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This report describes the nature of the problems we have studied 

and our progress to date. A number of papers and memoranda give the 

technical details of the research; they are included as appendices. 

Since the complete development of a ne~" statistical technique is 

a lengthy process, not all of the research is complete. However, our 

efforts will continue beyond the funding provided by this contract. A 

number of papers, based on the appendices, have been or will be sub

mitted for publication. 

Our proposal described four areas o~ research involving mathe

matical models of criminal recidivism: 

1. estimation of the model's parameters, and associated 

statements, ,using maximum likelihood and Bayesian 

procedures for: 
, . .' .,;It 

i' \ 

a. the split population model; and 

b. the mixed exponential and Weibull models; 

2. investigation'~OT w'aysto $el.~~.t,.appropriate models 

of recidivism from among candidate models; 

3. df~velopment of covariate models of recidivism; 

i.e., descriptions by which the recidivism probabilities 

of each member of the group under study is determi ned 

by parameters, based on his own unique ch'aracteristics; 

4. critical analysis of certain pretest - posttest 

designs in evaluating delinquency programs. 

These four areas ·of research, and our progress in each,are described 

below. Future research is suggested in the conclusion of this report. 

'. 
v ' 
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I. ESTIMATION 

Estimation procedures for the spl it population model \'/ere developed 

in an earlier contract, using both the continuous version 

and the equivalent discrete version 

where Fc(t) [Fd(i)J is the probability of recidivism at or before time 

t [interval iJ. We have used the discrete version in estimating con

fidence intervals for the split population model, and the continuous 

version for the population mixtul"e model. The continuous version is 

more appropriate for a mixed Weibull distribution because the model 

parameters are more easily estimated than with the discrete model. 

Procedures for es timation of the parameters and thei r associ ated con

fidence intervals for a mixed Weibull distribution are developed in 

Appendices A-E. 

For the split population model the discrete version was used for 

a number of reasons: 

1. The data often are presented in discrete form -

e.g., number failing in month 1, month 2, etc. 

'2. Little if any information is lost, since the time 

interval used (months) is small enough to capture the 

essence of the data. 

3. If large data sets are analyzed, computation is 

appreciably easier when using dnta grouped by months 

( 1 ) 

(1) 
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than using the failure or exposure time of every 

individual in the'group. 

4. Since y and q are both probabilities, the only allow

able values of y and q lie in the unit square a ~ y ~ 1, 

a < q < 1; this makes their interpretation, and their 

visualization and presentation of their confidence 

intervals, much easier. 

5. Correctional officials are likely to be more comfortable 

deal ing with the discrete model, with a constant 

conditional fail ure probabil ity q than the continuous 

model with an exponential failure process. 

The programs used in estimating the parameters and in computing 

the confidence intervals are given in Appendix F. 

Standard statistical practice for producing confidence intervals 

is to assume that the maximum likelihood estimator is asymptotically 

normally di,~tr;buted, and to use the infonnation matrix to estimate 

the variance-covariance matrix. However, the parameters y and q are 

defined only on the unit square. This restriction produces extreme 

non-normality for many cases of interest -- even those with large 

sample sizes -- thus precluding us from using this standard technique 

for estimating variance. 

To understand this problem more fully, we made simulatiolls of 

cohorts of different sizes, in which all of the members of the cohort 

have fixed, given values of y and q, and fail accordingly ... We then 

plotted the distribution of the resulting maximum 1 ikel ihood estimates, 

y and q, as a basis for fonning confidence regions. More important, 

however, as can be seen from Figures 1-8,the (nonnalized) likelihood 

-4-

function is often an excellent represe~tation of the joint density 

function of y ~nd q. Based on this (admittedly limited) empirical 

analysis we concluded that the likelihood function could be used to 

generate confidence regions for the likelihood estimates y and q, 

and thus also supported the more general use of the Bayes estimates 

and confidence intervals. 
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I I. r~ODEL SEL-r.:CT ION 

One of the more difficult problems of statistical analysis is 

the development of selection criteria for choosing an appropriate 

model of the process un'der study. Although non-parametric models 

avoid this difficulty, this approach often ignores prior information 

about the nature of the process that can be used to furnish insight 

about the process. Since the reason for statistical analysis in 

the first place is to gain insight, we feel that this is a short

sighted approach. 

Models of recidivism other than the ones we studied have been 

suggested and analyzed. We have prepared a paper for publication 

on a comparison of models; it forms Appendix G. This paper will be 

revised and submitted for publication. 

-~--------........ ~. -~~~*"""""""·--·-""~""""'-.";'':;';''.;~~~~~-;;::4.-:o, , 
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III. COVARIATE ANALYSIS 

The implicit assumption in the foregoing is that the failure 

times of. the cohort can be characterized by a model based on aggregate 

properties of the cohort; that is, by y and q. When comparing different 

correctional programs, or the effect of the same correctional program on 

different types of individuals, this is a reasonable assumption. However, 

it is also possible to study the way that the parameters y and q are 

affected by characteristics of.the indi"viduals. That is, we may assume 

that each individual i has unique values Yi and qi' and that 

(1) 

where xij is the value of the jth characteristics for individual i. 

We have used standard analytic techniques to investigate such relation

ships, using data sets obtained by Georgia, Iowa, North Carol ina, and 

the U.S. Bureau of Prisons. 

This aspect of our research is descr Jed in Appendix H. The 

results have not been encouraging. First, the maxima are relatively 

flat; that is, the solution is not very sensitive to relatively large 

changes in th~ XiS. Although multivariate analysis employing ma,lY" 

variables may- appear intellectually attractive, it does not lead to 

insights into post-release behavior. We found that sufficient insight 

was furnished by looking only at the marginals and two-way crosstabulations, 

and going beyond that increased complexity and computation cost with 

no commensurate ihcrease in expl anatory powtfr. 
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Second, the four different data sets we used have resulted in four 

different relationships between the model parameters and the XiS. This 

finding supports the contention we made in our report from an earl ier 

grant: comparing recidivism rates across jurisdictions is meaningless 

because they have different release criteria, different laws and policies, 

and different definitions of recidivism. In addition, because of the 

degree of diversity we found in the relationships, the notion that there 

is one single underlying structure that will be valid for all juris

dictions is open to question. 

-8-

IV. PRETEST-POSTTEST DESIGNS 

We had initial1y intended to continue the work described in two 

previous papers (Maltz & Pollock, IIArtificial Inflation of a Delinquency 

Rate by a Selection Artifact,1I Operations Research 28, 3, May-June, 1980, 

547-559; Maltz, Gordon, McDowall & McCleary, IIAn Artifact in Pretest

Posttast Designs: How It Can Mistakenly r~ake Del inquency Programs Look 

Effective, II Evaluation Review 1, 2, April, 1980, 225-240). However, the 

rel ease of a bo,ok by the authors of the study we cri ti ci zed (Murray & 

Cox, Beyond Probation, Sage Publications, 1980) effectively prevented 

us from doing so. In their book they. tried to explain away the regression 

artifact, thus promoting their conclusion that it was the correctional 

program and not possible selection artifa~ts that caused a 70 percent 

decline in post-release arrests of juveniles. This finding has led many 

correctional policy-makers to push for a hard-line approach to juvenile 

corrections, citing scientific justification. 

The finding is wrong. Rather than extend our previous work we 

decided to explain the limitations of the Murray-Cox finding in greater 

detail, and to a different audience. Ap~endix l is the result of this 

effort. 
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V. FURTHER RESEARCH 

Although we have accomplished most of what we proposed to do in our 

grant application, we have still not exhausted the basic and applied 

research problems in this area. Additional areas of research include: 

1. The investigation of properties of the joint density 

function. Although it is not always normally distributed, 

when it is one can use standard tables for estimating 

confidence intervals and for testing for significance. 

The region where it can adequately be approximated by a 

bivariate normal distribution should be determined. 

In addition, the form of the function should be in

vestigated to determine if other standardized functions 

can be used to approximate it. 

2. Inves ti gation of the cases when y = 1. As can be 

seen from Figures 1-8, under some' circumstances a 

number of the MLE solutions are on the line y = 1. 

It may be possible to estimate the fraction of solutions 

on this border using some simple relationship between, 

say, the height of the likelihood function at the 

border and the height at the maximum. 

3. Investigation of the effect of distributions on y and 

q. I t may be that the model's parameters for each 

individual i obey the relationships (1) above, but we have 

not included the appropriate characteristics x. (or are 
1 

unable to measure them accurately). Suppose that each 

individual in the population under study has parameters 

y and q drawn from a known distribution. We can calculate 

-10-

the mean values (y and q) of these yS and qs; we can also 

use these ys and qs to generate failure and exposure times, 

and then use these times to estimate ~ and ~, and MLE 

values. What is the relationship between y, ,q and ~, q, 
and thei r vari ances? For some distributions it may be 

possible to determine this relationship analytically. 
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ABSTRACT 
l,:"""--

When dealing with finite. mixtures of distributions, there is an inherent 

symmetry, whereby several essentia1.1y identical but different maxima of the 

likelihood equation can be obtained. On .the other hand, theory states that 

under a wide variety of circumstances, there is a unique consi:stent root 

of the likelihood equation. To avoid this difficulty, this paper proposes 

an ordering convention for the unknown parameter which eliminates all but 

one of the equivalent solutions. Asymptotic normality is unaffected. 

1. PROBLEM DEFINITION 

The issue of possible multiple maxima for the likelihood equation is very 

important in the case of finite mixtures of distribution~. There is an 

inherent symmetry whereby two essentially identical but different solutions 

can be obtained. Consider the situation in which there is a mixture of 

two distributions of a single parameter. The probability density function 

(pdf) will beY' 

where P2 = I-Pl· The problem is to estimate the parameters Pl,81' P2' 

Assume the solution tbth~ likelihood equation is 

PI = a 

81 = b 

P2 = I-a 

82 = c 

An identical g(P1,8I,P2,82) would be obtained if ihe solution ~ere 

PI = I-a 

81 = c 

P2 = a 

82 = b 

In both cases, the pdf of the mixture is 

Since both solutions yield the same pdf and both' solutions maximize ·the 

likelihood function, the fundamental question of consistency is raised. 

Are both solutions consistent? As a result, what can we say with regard 

to the usual property of asymptotic normality? Also, suppose only one 

is consistent, then which one do we choose. 

1/ We have omitted the functional argument here, but of course it 
should be understood that the Pi and 8 i are only parameters and 
are not representative of the underlying random variable. 

-1- . 
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2. CONSISTENCY AND MAXIMUM - LIKELIHOOD ESTIMATORS 

Under mild regularity conditions, Cramer (1946) proved the existence 

of a solution of the likelihood equation and that that solution is 

consistent as~. Using the same regularity conditions, Huz~bazar 

(1948) showed that there is a unique consistent solution to th~ likeli-

hood in the case of a single unknown parameter. If we assume for the 

moment that Huzurbazar's results can be extended to the multi-dimensional 

case, then a dilemma arises. For miJ~ures, only one of the two solutions 

which yield the same pdf is consistent. How then do we determine the 

correct one? 

Perlman (1969) points out that there are ambiquities in the Huzurbazar 

result that "a consistent root of the likelihood equation is unique." 

Perlman claims tha'c consistency is a limiting proPerty of a sequence of 

estimators. He goes on to say that if T 
n is a strongly consistent 

sequence of estimators of 6, and if {Tn *} is another sequence such that 

the probability is one that T * = T for all sufficiently large n, then n n 

{Tn *} is also strongly consistent for 6. Let S (xl' ..•... ,X ) denote n n 

the set of all solutions (roots) to the likelihood equation for the 

given sample. If{Sn}contains more than one element, then there are 

infinitely many roots as defined here. Also if ~Sn} is a strongly 

consistent root, then by the above, the initial terms in the sequence 

can be changed to produce another consistent root. Therefore Perlman 

concludes that there may be many consistent roots. 

Perlman avoids these ambiquities by showing under slightly weaker 

regularity conditions, that as n goes to infinity, all but one el~ment 

is. bounded awa~ from the true parameter value and the remaining elements 

-2-

approach the true parameter value. Unfortunately, Perlman's results 

are not directly applicable to the mixture situation. He only deals 

with the case of a single parameter and he assumes that if 61 :f' 6
2

, 

The f(xl,61) and f(xl,62) determine distinct distributions. This 

assumption does not hold in our situation. 

-3-
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3. SOLUTION " We employ our usual methodology to calculate the solution. If that 

We are still left with our original dilemma. Although previous work is solution has 62 > 61' we would simply use the symmetric counterpart. 

not directly applicable to the case of mixtures, there is strong 

evidence that only one of the two solutions identified in Section 1 is 

consistent. The solution which would be obtained via our methods would 

be a function of the choice of initial parameter values only. 

The cause of over dilemma lies with a basic lack of specificity of 

g(Pl,6 1,PZ,6Z)· In our current numerical procedures (see Kaylan .and 

Harris, 1979), we are not free to define an "ordering" of the parameter 

sets for the mixed distributions. Thus this suggests that we adopt an 

ordering convention of 61<62<6 3 ••••• These would be strict inequalities 

since we do not allow the number of mixed distributions to be a random 

variable. In the case of a vector of parameters, the above would be 

extended to 

• • • •• 6 1 n c::: e zn < 6 3n •••••• 

This ordering completely eliminates the dual solution problem. If 

b < c, then 

PI = a 

61 = b 

P2 = l-a 

82 = c 

is feasible. The symmetz'ic point 

PI = l-a 

6 1 = c 

P2 = a 

62 = b 

is not allowable since 62 > 61• Operationally, nothing changes. 

-4-
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4 . IMPLICATIONS FOR ASYMPTOTIC NORMALITY 

Given that the usual regularity conditi?ns hold, asymptotic normality 

should not be affec~ed by the ordering which we have adopted. If a is a 

vector of unknown pa:rameters and li is the likelihood estimator for a 

based on n observations, then (li - a)/yn has a limiting (as n+to) multi-

variate normal aistribution with matrix mean 0 and variance-covariance 

matrix V gi~,en as follows. The (i,j) entry of the inverse of V (call it R) 

is given by 

[ 
a2 

r ij = -E aa . aa . 
- ~ J 

log f(X,al] 

Given an initial starting point the iterative algorithm will converge 

to one and only one of the symmetric maxima that convergence point will 

be a function of the starting point alone. There will be no shifting 

between equivalent maxima. After K iterations, some a will have been 

obtained, and (& - a)/vrl will be approximately multivariate normal with 

mean 0 and variance-covariance matrix V as above. But if a does not 

satisfy the ordering conditions, then we determine its symmetric counter-

part. This, however, implies an implicit re-ordering of u as well and 

consequently asymptotic normality will be maintained. 

-6-
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'Abstract 

The importance of recidivism models in ti~~ analysis of 
recidivism rates has been established in the literature. Maximum 
likelihood estimates for unknown parameters within these models 
are obtained. The topic of tests of significance for these 
estimates is addressed in this paper. 

,0 

1. PROBLEM DEFINITION ... 

When' studying the differences between or the effectiveness of two 

different recidivism programs, one often would like to compare them 

in terms of failure rates or interoccurrence distributions.. In our 

work thus far, we have characterized recidivists as coming from a single 

PDF which is a mixture of two other PDFs. This note outlines methods 

for testing hypotheses concerning the equality of the complete mixed PDFs 

as well as the individual components and mixing proportions for the two 

programs. 

Assume that the first program is characteri:o:ed by a mixture of two 'PDFs 

whose failure rates are a l and bl respectively. Also let the mixing pro

portion be Pl' Then the PDF for this program will be 

gl(x,al,b1,PI) = Plf(x,al ) + (l-Pl)f(x,b
l
)· 

If we make analogous assumptions about the second, it will have ithe PDF 

g2 (x,a2 ,b2 ,P2) = P2 f (x,a2) + (1-·P
2

) f(x,b
2
)· 

We obtain maximum-likelihood estimators of the unknown parameters in the 

usual way and denote them as vectors 61 and 62 for programs one and two 

respectively, where 

(i = '1,2) 

-1-
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The estimated variance-covariance matrices for these 

values will be 

= (i = l,2) 

where 

a 2L a 2L a 2L a;z- aaab aaap 

A 

a 2L a 2L a 2L H. (e. ) = oboa ~ obop 1. 1. 

a = a. 
1. 

b = b. 
1. 

C = C. 
1. 

and L is the standard log-likelihood given by 

L - In IT g(x.,a,b,p) 
J j 

Consequently, the terms of Ci will be 

- \. 

-2-

= 

Var(a.) 
1. 

Cov(b. ,a.) 
1. 1. 

Cov(p. la.) 
1. 1. 

Cov(a. ,b.) 
1. 1. 

Var(b.) 
1. 

Cov' (P. lb. ) 
1. 1. 

Cov (a. , p. ) 
1. 1. 

Cov(b. ,P.) 
1. 1. 

Var(p.) 
1. 

We are now able to do hypothesis testing based on this 

structure. There are seven possible problems of concern, with 

alternative hypotheses given as the inequality of the 

eal.::h case. 

H : 
o 

H : 
0 

H : 
0 

H : 
0 

H : 
0 

H : 
0 

Pl :: 

~41'= 

~51 = 

~61 = 

~7l = 

P2 

~42 wher~ 6
4

, = (:~) - 1. 

~52 where 6
5

, . = (;~) - 1. 

~62 where ~i = (:~) iI 

~72 where 67 , = (:n - 1. 

/) 1. 
v 
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For sufficiently large sample sizes the maximum-likelihood 

estimato:i."s are normally distributed with variance-covariance 
,-; 

matrix as shown above. Since we also have asymptotic unbiased-

ness, it follows that 

E (a. ) = a. 
~ ~ 

E (8. ) = b. i = 1,.2 
~ ~ 

E (p. ) = Pi ~ 

If we denote the variance-covariance matrix for the ith sample 

i 
as C whose (k,j)th element is ci(k,j), then the following hold 

when H is true in the first three of the hypotheses: o 

"- " I 2 a l - a
2 N (0, c

II + c
ll

) 

A ,., 
1 .2 b l - b.2 - N(O,c.2.2 + C2 .2) 

A ,., 1 .2 
PI - P.2 ... N(O'C

33 + c
33

) 

The.hypothesis would then be rejected if the test statistic fall~ 

in the tails of its correspondtI.:9' distribution. 

We note that for the final four hypathe"ses under 

turns out that 

-4-
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~ ' . 
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1 ,.~ 
1 .2 

J cll + ,cll c l .2 + c l .2 

~l - ~.2 ... N(Q,C4 ) where C
4 = 

'I .2 1 .2 
c.2l + c.21 c.2.2 c.2.2 

+ 2 1 .2 
cll c 13 + c

13 

, i!.sl - ~2 .. N(Q,CS) where Cs = 

.2 1" .2 + c
3l 

C
33 + c

33 

!! The reSUltant test follows from the following observation. II If 

x is a vector of mrandom variables, and X has a mUltivariate normal 

distribution \..,ith mean .!! and variance-covariance matrix B of rank m 

.2 , -1 
T = (! -.!!) B (! - U) 

C) 

.!! Scheffe, Henry, The Analysis of Variance': John tViley & 
;":, New York, 1959. 
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:) 

will be distributed as a chi-squared ~andom variable with m degrees of 

freedom. If we replace 1!. by £, x by anyone of the above e vectors, 

and B by the corresponding·variance-co~ariance matrix, then a chi-squared 

statistic can be used to test the final four hypotheses. A hypothesis 

would then be rejected if the test statistic is in the tails of the 

approximate distribution. 

( 
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1. 
Abstract 

The importance of formalized statistical models in the analysis of 

recidivism has been well· established in the literature. Duration dis-

tributions of the mixed Weibull form :for such pr.ob1.ems have been a special 

focus of this study. Numerical methods for the maximum-likelihood 

estimation of their parameters under complex sampling scenarios were the 

subject of some prior efforts. Here, we provide a thorough discussion 

of the use of such estimators for population inferences. 

.. 

." 

PROBLEM STATEMENT 

To study the differences between or the effectiveness of two 

different recidivism programs, one u.sually wishes to compare them 

in terms of their respective failure rates or interoccurrence 

distribution. fUnctions. For our basic model formulation, we have 

characterized recidivists as samples from a single population with 

probability density function (PDF) which is a mixture of two other 

Simple PDFs, This paper outlines methods and theory for testing 

hypotheses concerning the equality of the complete mixed PDFs as well 

as the individual components and mixing proportions for ~he two 

pl'ograms. This work provides more complete details of the theory 

than provided in our earlier memo ·on the subject (Harris and 

Mandelbaum, 1979). 

To begin, let us assume that the first program is characterized by a 

mixture of two PDFs whose failure rates are a
l 

and b
l 

respectively. 

Also let the mixing proportion be Pl' Then the PDF for this program 

will be 

Similarly, let the second PDF be 

g2(x;a2 ,b2 ,P2) = P2f (x;a2 ) + (1-P2)f(x;b
2

)· 

We numerically obtain maximum-likelihood estimators of the unknown 

parameters in the ususal way and denote them as vectors 6
1 

and 6
2 

for programs one and two respectively, where 

(i = 1,2) 

" 

1 

-
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The estimated variance-covariance matrices for these estimates 
will be 

Ci 
[Hi ~ai)J 

-1 

"" Ci "" 1,2) 

where 

a 2L a2L a 2
I. aaz- aaab oaap 

'" a2 r, a2L a2L H. (6. ) = obda abT" dbap l. l. 

And L is the standard log-likelihood function given by 

L "" In II g(x.;a,b,p) 
j J 

Consequently, the terms of c 1 
will be 

2 

a = a, 
l. 

b "" b. 
1. 

c = 

, 
<.~ 

" 

= 

• 

Var(a. ) 
l. 

Cov(Pi,iili) 

Cov (a. , b. ) 
l. l. 

Var (b. ) 
l. 

Cov (P. ,b. ) 
l. 1. 

Cov(a.,p.) 
l. l. 

Cov(b. ,P.) 
l. l. 

Var(p.) 
1. 

There are seven possible (large-sample) hypothesis tests with 

alternative hypotheses given as the inequality of the null H in each 
o 

case. These are: 

H : 
o 

H : 
o 

H 
0 

H : 
0 

H : 
0 

H . . 
0 

!.tl 

i Sl 

i 6l 

!71 

"" 

"" 

= 

= 

. ' 

(:~) E.<12 where 64 , = 
- 1. 

ii~2 where 65 , = (;~). - 1. 

is2 where ~i "" (:~) 
!72 where 6

7
, = (:;) - 1. 

1. 

3, 
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~, 

i 
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For sufficiently large sample sizes the maximum-likelihood 

astimators are normally distributed with variance-covariance 

matrix as shown above. Since we also have asymptotic unbiased-

ness, it follows that 

.. 
E (a.) = a. 

~ ~ 

E (n.) = b. j. = 1,2 
~ ~ 

E Ci\) = Pi 

If we denote the vari~nce-covariance matrix for the ith sample 

as ci whose (k, j) th element is c i (k,.j) , then the following hold 

when H is true in 
0 

the first three of the hypotheses: 

'" " 1 2 a l - a2 N(O/c
ll + cll} 

.... " b l - b 2 NCO,c;2 2 + c 22 ) 

" A 1 2 
PI - P 2 NeO,c

33 + c 33 ) 

An hypothesis would then be rejected if its test statistic falls in the tails 

of its corresponding distribution. 

We note for the final four hypotheses under Ho that it turns out that 

4 

.';0 
, 'f<" 

o . 

1 2 1 2 
cll + cll c12 + c12 

~l - ~2 ~ N(.Q.,C4) where C4 = 
1 2 1 2 c21 + c21 c22 c22 

1 2 1 2 
cll + cll c13 + c13 

~l - ~2 ... N<'Q.,CS) where cs • 
1 + 2 . c1 + 2 c31 c31 

c
33 33 

'1 2 1 + 2 c22 + c22 c23 c23 

~l - ~2 .N (.Q., C6) where c
6 = 

1 2 1 2 c32 + c32 c33 + c33 

~ / 

The resultant significance test follows from the following observation 

(for example, see Scheff~, 1959) • If ! is a vector of m . random variables 

such that X has a multivariate normal distribution with mean ~ and 

variance-covariance matrix B of rank m, then the quantity 
. - '- l', 

2 I -1 
T = (!. -.t!.) B {?£ -: .t!.} 

5 



will be distributed as a chi-squared random variable with m degrees of 

freedom. If we rep,lace ~ by Q, ! by any one of the foregoing! vectors, 

and l!. by the corresponding variance-covariance matrix, then e. chi-squared 

statistic can be used to test the final four hypotheses. A hypothesis 

wouJ.d then be rejected if the test statistic is in the tails of the 

appropriate distribution. 

