
6

8/16/83

National Criminal Justice Reference Service

This microfiche was produced from documents received for inclusion in the NCJRS data base. Since NCJRS cannot exercise control over the physical condition of the documents submitted, the individual frame quality will vary. The resolution chart on this frame may be used to evaluate the document quality.

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

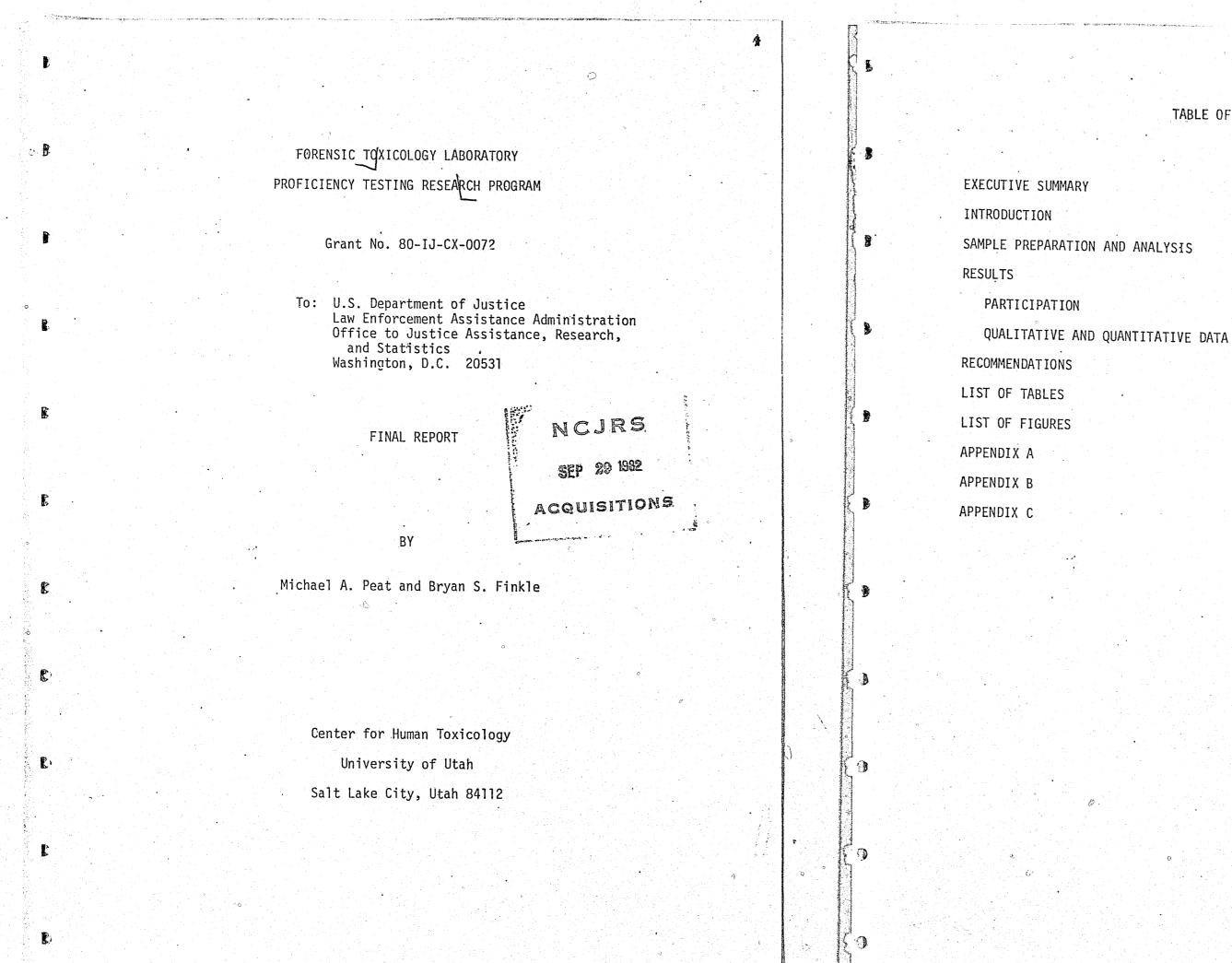
Microfilming procedures used to create this fiche comply with the standards set forth in 41CFR 101-11.504.

Points of view or opinions stated in this document are those of the author(s) and do not represent the official position or policies of the U. S. Department of Justice.

National Institute of Justice United States Department of Justice Washington, D. C. 20531

U.S. Department of Justice National Institute of Justice

This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.


Permission to reproduce this copyrighted material has been granted by

Public	Domain/leaa/	
US Dep	t. of Justice	

to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permission of the copyright owner.

> Report University of Utah

TABLE OF CONTENTS

EXECUTIVE SUMMARY

This study has shown that:

C

£.

Ø,

C.

C

C

S

£

£

£

- A National Proficiency Testing Program in forensic toxicology is feasible. Samples that resemble typical case specimens. were prepared and shipped to approximately 100 laboratories. The response rate varied between 62 and 73%.
- 2. Tissue samples prepared from laboratory animals can be used to simulate those encountered by forensic toxicologists. This has been demonstrated using homogenates containing pentobarbital and methaqualone, and propoxyphene and norpropoxyphene. There was a large coefficient of variation however, for the quantitation of acetaminophen in liver.
- 3. The qualitative data obtained during the course of this study showed a very low incidence of false positives. However there was a small percentage of positive responses for (a) low concentrations of secobarbital and (b) the opiate narcotics (morphine and codeine) in blood, despite the fact that immunoassay procedures are available for screening these particular compounds in blood samples.
- 4. The quantitative determination of drugs and metabolites, other than ethanol, shows wide interlaboratory variation. Although it could have been postulated that this was due to the use of different instrumental techniques, by far the most common technique used was gas liquid chromatography.

- 1 -

5. The Advisory Board feels that the results of this study were encouraging. In particular, this study has shown laboratories are willing to participate in such a proficiency testing program and that satisfactory analytical results were obtained.

- 2 -

30 3 0 N ٢ 3 Ē

Ð

0

0

1

ſ

()

 \bigcirc

O

O

O

 \cap

1

It was the general purpose of the research described in this report to make a nationwide assessment of the current ability of forensic analytical toxicologists to detect, identify and quantitate drugs, their metabolites and other chemical agents in biological specimens for medicolegal purposes. Drugs are by far the most commonly encountered poisons in forensic toxicology cases and, obviously, toxicologists have a key role to play in any investigation which purports to record or interpret drug involvement. These investigations demand technical procedures which are at the forefront of modern analytical capability in order to detect and assay the drugs and metabolites in biological fluids. It was reasonable therefore, that an applied research project be undertaken to evaluate the proficiency of toxicologists to accurately determine these agents in biological fluids. Many forensic toxicologists currently subscribe to other proficiency testing programs, such as clinical toxicology or drug abuse testing. The program described in this report however, was designed to simulate case samples seen in typical forensic toxicology laboratories and included hemolyzed blood and tissue samples. A primary aim of the research project was to evaluate the feasibility and effectiveness of having forensic toxicologists subject themselves to external proficiency testing, leading ultimately to an improvement in the standards of laboratory practice.

INTRODUCTION

- 3 -

In order to replicate typical cases seen in forensic toxicology laboratories the choice of drugs and metabolites chosen to serve as tests, in this one year research program, was conditioned by several important considerations. Firstly, it was not intended to provide test specimens containing unrealistic combinations of drugs or extremely unusual or bizarre compounds. Selection was made after reviewing several annual report prepared by toxicologists and after consultations with the Advisory Board members, leading to the inclusion of drugs that were most commonly encountered by toxicologists. A number of these agents were known to provide some difficulty for the analyst. Secondly, the tests samples should simulate typical case specimens and this was achieved by using whole blood, urine, gastric contents and homogenized tissues. In order to encourage participation an Interim Report was issued after the results of each batch of samples had been received and processed at the Center for Human Toxicology (CHT). This report included the analytical results of the batch of samples that had been previously sent out. Methodology used by the participants and a brief review of methods that have been published in the literature for the analysis of the included drugs and metabolites, together with a statistical analysis of the data, were also included.

This project could not have been completed without the advice and guidance of the Advisory Board. The purpose of this Committee was to provide recommendations for the preparation of samples and the selection of drugs and/or metabolites. The Board consisted of eight members and met three times during the course of the project. The first meeting was

- 4 -

held approximately six weeks after the project start date. At this time the detailed work plan was critiqued and decisions made on the samples to be included in the project. The second meeting was held after the receipt of the first set of results from the participating laboratories and was held solely to evaluate the initial data and to recommend any procedural changes that may have been required. The final meeting was held at the end of the project to review the final report and to approve the recommendations made therein. The Advisory Board consisted of: Michael A. Peat (Chairman) University of Utah, Salt Lake City Members Dr. Randall Baselt University of California, Davis Dr. Leonard Bednarczyk Medical Examiners Dept., Miami Dr. Kurt Dubowski Dr. Patricia Field State Laboratory of Hygiene University of Wisconsin, Madison University of Utah, Salt Lake City Dr. Bryan Finkle Southwestern Institute of Forensic Dr. James Garriott Science, Dallas Office of Chief Medical Examiner, Dr. Arthur McBay Chapel Hill Potential particity in the project were contacted by letter. These people were selected from the membership lists of the American Academy of Forensic Sciences Toxicology Section, National Association of Medical Examiners, the Society of Forensic Toxicologists, the Southwestern Association of Forensic Toxicologists, the California Association of Toxicologists and the Northwestern Association of Forensic Scientists.

- 5 -

()

(

 (\cdot)

1

 $(\mathbf{0})$

0

0

2

2

2

3

邃

躗

1

Ê.

.

University of Oklahoma, Oklahoma City

The letter sent to each potential participant outlined the scope of the proposed study and benefits of participation; and requested their cooperation in the project. A copy of the letter is included in Appendix A. Positive responses were received from 105 laboratories; each State, except Hawaii, was represented in the project.

Two decisions resulted from the first Advisory Board meeting. Concern was expressed among the Advisory Board members regarding the confidentiality of the results, it was therefore unanimously agreed that the participants would be requested to return their results in a "double envelope" (i.e. in a plain white envelope inside a previously addressed envelope) to a disinterested party. The disinterested party would then forward the envelopes containing the results to the Center. This procedure was followed throughout the course of the project. The second decision concerned the number of batches of samples that should be shipped to the participants over a period of approximately nine months; after some discussion it was decided to send four (4) batches of five (5)samples to each participant. Table 1 represents the unaminous opinion of the Board members concerning (a) samples types, (b) drugs to be included and (c) suggested concentrations ranges. Quantitation was requested on samples 1, 2, 4, 7, 8, 9, 11, 12, 13, 14, 16, 17, 19 and 20; the remainder of the samples were to be screened only. This list was followed with one minor exception; because of problems encountered by the participants with sample 13 the content of sample 20 was changed to include morphine, codeine and secobarbital. The Advisory Board agreed that the turn around time of each batch be variable, depending upon the

- 6

difficulty of the test samples. The simpler analyses were to be completed in two weeks and the more difficult ones in three weeks. Together with each batch of samples a report form was issued to the participants. Copies of these report forms are included in Appendix B. These report forms were of the same format throughout the course of the study with one minor change being made after the first batch of. samples. The change consisted of the addition of a column asking for information on the use of internal or external standards.

- 7 -

Ð

B

8

3

8

T

3

浼

()

1

()

()

()

()

 \cap

SAMPLE PREPARATION AND ANALYSIS

ų.

()

-{

()

C

()

 \mathbf{O}

0

()

3

J

3

3

3

3

P

2

The blood and urine samples were prepared by dissolving appropriate amounts of the drugs or salts of the drug in water and then using these solutions to spike bovine blood or human urine. Both the blood and urine had been extensively screened by sensitive analytical procedures prior to the addition of drug or metabolite. Sample 16 (gastric contents) was prepared at CHT by adding an appropriate amount of the pharmaceutical preparation to a simulated gastric contents. Samples 9 and 18 were prepared by treating a population of rats with methaqualone and pentobarbital (sample 9) and propoxyphene and acetaminophen (sample 18) over a thirty day period. The animals were sacrificed, their livers removed, combined and homogenized with water. An aliquot of this homogenate was then shipped to each participant. Samples were shipped to the participants so that they reached the laboratories between twenty four and thirty six hours after shipment. All samples were shipped in glass containers at 4°C.

The samples were analyzed at the Center for Human Toxicology throughout the course of the project to determine the stability of drugs and/or metabolites. After preparation, the samples were stored at -15°C and at regular intervals aliquots were taken and analyzed. Table 2 shows the results of these analyses.

For all analyses performed at CHT, the within-run precision studies had coefficients of variation less than 10%. It is apparent from Table

- 8 -

2 that when these analytes were quantitated over a period of time, the coefficients of variation increased significantly for a number of them. Volatiles were only determined at the time of shipment and during the period of analysis. those samples that were to be screened only were tested qualitatively throughout the project and found to be positive.

If a longer proficiency testing program was to be established it would be inadvisable to prepare a sample batch at day 1, and expect the analyte concentrations to be within 10% of the weighed-in value two years later, for example, without question, further studies are needed to determine the optimum proceduring for stabilizing drug and/or metabolite concentrations in simulated forensic toxicology samples.

- 9 -

RESULTS

PARTICIPATION

The rate of participation for the four batches was one of the most encouraging aspects of this study. Previous attempts at proficiency testing in the forensic toxicology profession on a nationwide basis, by the American Academy of Forensic Sciences, resulted in a 66% response rate when considerably greater periods of time were given to reply. In this study, when the response time was limited to 3 weeks, a similar response rate was achieved on all batches of samples. A 73% response rate was achieved with Batches 1 and 2, a 62% response rate with Batch 3 and a 64% response rate with Batch 4.

QUALITATIVE AND QUANTITATIVE DATA

Although the detailed results, both quantitative and qualitative, are included in Appendix C, for the sake of clarity they have been retabulated in Tables 3 and 4. During the course of the project some drugs were included in different samples at similar concentrations; for example, samples 4 and 20 contained secobarbital, the weighed-in values were 2.5 mg/L and 2.0 mg/L respectively. Codeine and morphine were included in samples 13 and 20, diazepam and nordiazepam in samples 1 and 13, tricyclic antidepressants were included in samples 12, 16, 17, 18 and 19, and ethanol was included at various concentrations in a number of samples. In addition to these quantitative replicates, a number of the samples for which screening only was requested contained drugs with similar chemical characteristics. The qualitative and

- 10 -

	J	
	9.9	
	悆	
1 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3	
	8	
	8	
		· .
	۲	
	Ē	
1		

0

1

0

()

()

 \mathbf{O}

()

0

3

.

Introduction

By far the most common analytical techniques used to screen biological samples for the presence of drugs and metabolites are chromatographic procedures. Most practicing analytical forensic toxicologists use a combination of these procedures to identify the drug, before quantitating the agent in biological fluids. During the past 10 to 15 years gas liquid chromatography (GLC) with a number of detectors, including flame ionization and nitrogen phosphorous detectors, has become the technique of choice for the preliminary identification of drugs in autopsy specimens. These detectors satisfy the sensitivity requirements for the detection of drugs and metabolites in such samples. However, thin layer chromatography (TLC) with a combination of spray reagents is still widely used to screen urine and gastric contents. Together with the development of chromatographic procedures there has been a tremendous advance in the use of immunoassays to screen biological samples for a number of drugs, particularly the drugs of abuse. The enzyme multiplied immunoassays technique (EMIT $^{\mathbb{R}}$, Syva) can be used to screen for morphine and other opiate narcotics, methadone, propoxyphene, cocaine, phencyclidine (PCP) and other drugs of abuse in urine samples. Radioimmunoassay techniques (Abuscreen [®], Roche Diagnostic) are available for screening the drugs of abuse in urine samples, and a number of groups have also used these techniques for

quantitative results will be considered separately.

QUALITATIVE RESULTS

- 11 -

the preliminary identification of drugs in blood.

The qualitative results obtained during the course of this project were satisfactory, with some exceptions. These fall into two categories, those with a significant incidence of false positives reported and those samples in which there was a low rate of positive responses. These will be considered separately.

False Positives

The rate of false positives was particularly low throughout the course of this study with one noteable exception. Sample 12 was a blood sample which contained propoxyphene, norpropoxyphene, doxepin and nordoxepin. Of the 61 laboratories that performed a qualitative identification on this sample only 43% detected doxepin and 21% nordoxepin; of greater concern, however was the fact that eight laboratories reported nortriptyline and seven amitriptyline. Doxepin and its N-demethylated metabolite (nordoxepin), amitriptyline and nortriptyline are all members of the class of drugs known as the tricyclic antidepressants, a group that is becoming more frequently encountered in forensic toxicology cases. Although the history indicated depression less than half of the laboratories responding identified doxepin, and a significant percentage misidentified these drugs as other tricyclic antidepressants. In contrast, 82% of the respondents identified propoxyphene and 69% norpropoxyphene, consistent with a history of abdominal pain. GLC was used by the majority of the participants to screen and quantitate the particular drugs and met-

- 12 -

abolites. For these drugs, this technique should be used with caution when identification is made using a two column system; Pierce et al (1) have reported the following relative retention times (to prazepam) for these compounds on the commonly used OV-17 and OV-1 systems. DRUG NA Propoxyphene Norpropoxyphen Norpropoxyphen Doxepin Amitriptyline Nortriptyline While other techniques could have been used by the participants to positively identify these particular drugs, the most definitive procedure is gas chromatography-mass spectrometry, either in the electron impact or chemical ionization mode. Although doxepin and amitriptyline are both tertiary amines and have base peaks at an m/z of 58, their complete fragmentation pattern in the electron impact mode, results in a positive identification. Use of chemical ionization mass spectrometry, with either methane or methane ammonia as reagent gas, results in the formation of a molecular ion at the corresponding molecular weights. Although a number of forensic toxicology laboratories in this country presently have GC-MS capabilities, these are still in the minority. Other laboratories might consider it beneficial to examine the use of high performance liquid chromatography (HPLC) for positive identification of the tricyclic anti-

1

2

1

R

3

B.

 \bigcirc

()

0

()

 \mathbf{O}

AME	<u>3% 0V-17</u>	<u>3% 0V-1</u>
	0.65	0.69
ne	0.83 (0.85)	0.83 (0.85
ne Amide	0.94	0.94
•	0.71	0.72
	0.67	0.70
	0.70	0.72

- 13 -

depressants; although this technique itself has many problems when these drugs are considered.

Low Percentage of Positive Response

There were a number of samples in which there was a low percent of positive responses (when less than 75% of the participants identified the parent drug) these samples were 4, 6, 10, 12, 13, 15 and 20; they will be considered in numerical order:

Sample 4: Sample 4 was a blood sample which was sent to the participants in the first batch of samples, with the following history:

A 33 year old truck driver was found dead in the cab of his truck. A bottle of what was suspected to be "wood alcohol" was found beside him. The pathologist requested a blood drug screen and quantitation of any drugs detected.

Ethanol (weighed-in value 100 mg/dL), methanol (weighed-in value 50 mg/dL) and secobarbital (weighed-in value 2.5 mg/L) were included in this sample. 97% of the laboratories responding identified ethanol, 92% methanol and only 33% secobarbital. Of the 33% that identified secobarbital 65% used GLC to guantitate the drug. Other techniques that were used to identify secobarbital included ultra violet spectrometry, HPLC and immunoassay techniques. Although the blood concentration of 2.5 mg/L is lower than that expected in toxic situations and therefore customarily encountered in fatal cases, it is higher than that resulting from a single dose of the drug. This concentration should be detectable by GLC with flame ionization detectors (2) immunoassay procedures (3) and HPLC (4).

- 14. -

following history:

(

(

n

()

0

()

()

 \mathbf{O}

L

A.

3

1

8

A 50 year old male with a history of lower back pain and epileptic seizures was found dead at the base of a set of stairs. An autopsy was performed and the medical examiner requested that a urine sample be screened to establish medication history. Do not quantitate any drugs and/or metabolites detected.

This sample contained propoxyphene (weighed-in value 20 mg/L), norpropoxyphene (weighed-in value 20 mg/L) and salicylate (weighed-in value 100 mg/L). Of the 74 laboratories that responded, 96% positively identified propoxyphene and 84% norpropxyphene. By far the commonest procedures used to identify these particular drugs were TLC, GLC and EMIT. Only 38% positively identified salicylate as being present in this sample; however, the concentration chosen for inclusion in this sample approaches the sensitivity limit of the commonly used color test.

following history:

and and

A 25 year old male, on probation for drug abuse, was killed while riding his motorcycle. Cause of death was due to multiple injuries. A urine sample was taken, and a drug screen was requested to establish drug use.

This sample contained cocaine (weighed-in value 20 mg/L), benzoy1ecgonine (weighed-in value 50 mg/L) and dextromethorphan (weighed-in value 2 mg/L). 73 laboratories responded to this sample, of these 92%

positively identified the cocaine and 66% its metabolite; however, only

Sample 6: This was a urine sample included in batch 2 with the

Sample 10: This was a urine sample included in Batch 2 with the

- 15 -

27% reported the presence of dextromethorphan. The laboratories which positively identified dextromethorphan used a combination of thin layer and gas liquid chromatography. Although the concentration of this drug is lower than that expected from a overdose it is reasonable following therapeutic ingestion for cough suppression, it should be detected by those participants who used chromatographic techniques.

Sample 12: This was a blood sample included in Batch 3 with the following history:

A 46 year old male, with a history of abdominal pain and depression was found dead in bed by his daughter. A suicide note and several empty prescription bottles were found. Please screen the blood sample to determine the concentration of any drugs and/or metabolites detected. Cause of death: Pending toxicology.

This was the sample discussed earlier (page 12) in which a significant number of false positives were reported by the respondents.

Sample 13: This was a blood sample included in Batch 3 together with the following history:

A 19 year old female died following a party. One hour before she had been given an injection by her boyfriend who was a known drug abuser. The deceased was known to take minor tranguilizers for anxiety. Please screen the blood sample and determine the concentration of any drugs and/or metabolites detected. Cause of death: Pending toxicology.

This sample contained diazepam (weighed-in value 1.0 mg/L), nordiazepam (weighed-in value 1.5 mg/L), morphine (weighed-in value 0.05 mg/L) and codeine (weighed-in value 0.15 mg/L). Of the 60 laboratories

- 16 -

responding, 90% positively identified diazepam, 73% nordiazepam, and only 25% morphine and codeine. The case history for this sample represents the situation whereby a single dose of narcotic may have been given to the deceased. Baselt (5) has reported that blood morphine concentrations range from 0.01 to 3.0 mg/L in heroin fatalities; the morphine concentration in this particular case is certainly at the low end of this scale. The most suitable screening technique for such low concentrations of narcotics in blood samples in radioimmunoassay. The commercially available I-125 Kit (Abuscreen \mathbb{R} Roche Diagnostic) which is designed to react to morphine, cross-reacts to codeine on approximately a one-to-one basis. Using this particular technique for screening sample 13 the participants would have been able to presumptively identify an opiate narcotic in the blood; in fact one laboratory reported an opiate positive by RIA. It is strongly recommended that those laboratories, with access to a gamma counter, consider using RIA screening procedures for certain drugs in blood samples. This point is emphasized again when sample 20 is considered.

3

3

3

3

2

T.

æ

\$

()

C

 \cap

()

Sample 15: This was a urine sample included in Batch 3 with the following history: A 56 year old female with a history of mental illness was killed in an automobile accident. An autopsy was performed and the medical examiner requested that the urine sample be screened to establish drug use. Do not quantitate any drugs and/or metabolites detected. Do not screen for volatiles. This sample contained meprobamate (weighed-in value 75 mg/L), imipramine

- 17 -

(weighed-in value 2 mg/L) and designamine (weighed-in value 3 mg/L). Of the 61 laboratories who responded to this sample, 87% and 75% respectively identified imipramine and desipramine. However, only 56% identified the sedative hypnotic drug meprobamate. Although this drug may not be widely used in certain areas of this country, it is an agent with which the forensic toxicologist has had considerable experience. This drug itself is susceptible to thermal decomposition in the injection port of a gas chromatography, for this reason it is more reliable to use TLC as a screening technique. Furfural: hydrochloric acid can be used as a selective spray reagent for the detection of carbamates. It is noteworthy that the identification of imipramine and desipramine, two other examples of tricyclic antidepressants, did not cause any problem to the participants in this sample.

Sample 20: This was a blood sample that was included in Batch 4, the history was as follows:

A young man was brought comatose to a hospital ER by friends but died very quickly afterwards. He had a long history of multiple drug abuse, including opiate narcotics, and there were recent "track marks" noted at autopsy. Please screen the blood sample for drugs and quantitate any drugs and/or metabolites detected.

This sample contained secobarbital (weighed-in value 2.0 mg/L), morphine (weighed-in value 0.5 mg/L) and codeine (weighed-in value 0.2 mg/L). Of the 54 laboratories responding 44% positively identified secobarbital, 57% morphine and 31% codeine. Although this history may be considered typical of cases seen from continued drug abuse, and the drugs included in the sample representative of those

- 18 -

encountered on the street, less than half of the 54 laboratories replying identified secobarbital and codeine, and only 57% positively identified morphine. There was however, a significant increase in the number of laboratories who positively identified secobarbital when compared to sample 4; in that sample only 33% positively identified this barbiturate. Morphine was included at a concentration approximately ten fold greater than that added to sample 13, this resulted in an increase in the number of positive responses (57% compared to 25% for sample 13). The comments, however concerning the most suitable method for screening opiate narcotics in blood samples still apply.

Metabolite Analysis

 \mathbf{O}

()

Ó

3

ð

T

瀺

T

8

A number of the samples included metabolites of parent drugs. The majority of these metabolites were N-dealkylated products of the parent drug and are considered to be pharmacologically active. It must also be remembered that a number of them, for example nordiazepam and nortriptyline, are available as therapeutic agents alone. Table 5 shows the results of the qualitative metabolite analysis; the data has been tabulated as a ratio of the percent positive responses of the parent to the percent positive responses of the metabolite. Only one case (sample 3) was this ratio unity. In some cases this ratio was greater than two. These metabolites may also aid in the qualitative identification of a particular therapeutic agent. It is also important to quantitate these pharmacologically active metabolites.

- 19 -

Although a number of the metabolites are available from commercial sources, for example methadone metabolite and benzoylecgonize can be purchased from Applied Science Incorporated and others can be obtained from pharmaceutical companies; some of them may only be obtainable by chemical synthesis.

From these qualitative data there are two major areas of concern. Firstly, the identification of opiate narcotics in blood samples and secondly, the identification of low concentrations of barbiturates. It is interesting to note that sample 8, a blood sample containing pentobarbital (weighed-in value 10 mg/L) caused little problem to the participants with 80% of the 70 laboratories responding positively identifying the barbiturate. This blood concentration of barbiturate is of course more typical of those encountered in fatal cases.

QUANTITATIVE DATA

As with the initial screening results the most common analytical techniques used for quantitation are chromatographic ones. During the project an attempt was made to evaluate whether there was a statistical difference between those results obtained using internal standards and those obtained by other procedures, such as external standards. In the laboratories of the Advisory Board members an internal standard is one that is added prior to the initial step in any extraction and separation procedure. Of the laboratories that indicated they quantitated drugs and/or metabolites by chromatographic techniques, the majority stated

- 20 -

State of the second	1								
The second s	ini ya mara na				+h-	* * *			
Contraction of the	-							erfor	
Contraction of the local distance of the loc	\$							abora	
- A - A - A - A - A - A - A - A - A - A	-							ample	
all and a second second second								quan	
A Constraints					sta	ndaro	1.	There	W
Contraction of the second s					who	used	l ot	her p	ro
The second second					sta	tisti	ica]	ly va	1i
June	3				in	quant	ita	tive	pro
and a strength					The	hist	ogra	ams fo	or
In data the second	1				38.	The	se ł	nisto	gra
Sector Sector Sector					no	stati	stic	al d	iff
alian di mana d					pro	cedur	es,	such	as
and the state of t	¢.)				are	obvi	ous	from	st
Winness Comments			•			1.	The	quan	iti
بالكيماح تكالاتها المعارك المالية							ori	ly in	n a
ATANK STONE AND AND	3						dat	a obt	ai
New york Proposition and an orthogonal to a						sami Nume		WEI VALU	
	•					.'	l		5
	9	•				2) -		30
				•		4	i File		10
						. 7	21 1		8
514	D					17	•		8
		4			-	2.	The	quant	
								unol,	
ACC N	0							cient	
				•				s rent	
	•								,
6.5									-

0

(

()

()

0

med such analyses using internal standards, for example, tories who quantitated methaqualone by gas chromato-8, 38 used an internal standard and of the 41 labortitated propoxyphene in sample 12, 35 used an internal was not therefore sufficient number of laboratories, rocedures, for comparitive purposes to arrive at a id conclusion concerning the use of internal standards procedures.

r quantitative examinations are shown in Figures 1 to rams represent the total quantitative data, there being fference in standard deviation and mean when individual as GLC or HPLC were considered. A number of points studying these figures:

titation of blood ethanol was performed satisfactall cases. The following is a tabulation of the ained by the responding laboratories.

