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Interest in the construction of composite measures arises in the following

familiar situvation: The lnvestigator is interested in some variable or con—

struct that is.not directly measurable without error. A number of indicatars

or measures are available, each tapping the variable of interest in a somewhat f
impérfegt.‘ way; The investigator wishes to combine these several indicators '
into ; single 'composite measure' that will reflect the underlying variable
better than does any one of the indicators taken alone. The paper considers
several alternafive approaches to the comnstruction of such composites, ‘and
assegses the adequacy of tha resulting measures.

We shall not be concerned here with approaches to the development of such
qultiple indicators. (A ‘general rationale, and many ingenious examples, of
such development arve given in Webb, Campbell, Schwartz and Sechrest, 1966) .
qu shall we consider the practical problems involved in sampling, estination,"
and“testing of particular mod;ls.in particular.measurement gettings. Rather,
we shai% assume complete knowledge of the relevant stfucture of 2 measurement
.process, and examine the performance of several alternmative strategies of

0

composite measure construction as a function of the parameters of this structure.

The aim is to ;uggest the circumstances under which the effort involved in
*devising- optimal composite measures, rather.than using standard rules of thumb,
might be justified by the resulting improvément.in measurement quality. That

is, the emphasis.of ﬁ?e paper is less on the practical steps involved in

p—

devising an optimal measurement procedure in any particular case than on the

" conditions under which such an -effort might be justified.
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In the psychological literature, interest in the relative efficacy of

alternative linear composites 'as either estimators or predictors has been

. recently revived by a paper by Wainer (1376). Wainer proposes an 'equal

weights theorem; that segs a surprisingly small upéer bound on the expected
loss of exp:. .ined variance when optimal weights aré replaced by equal weights
ip linear prediction equations. Though the theorém has since been shown to
underestimate the loss of explainmed variance by a.féctor of two (Laughlin,
1978), and to be of considerably less gener;lit§ than origiﬁally claimed
(Pruzek and Frederick, 1978), Wainer (1978) remains essentially unmoved f£rom
his original contention that the coefficients in linear models generally
“don't maké‘no nevermind," and that.the simplest (i.e. equal) weights are
almost always aildequate.

The debate has a lengthy history in both methodological and substantive
iiteraturesés'Wilks (1938) showed that, for sufficiently large numbers of
predictors, and under reasonab%y general conditions, predictions from a linear:
composite are insensitive to Eh@nges in weighting schemes. Similar ;onclu—
sions are reached by Burt (1950) and Gulliksem (1950), thé latter suggesting
_that diéferential weighting schemes be considered only when the number of mea-
sures to be combined is less than ten. Even when.thé number of measures or

predictors available is small, equal weights may produce' composites as good as

, or better than more complex approaches in a variety of practical situations

(Wesﬁan and Benneét, 1959; Lawshe and Schucker,“l959; échmidt, 1559; Daweé
and Corrigan, 1974). Given the simplicity of 'unit weights', their indepen-
dence of data ané estimation problems, and the apparent robustness of the
resulting composites, their use across a wide range of decision making set-
tings has béen advocated (Einhorn and Hoéarth,‘lgzs; Dawes, 1979).

-Against this impressive body of data and argumen{:, most investigators
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faced with a multiple~indicator problem will presumably feel justified.in

simply adding together their several measures, perhaps after standardizatiom,

* into a simple'composite. As the present paper attempts to show, however, the

procedure remains a hazardous one. The resulting composites may well be excel—:
lent measures of the variable of interesi. On the'othef.hand, they may be conri
pletely misleading. Crucially, no evaluation of measure quality, and no pro- -
cedhre‘for refinement, is possible if equal weighting is routinely used.

Both evaluation and refinement require the specification of an expliéit

measurement model. As Blalock has argued: ". . . imperfections in our mea-

suring instruments and the necessity of indirect measurement will require that

, rather complex auxiliary theories be formulated so that we may fass back and

forth between our conceptual variables and operational measures with minimal
ponfusion" (Blalock, 1974: 6). In the present case, the auxiliafy theory is,
fortunately, ;not particularly complex. Nor is‘any great mathematical sophis-
tication required for its analysis, beyond simple algebra. The present paper °

proposes a simple model of a reasonably general multiple-indicator situationm,

and explores the consequences of forming composites with different weightiﬁg

_schemes. A number of currently widespread practices and beliefs are examined,

and some tentative generalizations offered. The main hope, however, is that

investigators will find the approach useful in specifyirdg and 'testing measure-

- ment models for particular measurement situations of substantive interest; and

.

that the analytic approach developed here will be of value to them in assess-

ing their present measures, and in developing better omnes.

m—



"able. TFor example,

I. A GENERAL MEASUREMENT MODEL

A measure or indicator is, in general, an accesgsible covariate of the

variable of interest. Scores obtained on a particular I.Q. test are correlated.

with the true intelligence of the individuals taking the test. Length measure-:

ments obtained from a given inst

2 S

the: objects they measure. Responses to a questionnaire assessing job satif-
faction are correlated with the actual satisfaction of the workers surveyed.

