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Interest in the construction of composite measures a~ises in the following 

familiar situation: The investigator is interested in some variable or con

struct that is ,not directly measurable without error: A numbel: of indicators 

or measures are available, each tapping the variable of interest in a somewhat 

imperfe7t way. The in'~estigator wishes to combine these several indicators 

into a single 'composite measure' that will reflect the underlying variable 

better than does anyone of the indicators taken alone. The paper considers 
. 

sever~ alternative approaches to the constrtlction of such composites, '2nd 

assesses the adequacy of th~ resulting measures. 

We shall not be concerned here' with approaches to the development of such 

~ltiple indicators. (A'ge~eral rationale, and many ingenious examples, of 

such de:ve1opm.ent ClJ;e given in Webb, Campbell, S.chwartz and Sechrest, 1966). 

'. 

Nor sball we consider the practical problems involve(l in samplitlg, estitlation:r . 
'. , 

and testing of particular models in particular measurement settings. Rather, 
. 

we shall assume complete knowledge of the relevant structure of a measurement 

,process~ and examine the performance of several alternative strategies of 

composite measure cons.truction as a functioIl of the parameters of this structure • , . 
The aim is to suggest the circumstances under which the effort 'involved in 

'devising'optimal composite measures, rather than using standard rules of thumb, 

might be justified by the resulting improvement in measurement quality. That 

is, the empbasis. of tfe paper is less on the practical steps involved in 
'1-. 

devising an optimal measurement procedur~ in any particular case t~an on the 
. 

conditions under 1Jhich such an ·effort might be justified. 
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• 
In the psychological literature, interest in the relative efficacy of 

alternative linear composites 'as either estimators or predictors has been 

recently revived by a paper by Uainer (1976). Wainer proposes an 'equal 

weights theorem' that se~s a surprisingly small up.per bound on 'the expected 

loss of exp~_ined variance when optimal weights are replaced by equal ~eights 

i~ linear prediction ~quations. Though the theorem has since been shown to 

underestimate the loss of explained variance by a ,factor of two (Laughlin, 

1978), and to be of considerably less generality than originally claimed 

(Pruzek and Frederick, 1978), Hainer (1978) remains essentially unmoved from 

his original contention that the coefficients in linear models generally 

"don't make' no nevermind, n and that, the simplest (1. e. equal) weights are 

almost always adequate. 

The debate has a lengthy history in both methodological and substantive 

literatures;.." Wilks (1933) showed that, for suff;f.cient1y large numbers of 

predictors, and under reasonab~y general conditions, predictions from a linear' 

composite are insensitive to c~nges in weighting schemes. Similar conclu

sions are reached'by Burt (1950) and GtuJiksen (1950), the latter suggesttOg 

,that differentj~l weighting schemes be considered only when the number of mea

sures to be combined ~s less than ten. Even when the number of measures or 

predictors available is small, equal weights may produce' composites as good as 

. or better than more complex approaches in a variety of practical situations 

(Wesman and Bennett, 1959; LaWshe ~nd Schucker, \959; Schmidt, 1'959; Da~ve~ 
and Corrigan, 1974). Given the simpl~city of 'unit weights', their indnpen

dence of data and estimation problems, and the apparent robustness of the 

resulting composites, their us~ across a wide range of decision making set

tings has been advocated (Einhorn and Hogarth, 19~5; Dawes, 1979). 

'Against this impres.sive body of data and most . i a:r;gument~, l.nvest gators 

'i 

,'i: ". 
I " 

, 

faced with a multiple-indicator problem will presumably fe~l justified.in 

simply adding together their several measures, perhaps after standardization, 

into a simple composite. As the present paper attempts to show, however, the 

procedure remains a hazardous one. The resulting composites may well be excel

lent measures of the variable of interest.. On the other hand, they may be com-' 
'r 

pletely misleading. Crucially, no evaluation of measure quality, and no pro- ~ 

cedure for refinement, is possible 1£ equal. weighting is routinely used. 