HED-IN (mg/dL)	NO. OF _LABS.	MEAN (mg/dL)	<u>C.V. %</u>
50	70 (95%)	53	21
300	74 (100%)	281	11
00	71 (97%)	102	21
80	69 (95%)	82	10
80	57 (88%)	78	10

itation of drugs and metabolites, other than was not as satisfactory. In general, the coof variations were large and no improvement

		Č.		
			. Elizar - mire	17 wherea
	was seen throughout the course of the study. Three par-		s and a second se	
	ticular examples will demonstrate this:	0	8	from samp
	a. The quantitation of diazepam and nordiazepam in samples		a mangada ang ang ang ang ang ang ang ang ang an	there was
	1 and 13. The data obtained by the participants is		and the second secon	17 from b
	tabluated below:	0	**************************************	sample in
SAMPLE NUMBER	WEIGHED-IN NUMBER OF DRUG VALUE (mg/L) LABS. MEAN (mg/L) C.V.% RANGE (mg/L)			Darvocet
1	Diazepam 1.0 55 (74%) 1.2 48 0.3 - 3.5		A CONTRACTOR OF	quantitat
13	1.0 50 (83%) 1.04 48 0.2 - 2.6	0	3	number of
1	Nordiazepam 1.5 35 (47%) 1.5 35 0.68 - 3.3			c. Secobarbi
13	1.5 38 (63%) 1.49 50 0.3 - 3.5		sort and a first state	below:
		0	3	SAMPLE Number Drug V
	The coefficient of variation for diazepam in sample 13 is			4 Secobarbital
•	the same as that for sample 1 although the mean was nearer		a benerative state	20
	the weighed-in value. The coefficient of variation for the		()	The coeff
	quantitation of nordiazepam in sample 13 was higher than			The coeff
	that in sample 1.		a anna an tha ann an th	similar.
	b. Propoxyphene and norpropoxyphene in sample 12 and 17. The	\odot	¢.	
))))	data are tabulated below:			Two samples, 9 and 18,
SAMPLE NUMBER	WEIGHED-INNUMBER OFDRUGVALUE (mg/L)LABS.MEAN (mg/L)C.V.%RANGE (mg/L)		an manana ang taon ang	rat liver. Sample 9 w
12	Propoxyphene 5 42 (69%) 4.63 43 0.8 - 10	\sim		methaqualone metabolit
17	5 60 (92%) 4.7 46 0.4 - 10.2			contained propoxyphene
12	Norpropoxyphene 4 $36 + (59\%)$ 4.29 63 0.2 - 11			In general the coeffic
17	4 50 (76%) 4.9 71 0.2 - 13.8	0		mination of these drug
đ			•	the same analyses in b
	These results are similar to those obtained for diazepam			in liver is considered
	and nordiazepam, the coefficient of variation for pro-	0		of variation over that
	poxyphene being approximately the same for samples 12 and			
	\mathbf{x}_{1} and \mathbf{x}_{2} is the second sec		n na	
	- 22 -	0	and the second sec	
	그는 것 같은 것 같		1 1 1 1 1	

as that for the normetabolite increased slightly ple 12 to 17. It is interesting to note that a greater percent positive response for sample both parent and metabolite; the history for this ndicated that the deceased had been prescribed $^{\ensuremath{\mathbb{R}}}$. However, the coefficient of variations for tion were similar, although an increasing f laboratories responded.

ital in samples 4 and 20. The data are tabulated

	WEIGHED-IN VALUE (mg/L)	NUM	BER OF ABS.	MEAN (mg/L)	<u>C.V.%</u>	RANGE (mg/L)
ta]	2.5	23	(32%)	2.1	48	0.15 - 5
	2.0	24	(44%)	2.4	43	1 - 4.4
oef	ficients of	vari	ation f	or samples 4	and 20	were

were aliquots of a liver homogenate prepared from was a liver homogenate that contained methaqualone, te 1 and pentobarbital and sample 18 was one that e, norpropoxyphene, acetaminophen and ethanol. cients of variation for the quantitative detergs in liver homogenate were similar to those for blood. However, when the analysis of acetaminophen there is a noticeable increase in the coefficient obtained from the analysis of blood. For blood

- 23 -

the coefficient of variation was found to be 32%, whereas that for liver was 133%. The reason for this is unknown, and the phenomenon warrants further investigation.

In addition to ethanol and other drugs and their metabolites, two blood samples were also partially saturated with carbon monoxide. The percent saturation of carboxyhemoglobin in sample 2 was 60% and that in sample 14 was 30%. The coefficient of variation for the sample 60% saturated was 20% and that for the other sample was 38%. It is difficult to explain this increase in the coefficient of variation when both samples contained significant amounts of carboxyhemoglobin. It is noticeable that the use of a CO-Oximeter in sample 14 resulted in a coefficient of variation of 38% whereas the same technique had a coefficient of variation of 11% in sample 2.

These particular examples demonstrate the considerable interlaboratory variation for quantitation. Comparison with other proficiency testing programs, particularly the College of American Pathologists Toxicology Proficiency Program, however are illuminating. When chromatographic techniques are used by participants in these proficiency testing programs coefficients of variation similar to those seen in this study are observed. For example, a serum sample containing 1 mg/L of propoxyphene and norpropoxyphene was analyzed in 1981. The coefficients of variation for quantitation by GLC were 49 and 64% respectively. It is true however, that much lower coefficients of variation are obtained in these programs when techniques, such as EMIT, are used for quantitating

drugs in	plasma sa
immunoas	say techni
or serum	samples a
a an	
RECOMMEN	DATIONS
The Advi	sory Board
recommen	dations to
1.	That a co
	this one,
	evaluatio
2.	This cont
	less than
	case samp
	that a co
	remain an
	ments in
	also have
ţ.	bias the
	attempt t
	would inc
	sibly inc
	be includ
	is the un
	present f
	organized
	with the
	\$

Ĉ

()

()

13

n

 \mathbf{O}

0

7

1

Ð

1 B

- 24 -

amples. It must be remembered however that such iques are applicable only to the analysis of plasma and not the analysis of hemolyzed blood samples.

d and the Principal Investigators made the following the National Institute of Justice: ontinuing proficiency testing program, similar to be established to form the basis of a continuing on of performance in analytical forensic toxicology. inuing program should be for a time period of not 3 years, to include samples that replicate typical ples seen in forensic toxicology laboratories and ding system be introduced by which laboratories nonymous, but which could also be used to note improvea laboratory performance. This coding system would the advantage of observing whether particular results total data to the low or high end. This program would to include all forensic toxicology laboratories, it clude agents other than drugs or metabolites and posclude non-biological samples (for example a sample may led that would replicate contents of a syringe). It nanimous recommendation of the Advisory Board that the format should be continued; i.e. the program should be and administered by practicing forensic toxicologists advice and guidance of an Advisory Board consisting

- 25 -

of respected members of the profession.

- 3. An educational program be established to operate on a nationwide basis. This program would have several aspects to it, including the establishment of workshops, literature reviews and surveys and an analytical toxicology training program. Reference materials and methodologies used by the laboratory of the Principal Investigator would be made available upon request. In addition, consultant assistance would be available to the participants.
- 4. There is a need to evaluate modern analytical procedures for their application in forensic toxicology. These evaluations should be undertaken by qualified forensic toxicologists and will be made available in published reports to practicing toxicologists. This program would offer advice and guidance on analytical procedures to be used for the determination of drugs, their metabolites and other agents in biological fluids. The establishment of such a laboratory within the Forensic Science Service in the United Kingdom has been a success.
- National Institute of Justice consider establishing a program by which metabolites of parent drugs be made available to practicing forensic toxicologists.
- The Advisory Board recommends that the National Institute of Justice or other government agencies make this final report available for distribution.

- 26 -

Table 1: Drugs and Samples Included in the Project.
Table 2: Stability Studies in Samples (for Quantitation).
Table 3: Results of Qualitative Analyses.
Table 4: Results of Quantitative Analyses.
Table 5: Metabolite Analyses (Qualitative).

2

3

R

2

3

2

£

Æ,

G

0

LIST OF TABLES

atch #	Sample #	Sample	<u>Drug</u>	Concentration	Q	3	<u>Batch #</u>	Sample #	<u>Sample</u>	Drug	Concentratio
Ĩ	1 2	Blood	Diazepam Nordiazepam Ethanol	1.0 mg/L 1.5 mg/L 0.05 mg/dL				13	Blood	Diazepam Nordiazepam Morphine Codeine	1.0 mg/L 1.5 mg/L 0.05 mg/L 0.15 mg/L
	4	Blood	Carboxyhemoglobin Amitriptyline Nortriptyline Ethanol	60% 0.5 mg/L 0.75 mg/L 0.3 mg/dL	•• O •• •		α 1	14	Blood	Phenobarbital Carboxyhemoglobin	20.0 mg/L 30%
	3 (Paired with #2)	Urine	Ethanol Amitriptyline Nortriptyline	0.4 mg/dL 2.0 mg/L 3.0 mg/L	C	69		15	Urine	Meprobamate Imipramine Desipramine	75.0 mg/L 2.0 mg/L 3.0 mg/L
	4	Blood	Ethanol Methanol Secobarbital	0.1 mg/dL 0.05 mg/dL 2.0 mg/L		\$	IV	16	Blood	Propoxyphene Norpropoxyphene Ethanol	325.0 mg/L 0.1 mg/dL
	5	Urine	Morphine Methadone Methadone Metabolite	2.0 mg/L 5.0 mg/L 10.0 mg/L				17 (Matched with #16,	Liver	Acetaminophen Propoxyphene Norpropoxyphene Ethanol	100.0 mg/L
II	6	Urine	Propoxyphene Norpropoxyphene Salicylate	20.0 mg/L 30.0 mg/L 100.0 mg/L	Û	()		18, 19) 18 (Matched	Urine	Acetaminophen Propoxyphene Norpropoxyphene	
	7	Blood	Ethanol Flurazepam Desalkylflurazepam	0.1 mg/dL 0.8 mg/L 0.5 mg/L	0	Ø		with #16, 17, 19) 19	Gastric	Ethanol Acetaminophen Propoxyphene	0.13 mg/dL 250.0 mg/L 10.0 mg/L
	8	Blood ·	Methaqualone Metabolite I Pentobarbital	15.0 mg/L 25.0 mg/L 10.0 mg/L				(Matched with #16- 18)		Norpropoxyphene Ethanol Acetaminophen	25.0 mg/L 100.0 mg/dL 500.0 mg/L
	9 (Paired with #8)	Liver	Methaqualone Metabolite I Pentobarbital		Ó			20	Blood	Ethanol Methanol Secobarbital	0.1 mg/dL 0.05 mg/dL 2.0 mg/L
	10	Urine	Cocaine Benzoylecgonine Dextromethorphan	20.0 mg/L 50.0 mg/L 2.0 mg/L	0	0					
[]]	11	Blood	Salicylate	300.0 mg/L							
	12 10 10 10 10 10 10 10 10 10 10 10 10 10	Blood	Propoxyphene Norpropoxyphene Doxepin Nordoxepin	5.0 mg/L 4.0 mg/L 0.4 mg/L 0.6 mg/L	0	0				<i>I</i> •	

•

			2010 - 100 -	æ										
2 - 2 - 2 - 2 - 2 - 2 - 2								2010) 1910 1910 - 1910 1910 - 1910	3					
يونون ميسم. د	an a						· ····································	e - Le proprieta de la composición - Le composición de la composición de la - Le composición de la					Contract 7.5	
			4 418											
•			n an the second seco Second second second Second second											
	Table 2: S	tability Studies in	Samples for Ou	antitation			(()							
	iubic 2. <u>5</u>	Capitily Stuties in								•				
							ANALYT	ICAL RES	SULTS					
	SAMPLE NO.	<u>DRUG</u>	WEIGHED-IN VALUE	ANALYTICAL METHOD ¹	PERIOD OF ANALYSIS (MTHS) ²	NO. OF ANALYSES	MEAN	<u>S.D.</u>	C.V.%	RANGE				
n. Ar	1-Blood	Diazepam	1.0 mg/L	GC-MS & GC-ECD	8	13	0.98	0.16	16.8	0.65-1.2				· · ·
		Nordiazepam	1.5 mg/L	GC-MS & GC-ECD	8	13	1.49	0.13	8.6	1.37-1.71		5 2		
		Ethanol	ο 50 mg/L	GC-FID		1 2	46							
	2-Blood	Carboxyhemoglobin	60%	UV	8		60	4.10	6.9	55-66				
30		Amitriptyline	0.50 mg/L	GC-MS & GC-NPD	8	5	0.46	0.04	8.6	0.41-0.5				
· 1		Nortriptyline	0.75 mg/L	GC-MS & GC-NPD	8	5	0.66	0.12	17.7	0.55-0.8				
t gi s		Ethanol	300 mg/dL	GC-FID		2	230			and an ann an Arland. 1980 - Charles Anna Arland. 1981 - Anna Arland.				
	3-Urine	Ethano1	400 mg/dL	GC-FID			324							•
		Amitriptyline	2.0 mg/L	GC-MS & GC-NPD	8	5	2.23	0.14	6.3	2.03-2.38				
		Nortriptyline	3.0 mg/L	GC-MS & GC-NPD	8	5		0.28	9.5	2.5-3.25				
		Ethanol	100 mg/dL	GC-FID		2	87							
ų	•	Methanol	50 mg/dL	GC-FID		2	60	A A						
		Secobarbital	2.5 mg/dL	GC-MS & HPLC	8	10	2.24	0.30	13.6	1.9-2.7				
9	0	o (ຈ ດໍ	0	0	0	•	3	0)				
			<i>a</i>	a	•				2	A				
			Â			9					0			
					(<u>ه</u>					a 		
							0		39-					
							0							
				ſ				Ĵ.						0
		and the second	1999 - N. 1997 - 19 97 - 1997 - 1997	ta series a transformation de la composición de la composición de la composición de la composición de la compos	and the second states of the states of		an a							h tha an an

X

- 4

a

C

Ċ

C

C

ويسكن

0

Э

Ð

Ð

•							ΔΝΔΙ ΥΤ	ICAL RE	- 27 1112	*
		•		\$		°.	ANALII	TUAL NE	<u>30L13</u>	
SAMPLE NO.	DRUG	WEIGHEI VALUE		ANALYTICAL METHOD ¹	PERIOD OF ANALYSIS (MTHS) ²	NO. OF ANALYSES	MEAN	<u>s.d</u> .	<u>C.V.%</u>	RANGE
7-Blood	Ethano1	100	mg/dL	GC-FID		2	83		•• 	
	Flurazepam	0.80	my/L	GC-MS & GC-ECD	5	12	0.91	0.14	15.9	0.7-1.1
	Desalkylflurazepam	0.50	mg/L	GC-MS & GC-ECD	5	12	0.58	0.08	12.9	0.5-0.7
8-Blood	Methaqualone	15	mg/L	HPLC	5	.9	11.90	1.10	9.30	10.6-13
	Metabolite I	7.0	mg/L	HPLC	5.	6	4.70	0.60	12.30	4.1-5.6
	Pentobarbital	10	mg/L	HPLC	5	7	7.00	0.80	10.90	6.1-7.8
9-Liver	Methaqualone			HPLC	5	8	8.10	1.30	15.70	6.2-10.
	Metabolite I	•		HPLC	5	6	4.40	1.40	32.30	3.1-5.9
	Pentobarbital	9		HPLC	. 5	6	39.20	29.10	29.10	29-57
1-Blood	Salicylate ·	300	mg/L	Colorimetric	2.5 ·	5	302	18.20	6.0	279-328
2-Blood	Propoxyphene	5.0	mg/L	GC-NPD &	2.5	9	5.20	0.80	15.20	4.3-6.9
	Norpropoxyphene	4.0	mg/L	GC-NPD & GC-MS	2.5	7	4.30	0.40	8.60	3.9-5.0
	Doxepin	0.40	mg/L	GC-MS	2.5	8	0.55	0.12	22.50	0.36-0.
	Nordoxepin	0.60	mg/L	GC-MS	2.5	8	0.93	0.36	38.30	0.55-1.

٩

3

				•		A	NALYTICA	L RESU	LTS	
	SAMPLE NO.	DRUG	WEIGHED-IN VALUE	ANALYTICAL METHOD	PERIOD OF ANALYSIS (MTHS) ²	NO. OF ANANLYSES	MEAN	<u>s.D</u> .	<u>C.V.%</u>	RANGE
	13-Blood	Diazepam	1.0 mg/L	GC-ECD	2.5	6	0.94	0.05	4.8	0.87-1.0
		Nordiazepam	1.5 mg/L	GC-ECD	2.5	6	1.43	0.08	5.7	1.3-1.5
		Morphine	0.05 mg/L	GC-MS	2.5	4	0.058	0.005	8.7	0.05-0.06
		Codeine	0.15 mg/L	GC-MS	2.5	4	0.20	0	0	0.2
O	14-Blood	Phenobarbital	20 mg/L	HPLC	2.5	8	18.40	2.10	11.8	15.8-21.0
- 32		Carboxyhemoglobin	30%	UV	2.5	6	28.60	2.90	10.10	25-33
1	16-Gastric	Propoxyphene	325 mg	GC-NPD	1	3	378		8.0	
	Contents	Acetaminophen	3250 mg (HPLC	1	8	2795	131	11.7	2462.5-3402.5
·.	· · · · · · · · · · · · · · · · · · ·	Ethanol	150 mg/d	GC-FID		2	160			
	17-Blood	Propoxyphene	5.0 mg/L	GCNPD	1	3	8.20		8.0	
		Norpropoxyphene	4.0 mg/L	GC-NPD	1	3	3.0		15.0	
		Acetaminophen	200 mg/L	HPLC	1	9	139	46	32.9	77.6-206.2
		Ethanol	80 mg/dL	GC-FID		2	77			
	18-Liver	Propoxyphene		GC-NPD	1	3	86		8.0	
		Norpropoxyphene		GC-NPD	• 1	3	12		15.0	
	- -	Acetaminophen		HPLC	1	8	23.85	9.90	41.4	12.6-35.0
		Ethanol		GC-FID		2	80			
	6						na stanta Na kanga			
						•			4. 4.	
				en de la construction de la construcción de la construcción de la construcción de la construcción de la constru Construcción de la construcción de l						

0

0

 \sim

i.

0

3

Table 2: Stability Studies in Samples for Quantitation (cont.)

Õ

Ō

CI

0.

an internet is been the	anny fan territor de la fan de	and the second	-	a nagawa nagazi wa kata mangane wakang mata k	و مړې ورو د د درو و د مور و د و معرف د او د رس مرود و مروو	א אייני בריי המאוג ערי נפר צבי הריבה איירא איי		The second s	ב למספר המשובר היה היה היה היה היה אי היה היה היה היה	
C		C		C	6. s	Ō	,	3	<u>.</u>	S
	•				an a					

Table 2: Stability Studies in Samples for Quantitation (cont.)

						н . Ф.				•
							ANALYT	ICAL RES	ULTS	
	SAMPLE NO.	DRUG	WEIGHED-IN VALUE	ANALYTICAL METHOD	PERIOD OF ANALYSIS (MTHS) ²	NO. OF ANALYSES	MEAN	<u>S.D</u> .	C.V.%	RANGE
	19-Urine	Propoxyphene	10 mg/L	GC-NPD	1	3	17.0		8.0	
		Norpropoxyphene	25 mg/L	GC-NPD	1	3	23.0		15.0	
		Acetaminophen	500 mg/L	HPLC	* 1	5	683	55.10	8.10	629-749
e.		Ethano1	100 mg/L	GC-FID			93			
	20-Blood	Secobarbital	2.0 mg/L	HPLC	1	6	1.8	0.10	5.60	1.7-1.9
ယ္လ		Morphine	0.50 mg/L	GC-MS	· · · ·]	6	0.55	0.06	9.90	0.51-0.63
1		Codeine	0.20 mg/L	GC-MS	Ţ	6	0.26	0.01	5.60	0.24-0.28
	•									

D

9

Э

33

¹GC-MS Gas chromatography-chemical ionization mass spectrometry

5

GC-ECD Gas chromatography-electron capture detection

GC-NPD Gas chromatography-nitrogen phosphorous detection

GC-FID Gas chromatography-flame ionization detection

²Period between first and last analysis

Table 3: <u>Quali</u>	tative Analyses					Table 3: Qual	litative Analyses (cont.	() () () () () () () () () ()	
Sample #	Analytes Present	Weighed-In Value	<u>% Positive Responses</u>	0		<u>Sample #</u>	Analytes Present	Weighed-In Value	<u>% Positive Responses</u>
	Ethanol Diazepam Nordiazepam	50.00 mg/dL 1.00 mg/L 1.50 mg/L	95 (70/74) 84 (62/74) 68 (50/74)	0		10-Urine	Cocaine Benzoylecgonine Dextromethorphan	20.00 mg/L 50.00 mg/L 2.00 mg/L	92 (67/73) 66 (48/73) 27 (20/73)
	Ethanol Carboxyhemoglobin Amitriptyline	300.00 mg/dL 60 % Saturation 0.50 mg/L	100 (74/74) 97 (72/74) 76 (56/74)			11-Blood 12-Blood	Salicylic Acid Propoxyphene	300.00 mg/L 5.00 mg/L	98 (60/62) 82 (60/62)
	Nortriptyline Amitriptyline Nortriptyline	0.75 mg/L 2.00 mg/L 3.00 mg/L	66 (49/74) 80 (59/74) 80 (59/74)				Norpropoxyphene Doxepin Nordoxepin	4.00 mg/L 0.40 mg/L 0.60 mg/L	69 (42/61) 43 (26/61) 21 (13/61)
4-Blood	Ethanol Methanol Secobarbital	100.00 mg/dL 50.00 mg/dL 2.50 mg/L	97 (71/73) 92 (67/73) 33 (24/73)			13-Blood	Diazepam Nordiazepam Morphine Codeine	1.00 mg/L 1.50 mg/L 0.05 mg/L 0.15 mg/L	90 (54/60) 73 (44/60) 25 (15/60) 25 (15/60)
5-Urine	Morphine Methadone Methadone Metabolite	2.00 mg/L 5.00 mg/L 10.00 mg/L	88 (65/74) 96 (71/74) 68 (50/74)			14-Blood 15-Urine	Phenobarbital Carboxyhemoglobin	20.00 mg/L 30% Saturation	98 (62/63) 91 (57/63)
6-Urine	Propoxyphene Norpropoxyphene Salicylate	20.00 mg/L 30.00 mg/L 100.00 mg/L	88 (65/74) 84 (62/74) 38 (28/74)	0			Meprobamate Imipramine Desipramine	75.00 mg/L 2.00 mg/L 3.00 mg/L	56 (34/61) 87 (53/61) 75 (46/61)
7-Blood	Ethanol Flurazepam Desalkylflurazepam	80.00 mg/dL 0.80 mg/L 0.50 mg/L。	95 (69/73) 84 (61/73) 45 (33/73)			16-Gastric Contents	Propoxyphene Acetaminophen Ethanol	325.00 mg total 3250.00 mg total 150.00 mg/dL	69 (45/65) 49 (32/65) 26 (17/65)
8-Blood	Methaqualone Methaqualone Metabolite Pentobarbital	15.00 mg/L 7.00 mg/L 10.00 mg/L	89 (62/70) 41 (29/70) 80 (56/70)	6		17-Blood	Propoxyphene Norpropoxyphene Acetaminophen Ethanol	5.00 mg/L 4.00 mg/L 200.00 mg/L 80.00 mg/dL	92 (60/65) 77 (50/65) 75 (49/65) 88 (57/65)
9-Liver Homogenate	Methaqualone Methaqualone Metabolite Pentobarbital	2	84 (57/68) 34 (23/68) 76 (52/68)	0		18-Liver Homogenate	Propoxyphene Norpropoxyphene Acetaminophen Ethanol	150.00 mg/dL	77 (48/62) 61 (38/62) 48 (30/62) 24 (15/62)
				2	N				

Q

2

t m o

.

.

- 35 -

	9 						ini (1758) in the second					n in the second seco	·····	
	∘ Table 3: Qu	alitative Appluance (acet)		с С	Q.			Table 4:	Quantitative Analyses					
a	<u>Sample #</u>	<u>alitative Analyses</u> (cont.) <u>Analytes Present</u>	Weighed-In Value	% Positive Responses	0			<u>SAMPLE #</u>	ANALYTE/METHOD	<u># LABS</u>	MEAN	<u>S.D.</u>	<u>C.V.%</u>	RANGE
	19-Urine 20-Blood	Propoxyphene Norpropoxyphene Acetaminophen Ethanol Secobarbital Morphine Codeine	10.00 mg/L 25.00 mg/L 500.00 mg/L 100.00 mg/dL 2.00 mg/L 0.50 mg/L 0.20 mg/L	54 (35/65) 48 (31/65) 43 (28/65) 48 (31/65) 44 (24/54) 57 (31/54) 31 (17/54)	¢			1-Blood	<u>Ethanol</u> (mg/dL) All Methods Gas Chromatography Gas Chromatography Internal Standard Enzymatic <u>Diazepam</u> (mg/dL) All Methods Gas Chromatography Gas Chromatography	77 70 46 3 55 46 30	53 54 55 35 1.2 1.1 1.1	11 10 8 0.57 0.61 0.56	21 19 15 8 55 51	20-90 20-90 30-71 31-46 0.3-3.3 0.3-3.3 0.45-3.1
					(L1				Internal Standard High Pressure Liquid Chromatography	5	1.1			0.9-1.3
					D				<u>Nordiazepam</u> (mg/L) All Methods Gas Chromatography Gas Chromatography Internal Standard High Pressure Liquid	35 32 26 3	1.5 1.4 1.5 2.0	0.53 0.52 0.36	35 37 24	0.68-3.3 0.68-3.3 0.92-2.51 1.71-2.2
					Ċ	69 6		2-Blood	Chromatography <u>Ethanol</u> (mg/dL)					
	0				Q				All Methods Gas Chromatography Gas Chromatography Internal Standard	74 70 46	281 281 283	30 30 29	11 11 10,	170-360 170-360 170-360
					0				Enzymatic <u>Carboxyhemoglobin</u> (% s All Methods Co-Oximeter	4 at.) 71 17	277 60 63	12 7	20 11	250-295 20-85 50.3-81.8
	4	0			0		4		Spectrophotometry Diffusion/Palladium Chloride Gas Ghromatography	26 15 6	61 56 58	11 17	18 30	35-85 20-75 34.5-72
	a	- 30	5 -		0					- 37 -				
°	8)											ų.	Q	

				n a bhairte An t-sta			O			
Table 4: <u>(</u>	Quantitative Analyses (c	cont.)							Table 4:	<u>Quantitative</u>
<u>SAMPLE #</u>	ANALYTE/METHOD	# LABS	MEAN	<u>S.D.</u>	<u>C.V.%</u>	RANGE	\mathbf{O}		<u>SAMPLE #</u>	ANALYTE/ME
	Amitriptyline (mg/L)			0 0					7-Blood	<u>Ethanol</u> (m
479	All Methods	49	0.51	0.25	49	0.07-1.4			2	Gas Chroma
	Gas Chromatography	38	0.51	0.27	53	0.07-1.4	o		n de la companya de La companya de la comp	Internal
	Gas Chromatography Internal Standard	21	0.49	0.25	51	0.1-1.4				Enzymatic
	High Pressure Liquid	8	0.45	a		0.2-0.67		an a	e	Flurazepam
	Chromatography						0			All Method
	Nortriptyline (mg/L)								•	Gas Chroma
	All Methods	39	1.0	0.69	69	0.1-3.44				Gas Chroma Internal
	Gas Chromatography	29	0.95	0.65	68	0.1-3.44				High Perfo
	Gas Chromatography Internal Standard	19	1.1	0.92	84	0.2-3.44	C C			Liquid C
	High Pressure Liquid	7 7	0.76			0.36-1.07		and the second secon		Desalkylfl
	Chromatography									All Method
4-Blood	Ethanol (mg/dL)					•		£		Gas Chroma Gas Chroma
	All Methods	71	102	22	21	40-170	$\sum_{i=1}^{n}$		a de la companya de La companya de la comp	Internal
	Gas Chromatography	67	103	22	21	40-170				High Perfo
	Gas Chromatography Internal Standard	42	103	23	22	44.4-170			8-Blood	Liquid C
	Enzymatic	4	91	alan an taon Ang ang ang ang ang ang ang ang ang ang a		65-104	Ŭ		0-01000	Methaqualo All Methods
	Methanol (mg/L)									Gas Chroma
	All Methods	63	59	13	22	30-87				Gas Chromat
	Gas Chromatography	62	59	13	22	30-87				Internal
	Gas Chromatography Internal Standard	36	59 59	13	22	30-87 30-87	O O			High Perfor Liquid Cl
	Sacabanbital (mg/l)				19 (* 19). 1					<u>Methaqualor</u>
	<u>Secobarbital</u> (mg/L) All Methods	23	• • •		10	0 15 5 0		8		All Methods
•	Gas Chromatography	23 15	· 2.1 2.1	1.0 0.9	48 42	0.15-5.0		0		Gas Chromat
	Internal Standard	10	4 • 1	0.9	43	1.2-5.0				Pentobarbit
7-Blood	<u>Ethanol</u> (mg/dL)	ð							⇒	All Methods
7 DTUUU	All Methods	69	82	8.5	10	60-104				Gas Chromat
	Gas Chromatography	64	82	8.5	10	60 - 104				

- 38 -

0

۲

itative Analyses (cont.)

			en e	•	
ALYTE/METHOD	<u># LABS</u>	MEAN	<u>S.D.</u>	<u>C.V.%</u>	RANGE
<u>hanol</u> (mg/dL) cont.					
s Chromatography Internal Standard	54	82	8.7	11	60-104
zymatic	2				72-74
urazepam (mg/L)					
l Methods	54	0.97	0.56	58	0.1-3.3
s Chromatography	46	0.91	0.54	59	0.1-3.3
s Chromatography Internal Standard	40	0.93	0.56	60	0.1-3.3
gh Performance iquid Chromatography	5			•	0.65-2.2
salkylflurazepam (mg/	ν L)				
Methods	26	0.61	0.27	44	0.18-1.4
chromatography	21	0.59	0.28		0.18-1.4
Chromatography Internal Standard	19	0.60	0.29	48	0.18-1.4
h Performanc∉ iquid Chromatography	, 4		c.		0.41-0.75
haqualone (mg/L)					
Methods	56	13	4.4	34	2.7-21.1
Chromatography	48	13	4.2	32	2.7-21.1
Chromatography nternal Standard	37	13	4.0	31	2.7-20.0
h Performance iquid Chromatography	3				12.5-16
haqualone Metabolite	(mg/L)				
Methods	10.	7.5	4.0	53	1.87-14.1
Chromatography	9				1.87-14.1
<u>tobarbital</u> (mg/L)					10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -
Methods ·	53	7.6	2.3	30	1.3-13.8
Chromatography	44	7.7	2.4	31	1.3-13.8
					2011년 2월 11일 - 일종 11일