In general, then, measurements obtained from alternative measurement procedures

will also be intercorrelated, since each taps, to some extent, the same under-

lying variable. {Such intercorrelation of measures is noted as necessary though
not sufficieﬁt for 'convergent val@éity' of the measurement procedure; Campbell
and Fiske, 1959).

Covariation between measures is, however, not sufficient evidence to

establish ﬁggiher, or to what extent, .the several measures are associated with
the underlying variable of interest. Covariance with some other, irrelevant
variable is clearly an alternative possibility. A particularly troublesome
source 6f such irrelevant covariatiom is what might be termed a 'method’ vari-

two different I.Q. tests might both involve ‘the reading

of instructions; differences between subjects in reading skill; would thus

contribute to the covariation in obtained scores between the two tests, aver

-

and above that resulting from both tapping the underlying variable "true intel~

ligence'. Similarly, different experts might agree for reasons unrelated to

the extent to which each independently taps the underlying variable (s)he is

asked to assess.

Ta this paper, we shall consider the following simple linear measure=

L

ment model;

rument are correlated with the actual length of:’

s o S .

where:
Y is'the underlying variable of interest;
m is a source of 'irgelevant shared variance' (e.g. due to shared methad);
X

12 X,y oo Xi, e Xk are the multiple measures or indicators;

' €15 85y oo ei, -+. € are independen? error terms associated with
each of the k indicators.

_Each measure Xi Vill be considered as comprising threge components: a ’true

o .

t ' r
score’ component, a 'method' component, and an 'independent error' component:

X, =aY¥Y+cm+e

i i i i’ iﬂl’ 2’ s e k e s svsesesne s (l),

For convenience, we shall treat Y, m, and each e, as independent, normally

i

distributed random variables with zero mean and variances c;, ci and ci respec—
tively. We shall define the VALIDITY of a measure as the correlation of the
measure wilth the underlying variable of interest; and the MEAN SQﬁARED ERROR
(MSE) of a ﬁeasure:as the expected value of tﬁe squared difference between

"the value of a measure and the value of the undeflying variable. In the above

model : =

(by def'n)

a. Validity of - B
v of measure i, e*iy | Cov (X,,Y)

\[Var (X, var(Y)



P

pageve

o

. b
4
2% O ¢) |
or: Py y = > :
i 2 2 +- czc + c
i1, MSE, = E(Y - X,)* (by def'n)
b. Mean squared error of measure i, i 5
. 2 2 22 2 3
or: MSEi = qy(l-ai) + UmFi + P f ).
c. Intercorrelatian of measure i and measure j,'px <
i3]
2 2 : .
L 31?3°y + cicjom peeescssneae (&)
j 22 2 2 22
L clo” + o))
J/ (a 0 + c 19, + g’ ) (a 5 y cJ n

Composite Measures

We wish to examine the properties of simple linear composites, Y, as

measures of Y. Such measures are formed by the summation of the measures, Xi’

" each weighté&kby some coefficient bi:

For comﬁosites of this form, it can be shown (Appendix 1) that:

d. Validity of composite, py§, is given by:

oy L(a;by) erineererinenenaas (5)

/ % (Jap)” + °i(2b1°i)2‘*12(bi°i)

¢

-~ . PO =

e. Mean squared error of composite, MSE§, is given by:

2 2 2 2 2 2 .. (6
MSES}——'oy(l—Zaibi)--i'om (Zbici) +Z(biai} e ()’

Thus, for a given measurement mo&el, Equations (5) and (6) allow the validity

. and mean squared error' of a composite to be expressed as an explicit function

e i

T iy S e

e

of the weights, bi’ associated with ea&h measure, Xi, in the composite. For

X

example, -if -the composite .is constructed by merely averaging the raw scores

on each measure, this amounts to settiung each bi = 1/k foF all k measurés.
Substitution inm (5) and (6) allows direct calculation of the wvalidity and MSE
of a measure so constructed. ‘

Equations (5) and (6) also open the possibility of deriving optimal
weightings for a given measurement set;ing; For example, setting the partial
derivatives of (6) with respect to each bi equal to zero yields a set of k
equations which, when solved simultaneously, give values for bi that nminimize
MSE§. (The general procedure is shown in Appendix 1. It should be noted that
the algebra involved is tedious forlthe general c%se for values of k greater
than 2. In the examples that follew, we shall generally simplify the model to
specific cases of interest.)

Equations (2) through (6) express the key properties of individual measures
(validity aég mean squared error), the interco;relation between pairs ofvmea- .

sures, and the properties of simple linear composites of several measures

(validity and mean squared error) as explicit functions of the structure and

parameters of the measurement model plus, for the composites, the weighting

scheme chosen. The implications of these equations for several familiar mea-
surement situations will be explored in the remainder of this paper.

In the following Section, we shall examine the behavior‘of composite mea-
sures formed from several equally-yalid measure;, both for the éase in.which
the measures share no method variance, and for the case in which this shared
variance is significanc. In the"third Section of the paper, we shall explore

the consequences of relaxing this assumption of equal validity.