Both evaluation and refinement require the specification of an explicit 

. measurement model. As Blalock has ~rgued: " • imperfections in our mea-

suring instrum~ts and the necessl.'ty of l.'ndl.'rect measurement will require that 

rather complex auxiliary theorie~ be formulated so that we may pass back and 

forth between our conceptual variaBles and operational measures with mjnimal 

~onfusion" (Blalock, 1971~: 6). In the present case, the auxiliary theory is, 

fortunatelY." "not particularly complex. Nor is. any great mathematica.l sophis

tication required for its analysis, beyond simple algebra. The present paper 

proposes a simple model of a reasonably general multiple-indicator situation, 
. . 

and exp~ores the consequences of forming composites with different weight~g 

. schemes. A number of currently widespread practices and beliefs are examined, 

and some tentative generalizations offered. The ~ain hope, however, is that 

investigators will find the approach useful in specifying and'te~ting measure

ment models for particular measurement situations of substantive interest; and 

that the 'analytic approach deve10~ed here will be of value to them in assess

ing their present measures, and in developing better ones. 
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.1. A GENERAL HE .. ~·umlENT MODEL 

A measure or indicator is, in general, an accessible covariate of the 

variable of interest. Scores obtained on a particular I.Q. test are correla.ted: 
" . 

with the true intelligence of the individuals taking th.e test. Le:ngtb 1:leasure-'~ 

ments obtaine& from a given instrument are correlated with the actual length of~' 
't. 

the' objects they measure. Responses to a questionnaire assessing job satif- .. 

faction are correlated with the actual satisfaction of the workers surveyed. 

In general, then, measurements obtained from alternative measurement procedures 

will also be ~tercorrelated, since each taps, to some extent, the same under-

lying variable. (Such ~tercorrelation of measures is noted as necessary though 

not sufficient for 'convergent validity' of the measurement procedure: Campbell 

and Fiske, 19591. 

Covariation between measures is, however, not sufficient evidence to 

. ':':".~ establish whether, or to what extent, .the several meaSures are associated with 

the underlying variable of interest. Covaria~c.e with some other, irrelevant 

variable is clearly an alternative possibility. A particularly troublesome 

source of such ;~relevant covariation is what might be termed a 'method' vari-

able. ~or example, two different I.Q. tests might both involve "the reading 

of instructions; differences between subjects in reading skills \vould thus 

contribute to the covariation in obtained scores between the two tests, over 

and above that resulting from both tapping the underlying variable 'true intel-

ligence'. S~ilariy, different experts might agree for reasons unrelated to 

the extent to which each indepen~ently taps the underlying variable (s)he is 

asked to assess. 

In this paper, we shall consider the following simple linear measure-

ment model; 

.\ 

I 
! 

\ 
\ , 
; 

.: • \ I' , 

" ~ 5 

where: 

Y is' the und~rl~ng variable of interes t; 

m is a source of 'irrelevant shared variance' (e.g. due to shared method); 

Xi' •• 0 ~ are the multiple. measures or indi.catoT:s; 

e. , 
l. 

000 ~ are independent error terms as~ociated with 
each of the k indicators • 

,Each measur~.}i will be considered as comprising three components.: a 'true 

scot'e' component, a 'method' c.omponent, Cl.nd an 'independent error" comvonent: 

k •• (t •••••••• fi • • • • •• (1) , 

For convenience, we shall treat Y, m, and each ei as independent, normally 

distributed random variables with zero mean and variances a2
, 2 2 yam and a i respec-

tively. We shall define the VALIDITY of a measure as the correlation of the 

measure with the unde~lying variable of interest; and the ~~ SQUARED ERROR 

(V~E) of a measure,as the expected value of the squar.ed difference between 

'the value of a measure and the value of the unde~lying variable. In the above 

model: - . -. 
Validity of measure i, Px'y = 'Cov (Xi,Y) 

" .i 
(by clef In) a. 

j Var(Xi)Var(Y) 
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b. 

or: 
a,a 
~y 

p = -
xiy j 2 2 2 2' 2 

a,a + c,a + a, 
~ y ~ m ~ 

Mean squared error of measure i, MSEi = E(Y - Xi)2 

............. ' ..... . 