- 39 -

								0		And the second se				· · ·			
						25	۵		9								
	Table 4: (Quantitative Analyses (con	nt.)								Table 4:	Quantitative Analyses (cont.)				en e
н 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SAMPLE #	ANALYTE/METHOD	LABS	MEAN	<u>S.D.</u>	<u>C.V.%</u>	RANGE	Q		ALIVARIA III. ILIANA ALISAL	<u>SAMPLE #</u>	ANALYTE/METHOD	# LABS	MEAN	<u>s.d.</u>	<u>C.V.%</u>	RANGE
		Pentobarbital (mg/L) con	. +							and the second se	1	Doxepin (mg/L)					с. С
		Gas Chromatography	35	7.7	2.4	31	1.3-12.3					All Methods	24	0.43	0.23	54	0.14-1.0
		Internal Standard				•••		Ó				Gas Chromatography	21	0.46	0.24	52	0.14-1.0
		U.V. Spectrophotometry	3				6.0-9.0					Gas Chromatography Internal Standard	16	0.46	0.24	52	0.14-1.0
	9-Liver	Methaqualone (mg/L)	d.					•									
	Homogenate	All Methods	45	8.3	3.7	45	1.5-20			(A)		Nordoxepin (mg/L)					
		Gas Chromatography	39	8.2	3.7	45	1.5-20	Ŭ,				All Methods	11	0.70	0.38	55	0.2-1.48
		Gas Chromatography	32	7.9	3.3	42	1.5-14.5			271175-Y-2	13-Blood	<u>Diazepam</u> (mg/L)					
		Internal Standard High Performance					0 6 11 0			and the second		All Methods	50	1.04	0.50	48	0.2-2.6
•		Liquid Chromatography	4				8.6-11.3			3	en de la companya de La companya de la comp	Gas Chromatography	40.	1.00	0.50	50	0.2-2.6
		Methaqualone Metabolite	(ma/L)					0				Gas Chromatography Internal Standard	29	0.91	0.42	46	0.2-2.4
		All Methods	(mg/ L) 7				2.7-12.03			a strategie a s		High Pressure Liquid	6				0.80-2.26
		Pentobarbital (mg/L)					ā	4 .		-THE COMPANY		Chromatography					
		All Methods	41	41.5	15	36	12-84.3	Q		6		<u>Nordiazepam</u> (mg/L)					
•		Gas Chromatography	32	43	16	37	12-84.3	с		4.000 (A.100 (A)		All Methods	38	1.49	0.74	50	0.3-3.5
	алан алан алан алан алан алан алан алан	Gas Chromatodraphy	25	42	14.5	35	12-74	À chuine ann an Airtean an Airtean Airtean an Airtean Airtean Airtean Airtean Air				Gas Chromatography	30	1.29	0.55	43	0.3-2.3
		Internal Standard						Ċ				Gas Chromatography Internal Standard	26	1.29	0.55	43	0.3-2.3
	11-Blood	Salicylic Acid (mg/L)						U				High Pressure Liquid	5				1.32-3.4
		All Methods	52	295	121	41	100-730			10140304		Chromatography					
		Colorimetric	22	270	93	34	100-400					Morphine (mg/L)					
·	6	UV.	19	296	86	29	190-430	o				All Methods	8.	0.081	0.018	22	0.06-0.09
•	12-Blood	Propoxyphene (mg/L)										Codeine (mg/L)			• • • • •		u en en de la deservación. Per en en en en de de la deservación de
	•	All Methods	42	4.63	2.0	43	0.8-10.0					All Methods	14	0.28	0.13	46	0.10-0.60
	•	Gas Chromatography	41	4.64	2.0	44	0.8-10.0	n Ríochtair	Ś	*	14-Blood	Phenobarbita1					
		Gas Chromatography Internal Standard	35	4.84	1.9	39	1.0-10.0	Ø		0		All Methods	60	17.3	5.6	32	7 47 26
•						0						Gas Chromatography	34	17.5	6.0	32 38	7.41-36 7.41-33
	e**	Norpropoxyphene (mg/L)										Gas Chromatography	32	16.7	5.0	30	8.07-33
		All Methods	36	4.29	2.7	63	0.2-11.0		1. 1. 1.	13		Internal Standard	0-	10.7	5,0	50	6.07-33
		Gas Chromatography	35	4.29	2.7	63	0.2-11.0	0		0		High Pressure Liquid	8				9.7-20-6
	•	Gas Chromatography Internal Standard	30	4.04	2.5	62	0.5-11.0					Chromatography Ultraviolet Spectro-	7				17
			- 40 -									photometry	1				11.36-36
										Q			- 41 -				
				a a			a	0		1							

ĩ

. F. ...

	•		ta Alexandria		•				Q.		And Andrews	Ð			
													Table 5: <u>Metabo</u>	lite Analyses (Qualitative)	
	Table 4: <u>Q</u> SAMPLE #	<u>uantitative Analyses</u> (co <u>ANALYTE/METHOD</u>	ont.) <u># LABS</u>	MEAN	<u>s.d.</u>	<u>C.V.%</u>	<u>RANGE</u>		° Ç		The second s	**	Sample #	<u>Analytes Present</u>	%Positive Response %Positive Response for Parent for Metabolite
		<u>Carboxyhemoglobin</u>	- - - - - - -										1-Blood	Diazepam Nordiazepam	1.23
		All Methods Co-oximeter	51 12 18	29 34 20	11 13	38 38 21	13-50 16.2-48.4		¢			3	2-Blood	Amitriptyline Nortriptyline	1.15
		Spectrophotometry Palladium Chloride Gas Liquid Chromatograp	11	29 27	9 12	31 44	15-47.4 13-42 23-50						3-Urine	Amitriptyline Nortriptyline	1.00
Ī	l6-Gastric Contents	Propoxyphene (mg)	45	290.4	198.2	68	35-900		, O		2-36-36-3-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4-4	3	5-Urine	Methadone Methadone Metabolite	1.40
	12	<u>Acetaminophen</u> (mg) <u>Ethanol</u> (mg/dL)	32 17	3228.0 1303.0	1373.0 187.0	43 14	1400-7530 1026-1800	•					6-Urine	Propoxyphene Norpropoxyphene	1.04
]	7-Blood	<u>Propoxyphene</u> (mg/L) <u>Norpropoxyphene</u> (mg/L)	60 50	4.7 4.9	2.2 3.5	46 71	0.4-10.2 0.2-13.8		Ó		A the second second second	B	7-Blood	Flurazepam Desalkylflurazepam	1.86
4. •		<u>Acetaminophen</u> (mg/L) <u>Ethanol</u> (mg/dL)	49 57	179.3 78.0	57.9 8.2	32 10	76-332 , 60-105	0		8		55A	8-Blood	Methaqualone Methaqualone Metabolite	2.17
	8-Liver Iomogenate	<pre>Propoxyphene (mg/L) Norpropoxyphene (mg/L)</pre>	60 38	58.2 16.7	30.0 10.8	51.1 64.7	12.3-130.0 1.4-48.0		Û			Ø	9-Liver Homogenate	Methaqualone Methaqualone Metabolite	2.47
		<u>Acetaminophen</u> (mg/L) <u>Ethanol</u> (mg/dL)	30 15	146.0 105	194.5 15.1	133.0 14	13.0-780 76-134	•				D	10-Urine	Cocaine Benzoylecgonine	1.39
1	9-Urine	<u>Propoxyphene</u> (mg/L) <u>Norpropoxyphene</u> (mg/L)	35 31	11.2 28.9	4.0 15.0	35 52	3.0-20.8 10.6-76.0		0		And a second	U/	12-Blood	Propoxyphene Norpropoxyphene Doxepin	1.18 2.00
		Acetaminophen (mg/L) Ethanol (mg/dL)	28 31	649.0 97.0	256.0 11.6	40 12	286-1327 70-110				(-)	9 3	13-Blood	Nordoxepin Diazepam	1.23
2	20-Blood	<u>Secobarbital</u> (mg/L) Morphine (mg/L)	24 31	2.4 0.59	1.0 0.23	43 39	1.0-4.4 0.1-1.1		0		Durities and the Article Article		15-Urine	Nordiazepam Imipramine	1.08
		<u>Codeine</u> (mg/L)	17	0.33	0.05	22	0.1-0.3		Ø		69		17-Blood	Desipramine Propoxyphene Norpropoxyphene	1.20
(r samples 16 through 20 m certain of these data.).						ts					18-Liver Homogenate	Propoxyphene Norpropoxyphene	1.26
			•						0		8		19-Urine	Propoxyphene Norpropoxyphene	1.12
n			40											- 43 -	
			- 42 -						0						
والمراجع والمحاربة والمحاربة والمحاربة			ر. بالاران المحمد				ې مېرىمۇ مەربىرى بېرىش مۇرىيى	an incar the constant of the second			U_	The Contraction Transmission of the Contract		in an	

There are a

LIST OF FIGURES

Figure	1:	Sample	1,	Ethanol (All Methods).
Figure	2:	Sample	1,	Diazepam (All Methods).
Figure	3:	Sample	1,	Nordiazepam (All Methods).
Figure	4:	Sample	2,	Ethanol (All Methods).
Figure	5:	Sample	2,	Carboxyhemoglobin (All Methods).
Figure	6:	Sample	2,	Amitritpyline (All Methods).
Figure	7:	Sample	2,	Nortriptyline (All Methods).
Figure	8:	Sample	4,	Ethanol (All Methods).
Figure	9:	Sample	4,	Methanol (All Methods).
Figure	10:	Sample	4,	Secobarbital (All Methods).
Figure	11:	Sample	7,	Flurazepam (All Methods).
Figure	12:	Sample	7,	Desalkylflurazepam (All Methods).
Figure	13:	Sample	7,	Ethanol (All Methods).
Figure	14:	Sample	8,	Methaqualone (All Methods).
Figure	15:	Sample	8,	Pentobarbital (All Methods).
Figure	16:	Sample	9,	Methaqualone (All Methods).
Figure	17:	Sample	9,	Pentobarbital (All Methods).
Figure	18:	Sample	11,	Salicylic Acid (All Methods).
Figure	19:	Sample	12,	Propoxyphene (All Methods).
Figure	20:	Sample	12,	Norpropoxyphene (All Methods).
Figure	21:	Sample	12,	Doxepin (All Methods).
Figure	22:	Sample	13,	Diazepam (All Methods).
Figure	23:	Sample	13,	Nordiazepam (All Methods).
Figure	24:	Sample	13,	Codeine (All Methods).
Figure	25:	Sample	14,	Phenobarbital (All Methods).
Figure	26:	Sample	14,	Carboxyhemoglobin (All Methods).
Figure	27:	Sample	17,	Propoxyphene (All Methods).
Figure	28:	Sample	17,	Norpropoxyphene (All Methods).
Figure	29:	Sample	17,	Acetaminophen (All Methods).
Figure	30:	Sample	17,	Ethanol (All Methods).
Figure	31:	Sample	18,	Propoxyphene (All Methods).
Figure	32:	Sample	18,	Norpropoxyphene (All Methods).
Figure	33:	Sample	18,	Acetaminophen (All Methods).
Figure	34:	Sample.	19,	, Propoxyphene (All Methods).

- 44 ·

Figure 36: Sample 19, Acetaminophen (All Methods). Figure 37: Sample 20, Secobarbital (All Methods). Figure 38: Sample 20, Morphine (All Methods).

\$

3

*

9

3

£

B

٢

0

Ó

٢

.

()

()

Ć)

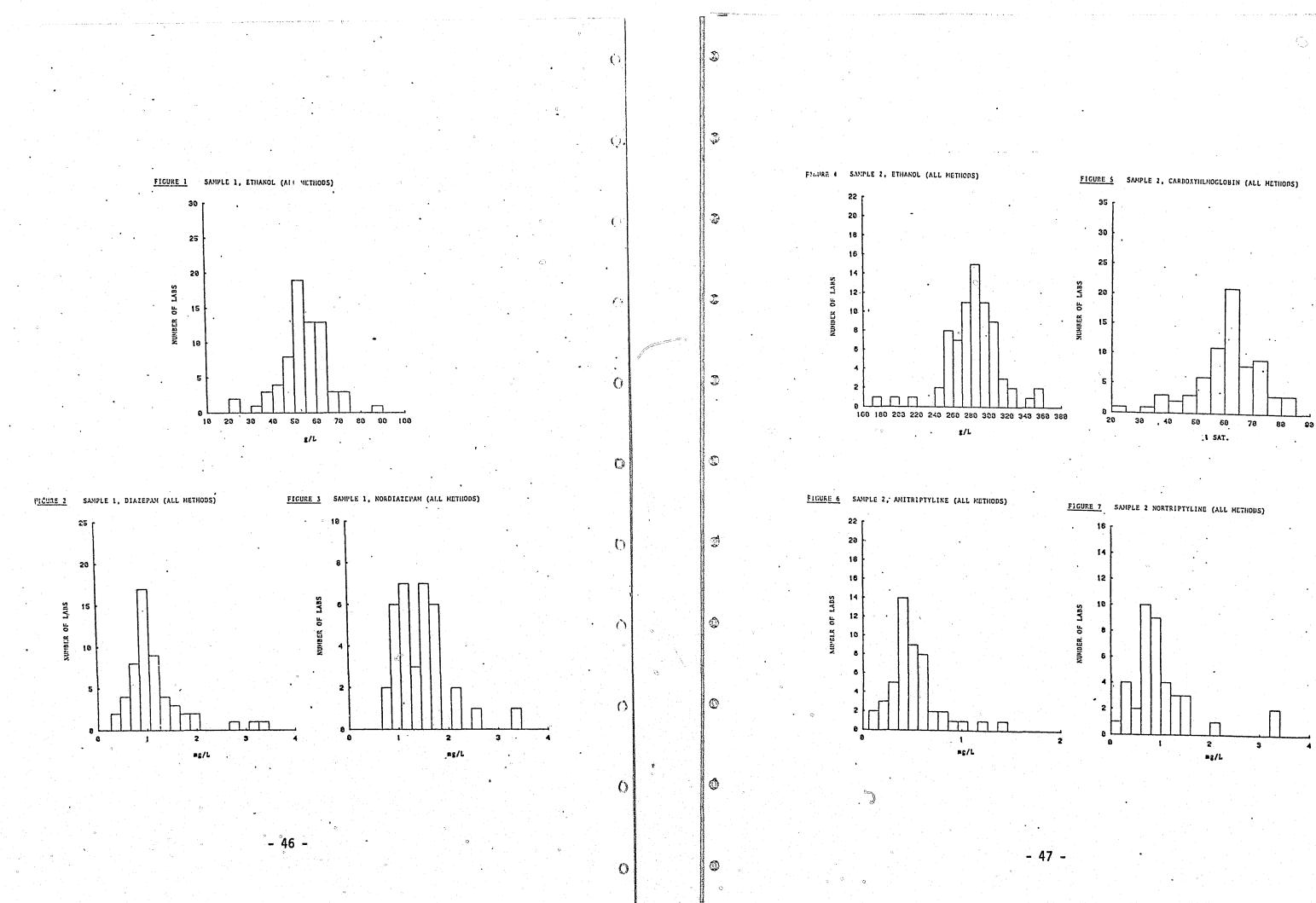
()

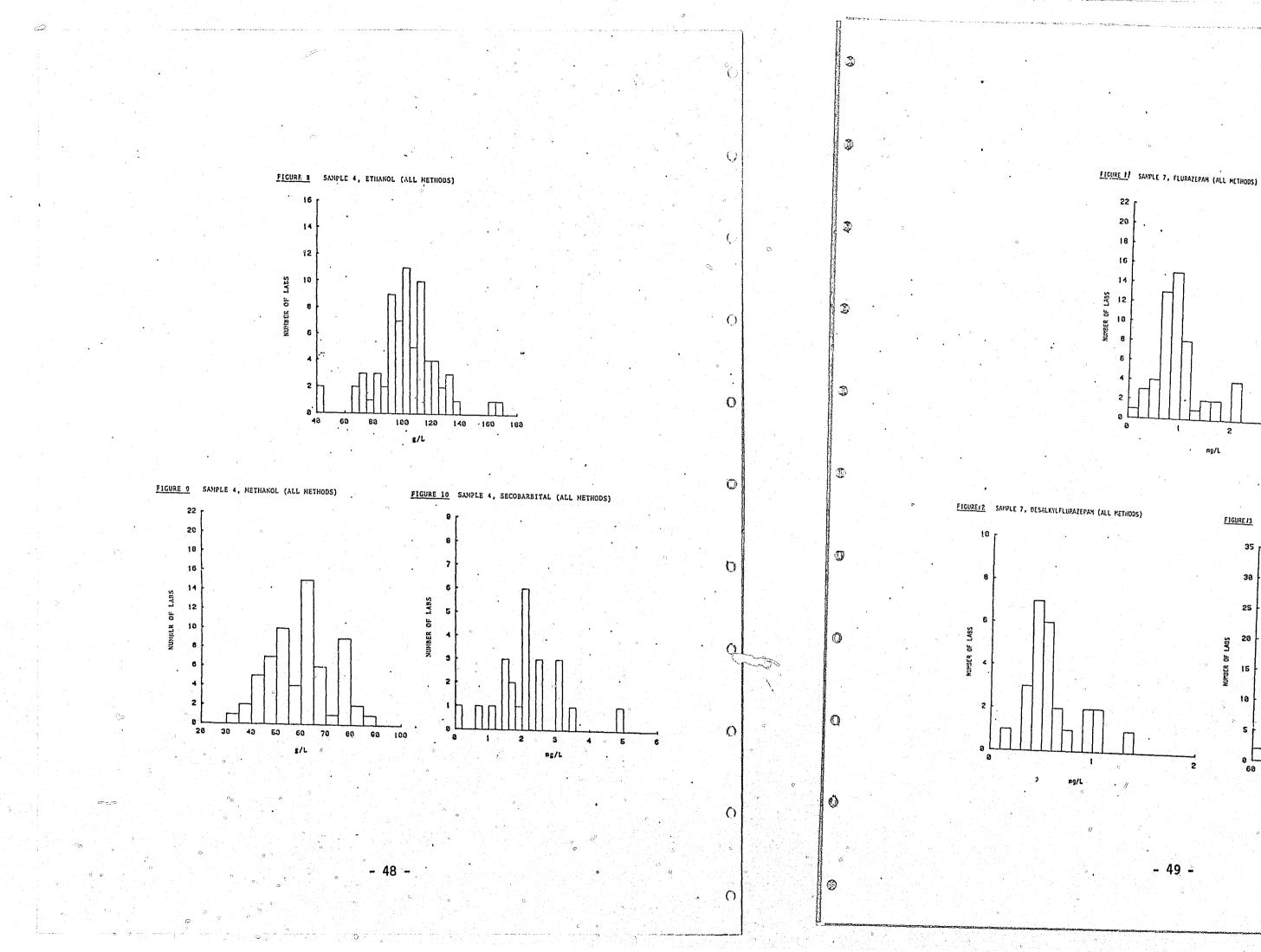
C

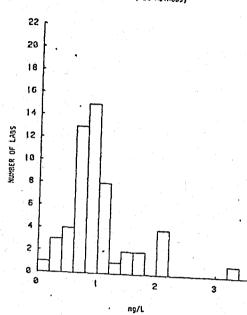
0

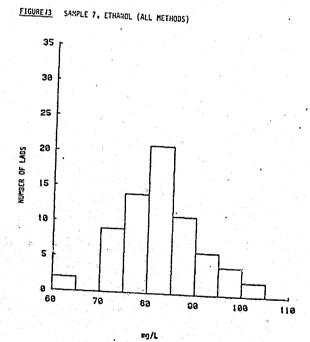
(1, 1, 0)

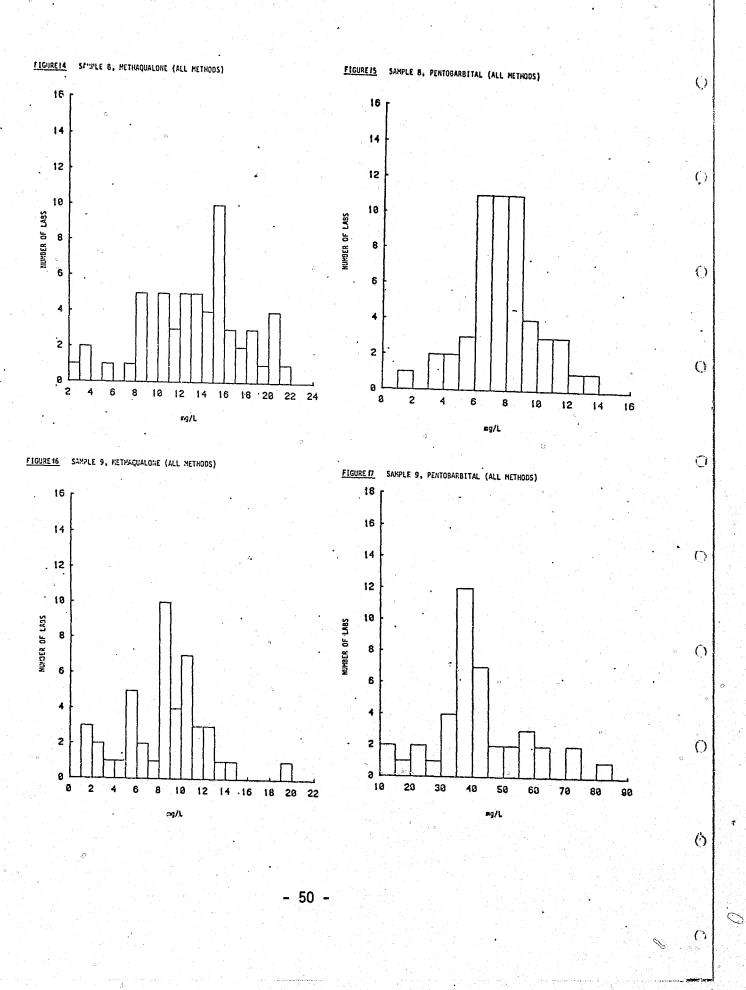
 \bigcirc

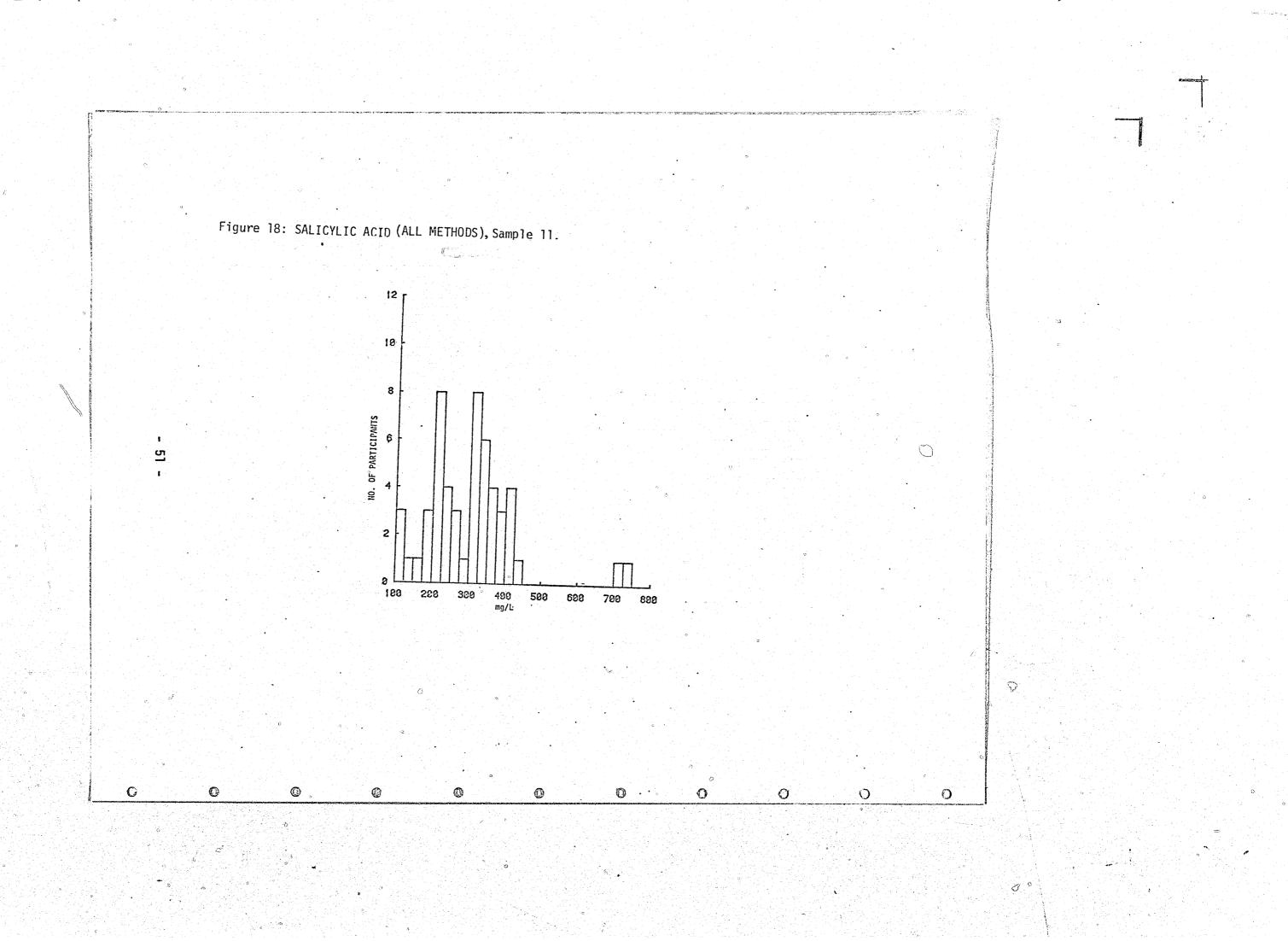

0

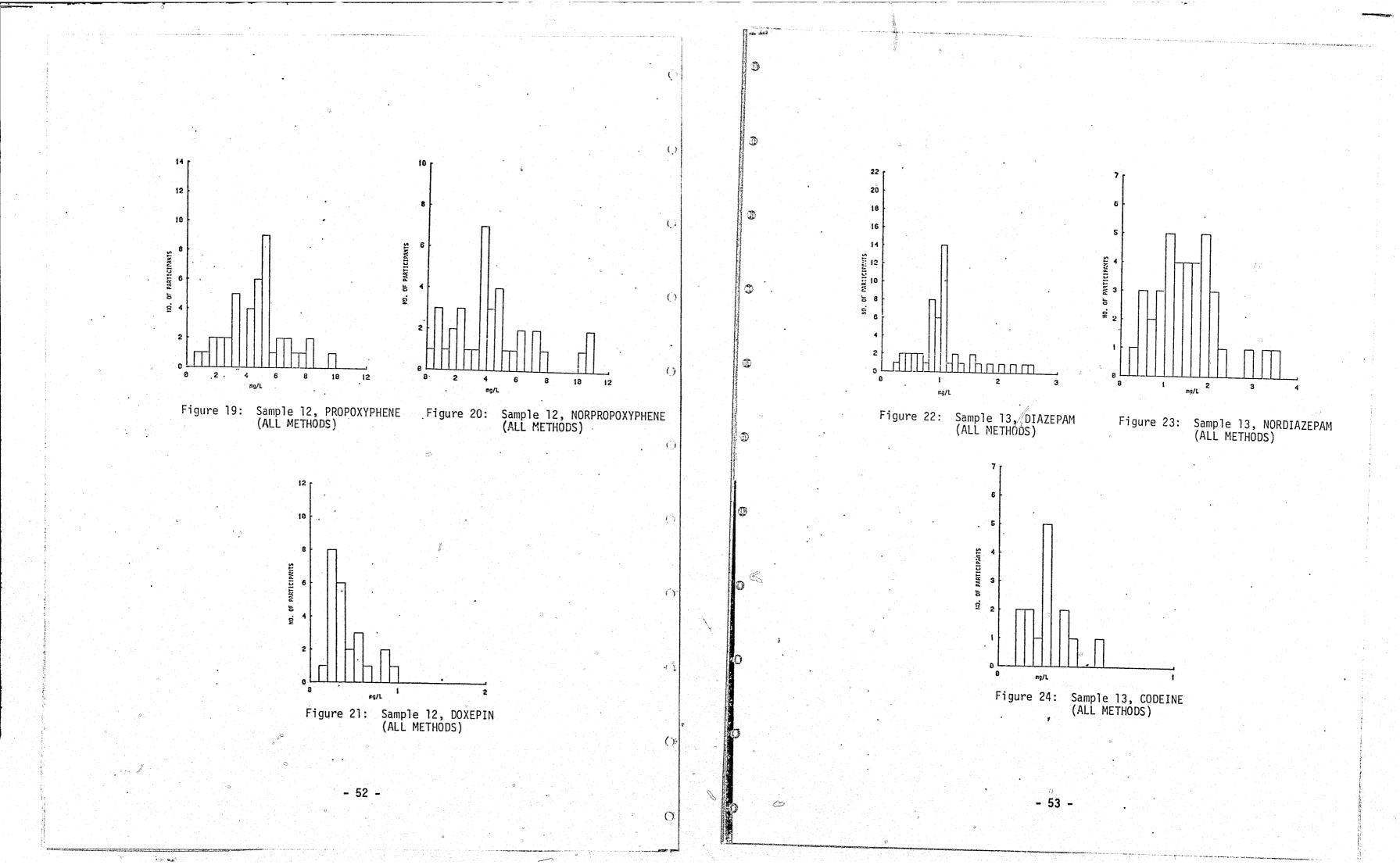

()

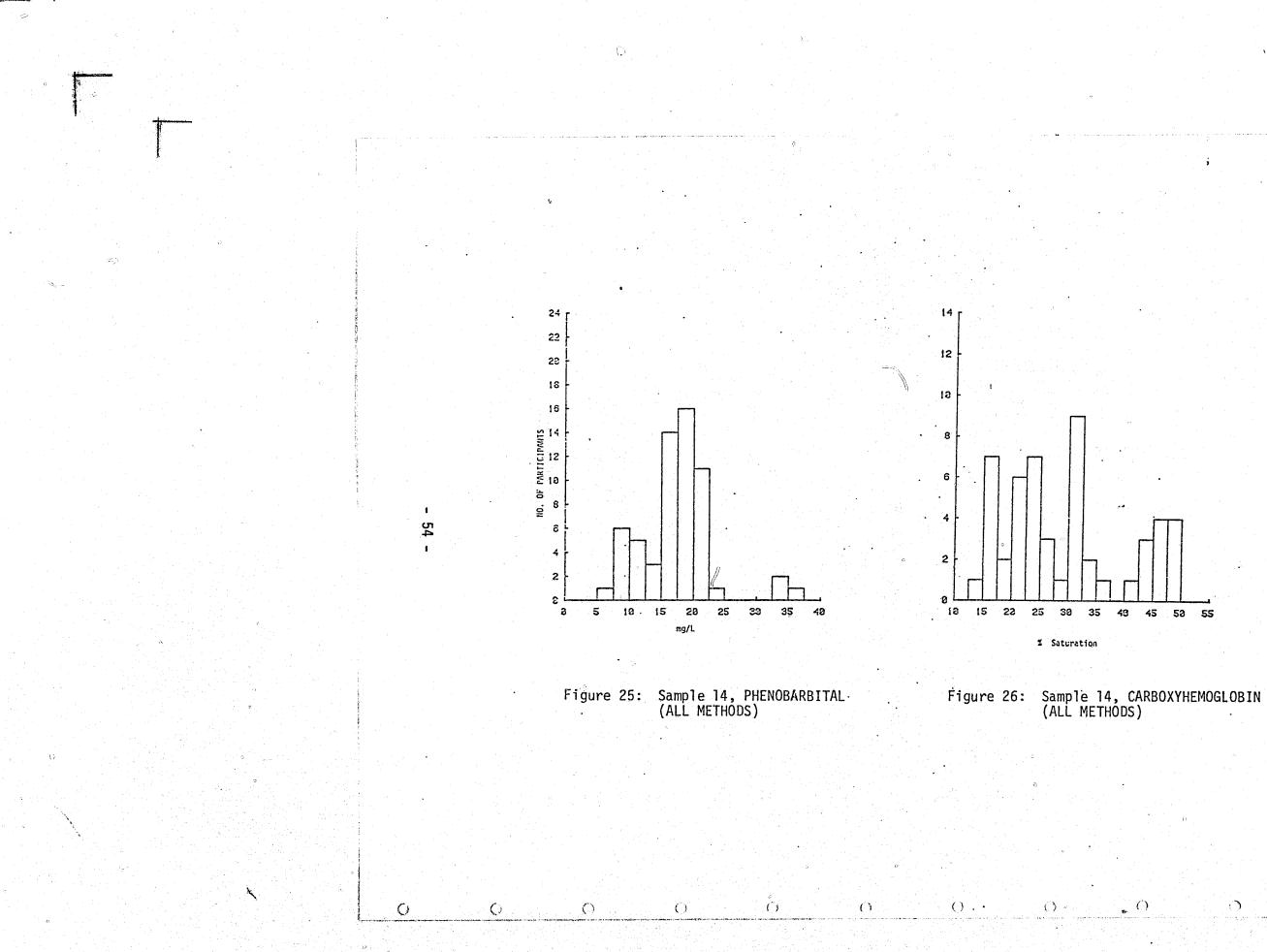

LIST OF FIGURES (cont).