2. ASYMPTOTIC THEORY 

Of course, these (large-sample) tests cannot be performed unless a set of 

regularity conditions holds and the sample sizes are indeed adeauately large. 

Exactly how big "large" must be is very much a function of the .number of 

parameters involved and the complexity of the sampling situation. To date, 

our empirical experience has been that convergence to normality occ~s quite 

rapidly. Our data sets all seem to be of adequate size. However, in general, 

there is no guaz'antee that no:rmaJ.ity will indeed obtain. One must verify that 

the appropriate regularity conditions are in fact satisfied. 

The two major references for univariate regularity are Cramer (1946) and 

KuJ.ldorf (1957). These authors deal with the univariate case where S is the 

parameter being estimated for the PDF f(x;S), S€Q (henceforth denoted by f). 

The regularity conditions are then given as follows: 

(i) a log f/aS,a 210g f/ae 2 ,a 310g f/ae 3 exist for all S€Q and every x. Also 

J= af dx = E alog f = 0 for all e€Q. 
-= ae e ae 

(ii) 

(iii) _=<r= a210~ f f dx<O for all e. 
J _= ae 

6 

o 

(iv) There exists a function H(x) such that for all e€Q 

la3~~~ f I<'H(X) and J== H(x)f dx = M(e)< ~. 

(v) There exists a function gee) that is positive and twice differentiable 

for every e€Q and a function H(x) such that for all S 

and f=' H(x)f dx < =. .. = 
Note that condition (v) is equivalent to condition (iv) with the 

added qualification that gee) = 1. 

In the multidimensional case, Chanda (1954) shows that the foil owing regularity 

conditions should be satisfied for asymptotic consistency and normality of the 

MLEs for the underlying density f(x;e) where now e is the vector of parameters 

(i) The point represented by the vector e lies in a k-dimensional 

interval Q; for almost all x and for all e€Q 

alog f 
ae 

I" 

a2105 f a310g f 
ae ae ' ae ae aet I" s I" S 

exist for all r, s, t = 1, 2, ... k. 

( ii ) For alInost all x and for every point e €Q 

and 

I ~3 log f I ( ) 
ae ae ae

t 
< Hrst x 

I" s . 

f= H t(X)f dx < M -= rs (M a finite positive constant). 

(iii) For all e€Q the matrix J=(Jrs(e», 'defined by 

J . (e) = /0 alog f alog f f dx 
rs -= aero ae r 

is positiv6-<definite, and IJI is finite. 

7 
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In general, it is extremely burdensome to show that these regularity con-

ditions hold. See Parekh (1972) for a sample of the type of computations 

involved. In the case of a two-parameter Weibull, as is being considered 

in this paper, the regularity conditions hold (see Harter and Moore, 1972). 

When a location parameter is also included, the r~iu1arity conditions hold 

for values of the shape parameter greater than two. 

Thus far, this discussion has centered around the regularity conditions for 

classical maximum-likelihood estimation. Halperin (1952) considered the 

problem of the estimation of a single parameter under type I censoringo In 

this cELse, not all observations result in failures. The successes, however, 

are ~1 constrained to survive for the same amount of time. The conditions 

are as follows: 

Assumption A. For almost all x, the derivatives 

alog f , 
as 

exist for all SEn. 

Assumption B. For every SEn we have 

where Fl (x), F2(x) are i~t'egrable on (_co, co), while f:1» H(x)f dx< M, 
where M is independen~ of S • 

8 

;, 

,.~ 

Assumption C. For every SEn 

K2 fA .( alog f ) 2 f dx + 1:. (.J A af dx) 2 = -I» as p _~ as 

is greater than zero. Here, if So is the true value of S, A is defined by 

That is, A is the population lOOq percentage point. 

Assumption D. f is continuous in the neighborhood of x = A and has a 

continuous derivative in x,f l , while 

alog f 
as 

are continuous in the neighborhood of x = A. 

Halperin also discussed the extension to the m1l1tiparameter case. In this 

instance, the assumptions necessary to obtain the result are the natural 

analogues of Assumptions A-D. Thus A, B, D are extended by impOSing similar 

conditions upon the various derivatives up to third order, that is those with 

respect to each 9, and also the mixed derivatives. The condition C becomes 

a requirement that the matrix with elements 

i,j = 1,2, ••. , p, 

be positive definite. 

Finally, Halperin suggested that the res~ts should be generalizable to the 

case of several points of truncation, each truncation point being a sample 

percentage point. Due to the a.symptotic normality of sample percentage points, 

it appeared to Halperin that the results should be extendable. However, their 

direct analytiq verification is a brutal task. 

9 
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Given the complexity of these conditions and the experience of others that 

such direct che~king is indeed very messy, what can be done? There are 

three basic things which come to mind. Firs"!: is the realization that these 

are only Sufficient conditions, and likeiy not necessary. In other words, 

it may well be ultimately possible to find a simpler set of sufficient 
. 

conditions which may be computationally feasible. Second, a number of Monte 

Carlo experiments can be set up to see whether normality seems to ob-cain for 

estimates derived from samples simulated from a variety of (known) populations 

covering a wide range of possible parameter values. The final thought is to 

search for approximations which might simplify the verification process. 

Since direct checking may require numerical integration anyway, an analytic 

approximation may just do the job. 

10 
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ABSTRACT 

When dealing with finite mixtures of distributions, there is an ir~erent 

symmetry, whereby several essentially identical but different maxima of the 

likelihood equation can be obtained. On the other hand, theory states tbat 

under a wide variety of circumstances, there is a unique consistent roo~ 

of the likelihood equation. To avoid this difficulty, this paper proposes 

an ordering convention for the unknown parameters which eliminates all zut 

one of the equivalent solutions. Asymptotic normality is unaffected. 

• 
" 

.1 

.,; 

0. 

. .-

1. PROBLE!1 DEFINI'IIION 

The issue of possible multiple maxima for the likelihood equation is very 

important in the case of finite mixtures of distribution~. There is an 

inherent symmetry whereby two essentially identical but different solutions 

can be obtained. Consider the situatio~ in which there is a mixture of 

two' distributions of a single parameter. The probability density function 

(pdf) will bell 
0,° 

where P2 = I-Pl· The problem is to estimate the parameters PI' 6
1

, P2' 

Assume. the solution to the likelihood equation is 

PI = a 

61 = b 

P2 = I-a 

62 = c 

An identical g(Pl,61,P2,62) would be obtained if the solution were 

PI = l-·a 

61 = c 

P2 = a 

62 = b 

In both cases, the pdf of the mixture is 

Since both solutions yield the same pdf and both' solutions maximize the 

likelihood function, the fundamental question of consistency is raised. 

,')re both solutions consistent? As a result, what can we say with regard 

to the usual property of asymptotic normality? Also, suppose only one 
, 

is consistent, then which one do we choose? 

11 \ve have omitted the functional argument here, but of course it 
should be wlderstood that the Pi and 6 i are 'only parameters and 
are not .representative of the underlying random variable. 

-1-
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2. CONSISTENCY AND HAXIMUM - ,LIKELIHOOD ESTI!-1ATORS 

Under mild regularity conditions, Cramer (1946) proved the cxiste~=e 

of a solution of the likelihood equation and that that solution is 

consistent as n+m. Using the same regularity conditions, Huzurbaz;r 

(1948) showed that there is a unique consistent solution to the L:.",:eli-

hood in the case of a single unkno~~ parameter. If we assume for ~he 

moment that Huzurbazar's results can be extended to the multi-diffic~5ional 

case, then a dilemma arises. For mixtures, only one of the two sc:'utio!:s 

which yield the same pdf is consistent. How then do we determine ~he 

correct one? 

Perlman (1969) shows that there are ambiguities in the Huzu=:~zar 

result that "a consistent root of the likelihood equation is uni~::c." 

Perlman claims that consistency is a limiting property of a seque:-.== of 

estimator~. He goes on to say that if T 
n is a strongly consists.·x 

sequence of estimators of 0, and if {Tn *} is another sequence suc:-. that 

the probability is one that T * = T for all sufficiently large '-' then n n 

fTn1 is also strongly consistent for 6. 

the set of all solutions (roots) to the 

Let S (xl' ••.••. ,x ) dec~te 
n n 

likelihood equation for t:= 

given sample. 'If{Sn}contains mOre than 

infinitely many roots as defined here. 

one element, then there a:e 

Also if \ '£n} is a strongl~' 
consistent root, then by the above, the initial terms in the sequ=~~e 

can be changed to produce another consistent root. Therefore Per:=an 

concludes that there may be many consistent roots. 

Perlman avoids these ambiguities by showing under sligl..:y we~~er 

regularity conditions, that as n goes to infinity, all but one el~ent 

is, bounded away from the true parameter value and the remaining e:;nents 

-2-
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approach the true parameter value. Unfortunately, Perlman's results 

are not directly applicable to the mixture situation. He only deals 

with the case of a single parameter and he assumes that if 81 :f 8
2

, 

assumption does not hold in our situation. 

In the multiparameter case, Chanda,(1954) proved under similar 

conditions that of all possible solutions to the likelihood equations, 

one and only one is consistent. Chanda's proof, however, relies on an 

extension of Rolle's theorem that does not exist. Tarone and Bruenhage 

(1975) prove an alternative result. They show that of all possible 

solutions to the likelihood equations which are relative maxima, one and 

only one is consistent. The extension of these results to the cas~ of 

mixtures implies that only one of the solutions is consistent. 

-3-
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3. E.0LUTION 

We are still left vlith our original dilemma. :Although preYious work is 

not directly appl.i.cable to thE: case of mixtures, there is strong 

evidence that only one of the t\·]O solutions identified in Section 1 is 

consistent. The s:;l.ltion '·,hi::}, would be obtained via our methods ..... ould 

be a function of the choice of initial parameter values only. 

The cause of over flilemma lies ,'lith a basic lack of specificity of 

g(Pl,6
1 ,PZ,6 2). In our current numerical procedures (see Kaylan ar.c 

Har
r
is,J..979), we are not free to define an "ordering" of the parar.::ter 

sets for the mixed distributions. Thus this suggests that \o,'e adopt an 

ordering conventio;; of 61<6 2 <1.: 3 ••••• These would be strict inequalities 

since vie do not allow the nu:nber of mixed distributions to be a ran::om 

variable. In the ~ase of a vector of parameters, the above would be 

extended to 

••• " S In <. S 2n <:::: 6 3n •••••• 

This ordering completely eliminates the dual solution problem. If 

b < c, then 

is feasible. The 

PI == a 

61 = b 

P2 :::: I-a 

B2 = c 

symlnetric point 

PI :::: I-a 

61 :::: c 

P2 :::: a 

62 :::: b 

j.s not allowable since "2 > e ,. Operationally, nothing changes. 

-4-

methodology to calculate the solution. ~'le employ ,our usual If that 

e we would simply use solution has 82 > I' the symmetric counterpar~. 
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4. IMPLICATI(.~'S FOR ~SYNPTOTIC NOHMALITY . 

Given that the usual regularity conditions 'hold, asym~totic normality 

should not be affected by the ordering ,,'hich we hav;; adopted, If ex is a 

vector of unknown parameters and & is the likelihood estimator for ex 

baS!2d on n ol::~.servationsr then (& ex) Ivn has a limiting (as n + 00) multi-

variate norm:-.l distr.ibution with r.latrix mean 0 and variance-covariance 

matrix V given as follbws. Tne (irj) entry of the inverse of V (Gall it R) 

is given by 

[ 
a2 

r ij = -E a. ex. aex. 
J. J 

log f(X,.J] 

Given an initial starting point the iterative algorithm \vill converge 

to one and only one of the syrr.m_€!.tric maxima, That convergence point will 

be a function of the starting point alon~, There will be no shifting 

between equivalent maxima. After K iterations, some ex will have been 

obtainsd, and (& - ex)/1n will be approximately multivariate nOL~al with 

mean 0 and variance-covariance matrix V as above, But if & does not 

satisfy the ordering conditions, then we determine its symmetric counter-

part. This, ho",ever I implies an implicit re-ordering of ex as well and 

consequently asymptotic normality will be maintained. 

\ 
,-:--~~..,.--.t.-;::.~~~.~;,~, ... ~:-~::~;,:-~.~:.. .... ~;..:..~.,...,~~i'.::~~":'~:~~''':_~,.....'_" __ ' __ , ___ _ 
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5. CONVERGENCE TO THE CONSISTE:i~' tlJI,UTION 

Thus far in this paper, we h<lvC suggested a technique whereby our me:::'::ld-

ology can differentiate bet.re'::!! 2qui valent symmetric solutions to the 

likelihood, equation. Given th~;:!:; this pro:tlem has been laid to rest, 'Hoe 

have a method which moves alon,:; a direction of improvement to the log-

likelihood function. Its convergence properties 'nave also been showy .. 

I!pwever, there is no assurancetrlat the convergence will be to a glo1::': 

soi'q:tion. 

Only when the likelihood function is concave can one guarantee :hat 

a local solution (or an extreme point ) is also a global solution. Ir. 

general, we cannot guarantee the concavity of the likelihOod function. 

This is shown by counterex8.!l.ple rihere a situation in which the Hessi=.::. of 

the likelihood function is shown to be positive definite, A ~unction :5 

concave if a.ld only if its Hessia.l1 is negative semidefinite. 

and 

Consider the mixture of tlVO exponentials 

f (x) = 1 e-x/nl 
I ~l 

withp as the mixing proportion. In this case we set the shape parame:::rs 

of the 'veibulls to unity, thus making them both exponential. For fur:::'::r 

simplicity we also assume that n
l 

is known and set to unity 1vithout lc~s 

of generality. For ease of notation we use n instead of n
2

, Thus the 

mixture can be written as 

() 

-x/n e 
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In general, the e1eme t ~ tl ( ) - n s ool - 1e Hessian H of the log-likelihood. functi~:i. 

are as follows; 

In our counterexam~le, we ass"~~ th t th -~_.a ere lS only observation and that 

observation is a f~-l -~ ure. These assUI!lpt;ions eliminate the G terms -and t:.~ 

summation signs. '\,-e now wri te ~ne term,~ that 1-1e need to further conside~' -:;his 

Hessian matrix: 

~ = -x e -x/n 
ap e 

n 

l a2
g 

-x/n [ x 
l 1 -e 

apaT) = n2 T) 

A necessary con.iition for Ii -;;0 be negat';ve • semidefinite is that H < ~ 
11 - '-. 

Ii' we can find an x for which H 11 > 0, then we have our counterexample. 

To begin, 

-8-
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I-p -x/n ", 
Denote e as f:" • Also recognize 

n 

Hll 
_ (: !:I ,) 2 1 ( ~ _ 1)2 + 

f: 
= ~ g 

Note that Hll> o '~mplies that 

,oJ [rnr - 2J f: 4x + > 
g 11 

1 +
g 

., 
that f: .::. g. 

1 [(~r --2 n 

We then ha.ve 

4x 
2J .,-+ 

11 

4!.+ 
T) 

1 J i 2 
Since 1'- < g, f: 'jg > '(f: /g) f:or any x. Thus if: we can find an x such that 

4x .+ 2 T) 
> 

2x 
n 

+ 1 

the counterexample is complete. Any x < n/2 is such a point.: 

The counte~exa.mple is not truly complete however. We next show the exist-

ence of local solutions. It is convenient now to look at the likelihood 

"function itself: rather than the log-likelihood. The results are not af:f:ected. 

For a single observation, the likelihblod f:unction is g itself:; 
/1 

-x (l-p), -x/n g = pe + ,_,. - e 
11 

'1\ 

We f:irst locate points where the gradient of g is equal to zero. In the following 

analysis, x is treated somewhat like a variable. We solve for points where the 

gradient of the likelihood f:unction is zero, allowing x to assume the most suitable 

value. Once these points are found, we treat x as an observation and assume that 

its value is that f:or which we originally solved. 

-9-
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thus 

The first partial with respect to p is 

~ = -x _ ! e-x/ n 
ap e n 

~= 0 
ap => n = 1 or .!l tnn n-l 

If we let x = 2tn2, then n = 2 also implies 

ag (l-~) -xl" [x J -= e --1 an n n 
and 

~= 

= x 

ag/ap = O. 

an 0 => p = 1 or n = x = 2tn2 . .!l 

Next, 

Thus the ~'oints at which "g = 0 f 11 
~ v are as 0 ows for the observation x = 2tn2: 

(n = 1, P = 1) 

(n = 2, P = 1) 

At both points, which turn out t b d 
o e sa dle points as seen on the gr~ph shown 

later in .the sertion, the value l' th . -x 
o e log-likelihood ~s e or .25. Also note 

that the log-likelihood has the 
same value along the lines n = 1, n = 2, and p = 1. 

Let us now further examine the shape of the surface. 
First consider what 

happens When, for a fixed pC:! 1), one " 
, m~{~~zes with respect to n: 

~= 
an 

a2g 
aTi7 = 

At the point n 

a2g arrz- = 

o => n 

(l-n) 
n~ 

-x/n e 

= x = 

e -x/n 

= x = 2tn2, 

(l-E)e-l 
- (2tn2),j 

2tn2 

[[ * t 
< O. 

Therefore we have a maximum. 

4x 2J - +. 
n 

lJ This is the value at the observat~on as 
• previously solved. 

-10-
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Now consider what the surface is doing for fixed n. We have already seen 

~ 0 = 0 when n = 1 and n = 2. ap 
that Therefore the surface is constant for all 

values of p at those points. When O<n<l or n>2 

( ~> 1 ap • 

Therefore the likelihood function is increasing when p increases. vllien 1<n<2, 

and consequently the function increases as p approaches zero. 

The following is a rough graph of the likelihood function. 

Figure 1 

SAMPLE LIKELIHOOD FUNCTION 

\, 

p = 0 
\1 

= 
n = 21n2 

. i 

I 
0" 

p n = 1 n = 2 
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From the above discussion, it,is ~lear that the maximum is at the poi~t 

p = a and n = 2~n2. 
-1 e 

2~n2 

The objective function value is 

= .2654. 

From the graph, it is also clear that there are local solutions for F:ints 

where p = 1 and O<n<l. Consequently, local solutions do exist and these 3~lutions 

may have objective functions values less than the global maximum. 

Interestingly however, as pathological as this example is, the method 3till 

works. As long as the starting point is not on the boundary, the method .~ll 

reach the global solution. This is because the iterative equations are as follows. 

-x e 

-x + pe (l-p) -x/n
v 

e 
nV 

After one iteration the point will move to th~ line n = 2~n2 and stay the~e. 

After that, the p value will move toward zero. 

-12-
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1. Background 

In recent years, several models featuring mixtures of distributions have b.een 

structured to describe phenomena in the ~riminal justice field. Carr-Hill and 

Carr-Hill (1972) introduced a model for recidivism in which they assumed that each 

released prisoner belongs to either a "quick" or "slow" reconviction group. They 

defined constant reconviction rates for the two subpopulations and further assumed 

a random process governing the transfer of members from the "quick" to the "slow" 

group. These assumptions yield a mixture of two exponential distributions as the 

probability distribution function of reconvictions over time. Carr-Hill and Carr-

Hill did not, however, directly face the issue of estimation of parameter and mix-

ing proportions. Estimates were found by a bit of guesswork and then partly veri- . 

fied to be reasonable yia a chi-square test. 

Greenberg (1978) proposed a modification of the Carr-Hill/Carr-Hill model to 

take permanently law-abiding people into consideration. He suggested that the 

population be viewed as three groups; i.e., strictly law-abiding, potential re-

conviction, and uncommitted. Once again, however, estimation issues were not resolved. 

Another model with two groups in the released population was developed by 

Maltz and McCleary (1977). Maltz and McCleary treated members of the first group 

as "successes" and assigned them a zero probability of reconviction. The second 

group is assumed to fail exponentially with a constant failure rate. Iterative 

equations to obtain maximum-likelihood estimators for the failure rate and the pro-

portion of the population which failed were derived and illustrated in their work. 

The major early efforts on the estimation of parameters for mixture-type models 

were due to Hasselblad (1969) and Mendenhall and Hader (1958). However, as is 

typical in these kinds of problems, the algorithms developed have very poor con-

vergence properties and are not generally applicable to a \ride range of sampling 

situations which arise in the real world. 

To eliminate some of these problems, Kaylan (1979) developed and tested a 

'special iterative scheme to calculate ma..ximum-l·ikel';hood t' t • ~ es ~ma es of mixing pro-

-1-
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portions and probability-density-function parameters for a finite mixture of 

exponential or Weiball distributions where all individuals are assumed to fail 

(complete sampling). Previous work in the exponential area ca..~ be found in the 

aforementioned work of Hasselblad and Mendenhall and Hader. Kaylan also treated 

the case commonly called Type I censoring, whereby all observations of non-failures 

are assumed to begin and observation terminates at the same time whether or not 

failure has actually occurred. 

2. Introduction 

This paper deals with the estimation of mixing proportions and parameters of a 

finite number of mixed Weibull distributions under conditions of progressive 

censoring. By progressive censoring, we mean the following. Observations of ob-

jects or individuals may start at an arbitrary time. If there is a failure during 

the observation period, then the total operating time is recorded and denoted by x .• 
~ 

However, an individual does not have to fail during the observation period since 

observations are allowed to be terminated at any point in time. The total observation 

time for an individual who does not fail is also recorded and denoted by y. which 
J 

is the difference between the points in time at which observation was started and 

ended for that individual. 

Our goal is to obtain ma..ximum-likelihood estimators of the parameters and 

mixing proportions under the assumptions that the data come from a mixed Weibull 

population. Under fairly general conditions, the estimators are efficient, in-

variant, consistent, unbiased, and asymptotically normal. They are also functions 

of sufficient statistics if such exist and have minimum variance. The problem is 

that it is not possible to obtain an explicit form for the estimator by taking 

partial derivatives of the likelihood function and setting them equal to zero. In 

addition, we encounter the constraint that the sum of the mixing proportions must 

equal unity. The resultant problem can be described as a mathematical program with 

-2-
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a nonlinear objective function and linear constraints. Before one attempts to 

use a mathematical programming algorithm, however, it isadvfsable to attempt to 

maximize the log-likelihood function without taking the constraints into account. 

If the answer is feasible, the problem is solved with much leGs computational effort. 

In any event, we utilize iterative numerical procedures to calculate parameter 

Section 3 establishes notati0n and also presents some basic results which 

will be referenced throughout the paper. Para.n:eter estimates can oe made under.' 

tv/'O different assumptions concerning the failed individuals. After a i:J.ilure ve 

may assume either: (1) we know the true density in the mixture from which the 

failure came; or, (2) we do not know the true parent. The former case is labelled 

"non-post-mortem" and the latter is termed "post-mortem.!! Sections 4 and 5, re-

spectively, present a first and second-order iterative scheme fnr parameter esti-

mation under non-post-mortem conditions. Convergence proofs are also given. Section 

6 derives an unconstrained method for estimation under special post-mortem con-

ditions. Then, a first-order iterative sche~e for the post-mortem case is pre-

sented in Section 7 along with a convergence proof. Section 8 gives the iterative 

formulas developed in 4 and 5 for the exponential. Finally, a two-phase second-

order method is described in Section 9. 

3. Notation 

Since we are working with mixtures of K Weibull density functions, the 

probability density function of the jth Weibull in the mixture will be given I;S 

(for x,I3, ,n .>0) 
J J 

f. (x; B, , n.) 
J J J 

B.-1 
= ( B

J
./ n . ) (X/11 .) J 

J J 

B. 
exp [-(xl n .) J J 

J 

The mixtures of K Wei bulls can thus be ~Apressed as 

K K 
g (x,a) = I p:f. (x) 

j=-:1 J J 
(pj ),. 0 .. j!l P j = 1) 

where 0. is a YC~tor of the 
3K·· ~ unknown parametern. 
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The cumulat:i,ve distribution functions for fj(X) and g(x,o.) can al~o be 

written respectively as 

and 

= 1-

K 

B 
exp [-(x/n.) j] 

J 

I p.F.(x) 
j=1 J J 

It turns out that it is more convenient to work with the complements of the 

above cumulati ve distribution functions, namely, 

and 

1 - F. (x) 
J. 