II. COMPOSITES OF EQUALLY-VALID MEASURES

Equally-Valid Measures, Zero Methoq Variance

a.

The cimplest special case of the general model presented eaxrlier is

. t 1 ! J
that in which each measure comprises only 'true score and 'random error' terms,

-~

with no ‘shared method' variance; and in which all measures are of equal variance, .

and equally valid. This simplification of the general model amounts to setting °

02 = 0 (or, equivalently, c; = 0); setting a, = 1, i=1l,...k; and setting all
m ] .

oi equal. That is:

Lere
xi=Y'+ei, i=1,...k,
iné——ez
2_ 2 2 ..
o = Uj = Ue for 211 i, j.
Xi<&——e
From Eqn (2): .
o] - .
. qs - —
Validity of each measure, p = cececscnssscnvasssonaa (7)
x7 2, 2
Uy e
From Eqn (4):
" Intercorrelation between any pair of measures,
2
o
=———-'l'——__ e vo R0 s ePER ST LEIORLOED OSSN 8
pxix‘ ; (8)
J g + 0
=P

.

.

g N

B

From Eqn (5):

Validity of composite formed by bi = 1/k,

N &)

Note that, by Eqn (9), as k becomes very large, .the validity of the composite
approaches 1.0. The form of this function for various values of individual~
measure validity, pxiy; is shown in Figure 1.

As expected, the validity of the composite increasés as k increases. How-
ever, the rate at which this improvement occurs falls quickly as k increases,

particularly when the individual measures are themselves reasonably valid. For

example, if the individual measures have validities over about .70, little is

gained by aggregating more than half a-dozen of them. For less valid individual

measures, composites of larger numbers may be justified by the improvement of

‘composite validity.

Ghiselli (1964) provides an alte;naéive formulation for the validity of

equally~weighted composites. Using individual measures that have been expressed

~in 'standardized' form (i.e. transformed to zero mean and unit variance), Ghiselli

shows that:’

=t -1/2- - by 1/2 )
_ . pﬁ l\ py}{/[l‘*‘(k l) pxx] eos s e vesecssaveeee (10)
173 .
where:
p. = = correlation of compesite with y, i.e. the validity of
yy the composite; ‘
k = number of measurés included in the conposite;
;yx = mean validity of the k measures included;
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FIGURE 1: Composite Validity as a Function of k (Number of Measures Included)
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and

’

Py & = mean intercorrelation of the k measures.
i]

For k equally;valid measures, Eqn (10) produces curves identical with those
generated from Eqn (9).
Ghiselli's formulation needs to be treated with some caution. From Eqn

(10), it can be readily shown that, as k becomes large:

lim _ 1/2

koo Pyy = pyx/(pxix.)

B ¢ y
J .

That is, the upper limit on the validity of the composite is the mean validity
of the k measures divided by the square root of the mean intercorrelation.
Given a choice of several indicators or measures, then, we should choose those

that are (a) highly valid in themselves; and (b) minimally correlated with one
'Jf R .

another. However, a puzzling implication Eqn (11) is that a pair of orthogonal

»

measures (i.e. measures that show zero intercorrelatiom) produces a composite

of infinite validity if either one of them has positive validity. Given an

explicit measurement model, such as that considered here, no such violation

.

can arise. By Eqn (8), the correlation between any two measures generated by
this measurement model is equal to the square of the validity of each, so that
the upper limit expressed by Equn (11) on validity of a composite is, as it must

be, équal to 1.0. .

Summary ,

For this simplest multi-measure case, in which each measure is of equal
validity and contains only 'true score' and 'random error' components, an
optimally-valid composite is formed by any equal-weighting scheme. The

validity of the composite measure thus formed is a positive fumction of k,

. ' .
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the number of measures included, and is upper-—bounded at 1.0. The rate at
which this upper bound is approached as k increases is a function of the

validity of the individual measures.

b. Equally-Valid Measures, Shared Method Variance

We noted earlier that, in practical measurement situations, there will
often be variance shared between measures over and above their common 'true
score' component. We labellea this additional sﬁared variance as due to
"shared methoa', though it can, éf coﬁrse, arisé from other causes. In gen-
eral, the effects of this additional shared Qariance will be to raise the
interéorrelatipn between measures, while depressing the validity both.of the
individual measures, and of their composites.

. For example, consider the measurement model that results if we set all

[y

, 2
a. and all c, equal to unity and all error terms ey of equal variance Oge
i i

L1
)
Then, from Eqn (2):

g
p = y sesssesoesssecssvdoen (12)
x.y
i 2 2 2
¢/ oy + L + 9

Validity of mexzsure i,

From Eqn (4), the intercorrelation between two measures of this form is

2
2 2 g
' 2 m
= + eeseso st 00 <13>
- Px %, = Y m pxiy
i 02 2, 2
o +og +o .

y m e

02 + 02 + 02
y m e

Forming a composite by setting b, = 1/k yields, by Eqn (5):

g .
" Yy ‘
Validity of composite, p__ = P ¢ XD

W /2, 2, 2
J/ cf,y + O + ce/k

Comparison of Eqn (12) with Eqn (7) shows that the validity of each measure is

oy g+

reduced; of (13) with (8) that intercorrelation between measures is increased;

and of (14) with (9) that composite validity is reduced. Importantly, the

" upper limit on composite validity, which was 1.0 for the 'random errors'

model, is reduced to o /(oi + c:'l)l/2 for the 'shared method variance' model.