Figure 35: Sample 19, Norpropoxyphene (All Methods).

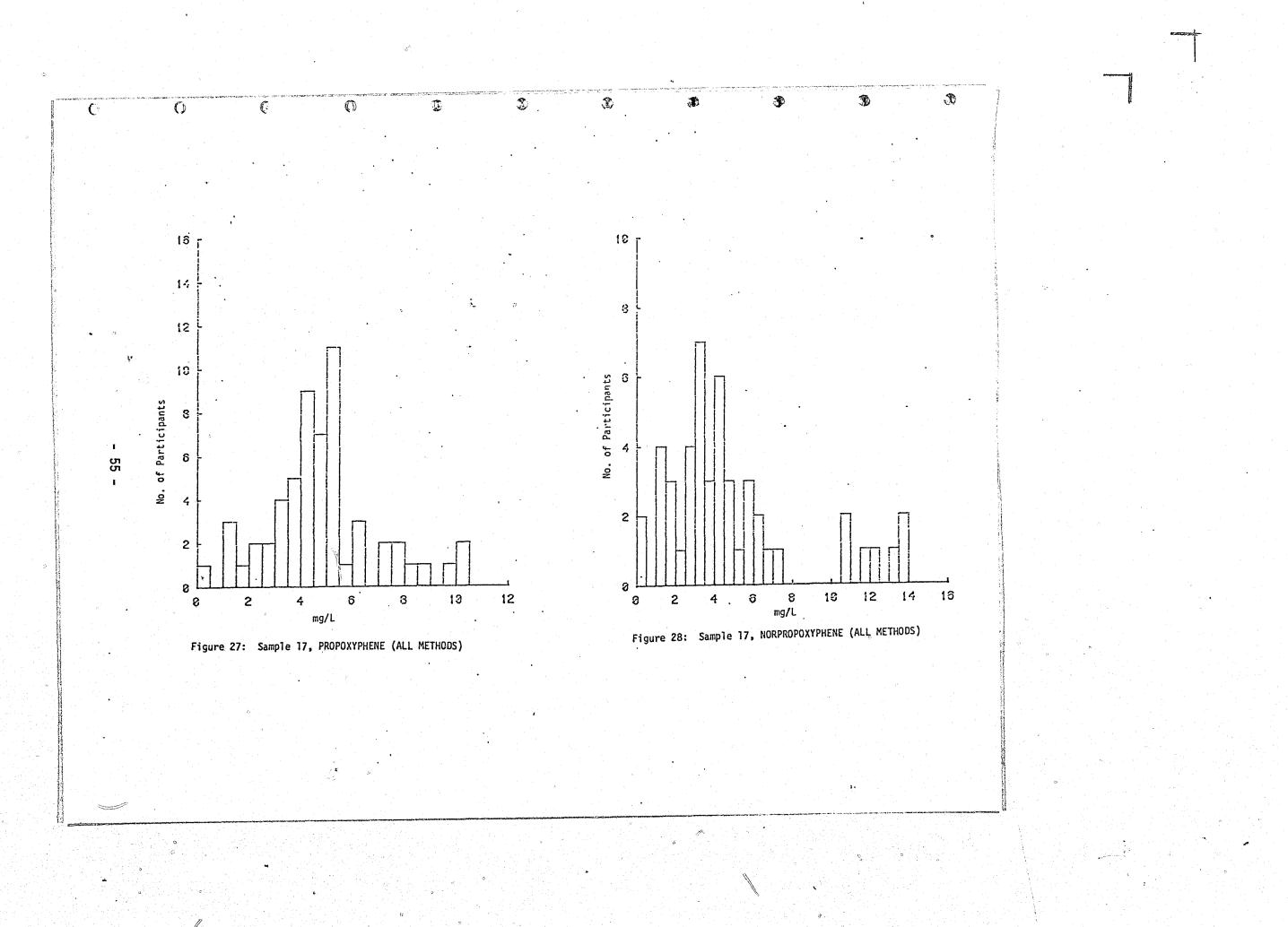

Figure 39: Sample 20, Codeine (All Methods).

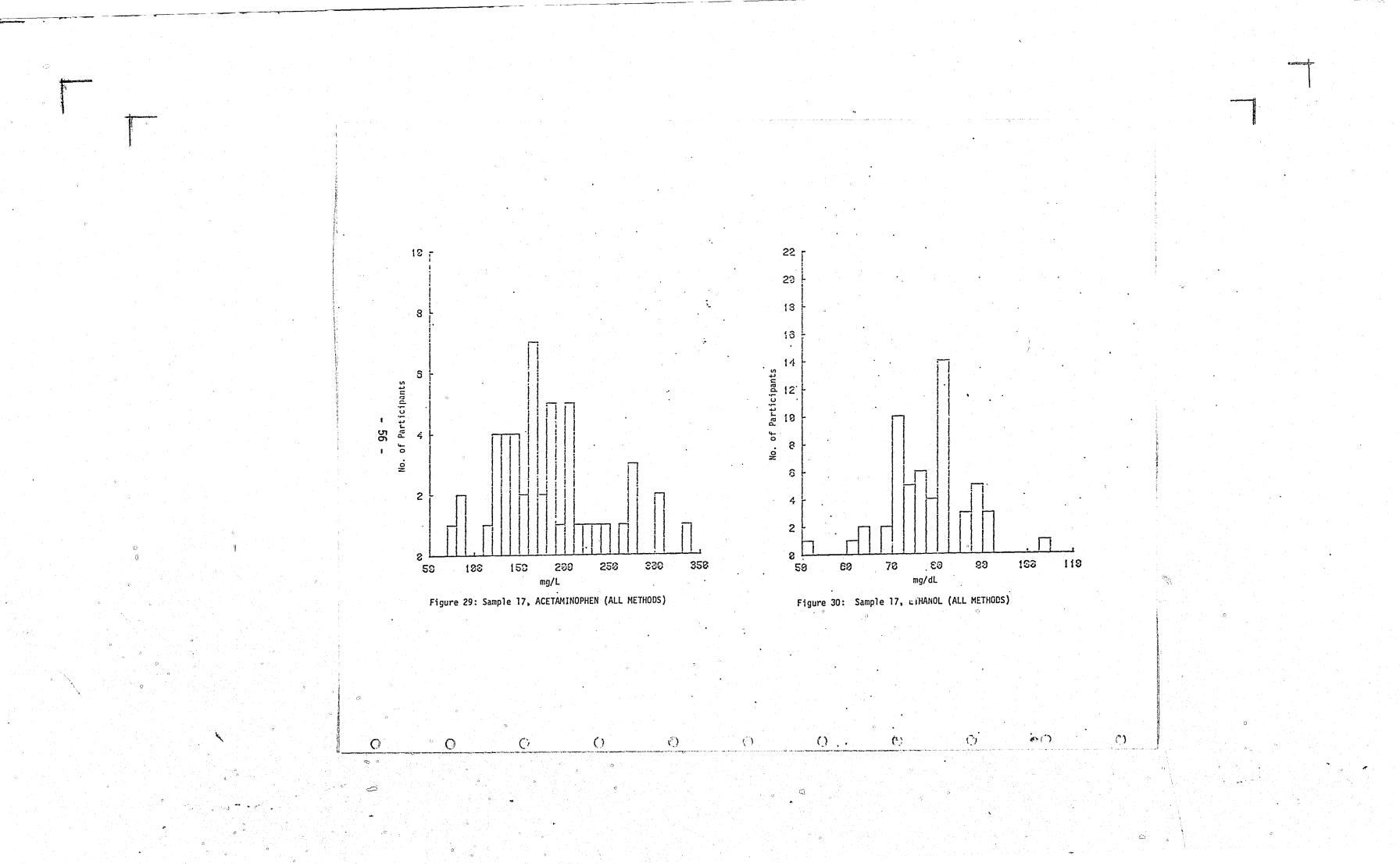


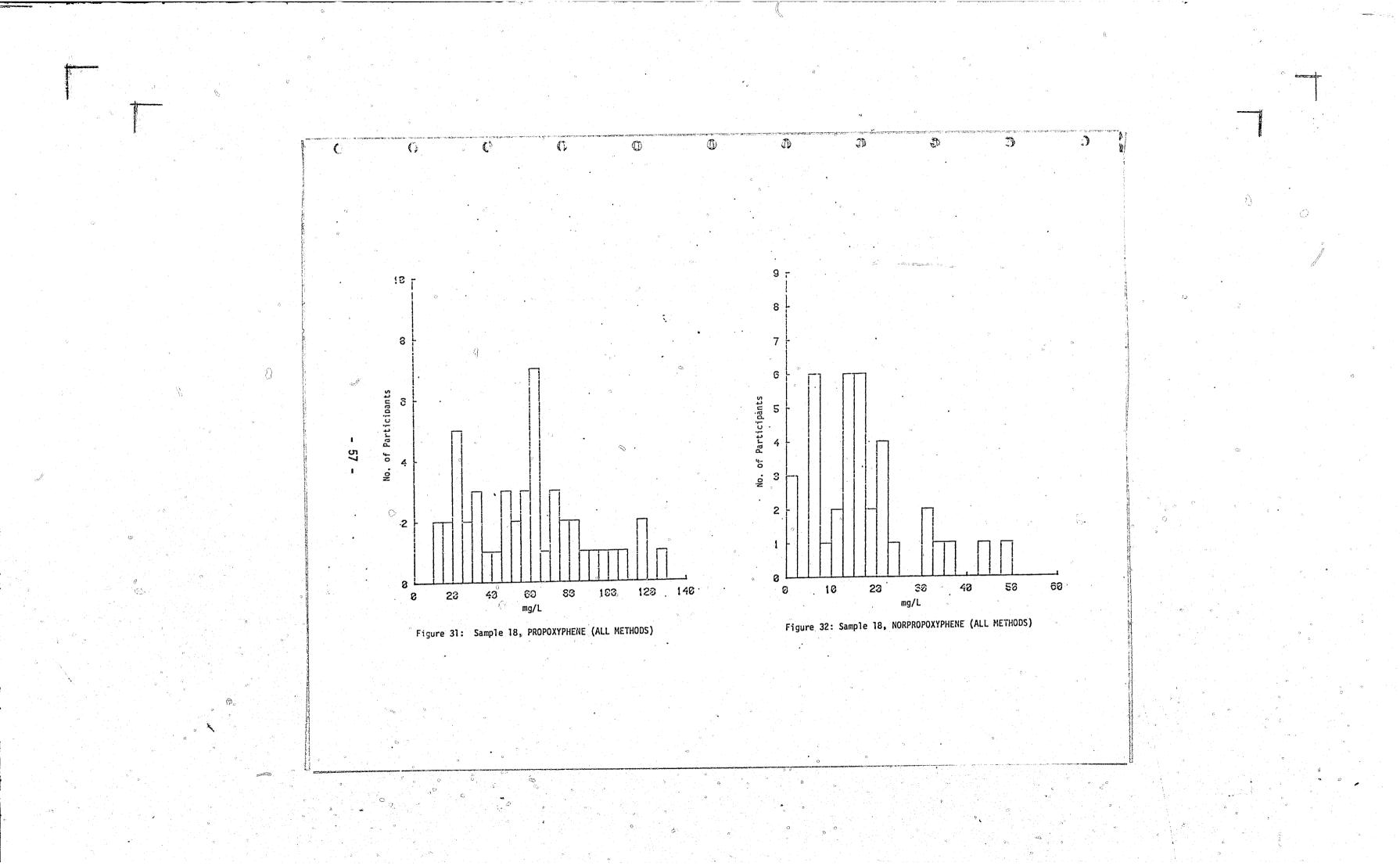

•

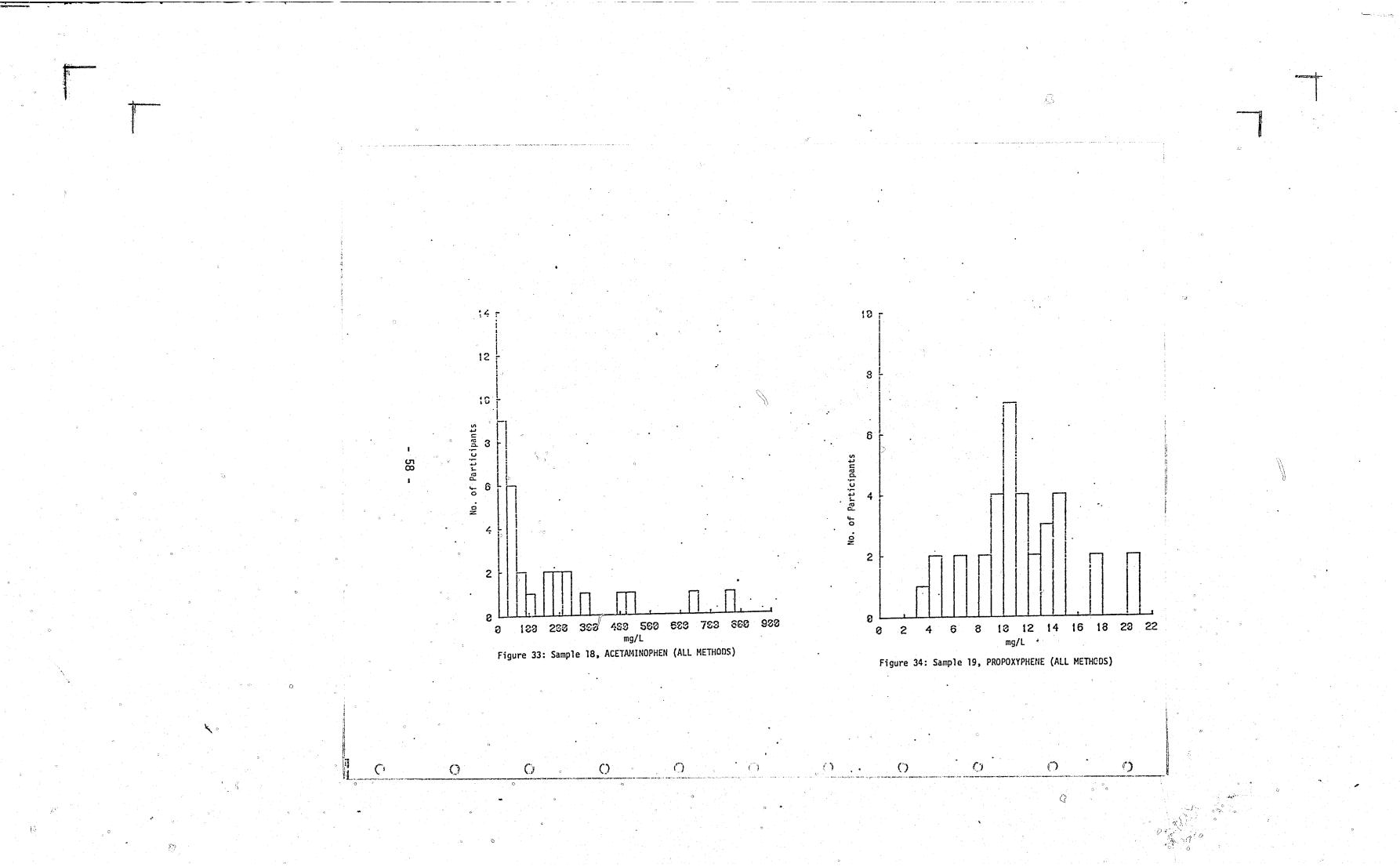

Ć

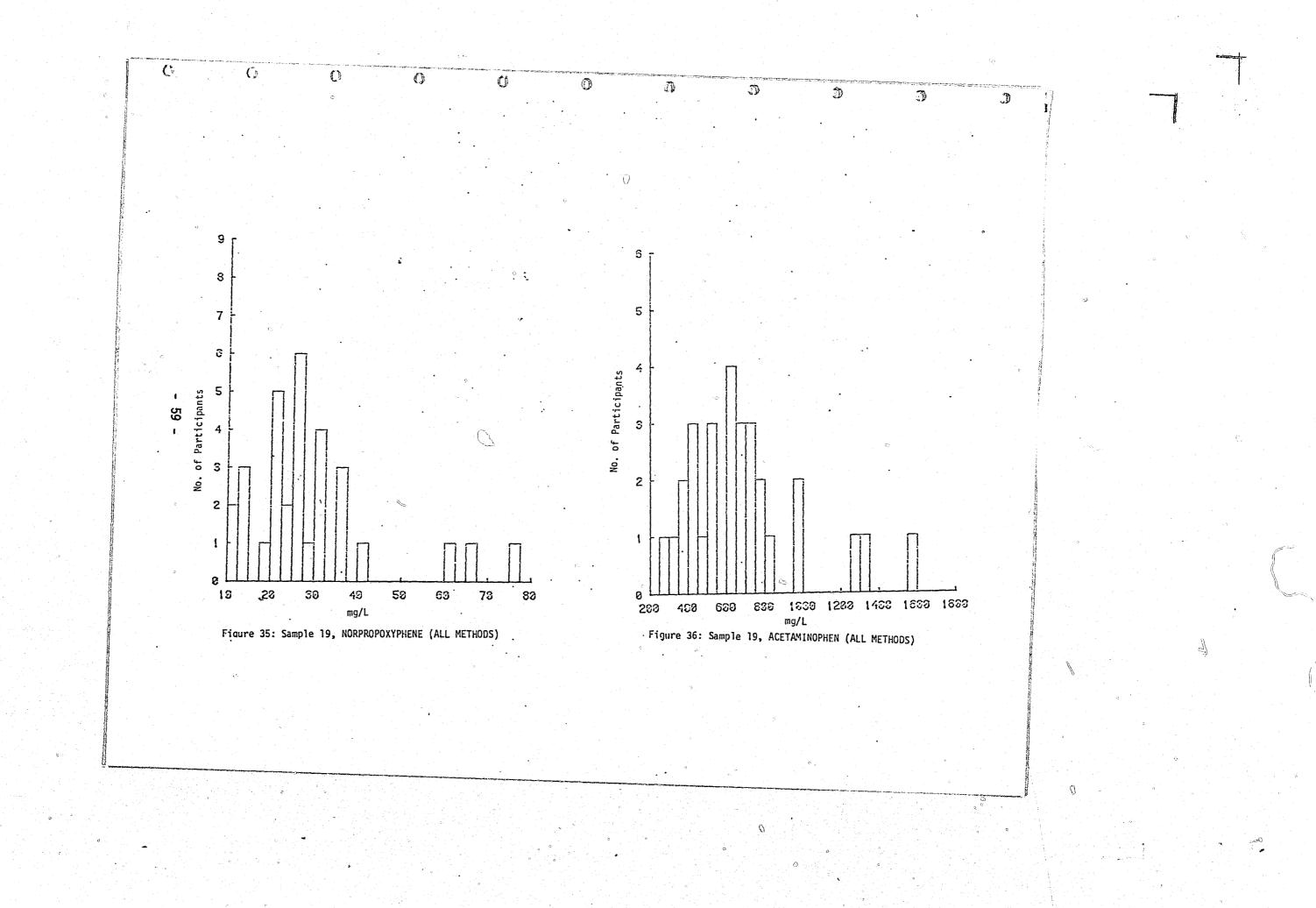
\$

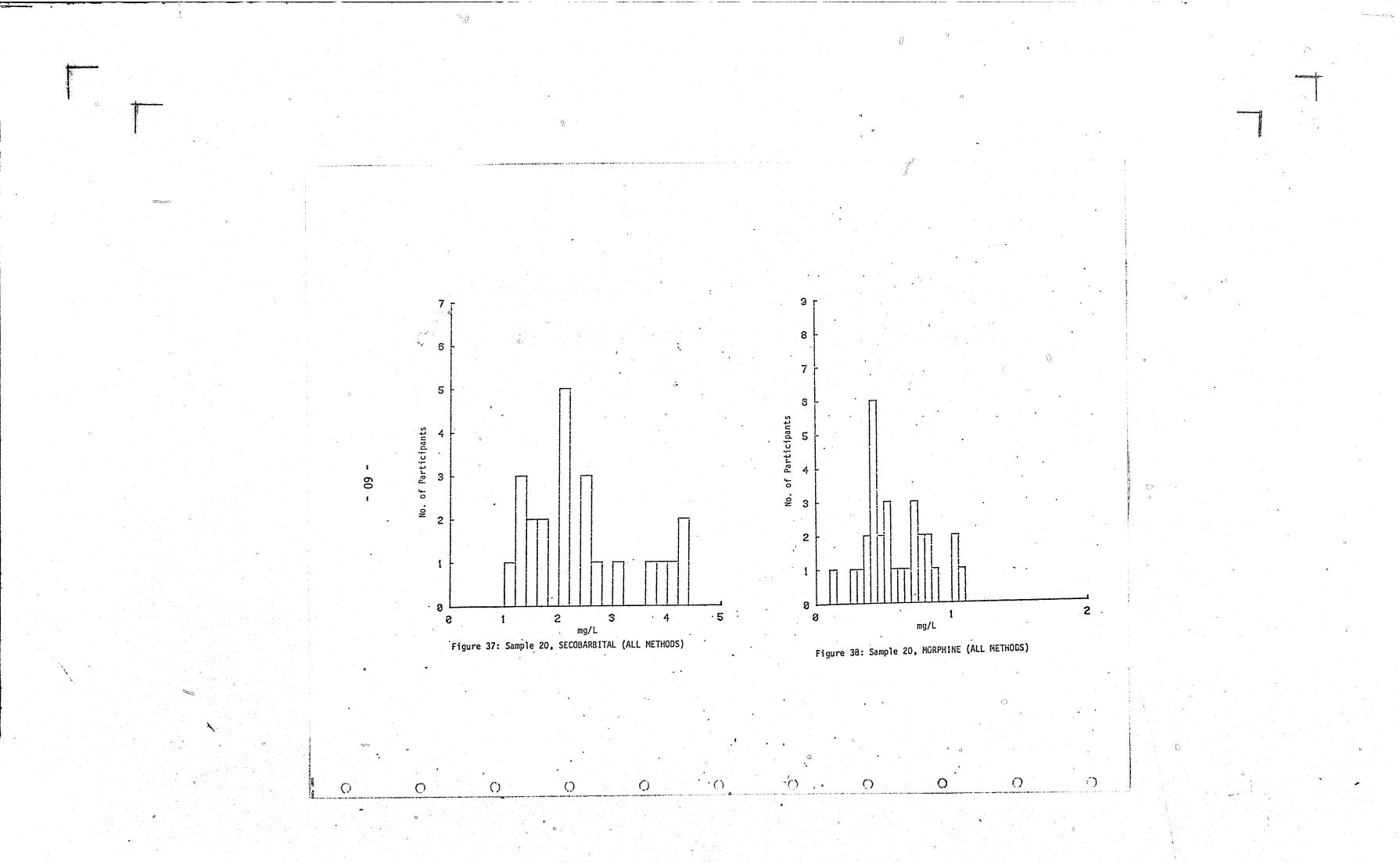


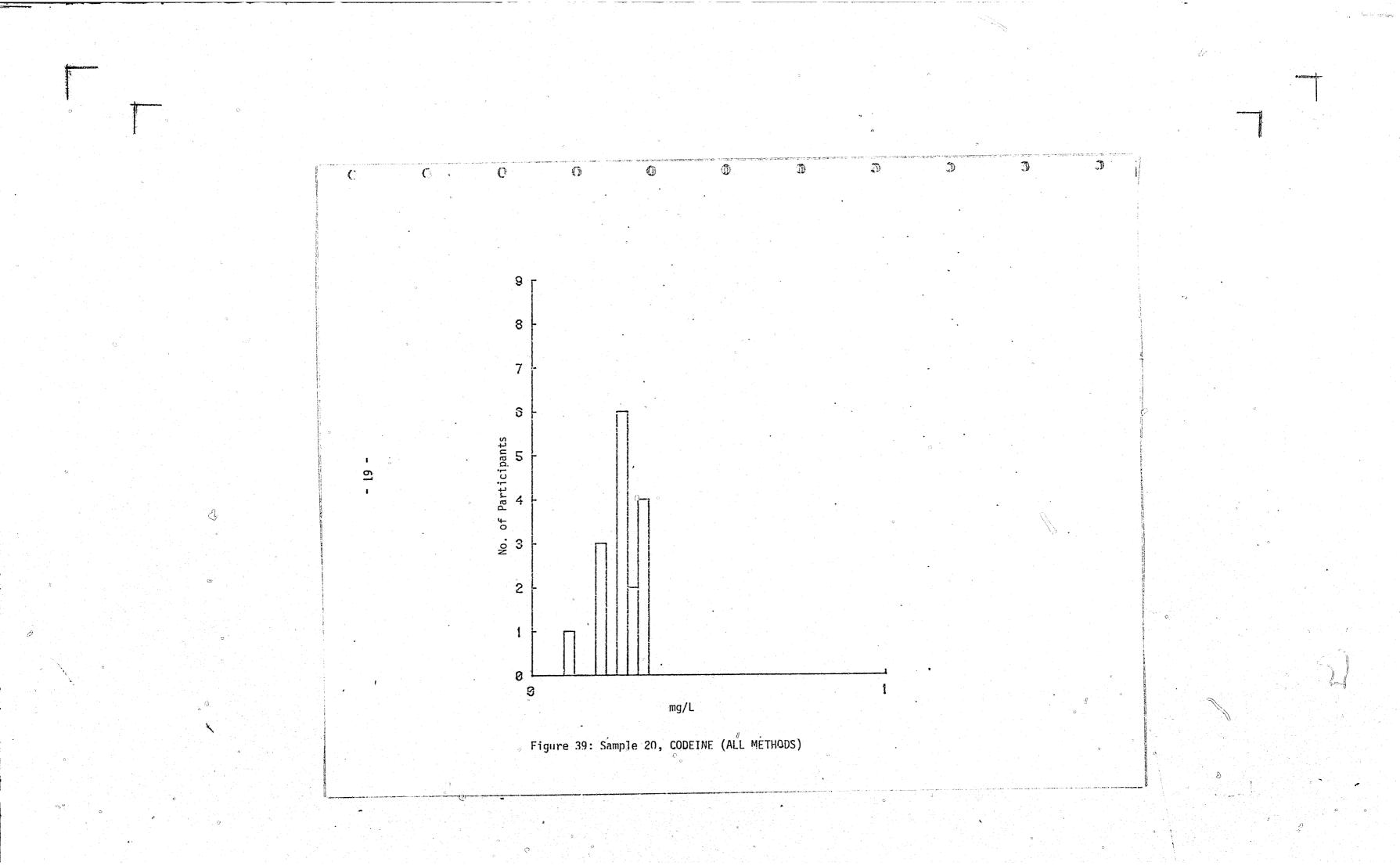


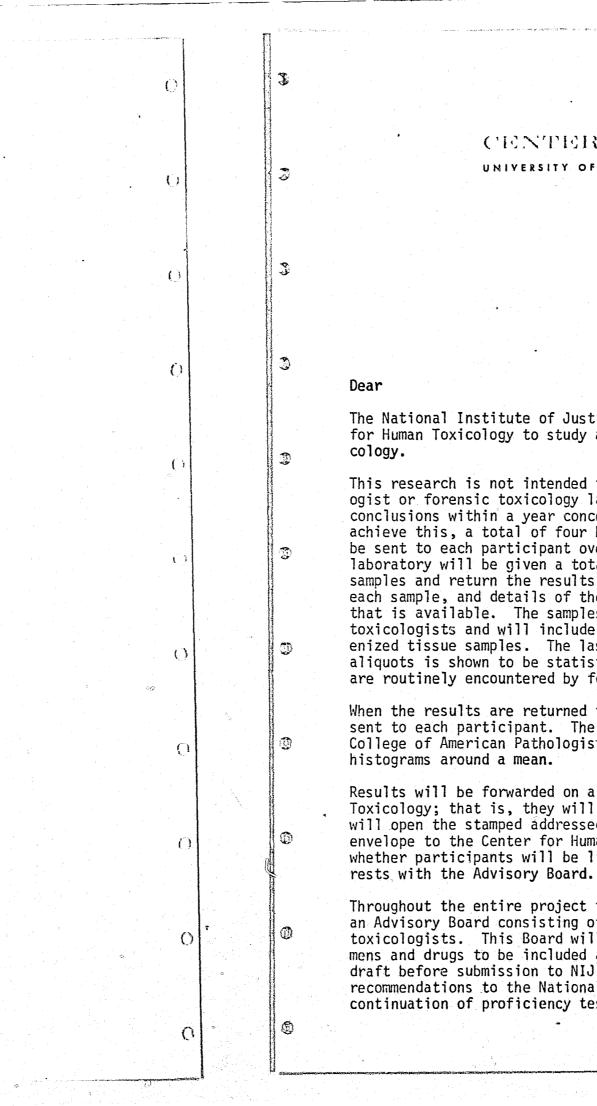



 \mathbf{O}




Ô





APPENDIX A

Copy of Letter Sent

- 62 -

CENTER FOR HUMAN TOXICOLOGY

The National Institute of Justice has recently awarded a grant to the Center for Human Toxicology to study a Proficiency Testing Program in Forensic Toxi-

This research is not intended to evaluate externally any individual toxicologist or forensic toxicology laboratory. The project is designed to reach conclusions within a year concerning the feasibility of such a program. To achieve this, a total of four batches of five samples (total number = 20) will be sent to each participant over a period of approximately seven months. Each laboratory will be given a total of at least ten working days to analyze the samples and return the results. An appropriate "case history" will accompany each sample, and details of the analyses required and any background information that is available. The samples will be specimens that are familiar to forensic toxicologists and will include whole blood, urine, gastric contents, and homogenized tissue samples. The last specimen will be sent only if prior analysis of aliquots is shown to be statistically valid. Only drugs and metabolites that are routinely encountered by forensic toxicologists will be included.