= 

G. (x,a) = 1 - G{x,U) 
J 

B. 
exp [-(xl n .) J] 

J 

K 
r p.F. (x) 

j=1 J J 

Since we shall constantly be taking partial derivatives of g(x,o.) and G(x,o.) 

throughout the 

ag (x,C{) 

;)13 . 
J 

aG(x,o.) 
as. 

J 

aG(X,o.) 

an. 
J 

remainder of this paper, we establish these functions now: 

p.f. (x) [1 + In 
x fn ;J(;jf] (1) = J.J - - -

IS. nj J 

(2) 

(3) 

(4) 
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Equations (1) through hold for j = , •.....•. i ( 4) 1 2 K Tfuen we differentiate 

with respect to Pj' recalling that the Pj sum to 1, we find that 

ag(x,a) 

ai? 
J 

= f. (x) - fk (x) 
J -

aG(x,a) 
= F

J
. (x) - Fk (x) ap. 

) 

4. A First-Ord~t Method -- Non-Post-Mortem 

(j- 1,2, •.. , K-l) 

(j = 1,2, •.• ,K-,l) 

(5) 

(6) 

Our first method for estimating the mixing proportions and the parameters of 

the K yleibulls is a first-order iterative method. We assume that there are N 

observations. R of which are failures during the observation period. We also 

assume that when there is a failure, we do no+ know from which of the K ~Teibull 

density functions it came. Consistent with the literature, this is called non-

post-mortem sampling. Later on, we do treat a special case of post-mortem 

analysis with K = 2. 

The likelihood equation for this problem wilL be 

£'(a) = N! 

(N R) ! 

R 

It 
i=l 

g(x. ,ct.) 
~ 

N-R 

II 
1=1 

G(y.,ct.) 
J 

(7) 

Fron this point on, we shall adopt a shorthand notation, by setting fj = 

fj(xi ), g == g(xi,a). G:: G(Yt,a) , F
j 

= F~(y1.)' So we have 

N! 

(1'1 - R)! 

R 

II 
i=l 

g 

N-R 

IT 
1=1 

-5-

Consistent with standard methods of finding maximum-likelihood estimators, we 

take logarithms to obtain 

+ 
R 
E In g + 

i=l 
1n G 

We now take partial derivatives wit? respect to Sj' nj' and Pj and then set them 

equal to zero. The first term of the log-likelihood is constant and hence do~s 

not affect the different~atJ.on. _ " -As ,J.·s shown below, we find that it is not 

possible to solve explicitly for the parameter; th~s, we invoke the following 

numerical procedure. If there are m equations in m unknowns, we separate ec.ch of 

the m unknowns to the left-hand side of the m equations. Each: right-hand side 

however, will not be independent of the variable on its corresponding left-hand 

side. The standard procedure is to solve iteratively for the unknowns with the 

right-h~~d sides containing values of the vth iteration and the left-hand sides 

being thevallles at the (v+l)st iteration. For example assume there are two 

parameters ~ and a
2

, such that 

Then we may solve iteratively for a
l 

and a
2

. If we use a superscript 

the i tera.tions, then 

= 

The likelihood analysis thus proceeds .~s folloiol's: 

elL -as:
J 

= 
R 
E 

i=l 

1 
g 

N-R 
+ r 

1=1 

1 
G 
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From Equations (1) and (2) We get 

== 

N-R P.p. 
y£. I: -lJ. 

On ) -£.==1 G llj 
Ir ~e no~ set aLIas 

::: 0 j ror all j, ~e 

Si1l1ilarly, 

R 
1: 1 

i==1 g 

(In 

1 -
G 

R 
E 

y£. 
( -11. 

. J 

obtain 

f. 
C -J.. } 

g 

p. 
-J.. 
G 

\i 

S. 
J 

J 
(j == 1,2'·",K). 

(j == 1,2,··~.K) . 
Froll! Equations (3) and (4) T"e th 

W en 'obtain (ror j 1 ) 
== ,2, . "JK 

dL R 

~ V· Sj 

-~ 8. 8. 
a- == 1: 

( -2:.) 
-J.. N-R 

~ Y J 
8. 

11. 

+ 1: ( ---!) 

J i==1 g 
llj 

flj 
-J.. £.==1 G llj 
11j When these are Set to zero, We rind that 

. (10) 

r 

1 /[.: (~J B. -B. 
N-R 

B. J F. J] J 

% + 1: ( -J.. Y,q, [~. ~ 

) 

11j ::: 

£.==1 
G 

R 

(1) 

1: f. 
-.J. 

J 
i == J. g 
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For the mixing proportions ~e have 

== 
R 
r 1 

i=l g 

~hich becomes via Equation (4) and (5) 

1 

G 

de; 
~p . 

J (j = 1,2, .. . ,K -1) 

dL --dp. == 
R 
r 1 

(f. 
J i=l g J f } + 

K 

N-R 
r· 

1.=1 ( j = 1, 2 , • • . ,.K - 1 ) .. 
1 CF. 

J G 

When ~e set aL/ap. to zero ye arrive at 
J 

R 
r 

i=l 

.f. 
J+ 
g 

N-R 
r 

£.==1 

F. C J= 
G 

. 
(j = 1,2, ... ,1<), 

(13) 

Where C is an appropriate constant. Ir We multiply hoth Sides ot' Equation (13) 

hy Pj' SUlJI OVer j, and simplify, then Equation (13) hecomes 

::: 
P. 
J 
N 

(j ::: 1,2, ... ,K) 
(14) 

Equations (9), (n), and (14) are the basis of the iterative prOcedure t'or 

t'inding mixing proportions and distribution parameters. The left-hand sides rep-

resent their values at the (v+l)st iteration. The functions on the right-hand -
Sides contain values at the vth ite~ation. 

The iterative scheme, as it has been developed, can be improved via techniques 

cOn~only USed in the mathematiCal Programming environment. A math programming 

algorithm is composed ot' two main t'eatures -_ the generation ot' a direction Which 

Will lead to improvement in the Objective function and the step size or line search 

problem which indicates ho .. t'ar to mOVe in the prescribed direction. For a non-

concaVe problem, such a direction is only guaranteed to instantaneously lead to im-

provement in ,the objective function.. Thus a step of' arbitrary length maYor may 
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not be beneficial. Consequently, math programming algorithms commonly generate a 

step size, s*, as the solution of 

max 
[ 

v+1 L a + 
s 

As our iterative scheme has been posed, the step size is autofuatically cal

culated. We have developed equations which lead to av+l • In the following section 

v+l v 
we show that the vector (a -a) points in a direction of increasing log-likeli-

hood. v+l We still encounter the possibility that the selection of a does not lead 

to improvement. In order to insure such improvement, and at the same time avoid the 

additional computation required to solve the line search problem, we heuristically 

will bisect the step until an increase is realized. For example, we will first try 

a = a v + (a v+l 
then, 

4.1 Convergence Properties 

NV + 1 a = .... 2 ( ... V,+l v) t 
u. - a ,e c. 

In this section, we prove the convergence of the foregOing algorithm. The 

conditions which constitute global convergence (see Luenberger, 1973) form the basis 

of the proof. We need to show that: 

v 
a belongs to a compact set; 1) 

2) the algorithm generates a sequence of point's such ,that each new point 

causes the log-likelihood to increase in value; 

3) a
V 

is feasible. 

As in Kaylan (1979), Equations (9), (11), and (14) constitute a mapping from 
v t v+l 

.:: 0 a • Since all of the functions in the equations are continuous, the map-

ping is closed .. v 
Hence a belongs to a compact set. 

TIJ show that the algorithm generates a sequence of points so that the log-

likel:i.hood increases. in value, it is sufficient to show' that the following inner 

product is nonnegative: 

-9-
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'VL
V > 0 a 

We show this in three stages. 

VLV > 0 a 

First, 

(j=1,2, ••• ,K) 

From Equation (9), after some algebra, we obtain 

(15) 

(16) 

(j = 1,2, ... ,K) 

Since the coefficient of JjL/a~Jv here is nonnegative, it is clear that the con

dition in Equation (16) is satisfied. The second stage is to show that 

[ 
v+1 v] n. - n. 
J J 

VL
V > 0 (j = 1,2, ••• ,K) • (17) 

Aft'er some algebra building from Equation (11), we find that 

S,:+l 
v J v 

= 
(n

j
) 

[~~.J R v a~ f~/gv) p. ( i: J . 
J J i=l J 

(j = 1,2, ••• ,K) 

Since the coefficient in the above is nonnegative, Equation (17) is satisfied. 

The finai stage is to show that 

K 
i: 

';=1 
.I -

[ 
v+1 v] p. - p. 
J J 

VLV > 0 
P 

-10-
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The proof is patterned after Hasselblad (1967). After substituting for VLv from 
p 

Equation (12), the left-hand side becomes 

K 

1: 
j=l 

[: 
v+1 V]. p. - p. 
J J { 

R . (f~ -
E J 

. 1 v 
~= g 

Equation (14) tells us, however, tha'fj 

~ 
v+l 

R f~ N-R F: P j = E --2 + E --2 
v 

i=l g t=l C;V P j 

Therefore the left-hand side is equal to 

K [V+1 vJ N .1: p. - P j J=l J 
{ 

v+1 p. 
:L_ 

v 
P j 

2 

= N' 

If we now let 

+ 

V+l] PK 
v 

P 
K 

N-R 
r 

t=l 

v+l 
p. = p. + OJ 

J J (j =l,2, •.. ,K) 

(F~ -
J 

where the o. sum to zero, then after some' algebra (19) becomes J 

N 
K . O. 2J 
E--2 

j==l P j 

(19) 

This is guaranteed to be positive and hence Equation (18) is true. Equations (16), 

(17), and (18) together show that Equation (15) holds and thus that the algorithm 

\\ does generate a sequence of points such that each new point causes the log-likelihood 

to increase in value. 

-11-

.---

I 
The final step in the convergence proof is to show aV is f.easible. This 

implies that p. > ° J - , Sj' nj > ° (j = 1,2, ... ,K) and that LPj = 1. If a 0 is such 
that P. > 0, 

J - t3 j , nj > 0 (j - 1,2, ... ,K), then this condition will be maintained 

through all iterations since the right-hand sides of Equations (11.) and (14) must 

be positive. 

Under many conditions, the right-hand side of Equation (9) will also be 

positive, but this is not guaranteed. Thus we resort to a heuristic method to 

avoid this difficulty -- a bisection of the step size as described in the beginning 

of this section. We have 

v+l v (v+l v) a = a + s a - a . 

We initially set s to unity. If some Sj is neg~tive, then we will set s to 1/2, 
K 

To show that j~l Pj = 1, 1/4, 1/8, ,"" until feasibility is achieved. 
K-l 

show that j~l Pj < 1. 
K-=l 
j~l Pj < 1. If we take Equation (14) and sum 

it is 

sufficient to If we take Equation (14) and sum over j, then 

it is sufficient to show that 

over j~ then 

r K-l K.-l 

F
j J t~l 

1: P j f. E P j K-l j=l J N-R j=l 1 1: P j = + E 
j=l N 

t=l g G 

Since 
K K 

g = j~l Pj fj and G = L Pj F. 
j=l J 

then 
" ., 

K-l Pj f. K-l Pj F. 
L J < 1 and L J < 1 j=l g 

j=l g 

Thus 

K-l R N-R r P j < 1 
I r 1 L \ -} t, 1 ) = l. j=l N 
i=l t=l 

" -12-
jJ 
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5. A Second Order Method -- Non-Post-Mortem 

Here the log-likelihood equation may be written as 

L 1 Nl_+ 
= n (N-R)! 

R 
r In 

i=l 

K N-R 
r P

j 
f

J
. + r 

j=l 1.=1 

K 

In r p. F. 
j=1 J J 

We want to make use of the fact that a monotone increasing concave function of a 

concave function is concave. Any function which is linear in the {P.} is con
J 

cave with respect to the {p.}. Also the logarithm is a monotone increasing con
J 

cave £'unction. Thus 

In r 
j=l 

p. f. 
J J 

-and In 
K 

r 
j=l 

p. F. 
J J 

are both concave functions. Since the sum of concave functions is convave, the 

log-likelihood function is concave with respect to the {P.}. 
J 

We next look at the sub-Hessian matrix as 

= (j 1. = I, 2 , •.. ,K -1 i 

j 2 = 1, 2 , ••• ,K -1 ) 

Equation (12) defined VL = aL/ap.; 
p .) 

VL = p 

R 

r 1 

i=l g 
(f . 

J1 
- f ) + 

K 

Thus (for Jl , J2 - 1,2, ••. k-l) 

2 
V L = 

2 
g 

therefore 

N-R 
r 

1.=1 
1 (F. 
G J1 

N-R 
r 

1.=1 

-13-

- F.\ 
K 

(jl = 1,2, .•• ,K-l). 

On the basis of this scheme we may use Newton's Method for generating the 

mixing proportions 'I{ector equation 

-1 
v+l v 

p = p (VL v) 
P 

(20) 

Therefore the second-order scheme uses Equation (20) instead of Equation (ll~). 

The step-size issue, as discussed within the context of the first-order method, 

is applicable here as well. In order to guarantee improvement in the log-likeli

hood at the (v+l)st iteration, we will bisect the step size until an increase is 

realized. 

Convergence Properties 

The properties listed in Section 4.1 to show convergence of the first-order 

method must also be shown to hold in this second-order method. But we need only 

examine the properties for the differences between the two algorithms. Clearly, 

a
V 

belongs to a compact set since the functions in Equation (20) are continuous. 

We must next prove that 

[ 
v+l v] CI. - CI. • 'ilL

V > 0 
CI. 

Section 4.1 showed that the above holds ror the 

Thus we only need to show that 

[ v+l v] p - p 

From Equation (20) we obtain 

v 
. ('ilL ) 

P 

'ilL
V > 0 
P 

-14-

and components of a. 
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Since L is concave with respect to the mixing proportions, [ \72Lp J-l 
is 

negative semidefinite. Therefore the right-hand side o~ the above is nonnegative. 

The last step in the convergence proof is to show feasibility. Since the 

and equations are the same as in the first-order method, we need only 

show that the {p.} are nonnegative and sum to unity. Unfortunately the Newton 
J 

step does not take the constraints into account. There is no guarantee that the 

{Pj} will sum to unity or remain nonnegative. We may however resort to a 

heuristic method to 

dimensional vectors 

move in (K-l) space. 

has been set to one. 

v+l 
P 

v d v+l ') avoid this problem. If we consider p an p to be (K-l -

and let f;K = 1 - K~l P 1 , then Equation (20) represents a 
[- j=l ~ 

But Equation (20) is also a step-size equation in which s 

It can be rewritten as 

v = p - s 

v 
(VL -) 

p 

~" 

~ 
.'( ,".-

If' a value of s implies either 

K-l 

'C-ll···,:,·~,;'i.;. ,-

~ / .,~-.; L p. > 1 
j=l J 

or p. < 0 
J 

for any j = 1,2, ... ,K:"I, 

then we Vj.ll bisect s and try again for feasibility. Thus we, will begin with 

s = 1; if the resulting v+l 
P is infeasiole, we will try s= 1/2, s = 1/4, etc., 

until feasibility is achieved. Any of these steps is guaranteed to lead to an 

improvement in the log-likelihood, since the log-likelihood function is concave 

in the" {Pj}. 

6. An Unconstrained Problem -- Post Mortem 

Up to this point, we have been dealing with N observations, R of which 

fail during the observation period. We also have assumed that the parents of the 

R, failures are unknown. In a "post-mortem" case, we assume instead that the 

underlying distribution of a failure is known. For this problem, we need to 

I.', _:",; ,-: ;",' ~ ',_ 

;L: 
:," _.' 

"",' ":>~: 

""L~ 
\\ .. ~ .< :r",~, 
,"'. 

".c4 
, -~ 
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-. "; --""'!iw:_ 
, :!~. 

" 
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,~ 
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For the R failures, a$sume that R. 
J slightly amend our previous notation. 

them were found to belong to the jth parent f.(x) where j = 1,2, ... ,K, and 
K - J 

r R
j 

= R. 
j=l 

Previously, f. was f. (x.) - but now fj will denute f. (x .. ) where 
J J ~ I ,1 ~J 

x fs the failure time for the ij 

and 

The likelihood function for 

NI 
L = (N-R) 1 

lnL N! 
= In (N-R)! + 

N-R 
n 

j=l 

N-R 
L 

1=1 

, 
ith object with parent f.(x). 
-. J I 

the post-mortem problem is thus 

G 
K 
n 

j=l 

In G 

R. 
J 

p. 
J 

K 
n 

R. 
J 
n 

j=l i=l 

K 
L 

j=l 
R. In P.+ 

J J 

f . 
J 

K 
L 

j=1 

R. 
J 
L In f. 

i=l J 

of 

(21) 

We first pose an unconstrained post-mortem pfbblem in which L will be maximized. 

Since the first term in L is constant, we define 

N-R 
L 

1=1 
In G + 

K 
L 

j=1 
R. In p.+ 

J J 

K 
L 

j=l 

R. 
J 
L 

i=l 
In f 

j 

The set of parameter values which maximizes L d will also maximize L. .In the 
mo 

special case where K = 2, the following transformations of variables are made: 

2 IL- u. 
J J 

2 = v. 
J 

j = 1,2 

j = 1,2 

This transformation guarantees that B
j 

and nj > O. 

2 
and P2 = cos w, then PI + P2 must equal unity. When the 

If 1 t 
; 2. 

we a so se PI = s~n VI 

above" is substituted into 

L d' an unconstrained maximization problem results since all of the constraints 
mo 

are guaranteed to hold. ,The solution may be gotten from any standard unconstrained 

nonlinear optimization procedure. 

i 
\ , 
I 

( " 
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7. A First-Order Method -- Post Mortem 

Let us now draw a parallel to the first-order met~od of Sp.ction 4, but for 

the post-mortem analysis. The restriction (K = 2) of the previous section is 

dropped. We use the procedure of differentiating the log-likelih(jod function 

with respect to S., n. and p., setting the derivatives to zero, and then separating 
J J J " ': 

; 

values to form an iterative procedure. The log-likelihood function of Equation (21) 

is the starting point: 

= 
N-R 

E 
1=1 

1 

G 

dG 
as:-

J 

R. 
J 

+ E 
i=l 

1 ~fj 
f. aB. 

J J 
(j = 1,2, .•• ,K) 

After substituting from Equations (1) and (2) this becomes 

= 
N-R 

E 
1=1 

R. 
J 

p. 
:...J.. 
G [-

Bj 

F. (In ~~)(~~) l 
J J J 5 

(22) 

+ E 
i=l 1,2, •.• ,K). (j = 

If aL is set to zero, the following holds for all j: 
as. 

J 

R. 
J 

e)[(~ 
J J 

P.F. 
=-.LJ. 

G 

Similarly, 

dL 
dn. 

J 
= 

N-.R 
E 

.9,=1 

1 

G 

a'G 
an. 

J 
+ 

R. 
J 
E 

i=l 
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1 
f . 

J 

af. 
--l. as. 

J 
(j = 1,2, ••• ,K) I 
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which via Equations (3) and (4) becomes for all j 

= 
N-R 

E 
1=1 

p.F. 
~ 

G (~:) 
13 • 
J 
11. 

J 
+ ) [(~ ~=1 nj ) 

When Equation (24) is set to zero we find that 

= 

N=R 
E 

1.=1 

p.F. 
:..L.1.. 

G 

R. 
) 

R . 
J 
E 

i=1 

Finally, the mixing proportion equation is 

dL 
dp. 

J 
= 

N-R 
E 

1.=1 

1 

G 

dG' . 
dp ._ + 

J 

R. 
-l 
p. 

. J 

liB. 
J 

(j = 1,2, ••• ,K) 

(j = 1,2, ••• ,K-1) 

(24) 

(2S) 

Upo~ substitution of Equation (6) and setting the derivative to zero, we get 

n-R F. 
E -l 

1.'=1 G 
+ = constant = c - (j = 1,2,.~.,K) 

If we mtutiply both sides by Pj and sum, this becomes 

K 
E 

j=l 
p.e == c = 

J 

Thus, finally, 

R. 
P = -l + 

j N 
1 
til 

<N-R 
E 

1.=1 

N-R 
E 

1.=1 

K 
E 

p==l 

p.F. 
:...LJ. 

+ 
K 
r 

j=l 
R. 

J == N 

(j = 1,2, •.• ,K) 

(26) 

(27) 

'-~ 

\ 

I 
\ 
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Equations (23), (25) and (27) are the basis for finding the distribution 

parameters and mixing proportions in the post-mortem case. As before, the left-

hand sides represent the values at the (v+l)st iteration, and the right-hand 

side functions are evaluated with values at the vth iteration. In addition, we 

will bisect the step size if nQ improvement in the log-likelihood function is 

realized. 

7.1 Convergence Properties 

The convergence proof is patterned after Section 4.1 by showing that 

el) a v belong's to a compact set; 

(2) [ 
v+l v] a - a. • IlL

v > 0; and 

(3) a V is feasible. 

Since all functions in Equations (23), (25) and (27) are continuous, the mapping 

v v+l . v 
from a to a ~s closed and a thus belongs to a compact set. 

For the second property we first show 

Equation (23') implies for all j that 

R. 
J 
L 

i=l 

1 1 
v 

fL 
J 

R. 
J 

N-R 
= L 

t=l 

v-:::v p.F. 
:..L.l 
GVR. 

J 
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R. 
J 

[via (20)J 

(28) 
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After some algebra, this becomes 

= (j'=l,2, ••• ,K) 

Since the coefficient of VL; is positive, Equation (28) holds . 

We next need to show that 

ULV > 0 . n 

Equation (25) implies for all j that 

= 

N-R 
L 

t=l 

v -v P. F. 
J l. 
G'v 

R. 
J 

(j = 1,2, ••• ,K) 

+ 

R. 
J 
L 

i=1 

v S. 
J 

x .. 
J.J 

1/f3~ 
J 

v n. 
J 

(29) 

.. 

. x x ~, 

S2nce A-B has the same sign as A -B , the right-hand side has the same sign as 

N-R 
L 

. JI.=l 

v p. 
) 

G 

F' 
j 

which [Yia Equ,ation (24[[ 

n~ 
J 
R. 

J 

v n. 
J 
a~ 

J 

Since the coefficient of 

+ 

R. 
J 

R. 
J 
L 

i="l 

equals 

x .. 
~J 

f3~ 
J 

R. 
J 
L 

i=1 

(j=1,2, ••• ,K) 

n~ 
J 

f3~ 
J' 

~L/a?~v is positive, Equation (29) holds. 

\ " 
i 
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In order to demonstrate the second property, it only remains to show that 

K 
1: 

j=l [ 
v+l 

p. 
J 

VL V > 0 
p 

(30) 

After substituting for VL
v 

from Equation (26), the left-hand side of Equation (30) 
p 

becomes 

K 

1: 
j=l [ 

v+l vJ P. - p. • 
J J 

Equation (27) may be rewritten as 

v+l 
N p. 

) = 
N-R 

+ 1: 
.t=1 

Thus the left-hand side is equal to 

K. 
N L 

,~; )'=1 
It. 

[ 

v+l 
P . . ~ 

v 
P j 

. R. 
+,,-2 

Y v 
p. 

) 

This expression is identical to Equation (19), thus the arguments of Section 4.1 

apply and consequently the eA~ression is positive and the proof of Equation (30) 

is complete, 

.. :::;, The final step is to show that a v is feasible. Since the right-hand sides of 

Equations (23) and (25) are positive and Equation (27) is nonnegative, then 
K 

I3 J. n
J
. > 0 and PJ' .::. 0 for all j, 'fe have only to show that I: p. = 1. If b9t h 

j=l J 

sides Of Equation (27) are summed over 

K 
... v+l 
t. p. 

j=l J 
= 1 

N R. + 
J 

Thus convergence is assured. 

N-R 
L 

.t=1 
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K 
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8. The Expo~ential Case 

If we dE;'al with a mixture of exponential.s rather than a mixture of Weibulls, 

the results are quite similar. The probability density function and complementary 

f. (x) = 1 exp(-x/n.) and F. (x) = exp(-x/n.). 
J nj J J J 

CDF for the exponential are 

Since these forms are equivalent to the Weibull when I3
j 

is one, the iterative 

equations for the exponential case are found by setting I3
j 

to unity in each of the 

various algorithms. The results are as follows: 

First-Order Method -- Non-Post Mortem 

= 

= 

R 
1: 

i=1 
R 
L 

i=l 

~.[ ~ :i + 
N • 1 V 

.l.= 9 

x. + 
l. 

f~ / ~v 
J 

N-R 
I: 

t=l 

N-R F~ ] 
1:, ....J.. 