For example, if 'shared method variance' is equal to ;true score' variance
in each measure, the upper limit on validity for a composite of infinite numbefv
of such measures is 1/¥ 2 or .707, rather tham unity, the upper limit ﬁith no
shared method term. As k, the number.of measures in the composite, increases,’
this limit is approached by a family of curves sim}lar to those shown in
Figure 1.

Shared method (or other irrelévant) variance between measures presents
a trap for the unwary empiricist. .Suppbse, for example, a particular
study includes two measures intended to tap a single underlying variable or
construct. “The data analysis shows the two measures to be correlated .707.
Clearly, such a result is copsistent with a measurement model of the followiné
form: |

where 02 = z = 414 o§

. —’/’;,;7 x1 1° 9%
Y

That {is, if the inve;tigator is prepared to assume a 'true score plus inde-
pendeét random error' model, the observed intercorrelation is consistent with
two measures, each valid .841; an'equally—weighCed composite of the two is
valid .908 —— a highly satisfactory measure. However, tﬁe observed inter-

correlation is equally consistent with an alternative model including shared

method variance:
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foi which a range of parameter values might gemerate the observed value of
p . In the worst possible case, pneither measure need be at all valid
*1%2

=p
(pxly 2,7

zZero validity.A That is, merely observing positive intercorrelation between

= 0.0), in which case any composite of the two will also have

measures is not sufficient to establish the validity of either, or of any
composite of them. As the example'suggests, a modestly-high correlation

between a pair of measures can imply anything from excellent to impossible
composite méasures. The critical difference between the two situation is not

in the value of the intercorrelation found between the measures, but in the

structure and parameters of the relevant measurement model.

Summary’

Foé a given measurement model, the introduction of shared method variance
will increase the intércorrelation between measurés, whilg depressing the
validity both of individual measures and of composites formed from the?. These
effects constitute'a potential trap for empirical studies, in that high inter-
correlation between measures can ﬂe mistakenly treated as evidence for high
validity of individual measures, .and thus for supposing composites of the
measures to be highly valid. In fact, as.we have shown here, high correlation.

between obtained measures is equally consistent with measures of zero validity,

composites of which will have zero validity alsp.

£ i R T
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c. Mean Squared Error Considerations

For k measures of equal validity and equal. variance, composites formed by

- any set of equal positive weights will be of equal validity. However, the

actual values of the weights used have an important effect on the MSE of the

resulting composites. In this section, we shall consider the MSE of composites

formed by two common 'equal-weighting' schemes~-Average Raw Scores (ARS) and

Average Standardized Scores (ASS)——and compare them to the MSE of optimal (Opt)

composites. (While we agree with Dawes (1979: 576, footnote 5) that ARS com-

posites will, in many cases, be 'nomsensical,' such composites are included in
the assessments of Schmidt, 1971, and Wesman and Bennett, 1959, where they are

shown to be reasonably robust. ARS composites can certainly be found without

difficulty in recent published studies. Though the use of such composites

appears, in most cases, to be the'fesult of methodological carelessness, it is
possible to%ipecify situations in which ARS composites outperform ASS composites.
An admittedly degenerate example is given later in the paper.)

The simplest form of the general measurement model generating equally-
valid measures and including shared method variance is achieved by settiné all

c s equal, all a,s equal, and all error terms ci equal. For such a model, the

procedure outlined in Appendix 1 (see Eqn A:11l) . shows that the composite mini-

mizing MSE (i.e. the optimal composite) is achieved, for a composite of k mea-

sures, by weighting each measure equally with weight

ag

’ i=l’ll'k‘

o
u
NN

L I B B2 K I I I (15)
22 2 2
k(qroy +e%o ) + o

’

In contrast, averaging the standardized measures amounts to assigning each a

welght
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interested in their MSE. In the present section, we provide a general formu-— ; ; III. COMPOSITES OF UNEQUALLY-VALID'MEASURES
. . ;é ; ’
lation for weights which minimize MSE for simple,. equally-valid measures, : P In the previous sections, we have considered composites of several
i 1,
either with or without .shared method variance. These optimal weights are f ; . .eqﬁally—valid individual measures, with and without 'shared method' variance
. 3 i
compared with simple averaging of measures, both standardized and unstandardized. : ! components. We now turn to the more general case in which the individual mea-
In an example, the MSE of such an optimal composite was seen to be somewhat . y ; _sures are not equally valid. TFor such measures, optimal composites will
lower than the standardized—and-averaged composite, and markedly loyer than ! | require differential weighting, with measures of higher validity’weighted -

that of the simple average-raw-score composite. more heavily than those of lower validity. Our general concern here is with

the derivation of these optimal weights, and with the assessment of the extent

to which the effort of doing so might be justified by improvement in the

N
]

S e e

resulting measures, in comparison to measures with simpler weighting strategles.'