When the results are returned they will be analyzed statistically and reports sent to each participant. The format will be similar to that used by the College of American Pathologists; i.e., they will be tabulated and presented as histograms around a mean.

Results will be forwarded on a "double-blind" basis to the Center for Human Toxicology; that is, they will be sent initially to a disinterested party who will open the stamped addressed envelope and forward the enclosed unaddressed envelope to the Center for Human Toxicology. It is, as yet, undecided as to whether participants will be listed in the final report to NIJ. This decision rests with the Advisory Board.

Throughout the entire project the Principal Investigator will be assisted by an Advisory Board consisting of several experienced and respected forensic toxicologists. This Board will have the final decision on the types of specimens and drugs to be included and will review and critique the final report in draft before submission to NIJ. This final report will provide a series of recommendations to the National Institute on, in addition to other things, the continuation of proficiency testing among forensic toxicologists.

- 63 -

Page 2

In order for this research to succeed it is essential that all those involved in forensic toxicology participate, and we would strongly encourage you to do so. We realize that this will add an extra burden of work to many of you, particularly those who already have a heavy case load, but we are sure that the results of this research will benefit all of us involved in analytical forensic toxicology.

A questionnaire and a return envelope are enclosed. We would very much appreciate your returning the completed questionnaire even if you do not intend, for whatever reason, to participate in the project.

- 64 -

Thank you for your cooperation, and if I can be of any further assistance please feel free to call.

Yours sincerely,

Michael A. Peat Principal Investigator Ŷ

Ð

S

3

Ð

9

٢

0

()

Ø

٢

()

(1

MAP:amh Enc.

APPENDIX B

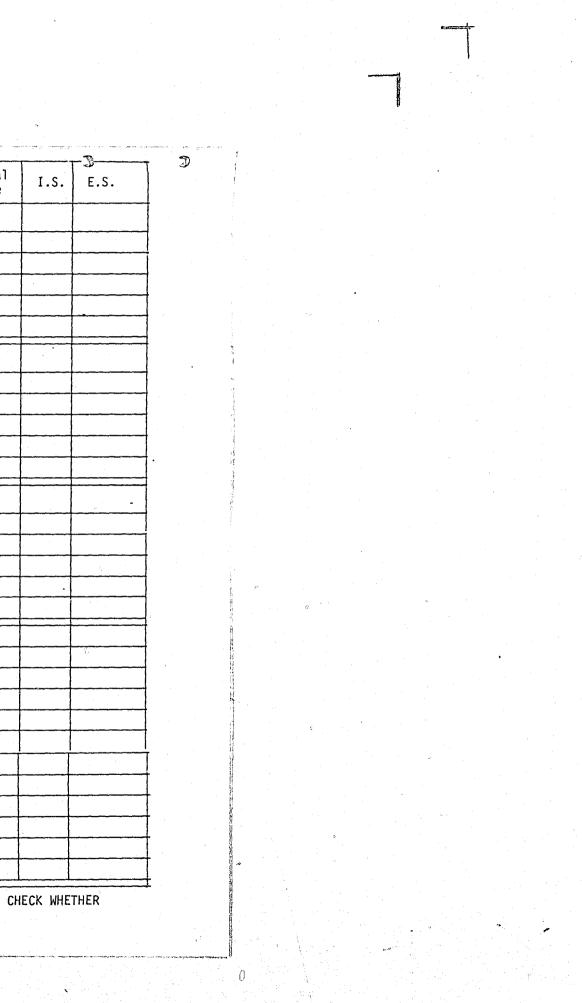
Reporting Forms

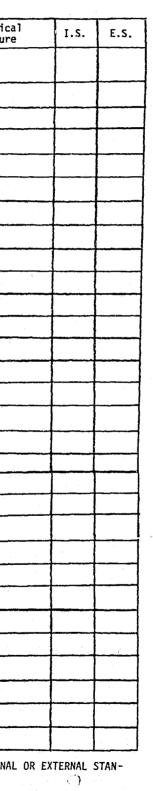
Sample #	Case History	Sample	Di ug Code	Drug Name	Quantitation	Analytical Procedure	
1	A 45 year old female, who had been pre- scribed Valium for the past year, was found dead by her husband upon returning from work. An autopsy was performed and a blood sample sent for toxicological analysis. Please screen sample and quan- titate any drugs and/or metabolites detected.	Blood	<u>הההההה</u> ההההההה				
283	A 50 year old male was found dead in his car in a locked garage. A piece of pipe led from the exhaust into the car. The deceased was a heavy drinker and had, in the past, been treated for depression. Please screen the blood and urine sam- ples. Quantitate any drugs and/or metab- olites detected in the blood sample only.						<u>┶┶┶┶┶┶┶┶┶┶┶</u>
4	A 33 year old truck driver was found deal in the cab of his truck. A bottle of what was suspected to be "wood alcohol" was found beside him. The pathologist requested a blood drug screen and quanti tation of any drug(s) detected. A 25 year old male was found dead with stab wounds. He had a history of drug abuse and had been under treatment at a						
	the bad not been under treatment at a methadone maintenance clinic, although the had not been seen by the staff for three weeks. The pathologist requested a unine drug screen. No screen for volutiles is required.						-

- 66 -

()

1

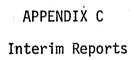

REPORT ALL QUANTITATIONS IN MICROGRAMS/ML EXCEPT FOR VOLATILES. PLEASE REPORT THESE AS mg/dl.


	1000070	jlz		~	1	 	
	Sample Number	Case History	Sample	Drug Code	Drug Name	Quantitation	Analytica Procedure
- J	6	A 50-year-old male with a history of lower back pain and epileptic seizures was found dead at the base of a set of stairs. An autopsy was performed, and	Urine				
		the Medical Examiner requested that a urine sample be screened to establish medication history. Do not quantitate any drugs and/or metabolites detected.		ההה ההה			
	7	A 30-year-old female was found dead in bed by her roommate. An empty Dalmane bottle was found. Please screen and quantitate any drugs and/or metabolites detected.	Blood	<u>ורורו</u>			
							<u> </u>
	8 & 9	A 25-year-old male was found dead in a hotel room. A collection of drug paraphernalia was also found. Please screen the blood sample and quantitate	Blood				•
		any drugs and/or metabolites in this sample and in the liver homogenate. Cause of death: pending toxicology.		ביבי ביבי			
			Liver				
			n				
	10	A 25-year-old male, on probation for drug abuse, was killed while riding his motorcycle. Cause of death was	Urine		/		
		due to multiple injuries. A urine sample was taken, and a drug screen was requested to establish drug use.	ά <u>ν</u>		/		
			· ·		/		

REPORT ALL QUANTITATIONS IN MILLIGRAMS/L EXCEPT VOLATILES. PLEASE REPORT THEM AS MILLIGRAMS/DL. PLEAS AN INTERNAL OR EXTERNAL STANDARD WAS USED FOR QUANTITATION, WHEN APPROPRIATE.

· V

Sample Number	Case History	Sample	Drug Code	Drug Name	Quantitation	Analytica Procedure
11	A 6 year old child was admitted to a hospital	Blood				
	suffering from acidosis. His mother indicated that a number of aspirin tablets were mis-			· · · ·		
	sing. Although the child was correctly treat- ed he died twenty four hours after admission.					
	An autopsy was performed and a blood sample taken. Please determine the salicylate con-					
	centration and screen the specimen for other drugs. Determine the concentrations of any			·····		
	other drugs and/or metabolites detected.					
12	A 46 year old male with a history of abdom-	Blood				
	inal pain and depression was found dead in bed by his daughter. A suicide note and sev-	-		~~~~		
	eral empty prescription bottles were found, Please screen the blood sample to determine the concentration of any drugs and/or moto	-1				
	the concentration of any drugs and/or meta- bolites detected. Cause of death: pending					
	toxicology.			·····		
13	A 19 year old female died following a party. One hour before she had been given an injec-	Blood				
	tion by her boyfriend who was a known drug abuser. The deceased was known to take mi-					-
	nor tranquillizers for anxiety. Please screen the blood sample and determine the concentra-					
	tion of any drugs and/or metabolites detec- ted. Cause of death: pending toxicology.					
	ted. cause of death. pending toxicology.					
14	An industrial worker was found dead near a carbon monoxide generator. The deceased was	Blood				
	a known epileptic. An autopsy revealed signs of recent seizure activity. Please screen					
	the blood sample for drugs and quantitate any drugs and/or metabolites detected.					
:						
15	A 56 year old female with a history of mental illness was killed in an automobile accident.	Urine		·		
	An autopsy was performed and the medical ex- aminer requested that the urine sample be					
	screened to establish drug use. Do NOT quan- titate any drugs and/or metabolites detected.				алан алан алан алан алан алан алан алан	
-	And do NOT screen for volatiles.					
		[-



0 '

Sample Number	Case History	Sample	Drug Code	Drug Name	Quantitation	Analytical Procedure	I.S.	E.S
16	A 38 year old male suffered a	Gastric Contents						
	lower back injury in an indus- trial accident and was subseq-	(total weight						
	uently unemployable. He was prescribed Darvocet-N-100 for	2500 G)					1	
	chronic pain. He became des- pondent and was found dead in						1	
	bed at home one morning. Sui- cidal drug overdose was sus-						1	
4) -	pected. Please screen the blood sample and determine the		1-1-1			•		
17	concentrations of any drugs and/or metabolites in each of	Blood			*	·································	1	
	the specimens submitted.						+	1
				· · ·			1	
					· · ·	-		1.
				·		-		
				· · · · · · · · · · · · · · · · · · ·			,,	
18	t.	Liver			-			
						-		
(.) 								
		1						
							· ,	
							1	
19	•	Urine						1
مر، .				<u> </u>	-	-	+	
					-			
					<u> </u>			
	A voune man use byought appa	Blood						<u>ų</u>
20	A young man was brought coma- tose to a hospital E.R. by	BIUUU		2	· · · · · · · · · · · · · · · · · · ·			
	friends but died very quickly afterwards. He had a long					<u></u>		
	history of multiple drug abuse including opiate narcotics,					·		<u> </u>
	and there were recent "track marks" noted at autopsy. Please	2						<u> </u>
	screen the blood sample for drugs and quantitate any drugs			 			1	
	and/or metabolites detected. ALL QUANTITATIONS IN MILLIGRAMS/	<u> </u>		<u> </u>				

10

- 70 -

0

- E

()

ŧ

4

¢.

()

()

()

Ô

8

Ð

3

\$

P.

Ð

Ð

()

 (\mathfrak{O})

0

0

6

PROFICIENCY TESTING PROGRAM

INTERIM REPORT SAMPLES 1-5

INTRODUCTION

101 batches of samples were shipped on January 5, 1981. No reports of breakages were received, although one participant reported that sample #4 leaked in transit. 74 replies (postmarked by Jan. 23, 1981) were received. An additional 8 replies have since been received, these are not included in the report.

A number of participants reported similar comments, these concerned:

- The stability of the ethanol in samples 1,3, and 4. A stability study is presently in progress at the Center For Human Toxicology to clarify this.
 The presence of chloroform and other organic solvents. This
- 2) The presence of chloroform and other organic solvents. This was due to the fact that some of the samples, prior to shipment, had been stored in solvent bottles. Although these had been thoroughly washed, traces of organic solvent must still have been present.
- 3) Odor and decomposition. Although the blood was stabilized with oxalate/fluoride, it is possible that insufficient was added, greater amounts will be added to future samples.

All of the blood samples (#1,3, and 4) were prepared from bovine blood by disolving appropriate amounts of the drug, or a salt of the drug in water, 0.05M sodium hydroxide or methanol. These solutions were used to "spike" the blood sample.

Most participants completed the result forms appropriately, however, in a number of instances, respondents did not state whether they used an internal or external standard for quantitations by chromatography. For this reason the tabulations for 'gas chromatography" and "gas chromatography-internal standard" overlap.

If there are any questions concerning the data in this report, please feel free to call. There are limited amounts of samples 1 to 5 available for repeat analysis if required.

SAMPLE 1

History

A 49 year-old female, who had been prescribed Valium for the past year, was found dead by her husband when he returned from work. An autopsy was performed, and a blood sample sent for toxicological analysis. Please screen sample and quantitate any drugs and/or metabolites detected.

QUALITATIVE IDENTIFICATION: 74 LABORATORIES RESPONDING

- 72 -

Analytes Present	Weighed-In Value	<pre>% Positive Responses</pre>
Ethano1	50.0 mg/dL	95 (70/74)
Diazepam	1.0 mg/L	84 (62/74)
Nordiazepam	1.5 mg/L	68 (50/74)

<u>QUANTITATIVE</u> <u>Analyte/Metho</u> <u>Ethanol</u> All Methods

8

4

2

14 34

54 (3)

2

Ŷ

\$

3

2

. •

Gas Chromatog Gas Chromatog Internal S

Enzymatic

<u>Diazepam</u>

All Methods Gas Chromatogi

Gas Chromatogr Internal St

High Pressure Chromatogra

<u>Nordiazepam</u> All Methods

Gas Chromatogr

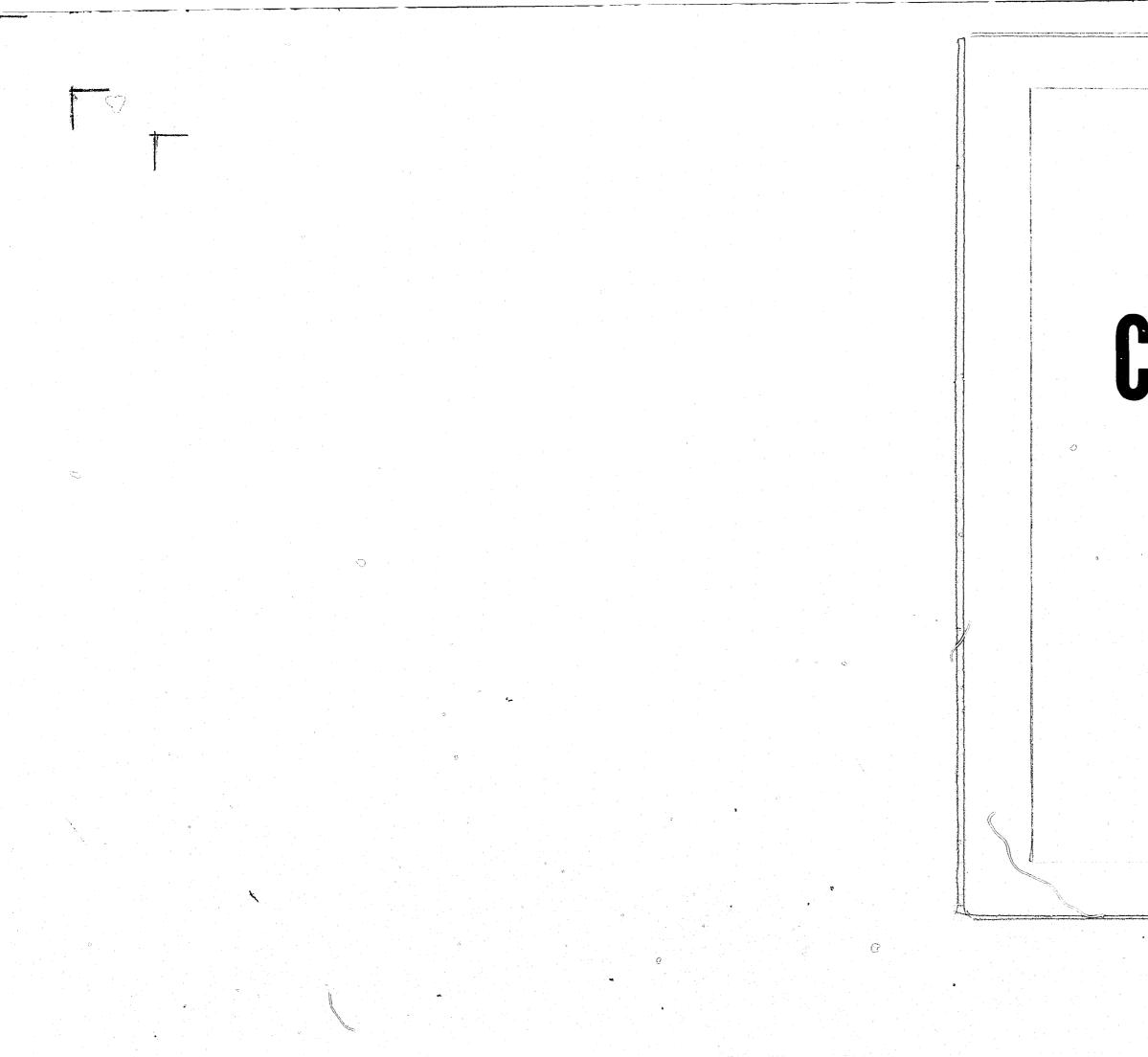
Gas Chromatogr Internal St

High Pressure Chromatogra

* One result was omitted.

Results from the laboratories of Advisory Board members and those of routine analysis at the Center For Human Toxicology were not included.

Gas chromatography-chemical ionization mass spectrometry (GC-CIMS) (1) with deuterated internal standards was used to determine the concentrations of diazepam and nordiazepam in the sample. These analyses were performed during the week of shipment. The sample was stored at 4°C after preparation. The mean values (n=2) were 0.96 mg/L and 1.4 mg/L respectively.


COMMENTS

The coefficients of variation show a large interlaboratory variation. 84% of laboratories responding identified diazepam and 68% the normetabolite, even though the history indicated use of Valium.

5% (4/74) reported positive benzodiazepines by ultraviolet spectrophotometry.

DETERMIN	ATION:	HISTOGRAMS ARE SHOWN	5 FOR RES IN FIGU	SULTS BY RES 1-3.	ALL METHODS	
od	# Labs		<u>S.D.</u>	<u>C.V.</u>	Range	
	70	53	11	21	20-90	
graphy	77	54	10	19	20-90	
raphy Standard	46	55	8	15	30-71	
	3	35			31-46	
	55	1.2	0.57	48	0.3-3.3	
raphy	46	1.1	0.61	55	0.3-3.3	
raphy tandard	30	1.1	0.56	51	0.45-3.1	
Liquid aphy	5	1.1			0.9-1.3	
	35	1.5	0.53	35	0.68-3.3	
raphy*	32	1.4	0.52	27	0.68-3.3	
raphy tandard*	26	1.5	0.36	24-	0.92-2.51	
Liquid aphy	3	2.0			1.71-2.2	

- 73 -

CONTINUED 10F2

E

By far the most common analytical procedure used to quantitate the three drugs was gas chromatography. Of the 70 laboratories determining the ethanol concentration, 66% (46/70) indicated that they used an internal standard. Their results were not statistically different from the total results. Enzymatic methods for the determination of ethanol were used by only 3 laboratories. Although gas chromatography, with a variety of detectors (flame ionization, nitrogen phosphorus and electron capture), was used widely by responding laboratories to quantitate diazepam and nordiazepam, only 55% (30/55) indicated that they used an internal standard for the diasepam assay and 75% (27/36) for the nordiazepam quantitation. As with the ethanol determination, there was no significant statistical difference between these groups and the total results.

Numerous groups have published gas chromatographic procedures (2-4) for the quantitation of benzodiazepines in biological fluids, and those using the more sensitive and specific electron capture detector (2,3) do not require an evaporation step. The chromatography of the normetabolites and other polar metabolites, with certain liquid phases, may, however, be inadequate for accurate determination. Recent work at the Center For Human Toxicology has shown that a 3% SP-2250 packing from Supelco Corporation is one of the more reliable liquid phases for these quantitations. In addition, a number of workers have used high pressure liquid chromatography (3,5) to quantitate the benzodiazepines, and it may well be that this could become an equally, or even a more satisfactory procedure.

REFERENCES

- 1. Diazepam and its major metabolite, N-desmethyldiazepam in GC/MS assays for abused drugs in body fluids. NIDA Research Monograph 32, 1980, Eds. R.L. Foltz, A.F. Fentiman, R.B. Foltz.
- 2. D.M. Rutherford. J. of Chromat. 137:439, 1977.
- 3. M.A. Peat and L.Kopjak. J. of For. Sci. 24:46, 1979.
- 4. R.C. Baselt, C.B. Stewart and S.J. French. J. of Anal. Tox. 1:10, 1977.
- 5. N.Stronjy, C.V. Puglisi, and J.A.F. de Silva. Anal. Letter 135:B11, 1978.

SAMPLES 2 and 3

History

and the second secon

A 50 year-old male was found dead in his car in a locked garage. A piece of pipe led from the exhaust into the car. The deceased was a heavy drinker and had, in the past, been treated for depression. Please screen the blood and urine samples. Quantitate any drugs and/or metabolites detected in the blood sample only.

- 74 -

Analyte

3

2

Ť.

Ť.

٢

18

(i 4

Ð

É

(1

()

 (\mathbf{i})

()

()

Ó

urine sample.

QUANTITATIVE DETE

Analyte/Method

Ethano1

All Methods

Gas Chromatograph

Gas Chromatograph Internal Stand

Enzymatic

Carboxyhemoglobin

All Methods

Co-Oximeter

Visible Spectroph metry

Diffusion/Palladi Chloride

Gas Chromatograph

Amitriptyline All Methods

Gas Chromatograph

Gas Chromatograph Internal Stand

High Pressure Lig Chromatography

QUALITATIVE IDENTIFICAT	ION: SAMPLE 2 BLOOD:	74 LABORATORIES RESPONDING
Analyte	Weighed-In Value	% Positive Responses
Ethanol Carboxyhemoglobin Amitriptyline Nortriptyline	300 mg/dL 60% Saturation 0.50 mg/L 0.75 mg/L	100 (74/74) 97 (72/74) 76 (56/74) 66 (49/74)
	SAMPLE 3 URINE:	74 LABORATORIES RESPONDING
Analyte	Weighed-In Value	<pre>% Positive Responses</pre>
Amitriptyline Nortriptyline	2.0 3.0	80 (59/74) 80 (59/74)

Caffeine and nicotine were also reported as being present in the

ERMII	NATIONS:	SAMPLE 2	BLOOD:	HISTOGR IN FIGUI	AMS ARE SHOWN RES 4-6
	<u># Labs</u>	Mean	<u>S.D.</u>	<u>C.V.</u>	Range
					-
	74	281	30	11	170-360
hy	70	281	30	11	170-360
hy dard	46	283	29	10	170-360
	4	277			250-295
<u>n</u>					
	71	60	12	20	20-85
	17	63	7	11	50.3-81.8
noto-	26	61	11	18	35-85
ium	15	56	17	30	20-75
ıy	6	58			34.5-72
	49	0.51	0.25	49	0.07-1.4
ıy	38	0.51	0.27	53	0.07-1.4
y ard	21	0.49	0.25	51	0.1-1.4
uid	8	0.45			0.2-0.67
	-	75 -			

		· · · · · · · · · · · · · · · · · · ·			
		<i>.</i> .		9	
	<u>Nortriptyline</u>	. Q		and a second and a s	REFERENCES
	All Methods* 39 1.0 0.69 69 0.1-3.44	1		 Construction of the second seco	6. D.M. Chinn, T.A. Jennison et al. Clin Chem <u>26</u> :1201, 1980.
	Gas Chromatography* 29 0.95 0.65 68 0.1-3.44			an an ann an Anna an An	
	Gas Chromatography 19 1.1 0.92 84 0.2-3.44 Internal Standard*	()		*	7. R.N. Gupta and G. Molnor. Biopharm. and Drug Disposition <u>1</u> : 259, 1980.
	High Pressure Liquid70.760.36-1.07Chromatography*		1		8. R.N. Gupta and G. Molnor. Drug Metab. Rev. <u>9</u> :79, 1979.
	* One result was omitted from the gas chromatographic and high pressure liquid chromatographic data and two from the total data.	Ō		\$	9. W. Reiss, S. Brechbuhler and J.P. Dubois. Prog. Drug Metab. 3:115, 1979.
	Results from the laboratories of the Advisory Board members and			an search and a sear	10. B.A. Scoggins, K.P. Maguire et al. Clin- Chem. 26:5, 1980.
	those of routine analysis at the Center For Human Toxicology were not included.				11. E.H. Forester, D. Hatchett and J.C. Garriott. J. of Anal. Tox. <u>2</u> :50, 1978.
	GC-CIMS (6) was used to determine the concentration of the tri- cyclic antidepressants in the blood and urine samples. These	0		• • • • • • • • • • • • • • • • • • •	12. W.O. Pierce, T.C. Lamoreaux et al. J. of Anal. Tox. <u>2</u> :26, 1978
	analyses were performed during the week of shipment, the samples had been stored at 4°C. The results (n=2) were as follows: amitriptyline, blood 0.47 mg/L, urine 2.4 mg/L; and nortriptyline,				 L. Kopjak, B.S. Finkle, T.C. Lamoreaux et al. J. of Anal. Tox. <u>3</u>:155, 1979.
	blood 0.78 mg/L, urine 2.9 mg/L.	Ō		C. C.	14. F.L. Vandemark, R.F. Adams and G.J. Schmidt. Clin. Chem 24:87, 1978.
•	<u>COMMENTS</u> :			A Construction of the cons	15. J.C. Kraak and P. Bijster. J. Chromat. <u>143</u> :499, 1977.
	Generally the quantitative results for carboxyhemoglobin were accurate. Use of the Co-oximeter and visible spectrophotometry				
	for carboxyhemoglobin determination resulted in lower coefficients of variation than the diffusion procedures. Although only 50% of the	Ó			16. B.Mellström and R. Braithwaite. J. Chromat. <u>157</u> :379, 1978.
	laboratories reported ethanol as present in Sample 3, this caused				SAMPLE 4
	no concern as all respondents reported ethanol in the blood sample. The reason for this discrepancy is, without a doubt, the fact that				History
	a large number of forensic toxicology laboratories do not routinely screen urine for volatiles.	~			
					A 33 year-old truck driver was found dead in the cab of his truck. A bottle of what was suspected to be "wood alcohol" was found
	The tricyclic antidepressant blood concentrations represent toxicity. The coefficients of variation for the quantitations			ante de la constante	beside him. The pathologist requested a blood drug screen and quantitation of any drug(s) detected.
	show a large interlaboratory variation. With regard to the qualitative identification, all laboratories reporting a positive				QUALITATIVE IDENTIFICATION: 73 LABORATORIES RESPONDING
	result identified the drug and metabolite correctly.	0			
	Recently several reviews (7-10) have been published on the analysis of tricyclic antidepressants in biological fluids,				
	particularly serum and plasma. Gas chromatographic procedures with		9		Ethanol100 mg/dL97 (71/73)Methanol50 mg/dL92 (67/73)
	flame ionization and nitrogen phosphorous detectors are available for screening biological samples for the tricyclic antidepressants				
	(11,12). They can also be quantitated using identical or similar				Secobarbital 2.5 mg/L 33 (24/73)
	procedures (11,13). In the past few years, HPLC has become a popular technique for quantitating the tricyclic antidepressants				Pentobarbital was identified by a single particpant.
	(14-16), particularly in serum and plasma samples.	-			QUANTITATIVE DETERMINATIONS: HISTOGRAMS ARE SHOWN IN FIGURES 8-10.
		O		¢	
	na di terreta di seconda di second	ant An A			- 77 -

9

.