.1'.=1 GV 

Second-Order Method -~ Non-Post Mortem 

v+1 
nj 

v+l 
p. 

J 

= 

= 

R 
L, 

i=l 

N-R 
+ L 

.t=1 

First-Order ! .. Iethod -- Post filortem 

v+l p. 
J 

i:= 

::: 

v-v R. N-R p.r. J 
L ::::...l-2 Y.t + L 

t=l . GV i=l 

R. 
-2+ 
N 

"N-R 
1 1: 
N t=l 

v-v p.F. 
:..:LJ. 

GV 

x .. 
?-J 

(j = 1,2, ••• ,K) 

(j = 1, 2 , ••• ,K ) 

<F:' / G) J Yt 
(j = 1,2, ... ,K) 

(j = 1,2, ... ,K) 

(j = 1,2, .•. ,K) 

(j = ].,2, ••• ,K ) 

r 
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9. A Two-Phase Method 

In Section 4, we presented ai ,lirst-order method in the non-post mortem 

case. Equations (9), (10) and (14) form the basis of this approach. In Section 7, 

analogous equations were developed in circumstances where a post-mortem was 

performed. We were able to take advantage of the fact that the log-likelihood 

function is concave with respect to the mixing proportions in the non-post mortem 

case in Section 5, and consequently were able to take advantage of second-order 

convergence by replacing Equation (14) with Equation (20). 

If in either of the first-order methods, we are in a neig~borhood of a local 

maximum where concavity is guaranteed~ then a Newton step can be made in the 

( ~l v vector a) of all parameters as a = a where s is the step 

size, initially set to unity. Convergence will occur since V2Lv is assumed to be 
a 

negative semi-definite. If av+l is not feasible, the step size will be bisected 

as was previously the case. Computationally we test the closeness to a solution 

by the absolute value of the gradient of the log-likelihood being arbitrarily small. 

More specifically, when K = 2, we will define the vector as a = (Sl' S2' nl , 

Thus the (ij)th element of V2L v will be the second partial of L with 
- a 

respect to a. and a. of the vector a. Lengthy formulas can now be derived to 
1. J 

enable us to write all terms which may be encountered in a V2L matrix. The 
a 

differentiation is straightforward but messy, so the detailed results are not 

offered here. 

10. Directions for Future Research 

Several methods for finding the parameters of the mixture model have been 

presented. The next step is to test these methods under a wide variety of con

ditions to determine the most appropriate choice corresponding to the partic'1lar 

circumstances. Once the parameters have been estimated, one would want to make 

statistical statements about them. Thus another research direction will involve 
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the testing Of~;;hupotheses concerning the parameter. Two other issues for con
/! " (/ 

sideration are the handling of local solu·i;ions and goodness-of-fit testing. 
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RELE~SE 2.0 MAIN DATE = 810.30 

COMMON /BLK/NN;KK.MM.TT.8B'NU.KI(lOO)'~I{100)'ITYPE 
D I ME N S ! eN C L (4 • C H ( 4 ) . 
DATA CL./.99 •• 98 •• 95,.90/ 
NN= 1')(2 
KK=53 
MM=NN-KK 
TT=535 
BB=TT-KK 
NU=24 
ITYPE =1 
CALL MLECAL(GML,QML.SG,SO.~) 
WRITE(6.*IGML.QML.SG,SQ.R 
CALL BYSCAL(G~L.QML,G8A,QBA.SG.SQ,R) 
WRITE(6.*)GBA,QSA.SG.SQ.R 
CALL NTGRTN(GML,QML.CL,CH) 
CALL CCNTOR(GML,QML.G8A.QBA.CL.CHI 
STOP 
END 

I PT!ONS !N !::FFECT* NOT=RM.rD.EBCDrC.SOURCE,NOL!ST.NGDECKoLO~D.NO">4AP.·'\jOTEST 
PTIONS IN EFFECT* NAME = MAIN • LINECNT = 50 
T~TISTIGS~ SOURCE STATEMENTS = IS,PROGRAM SIZE = 722 

-';"-TSTAT!STICS~ NO DIAGNOST!CS GENERATED 
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;;)J 2 
'0,13 
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11107 
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,j')9 

010 
Ii.) 1 1 
iH~ 
i) L 3 
014-
)15 
016 

,\)1 7 
'Ha 

11)19 
()2') 

021 
,)22 
023 
024 
025 
:)26 
t')27 
028 
029 
030 
031 
032 
033 
,j34 
035 
,136 
')37 
038 
J3q 
')4~ 
1)41 
')42 
043 
.)44 
045 
."146 
(147 
048 
049 
J:; ,) 
')51 
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RELEASE 2.13 MLECAL DA TE = 8103") 

SUBROUTINE MLEC.lLCGA",.aa,SG,Sa.RHC) If i 

C**** **** **** .. *******""**************** ******* * **** **** **** *******,~ 
C* -'-'" 
C* THIS SUBROUTINE CI\LCULATESTHE MAXIMUM LIKELIHOOD E'5TIMATE OF""" 
C* GAMMA "'NO a A.ND THEIR (~SYMPTOT IC» COVARt ANCE PARA,\1ETERS. IF ."" 
C* ITYPE=L THE DATA ARE SINGLY CENSORED; IF ITYP~=2 THE DATA ARE 
C* MULTIPLY CENSORED. 
C$ .' ~~~ 
C*~**********************~**************************************** 

10 

1.00 

t!v 

130 

COMMON /8LK/NN,<KrMM,TT.BB,NU.KI(lOO).~I(lDa).ITYPE 
I CT=O (, 
IF( ITYPE.GT.l)GO TO 100 
Z=TT/B8 
RT=88/KK 
Tl=l/(Z-l) 
T2=NU/( Z**NU-1' 
TOP=TI-T2-PT 
BOT=Tl**2-Z**(NU-l'*T2**2 
DZ=TOP/BOT 
Z=Z+OZ 
ICT~ICT+l 
IF(1CT.GT.30)GO TO 200 
IF'~BS(DZ/Z).GT.1E-6)GO TO 10 
aa=1/Z 
GAM=~K/(NN*(t-aa**N~» 
Tl=~N*KK*GAM**(-2)/~M 
Sl=KK/{1-aO'-88/00 
T2=-Sl*KK/(G~M*MM) 
T3=(Sl.*2)/MM-Sl.(NU-l,/ad~KK/(1-Oa)**2+88/aa**2 
DEL=T1 *T3-T2**2 
SG=T3/DEL 
sa=Tl/DEL 
CV=-T2/DEL 
IF(SG.GE.O)SG~SaRT(SG) 
IF(Sa.GE.O)Sa=SQRT(SC) 
Rl'iO=CV/ (SG*sa ) 
RETURN 
GAM=(KK+O.O)/NN 
aO=88/TT 
I CT= I CT+l 
HG=KK/GAM 
HQ=8B/aO-KK/(1-aO) 
HGG=-HG/GAM 
HGa=o 
HaO=-BB/aa**2-KK/(l-QO)**2 
01=1 
DO 130 I=l.NU 
TO=GAM*I*aI 
aI=al*oa' 
Tl=l-QI . 
T2=L-GAM*Tl 
T3=Tl/T2 
T4=TO/T2 
HG=HG-MI (I) *T3 
HO=HO+t:n (I )*T4 
HGG=HGG-M!(I )~T3**2 
HGO=HGa+MICI )*T4/(GA~*T2' 
Haa=HOO-MI (I ,*T4*(T4-( 1-1 )/oa) 
DET=HGG*Haa-HGO**2 

....... ~ .. 

,'. ,. 

.--._" 
. :.'"~s-·( 7 r 

~-; ," 

:11. 

~.'C~ __________ • ____ _ 

150 

200 

210 
22Q 

DG~-(Hoa*HG-HGa*HO'/CET 
DQ~~{-HGa*HG.HGG*HO'/DET 
GAM:..~GAi<4+DG 
IF(GAM.GT.l.S)GO TO 200 
aO=OQ+oa 
TEST=(DG/GAM'**2+(Da/aO).*2 
IF(TEST.LE.IE-10)GO TO 15J 
IF(ICT.GT.30tGO TO 200 
GO TO 110 
IF(GAM~GT.i.J)GD TO 200 
SG=SORT(-HaO/DET' 
Sa=SaRY(-HGG/DET) 
RHO=HCO/SaRT(HGG*HOO) 
RETURN 
GAM=1 
SG=') 
SQ=i) 
RHO=O 
CC=NU*MM 
IF( !TYPE.Ea.! lGO TO 220 
CC=O 
DO 210 I=l.NU 
CC=CC+I*MI(I) 
aa=(B8~CC)/{TT+CC' 
RETURN 
END 

'\'. \) 
'''::;') 

:;.O~~'f,l ONS IN EFFECT* NOTERM. I D, EBCDI C, SOURCE ,NOL 1ST, NODECK. LO AD, NOM.AP. NOTES T 
-PTIONS IN EFFECT* N~ME = MLECAL • LINECNT = 50 

1~TISTICS. SOURCE STATEMENTS = 77.PROGRA~ SIZE = 2750 
~TATISTICS* NO DIAGNOSTICS GENERATED 
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0.16 
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008 
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013 
014-
015 
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.J 1 A 
019 
tl20 
021 
022 
,)23 
)24-
025 
026 
:)27 
G28 
029 
03!) 
() 3.L 
032 
033 
034-
035 
036 
037 
03'3 
039 
040 
a4-1 
1)42 
043 
044 
045 
046 
1)47 
048 
:)49 
05;') 
051 
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RELEASE 2.0 BYSCAL qATE = 81030 
'~",~;~, 

09/46 _~, 
'z.;'; 

SUBROUTINE BVSCAL(GML,OML.GAM,Oo.SG,sa.RHO) ~ 
c.** •••••• * •• ** ••••• * •••••••• '11** •• ** ••• ** * ••••• >i< ***.* ••• * ** •• * ••• '_',~ •• ::-. C* '. '.,.~'.' 

c* THIS SUBROUTINE CALCULATES THE BAYESIAN EST!MATES OF GAMMA A.N. 
C. Q A.ND THEIR COVARIA.NCE P~R~METERS, ASSUMING A UNIFORM PRIOR 
C* DISTRIBUTION. IF THE DATA A.RE SINGLY CENSCRED ITVPE=l; IF 
C* ARE MULTIPLY CENSORED !TYPE=2. 
C. 
C***************************····***··********·***·····.~*.****.*.~ 

COMMON /BLK/NN.KK.MM,TT.BB.NU.KI(L~O),M!(100).ITYPE ~ 

10 

20 

DIMENSION F(3.3',SUM(3.3) 
IF( ITYPE",GT.l ,GO TO 100 
DO 10 !R=1.3 
JS=4-IR 
R=IR-1 
DO 10 IS=l.JS 
S=1S-1 
F(IR.IS)=FIRST(R.S) 
SUM(IR.IS)=F(I~.IS) 
DO 50 1=I.MM 
00 20 I R=1.3 
R=IR-l 
JS=4-IR 
DO 20 I S~l .JS 
S=IS-1 ., 
F(IR.IS)=F(IR,IS)*XNEXT(I,R,S) 
SUM(1R,IS'=SUM(IR.IS)+F(IR.!S) 

50 
IF{ ASS( Fe 1.1 , /SUM( 1. 1» .L T .lE-6 )GO TO 200 
CONTINUE __ ..,_--.-c-. 

100 

110 

121) 

140 

150 

t60 

GO TO 200 
TOP=VALLFCGML,OML.l) 
DO 1 L" 1 = L .3 
JX=4-1 
DO 110 J=I,JX 
5 W4( ! • J , =0 
GX= 1.0 
IF(GX.LE.O)GO TO 2QO 
C~LL OLINE(Gx.OTOP.SO) 
HT=VALLF(GX,OTOP.2) 
IF(HT.GT.OIGO TO 130 
IF(GX.LT.GAM)GO TO 200 
GX=GX-O.'()5 
GO TO 120 
DO 140 1=1.3 
JX=4-1 
DO 140 J=l.JX 
F( I, J )=HT*GX •• (1 -1) *CTOP** (J-l ) 
00=0.05*SQ . 
QX=OTOP 
ISW=l 
OX=QX+OO 
IFCQX.(l-QX,.LE.O)GO TOC17C.180 •• ISW 
HT=VALLF(GX.QX,2) 
!F(HT&LE.O)GO TO(170,L8~),!SW 
DO 1601=1.3 
JX=4-1 
DO 160 J=1.JX 
F(I.J)=F(I.J)+HT*GX**(I-l1*OX**(J-1) 
GO TO 150 

"0',-; ,-
\)~~~; . 

. ' ,:",;". -

>;"~ ":,"-: 

~"~ 
;·~~~A' " 

,t'~~~:~-, 
~,~1_ 

",.:.6. 

170 

180 

19;) 

201) 

00=-00 
QX=OTOP 
ISW=2 
GO TO 150 
DO 190 1=1,3 
JX::4-1 
DO 190 J=l.JX 
SUM(I,J)=SUM(I.J)+F(I.J)*A8S(DO) 
GX=GX-O .1l5 
GO TO 120 
GAM=SUM(2.1)/SUM(151 ) 
GSO=SUM(3.1)/SUM(1,1) 
OO=SUM(1.2)/SUM(I.1) 
osa=SUM(1,3'/SUM(1,1) 
GOB=SUM(2,2)/SUM(1.1) 
SG=Gsa-G AM** 2 
IF(SG.GE.O)SG=SORT(SG) 
SO=QSO-QQ**2 
IF(SO.GE.O)SO=SORT(SO) 
RHO= (GOB-G AM *00" (SG*SQ. 
RETURN 
END 

. .----.. ~~~----.-~-..,...-----

'~---'':!'''''''''';'.':' 

'/',OP'i'TI GNS IN EFFECT. NOTERM, 10. EBCD r C. SOUF<CE .NOLIST. NODECK. LO AD. NOt.4AP .NOT EST 
',,",~ PTIGNS IN EFFECT* NAME = BYSCAL • LINECNT = 50 

'~;AT:ST:CS* SOURCE STATEMENTS = 73.PROGRAM SIZE = 2382 
.......,,-~TATISTICS* NO DIAGNOSTICS GENERATED 
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RT~~N IV Gl P~LE~SE 2.~ FIRST OA TE = 8 to 3U 

J iJ 1 

0'12 
003 
JJ4 
C15 
0..;6 
JJ 7 
'::08 
oj'; 9 
:)10 
0it 
.J 12 
013 

FUNCT ION F IRST( R. S )1: 
C********************~**.************************·***************' c,·;:~ 

C THIS FUNCTION CALCULATES THE FIRSt VALUE OF THE BETA FUNCTION _ .. ,x 
C WITH INDEXES RANDS. FOR THE SUBROUTINE BYSCAL. .'~ 
C' , 

C ***********************",*******::.t***"'***** •• ¥ *"'¥**"'** .**lI-* J! •• **.* .'~:~'" 

10 
20 

30 

COMMON /8LK/NN.KK.MM.TT.8B.Nu.K!(lnO •• MI(lOO,.ITYPE I,p 

FIRST=l, - ~ 
IF(R~EQ.O)GO TO 20 ~ 
KR=R 
00 10 1=1. KR 
FIRST=FtRST*(XK+I)~(NN+I+1.0) 
IFCS.EC.OlRETURN 
KS=S 

,'(~\:'('? 
i 

00 3 il .J= 1 • K S 
FIRST=FIRST*(8B+J)/(BB+XK+.J+1) 
RETURN ,-,""",-

END 

.OPTIONS IN EFFECT* NOTaRM.ID,E8CDIC.SOU~CE.NOLIST.NODECK.LOAD.NOMAP.NOTEST 

.OPTIONS IN EFFECT* NAME = F!RST ,LINECNT = 50 

.ST~TISTtCS* SOURCE STATEMENTS = 13.P~OGRAM SIZE = 6g6 

.STATISTICS* NO DIAGNOSTICS GENERATED ~,~ 

: ;,~"'/ ~-:::-: 

--- ~,#' 

."" 

'~, 

,Q 

''>''i' -- ._._. ----~-..... ' ---------------------------------------
s;-}.r 

~--~·~:-~~::~~~t;·~~;;~~~1 
~..",.,. RAN IV Gl RELEASE 2.0 XNEXT DATE =81030 J 9/46, 

FUNCT!ON XNEXT(I.R.S' . 
C** ••• "'*"'*** •• ********.*.*~*.*****************.****************** •. 
C 
C THIS FUNCTION C4LUL~TES THE NEXT VALUE IN THE SERrES. FOR 
C THE SUBROUTINE BYSCALi 
C 
C************* .*** ••• ***** *** ~~***** ** ******** .**.***** ****. ** ** ***.' COMMON /BLK/NN.KK,MM.TT.B8,NU.KIC100"MI(lOO),ITYPE 

ZI=I 
XNEXT=(XK+R+ZI'/ZI 
TRM=BB+XK+S+(I-1J*NU 
00 10 J=l.NU 

10 XNEXT=XNEXT*(TRM-XK+J,/(TRM+l.O+J) 
RETURN 
END 

. :,~. /",,'- ", 

~- PTIUNS IN EFFECT* NOTERM.ID,EBCOIC.SOURCE.NOLIST.NOOECK,LOAO.NOMAP.NOT5ST 
e:r IONS IN EFFECT* NAME = XNEXT • L INECNT = 50 

~'!:;T:STICS* SOURCE ST~TEMENTS = 9,PROGRAM SIZE = 590 
·.,tiC$1"A;TISTICS* NO DIA.GNOSTICS GENERATED ;:::"'Pi-' ',:' .. '-' '.; 
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~ORTR~N IV Gl RELEASE 2.0 VALLF DATE = 8103,) 
ao.;) 1 

001)2 
0003 
(lllL> 4 
) () I) 5 
Ih}l) 6 
lH'h) 7 
,)9:)8 
(~()c)g 

i)"llil 
~~f)11 

IJOl2 
tl013 
"014 
0lli5 
n016 
OOL7 
001A 
(',)19 
(J (21) 

FUNCTICN VALLF(G.Q.IX) 
C***********~********** •••• **.*.*** ••• ***.********.***.*.* •• ** •• ~ C ; 
C* THIS FUNCTION CALCULATES THE VALUE OF THE L1KEL~HOOD FUNCTIC~'::: 
C* ~T THE POINT G.a. IF IX=l THEN G AND Q ARE THE VALUES OF TH 
C* L.F. AT THE MAXIMUM A~D THE LOG L.F. IS RETURNED. IF IX=2 T ~ 
C* FUNCT I ON RETURNS THE VALUE OF THE LF REL A TI VE TO THE MAX I MUM 
C .~~ 
C*********************************************************.**.~*~~-

10 

20 

30 

40 

COMMON /BLK/NN.KK.MM.TT.8B.NU.KI(100'.MIC100).rTYPE __ 
X=KK,.: ALOG (G* Cl-Q) , +6 E* ALOG C Q) /! 

IFC ITYPE.GT.1 JGO TO 10 " 
X=X+MM*ALOGC1-G+G*a**NU) 
GO TO C30.4C).IX 
QI=l 
DO 20 I=l.NU 
Ql=O*01 
X=X.MICI).ALOG(l-G.G*QI) 
IF(IX.GT.l)GO TO 40 
VALLF=X 
HMX=X 
RETURN .' 
VALL.F=\l 
E=X-HMX 
IF(E.LT.-4Q)RETURN 
VALl:.F=EXP(E) 
RETURN 
END 

----~-. ~~ 
:" ;:' i<;·,t ..... .,; 

*OPTICNS IN EFFECT* NOTERM.ID.EBCDrc.SOURCE.NOLIST.NOD~CK.LOAD.NOMAP.NOT=ST 
~OPTrCNS iN EFFECT* NAME = V~LLF • LINECNT = 50 ~ '., • J .~' 