(by def'n) 

'2 2' 2'2 2 
MSE. = a. (I-a,) + a c, + C1'. . ......... . or: ~ 'y ~ m~ ~ 

c. Intercorrelation of measure i and measure j, 'P xixj 

Composite Measures 

o ••••••••••• 

A, 

We wish to examine the properties of simple linear composites, Y, as 

measures of Y. Such measures are formed by the summation of the measures, Xi' 

...... ; 
. each weighted'by some coefficie'nt b. : 

J. 

.... 
y ... 

k 
L biX:· 

i=l ~ 

:For composites of this form, it can be shown (Appendix 1) that: 

d. Validity of composite, PyY' is given by: 

..................... 

e. Hean, sguared error of cOtloosite, MSEy' is given by: 

2 L 22\ 2 \ 2 2 MSE" = a (1- a.b.)· + a (lob.c.) + lo(b.a.) y y ~ ~ m, ~ ~ ~ ~ 
.................... 

Thus, for a given measurement model, pquations (?) and (6) allow the validity 

. and mean squared err'or' of a composite to be expressed as an explicit function 

(2) 

(3) 

'. 

(5) 

(6) 

i 

i 
. 1.~1 ! 

, 
i 

·1 

I 
I 
! 

, . 
• I" 

, \ 

I, 

, 
of the weights, bi , associated with each measure, Xi' in. the composite. For 

eJ{3Jnple, -i-£ ,the compos-it.e ,is constr.ucted by merely averaging the raw' scores 

on each measure, this amounts to setting each b. = 11k for all k measures. 
~, 

Substitution in (5) and (.6) allows direct calculation of the validity and MSE 

of a measure so constructed. 

Equations (5) and (6) also open the possibility of deriving optimal 

weig~tings for a given measurement set,ting. For example, setting the partial 

derivatives of (6) with respect to each b. equal to zero yields a set of k 
~ 

equations which" 'tmen solved simultaneously, give values for b
i 

that minimize 

}ffiEy. (The general procedure is sho~ in Appendix 1. It should be ~oted that 

the algebra involved is tedious for. the general case for values of k greater 

than 2. In the examples that follow, we shall generally simplify the model to 

specific cases of interest.) 

Equations (2) through (6) express the key properties of individual measures 
I'" 

(validity and mean squared error), the intercorrelation beaveen pairs of mea

sures, and the properties of 'simple linear composites of several.~easures 

(validity and mean squared error) as explicit functions of the structure and 

paramet~rs of the measurement model plus, for the composites, the weighting 

scheme chosen. The implications of these equations for several familiar mea-

surement situations will be explored in the remainder of this paper. 

In the following Section, we shall examine the behavior of composite mea-
'. 

sures formed from ~everal equally-valid measures, both for the case in which 

the measures share no method variance, and for the case in ~vhich this shared 

variance is significant. In therthird .Section of the paper, we shall explore 

the con~equences of rel~~ing t~is assumption of equal validi~y. 
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II. COHPOSITES OF EQUALLY-VALID }fE.ASURES 

a. Equally-Valid Heasures, Zero Netho~ Variance 

The simplest special case of the genera~ mode~ presented ea~lier is 

that in which each measnre comprises only 'true score' and 'random error' terms, 

with no 'shared method' variance; and in which a~ measures are of equal variance, . 

and equally valid. This simplification of the general model amounts to setting 

0; = 0 (or, equivalently, c
i 

= 0); setting ai'~ 1, i=l, ••• k; and setting a~ 

07 equal. That is: 
1. . 

Xi = Y + e
i

, i=l, ••• k, 

y 
222 o· = o. = a for all i, j. 
i J e 

From Eqn (2): 
0y 

Validity of each measure, px.y = ~==~====~ 
1. j O~ + 0; 

............ II •••• II ......... . 

:. 