0

- 77 -

						n n Geologie (Chilling an Alem n 1977) 1998 (Berling an Aleman (Berling (Berling (Berling and Aleman Aleman Ale				
							Ç,		8	
	Analyte/Method	<u># Labs</u>	Mean	<u>S.D.</u>	<u>C.V.</u>	Range				barbiturate cases, it is higher than that achieved following
	<u>Ethano1</u>									typical hypnotic dose of the drug. This concentration is detectable by gas chromatography with flame ionization detectors (17),
	All Methods	71	102	22	21	40-170	6			immunoassay methods (18) and high pressure liquid chromatography
	Gas Chromatography	67	103	22	21	40-170	\$.7		3	(19). However, some of the U.V. procedures used for screening autopsy specimens for barbiturates may not have the required sensi-
	Gas Chromatography Internal Standard	42	103	23	22	44.4-170				tivity to detect less than 3 mg/L.
	Enzymatic	4	91			65-104	•			A number of laboratories reported performing carboxyhemoglobin analyses, a test which is consistent with the history. All results
	Methanol_						Q.		3	were less than 10% saturation. Only one false positive (pento- barbital) was reported.
	All Methods*	63	59	13	22	30-87				
	Gas Chroamtography*	62	59	13	22	30-87				REFERENCES
N	Gas Chromatography Internal Standard	3'6	59	13	22	30-87	0	P	*	17. E.H. Foerster, J.Dempsey and J.C. Garriott. J. of Anal. Tox. 3:87, 1979
	<u>Secobarbita1_</u>									18. Roche, Abuscreen RIA
	All Methods	23	2.1	1.0	48	0.15-5.0				
с. (2	Gas Chromatography Internal Standard	15	2.1	0.9	43	1.2-5.0	с С)			19. R.F. Adams, G.T. Schmidt and F.L. Vandemark. J. of Chromat. <u>145</u> :275, 1978.
•	*Three results were o	mitted fr	om these	data.				n an Araba Araba Araba		SAMPLE 5
	Poculta from the lobe	mataniaa	ο £ ∔ Ъ ⊂ Λ	محمد مراقب المحمد	D 1					History
	Results from the labo routine analysis at t	he Center	For Hum	avisory an Toxic	Board an ology we	nd those of ere not includ	led. ()			A 25 year-old male was found dead with stab wounds. He had a
	The sample was also a shipment, by GC-CIMS The sample had been s blood concentration (nalyzed f using amo tored at	or secob barbital 4°C sinc	arbital as inte e prepar	during t rnal sta ation.	the week of andard.				history of drug abuse and had been under treatment at a methadone maintenance clinic, although he had not been seen by the staff for three weeks. The pathologist requested a urine drug screen. No screen for volatiles is required.
	COMMENTS:		Ŧ		5.		о С		e	QUALITATIVE IDENTIFICATION: 74 LABORATORIES RESPONDING
	The coefficients of v	ariation	for the	quantita	tion of	ethanol and				Analyte Present <u>Weighed-In Value</u> <u>% Positive Responses</u>
	methanol show interla variation in ethanol	boratory	variatio	n in the	se assav	vs. This				Morphine 2 mg/L 88 (65/74)
	though exact details	of the an	alytical	methods	used we	ere not	\cdot O		0	Methadone 5 mg/L 96 (71/74)
	requested, it is poss Carbowax column for v	ible that	those 1	aborator nd this	ies usin nacking	ng a Carbopack	ζ-			Methadone Metabolite 10 mg/L 68 (50/74)
	factory for quantitat series. Of the four the determination of chromatography. It i enzymatic procedures cases are encountered	ion than participa ethanol, s also im alone wil	those wh nts who only one portant	o used o used enz detecte to reali	ne of th ymatic n d methar ze that	ne Poropak nethods for nol by gas ===================================	P 0			This sample was prepared at the Center For Human Toxicology from a urine that was known to be drug free. However, twenty-four participants reported quinine, three reported codeine and one each reported acetaminophen, quinidine, meperidine and flurazepam. Caffeine and theobromine were also reported as positive; these may have been present from previous coffee and tea ingestion.
	Only 23 laboratories sample. Although a b that regarded as toxi	lood conc c, and cu	entratio	n of 2.5	mg/L is	s lower than	0			Two laboratories, using immunoassay procedures only, reported positive opiates. A number of laboratories reported the presence of morphine glucuronide, which was not added to the urine sample. Presumably, these identifications were based on the presence of morphine after acid or enzymatic hydrolysis.
							· 0			- 79 -
								0		

COMMENTS:

A number of different analytical procedures were used to identify morphine, methadone and its metabolite, including thin layer chromatography, gas liquid chromatography and immunoassay. 88 percent or more of the participants identified morphine and methadone correctly, although 9 participants (12%) failed to detect morphine. Quinine was a major misidentification at 24 laboratories; thin layer chromatography being the principal method of identification. This is surprising, considering that the same "blank urine" was used to prepare Sample 3, and no reports of positive quinine were received on this sample. In addition, analysis at the Center by gas chromatography-electron impact mass spectroscopy did not detect the presence of quinine.

Identification of basic drugs by thin layer chromatography alone is not recommended, if possible other analytical procedures should be used to confirm the initial thin layer results. Moffat and Smalldon (20) reported on the discriminating power of thin layer and paper chromatographic systems for basic drugs. They found that the maximum combined discriminating power achieved with two systems approached 0.93, whereas for an ideal system it should approach unity. Values of 0.97 have been reported by the same group for two gas chromatographic systems.

REFERENCES

20. A.C. Moffat and K.W. Smalldon. J. of Chromat. 90:9 1974.

- 80 -

1

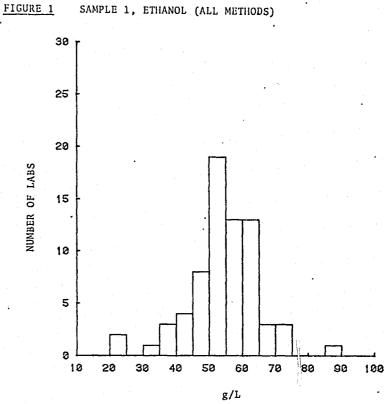
L

3

3

()

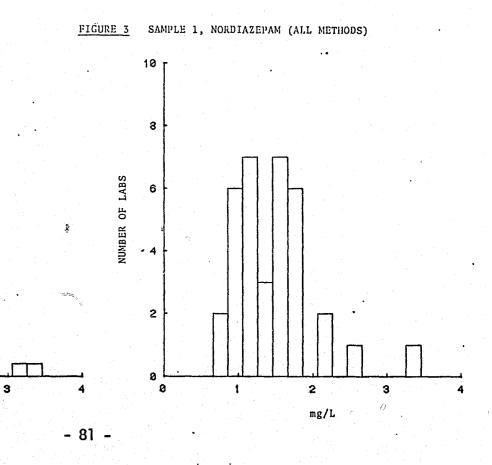
()

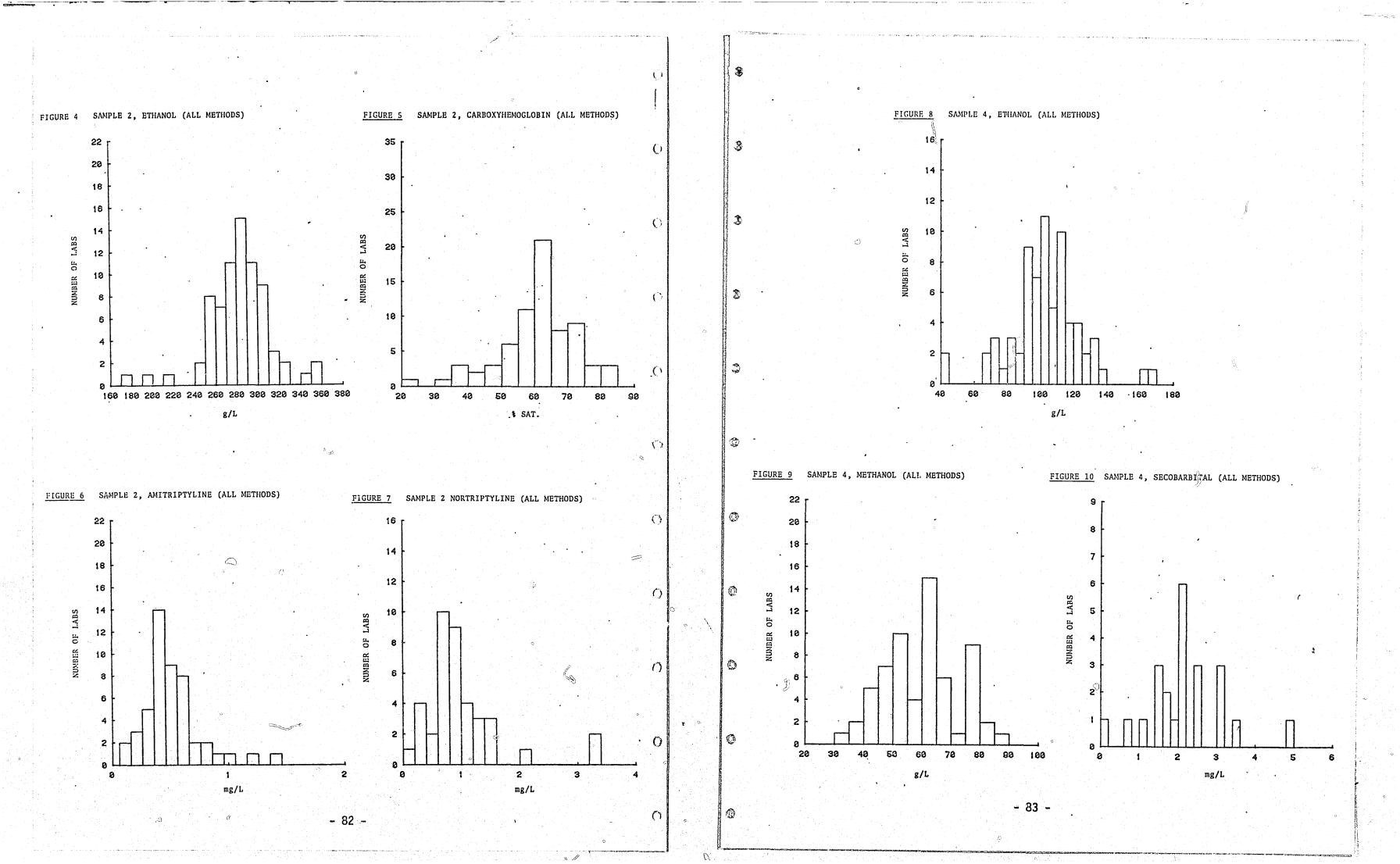

 $\langle \rangle$

0

0

0


0



2

mg/L

	$\hat{\mathbf{O}}$		3	
Z1				INTRODUCTION
				•
				102 batches of sa
				breakages and spi
				to these particip
	\mathbf{O} , where \mathbf{O} is the first operator of the first operator \mathbf{O} . The first operator \mathbf{O} is the first operator \mathbf{O}		3	For this shipment
				fluoride than wer
				decomposition wer
			200 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100	Both blood sample
			And the second se	appropriate amoun
	\mathbf{O}		S	These solutions w
				The liver homogen
				daily doses of me killed on day 31
			tre Record	killed on day 31
			5	was dissolved in
	en en en la factoria de la compañía		8	a methyl cellulos
				3
		\$	-	If there are any
•				to call. There a
				if required.
		-		
	PROFICIENCY TESTING PROGRAM		.	SAMPLE 6
				History
4				<u></u>
				A 50-year-old mal
				found dead at the
	INTEDIM DEDODT SAMPLES 6-10			
	INTERIM REPORT SAMPLES 6-10)		
	INTERIM REPORT SAMPLES 6-10	•	Ð	Medical Examiner
	INTERIM REPORT SAMPLES 6-10			
	INTERIM REPORT SAMPLES 6-10			Medical Examiner history. Do not
	INTERIM REPORT SAMPLES 6-10			Medical Examiner
	INTERIM REPORT SAMPLES 6-10			Medical Examiner history. Do not QUALITATIVE IDENT
				Medical Examiner history. Do not
	INTERIM REPORT SAMPLES 6-10			Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate
				Medical Examiner history. Do not <u>QUALITATIVE IDENT</u> <u>Analytes Present</u> Propoxyphene Norpropoxyphene Salicylate This sample was n
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was m was known to be o
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be o and acetylsalicyl
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be o and acetylsalicyl drugs: amobarbit
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be o and acetylsalicyl drugs: amobarbit primadone, and ph
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be o and acetylsalicyl drugs: amobarbit
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicy drugs: amobarbit primadone, and ph One laboratory re
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be o and acetylsalicyl drugs: amobarbit primadone, and ph
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u>
				Medical Examiner history. Do not <u>QUALITATIVE IDENT</u> <u>Analytes Present</u> Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of
				Medical Examiner history. Do not <u>QUALITATIVE IDENT</u> <u>Analytes Present</u> Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropo EMIT (18/74) or 1
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropote EMIT (18/74) or 1
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropo EMIT (18/74) or 1
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropote EMIT (18/74) or 1
	- 84			Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropote EMIT (18/74) or 1
				Medical Examiner history. Do not QUALITATIVE IDENT Analytes Present Propoxyphene Norpropoxyphene Salicylate This sample was n was known to be of and acetylsalicyl drugs: amobarbit primadone, and ph One laboratory re <u>COMMENTS</u> A combination of and norpropoxyphe gas chromatograph reported norpropote EMIT (18/74) or 1

amples were shipped on March 10, 1981. Several reports of illed samples were received. Duplicate samples were shipped pants. 74 replies (postmarked by April 3, 1981) were received. t the blood was stabilized with larger amounts of oxalate re used for the first shipment. No reports of odor or re received.

es (#7 and #8) were prepared from bovine blood by dissolving nts of the drug, or a salt of the drug, in water or ethanol. were used to "spike" the blood sample.

nate was prepared from rat livers. The rats were given increasing ethaqualone and pentobarbital over a period of 30 days and were by repetitive injections of pentobarbital. The pentobarbital saline and the methaqualone in a dilute ethanol solution or se suspension.

questions concerning the data in this report, please feel free are limited amounts of samples 6-10 available for repeat analysis

le with a history of lower back pain and epileptic seizures was e base of a set of stairs. An autopsy was performed and the requested that a urine sample be screened to establish medication quantitate any drugs and/or metabolites detected.

TIFICATION: 74 LABORATORIES RESPONDING

<u>Weighed-In Value</u>	<pre>% Positive Responses</pre>
20 mg/L	96 (71/74)
30 mg/L	84 (62/74)
100 mg/L	38 (28/74)

repared at the Center for Human Toxicology from a urine that drug-free; nonetheless, two laboratories reported acetaminophen lic acid; there were single lab reports for each of the following tal, secobarbital, phenylbutazone, theophylline, phenobarbital, henytoin. Caffeine and nicotine were also reported as positive. eported negative salicylate.

analytical techniques was used to identify the propoxyphene ene, including thin-layer chromatography, gas chromatography, hy-mass spectrometry and EMIT. Although fewer laboratories oxyphene as present, a number of participants used either U.V. spectrophotometry (5/74)° for identification. Both of will not distinguish parent drug from metabolite. Although atography was used by a large number of laboratories (39/74)

- 85 -

		بالمتعمر المستري								
•	r = 1 ($r = 1$) used other	<u>ار</u> د		(D .	Analyte Method	<u># Labs</u>	Mean	<u>S.D</u> .	<u>C.V.%</u>	Range
	for the analysis of propoxyphene, the majority of these (31/39) used other chromatographic procedures or EMIT in addition, in order to identify the parent drug positively.				Flurazepam (cont.)					
	The screening of salicylate in urine requires a simple color test with $5\% \text{ W/V}$			G	Gas Chromatography ² Internal Standard	40	0.93	0.56	60	0.1-3.3
	ferric chloride (1). It is surprising, therefore, that only 28 laboratories (38%) reported a positive salicylate. The routine use of this spot test is recommended whenever a urine is screened.	()			High Performance Liquid Chrematography	5				0.65-2.2
	Only a few false positives were reported. Two laboratories, however, reported			and the second	<u>Desalkylflurazepa</u> m All Methods ²	00	0 (1	0.07		0 10 1 4
	acetylsalicylic acid as being present. In fact, "aspirin" is rarely detectable in the urine.	Ó		9	Gas Chromatography ²	26 21	0.61 0.59	0.27 0.28	44 47	0.18-1.4 0.18-1.4
с. 1	REFERENCE		19 miles 412 miles 422	and an and a second	Gas Chromatography ² Internal Standard	19	0.60	0.29	48	0.18-1.4
	1. Poison Detection in Human Organs, Third Edition, A. Curry, 1976.		or portago and a state		High Performance Liquid Chromatography	4	•			0.41-0.75
	SAMPLE 7	()	And in the second s	norm prove and the second	¹ Two results were omitte	d from th	ese data.			
	History				² One result was omitted	from thes	e data.			
	A 30-year-old female was found dead in bed by her roommate. An empty Dalmane bottle was found. Please screen and quantitate any drugs and/or metabolites	Q.		3	One laboratory reported spectrophotometry (1.1 m		razepam an	d desalky	lflurazepa	n by U.V.
	detected. QUALITATIVE IDENTIFICATION: 73 LABORATORIES RESPONDING			de any market a	Results from the laborat	ories of	the Adviso	ry Board	members we	re not includ
	Analyte Present Weighed-In Value % Positive Responses	· · · ·		A.)	GC-ECD (2) was used to d metabolites in the blood The results were as foll	. The sa	mple had b	een store	ed at 4°C s	ince preparat
	Ethanol 80 mg/dL 95 (69/73)	~ 1 1		vo ang Amura Ang	0.61 mg/L (n = 8).	UWS: FIU	razelli 0.99	my/L (n	- oj anu u	esaikyituraze
•	Flurazepam 0.8 mg/L 84 (61/73)				COMMENTS			•		
	Desalkylflurazepam 0.5 mg/L 45 (33/73)	2 						· · ·		
	One report was received for each of the following drugs: codeine, methaqualone metabolite, diazepam, and carboxyhemoglobin (37% saturation). Two laboratories reported methaqualone. One participant identified "benzodiazepine metabolites" using EMIT.			€-3	Generally, the quantitat 4 laboratories failed to are representative of th for the quantiations sho who identified flurazepa This metabolite would be	identify ose found w a large m correct	the drug. in overdo interlabo ly, only 3	The ber se cases. ratory va 3 (54%) i	zodiazepin The coef riation. dentified	e blood conce ficients of v Of the 61 par the metabolit
	QUANTITATIVE DETERMINATION: HISTROGRAMS ARE SHOWN IN FIGURES 1-3	Ċ		the state of the s	after ingestion of flura whereas the metabolite h	zepam bec	ause the p	arent dru	ig clears r	apidly from b
•	Analyte/Method # Labs Mean S.D. C.V.% Range			and provide and the second				1	•	
	Ethanol				Analytical procedures th can be adapted to screen	and quan	titate flu	razepam a	ind desalky	lflurazepam.
	All Methods 69 82 8.5 10 60-104	2		5	latter has a retention t widely used OV-17 (or SP					
	Gas Chromatography 64 82 8.5 10 60-104	ſ			desalkylflurazepam, hydr however, its half-life i	oxyethy]	flurazepam	may be d	letected in	blood sample
1	Gas Chromatography Internal Standard 54 82 8.7 11 60-104							oci onun		
	Enzymatic 2 72-74	•		A	* <u>REFERENCES</u>		i li		ζŋ .	
	Flurazepam	(2. M.A. Peat and L. Kop	jak. J.	of For. Sc	i. <u>24</u> :46,	1979.	1 1
	All Methods 1 54 0.97 0.56 58 $10.1-3.3$			a gegraan te Marine a	3. S.A. Kaplan, J.A.F.	deSilva e	tal. J.	Pharm. Sc	i. 19 <u>62</u> :1	932, 1973.
	Gas Chromatography 1^{4} 46 0.91 0.54 59 0.1-3.3			and a second			07			
	- 86 -						- 87 -	•		
		() ()		a the formation of the second s					•	

ation. zepam

centrations variation articipants ite. eriod blood,

iazepam . The he to les; metabolite.

5

0

4. D.M. Rutherford. J. of Chromat. <u>137</u> :439, 1977.	0			
5. R.C. Baselt, C.B. Stewart and S.J. French. J. of Anal. Tox. 1:10, 1977.			Analyte Method <u># Labs. Mean</u> S.	D. C.V.% Range
6. N. Stronjy, C.V. Puglisi and J.A.F. deSilva. Anal Letter 135;B11, 1978.	no de la constante de la consta	9	Pentobarbital	D. <u>C.V.%</u> Range
	0	3	All Methods 53 7.6 2.	3 30 1.3-13.8
SAMPLES 8 and 9			Gas Chromatography 44 7.7 2.4	
<u>History</u>		an a	Gas Chromatography Internal Standard 35 7.7 2.4	
A 25-year-old male was found dead in a hotel room. A collection of drug paraphernalia was also found. Please screen the blood sample and quantitate any drugs and/or metabolites in this sample and in the liver homogenate. Cause of death: pending toxicology.	¢		U.V. Spectrophotometry 3 <u>SAMPLE 9 LIVER-HOM</u>	6.0-9.0
QUALITATIVE IDENTIFICATION: SAMPLE 8 BLOOD: 70 LABORATORIES RESPONDING				
	0	3 ·	A	ENTOBARBITAL IN FIGURES 6 an
		and the second	<u>Analyte Method</u> <u># Labs</u> <u>Mean</u> <u>S.E</u>	D. <u>C.V.%</u> Range
Methaqualone 15 mg/L 89 (62/70)			Methaqualone	
Methaqualone Metabolite 7 mg/L 41 (29/70)	0	*	All Methods ² 45 $8.3 3.7$	
Pentobarbital 10 mg/L 80 (56/70)			Gas Chromatography ³ 39 8.2 3.7 Gas Chromatography	7 45 1.5-20
SAMPLE 9 LIVER HOMOGENATE: 68 LABORATORIES RESPONDING	G		Internal Standard ⁴ 32 7.9 3.3	3 42 1.5-14.5
Analyte % Positive Responses		0	High Performance Liquid Chromatography 4	8.6-11.3
Methaqualone 84 (57/68)		n Aleman and a second	Methaqual'one_Metabolite	
Methaqualone Metabolite 34 (23/68)			All Methods 7	2.7-12.03
Pentobarbital 76 (52/68)			Pentobarbital	
One laboratory used the liver for screening purposes and another found the	O State	8	All Methods ³ 41 41.5 15	36 12-84.3
quantity of sample insufficient for methaqualone analysis.			Gas Chromatography ⁵ 32 43 16	37 12-84.3
QUANTITATIVE IDENTIFICATION: SAMPLE 8 BLOOD: HISTOGRAMS FOR METHAQUALONE AND			Gas Chromatography Internal Standard ⁵ 25 42 14.5	5 35 12-74
PENTOBARBITAL ARE SHOWN IN FIGURES 4 AND 5.	0	3	¹ Two Results were omitted from these data.	
Analyte/Method # Labs Mean S.D. C.V.% Range			² Six results were omitted from these data.	$\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} $
Methaqualone				
All Methods ¹ 56 13 4.4 34 2.7-21.1 Gas Chromatography 48 13 4.2 32 2.7-21.1	0		³ Five results were omitted from these data.	
			⁴ One result was omitted from these data.	
Gas Chromatography Internal Standard 37 13 4.0 31 2.7-20			⁵ Four results were omitted from these data.	
High Performance Liquid Chromatography ¹ 3 12.5-16 Methaqualone Metabolite	0	S	Results from the laboratories of the Advisory Boar samples were analyzed at CHT by gas chromatography spectrometry for methaqualone, and by HPLC for per metabolite. The results were as follows:	V-chemical ionization macc
All Methods 10 7.5 4.0 53 1.87-14.1			이 같은 생각은 것 같은 것 같은 것 같은 것 같아. 가지 않는 것 같아.	
Gas Chromatography 9 1.87-14.1	6		- 89 -	
이는 것이 있는 것이 가슴이 있다. 이 것이 있는 것이 있는 것이 있는 것이 같은 것이 가지 않는 것이 가지 않는 것이 있는 것이 있는 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 있는 것이 같이 있는 것이 같은 것이 같은 것이 같이 있는 것이 같은 것이 같이 있는 것이 같은 것이 있는 것	0	3		
an a				

SHOWN FOR and 7

Blood: Methaqualone 11 mg/L (n = 2), metabolite 5 mg/L (n = 3), and pentobarbital 8 mg/L (n = 2).

Liver Homogenate: Methaqualone 8 mg/L (n = 2), metabolite 6 mg/L (n = 3), and pentobarbital 48 mg/L (n = 3).

Five laboratories identified diazepam as positive in samples 8 and 9, two identified ethanol as being present in the blood sample, and others identified phenytoin, pentazocine, tripellenamine, nordiazepam, amobarbital, secobarbital, and glutethimide in sample 9. One laboratory identified a short-acting barbiturate in the liver homogenate.

COMMENTS

Most laboratories identified methaqualone and its metabolite correctly, even though a number of laboratories possibly do not have a pure standard of the metabolite. An appreciable number of laboratories (7%) identified diazepam; this benzodiazepine co-elutes with the methaqualone metabolite on many of the silicone gas chromatographic liquid phases. The presence of diazepam can be confirmed by either analyzing for the normetabolite which should also be present or by an alternative chromatographic technique, such as HPLC. The concentrations of methaqualone and metabolite present are detectable by routine screening procedures (7-8) for basic drugs and can be quantitated by similar methods.

Fewer laboratories reported pentobarbital as present in the blood or liver homogenate than expected. The concentrations present were detectable using all of the common screening procedures. As with the quantitation of methaqualone, there was a wide interlaboratory variation for the determination of blood and liver homogenate concentrations of pentobarbital.

REFERENCES

7. E.H. Forester, D. Hatchett and J.C. Garriott. J. of Anal. Tox. 3:155, 1979.

8. W.O. Pierce, T.C. Lamoreaux et al. J. of Anal. Tox 2:26, 1978.

SAMPLE 10

History

A 25-year-old male, on probation for drug abuse, was killed while riding his motorcycle. Cause of death was due to multiple injuries. A urine sample was taken, and a drug screen was requested to establish drug use.

QUALITATIVE IDENTIFICATION: 73 LABORATORIES RESPONDING

<u>Analyte</u>	Weighed-In Value	<pre>% Positive Responses</pre>		
Cocaine	20 mg/L	92 (67/73)		
Benzoylecgonine	50 mg/L	66 (48/73)		
Dextromethorphan	2 mg/L	27 (20/73)		

Three laboratories reported methaqualone, two reported methamphetamine, and one each reported nalorphine, ecgonine, amphetamine, methadone, and methadone metabolite.