5
4

I

i 3
| T As before, we shall consider first coumposites of measures that do not
i :

!

I

share method variance, before moving to the case in which such variance is

involved.

" a. Unequally-Valid Measures, Zero Metheod Variance

e

The simplest case in this category is. that in which each measure con-

tains an equal component of 'true score' variance, but unequal 'random error'’

T e Np—

components. That is, in terms of the general model, all a; = 1.0, all
cy = 0,0, and o # GJ For such measures, we have shown elsewhere (Conunolly,

: 1977) using the procedure of Appendix 1 that the MSE of the composite is min-

imized by assigning each measure a weight of

’

b ﬁ_—:'-_—. S ss s s ncsanessssssessnnssasase (17).

22, 2 _
; - where Cl cyol/(c?.+ Ul) | (for k = 1)
} . 2239, 2.2
[ Cy = 0joy0 /(c 9,91 + o%o ) (for k = 2)
g . - 2222 22 2. 2.2 2 2-2 2 222 -
§ C3 °y°1°2°3/(°1°2°3 + oy0102 + °y°2°3 + °y°l°3) (for k = 3)
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. . 2
and so on. In each case, the numerator in Ck is the product of oy and each
L]
error variance term, while the denominator is the sum of the products of these

(k+l) terms taken k at a time. It should be noted that, once a measuremeant

=

*
model of k measures has been specified, C, is fixed. Optimal weights bi are

k

then computed by merely dividing Ck by the error variance term in each measure.

Where validity rather than MSE of the composite is of interest, C,_ need not be

k

computed. Merely assigning weights in inverse proportion to theberror term
in each measure will yield an optimally valid composite.

When the measures differ in validity, the validity of a composite formed
from them depends on the weighting scheme used (Appendix II). 1In Figure 3 we
show the validity of two~measure composites formed by the three alternative
methods: Average Raw Scores (ARS), Average Standardized Scbres (ASS) and
Optimally Weighted (Opt). 1In Figpfe 3(a), the first measure is valid .707,
while in Figure 3(b) its validity is .302. Validity of the three composites
is shéwn‘as a function of the validity of the second measure. Figure 4 shows
parallel results for the validity of three-measure composites as a function of
the validity of one measure, holding the validity of the other two.at .70% or
.302.

As these éxamples suggest, the use of non—~optimal weighting schemes may
result in significant degradations in the validity of composités. In each
diagram there is a point at which all indijidual.measures are equally valid,

and thus at which any of the three weighting schemes produces an optimally-

wvalid composite. On either side of this point the curves diverge, with opti-

——————

mal weighting producing the most valid composite, and Average Raw Score (ARS)
weighting che 'least valid. The differences are not trivial. For example, in
Figure 3(a) the optimal composite of two measures, one valid .707, the other

.30, has validity about .72, a marginal gain over Measure 1 used alone.

bt
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In contrast, the ASS composite of these two measures is valid only about .65--—
worse than the best measure used alone -—while the ARS composite is valid only
about .51.

The composite mean squared error (MSE) curves corresponding to these

. . . 2 .
.examples are shown in Figures 5 and 6. (True score variance, G, is set at

~

1.0 in these examples.) As before, oétimal weighting produces smallest com-
posite MSE, ARS weighting the largest~-so large, in fact, that the MSE for
such composites cannot be plotted within the scale in Figures 5(b) and 6(b).
Again, the‘degradation resulting from using ASS rather than optimal weighting
is not too serious when the individual measures are of clo;e to equal validity,

but becomes very substantial as one moves away from this region.

Summary

When individual measures are of unequal validity, the use of non-optimal

- weightings &Eérades both validity and MSE of composites formed ffom them. On

both criteria, ARS weights are least satisfactory. ASS composites are reason-
ably close to optimal when individual measures are of close to equal validity,

but are increasingly suboptimal as one‘'moves away from this region.

b. TUnequally-Valid Measures, Shared Method Variance

As noted earlier, the algebra for the general case with significant shared
methed. variance between unequally-valid measures is ungainly (though not at all
difficult). In this Section, we shall therefqré confine attention to com-

posites of two measures of this type, proceeding as before by way of simple

—

examples.
We noted earlier (Section II: b) the possibility of shared method variance
accounting for observed intercorrelation between measures. As shown then, an

observed correlation of .707 between .two measures thought to bg tapping the

n' :

L
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t

same underlying variable is consistent with two very different measurement

models. In the most favorable case, each measure contains only true score

- and random error terms, and each correlates .841 with the underlying variable.

An optimal (i.e. equally-weighted) composite of the two correlates .908 with
the underlying variable. In the least favorable case;‘each measure correlates

0.0 with the underlying variable, .841 with some irrelevant variable (which

we have generally been treating as m, the shared method term). No composite

of these measures correlates better than 0.0 with the underlying variable of

interest.