From Eqn (4): 

Intercorrelation between any pair of measures, 

2 
0 

p = y 
x.x. 2 2 1. J 

0 + 0 

••••••••• ' II ............. . 

y e 

(7) 

(8) 

• 

From Eqn (5): 

Validity of composite formed by b. = 11k, 
1. 

C1 
P .. = y 
yy / 2 2 

C1 + 0 /k 
y e 

..•.....•...•..••.•.•....•• 

Note that, by Eqn (9), as k becomes very large, .the validity of the composite 

approaches 1.0. The form of this function for various values of individual-

measure validity, p , is shown in Figure 1. 
xiY 

9 

(9) 

As expected, the validity of the composite increases as k increases. How-

ever, the rate at which this improvement occurs fa~s quickly as k increases, 

particularly when the individual measures are themselves reasonably valid. For 

example, if the individual measures have validities over about .70, little is 

gained by aggregating more than half a'dozen of them. For less valid individual 

measures, co~posites of larger numbers may be.justified by the improvement of 

'composite validity. 

Ghiselli (1964) provides an alternative formulation for the validity of . 
equally-weighted composites. Using j.ndividual measures that have been e.."'q>ressed 

in 'standardize.d' form (1. e. transformed to zero mean and unit variance), Ghiselli 

shows that:' 

.. 
where: 

.......................... 

= correlation of com~osite with y, i.e. the validity of 
the composite; 

k = number of measures included in t~e cooposite; 

Pyx = mean validity of the k measures included; 

(10) 
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FIGUP..E '1: Composite Validity as a Function of k (Number of Heasures Included) 

and Validity of Individual Heasures', p, • 
, xiY' 
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and 

p = mean intercorrelation of the k measures. 
X,X. 

l. J 

Eor k equally-valid measures, Eqn (10) produces curves identical 1vith those 

generated from Eqn (9). 

Ghiselli's formulation needs to be treated \Vith some caution. From Equ 

(10), it can be readily ShOT~ that, as k becomes large; 

lim 
, 'P'" 1&=0 yy 

= P /(p )1/2 
yx X.X. 

l. J 
(11) 

That is, the upper limit on the val.idity of the composite is the mean validity 

of the k measures divided by the square root of the mean intercorrelation. 

Given a choice of several indicators or measures, then, we should choo~e those 

that are (a) highly valid in themselves; and (b) minimally correlated with one 

another. Hmvever, a. puzzling implication Eqn (11) is that a pair of orthogonal 

measures (i.e. measures th~t sho.v zero intercorrelation) produces a composite 

of infinite validity if either one of t.hem has positive validity. Given an 

e}..-plicit measurement model, such as that considered here, no such violation 

can arise. By Eqn (8), the correlation between any two measures generated by 

this measurement model is equal to the square of the validity of each, so that 

the upper limit expressed by Eqn (11) on validity of a composite is, as it must 

be, equal to 1.0. '. 

Summary .--
For this simplest multi-measure case, in ~/hich eacb measure is of equal 

validity and contains only 'true score' ,and 'r,andom error I components, an 

optimally-valid composite is formed by any equal-weighting scheme. The 

validity of the composite measure th~s formed is a positive function of k, 



.. .. 

the number of measures included, and is upper-bounded at 1.0. The rate at 

which this upper bound is approached as k increases is a function of the 

validity of the individual measures. 

b. Equally-Valid ~reasures, Shared Method Variance 

We noted earlier that, in practical measurement situations, there will 

often be variance shared becween measures over and above their common 'true 

score' component. We labelled this additional shared variance as due to 

'shared method', though it can~ of course, arise from other causes. In gen

eral, the effects of this additional shared ~ariance will be to raise the 

intercorrelati~n between measures, while depressing the validity both of the 

individual measures, and of their composites. 

d · h t model that results if 't"e set all . For example, consi er t e measuremen 
2 

,a
i 

and all ~~ equal to unity and all error terms ei of equal variance 0e' 

I 

Then, ,from Eqn (2): 

Validity of me~sure i, .................. 'II •• 

From Eqn (4), the intercorrelation between two measures of this form is 

: 

2 o 
e 

= 

2 o 
m 

222 
0+0 +0 Y m e 

'Forming a composite by setting b
i 

= 11k yields, by Eqn (5): 

..................... 