- 90 -

COMMENTS

敻

3

Ì

2

3

3

٢

1

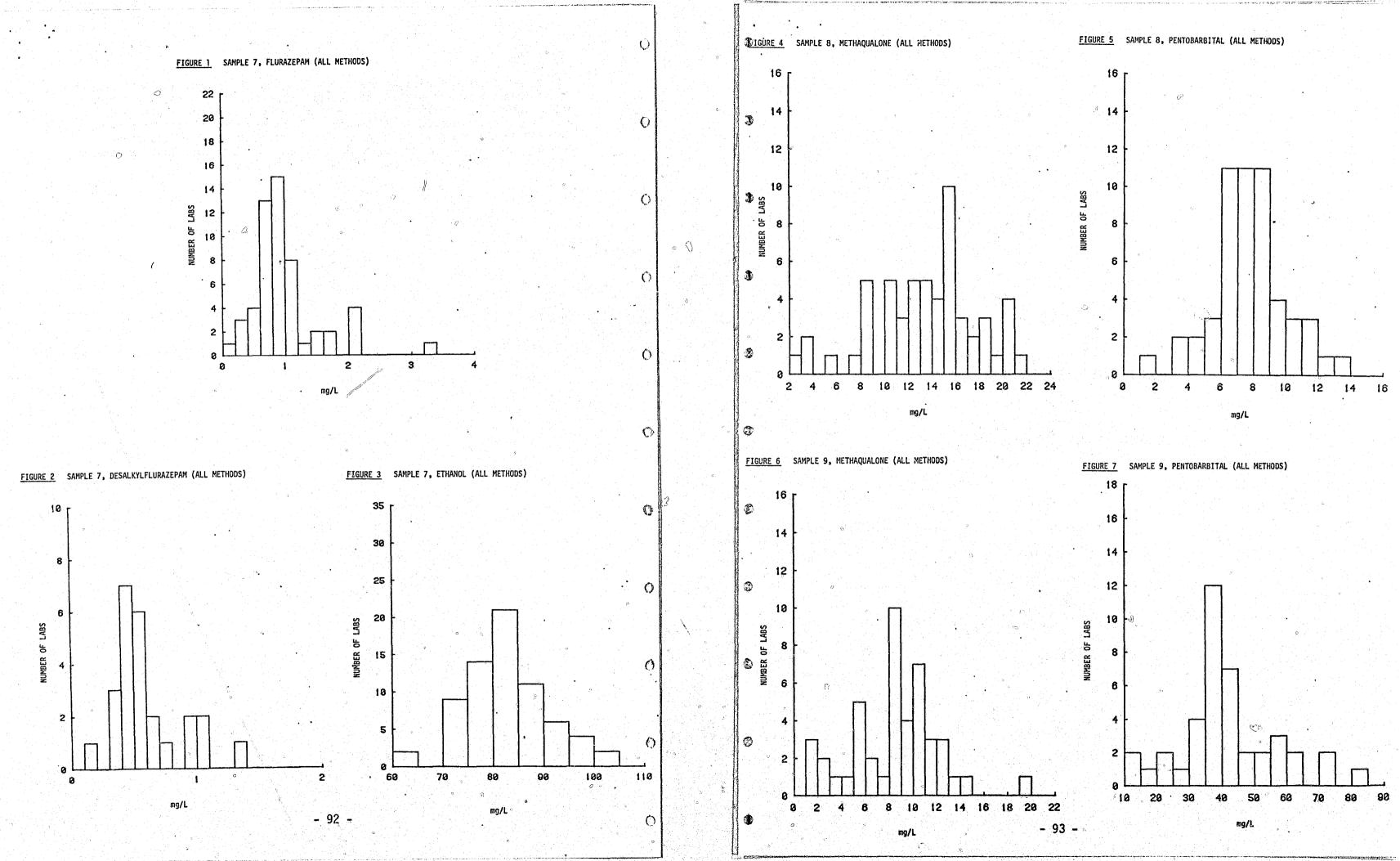
A

()

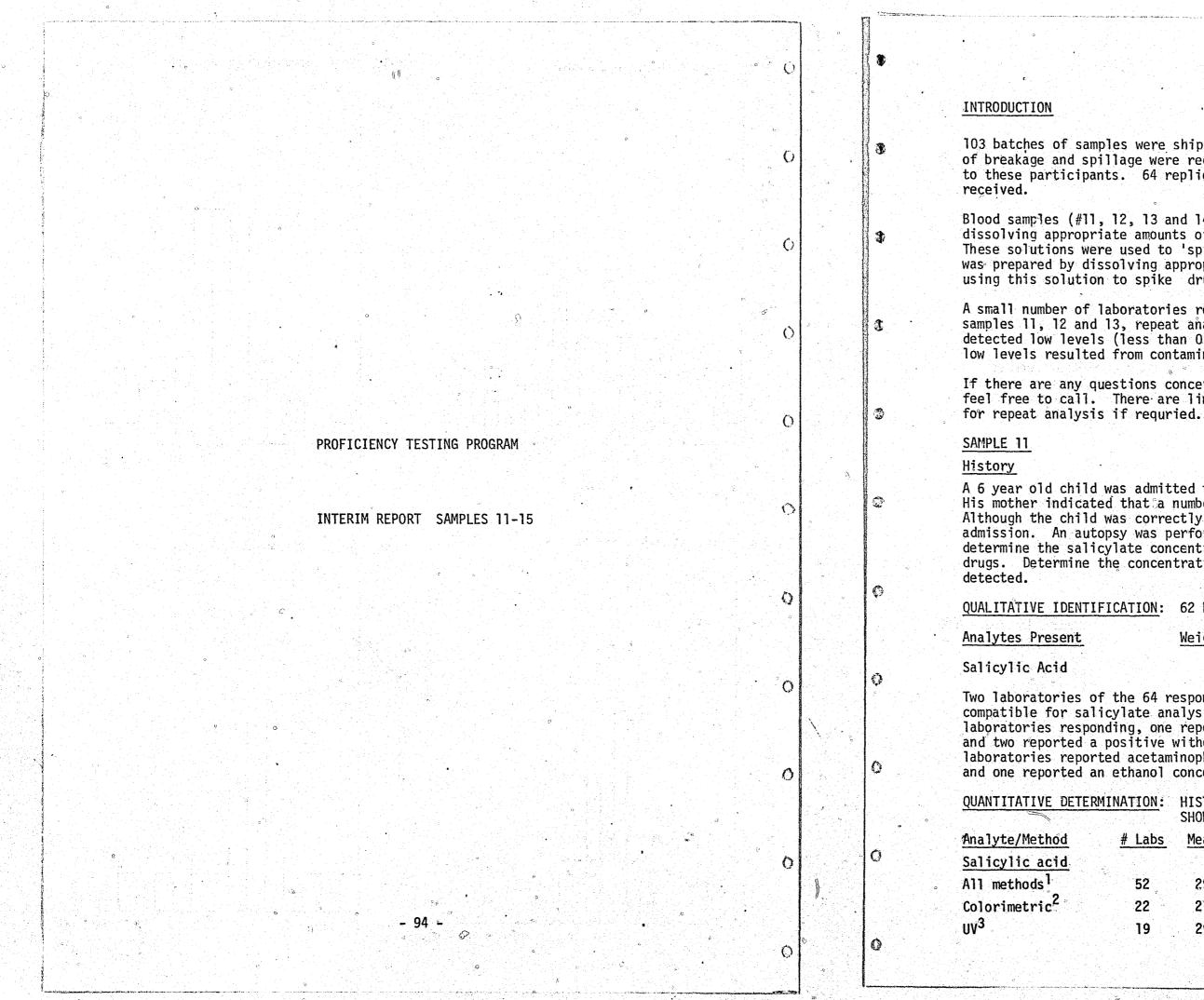
()

63

 \mathbf{O}


6

()


()

The majority of participants used a combination of chromatographic techniques and immunoassay to identify cocaine and its metabolite. Those laboratories which identified dextromethorphan used a combination of thin-layer and gas-liquid chromatography. Although the concentration of this drug is lower than that expected from an overdose, it is reasonable following therapeutic ingestion for cough suppression, and it should still be detected by those participants who use GLC and TLC techniques.

.

Ď.

103 batches of samples were shipped on May 5, 1981. A limited number of reports of breakage and spillage were received. Duplicate samples were shipped to these participants. 64 replies (postmarked by May 22, 1981) were

Blood samples (#11, 12, 13 and 14) were prepared from bovine blood by dissolving appropriate amounts of the drug or a salt of the drug in water. These solutions were used to 'spike' the blood sample. Urine sample # 15 was prepared by dissolving appropriate amounts of the drugs in water and using this solution to spike drug-free urine.

A small number of laboratories reported the presence of secobarbital in samples 11, 12 and 13, repeat analysis by RIA and HPLC at the Center also detected low levels (less than 0.5 mg/L). It is possible that these low levels resulted from contamination.

If there are any questions concerning the data in this report, please feel free to call. There are limited amounts of samples 11-15 available

A 6 year old child was admitted to a hospital suffering from acidosis. His mother indicated that a number of aspirin tablets were missing. Although the child was correctly treated he died twenty four hours after admission. An autopsy was performed and a blood sample taken. Please determine the salicylate concentration and screen the specimen for other drugs. Determine the concentrations of any other drugs and/or metabolites

QUALITATIVE IDENTIFICATION: 62 LABORATORIES RESPONDING

Weighed-In Value

% Positive Responses

300 mg/L

98 (60/62)

Two laboratories of the 64 responding reported that the sample was incompatible for salicylate analysis by their techniques. Of the 62 laboratories responding, one reported a negative using the Dupont-ACA and two reported a positive without quantitation. In addition 2 laboratories reported acetaminophen, 2 acetylsalicylic acid, 3 methanol and one reported an ethanol concentration of less than 30 mg/dL.

QUANTITATIVE DETERMINATION: HISTOGRAM FOR SALICYLATE DETERMINATION IS SHOWN IN FIGURE 1.

<u># Labs</u>	Mean	<u>S.D.</u>	<u>C.V.</u> %	Range
52	295	121	41	100-730
22	270	93	34	100-400
19	296	86	29	190-430
	_ C)5 -		

²Five results were omitted from these data. ²One result was omitted from these data. ³Two results were omitted from these data.

Results from the Advisory Board Members were not included in this analysis. A colorimetric method was used to quantitate the drug at the Center for Human Toxicology. The sample had been stored at 4° C since preparation. The mean salicylic acid concentration was 312 (n=3).

COMMENTS

Although the blood concentration of salicylate, in this case was low compared to those seen from suicidal overdoses, it is consistent with the described history. Generally, the quantitative results were accurate, inspection of Figure 1 shows that 85% fell within 1 standard deviation of the mean. Those results that were deleted from the data were all below 100. It is interesting to note that the histogram appears to demonstrate bimodal characteristics; there is no apparent explanation for this.

Comparison of the commonly used colorimetric and ultra-violet procedures failed to reveal any significant difference between them. Other analytical methodology used to quantitate the drug included fluorescence (n=4), gas chromatography (n=2), and high pressure liquid chromatography (n=1).

SAMPLE 12

History

A 46 year old male with a history of abdominal pain and depression was found dead in bed by his daughter. A suicide note and several empty prescription bottles were found. Please screen the blood sample to determine the concentration of any drugs and/or metabolites detected. Cause of death: pending toxicology.

QUALITATIVE IDENTIFICATION: 61 LABORATORIES RESPONDING

Analytes Present	Weighed-In Value	% Positive Responses
Propoxyphene	5.0 mg/L	82 (50/61)
Norpropoxyphene	4.0 mg/L	69 (42/61)
Doxepin	0.4 mg/L	43 (26/61)
Nordoxepin	0.6 mg/L	21 (13/61)

Eight laboratories reported nortriptyline, 7 amitriptyline, 2 salicylate, 4 methanol, 1 phenobarbital, 1 acetaminophen and one a blood ethanol concentration of less tha 30 mg/dL.

QUANTITATIVE DETERMINA	TION: H A	ISTOGRAMS ND DOXEPI	FOR PROPOX N ARE SHOWN	YPHENE, IN FIGU	NORPORPOXYPHENE RES 2-4
Analyte/Method	<u>#Labs</u>	Mean	<u>S.D.</u>	<u>C.V. %</u>	Range
Propoxyphene					
All methods ² Gas Chromatography ²	42 41	4.63 4.64	2.0 2.0	43 44	0.8-10.0 0.8-10.0
Gas Chromatography Internal Standard ²	35	4.84	1.9	39	1.0-10 0
J.		- 96	. .		

	Analyte/Method	#Labs	Mean	<u>S.D.</u>	<u>C.V. %</u>	Range
	Norpropoxyphene	•				
•	All methods ¹ Gas chromatography ¹ Gas chromatography ₁	36 35	4.29 4.29	2.7 2.7	63 63	0.2-11.0 0.2-11.0
	internal standard	30	4.04	2.5	62	0.5-11.0
	Doxepin					
	All methods ² Gas chromatography ²	24 21	0.43 0.46	0.23	54 52	0.14-1.0 0.14-1.0
	Gas chromatography internal standard ²	16	0.46	0.24	52	0.14-1.0
	Nordoxepin					
	All methods ²	11	0.70	0.38	55	0.2-1.48

²two results were one result

Results from the included.

The sample was analyzed at CHT during the week of shipment and during the time of analysis by participants; propoxyphene and norpropoxyphene were determined by a combination of GC-CIMS and GC-NPD and doxepin and nordoxepin were determined by GC-CIMS (1). The results were as follows: propoxyphene 5.1 mg/L (n=8), norpropoxyphene 4.5 mg/L (n=4), doxepin 0.62 mg/L (n=8), nordoxepin 0.71 mg/L (n=5).

COMMENTS

The concentrations of propoxyphene, norpropoxyphene, doxepin and nordoxepin were representative of those encountered in cases of death resulting from the combined ingestion of propoxyphene and doxepin. 82% of laboratories responding identified propoxyphene and 69% norpropoxyphene, whereas, only 43% identified doxepin and 21% it's metabolite. A significant number of respondents reported nortriptyline (13%, 8/61) and amitriptyline (11%, 7/61). GLC was used by the majority of participants to screen and quantitate the particular drugs and metabolites in this case. Pierce et al (2) have reported the following relative retention times (to prazepam) for these compounds on the commonly used OV-17 and OV-1 systems:

Propoxyphene Norpropoxyphene Norpropoxyphene an Doxepin Amitriptyline Nortriptyline

It is obvious, therefore, that caution should be exercised when identifying peaks that have retention times in this area. In addition the use of electron-impact mass spectrometry and identification of base peak could be confusing as propoxyphene, doxepin and amitriptyline all have a base peak of m/z 58 (3).

()

Ô

(

(

٤ï

0

()

0

()

(0)

3

1

X

A.

Ť,

٢

Ð

٢

two results were omitted from these data

Results from the laboratories of the Advisory Board Memebers were not

	3% OV-17	3% OV-1
	0.65	0.69
	0.83 (0.85)	0.83 (0.85)
amide	0.94	0.94
	0.71	0.72
	0.67	0.70
	0.70	0.72

- 97 -

The coefficients of variation for the quantitation of the four drugs and metabolites show a large interlaboratory variation. The highest was that for norpropoxyphene (range 62-63%) which because of its chemical reactivity in alkali solution spontaneously rearranges to the amide. In fact, a more reliable quantitation is acheived by forcing this reaction to completion, and then chromatographing the amide (4). This would also assist in a positive identification of norpropoxyphene.

SAMPLE 13

History

A 19 year old female died following a party. One hour before she had been given an injection by her boyfriend who was a known drug abuser. The deceased was known to take minor tranquillizers for anxiety. Please screen the blood sample and determine the concentration of any drugs and/or metabolites detected. Cause of death: pending toxicology.

QUALITATIVE IDENTIFICATION: 60 LABORATORIES RESPONDING

Analyte Present	Weighed-In Value	<pre>% Positive Responses</pre>
Diazepam	1.0 mg/L	90 (54/60)
Nordiazepam	1.5 mg/L	73 (44/60)
Morphine	0.05 mg/L	25 (15/60)
Codeine	0.15 mg/L	25 (15/60)

One laboratory reported a total benzodiazepine by UV and another laboratory an opiate positive by RIA. Three participants reported methanol, 2 phenytoin, 1 chlordiazepoxide, 1 oxazepam, 1 amphetamine, 1 benzoylecgonine and 1 an ethanol concentration of less than 30 mg/dL.

QUANTITITAVE IDENTIFICATION:	HISTOGRAMS FOR DIAZEPAM, NORDIAZEPAM AND
	CODEINE ARE SHOWN IN FIGURES 5 THROUGH 7.

<u>Range</u>
0.2-2.6 0.2-2.6
Q
0.80-2.26
0.3-3.5 0.3-2.3
0.3-2.3
1.32-3.4.
0.06-0.09
na sente a la construir de la c La construir de la construir de La construir de la construir de
0.10-0.60

three results were deleted from these data ²one result was deleted from the data

included.

The samples were analyzed by GC-CIMS (5) for the opiate narcotics, and the benzodiazepines were quantitated by GC-ECD (6) at CHT. Prior to analysis the samples were kept at 4°C. The results were as follows: diazepam 0.94 mg/L (n=5), nordiazepam 1.46 mg/L (n=5), morphine 0.06 mg/L (n=2) codeine 0.20 mg/L (n=2).

COMMENTS

3

A

3

A.

Ð

Ð

Ō

0

0

đ R

Ch

(

Ó

()

The concentrations of diazepam and nordiazepam included in this sample were the same as those in Sample 2. In general, the qualitative and quantitative results from Sample 13 were similar to those reported for Sample 2. The identification and quantitation of the benzodiazepines. in particular diazepam and nordiazepam, were discussed in the First Interim Report.

SAMPLE 14

An industrial worker was found dead near a carbon monoxide generator. The deceased was a known epileptic. An autopsy revealed signs of recent seizure activity. Please screen the blood sample for drugs and quantitate any drugs and or metabolites detected.

OUALITATIVE IDENTIFI

Analyte Present

Phenobarbital Carboxyhemoglobin

Three participants reported the presence of methanol and one reported an ethanol concentration of less than 40 mg/dL.

Results from the laboratories of the Advisory Board Members were not

Low concentrations of morphine (0.05mg/L) and codeine (0.15 mg/L) were also included in this sample. Baselt (7) has reported that blood morphine concentrations range from 0.01-3.0 mg/L in heroin fatalities. Only 25% (15/60) of the respondents identified morphine and codeine as present and of those, 12 quantitated the morphine, whereas, the codeine was determined by all 15 participants. The most suitable screening technique for such low concentrations is radioimmunoassay. The commercially available I-125 kit cross reacts to morphine on approximately a 1:1 basis. A number of gas liquid chromatographic procedures are available for quantitating these opiate narcotics. Commonly, the silv1 (8) or acety1 derivative (9) is formed for morphine and flame ionization detection used.

CATION:	63	1 ABORAT	ORTES	RESPONDING

Weighed-in Value	<u>% Pc</u>	ositive Responses
20 mg/L	98	(62/63)
30 % saturation	91	(57/63)

								and the second se		
			117070004		,,		\mathbf{O}	A State		•
	QUANTITATIVE IDENTIFIC	AIION:	HEMOGLOB	MS FOR PHE IN ARE SHO	WN IN FIGU	AND CARBOXY- IRES 8-9				QUALITATIVE IDEN
<u>.</u>	Analyte/Method	#Labs	Mean	<u>S.D.</u>	C.V. %	Range				Analyte Present
	Phenobarbital						0	and the second secon		Meprobamate
	All methods Gas chromatography	60 34	17.3 15.6	5.6 6.0	32 38	7.41-36 7.41-33		an a		Imipramine Desipramine
	Gas chromatography internal standard	32	16.7	5.0	30	8.07-33		in the second		Three laboratorie
	High pressure liquid chromatography	8				9.7-20.6	0			reported meperidi carisprodol.
	Ultraviolet spectro- photometry	7			•• •	11.36-36				COMMENTS
	<u>Carboxyhemoglobin</u>									The majority of p
	All methods ¹ Co-oximeter ² Spectrophotometric ³ Palladium chloride Gas liquid chromato-	51 12 18 11	29 34 29 27	11 13 9 12	38 38 31 44	13-50 16.2-48.4 15-47.4 13-42	Ó			techniques to ide half those respon to thermal decomp and for this reas furfural:HCl (10 for detection. T
	graphy	6				23-50				caused little pro
	l 2four results were del 3one results was delet two results were del	ed from	these da	ta.		o *	O	¢.		small number misi those using TLC a and desipramine b commonly used to
	The results from the l included in this analy		ry of the	Advisory	Board Memb	pers were not		A second s		The identificatio discussed under S
•••	Analysis over the peri cedure showed a carbox concentration was foun	yhemogl	obin satı	ration of	30% (n=4)	rophotometric pro- . The phenobarbital				
	COMMENTS									
6	Generally, the qualita							Ø		
	were accurate. It is publications on HPLC o used this technique to	f the a	nti-convu	llsants, tl	nat only 13					
	Carboxyhemoglobin was performed carboxyhemog with the history. The however, the coefficie were considerably high	lobin de percent nts of er. As	eterminat t saturat variation with Sam	ions, a te ion was ha , particu ple 2, the	est which i alf that in larly that e use of pa	is consistent Sample 2; for the Co-Oximeter, alladium chloride	0	Ø		
	diffusion methods resu	lted in	the high	est coeff	icient of v	variation.	0			
	SAMPLE 15							0		
	History				2 2 2					
а.	A 56 year old female w automobile accident. requested that the uri quantitate any drugs a volatiles.	An auto ne samp	psy was p le be scr	erformed a eened to a	and the med establish d	dical examiner drug use. Do NOT	Ô		<i>"</i> (~)	
			- 10	9 -						
	α το						75			

1.1

NTIFICATION:

: 61 LABORATORIES RESPONDING

Weighed-In Value

% Positive Responses

75	ma/L
2	mg/L
3	mg/L

56	(34/61)
87	(53/61)
75	(46/61)

ries reported doxepin, 2 reported nordoxepin, and 1 each idine, normeperidine, amitriptyline, methaqualone and

f participants used a combination of chromatographic identify the three drugs included in this sample. Less than bonding identified meprobamate; this drug is susceptible proposition in the injection port of the gas chromatograph, eason it is more reliable to use TLC as a screening technique; (10) can be used as a relatively selective spray reagent The qualitative identification of the tricyclic antidepressants problem to the majority of the participants, although, a sidentified them as other members of that group. For as a screening technique, this is suprising as imiprimine both react with FPN and H₂SO₄:-ethanol, two spray reagents to detect the phenothiazines.

ion of the tricyclic antidepressants by GC and GC/MS was Sample 12.

- 101 -

REFERENCES

1)	D.M. Chinn, T.A. Jennison, D.J. Crouch et al, Clin. Chem. 1980
2)	<pre>26 p 1201 W.O. Pierce, T.C. Lamoreaux, F.M. Urry et al, J. Anal. Tox. 1978</pre>
-	2 P 26 B.S. Finkle, E.J. Cherry and D.M. Taylor, J. Chromat. Sci. 1971
	9 P 393-419 R.L. Wolen, E.A. Ziege and C.M. Gruber, Clin. Pharmacol. & Therap.
	1975 <u>17</u> p 15-20

Q

O

 \mathbf{O}

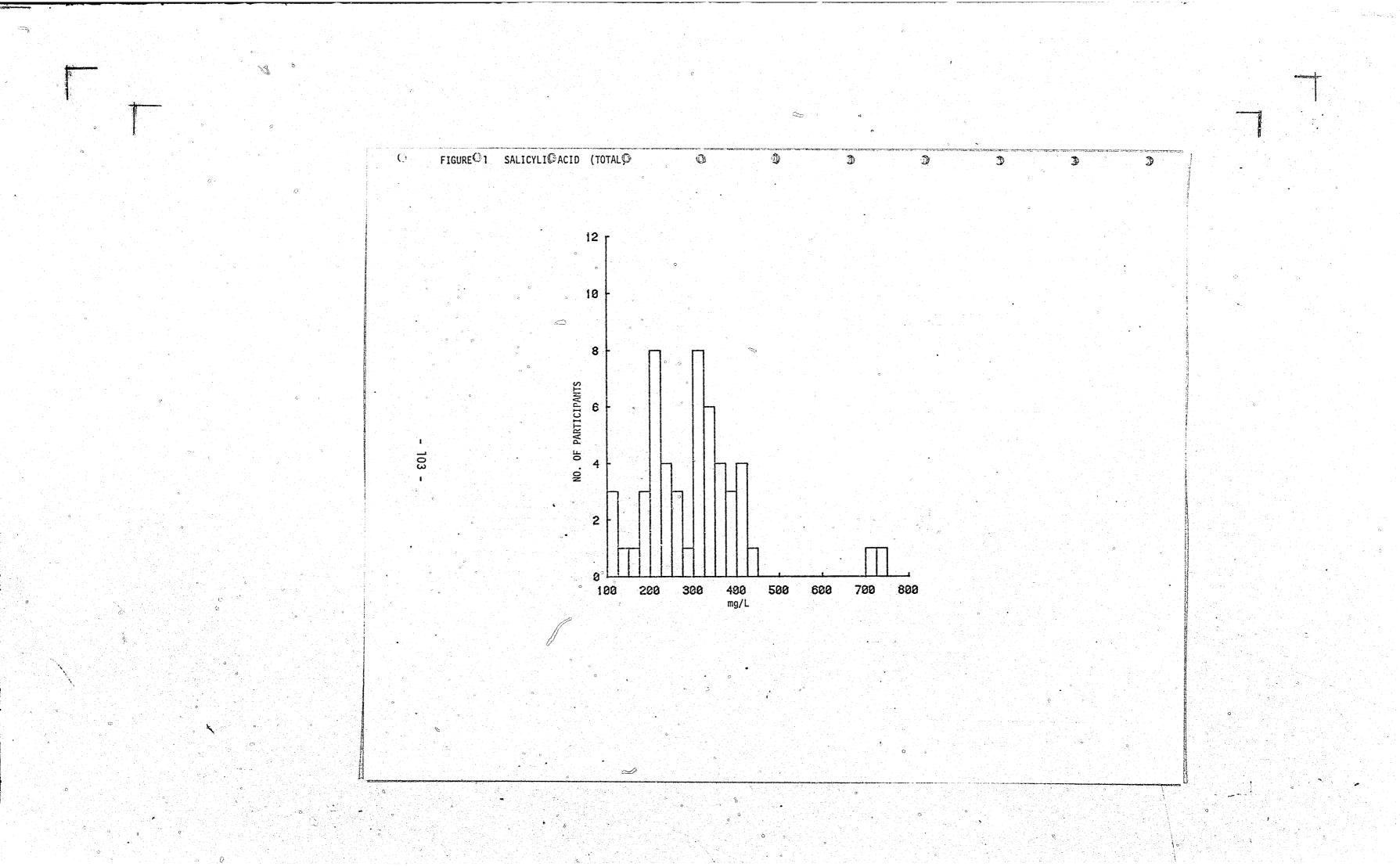
Ó

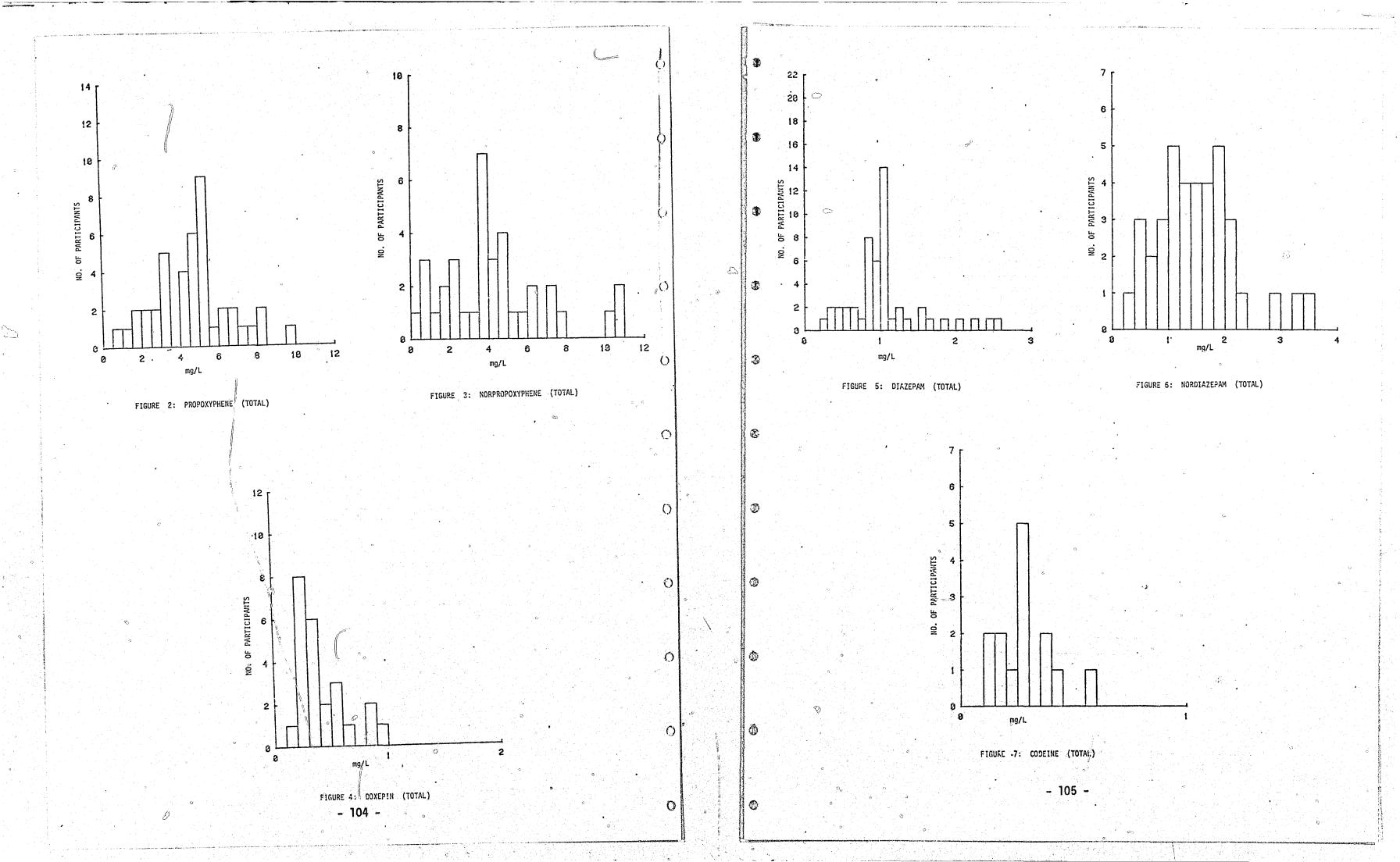
Ó

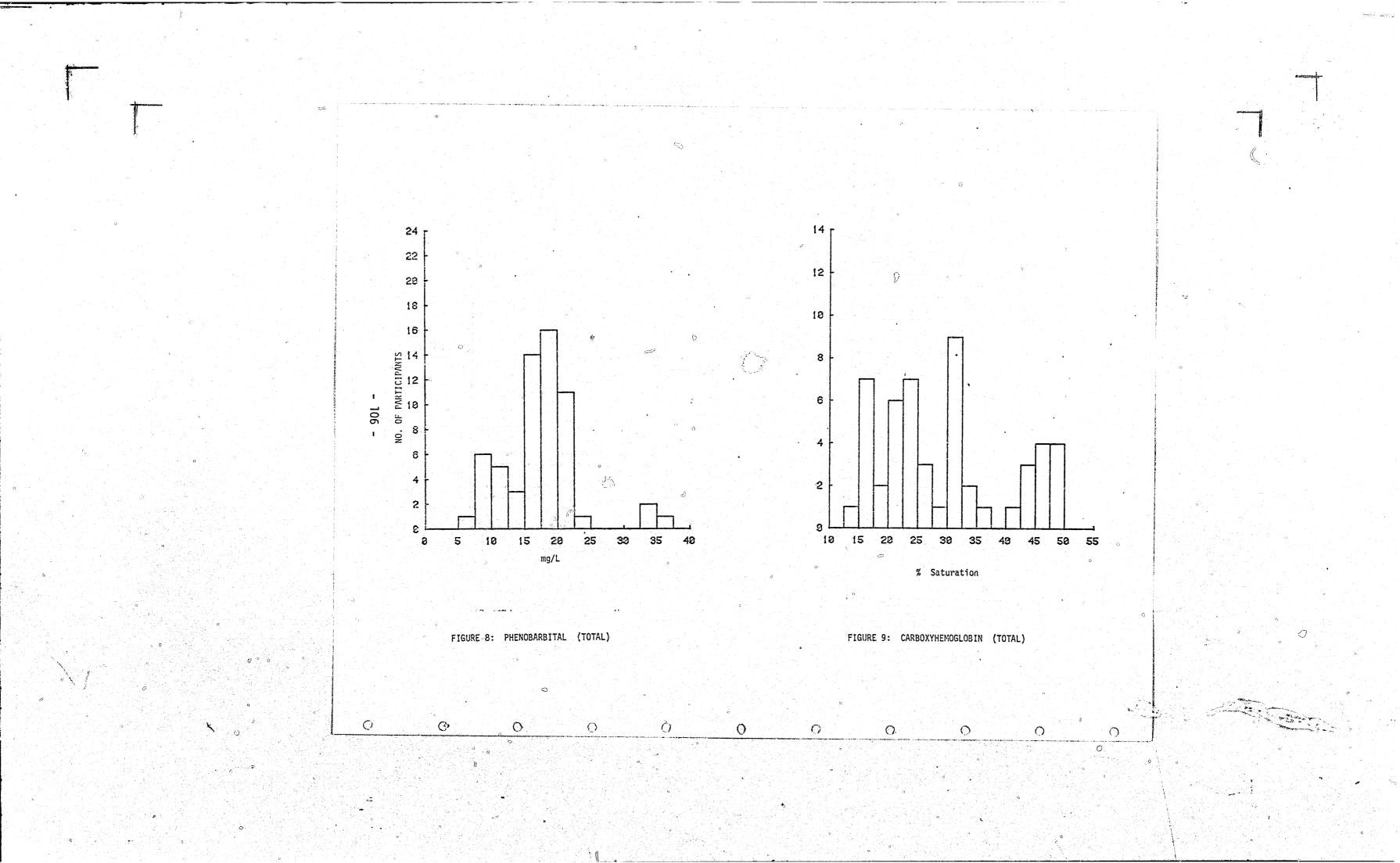
 \bigcirc

()

()


0


 \bigcirc


0

- 5) GC/MS Assays for Abused Drugs in Body Fluids, NIDA Research Monograph Series, #32, 1980, Eds. Foltz et al, p 110
- 6) M.A. Peat and L. Kopjak, J. of For Sci. 1979 24 p 46
- R.C. Baselt, Disposition of Toxic Drugs and Chemicals in Man, Vol 1. Pub. Biomedical Publications, p 12.
- 8) G.R. Nakamura and E.L. Way, Anal. Chem. 1975 47 p 775
- 9) N.C. Jain, T.C. Sneath, R.D. Budd et al, Clin. Chem. 1975 <u>21</u> p 1486
- 10) A.Curry, Poison Detection in Human Organs, 3rd Edition, Pub. Charles C. Thomas, p 269

Ċ

6 🕵

æ

Æ

R

C

C

6

INTERIM REPORT SAMPLES 16-20

. 6

INTRODUCTION

103 batches of samples were shipped on July 7, 1981. Only one report of breakage and spillage during shipment was received. Duplicate samples were mailed immediately to this participant. 66 replies (postmarked not later than July 24, 1981) were received.

