape). A light will<br>illuminate in the terminal to notify<br>him a message is trying to be sent.<br>Processor will try for a reasonable<br>period of time (30 secs) before<br>storing message for later and less<br>frequent attempts.                                                                                                                                                                        |
| BEL, BEL          | Non-operational, alarm condition, cannot receive data                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Х, MSG, ЕОТ ———►  | After "ready to receive" characters<br>(ZZ) there will be at least a 3 sec<br>delay before message is sent (motor<br>must be turned on)                                                                                                                                                                                                                                                                                                                                |
| 3                 | After reception of "EOT" in the<br>message, system will return to nor-<br>mal polling/calling sequence.                                                                                                                                                                                                                                                                                                                                                                |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

B-3 NASA - JPL - Coml., L.A., Calif.

![](_page_39_Figure_0.jpeg)

3

43

۲. ۱

**8**5 3 .

END

C.

-----