A third, '‘and most interesting, possibility exists if the requirement of

equal validity is relaxed. For example, consider the two measures

— ) + t—4 -— 2 =3 ‘\
X1 =Y+ m (i.e. a, = 1, c; = 1, oy = 0.0)
= (i =0 = 1 z_ 0.0)
B XZ = m ne. a?. hant E) Cz "' ’ 02 - ...
.and 02 =’&2
Yy m

That is, true score and method variances are equal. The first measure has

equal cdomponenis of each, the.second measure contains only method variance.

' Neither measure contains any random error variance. Substitution in Eqn (4)

shows these meaéures éorrelate with one another :707, as in the earlier
example. Xidis valid .707, XZ is valid 0.0. It is cléar that merely sub-
tracting the second measure from the first will yield a perfectly valid com~
posite. That is,'an'optimal compssite of the two measures is formed by

assigning bl = .o, b2 = =1,0 (ses. Eqn A:10) and (by Eqn A:12) this composite

is valid 1.0. 1In contrast, an ARS composite (bl/b° = 1.0) is valid only’.Ahjy

while an ASS composite (blfsz = .707) is valid only .383!
' It. may be worth clarifying our intuition on this somewhat odd result.

The optimal use of these two measures 1s clear: the second is,a perfectly-

v
¢

SR

e By

G T,

valid measure of the 'method!' term; subtracting it from the first measure

leaves a perfectly-valid measure of the true score term, Y. (Alternatively
Hd

the second measure can be seen asg a 'suppressor variable' in the multiple

regression sense.) Weighting the raw scores equally amounts to adding a

further irrelevant source of variance to Measure 1, forming a coumposite which

now contains only one third true-score variance, two-thirds irrelevant variance.
Finally, weighting each measure in inverse proportion to its standard deviation
assigns a relatively smaller weight to Measure 1 (and thus~to the only true

score term in thg composite) than to Measure 2 (which contains only irfelevant

variance), reducing the validity of the composite still further. ASS compos—

dtes are not always superior to ARS composites.

As a fina; example, let us examine the behavior of the three alternative

.welghtlng schemes for a slightly less extreme case of the general model. Con-

sider the two measures:
LCXY

?1 =Y +m+ e _ .

-

Xﬁ'= i + c,m + e, .

with 2_ 2 2
. . oy Um=0' =g =1-0

That is, we set all varilance terms equal, and all coefficients equal to 1.0
with the exception of Cys the coefficient for method term in the second measure.

The behavior of the model as c2 is varied is shown in Figure 7.

Figure 7(a) shows the validity of each measure, and the correlation between

th :
em, as czvincreases from zero.—The validity of the first measure, p_

9 X1y
remains constant,(aq'.577), while that of the second measure declines. Their -
intercorr : i |

elation_at fi;st rises, reaches a maximum of .707 at ¢,y = 2.0, and

then slowly declines.

Fi : :
gure 7(b) shows the raFio of bl/b2 for three alternative weighting

* )
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schemes for increasing values of Cye” Using ARS weights, the ratio remains

constant at 1.0. For ASS weighting, the ratio slowly increases with cz

since the variance of the second measure is increasing, so b2 declines. Under

optimal weighting, however, the behavior of the ratio b1/b2 as <, increases

shows a sharp discontinuity. As <, increases from zero, the ratio at first

rises (reflecting the optimal weight of aésigning b2 smaller and smaller values).

At c, = 2.0, the optimal weight fof the second measure is zero, so the ratio
bl/b2 becomes unﬁefiued. As ¢, increases beyond this point, negative weights
for X2 become optimal, so the ratio b1/b2 takes on negative values. That is,
for c, values-less than 2.0, the second measure is best used as a positive
component‘of the composite. For <, values above 2.0, Xé is best used as a

'suppressor variable,' since its values are increasingly dominated by its

method variance component, and it enters the optimal composite with a negative

'coefficientid

LTS

Figure 7 (¢) shows the validity, pyg, of the three alternative composites.
using these weights. All three schemes yield composites of roughly equal

validity for ¢, values less than 1.0, though optimal composites are slighﬁly

2
more ;;}id than are_ASS.with ARS élightly the poorest. At e, = 1.0, the two
measures are equally.valid, and ail three schemes yield equal composite vali-
dities. As <, incyeases further, the three schemes diverge more and more.

The optimal scheme reaches a minimum at*c2 = 2.0 (with b2 = 0,0, and gomposite

validity equal to-pxly, .577), with composite validity increasing thereafter.

Both ARS and ASS weighting schemes yield composites whose validities continue

—

to decline with increasing Cye
As with the earlier examples, care should be exercised in drawing over-
strong inferences from the results shown here. However, the same general

pattern can be 1dentifiled: for equally~-valid measures, each of the three

.

weighting schemes produces equally valid composites. For small divergences

from equal validity for the measures, optimal composites are only marginally

+ superior to the alternatives. For measures of rather different validity, how-

ever, the differences in validity between optimal, ASS, and ARS-weighted com~

+ posites become more marked, and can be very large. Finally, ASS weights gen~-

erally, though not always, yield composites supérior to those formed by ARS

»

weighting.