Samples number 16,17,18 and 19 were prepared as a set from a single hypothetical case. Sample number 16, the "gastric contents" was prepared synthetically in the laboratory and had added to it an appropriate amount of Darvocet-N-100. Sample number 17 was prepared from bovine blood by dissolving appropriate amounts of the drug or a salt of the drug in water. These solutions were then used to "spike" the bovine blood. Sample number 18 was prepared by treating a population of rats with propoxyphene and acetaminophen chronically. The animals were eventually sacrificed: their livers were then removed, combined and homogenized. The urine sample number 19, was prepared by dissolving appropriate amounts of the drugs in water and using this solution to "spike" drug-free urine. An aqueous ethanol solution was added in appropriate volume to each of the samples to acheive the desired ethanol concentrations.

Blood Sample number 20 was from a separate hypothetical case and was prepared from bovine blood by dissolving appropriate amounts of the drugs or their salt forms in water. These aqueous solutions were used to "spike" the blood sample.

There were only six false positive laboratory reports for samples 16-19, that is from the first case. There were four false positive reports for sample number 20, that is the second case. There are a few remaining samples (16-20) in storage at the Center and are available for repeat analysis if required. If there are any questions concerning the data in this report, or if you wish additional samples, please feel free to call.

SAMPLES 16-19

Case History

A 38 year old male suffered a lower back injury in an industrial accident and was subsequently unemployable. He was prescribed Darvocet-N-100 for chronic pain. He became despondent and was found dead in bed at home one morning. Suicidal drug overdose was suspected. Please screen the blood sample and determine the concentratons of any drugs and/or metabolites in each of the specimens submitted.

Sample 16 - Gastric Contents

Qualitative Identification: 65 Laboratories Responding

Analytes Present	Weighed-In Values	% Positive Responses
Propoxyphene	325 mg total	69 (45/65)
Acetaminophen	3250 mg total	49 (32/65)
Ethanol	1.5% w/v	26 (17/65)

There were no false positive results reported for this sample. Ten laboratories reported only qualitative results on this sample. Several laboratories reported trace concetrations of norpropoxyphene. Although this was not confirmed by

- 108 -

Quantitative Determ Analyte #

Propoxyphene

Acetaminophen

Ethano1

X

3

\$3

T)

O

О

0

 $\boldsymbol{\cap}$

0

(

i

()

()

()

Ô

0

0

a

Results from the advisory board members were not included in this analysis. Gas chromatography and GC-CIMS was used to quantitate the propoxyphene, a HPLC method was used for acetaminophen, and GC for the ethanol quantitation at the Center for Human Toxicology. The sample has been stored a 4°C since preparation.

Comments

Almost all of the reporting laboratories used gas chromatography for the propoxyphene and ethanol analyses and HPLC for the acetaminophen. Only two laboratories used ultra-violet spectrophotometric methods for propoxyphene, and only three laboratories used colorimetric procedures and one an ultra-violet spectrophotometric procedure for acetaminophen. Almost all of the laboratories that reported only qualitative results on this sample used thin layer chromatography. It is interesting to note that the ratio of acetaminophen to propoxyphene for these two drugs (despite the very wide range) approximate the same ratio.

Sample 17 - BloodQualitative IdentifiAnalytes PresentPropoxypheneNorpropoxypheneAcetaminophenEthanolOne laboratory reportedonly false positivesQuantitative DetermiAnalyte# L

Analyte	# Labs	Mean	<u>S.D.</u>	C.V. %	Range
Propoxyphene	60	4.7	2.2	46	0.4-10.2 mg/dL
Norpropoxyphene	50	4.9	3.5	71	0.2-13.8 mg/dL
Acetaminophen	49	179.3	57.9	32	76-332 mg/dL
Ethanol	57	78.0	8.2	10	60-105 mg/dL

Results from the advisory board members were not included in this analysis. -109 -

analysis at the Center it is possible that some norpropoxyphene was produced in some of the samples by slow hydrolysis of the parent drug.

1,	ir	Ja	t	i	0	n	:	

Labs	Mean	<u>S.D.</u>	C.V. %	Range
45	290.4 mg	198.2	68	35-900 mg total
32	3228 mg	1373	43	1400-7530 mg total
17	1303 mg/dL (1.3 % w/v)	187	14	1026-1800 mg/dL

ication:	65 Laborate	ories responding		
	Weighed-In	Values	<u>% Positi</u>	ve Responses
	5.0 mg/L		92 (60	/65)
	4.0 mg/L		77 (50	/65)
	200 mg/L		75 (49)	/65)
	80 mg/dl	-	88 (57)	/65)

One laboratory reported the presence of a methadone metabolite and another laboratory reported the presence of a "cyclopropoxyphene". These were the only false positives reported for this sample.

Quantitative Determination: Histograms for propoxyphene, norpropoxyphene, acetaminophen an ethanol are shown in Figures 1-4.

The sample was analyzed at CHT immediately following preparation, during the week of shipment and also during the time of analysis by participants. Proposyphene and norproposyphene concentrations were determined by GC-CIMS and GC-NPD. The acetaminophen by HPLC and the ethanol by GC-FID. The results were as follows: propoxyphene 5.4 mg/L, norpropoxyphene 4.7 mg/L, acetaminophen 210 mg/L and ethanol 77 mg/dL.

Comments

The concentration of drugs and metabolites in this sample are typical of those encountered in fatalities resulting from the ingestion of Darvocet and alcohol. The weighed-in values of propoxyphene and norpropoxyphene in this sample were the same as those in sample 12. It is interesting that a greater percentage of laboratories identified and quantitated proposyphene and its metabolite in this sample than did in sample 12. Although there was a 92% positive response on proposyphene there was only about three quarters (77%) of the laboratories who quantitated the norproxyphene metabolite. In addition the coefficient of variation for the norproxyphene indicates a very large interlaboratory variation and clearly the accurate quantitation of this metabolite still presents problems for many laboratories.

Sixty five laboratories out of sixty six returns responded by analyzing this sample. One sample was broken in transit and obviously that laboratory could not respond.

Sample 18 - Liver

Oualitative Identification: 62 Laboratories responding

Weighed-In Values	% Positive Response
-	77 (48/62)
– 2010 – 2010	61 (38/62)
- -	48 (30/62)
150 mg/dL	24 (15/62)

There was one false positive report made for each of the following drugs: a methadone metabolite (GC-MS), methaqualone (GC-MS), codeine, methamphetamine, and salicylate (UV spectrophotometric).

Quantitative Determination: Histograms for Propoxyphene, Norpropoxyphene, Acetaminophen and Ethanol are shown in Figure 5-8.

Analyte	<u># Labs</u>	Mean	<u>S.D.</u>	<u>C.V. %</u>	Range
Propoxyphene	48	58.2	30.0	51.1	12.3-130.0 mg/kg
Norpropoxyphene	38	16.7	10.8	64.7	1.4-48.0 mg/kg
Acetaminophen	30	146	194.5	133	13.0-780 mg/kg
Ethanol	15	105	15.1	14	76-134 mg/dL

Results from the laboratories of the advisory board members were not included.

- 110 -

Repetative analysis for ethanol at CHT provided a mean concentration of 138 mg/dL as compared to a weighed-in target value of 150 mg/dL.

and almost defy statistical analysis. Sample 19 - Urine Analytes Present Propoxyphene Norpropoxyphene Acetaminophen

Comments

5

5)

D

<u>_</u>

ð

D

0

0

()

10

1

()

Ô

()

E

(

()

0

0

Three false positive results were reported: a methadone metabolite (GC, GC-MS), salicylate (spectrophotometric) and "cyclopropoxyphene".

Quantitative Determination: Histograms for Propoxyphene, Norpropoxyphene, Acetaminophen and Ethanol are shown in Figures 9-12.

Analyte	<u># Labs</u>	Mean	<u>S.D.</u>	<u>C.V.%</u>	Range	
Propoxyphene	35	11.2	4.0	35	3.0-20.8	mg/L
Norpropoxyphene	31	28.9	15.0	52.0	10.6-76.0	mg/L
Acetaminophen	28	649	256	40	286-1327	mg/L
Ethano]	31	97.0	11.6	12	70-110	mg/dL

Results from the laboratories of the advisory board members were not included.

Comments

Ethano1

Only 42 of the responding 65 laboratories provided quantitative results on this sample. The remaining 23 laboratories detected and identified the drugs qualitatively, generally by thin layer or gas chromatography. Only one laboratory did not analyze the urine sample. Although the range of concentrations for urine propoxyphene is very broad the distribution about the mean, as shown in Figure 9, is reasonable. In contrast, the urine norpropoxyphene and the urine acetaminophen shown in histogram Figures 10 and 11 is both extremely broad and nonuniform in distribution. This observation is typical for the concentrations of norpropoxyphene and acetaminophen in each of the samples (16-19) in this set. The interlaboratory variation for these analyses can not be attributed to the analytical technique (GLC, UV etc.) alone because almost all of the responding laboratories used the same instrumental techniques; however,

Gas chromatography with either FID or NPD detectors was used almost exclusively for the determination of proposyphene and norproposyphene in this sample. Similarly, HPLC was the method of choice by almost all of the respondents for the assay of acetaminophen. Only one or two laboratories used either ultra-violet spectrophotometric procedures or a colorimetric method for acetaminophen. Many laboratories used thin layer chromatography or GC-MS to support the identification of the drugs in this sample. The tabulated statistical data and the histograms show an extremely broad range of results and interlaboratory variation that can not be attributed to diverse analytical techniques for proposyphene, norproposyphene and acetaminophen. Although less than half of the responding laboratories reported concentrations of acetaminophen in this sample, the concentration values are extremely variable

Qualitative Identification: 65 Laboratories responding

Weighed-In Values	<pre>% Positive Response</pre>		
10 mg/L	54 (35/65)		
25 mg/L	48 (31/65)		
500 mg/L	43 (28/65)		
100 mg/dL	48 (31/65)		

- 111 -

these quantitative analyses are obviously neither simple nor routine for most analytical toxicologists and some inspection of the total method, including extraction and internal standards, seems warranted.

Sample 20 - Blood

History

A young man was brought comatose to a hospital E.R. by friends but died very quickly afterwards. He had a long history of multiple drug abuse including opiate narcotics, and there were recent "track marks" noted at autopsy. Please screen the blood sample for drugs and quantitate any drugs and/or metabolites detected.

Qualitative Identification: 54 Laboratories responding

Analytes Present	Weighed-In Values	<u>% Positive Responses</u>		
Secobarbital	2.0 mg/L	44 (24/54)		
Morphine	0.5 mg/L	57 (31/54)		
Codeine	0.2 mg/L	31 (17/54)		

One laboratory only received this specimen in broken or leaking condition and was unable to complete the analysis. Two laboratories reported that there was insufficient sample for them to complete their analysis. Two laboratories reported concentrations of propoxyphene in this sample, determined by GC-NPD. There was also, one report of acetone, ethanol, and cyanide. It was suggested that the cyanide may have resulted from decomposition of the sample.

Quantitative Determination: Histograms for Secobarbital, Morphine and Codeine are shown in Figures 13-15.

Analyte	#Labs	Mean	S.D.	C.V. %	Range
Secobarbital	24	2.4	1.0	43	1.0-4.4 mg/L
Morphine	31	0.59	0.23	39	0.1-1.1 mg/L
Codeine	17	0.25	0.05	22	0.1-0.3 mg/L

One result was omitted from the secobarbital data; two results from the morphine data; and one result from the codeine data.

Results from the laboratories of the advisory board members were not includ.

This sample was anlyzed at CHT several times during the week of shipment, during the time of analysis by participants, and since receipt of participants reports. The secobarbital was assayed by both HPLC and GC-NPD, the morphine and codeine by GC-CIMS. The mean values were as follows: secobarbital 1.8 mg/L, morphine 0.62 mg/L, and codeine 0.28 mg/L.

Comments

The concentration of codeine in this sample was the same as that in sample 13 but the morphine was increased in this sample by ten fold. The identification and quantitation of morphine and codeine in blood samples was discussed in the interim report dealing with sample 13. Only 54 laboratories responded with quantitative data on this sample, and only 17 of those laboratories provided codeine results. Although the concentration of morphine was increased by ten fold over that in sample 13, the C.V. % was much greater (sample 13: 22 %, sample 20: 39%). In any event the range of results for morphine in blood is very broad, and that for codeine only slightly better. Of the quantitative methods used for morphine there were 14 spectrofluorometric, 5 GC, 4 GC-MS and 8 RIA. For codeine; 12 laboratories used GC and 5 GC-MS. RIA, GC and TLC were about evenly divided for qualitative identification. Nineteen of 24 reporting laboratories used GC for the secobarbital quantitation. There was 1 HPLC, 1 GC-MS and 3 UV Spec. Apart from 2 GC-MS and 2 RIA, TLC was used for qualitative confirmation. There was no discernible statistical differences between the results obtained by any particular method, even the 14 morphine results by spectroflurometry were widely distributed.

٩.

ð

农

蹇

69

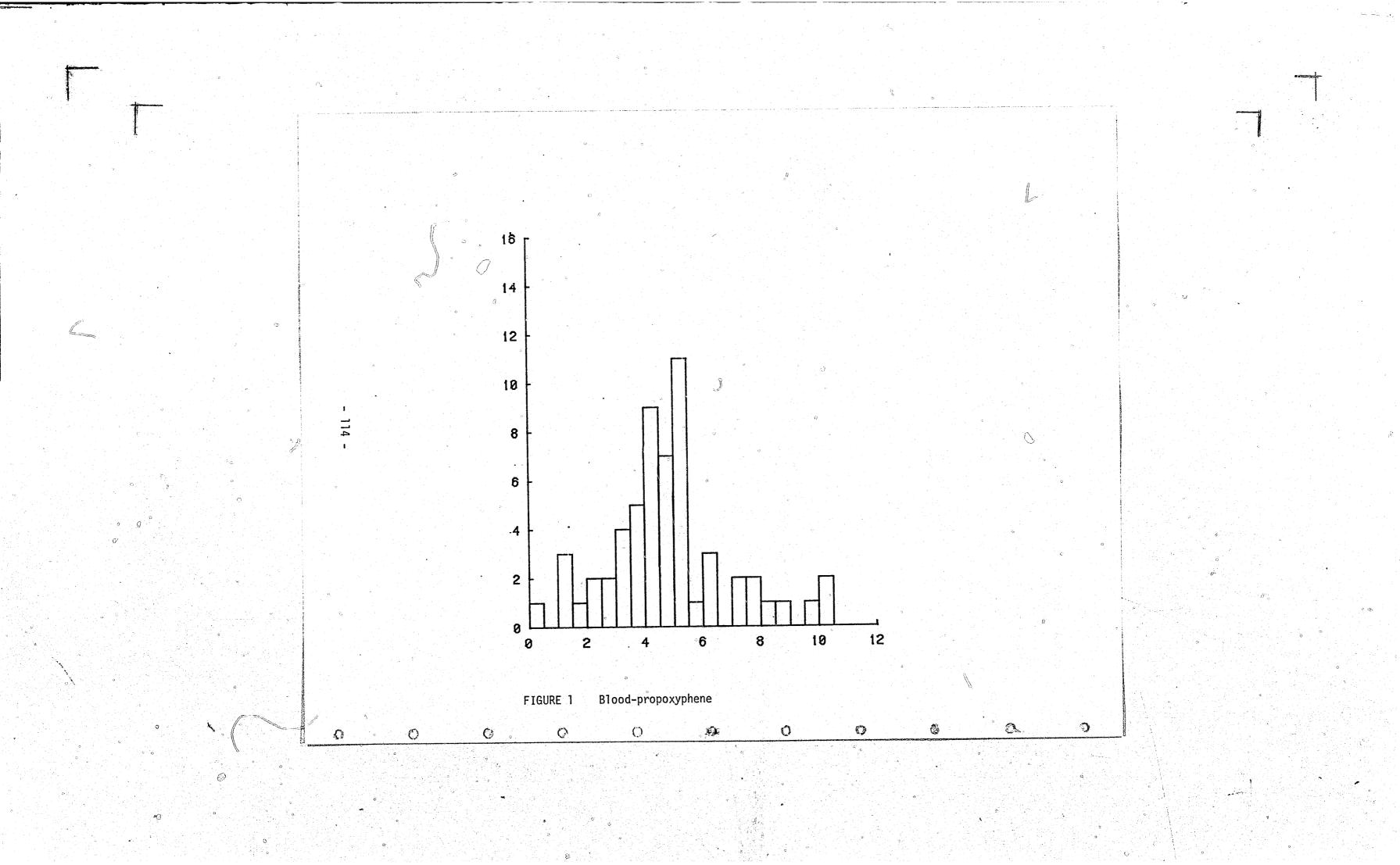
3

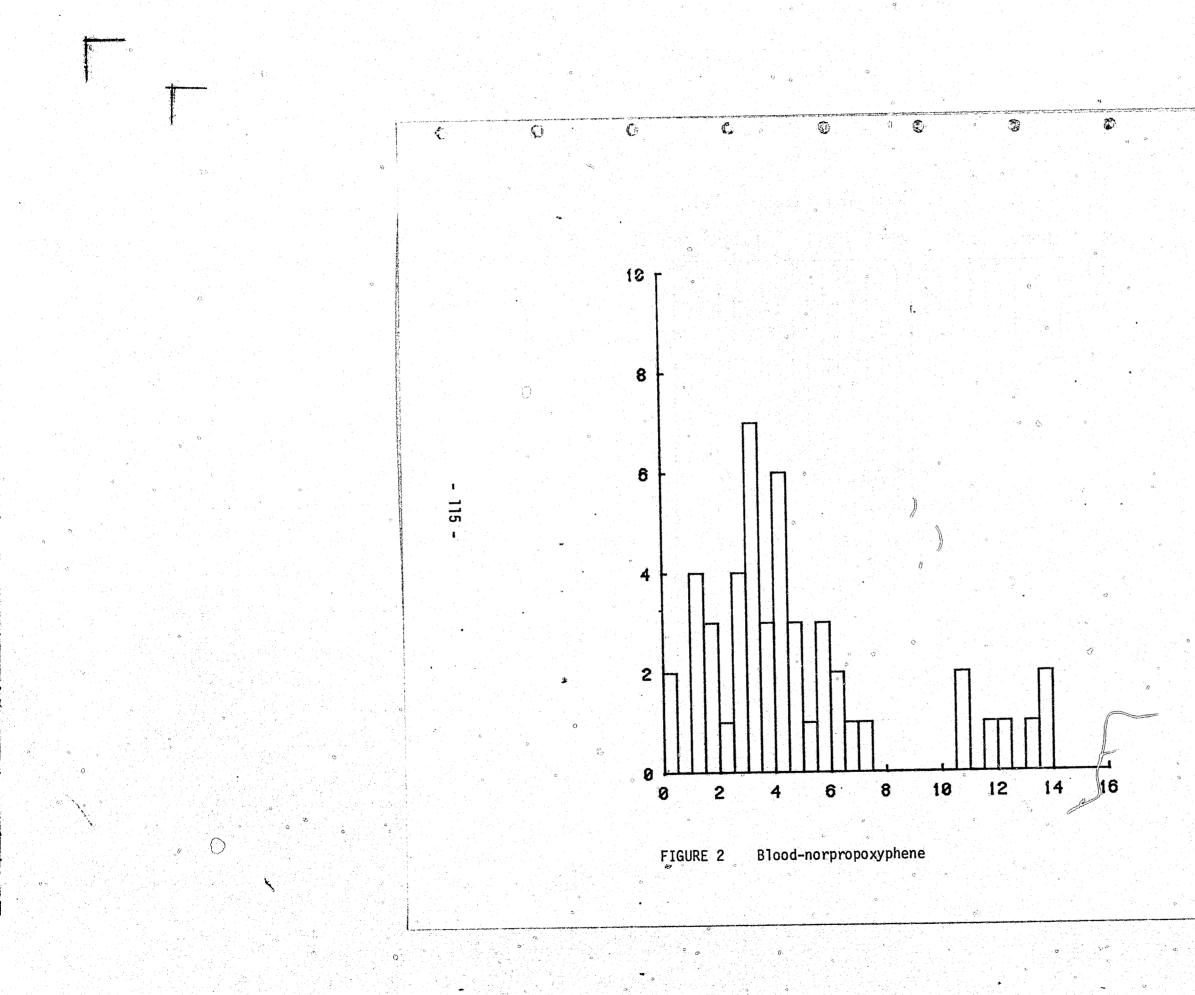
()

(

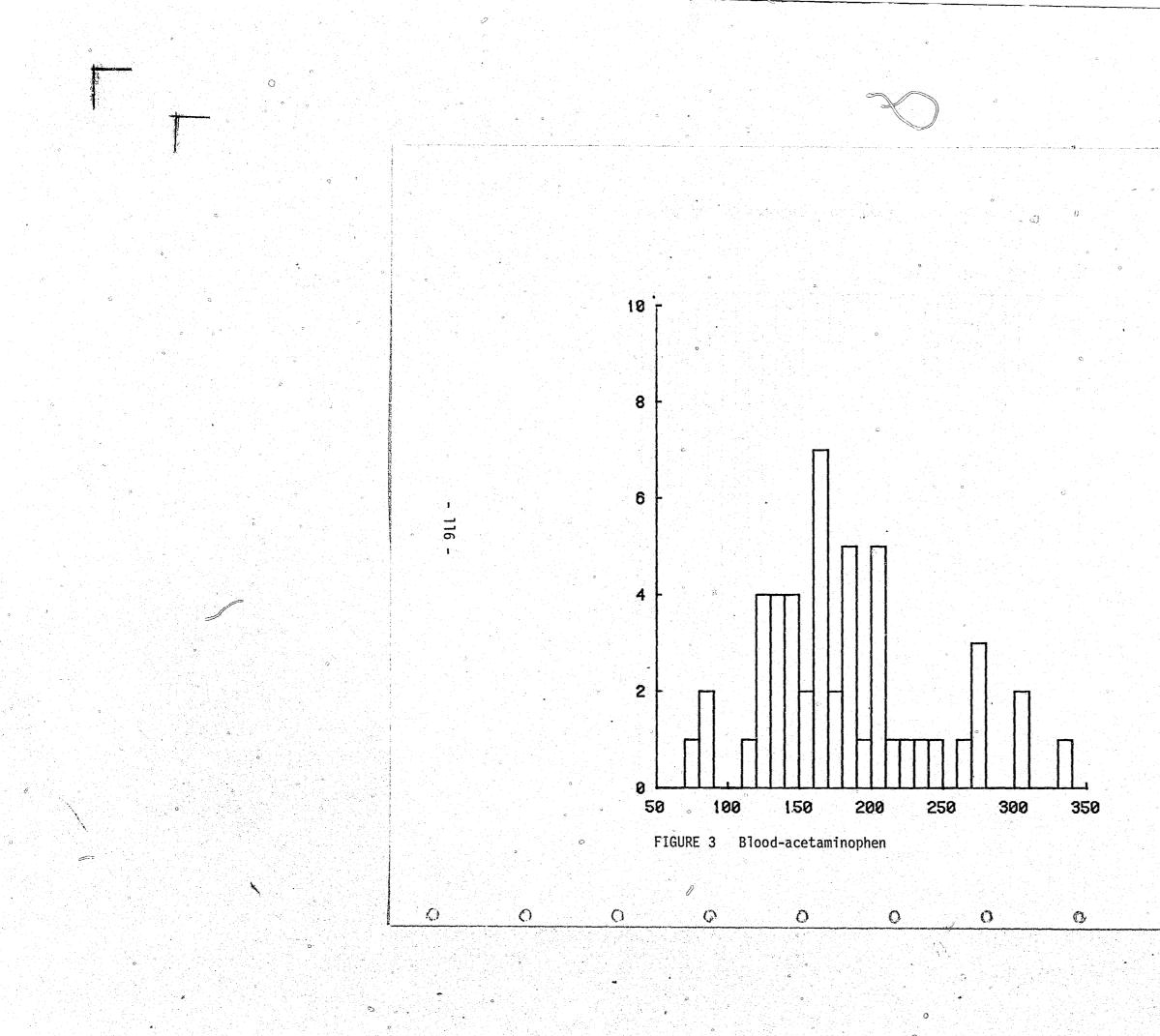
()

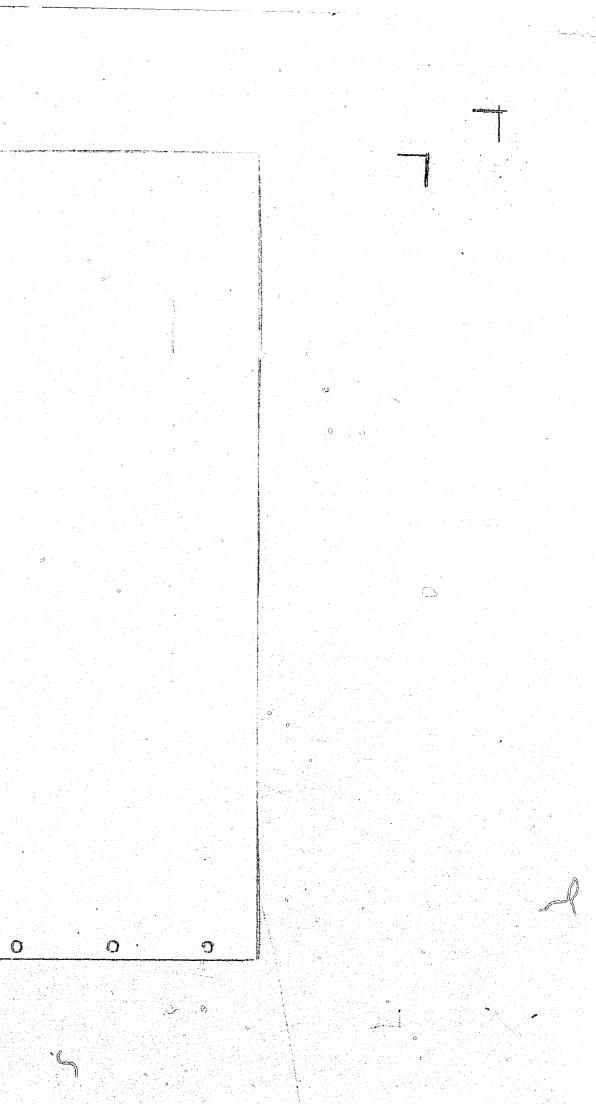
 \bigcirc


()


()

()


 \bigcirc


 \mathbf{O}