~5T~TrSTtcs* SOURCE STATEMENTS = 20.PROGRAM SIZE = 944 
*ST~TISTrcs* NO DIAGNOSTICS GENERATED 

~~~ 
··'.f - _~'" 

·2 

-, .,. ~~ . 

~:/ 

:,,~,.':j;.'~N I V G 1 
, .. ··.,:""·.-'.:.;1_,-,«;: •. 

~ELEASE 2.'" QLINE DATE = AI03!) 09/4t)/ 

SUBROUTINE OLINE(GAM.Q.5Q, 
C*************.4~****~********.********** •• ********.**.~**¥ ••••• ~ •• 
C 
C* 
c* 
C* 
C 

THIS SUBROUTLNE FINDS THE VALUE OF Q THAT MAXIMIZES THE L.F. 
ALONG THE LINE GAM=COhSTANT. IT ALSO CALCULATES THE {~SVMP
TOTIC' STANDARD DEVIATION OF Q AT THAT POINT. 

C***********************.~******.**.****.*.**** ••••• *****.**~*.¥*., 

10 

20 
30 

40 
50 

60 

713 
80 

90 
1110 

COMMON /BLK/NN~KK.MM.TT.B8.NU.KI(lOO).MI(lOO).ITVPE 
IF C GAM. LT. () • 9 g 9:) GOT 0 4 () 
IF( ITYPE.GT.l ,GO TO 10 
C=BB+MMl«NU 
GO TO 30 
C=BB 
DO 20 I:::1.NU 
C =c' tM 1 ( r ) * I 
Q=C/(C+KK) 
T=C*KK/(C+KK1**3 
GO TO 100 
ICT=O 
ICT=ICT+1 
IFCQ*Cl-0).LE.O)Q=O.99 
TOP=BB/Q-KK/(l-Q) 
BOT=BB/0**2+KK/(1-Q) **2 
IFCITVPE.GT.l'GO TO 60 
Tl=l-GAM+GAM*a**NU 
T2=GAM*NU*0**(NU-l)/Tl 
TQP=TOP+MM*T2 
80T=BOT+MM*T2*(T2-CN~-1)/0) 
GO TO 80 
01=1 
DO 70 I=l.NU 
Qx=or 
OI=QI*Q 
Tl =l-GAM+GAM*(H 
T2=GAM*r*QX/Tl 
TOP=TOP+MI(I)*T2 
BOT=B CT+M I (I ) *T 2* (T2-( 1-1 )/0) 
DQ=TOP/BOT 
Q=a+OQ 
IFCABS(DQ/O).LT.IE-5)GO TO gO 
[F(ICT.LT.30)GO TO 50 
0=0.0 
50=-1 
RETURN 
T=l/BOT 
SQ=SQRT(T) 
RETURN 
END 

' .. 

P~T[ONS IN EFFECT* NOTERM. IO.EBCDIC,SOURCE .NOLIST,NODECK.LOAD.NOMAP,NOTEST 
... "",~PT!CtNS IN EFFF.:CT* NAME = aLINE • LINECNT = . 50 
".STATISTICS* SOURCE STATEMENTS = 42.PROGRAM SIZE = 1638 

,;;'::--1'ATIS,:PCS"" NO DIAGNOSTICS GENERATED 
" ' 
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016 
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021 
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RELEASE 2.0 NTGRTN DATE = 81030 

SUBROUTINE NTGRTN(GMX,CMX,CL.CHl C**.***.*.**.**.**.**** •• ** •• *****.* •• ** ••••• ****~ ....... ** ••• * ••• ~ 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

THIS SUBROUTINE CALCULATES THE VOLUME CF THE LIKELIHOOD 
FUNCTION WITHIN A SET OF HEIGHTS. WHEN HT=n THE VOLUME, 
CALCULATED IS THE ENTIRE VOLUME. THE FRACTION CF VOLUME 
W!THIN EACH CONTOUR CAN THEN 8E CALCULATED FOR THE NINE 
REM~INING HEIGHTS. THESE HEIGHTS ARE THEN INTERPOLATED TO 
APPROXIMATE THE HEIGHT OF THE CONTOUR (CH) THAT WILL PRODuCE 
APPROPRIATE CONFIDENCE LEVELS eCL). AT PRESENT FOUR CONFIDENC 
LEVELS ARE CALCULATED -- .99, .ge, .95. AND .9t}. 

C •• **************.************-********** .... *******,.", .... ¥,..*** •• **.**~ 
COMMON /ALK/NN,KK,MM,TT,8B,NU,KIClOn"MI(lOO),ITYPE i~V! 
DIMENSION HT(10)> ,SLICE( 10' ,VOL<LO} _CL(4) ,CH(4) .. "') 
DATA. HT/0.,.005,.Ol •• 015 •• 02 •• 03,.05,.t,.15,.2/ 

C 
C CALCULATE THE HEIGHT OF Tt-fE LIKELIHOOD FUNCTION AT ITS MAXIMUM~ 
C 

10 

HX=VALLFCGMx.aMX,l) 
DO 10 1=1.10 
VOL ( I }=o 
GAM= 1.05 

~ 
11 .«,-r· 

C ~l 

C THE L.F. IS DIVIDED INTO 100 "SLICES" FOR "'UMERIC~L INTEGRO\TIC,l< 
C 
20 GAM=GAM-O. 05 e:,,~ 

IF(GAM.LE.O}GO TO 100 • 
C 
C 
C 

C 
C 
C 

30 

41) 
C 
C 
C 

50 

60 

C 
C 

FIND aTOP THAT MAXIMIZES L.F. FOR THAT GAMMA. 

CALL aLINE(GAM,CTOp,Sa, 

CALCULATE RELATIVE HEIGHT OF L.F. AT THAT POINT. 

HREL=VALLF(GAM,CTOP.2, 
IF(HREL.GT.O)GO TO 30 
IF(GAM.LT.GMX)GO TO 100 
GO TO 20 
DO 40 1=1,10 
SLICE(I'=O 
IF(HREL.GE.HT(I»SLICE(I)=HREL 
CONT I NUE 

FIRST INTEGRATE SLICE TO RIGHT OF SLICE MAXIMUM, FOR EACH f1EIG~ 

DC=.02*SO 
a=QrOp 
ISW=l 
Q=Q+OQ 
IFca*CI-Q'.LE.O,GO TO C70,80),IS~ 
HREL=VALLF(GAM,C,2' 
IFCHREL.LE.O)GG TO(7C.eO),rS~ 
D060I=1,10 
[F(HREL.LT.HT(I')GO TO 50 
SLICE(I)=SLICE(I'+HREL 
GO TO 50 

NEXT INTEGRATE SLICE TO LEFT OF SLICE M~XIMUM. 

\l~. 

.-l. 
'"",) 

~'~ 

''''';'/.''::~ ,'-; 

.~ .. 

---. .!------------~----

C 
70 

80 
90 

100 

110 
120 

t 50 

C 
C 
C 
C 
160 

21,) 

DO=-DO 
Q=aTOP 
I SW=2 
GO TO 50 

I 

00901=1.10 
VOL(['=VOLCI'+SLICE(I'.A8S(DQ' 
GO TO 2Q 
DO 1 1;) ! =2 , 1 0 
VOL(I)=VOL(I'/VOL(l' 
WR I TE (6, 120 ) I • HT ( I ) , VOL ( 1. , 
FORMAT(I5,F6.3,FI0.6) 
VOL(1)=1 
DO 200 IC=1.4 
DO 15J 1=1.10 
rF(VOLCI ,.LE.CLCtC) )GO Tr;) 160 
CONTINUE 
STOP 2 ' 

THIS NEXT SECTION INTE~POLATES TO OETAIN THE APPROPRIATE 
CONTOUR HEIGHTS CCH) FeR THE SPECIFIED CONFIDENCE LEVELS (CL). 

J=I-l 
SL=(HT( I )-HTCJ) )/(VOL( I )-VOL(J') 
CH( ICt=HT(J)+SL*CCL( IC)-VOL(J» 
WRITEC6,210)CL.CH 
FCRMAT(/4FIO.3/3X.4FI0.6) 
RETURN 
END 

)TIONS I~ EFFECT* NOTERM,ID,EBCDIC,SOURCE,NOLIST,NODECK.LOAD,NOMAP.NOTEST 
~~PTIONS IN EFF~CT* NAME = NTGRTN • LINECNT = 50 
,'.STA T! ST r CS* SOURCE ST ATEMENTS = 54 .FlPOGR AM SIZE = t 672 

~,; ~r.\TISTICS* NO DIAGNOSTICS GENERATED 
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iln 1 
002 
0'13 
on4 

1):)'5 

on6 
OJ 7 
Otl8 
'HJ9 
01') 
OLL 
012 

013 
Ol~ 
1)15 

016 

1)17 
(lI8 
019 
02') 
Q21 
022 

')23 
024 
'125 
026 
027 
~2A 

029 
030 
1)3l 
032 
133 
'n4-
l)35 

)36 

R EL E AS E 2.0 CaNTOR DATE = 81030 

C 

SUBROUTINE CONTOR(GAM,QO.G8A,08A.CL.CH' 
COMMON /BLK/NN,KK.MM,TT.88.NU,KI(lOO),MI(100).ITYPE 
D I ME NS ION CL ( 4) ,CH ( ~f ) , I C ( 4 ) ,J C ( 4- » • GF ( 4 » • GL (4 ) 
D I ME NS ION GC ( 20 3 • 4' ,a C ( 203 • 4 , • GP ( 20 3 , • OP (2 0:3 ) 

C INITIAL.IZE 
C 

CALL BGNPL T (7. I CONTOUR t) 
HX=VALLF(GAM.OO,l' 
GX=l • Q 
DG:::;.01 
DO 10 KL=l.4-
IC(KL)=2 
JC(KL)=204 

10 GF(KL'=O 
C 
C FIND CONTOUR POINTS ON THE RIGHT SIDE. 
C 
20 CALL aL IINE( GX ,aT. sa) 

IFCGX.EO.1.0,QSTRT=AMIN1(Q.9999,OT+5.J*sa, 
RX=VALLF(GX,aT.2) 

c 

09/4~ 

.• } 

..... 

C IS THE HIGHEST PCINT ON THE L!NE GX=CONST ABOVE THE LOwEST 
C CONTOUR LINE? 
C 

IF(RX.GT.CH(l)'GO TO 30 
c 
C IF NOT, AND IF GX IS BELCw THE PEAK, FI~O CONTOUR POINTS 
C ON THE LEFT SIDE. 
C 

30 

C 

IF(GX.LT~GAM)GO TO loa 
GO TO 7~-' 
DO=O .05*SO 
KL.=l 
aL=aSTRT 
ox=aL 

C FIND A POINT L.OwER THA~ CONTOUR. 
C 
40 RL=VALLF(GX.OL,2) 

C 

IF(RL.LT.CH(KL')GO TO 50 
OL=aL+oa 
aX=OL 
IF(aL.LT.1.J)GO TO 40 
GO TO 70 

C BRACKET CONTOUR HEIGHT BETWEEN aL AND ax. 
C 
50 OX=OX-OQ 

c 

IF(QX.LT.OT)GO TO 70 
RX=VALL.F(Gx.aX.2' 
IF(RX.GT.CH(KL»GO TO 60 
RL=RX 
aL=OX. 
GO TO 50 

C rNTERPOL~TE TO FIND CO~RECT a VALUE. 
C 
60 II=IC(KL) 

-~ 
:':",'\.' ,! 

~ 

}i 

-i 

" \ .. ~- :. 

"',,.,...'.~. 6-
7T 

E::;f"~~.,' .I!F-J. ... if~ 

C 
C 
C 
70 

C 
C 
C 
IIlO 
llJ 

120 

13J 

140 

150 

l60 

200 
C 
C 
C 

. -

OC(II,KL)=aX+(OL.-aX)*(RX-CH(KL»/(~X-RL) 
GC(II.KL':::GX 
IF(KL.Ea.lJOSTRT=OL 
IF(GFCKL).Ea.O)GF(KL)=GX 
GL(KL)=GX 
r C ( KL )= I C (KL ) H 
KL=KL+1 
OX=OL 
IF(KL.LE.4'GO TO 50 

GO TO NEXT GX LINE 

GX=GX-DG 
IF(GX.GT.O)GO TO 2~ 

SIMIL~R PROCEDURE TO FI~O CONTOUR POINTS ON LEFT SIDE. 

GX=GF{l) 
C4LL OLINE(Gx.aT.sa) 
IF(GX.Ea.GF(l ,)aSTRT=A~AXl<i).0110T-5.J*sa) 
RX=VALLF(GX,QT.2) 
I F ( R X • G T • C HtL ) ) GO TO 1 2 a 
IF(GX.LT.GAM)GO TO 200 
GO TO 160 
00=0.05*5a 
KL=1 
QL=OSTRT 
RL=VALLF(GX,OL.2) 
IF(RL.LT.CH(KL')GO TO 140 
OL=CL-OQ 
OX=OL 
IF(aL.GTiO)GO TO 130 
STOP 1 
ax=ox+OQ 
IF(QX.GT.OT1GO TO 160 
RX=V4LLF(GX,QX.2' 
IF(RX.GT.CH(KL»GO TO 150 
RL=RX 
aL=aX 
GO TO 140 
JC(KL)=JC(KL)-l 
JJ=JC(KL) 
aC(JJ.KL,=aX+OO*(RX-CH(KL) )/(RX-RL) 
GC(J.J.KL.)=GX 
IF(KL.EO.l'OSTRT=aL 
KL=KL+1 
QX=OL 
!F(KL.LE.4'GO TO 140 
GX=GX-OG 
IF(GX.GE.GLCI ))GO TO llC 
DO 300 KL=I,4 

CALCULATE THE CONTOUR'S FIRST POINT 

OC(1.KL)=QC(2.KL' 
GC ( 1 • KL , =GC ( 2 • KL) 
GF1=GF(KL)+OG 
IF(GFl.GT.lIGO TO 220 
CALL aLINE(GF(KL.).OI .50) 
IF(al.GE.1)GO TO 220 
Rl=VALLF(GF(KL).01.2) 

---..... 
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")R9 
; ego 
1\)91 
,092 
1("93 
i094-
'09S 

1096 
'097 
',098 
)1199 
) 1 i)O 
'11'11 
'1 J 2 
'1 'j 3 
IJ4 

IIJ5 
'106 
,lU7 
,108 
, 109 
, 110 
11 1 

tl2 
113 
114-
US 
116 
117 

·118 
Ltg 

120 
121 
122 
123 
124 
125 
126 
127 
128 
129 
1313 
131 
132 
133 
134-
135 
136 
137 
138 
139 
140 

210 

C 
C 
C 
220 

C 
C 
C 
230 

240 
C 
C 
C 

250 

26;) 
300 

CALL QLINE(GFlfC2.SQ) 
1F(02.LT.1)GO 0 210 
Q2=OI 
R2=V4LLF(GF1.Q2,21 
FAC=(RI-CH(KL»/(RI-RZ) 
OC(1.KL)=OI+(02-01'*FAC 
GC(l.KL)=GF(KL)+DG*FAC 

CALCULATE THE ceNTOUR'S MIDPOINT 

1I=IC(KL) 
WRtTE(6,*'KL,QC(1.KL).GC{1~KL) 
KC= I I-I 
OC(II.KL)=QCCKC.KL) 
GCCII.KL)=GC(KC.KL) 
GLl =GL (KL') -OG 
IF(GL1.LT.O)GO TO 230 
CALL OLINE(GL(KL),O~.SO) 
IF(Ql.GE.1)GO TO 230 
Rl=VALLF(GLCKL).Ol.2) 
CALL QLINE(GL1.C2.SQ) 
rFCQ2 .GE.l '02~Ql 
R2=VALLFCGL1,02.2) 
FAC=(RI-CH(KL)'/(Rl-~2) 
OC(II.KL)=Ql+(02-al)*F~C 
GClII.KL)=GL(KL'-OG*FAC 

PACK THE TWO CONTOUR HALVES TOGETHER 

I L=2* I !-2 
WRITE(6.*)II,KL~OC(II.KLt.GC(lI.KL) 
II=II+1 
JEX=207-2*I I 
00 24J I=IItlL 
JJ= I +JEX 
aC(I.KL,=OC(JJ,KL) 
GC(I.KL»=GC(JJ.KL) 

COMPLETE THE CONTOUR 

IL=IL+1 
QC(IL.KL)=QC(l.KL) 
GC(!L.KL)=GC(l.KL) 
I1=IL+l 
QC(Il.KL)=-o 
GC(Il.KL)=O 
I 2= II +1 
aC(I2.KL)=O.125 
GC( I2,KL'=Otl25 
DO 250 1=1 tI2 
QP(I'=OC(I.KL) 
GP(I ) =GC (I .KL' 
CALL LINECQP.GP,IL.l.O.l) 
WRI TE (6.260) ( I" GP ( 1 ) .OP (I) • 1= 1. 12) 
FORMAT«I5.2FI0.4'/) 

~ 
'. ";' ~,'--

_ ... ' 

CONTINUE . 
C~LL SYMBCL C (CO-OP( 11)' /QP( 12), (GAM-GP( 11) )/GPC (2) •• u7,1.0 •• > 
CALL SYMBOL e ( OB l-OP ( 11 ) ) /QP C 12 ) • ( GSA -GP ( t t ) ) / GP ( 12) •• 07.4, c· ~"-=:",_._ 
CALL PLOT(S •• 8 •• 3) " '~ 
DO 320 1=1.5 
Y-= ( 6- [ ) .1 • 6 

." 

v 
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1,,' • 

321) 

33() 

340 

350 

~:tc ~8t~8::~!;!.3) 
C~LL PLOT(8 •• V-.8.2) 
CALL PLOT(A~,V-l.6,3) 
CALL PLOT(O.,O.,2) 
DO 33J 1=1.5 
X=t.6*I 
CALL PLOTeX-l.6,8 •• 2) 
CALL PLOTeX-.8,8.,3) 
CALL PLOT(X-.8~Q •• 2) 
CALL PLOT{X,O.,3) 
CALL PLOT(X.8 •• 2) 
CALL sYMBOL(1.O,6.5,.14,'N =',0.,;3) 
XN=NN 
CALI.. NUM8ERCl.5,6.5,.14.XN,:).,-1) 
CALL SVM80L(1.0.5.1,.14,'NU =',Q •• 4) 
UN=NU " 
CALL NUMBER(1.64.5.7 •• 14.UN.O.,-1) 
CALL SVMBOL( t.O .4.9, .14-.'GAt-1MA =' ,c •• 7) 
CALL NUM8ER(2.06,4 0 9 •• 14.GAM.O.,2) 
CALL SV MBOL ( 1 .0 .4 • 1 , • 1 4 • I Q =', I) •• 3 ) 
CALL NUMBER(1.5,4.1,.14.0Q.I) •• 2) 
I) 0 340 I = 1 D 6 
T1C=O .2*0 -1 ) 
C~LL NUMBER(8.*TIC-.14.-.2,.14.TIC,0.,1) 
00 350 r =1,6 
TIC =0 .2 * ( I -1 ) 
CALL NUMBER(-.1.8 •• TIC-.14,.14,TIC.90 •• 1) 
CALL SYMBOL(-.1 ,3.1,.14.'GAMMAI .90 .. 5) 
CALL SYMBOL(3.93,-.2,.14.'Q'.O •• 1) 
CALL ENDPLT 
RETURN 
END 

,~'P'TIONS IN EFFECT* NOTERM.IO.EBCOIC,sOURCE.ry LIST.NOOECK.LOAO,NOMAP.NOTEsT 
,.OPT.IONS IN EFFECT* NAME = CONTOR • LINECNT' 50 

'-.,.. -T~'iTIST1CS* SOURCE STATEMENTS = 173.i IOGRAM SIZE = 13508 
TATISTICS. NO DIAGNOSTICS GENERATED ' ! 
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OG 2 
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Of) 4 
l1 () 5 
uiJ6 
0)7 
II ,) 8· 
0,)9 
OLO 
ott 

012 
uL3 

1)14 

.)15 

016 

:, t 7 
,H8 
(i 1 9 
)20 
')21 
)22 
)23 

)24-
)25 
)26 
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RELEASE 2.0 CCHSIM DATE = 8103u 

SUBR OUT [NE COHS I M (G AM. ao. CENS , ··i.::-__ , 
C *,..*** **** **************** .*** lI'*****************.$ *11'*. "'li'** *'1' **.* ••. ·7' ., 
C*",,,, 
C* THIS SUBROUTINE GENE~ATES THE FAILURE AND EXPOSURE TIMES OF K 

C* COHORT OF SIZE NN. THE PPOBABILITY OF AN INDIVIDUAL IN THE' 
C* COHORT EVENTUALLY FAXL ING I S GAM. AND _.THE PROHAAI Lr TY THAT ~I~-', 
C* EVENTUAL FAILURE FAILS IN ANY MONTH l~f!I aa. NOT ALL MEMBEC<S '0" 
C* THE COHORT HAVE THE MAXIMUM EXPOSURE TtME i-.lU; A FRACT!ON CEN: ",.,; 
C* OF THEM HAVE CENSORED EXPOSURE TIMES, UNIFO~MLY DISTRIBUTED~~ 
C* FROM 1 TO NU ~ONTHS. ':;~_ 
C* ;.:"",t 

C*********************************.********* •• ****.*~***.********. _~ 

C 
C 
C 

10 

C 
C 
C 

C 
C 
C 

c 
C 
C 

c 
c 
C 
20 
C 
C 
C 
C 

C 
C 
C 

CO~MaN /BLK/NN,KK,MM.TT.eB.Nu,KI(lOO),MI(lJO).ITYPE 
DATA (1/43215/,12/89753/.13/58742/,14/57463/ 

INITIALIZE 

MM=O 
DO 10 I=i,NU 
K I ( I ) =0 
MI ( I , =0 
aLOG=ALOG (aa) 
ITVPE=l 
!F(CENS.GT.0)!TYPE=2 
DO 4 0 I NO = 1 • N N 

MX IS THE MAXIMUM EXPOSURE TIME 

MX=NU 
IFe ITYPE.EO. L )GO TO 20 

IS THIS PERSON SU8JECT TO CENSORING? IF NGT~GO TO 20. 

IF{URANICI1).GT.CENS)GO TO 20 

IF CENSORED, CALCULATE HIS MAXIMUM EXPCSURE TIME. 

MX=URANI (I2)*NU+l.0 

WILL THIS PERSON EVENTUALLY FAIL? IF NOT, GO TO 30. 

IF{URAN1(I3).GT.GAM1GO TO 30 

{of 

;)~ 

IN WHICH MONTH WILL THIS EVENTUAL FAIL!/f;cE FAIL? 
WE DO NOT SEE HIM FAIL. 

IF BEYOND "1X, 

MF= ALOG (URANI (I 4-) ) /<ALOG+ 1.0 
IF(MF.GT.MX)GO TO 30 
K I ( MF )=K r (MF ) + 1 
GO TO 40 
MICfo/X)=MI(MX)+l 
CON'rINUE 
IFCITYPE.Ea.l)MM=Ml(~U) 

CALCULATE COHORT STATISTICS. 

TT=O 
KK=O 
00 50 1=1. NU 

.',~, 

~;;;/ 

<-',-,' 

-.:-~~~ 

•• ~~ ••••• -0 _~ ___ ... _ •• __ --','-","'"' ______________________________ • 

50 
KK=KK+KI (I , 
TT=TT+I *KI (I) 
BB=TT-KK 
WRITE(6.*,NN.KK.MM,NU.TT 
WR IT E (6 ,* ),( K I ( I ) , I = t ,NU ) 
IF ( IT Y PE • G T • 1 ) W R I T E ( 6 • * ) ( M I ( I ) , 1=1 • NU ) 
RETURN 
END 

'pt! ONS ~ N EFFECT* NOTERM, I D. EBCDI C. SOURCE .NOL !ST ~ NODEC K. LO AD. NOMAI=J ,NOTEST 
~e:rIONS IN EFFECT* NAME = COHSIM • LINECNT = SCi 

,~;;~~,r:;~l'ISTICS* SOURCE STATEMENTS =: 34.PROGRAM SIZE = 1356 
,;,;;:.*STl\TISTICS* NO DIAGNOSTICS GENERATED 

2",,-, 
;jT,'ATI STI CS* NO D I AGNOSTl CS THI S STEP 

~-
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COMPARING MODELS OF SOCIAL PROCESSES 

One of the more neglected aspects of the study of social processes 

is the method used to select appropriate models of the processes 

(Dhrymes, 1972; GAO, 1979; Gass & Thompson, 1980). Although rules of 

thumb are often employed, model selection is still more of an art than 

a codified set of procedures. 

For example, model selection is one of the principal issues in 

the controversy surrounding the putative deterrent effect of the death 

penalty on homicides. Different authors have developed different 

models and, n?t surprisingly, have corne to different conclusions about 

the ability of executions to deter homicide (Baldus & Cole, 1975; 

Bowers & Pierce, 1975; Ehrlich, 1975; Forst, 1975; Passell, 1975; see 

also Brier & Fienberg, 1980, and Barnett, forthcoming). 

Chi-square goodness-of-fit tests (e.g., Mann et aI, 1974: 350) are 

often used to determine which one, of some set of alternative models, 

best fits the empirical data. However, Harris et al (1981), in 

comparing different models of recidivism using the chi-square 

statistic, show how this test can be misleading. In particular, they 

point out that finding the model which best fits the known data does 

not necessarily provide a model that will be the best one for 

extrapolating or forecasting beyond the data. 

Selection of a model, then, should not necessarily be based on a 

statistical best-fit criterion. In this paper we argue that ad-

ditional considerations, based on theoretical constructs and ease of 

interpretation of the results, as well as forecasting ability, should 

be used in determining which model to employ. 

Our argument will be demonstrated by the comparison of two almost 

identical models of criminal recidivism,l one described by Maltz and ! 

I.

l.· 1. 

~/ 

! .. ::' 



-~ ----- ~--.--- . 

, ,-

McCleary (1977), the other proposed ~y Bloom (1979), referred to 

hereinafter as M1 and M2, respectively. 

The first section discusses the nature of the process under study, 

presents the assumptions inherent in the two models, and describes how 

the statistical properties of the pr~cess suggest a specific form of 

the model. The second section discusses the interpreta~ion of the two 

models' parameters and associated confidence statements. Section 3 

describes variants of M1 which are useful for different purposes. In 

Section 4 the models are applied to different data sets to compare 

their forecasting ability. In Section 5 another approach to modeling 

recidivism is described. 

1. Comparing the Two Models' Assumptions 

Both models represent recidivism as a binary event -- a person 

either fails or does not fail. Both models also assume that an 

individual's failure event can occur at a random time, and so both are 

couched in the ,language of probability and reliability theory (e.g., 

Barlow and Proschan, 1975; Mann et aI, 1974). In par~iculart the 

cumulative distribution of failures for M1 is: 

Pl(t) = l[1 - exp(-q,t)] ( 1) 

where Pl(t) is the probability that the failure time for a randomly 

selected releasee is less thml t. The subscript 1 refers to model 1 

andland q, areth,e model's parameters, with 0 ~l~ 1 B,Ild ef> > O. 

Note that P (t) is an incomplete or defective distribution in that 

P ( .. ) = l < 1. 

The cumulative distribution of failures for model M2 is given by 

, _ .• ....:>e 

if - :'1./'''' 
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P
2
(t) = 1 - exp{-(b/c)¢l - exp(-ct) .. } (2) 

which is also an incomplete distribution. 

That these two models can produce quite similar results can be 

seen in Figure 1. The cumulative number of failures estimated by Ml 

and M2 (using maximum likelihood estimates of their respective 

, ltd along w~th the actual number of failures, for parameters) ~s p ot e • 

data analyzed in Maltz and McCleary (1977) and Bloom (1979). 

Equations (1) and (2) each completely specify a stochastic failur~ 

, d' 'd I Furthermore, both are decreasing failure process for an ~n ~v~ ua . 

rate (DFR) models 2 (Barlow & Pros chan , 1975: 55), with respective 

failure rates: 

and 

h1(t) = lef> cxp(-q,t)/{l - l[l - exp(-cf>~)]} 

h (t) = b exp(-ct) 
2 

(3) 

(4) 

where hi(t)dt is the conditional probability of failure in the time 

d 'd I who has not failed up to time t. 3 
interval (t,t+dt), for an in iv~ ua 

A. A Rationale for M2 

Bloom's critique of M1 is based on his assumption that 

"the longer releasees avoid criminal behavior the less likely they 

615) , This are to commit future crimes" (Bloom & Singer, 1979: 

led t o his imposing a number of conditions assumption, in turn, 

on the failure rate (Bloom, 1979: 184): 

1. h(O) > 0 
2. h'(t)-<O 
3. h"(t) >" 0 
4. lim h(t) = 0 

'1= -+ ... 

Conditions 1 and 4 are necessary for physical realizability (ac-

tually, condition 1 should be h(t) ~ 0 for t ~ 0). Condition 2 

1 rate) ~s based on Bloom's assumption about the (decreasing fai_ure • 



behavior of released offenders. Condition 3 (convex failure rate) is 

appealing on empirical grounds, but is not otherwise justified. Taken 
. 

together, however, the four conditions are not sufficient to specify a 

particular functional form from the infinity of functions which ex-

hibit these characteristics. Bloom's choice of a function that has 

the exponentially decreasing failure rate given by Equation 4 (Par-

tanen, 1969, also suggested this as a possibility) is thus reasonable 

but is nevertheless arbitrary. 

B. A Rationale for M1 

In contrast, M1 Cwhich also satisfies assumptions 1-4) is suppor~ 

ted by structural considerations of the recidivism process Under 

study. 4 Two features of this process stand out in particular: the 

fact that not all people fail; and the random nature of the failure 

event. These features dictate characteristics of the model in the 

following way: 

(1) Not all people should be expected to fail: whether rehabil-

itation is due to a rehabilitative program or not, at least ~ of 

the program's participants should be expected not to recidivate. 

There is strong empirical evidence to support this contention; see 

Kitchener et al (1977), Hoffman and Stone-Meierhoefer (1979), and 

Philpotts and Lancucki (1979) for recent long-term (six to eighteen 

years) studies which point in this direction. 

Belief in rehabilitation aside", there are other reasons tor expec-

ting that not everyone will fail. A person may recidivate but do so 

in another state, in which case the event may not be reported to the 

state analyzing the recidivism statistics. Or plea bargaining may 
~; 

convert a felony to a misdemeanor which may not be considered a fail-

ure event. Or the offender may be placed in a diversion program, 

ensuring that the failure event is unrecorded. Or he may be granted 

immunity in exc~ange for testimony, and again the event may not be 

..-, 

recorded. In short, there are many reasons to expect that not all 

releasees will ultimately register a failure event. 

Both models take this into consideration and produce PC",), 

the probability that an individual will eventually fail: for M1, this 

is the parameter~; for M2, it is 1-exp(-b/c). 

(2) When considering those who do fail, it is important to exam

ine more closely what -constitutes a failure event. It is clearly not 

the commission of a crime (or the violation of conditions of parole). 

Indeed, we do not have information on all crimes or parole violations 

that were committed. However) we would expect to have information 

(e.g., arrests Or recorded parole violations) on some small fraction 

of the events: those that come to the attention of the authorities. 

This recorded information thus becomes the failure event data used for 

evaluative purposes. 