-
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ConcYusions

The primary purpose of this paper has been to propose a simple linear
measurement model for settings in which several indicators or measures are
assoclated with a single uuderlylng variable of interest; and to examine the

adequacy of three strategies for forming composite measures of the underlylng

variable. The composite measures have been assessed in terms of (a) thelr )
validity and (b) thElI MSE. A general algebraic treatment has been illustrated
by means of a number of specific examples randlng from the simplest case
(equally valid measures with no shared method variance) to the most complex
(unequally valid measures with shared method variance).

Substantively, the examples have been chosen to show both the general .
robustness, and the possible weaknesses, of some familiar rules of thumb and
For example:

standard practices in developing composite measures.

a.. Aggregates of more measures are better than aggrecates of fewer measures.

Exceptions:

-1. For meas ures that are ind1v1dually reasonably valid, the

- - assymptote of-composite valldlty is approached with small

numbers of measures (see Figure 1). Adding more measures may
produce negligible improvements.w

2. “If non-optimal weights are used (e.g. averaging of‘either stan-

dardized or raw scores), a composite of ome highly—valia measure

with several low~validity seasures saf-produce a composite less

valid than the single best measure ﬁaken alone.

—

b. Measures that differ in method are preferable to measures using the

same method.

Exceptdions: .

1. It may be possible to identify a measutre that reflects mezthod
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variance alone, or is dominated by such a& component. In such

circumstances, the measure can be used in an optimal composite
as a 'suppressor’' on the method component of other measures
sharing the same method, to produce a composite of potentially
high validity.

c. Averages of standardized measures are preferable to averages of raw scores.

Exception: (as b:l, above).

" d. Composites formed by standardizing and averaging are generally good

approximations of optimal composites.

Exceptions:

1. Depending on the interpretation of 'a good approximation,’
nearly all of the examples show regions in which this rule is
violated. In generzl, the greater the difference between the
Valldltles and structures of the individual measures, the
larger is the departure of.the ASS cemposite from optimal-
ity. This departure is; in many cases, very far from

negligible...

2.. Even when averages of standardized measures are of close-to-
optimal vali@ity, they may still be very far from optimality
in the MSE sense. Such departure may be important in many

practicel cases.

QOur central purpose, howevera is sot to endorse one familier practice
rather than another. It is to argue that the use of any standard practice
without examination of the impliéiz:measurement model is a dangerous pro-
cedure. Practices such as.edding more measures to a composite; or routinely

standardizing measures before averaging, are perfectly reasonable in certain

circumstances,

but exceptions, and sometimes important exceptions, .can be
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found. Merely following some standard practice in aggregating measures, with-

optimality. Without a measurement model, the quality of one's measures is a

out specifying the implicit measurement model, amounts to leaving the quality matter of chance. With such a model, the qdality of one's measures i
» S is a

" of one's measures up to chance: they may be optimal, near-optimal, or com~

pletely misleading; but, without an explicit measurement model, one has no
way to assess which. .

The central thrust of this paper, then, is that any procedure for
aggregaéing several measures into a composite measure implies a set of assump-—
tions about the process that is generating the measures. Making these assump-
tions explicit by specifying a measurement model —— that is, specifying the
sources pf variance in each measure, and their relative magnitudes -- allows
the investigator, at minimum, te consider whether or not a given procedure
(such as standardize-and-average) ‘is likely to lead to grossly misleading
measures, given a particular measurement situation. To the extent that the
magnitudes of the variances can be reliably egtimated, the algebra presented
here allows the investigator to develop procedures that odt—pérform standard *

rules of thumb.

We have not been concerned here with methods by which such estimation
could be attempted, ~ and it is clear that it could be a difficult and
costly effort. The logic of the present paper does, however, provide some

guldance as to when the effort might be justified. Evén when such a full-

scale effort is not undertaken, however, it does seem desirable to consider

at least the structure of measurement model one is assuhing, and perthaps to

consider what orders of magnitude uight be assumed for the terms involved.

O —

At minimum, ome can then assess what risks one is taking in using one of the

standard rules of thumb in constructing a composite measure. At maximum, a

full-scale development of a measurement model allows confidence in the measures

one uses, and opens the possibility of refining them in the direction of

T L R ot

e

T
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; . - matter for computation—and, to the extent justified, for refinement.
|

I
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1) Validity of Xi_:_
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APPENDIX 1

80:

2) Intercorrelation of Xin_:_

) 2
Y"N(q,cy)\ -
m~N(0,02) § ALl
X, = a,Y + em+ ey m 1 independent
2
e, - N(O, cl)
292 22, 2 h
Var(Xi) = alcy + e o, + o ﬁ
|
'Cov (AB . !
By defn: p,; = ov(AB) . ........ ceenes Al |
\/ Var(4A) Var (B) ’
i
Cov(XiY) = E(XiY)
, = E[Y(aiY + c,m -* ei)]
= E[a,Y* + c,m¥ + Ye,]
i i 1
ay
2 ..
. a.o
p e = 1y eees A2
x4y 2 2 2 22, 2
1 22 22 2 +
/(ai°y+ci°m+ oi)(cxy) ai°y+cim oy
00v(xixj) = E(Xixj)

[

- : : Y +c,m+e.)]
) E[(aiY + cinf + ei) (a_] 3 i

2 2 (
o a:(.ajcy + Cicj?m !

RO o

T T R

C —r—————

S
*
“ [

2
a,a,g -+ c,c.o
1l 1 v t 1L 1 m

so: p =

X. X, ", w
175 V/“z 2 2 2 2
(aloy+clm+o‘)(a y+c:

(—'N
EN

3) Validity of' Composites:

TN
It
~
o
L

='bl(a1Y+cm+e)+b(aY+c

1 1 22, 2m+ez)+...

i

Y Z(biai) +m)(be,) + Z(biei)

Cov(YY) = o§ I(b,a,)

Var(¥) = E(¥%) = o [J(a;01° + [Z(b , )] + (6262
. 2 [2](b,a )12
o i AP 2. 2
v ax[oy[Z(aibl] + om[Z(biei)] + Z(b o} )]
. o] (Za b.) .
or: py§= y-1id . vevesscsesseses Ath
2 2 2 2 22
/uy():aibi) + °m(zbi‘.:i" + Xbici
4) Mean Squared Erro‘r», of Composites:
E[(¥-9)] = E[(v-Y]a b -n]b.c.~]b.e)"]
or: ' MSE;, L = oi(l;zaib‘i)z + oi(Zbici)z + E(bio?‘) ..... A:5

Pyl 2
.=o(labl) +G(bcl) +bl

For k=1, (A:5) becomes:

dL

ab.

) , 2
N l> + c120m(blcl) + 2b.g

a (- 81)20 (1- a; 1°1
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’ i ! In general, for k measures, partial differentiation w.r.t. bi‘iu Equation (A:5)
3 dL — . . § . : i .
i Setting Z-— = 0 and rearranging: , 4 i g yields k solutions of the form:
1 2 ; P e
* * ’ alay i 2 . .
. Optimal WEight, bl= . . Passeesrrve e A:7 ‘ l‘ b.R. =a.0 - zb.k'. i#j’ j =l’ 2,--.-k " PP P v oe A:n
\ . (02 + c202 + a20'2) L idi iy i ij .
1 1'm 1'y” !
| where: R, = ago2 + c%cz + ci = Var(X.)
=22 A:5 becomes: L= o (1 -a_b,~-a b ) + o (b + 2C ) +-b2 2 + bzcz ) ‘ * vy s *
For ked: A: : 1P173,0; 1% * 1°1 + P2% ‘ , )
N , , . kij = aiajoy + cicjcm = Cov(Xin)
EEI = 2a 0 (l -a;b,-ab,) + 2clo'm(blc1 +b,c,) + 2b a7 . y , .
- e . <. * *
} : Solving Equations (A:13) simultaneously yields optimal weights bl” bz, ...bk
Setting-%%— = 0 and rearranging: ;
1 . : g
. 2 !
. * i
b a, o (l -a, b ) bzclczc &
1 L
cgcz +-02 +~a202 /
im 1 17y J .
i APPENDIX IT
W , T
a 0, bn(al 2% + c1e,0 ) R : A Note on the Validity of Two-Measure Composites. '
ik . ' (01 + c10 ) + aza2 : ) : oy C . . . .
m 1y ' j From Eqn.(5), any two-measure composite with weights bl/b2 = r has validity
2 b*(a a, 02 + ec.c 02) . . o, (a, + a,x)
. 2 2 1 2™m 2 1
Smllarly: bé‘ = seo0esvaces e A:g: . p ~ = e A:lz
‘ 2 2 2 , | y”/ (a + 22 . 2
(o o, + c g ) + azoy | . _ | o (a, +a r) +-a (c2 + c r) + r oy o, |
E Equal weighting of raw scores amounts ﬁo setting r = 1 in (A:12). Equal
Solving A:8 and A:9 simultaneously: ' ' . )
: ) - : 3 weighting of 'standardized' scores amounts to setting the ratio r equal to:
b = ; b = * 50 8088 0e e A:lo 2 2 2 2 2
. 3 2 2 2 ; 3% * e gy
R"' R"' ) = - ‘ooo.n-o---on sr s e revsninna .
) Ry g *std 22+c22+02 : A:l3
. ‘? ; : NG TS T 9
a2,2 4 2.2 ' | ' :
where: . R, = + @ = Var(x i ‘ :
B B y cl? + 1 ar( 1) : while the use of optimal weights, from A:10, implies a ratio:
22,22, 2 _. .y , , : iy . z' ,
' R2 azcy + cy0 + o) Var(§2) s e T Ay + €,0 (al 2 a2°1) | .
v r = S Mmoo en L B AI14
| 0 : opt 0% + c.o (a c,)
g q . 2 2 % i ) 2% 1%01%2%17%1% i
an . ; = a,3,9, +ee,0 = Cov( 1~2) , ‘ '

e

These formulations simplify somewhat the two-measure examples discussed in the text.
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