We now make the following assertion: The time to the first fail-

ure event of an individual, given that he will eventually fail, is 

distributed exponentially. 

Consider first a single individual who commits crimes according to 

some (unknown) point process. 5 One can realistically assume that 

most of these crimes do not lead to detection and subsequent arrest. 

Thus, the £!:f!!!! process is said to have been "thinned" to produce the 

arrest process. It can be shown (Haight; 1967: 22) that (a) if the 

thinning process is independent of the original process, and (b) if 

most o,f the points are thinned out (1. e., not detected), then whatever 

the statistics of the crime proce~s are, the thinned points tend to 

occur as a Poisson process; i.e., the interoccurrence times tend to be 

distributed exponentially. 

These two conditions are quite rea:sonable for the "thinning of the 

crime process by arrests. The probability of an individual being 

arrested fora Jost-release crime isL quite low" so most offenses are 
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thinned out. 6 Furthermore, the arrest process (a function of 

police activity) is relatively independent of the crime process (a 

function of offender behavior). Therefore, since the thinned process 

tends toward a Poisson process, the time: to first arrest is distrib-

uted exponentially. 

The two models' rationales differ most markedly in this aspect, 

the characterization ot the recidivism process. M2 considers only the 

rehabilitative effect of a correctional program, an effect which 

appears to be more elusive (Sechrest et aI, 1979) or illusory (Maltz & 

Pollock, 1980) than real. On the other hruld, model M1 derives its 

form from consideration of the characteristics of the process under 

study, which includes the effect of the criminal justice process on 

the data. This gives rise to an incomplete distribution (not all 

people fail) and an exponential distribution of times to failure for 

those who do fail. 

2. Interpreting the Models 

The two parameters of M1 are f, the probability that an individual 

will fail, and ~, the failure rate of those who do fail. Both 

parameters are amenable to straightforward interpretation -- f is a 

central tendency estimate for the expected fraction of people in a 

group that eventually will fail, and til describes how fast they are 

likely to fail. The same is not true of parameters b and c of M2. 

According to Bloom (1979: 186), "the substantive interpretations of b 

and c are not useful to policy makers." 

Model M1 provides an additional advantage. Statistical confidence 

intervals for f and ~ are of course useful in their own right; i.e., 

knowing that f, the probability of failure, has a 95 percent confi~ence 

interval of (.4, .6) needs no further interpretation. Furthermore, it 

is relatively easy to use these paramepers' confidence intervals to 

produce ~onfiaence statements about P (t) for any given time t. In 

(" 
')./.0"" .<L _,,,,",,,,._.,, 
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contrast, confidence limits on band c of M2 cannot easily be trans-

lated into confidence limits on measures of policy significance. 

A further advantage of M1 is that when the data are singly cen

sored (that is, all releasees are observed for the same maximum length 

of time) they may be summarized by the four sufficient statistics: N, 
the number in the group under study', ~, the ' • maxJ.mum observation time; 

K, the total number of failures by tJ.'me l' d T h ; an " t e total time 

between release and failure for the K failures. 

of sufficient statistics exists for M2. 

3. Variants" of M1 

One of the more persuasive reasons for uSl.'ng 

No similar small set 

a structurally de-

rived model is that ext' 'f ensJ.ons, l. necessary, follow in a straightfor-

ward way. In this section we describe three such variants of M1: a 

geometric ~odel (MIa), a mixed exponential model (MIb), and a "crit

ical time" model CMIc). 

a. Geometric model. In most cases recidivism data t~tained for 

evaluative purposes are grouped by months. Th t ' a J.S, one rarely is 

given the number of days to failure for each individual , but rather 

the number of individuals who failed within each month. To represent 

this discrete-time behavior, we can def~~e b ~. p to e the probability 

that an individual fails, within any month, given that he will even-

tually fail. 7 Then q - I 'h - - p J.S t e probability that an individual who 

will eventually fail does not do so ~~ any month. ~ Again, Y is the 

probability that an individual wJ.'11 faJ.'I. I h ntis case, the cumula-

tive distribution of failures becomes 

P laCi) = fCI-q ) i = 1, 2, .... (5) 

where P laCi) is the probability of failing at or before month i. 

, " 
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The parameters of this model are conveniently obtained by maximum 

likelihood techniques (Maltz, 1981), since the likelihood function is 

-defined only in the unit square 0 ~ 4 ~ 1, 0 < q < 1. An analogous 

discrete version of M2, on the other hand, does not lend itself to a 

convenient estimation of parameters. This is due to the fact that the 

~ priori specification of the discrete hazard function for M2 is of a 

geometrically decreasing form, which does not result in mathematical 

simplifications (as in Equation 5). 

b. A Mixed Exponential Model. A different extension of the 

asstlmptions leading to model Ml leads to a mixed exponential model Mlb 

(Harris et aI, 1980). MI is predicated on the assumption that each 

individual will undergo failure (at rate 41) with some probability 4. 

Consequently, each. individual has probability 1-4 of not failing at 

all (or, equivalently, of failing at a ~ failure rate). 

However, it is also possible to consider that with probability 

1-4 an individual is still subject to failure, not with a zero rate 

but with a lower rate than~. In other words, for some individuals 

the failure rate may be nonzero but small.' This leads to the follow-

ing expression for the probability of failure by time t: 

P (t) = 
1b 

with associated failure rate 

(6) 

(7) 

The parameters 411 and ~2 again have a "ni:1tural" interpretation: 411 is 

a primary failure rate (for "failu~es") and ~2 is a residual "ambient" 

or "background" non-zero failure rate for the "non-failures". Note 

that setting ¢1 ~ ¢ and ~2 = 0 will reduce (6) and (7) to (1) and (3), 

respectively. 

c. A "Critical Time" Model. It is also possible to develop an 

alternative model of the observed behavior of released offenders by 

use of a presumed underlying structure of the recidivism process quite 

different than that used above. As is shown below, however, this new 

model structure readily reduces to Equation 6. Thus, it leads to 

observations operationally indistinguishable from model Ml, although 

it affords additional insights. 

This model, M1c, can be called a "critical time" modeL It is 

assumed that each individual in a cohort is subject to random failure 

(i.e., exponential time to first failure) with failure rate AI' until 

some critical time 8. After this time the individual's failure rate 

drops to Al,. The rate A, again may be interpreted to be the failure 

rate of the general popUlation: an "ambient" failure rate. In 

other words, if the individual can survive to time a (during which he 

has a failure rate Ap without failing he is then in some sense 

"rehabilitated", and is thereafter subject t:o failure only with a rate 

ALexperienced by the general population. 

Given a specific value of a, the probability distribution of 

failure time t for this model can .be shown to be 

o < t < a 
6 < t < .. (00) 

However, a may not be known with certainty for all individ-

uals. Rather, we can consider 8 to be a random variable with some 

probability density function<7g(6). The unconditional probability 

dist~ibution for the time to failure t becomes, then, 

-I 
I 
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(9) 

Moreover, if a has an exponential distribution, so that 

g(a) = 11 exp (-118), Equation 9 becomes 

(10) 

This equation is ident_ical to the mixed exponential distribution of 

Equation 6, with the relationship betwe~n the two sets of parameters 

given by: 

¢t;,U-rl-A/ 

~ ... ;;. Alo. 

r ~ ~_:J.~-
.1-[ -;- A ~ - ~ V 

/ 

hI-:; ~. ~~ + (i- i'J 1-1-

A 1.'; il.-
(11) 

l ) ( .ll .;; U- t,· ~A ... 1- ~) 

Note that setting A l. = 0 produces Equation 1, the split population 

distribution of MI. 

4. Forecasting 

Thus far we have discussed the structural and practical underpin-

nings of the models. In this section we apply the two models to a 

numher of data sets to t.~st their ability to extrapolate beyond the 

given data. 

The method used to compare the models is relatively straight-

forward. If failure data are available for each of 22 months, as they 

are for the cohort in Figure 1, we can use the 22-month data point as 

the target poL~t. Then, if we wish to test a model's forecasting 

ability using six months of data, we use only the first six months of 
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data to estimate the model's parameters. Using these parameters, we 

can forecast the number of failures at month 22. This can be done 

using varying cutoff points, from 21 months down to the point where 

the model is no longer valid. 

Figure 2 shows such forecasts of the n~ber of failures at 22 

months for models Ml. and M2, using the data d~scribed in Maltz & 

McCleary (1977). Since the forecasts from both models are within one 

sta~dard deviation of each other from two through 21 months, there is 

no relative advantage for using eith~r model for forecasting. 

A simila.r comparison, using data from a North Caro,lina study 

(Witte & Schmidt, 1977; see also Harris et aI, 1980), is shown in 

Figurf:, 3. In this case model Ml~ clearly provides a better forec~st, 

over a greater range, than does M2. 
'~-

Four additional comparisons are shown in Figures 4-7, using data 

from four cohurts released on parole from federal prisons (Hoffman & 

Stone~Meierhoefer, 1979). 
1-, 

The I' four. cohorts are distinguished from 

each other by risk level, obtained from a Salient Factor Score (Hoff

man & Beck~ 1974). Figure 4 shows the forecasts of the two models for 

the "very good risk" cohort; Figure 5, the "good risk" cohort; Figure 

6, the "fair risk" cohort; and Figure 7, the "poor risk" cohort. As 

can be seen, Model Ml generally' provides abetter forecast than does 

M2. 

5. Continuous Failure Rate Oistri.bution 

Morri~on (1980) has recently proposed a recidivism model (M3) 
- ''::;:'1

1 

that at first glance appears to be quite different from those 

discussed above. Ra~her than assuming that all me'mbers of the 

population have the same ~haracteristics (l arid , for Ml, b and c for 

M2), he assumes that each individual has his own constant (but 

unknown to, 'us) t:f1ilure rate. He posits that all that is known about 

."-'.',. ' 
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an individual's failure rate ~ is the distribution G(~) of failure 
i\ 
I. 

rates for the population. This r.esults in"a cumulative distribution 

of failure times of 

J (12) 

If G(~) can be represented in some parametric form, then estimates of 

the parameters can be obtained. Although this)will permit one to 

characterize the failure process ~or the collection of individuals, it 

will say little about any ~dividual's failure process.' 

Morrison demonstrates this technique using a gamma function for 

g(~)=dG(~)/d~. This permits Equation 12 to be easily integrated, 

resulting in a Pareto distribution for P
3

(t). However, there are a 

number of difficulties with this approach. 

o no e~plicit allowance is made for the possibility. that some 

individuals do not fail; 

o a specific form of P3 (t) (e.g., a Pareto) is not sufficient 

to specify G(~) uniquely; and 

o there is little ..§: priori justification for using any'particular 

G(~), such as a gamma distribu;ion. 

This approach can be related to the ones discussed above. 

Consider the following distribution G(rfI) of failure rates: 

G(~) = (t o .s rfI < ~I 
.c/J. :: rfI < ~1.
¢",s. ¢ < -

Using this distribution, Equation 12 produces 

P,3(t) = 1[1 - exp(-~J t)] + (1-0') [1 - exp(-c/J,t.t)] 

which is Mlb, Equation 6. Thus, Mlb can be viewed as a special case 
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of a mixture of rates for which only three values (0, ~1 and ¢.) are 

allowed. More complicate_dilll.xtures of failure rates are, of course, 

possible, but as in all modeling activity parsimony is to be sought. 

6. Conclusion 
• 

In this" paper we have described the characteristics of similar 

models of a social process. Rather than com~aring them using a purely 

statistical "goodness of fit" criterion, we have examined the models 

according to different criteria: how well each model typifies the 

process under study; interpretation of each model's parameters; the 

ease with which confidence statements can be obtained; the adapt-

ability of each model to changes in assumptions; and the ability of 

each model to forecast beyond the available data. Such comparisons, 

we maintain, are appropriate for choosing among competitive models in 

a wide variety. of social process modeling situations. 

.-
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1. A person is considered to have recidivated if, after having been 
. 

released from custody, he commits another crime. However, there are 

many ways to operationalize this definition: based on violation of 

the conditions of release (parole, probation, halfway house, etc'.), 

on arrest, on prosecution, on conviction, or on return to prison 

(Haltz, 19~O). 

2. Bloom (1979: 184) erroneously implies that H1 is a constant fail-

ure rate model. 

3. This is called the "failure rate" or "hazard rate". It is the 

probability density function of failures (P'Ct)) divided by the 

complementary cumulative distribution of failures (1 - pet)). 

4. We neglected to po;ut this out in our earlie,;r papers. We welcome 

the opportunity to do so now. 

5. A pOinF process is a random event-generating process whose primary 

characteristic is the time of occurrence of e~ch event. 

6. Based on Boland ~.d Wilson's (1978) review of the literature on 

criminality, one can estimate the fraction of crimes resulting in 

arres.t as somewhere between O. 2 and O. 05 . 

7. The exponential distribution is a limit~ng form of the geometric 

distribution as the interval between time periods becomes small. 
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8. When a distribution is a mixture of two exponential distributions 

whose failure rates (~, J ~~) are of the same order of magnitude, it 

cannot be easily distinguished from a single exponential distribution 

whose failure rate is w~, + (l-w)~~, where 0 ~ w ~ 1 (see Harris et 

aI, 1980). If the data are noisy, distinguishing the two situations 

becomes more difficult. Thus the smaller failure rate should be much 

smaller than the initial failure rate for this model to provide ad-

ditional information over one with a single failure rate. 

:\ 

9. Yet another approach is to posit that an individual's failure 

parameters are function~ of certain of his characteristics (e.g •• 

Witte & Schmidt. 1977). 
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. APPENDIX: CONDITION1>.L FORECl>.STS 

\) ' .. 

1his appendix describes the comp.1tation of forecasts of the total 

number of recidivists by a target date, conditional upon the data 

obsorved up to some earlier time. 

Geometric f'.t:)del (Mla) 

Since the concepts are easiest to present for a discrete-time 

model, we first develop the forecastil'¥l procedure for model la, in 

which the relevant variables are: 

T: number of months for which data u; available 

N: number in cohort 

K: total number of failures at or before the Tth month 

t: target date (in months) for which forecast is desired 

M = N - K: nunber of people who have ~ failed by the 

Tthmonth 

In order to comp.1te a forecast of the total nunber of reci<~ivists 

at the target month t, given that a total of K failures have be~fl 

observed up to month T, it is sufficient to consider what can happen 

to the M non-failures in the (t - T) months of the forecast interval. 

Based on this model, for each of the M non-failures there will be 

a conditional probability u of his failil'¥l in the interval 'between the 

't'th month and the tj;h month. '!his probability can be expressed: 

u = Prob .[ failure month .i t I failure month> T } 

and can be comp.1ted by using the definition of conditional probability 
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and equation (5): 

= 

= 

u = 
Prob { failure month < t n failure month > T} 

Prob { failure month > T} 

PI .(t) - PI (T) a . a 

1 - PIa (T) 

yqT (1 _ qt-T) 

1 _ Y + yqT 

'lhus, if y and q are known, u is known. 

(1).2) 

To complete the forecast, we now note that the mmber of 

people who will fail in the interval between the month T and month 

t, of those !1 people who had not failed ~ month T, is a binomially 

distributed random variable R, with 

Prob {R = r} = (~) u r (1 _ u)M-r r = 0,1,2, ••• , M 

'!bus, given a value of u, the expected value of R is: 

E [R] = Mu 

and E [R1 = Mu + M(M-1) u2 

from which the variance Var [R] may be found: 

2 Var [R] = E [R ] _ ~2. [R] 
j 

II 
\ ~ ,.. 

• Mu(l-u) 

(A3) 

(1).4) 

(l>.S ) 

This allows an estimate k (t) of ~he total number of failuresby 

time t, given K failures by time .~, to be obtained from (A3) and 

'--
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the definition of M: 

,.. 
k(t) :oK K + Mu 

with associated variance 

ak2(~) • M u(l-u) 

'Equations (A6) and (A7) were used to plot Figures 2-5. 

Continuous Ttbdel (MI) 

(A6) 

(A7) 

Forecasti~ the total m.mber of recidivists by time t, given that 

a total of rc have been observed by time .T - where t and _T can take 

on continuous time values as in m~el Ml - follows a parallel com

putation. Again we define u to be the probability that an individual 

will fail at or before time t, given that he has not yet failed at or 
, " 

before time T. Now, however, equation (1) is used and (assl.lllin] Y and 

g are known) this probability becomes: 

u= 

u = P1 (t) -PI (.r) 

l-~I(T) 

Y e-~T [1 - e-~{t-T)] 

1 - y + y e-~T 
(AS) 

,.. 2 . 
The estimatek(t) and associated variance ak(t) is again 

comp.lted from equations (~6) and (A7) , with u obtained from (AS). 

Mjusbnent for Uncertain Parameter Values 

The forecasts above were derived under the assl.lnption that values 

of Y and q (or g) are known. For example, they may be hypothesized, 
" 

or they can be the results of a statistical analysis yielding precise 

estima~es. Ho~ver, in the case where these parameters are .!!2! 

() , 6 . \) . . ,~ 
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previously known the variancQ' given in equation (A7) is an 

urderestimate. 

One a~oach to determini~ a legitimate probabilistic forecast 

1s available, however. If the \l'\certainty about the values of y and q 

can be represented by means of a probability distribution P(Y,q) on 

these variables - as is done when usiD; Bayesianlnference methods . 
_ then R is still a random variable, but with a more general distrib-

ution than the binomial given above. 

In this case, it is possible to c:omp.lte 'the expectation and 

variance of R. In particular, takiD; the expectation· of equations 

(AJ) and (1.4) results in 

(
Y. q'!'{l - 9 t-'t')] 

E[Rl = M ErQ 't' .. I-y+yq 

. [ T(l t-'t')1 2 
E[R2) = E[R] + M{M-I) ErQ y q .. 9 't' 

. '. 1 - y + yq 

'. 'lhe rasul tiD; forecast is 

k(t) • K + ErR} 

with associated variance 

Ok2(t) • E [~2] - E2 [R]. 

Sim1l1ar re$ultsare~ of course, obtained for the continuous 

medel Ml wi.th paraneters ':t and ,. 

F 

';;" ():: JI g(y,q) dF{y,q) ErQ g y.q 
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'!he resulting forecast is 
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k(t) • K + E[R} 

with associated variance 
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Ok (t) • E [R2] - E2 [R]. 
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can be represented by mea f ns 0 a probability distribution F(Y q) on 

~~ ibl ' 

One a~oach to determining 

is available, however. 

.~ Bayesian inference methods var a es - as is done when usi"'" 

- then R 1s still a randan. variable, but with a more general dist~ib-

ution than the binomial given above. 

In this ca~, it is possible to compute the expectation and 

variance of R. In particular, t.akiD; the expectation* of equations 

(AJ) and (A4) results in 

'!be resul tiD; forecast is 
A 

k(t) • K + E{R} 

wi th associated variance 
2 

C1
k 

(t) :I E (R2] - E2 [R]. 

Simlliar results are, of course, obtained 

model.Ml with parameters ~ and ,. 
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COVARIATE ANALYSIS 

This Appendix describes our efforts to perform covariate analyses 

of recidivism. Our approach assumes that each individual i has a unique 

probability y. of ultimately recidivattng, and (if a recidivist) has a , 
unique probability qi of surviving another month without recidivating. 

We further assume that a small number of individual characteristics 

are primarily responsible for individual variations in'y. and q., so , , 
that 

y. = y'(X' l x' 2 ... x. ) 
1 1 1, 1, 1m 

(1 ) 

and 

q. = q.(x· 1, x' 2 ... x. ) 
1 1 1" 1m 

(2) 

It,here x·. is the jthcharacteristic of individual i. 
lJ 

An initial attempt to use multivariate regression techniques to 

estimate the above relationships was not successful. Our approach and the 

reasons for its failure are described in Section I. An alternative approach 

was used: partitioning the data according to specific covariate values. 

This is described in Section II. This approach met with more success, and 

some interesting patterns emerged. Sections 3-7 describes the four data sets 

we analyzed using this approach and the results of the analyses. Section R 

compares the results with each other and discusses their implications. 

I. Multivariate Parametric Modelling 

A common approach to multivariate regression is to assume that the 

relation between independent and dependent variables is linear, e.g., that 

y. = bO + b1x' 1 + b2x' 2 + ... b x. 
1 11m 1m 

However, this ignores the fact Yi is restricted to be between 0 and 1 

(as is q). 
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To insure that the bounds on y. and q. are not exceeded, we used the 
1 1 

'{ 

fo 11 owi ng forms for equa ti ons (l) and (2): 1\ ,,\ 

1 - y. 
1 

X' l x' 2 q. = 130 13 1 .1 132 1 
1 

(3 ) 

For y i and qi to be between 0 and 1, we must have 0 < ~j' 13 j < l. 

Furthermor-e, the xij are scaled so that large values imply a IIworse
ll 

recidivism behavior -- i.e., Yi increases and qi decreases as any Xij 

increases. Equations (3) and (4) are made linear when logarithms are 

taken of both sides, so standard techniques can be used. 

Estimation of the coefficient vectors ~ and! were attempted by 

maximizing the (log) likelihood function resulting when the forms of 

equations (3) and (4) were assumed for each individual in the cohort. 

That is, solutions were sought for the problem: 

k 
max I: 

a. 
~ 

i=l 

t.-1 . 
In[y1.ql' 1 (l-q.)] 

. 1 

Subject to 0 < a·< 1 - J-

o < 13·< 1 
- 1-

n 
+ I: 

i=k+l 

j = 1, 2, ... m 

'~,\,.~ 
~J /l , 
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, .~.' :"t)«·~· 

~ 
':" i.;·~'/ 

,.' "'~ 
"')""~ ........ :"':'" 
: ~\.--:~~;:~.;\? 

.;'W'" 

,;}; 
;;/~ ;, 

'w"~7~~ 

L· 

,-T" --

'" ' 

--:;- . 
o ., 

.~ 

- " 
'-" . 

. -

!-.. : .. - ,. 

~. 

------'" 

- 3 -

where: 

n = Number of individuals in the cohort. 

k = Number of failures. 

t.= Failure time for ith individual (i = 1,2, ... k) 
i 

Censoring time for ith individual (i = k+1, k+2, ... n) 

y.= y(a, x.) from equation (3). 
1 --1 

q.= q(13, x.} from equation (4). 
1 --1 

xi= (Xli' x2i '···,xmi ) = covariate values for the ith individual. 

The solution and interpretltioh of such an optimization problem ~as 

made difficult by a number of factors. 

a) When m = 4 (a not unreasonable number of influencing 

covariates) the solution space contains 10 

variables. 

b) The objective function is extremely flat in the neighborhood 

of the optimum, thus leading to convergence problems . 

c) For the data sets of interest, n is in the order of 1,000, 

thus requiring appreciable computation each time the log 

likelihood function needs to be evaluated by whatever 

optimization algorithm is used . 

d) The stability of any solution algorithm requiring essentially 

numerical computation of gradients will be influenced greatly 

by the choice of scaling for the covariates~. (This is not 

necessarily a problem for 0-1 covariates). 

e) Once a solution is found, statistical statemen~s about the 

gua'it~ of estimates for ~ and! are almost impossible to make. 
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In spite of these difficulties, attempts were made to solve equation (3) 

for the four data sets. Two non-linear unco.nstrained procedures were used: 

PRAXIS, a NASA originated IIPowell-type ll conjugate direction method without 

derivative information; and a Fletcher-Reeves Conjugate Gradient Method. 

Both were resident on the University of Michiganlls MTS system, and both 

required modifications to force feasibility. ,1'he results were unsatisfactory: 

When only a single dichotomous covariate was used, results were eventually 

obtained that were numerically consistent with the estimates obtained by 

the partition method of Sec'tion 2 of this appendix, but without the benefit 

of producing confidence intervals. 

The failure of these methods led us to a different method of studying 

the relationship between the recidivism parameters and relevant variables. 

We partitioned the data according to the categories provided in the data, 

for a number of variable types:* 

• race 

• age (at first arrest, at release) 

• prior record (probation violations, arrest, felonies, commitments) 

• drug or alcohol usage 

• social stability (employment, home at release, early home environment) 

• objective measures (psychological diagnosis, type of release, parole 
ri.sk scale) ;- . 

Unfortunately, the four data sets we analyzed (from Georgia, the U.S. 

*The data sets had upwards of a hundred or so variables. We selected for 
analysis those that our prior research had shown to be correlated with 
recidivism, and those t~at the literature show to be salient. 
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Bureau of Prisons, Iowa, and North Carolina) did not use the same 

categories. However, we were able to obtain information on these 

variables in most cases. 

II. Georgia 

A computer file was made available by George H. Cox, Jr., of the 

Georgia Department of Offender Rehabilitation, containing information on 

a sample of 1902 individuals released during the early 1970·s. A detailed 

description of the data sources, appropriate caveats on its use (no 

formal II randomization U was attempted -- the set instead represents all 

the cases for which certain data were availabl~), and an analysis of one, 

two and three-year rearrest rates are given in Cox (1977). The definition 

of recidivism"is rearrest (presumably in Georgia), and although time fi~om 

release to either rearrest or censoring is available in days, data was 

converted into time units of months. [For a discussion of the magnitude 

of error introduced by this time truncation into the computation of 

parameter estimates, see Maltz (1981).] 

Of the 232 data items available for each individual, seven were 

selected as potentially relevant determinants of the parameters y and q. 

These are shown in Table lA, along with the values used to partition the 

data set. Table 18 shows for each partition the number of individuals, 

recidivists, total days-to-recidivism and estimates for y and q (both 

maximum likelihood and Bayes·). In order to visualize whether or not 

these partitions produce estimates whose differences are statistically 

significant, Figures 1a through 1h show the approximate (using normal 

approximation) 90% confidence intervals for the Bayes estimates. 
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A detailed discussion of the interpretation of these confidence 

intervals is in Appendix F. It is important to note here, however, that 

the greater the disparity between the maximum likelihood and Bayes 

estimators, the less the likelihood function (and thus the Bayes posterior 

distribution of y and q) has a Gaussian shape, and thus the less meaningful 

these confi dence i nterva 1 s are. These cases for whi ch the ,11 i ke 1 i hood 

function is distinctly non-Normal (recognized by having YMLE = 1) are 

shown in Table Ib by "*" entries and are indicated in Figures la-lh by 

dashed confidence intervals. 

As the Figures show, some differentiation in parameters -- and thus 

implied different recidivism behavior -- can be seen for some covariates. 

A convenient (though informal) way of distinguishing two populations 

(1 and 2) yielding the different estimate pairs (Yl' ql) and (Y
2

' q2) is 

to say that population 1 is "better" than 2 (or 2 is "worse" than 1) if 

Yl < Y2 and 91 > q2' since individuals in population 1 are less sure to 

recidivate, and are slower to do so given they will. On the other hand, 

if Yl < Y2 but 91 < '2' population 2 is II~urer but slower" to recidivate 

as compared to population 1 who are "l ess sure but faster." 

Thus, we can observe that: 

• Growing up in a SMSA city ;s "worse" than a farm or 
town background (Figure Id). 

• No prior ~rrests are "better" than one or more{ (Figure 19). 

• The earlier the age at release, the mbre likely an indiv1dual 
is to recidivate (Figure Ih). 

On the other hand, there is",]ittle statistically significant "Jithin the 

other covariat& partitions. 
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III. U.S. Bureau of Prisons 

A sample of 927 individuals released from Federal Prisons during 1956 

and 1957 (Kitchener et al, 1977) was made available to us by the U.S. 

Bureau of Prisons. Although many definitions of recidivism have been 

used in the analysis of this data set~ ~e have chosen the criterion of 

parole revocation or reconviction (regardless of ~hether reincarcerated). 

Thus, simple rearrest without conviction is not counted. Because of the 

1 ength of the fall owup peri od (18 years), the time i nterva 1 used is one 

quarter (three months). Thus the reader should be careful in comparing 

q for these data (q is the conditi~nal probability of no failure in a 

quarter) to those estimates in the other data sets which pertain to 

months. The es,t~mates of y, of course, are comparable across the data 

sets. Table 2a shows selected covariates and their partitions; Table 2b 

gives their associated statistics and estimates, and Figures 2a-2m show 

the corresponding confidence intervals. 

The data shO\'1: 

• Whites have a slightly lower recidivism rate (Figure 2b) 

• The lower the age at first arrest, the more likely an 
individual is to recidivate (Figure 2d) 

• Prior felony sentences have a major effect (15 percent 
increase) on recidivism probability (Figure 2e) 

• The better the employment record, the better the post
release record (Figure 2h) 

• The lower the age at release, the more likely an 
individual is to recidivate (Figure 2n) 

IV. IO\,/a 

Data from a sample of 3372 releases from the Iowa state prison system 

was obtained from Daryl Fischer of the Iowa Office for Planning and Programming. 
~, 

Data description and analysis can be found in Iowa {~979). Tha covariate 
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information used is sho\,!n in Table 3a, and associated data and parameter 

estimates in Table 3b. Figures 3a-3r show the 90% confid~nc2 regions for 

y and q. 

Among the findings for this cohort are: 

• Nonwhites are more likely than whites to recidivate (Figure 3c) 

• Those with prior juvenile or prison records arem~re likely to 
recidivate (Figures 3; 3k, 30, 3p) 

• In contrast to other cohorts, ,the lower thed.'ge at release the 
less likely an individual is to recidivate (Figure 3m) 

• The scale used by Iowa for calculating parole risk at admission 
is better at predicting speed of recidivism (for those who will 
fail) than it is at predicting probability of recidivism (Figure 3r) 

V. North Carolina 

A sample of 641 releases into the North Carolina Work Release rf0gram 

was made available by Ann Witte, and is described in detail in Schmidt & 

Witte (undated). Of the over 260 covariates contained in this set, the 

eleven shown in Table 4a were analyzed. 

It was possible to use two different definitions of recidivism: 

rearrest or reconviction (it is clear that the latter definition is more 

restrictive than the former). Table 4b and Figures 4a-41 give the 

statistics, esti;nates and parameter confidence regions for the rearrest 

definitions; Table 5 and Figures 5a-5! give the statistics, estimates and 

parameter confidence regiJns for the reconviction definition. 

The patterns of recidivism do not change significantly when using 

rearrest or recopviction as the definition of recidivism; the primary 

difference between the two definitions is an approximately fi~e percent 

lower recidivism rate when reconviction is used. 
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Other findings include: 

• Whites fail faster than (but with about the same likelihood as) 
nonwhites (Figures 4b, 5b) 

• The lower the age at release, the more likely an individual is 
to recidivate (Figure 41,51) 

VI. Discussion of Results 

A. Maximum Likelihood vs. Bayes Estimates 

Because of progressive censoring and the incomplete nature of the 

p.d.f. for the time of recidivism, the joint likelihood function for some 

of the observed data points may not be close to normal. For those data 

for which the likelihood function ~ normal, then the MLE and Bayes 

estimates are close to each other. Moreover, the Bayes confidence 

regions are nearly ellipses, and the figures show valid 90% posterior 

probability regions . 

When th.J MLE diffe~'s substantially from the Bayes estimates, hO\"ever~ 

it is an indication that the likelihood function is non-normal. Indeed, 

the MLE for y will equal 1.0 when the likelihood functfon is increasing 

in y for y < 1.0, (but of course is zero when y > 0). In this cas~ the 

Bayes ~:onfidence .regions are no longer elHpses. Nevertheless, the use of 

the e~l ipse-approximations sey've to qual itatively distinguish betvJeen data 

sets, and in the very least can be used to screen out incidences of data 

which deserve further investigation. Such cases, occurring mainly in the 

Georgia data set, are indicated by dashed confidence regions. 

B. Important Covariates 

Although it"was not a primary objective of our research, the informa

tion contained in Tables 1-5 (or in Figures 1~5) allow us to identify 

lIimportant ll covariates: those that appear to affect the values of the 

paramaters y and q. By noting those covar,iates that provide distinct 
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(non-overlapping) 90 percent confidence regions for at least two partition 

values (or sets of values), 7 "types" appear: 

1. Race 

2. 

3. 

4. 

Age (at release or first arrest) 

Prior record (probation violations arrests, felonies, 
committments) , 

Current offense (type, etiology, admission category) 

5. Drug or alcohol usage 

6. 

7. 

Soc~al stability (employment, home at release, early heme 
envlronment) 

Objectiv~ measures (psychological diagnosis type of release 
parole rlsk scale). ' 

Prior record is clearly a determinant of the recidivism parameters in 

all four cohorts. In all th d' . cases e lrection is as expected: the 

existence or severity of a prior exposure to (or involvement with) the 

criminal jU!~tice system increases both y (the probability that an indivi

dual will recidivate) and l-q (the rate at which he does so). ' Hhen the 

Georgia sample is put aside (due to the fact that y=1 for almos·t all 

partitions, as discussed :Jbove) then we see that race, drug and social 

stabil ity are important covari ates. TIl d' t' f II e . lrec 10n 0 badness" is again 

what would be expected. It is .. of interest'to note that such a priori 

suggestive covariates as IQ, SES and educational levels have D£ statistical 

effect in the recidivism parameters. 

C. Dj ffel'ences Between Cohorts 

fJne of the most obvious covariates fs, of course, the one distinguish

ing among the cuhorts (or iltreatments"): whiCh state sample the individual 

is from. The parameter 'estimates are given in Table 6. 
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As can be seen, the Iowa cohort has a low probability of recidivism 

(y), compared to the other cohorts. The fairly wide range in y 

is probably more reflective of the variation in laws and regulations 

governing sentencing and correctional alternatives than of variation in 

criminal behavior. For example, it may be that IO\,/a makes less use of 

probation or other alternatives to incarceration than do Georgia or 

North Carolina. If this is indeed true, then low-risk offenders who 

would not be in the Georgia or North Carolina cohorts would be in the 

Iowa cohort, thus "improving" the Iowa statistics.* 

Another finding, concerning the variable q, is noted from Table 6. 

The North Carolina cohort has a significantly lower value of q (i.e., its 

eventual failures do so more rapidly than those in the other cohorts). 

Again, it is not immediately clear why this should be the case. Dis

crepancies of this sort make state-to-state comparisons less,than useful. 

Hith different researchers having different research goals, eValuating 

different programs in different states, one should not expect any degree 

of comparability~ 

One comparison that can be made is the effect of two different 

definitions of recidivism rearrest and reccnviction, since the same 

Gohort (North Carolina) was employed in both cases. As previously 

mentioned, the dominant effect is a difference of about 6 percent in 

*This point is sheer conje~ture on our part and is contradicted to some 
extent by Figure 3r. Were our cq~jecture true we would. normally expect 
more variation in"recidivism proo-ability (y) as a functlon of parl)le 
risk thaQ is seen"'in that figure. 

\- --~-' 
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converting arrests (y=.87) to convictions (y=.81). In some cases there was 

also a shift in q because of the different definition, but this was not as 
t~ 

consistent as the shift in y. 
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Table la 
Georgia Covariate Partitions 

RACE 
A. White 
B. Black 

SOCIO~ECONOMIC STATUS 
A. Welfare 
B. Occasionally employed 
C. Minimum Standard 
D. Middle Class 
E. Other or Unknown 

HOME ENVIRONMENT TO AGE L¢ 
A. Rural Farm 
B. Rural Non-farm 
C. SMSA City 
D. Urban town 
E. Small town 

MARITAL STATUS 
A. Never married 
B. Married 
C. Separated 
D. Divorced 
E. Widowed or common-law wife 

'11 EMPLOYMENT STATUS PRIOR TO ARREST 
A. Full time 
B. Unknown 
C. Other 

PRIOR ARRESTS 
A. None 
B. One or more 

AGE AT RELEASE 
A. 17.8-22.3 years 
B. 22.3-23.6 years 
C. 23.6-24.6 years 
D. 24.6-25.6 years 
E. 25.6-26.9 years 
F. 26.9-28.7 years 
G. 28.7-31.3 years 
H. 31.3-35.1 years 
I. 35.1-41.2 years 
J. 41.2 and above 
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'T'AnI.r: 1n: G'EORGIA COVARIATE PARTITIONS 

n K 

ALL IN or VTDrTTl LS 
1902 479 

PACE 
A 821) 195 
B 1077 ? 84 

SO r.T 0- RCO NO M TC 
A 71 23 
B 11 1 
C llQS 302 
D 461 103 
E 1(;2 48 

'T'T 

1)733. 
i' 
l' 
'.494. 
1239. 

S'T'A'r.TJS 
~6?. 

54 .. • 
34SQ. 
1371. 

'192. 

HOME BNVT{'ON WENT TO AGE 
A 245 
13 60 
C 67(j 
D 34? 
p. 579 

M API l' AT. 
A 
R 
C 
D 
B 

6')6 
690 
173 
187 
139 

"~~t 
~ 'f',~:"-

40 527. 
1 1 120. 

.215 ?4,Q. 
A2 1035. 

1
131 159'.. 

C:;TATT.lS 
184 ?270. 
163 19 cH. 

33 1Fi :2. 
42 441. 
34 312. 

16 

MAXTMOM LT.KELIHOOD ESTIMATES BAYES ESTIM~TES 
Y ~ I 1 -~---- --- ~.-. -.. _. '6 Vii 6 

1.000 * 0.985 * * 0.867 0 .. 100 0.981 O~OOJ 

1.000 * 0.986 * * 0.851 0.117 0.983 0.003 
0.811 0.215 0 .. 919 0.007 0.982 0.196 0.121 0 .. 977 0.005 

1.000 * o. q77 * * 0.139 0.159 0 .. 962 0.014 
1.000 * 0 .. 9F.l2 * * O. 6.17 0.225 0.960 0.025 
0.743 ' o. 11S 0 .. 978 0 .. 007 0 .. 979 0.749 0 .. 128 0.977 0.005 
1 .. 000 * o. QS7 * * 0.835 0 .. 131 0.983 0.004 
1.000 * 0.980 * * 0.775 OoollJ2 0.970 0.009 

1.000 * 0.991 * * 0.674 '0 .. 196 0.983 0.008 
O.41R 0.346 0.'968 0.037 0.947 Oe465' 0.213 0.959 0.026 
1.000 * 0.979 * * 0.861 o. 101 o. ej:74 0.005 
1.000 * 0.986 * * 0.169 0.153 0.980 0 .. 006 
0.904 0.586 0.986 0.010 0.993 0.753 0 .. 152 0.980 0.006 

1.000 * o. 983 * * ~ 0 .. 853 0.112 o. 979 0 .. 004 
1.000 * o. 986 * * ,to. 828 0.127 0.981 0.004 
0.,4Q 0.373 0.916 0.021 0.975~ jO.55R 0.199 O. 971 O.Opj 
0.525 0.215 0.968 o. q19 0. 947 1 iO. 573 0.179 0.966 0.015 
0.433 0.118 O. 948 0.022 o. A47 1°.495 0.156 0.949 0.021 

·:1 

* 

0.919 
0.935 

0.750 
o. tl5 1 
Ou 944 
0.878 
0.816 

0.830 
0.719 
0.894 
0.899 
0.903 

0.878. 
0.905 
OD 823 
0.832 
0.788 
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C PRIOR ARP BSTS 
A 51l~ 116 
n 13AA 3f.3 

r. Ar; P. h'!' lH'LEASE 
1\ 231 A9 

r B 210 67 
C .. lA9 47 
D 1Al 47 

0, 1l: 11)1) 36 .. ;~ 
F 17q 10 
r; 187 40 

r H 184 I 19 
T 178 47 
.1 1q5 37 
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3?4?. 
1)41. 

1550. 

1226. 
796. 
579. 
1)17 .. 
1CJ1. 
387. 
424. 
418. 
616. 
379. 

TABLE 1B: GEORGIA COVART.A'l'l~ PARTI~.'.rONS (CONT.) 

1.ono 
0.<)99 
0.'177 

1. 000 
1.000 

1 .. 000 
1.000 
1.000 
0.740 
0.713 
1.000 
o. '122 
0 .. So fi 
1.000 
0.381 

* 0.583 
0.19'5 

* 
* 

* 
* 
* 0.395 

0.575 

* 
0.240 
0.301) 

* 0.124 

o. 987 * 
0 .. 983 0.013 
0.973.0'.010 

0.908 
0.983 

0.981 
0.981 
0.' 984 
0.975 
0.980 
0.9A9 
0.970 
0.913 
0.984 
0.9QO 

* 
* 

* 
* 
* 0.,017 

0.020 

* 0.019 
0.019 

* 0 .. 019 

* 0.988 
0 .. 964 

* 
* 

* 
* 
* 0.915 

0.901l 

* 0.956 
0'.961 

* 0.091 

0.849 
0 .. 111 
0.165 

0.117 
o. 144 
0.126 

0.983 
0.974 
0.970 

~ 
0 .. 003 
0.008 
0.007 

0.901 
0.867 
0.891 

0.712 0.153 0.983 0.005 0.933 
0.865 0.101 0.979 0.004 0.908 

0.845 
0.716 
0.166 
0.618 
0.625 
0 .. 695 
0.567 
0.585 
0.782 
0.458 

0.116 
0.143 
0,,151 
0.168 
o. '190 
0.191 
().185 
0.188 
0 .. 150 
0.172 

0.915 
0.912 
0.976 
0.969 
0.911 
0.980 
0.961 
0.969 
o~ 977 
O. 961 

0.006 
0.008 
0.008 
0.012 
0.013 
0.009 
0.015 
0.0111 
0.,001 
0 .. 018 

0.842 
0.864 
0.823 
0.844 
0.833 
0 .. 825 
0 .. 838 
0.832 
0 .. 823 
O. BO 5 
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Table 2a. 

U.S. Bureau of Prisons Covariate Partitions 

RACE 
A. White 
B. Other 

PROBATION OR SUPERVISION VIOh~TIONS 

A. None 
B. One or more 

AGE AT FIRST ARREST 
A. 16 or less 
B. 17, 18 
C. 19, 20 
D. 21-23 
E. 24-27 
F. 28-34 
G. 35 and over 

NUMBER DF PRIOR FELONY SENTENCES 
A. None 

.B. One or mor~ 

PRIHARY CURRENT OFFENSE 
A. Vehicle theft for interstate transportation 
B. Fraudulent check, counterfeit, tax fraud, embezzlement 
C. Moonshine 
D. Other 

ETIOLOGY OF LAST PATTERN OF CRIMINALITY 
A. Delinquent or criminal orientation (but not narcotic 

or alcohol related) 
B. Financial straits 
C. Other 

EHPLOYMENT DURING LAST 2 YEARS PRECEDING LAST IHPRISONHENT 
A. Less than 25% time 
B. 26-50% time 
C. 51-75% time 
D. 76-100% time 
E. student or unemployed 

ALCOHOL PROBLEMS 
A. None 
B. Other 

PSYCHOLOGICAL DIAGNOSIS 
A. None or favorable 
B. Other 

j 
/'* 

/.i 
(f. 
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Table 2a. U.S. Bureau of Prisons Covariate Partitions 
(continued) 

SCHOOLING COMPLETED AT RELEASE 
A. 8th grade or below 
B. 9th grade or above 

IQ·-
A. Less than or equal to 100 
B. Greater than 100 

ANTICIPATED HOME AT RELEASE 
A. Plans to live alone 
B. With wife (or common law wife) 
C. With parents 
D. Other 

AGE AT RELEASE 
A. 19 or less 
B. 20, 21 
C. 22, 23 
D. 24-26 .. 
E. 27-30 
F. 31-35 
G. 36-46 
H. 47 and over • 1 
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c; 50 11) 22!J. !\ 0.303 G.056 0.93(' 0.018 0.05S 0.314 0.066 o .9 311 0.019 0.1111 

ym'1BER Of T'F TOR 'PELONY SF: NT1:!NC'I:!S 
A 3A!l 2?n 2':122. O. :'91 v.025 (·.924 0.005 

.... 'i. 

0.037 0.592 0.024 0.924 0.006 0.039 ... n 5U? 415 " .' ., -, {} .eoo I' .. :' • lj 0.3 0.017 (,.90(' o • OO/~ 0.015 0.009 0.906 0.004 -0.032 II ! t.LL • 

PP'PlI1.RY CURRfNT ()F1:'BNS~ 

A 313 2"'1 223LI. a .774 V.O 22 O.B79 0.001 0.003 0.772 0.CJ26 0.879 0.007 0.015 

R qo '11 (;7? J.5bv 0.0 S2 (J .. 925 0.011 0.03 U 0.579 0.052 O.92ll 0.011 o.Olt~ 
t 101) fiO Sb1. ~J.:J79 o. 0 ~,9 0.941 0.009 C.099 0.579 0.049 O.9l10 0.006 0.119 

0 330 7.3R iS71. 0.723 0.025 0.921 0.005 O.O:JI~ 0.722 0.021 O~~~l ()!QQ5 0.021 
,~) 

-p.1'TOLOGY Of' LAS')' P 1\ '1''t''P. '!H~ Of' enI MI NAl, ITY 
A- 53'; 1101 307!l. ).750 O.Ol:~ O~097 . 0.005 0.007 0.749 0.012 0.897 0.005 O.OllS 
n 67 rn ['9Ll • 0.676 o. 0 ~ti 0.9~9 0.009 0.352 0.681 0.070 0.959 0.009 0 .. 409 
C 324 "17 2775. j.673 u .0 2fJ C.924 0.005 li. 0 tIl 0.672 0.028 00923 0.005 0.01.7 

<', 

,. 

" 
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'l'~DI.P. 2'R: ".5. BfJREAn OF PRISONS COVARIATE PARTITIONS (CONT.) 

N 

EM PLOYHP'~T 
A 244 
B 17:? 
C 170 
D 242 
~ 9q 

y. 'l'T 

!HflUUG ? YEAR~ 

1':'1(1 1~22. 
136 14.21. 
17.1) 1.:i72. 
135 1944. 

71 8b 5 a 

A~COROL PRORL!~S 

A 631 430 ~lOS. 
'R 2q6 231 2433. 

PSYCHOLOGICAL DIAGNOSIS 
A &)67 ]q1 L;('S~. 

B 360 /'70 2d~1. 

~AXIMfJM LIKELIHOOD ESTIMATES 
Y 0h J cr~ 

PRECEDING ~AST IMPRISOHMtNT 
G.7~u 0.026 0.900 0.007 
J.7Yl 0.031 0.905 O.COb 
J.73G 0.034 O.9~0 0.00& 
J.56~ 0.032 0.933 0.OU6 
~.71S 0.045 (.9~1 0.009 

O.Oll 
0.013 
0.025 
0.057 
0.031 

B AYES ESTI P1 ATES 

0-
0.793 
o .1e6 
().735 
0.5b3 
0.715 

<It' 
0.024 
0.031 
0.034 
0.032 
0.Oft5 

1 
0.699 
0.904 
0.910 
0.933 
0.920 

q-,.. 
0.001 
0.006 
0.006 
0.006 
0.0{)9 

f 
0.013 
0.042 
O.OLlI 
0.0£.3 
0.033 

G.GU4 U.019 0.917 0.004 0»025 0.669 0.021 0.917 0~002 -0.099 
J.7dl 0.024 0.906 0.006 0~016 0.781 0.026 0.906 0.007 0.071 

O.6~3 0.019 0.916 0.004 o.o~a 0.696 6.016 0.918 0.004 0.130 
007~1 0.023 0.906 0.006 O.Oi~ 0.749 0.020 0.906 0.005 0.031 

SCHnOLIN~ COMPLFT~D AT FE~BAS~ 
A 531 173 q~6b. ~.70q 
B 396 2fl8 3.t.77. 0.731 

I. O. 

0.020 0.913 o.oo~ 0.019 0.761 0.014 0.913 0.005 0.141 
0.022 0.913 0.G05 0.025 0.731 G.025 0.913 0.004 -0.019 

A 716 
TI 211 

515 
146 

~b·::d). 

1 u!:l4. 
~.722 0.017 U.914 o.ao~ O.0~2 0.717 0.023 0.913 O.OOq 0.03e 
J.6Y3 0.032 U.S13 0.J07 0.021 0.692 0.031 0.912 0.001 0.043. 

ANTICIPATED HOM'? 
1\ 109 AA 
B 233 137 
C 330 7.1c) 
D 255 197 

~. " ; 

;r~>" 
,.,... 

> 11~ .::i. .. .",';;' 

AT P'F.T'FAS'F. 

~:& 7. 
17[;3. 
2(,66. 
211-11. 

~. ~ 

..-.,;;':: ,. .""-;:;.,.. 

).!:.u~~ 

o • .:, ~I L. 
Jv726 
0."773 

~;;.; 
;c' 

-. ,:.~ 

o .;J 3e 
0.0:32 
o • () 25 
lJ.fJ2c; 

~;,;"';-

.--.... ~ 

0.910 
(}. 9 24 
0.911 
0.909 

O.O(l~ 
0.007 
0.006 
o .OOt 

~ 

·,~·~f ~,:; 
> 

··iv· -,"f T , 

~ ... ," ~:" ....-, c 

C.OLl 
0.0:>5 
o.o:co 
0.011 

~,,-;,~. 

0.603 
0.5Y2 
0.725 
0.712 

0.030 
0.032 
0.027 
0.027 

0.Q09 
0.9211 
0.911 
0.909 

0.009 
0.OG7 
0.006 
0.006 

0.010 
0.040 
0 .. 039 
O.OOb 

11 P 

o 
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Table 3a 

Iowa Covariate Partitions 

SEX 
A. Female 
B. Male 

RACE 
A . Non-white 
B. White 

MARITAL STATUS 
A. Widowed or separated 
B. Single 
C. Married or common-law 
D. Divorced 

LIVING P~NGEMENT ON RELEASE 

A. ~.J'ith relatives, foster parents, institution, other 
B. Alone 
C. Spouse and/or children 
D. Parents or step-parents 

EDUCATIONAL ATTAIN}illNT 
A. 13 years or more 
B. 8 years or less 
C. 9 - 12 years 

TYPE OF ADMISSION 
A. Direct CRT committment 
B. 
C. 
D. 
E. 
F. 

Probation revocation 
Parole revocation - NOA 
Parole violation 
Safekeeping or Evaluation 
Other 

ALCOHOL INVOLVEMENT 
A. None 
B. Under intoxication at arrest 
C. History of alcoholism 

DRUG INVOL VE}illNT 
A. None 
B. 

JUVENILE 
A. 
B. 

Some 

COMMITTMENTS 
One or more 
None 

l 
/' 

i" 
'--{ 
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Table 3a 

Iowa Covariate Partitions - continued 

PRIOR PRISON RECORD 
A. None 
B. One or more 

TYPE OF RELEASE 
A. Expiration of sentence 
B. Parole 
C. Safekeeping or evaluation 
D. Other 

AGE AT RELEASE 
A. 19 or less 
B. 20-21 

22-23 1 C. I 
D. 24-26 .j 
E. 27-29 

;\ F. 30-35 
G. 36-46 ~, " 

H. 47 and over 1 

OCCUPATION AT ADMISSION 
A. None or unskilled 
B. Skilled or higher 

PRIOR JUVENILE ARRESTS 
A. None 
B. One or more 

PRIOR ARRESTS 
A. None 
B. One or more 

PRIOR FELONY CONVICTIONS 
A. None 
B. One 
C. Two or more 

PAROLE RISK SCALE AT ADMISSION 
A. Ultra High 
B. High 
C. Medium 
D. Low 
E. Nil. 

i 
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r; ,{ARl.E 3n: IOWA CQVARTn'E p~BTITrONS (CO NT. ) 

N II: T'J' rot l\ XIM TIM LIKli:LIHOOD EST! MATES BAYES .. ES,!'!MATES 

r 

I r: 
l 
\, 
I. 

f 
0 

• t: (~ J 
'. 

r . ,J 

?\T.COHOT. I~VOJ.VBM~N'J' 
~ f ~ f 't g 

1\ 1174 245 3q68. 0.354 0.046 I ooo <:174 ooooor; 0 .. 900 0.370 0.059 0.914 0.005 0.070 

13 Rf)S 200 2702. 0.295 0.024 < 0.954 0.006 0.648 0.301 0.023

1 

0.9SQ 0.006' 0.621 

c 1260 31Hi 51}44 .. 0.438 0.030 0.963 O.OOq '0.795 0.442 0.033 0.964 o.oeq 0.810 
• 

O. OQQ ! O. B2B 

~-' 

nn TTG I rrVOl,V~ MEt-IT 
~ l"1qQ 452 7031 ..... 0 .. 373 0.027 O.96B o. "316 0.030 I 0.96B 0.003 * 
n 1501 3 Fll r;305. 0.354 0.024 0.960 0.005 0.166 0.358 O.0?3 0.961 0.004 0.140 

~ 

,lry V E ~IT,F! co"! MT'l'Tr1F.NTS 
1 
} 

A OR7 '310 4104. 0.409 '.).027 0.956 0.005 ' 0.699 0.412 0.021 0.956 0.005 0.666 

n ?'370 57£) 8129. 0.341 0.024 0.969 0.004 0.847 o. 34 fl 0.025 0.969 010004 0.847 

(} ~i 

() 

n 
"f 

1?~IOll PRIson RP.CORD 
A . '23';>.0 t;12 . 71)94. 0.311 0.020 0 .. CJ64 0.004 . 0 .. 194 0.315 0.0'2 q 0.964 0.003 * 
n 1036 37.5 4A73. 0 .. 44tJ 0.034 0.964 0.0051 0.799 0.450 0 .. 036 0.964 o.oo~ 0 .. 131 

TYPE 0'" RF..L1:'!ASF. ~ 

A 770 I 251 3762. 0.471 0.041 0.965 0 .. 005 , o. Al0 0.479 O.OIJ5 0.965 0.005 0.804 

B 1575 568 A151. o. 50fl 0.021 0.962 o. 004 ~ 0.788 0.509 0.027 0.962 0.004 0 .. 652 
" 

C 1£i 1fi 57.0 .. '1o 000 * 0.99Q * ~ * . o. IJ23 o. 'Z70 . 0.997 0 .. 003 0.682 

D 30Q I 3 44. O.OlQ 0.011 1 o. 963 0.050 '.: 0.736 1, 0.240 0.250 i 0 .. 995 0.007 0.449 Gl . 
., 

(J 
.~. 

Q 

. ~'J 
(@ 

{7J .,f , 

~ ' .. ~ c (,8' ;.'fl .,. 

) 
(,1 
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'fABT,E 3R: Tm-a COVARIATE P.ARTITIONS (CON'l'.) 

N K 't'T 

, ~GE ~'l' RP.T.EA ~E 
11 30') 16 437. 
B 469 11'1 1676. 
C 480 127 1852. 
D 665 171 ?I)QO. 
E 501 1 ?7 lAR3. 
F' 318 101 1'1??~ 
G 4o.r~ 101 1464. 
H 210 '14 iO'13. 

OCCTJPATION 1\'1' ADwrSS-rCN 
A 141B 46~ 6491. 
B 962 314 4722. 

PRIOR JijVRNIL~ ARRRSTS 
A 14)~ 39q SQ25. 
B 987 3R6 5314. 

PRIOR ARn E5'J'~ 
11 9Rr. 243 
B 143'" ')39 

3410. 
7860. 

PRTOR fET,OIlY CO NVTCTION 
11 1350 3 B4 '17/.9. 
B 511 201 2746. 
c '14? 1GS 2R04. 

PAROLE RISK SCALE AT AD 
11 Sq· 46 480. 
R 554 236 3076. 
C 519 154 2442 •. 
D 356 76 129B. 
R ~OB 23 409. 

MA XTMUM 

Y 
0.137 
0.3'11 
0.188 
0.3(-;4 
0.365 
o.Uqq 
0.341 
0.106 

0.416 
0.490 

0.410 
0.517 

0.343 
O.S?t 

S 
0.431 
O.lnA 
0 .. 49'1 

MISSIOU 
0.5al) 
0.S6?, 
0.461 
0.442 
0 .. .1 Cll. 

LTKELIHOOD ESTIMATES BAYES 

~ 3 ~ g l 

0.024 o. 940 0.016 0.4144 0.148 
0.046 0.964 O.OOA 0 .. 792 0.369 
0.0'10 O.Q65 O.OOB 0.815 0.405 
0.03.'1 O. 961 0.006 0.748 0.372 
0.046 0.96U . 0.001 0.196 0.31.9 
0.069 0.967 0.008. 0.844 0.478 
0.04lf. 0 .. 961 0.008 

, 
0.751 0.357 

0.452 0.988 0.010 0.984 0 .. 644 

0.025 0.959 0 .. 004 0.743 0 .. 440 
0.042 o. Cj67 0.00.5 0.84) 0.498 

0.030 0.965 0 .. 004 0.818 o. 415 
0.030 0.957 0.004 0.732 0.519 

. 

0.029 0.960 Ou006 0 .. 156 0.349 
0.028 0.962 0.004 0 .. 786 O. 524 

0.034 O. q61 0.004 0.840 0.436 
0.0]5 0 .. 953 0.006 0.651 0.482 
0.04 ? 0.959 0.006 0.153 0.502 

0.066 0.926 0.015 0.430 0.591 
0.040 0.954 0.006 0.734 1°.56 B 
0.051 0.965 0.007 0.820 0.475 
0.145 1 o. 981 0.009 0.952 to. 514 
0 .. 543 I O. 990 0.017 0.990 o. 42.3 

ESTIMA'l'ES 

~ ~ ), f 
0.033 0.941 0 •.. 016 0.508 
0.060 0.964 O.OOA 0.800 
0.064 0.965 o.ooe 0.817 
0.039 0.962 0.006 0 .. 170 
0.057 0.965 0.008 0.801 
0.094 o. 968 0.009 0.817 
0.056 0.·962 0.009 0.157 
0.180 0.984 0.007 O.84C) 

0.021 0.959 0.004 0.742 
0.046 0.967 0.005 0.823 

0.031 0.966 0 .. 004 0.787 
0.031 0.957 0.005 0.670 

I 

0.031 0.961 0.006 0.758 
0.030 0.962 0.004 0.693 

0.031 0.961 0.004 0 .. 857 
0.031 0.953 0.006 0.650 
0.046 0.959 0.006 Ou 141 

0.068 0.925 0.016 0.468 
0.042 O. 954 0.006 0.735 
0.061 0.966 0.007 0.812 
0.112 0 .. 981 0.008 0.852 
0.234 0.995 0.011' 0.745 
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Table 4a 

North Carolina Covariate Partitions 

RACE 
A. White 
B. Black or Indian 

TYPE OF RELEASE 
A. Other 
B. Unconditional 

IQ 
A. 100 or less 
B. Greater than 100 

SCHOOL ACHIEVEMENT 
A. 8 years or less 
B. 9 years or more 

WORK STABILITY 5 YEARS PRIOR TO SAMPLE TERM 
A. Other 
B. Two or fewer job changes 
C. Student 

PRIOR ARRESTS 
A.' None 
B. One or two 
C. Three or more 

MARITAL STATUS AT INTERVIEW 
A. Single 
B. Married 
C. Divorced 
D. Other 

EMPLOYMENT STATUS AT INTERVIEW 
A. No Job 
B. Other 

DRINKING PROBLEM 
A. None 
B. Some 

DRUG USE 
A~ None 
B. Some 

AGE AT RELEASE 
A. twenty or less 
B. 21', 22 
C. 22-24.5 
D. 24.5-28 
E. 28-34 
F. 34-40 
G. 40-47 
H. Greater than 47. 
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~ TAB y;p, 4R: NORTH CARO~INA COVARIATE PARTITIONS RE-lIRREST ~ C -
':. N K TT IH 'XIM UM LIK~LIHOOD ESTIIH'rES BAYES ESTIMATES 

\ 
" 

~ '6 r '6 ~ g .) crt g , fig f 
I. ~! 

ALl, I NDI 'TT f.HY A tS 
641 '113 5649. 0.R74 0.018 Ow 926 0.004 0.444 0.871 0.025 o. 925 0.002 * 

I r .... 
Pa.CR 
A 31t) 21)R 24140 0.869 0.021 O. 90R 0.007 0.332 0.866 0.026 0.908 0.007 0.360 

, , r B 3?6 2'55 3215. o. 08l~ 0.028 o. 9]9 0.005 0.54] 0.883 0.029 0.939 0.005 0.557 

'T'YPf. Or' RRLEASE 
r' A (Q? 116 1764. 0.83? 0.044 o. 943 0.007 0 .. 512 0.831 0.044 0.943 0.001 Q .. 561 , 

B 4!l9 377 ::InA'). 0 .. 097 0.019 0.<118 0.005 0.411 0.897 O.Ol l i 0.918 0 .. 005 0.245 
.1 
.\ 

j I~' T.O .. 
, " A 11 '• 95 <)46. o. R79 0.039 0.913 0.0.11 0.383 0.874 0.039 o. 913 0 .. 011 0.377 

B 247. 194 2114. O. 9~4 0.034 O. 932 0.007 0.6l1 0.922 0.034 0.931 0.007 0,,649 
r 
'<.l~ Sr.HOOT. ~CRJEVEt1ENT 

A ")f\ 47 476. 0.876 0.052 o. 912 0.015 0 .. 298 0.866 0.053 o. 911 0 .. 015 0 .. 310 

G' B 2R'i 23t 7.471. o. 919 0 .. 030 0.929 0.007· 0.600 0.917 0.030 0.928 0.007 0.604 

. ,", 

WORK STABIl.ITY 

C A 361 ?'96 1029. 0 .. 870 0 .. 02? 0.915 0.006 0.324 0.067 0.024 0.915 0 .. 006 0.353 
, B 171 11'2 1412. 0.852 0.0 llO 0.927 0.009 0.510 0 .. 849 0.040 0.926 0.009 0.513 

!; C 36 33 486. 1 .. 000 * 0.941 * * 0.979 0.036 0.939 0.010 0.109 
I 

C P'Rlnn ~RP. RS'l' S 
A 190 136 1f309. 0.855 0.04A 1 o. 947 0.007) 0.656 0.955 ' o.Ol!a 0.947 0.001 0.646 

G· B 217 1 A3 lA9q. 0.904 0.027 j 0.919 0.007I O• Q1O 0.900 0.0'26 0.91 a 0 .. 007 0.399 r.;..' 

C 234 194 lq41. o. AAl 0.026 ! 0.913 0.007~ 0.33] 0.879 0 .. 021 0.913 o.ooe 0.327 ~~-~ 
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'ARLE 4B: MORTH CAROLINA COVARIATE PARTITIONS - RE-ARREST (CONT.) 

N K TT .MUM M.AXI 

MI\PJ'T'AL gTA'T'lJS Y 
1\. ns 
B 1 g') 

c 13R 
D 11 

101 
11)8 
115 

7 

1041. 
1679. 
n~6. 

80. 

0.9 
O.A 
O.C) 
O. 6 

E~~LOY~!~'T' STAT~S AT IN'T'HRVIR 
A 387 307 33~3. O.R 
B 100 R6 f343. 0.9 

DRIN KD1::; PPO'RLP.M 
A 313 '- t:;1 
B 2'7t:; 23? 

D~m; n~"p, 

1\ 57(; Uf)O 
B 32 7.9 

A~E AT n~U:1\ SE 
! 75 oil 
B IS t;A 
C 78 67 
1) '31 6~ 
'I:' R3 71 ... 
F 00 71~ 

G P.1 t)9 
H 18 t:;~ 

3137. 
27.06. 

uqqo. 
353. 

1'19. 
1135 ... 
730. 
700. 
821. 
745. 
620. 
(i~9. 

O.A 
0.8 

O.B 
1.0 

0 .. 9 
O.A 
o. g 
O .. B 
0.9 
O.R 
0.7 
0.7 

01 
82 
17 
65 

w 
71) 
hI 

(:i I. 
9,3 

64 
00 

50 
81 
fl?l 
A6 
09 
78 
8!~ 

56 

LIKELIHOOD ESTIMATES BAYES ESTIMATES 

~ f ~ g 1 ~ l' \~ 
O.OqlJ 0 .. 92IJ 0.011 0.573 0.899' 0.044 0 .. 923 0.010 
o.o:n O. G23 0.008 1 o. q5q 0.879 0.033 0 .. 923 0.008 
0.037 } 0.926 0.009\ 0.501 o. 911 0.036 0.925 O. OO~ 
O. P1B . 0.92!t 0.037 0.291 0.662 O. 148 0.917 0.036 

I 

0.025 0.927 O.OOf) 0.506 0.874 0.027 0.927 0.006 
0 .. 043 0.920 0.012 0.(,44 0.954 0.039 0.918 0.011 

O. O~q 0 .. 936 0.005 0.52B 0.862 0.029 0.936 0.006 
0.023 O. g08 0.007 0.314 0.892 0 .. 021 0.908 0.001 

0.019 0 .. q23 0.005 0.41R 0.857 0.01Q 0.923 0.005 

* 0.929 * * 0.974 0.041 o. 926 0.013 

O.041.J 0.933 0.011 0.521 0.935 0.04,3 0.931 0 .. .010 
0.061 0.930 0.013 0.558 0.872 0.059 0.929 0.013 
0.040 O. q /.1 0 .. 011 0 .. 497 0.945 0.040 0.925 0.011 
0.042 0.914 0.012 0.277. 0.876 O.OI.J2 0.913 0.012 
0 .. 041 0.925 0.011 0.36'- 0.900 0.042 0.925 0.011 
0.Olt4 0 .. ~15 0.012 0.368 0.870 0.044 o. 911J 0.012 
0.056 0.920 0 .. 013, O.3A4 0.71}2 0.057 0.920 0.013 
0 .. 070 > 0.939 0.013 . 0.545 0.760 0.073 0.938 0.013 

1 --. 

~ 
0.560 
o. q54 
0.475 
0.302 

0.563 
0.528 

,',;. 

0 .. 514 
0.300 

0.510 
0.137 

0.466 
0.529 
o. ltG7 
0 .. 265 
0.361 
0.353 

10• 406 
0.568 

/.' 
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1ABLE 58: NoatH CAROLINA COVARIATE PARTITIONS - RE-CONVICTION 
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Bayes 90% Confidence Regions for PRIOR ARRESTS 
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Bayes 90% Confidence Regions for AGE AT RELEASE 
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Figure 2c: United States B.O.P. Cohort 
Bayes 90% Confidence Regions for estimates of y and q by 
PROBATlm~ OR SUPERVISION VIOLATIONS 

A. None 
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Bayas 90% Confidence Regions for estimates of y and q by AGE AT FIRST ARREST 
A. 16 or less E. 24-27 
B. 17, 18 f. 28-34 
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D. 21-23 

.-- ..... - _ .... _- ... 

I 
\ 
I 

o 

;. 
1· , 

[ > 



r 

o 

3 

o 

'0 

\ 

tn en 
d 

In 
Q) 

d 

~!----------+----------+---------~----------4---------~~---------r------____ r-________ ~ 
"bAD 0047 0.55 0.62 GAJ~A 0.77 0.85 0.92 tOo 

Fip,ure 2e: United States B.O.P. Cohort 
Baires 90% Confidence r.egions for estimates of y and q by NIDmER OF PRIOR 
FELONY SENTENCES 

A. None 
D. One or more 

., ~..! 

• 0 • 

'0<)' 



r 
r 

;'." i, 

f 

CJ 

5 

LO 
Ol 
d 

CJ 

o~ 
CJ 

LO Q) 
d 

CJ 

o 

Q)+---------~~----------rl----------~l----------_rl----------~l----------_rl--________ +I ________ ~ 
11.40 0.4 7 0.55 0.62 0.70 0.77 0.85 0.92 1.00 

GAMMA 

Figure 2f: United States B.O.P. Cohort 
Bayes 90% Confidence Regions for estimates of y and q by PRI~~RY CURRENT OFFENSE 

A. Vehicle theft for interstate transportation 
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Figure 2i: United States B.O.P. Cohort 
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Figure 2j: United States B.O.P. Cohort 
Bayes 90% Confidenc~ ~egions for estimates of Y and q for PSYCHOLOGICAL DIAGNOSIS 

A. None or favorable 
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Figure 2k: United States B.O.P. Cohort 
Bayes 90% Confidence Regions for estimates of y and q for 
SCHOOLING CO~WLETED AT RELEASE 

A. 8th grade or below 
B. 9th grade or above 

'=~:r~~fW<'.':;T-.~~~'>':~""'""·~~"--'::-::~-:;::~::':::'~'~"'2:'.-, 
-.-: ',-~;;", ':-':'" ./ -h 



r r 

. 
! 

, , r 

'1 

p I 

\1 

an 
Oi 
d 

an Q) 
d 

i/ 

~ 

Q)+----------+----------+----------+�----------+�----------+�----------~I----------~I--------~I 
41.40 0.47 0.55 0.62 0.70 0.77 0.85 0.92 1.00 

GAMMA 
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Bayes 90% Confidence'Rep,ions for estimates of yand q for IQ 
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Figure 3b: Iowa Cohort , h 
Bayes 90% ConfidencEI Regions for estimates of Yand q by SEX 
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Figure 5d: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of·Y and q by IQ 
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Figure 5e: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of y and q by SCHOOL ACHIEVE~mNT 

A. 8 years or less 
B. 9 years or more 
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Figure Sf: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of y and q by 
WORK STABILITY S YEARS PRIOR TO SAMPLE TERM 

A. Other 
B. Two or fewer job changes 
C. Student 
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Figure 5g: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of y and q by PRIOR ARRESTS 

A. None 
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Figure 5h: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of y and q by MARITAL STATUS AT INTERVIEW 

A. Single 
B. Married 
C. Divorced 
D. Other 
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Figure 5i: North Carolina Cohort (reconviction) 
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Bayes 90% Confidence Regions for estimates of Y. and q by EMPLOYMENT STATUS AT INTERVIEW 
A. No Job 
B. Other 
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Figure Sj: North Carolina Cohort (reconviction) 
Bayes 90% Confidence Regions for estimates of y and q by DRINKING PROBLEM 
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Figure 5k: North tarolina Cohort (reconviction) 

0.90 0.95 

. -~. ---.. '-... 

Bayes 90% Confidence Regions for estimates of y and q by DRUG USE 
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Figure 51: North Carolina Cohort 
Bayes 90% Confidence Regions for 

A. twenty or less 
B. 21, 22 
C. 22-24.5 
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