12 

(12) 

(13) 

Validity of composite, ...... ' .................... . (14) 

() h h the validity of each measure is Comparison of Eqn (12) with Eqn 7 s 0\"'5 t at 

. . 

---~------ - .. ,~---.-.- . 

13 

reduced; of (13) with (8) that intercorrelation between measures is increased; 

and of (14) with (9) that composite validity is reduced. Importantly, the 

upper limit on composite validity, l"hich lvas 1. 0 for the 'raudom errors' 

model, is reduced to 0 /(02 + 02)1/2 for the 'shared method variance' model. 
y y m -

For example, if 'shared method variance' is equal to 'true score' variance 

in each measure, the upper limit on validity for a composite of infinite number 

ot such measures is 1/12 or .707, rather than unity, the upper limit with no 

shared method term. As k, the number of measures in the composite, increases; 

this limit j.s approached by a family of curves similar to those shmm in 

Figure 1. 

Shared method (or other irrelevant) variance be'tw,een measures presents 

a trap for the unwary empiricist. Supp'ose, for example, a particular 

study includes two measures intended to tap a single underlying variable or 

construct. '.-The data analysis shows the two measures to be correlated .707. 
. 

Clearly, such a result is consistent with a measurement model of the fallol"ing 

form: 

2 where 0 1 

That is, if the investigator is prepared to assume a 'true score plus inde-

pendent random error' model, the observed inter~orrelation is consistent with 

two measures, each' valid .841; an' equally-weighted composite of the t,"Q is 

valid.908 - a highly satisfac,to~ measure. However, the observed inter

correlation is equally consistent with an alternative model including shared 

method variance: 
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fot which a range of parameter values might generate the observed value of 

In the worst possible case, neither measure need be at all valid 

p = 0.0), in which case any composite of the two will also have 
X

2
y . 

zero validity. That is, merely observing positive intercorrelation between 

measures is not sufficient to establish the validity of either, or of any 

composite of them. As the example'suggests, a modestly-high correlation 

betHeen a pair of measures can imply anything from excellent to impossible 

14 

composite measures. The critical difference b~tween the two situation is not 

in the value of the intercorrelation found between the measures, but in the 

structure and'· parameters of the. relevant measurement model. 

Summary' 

For a given ~easurement model, the introduction of shared method variance 

r. 

will increase the intercorrelation between measures, wh~l~ depressing the 

validity both of individual measures and of composites formed from thE'.m. These 

effects constitute a potential trap for empiricnl studies, in that high inter-

correlation between measures can be mistakenly treated as evidence for high 

validity of individual measures"snd thus for supposing composites of the 

measures ~o be highly valid. In fact, as.we have. shown here, high correlation, 

between obtainec:i measures is equally consistent with measures of zero validity, 

composites of which will have zero validity also. 
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c. Mean Squared Error Considerations 

For kmeasures of equal validity and equal. variance, composites formed by 

any set of equal positive w'eights will be of equal validity. However, the 

actual values of the weights used have an important effect on the HSE of the 

resulting composites. In this section, ~..re shall consider the HSE of composites' 

formed by two common 'equal-~..reighting' scbemes:--Average RatV' Scores (ARS) and 

Average Standardized Scores (ASS)--and compare them to the MSE of optimal (Opt) 
, . 

composites. (lfJhile we agree with Dawes (1979: 576, footnote 5) that ARS com-

posites will, in many cases, be 'nonsensical,' such composites are included in 

the assessments of Schmidt, 1971, and Wesman and Bennett, 1959, where they are 

shown to be reasonably robust. ARS composites can certainly be found without 

difficulty in recent published studies. Though the use of such composites 

appears, in most cases, to be the, result of methodological carelessness, it is 

possible to',J,~pecify situations in which ARS composites outperform ASS composites. 

An admitte4ly degenerate example is given later ill the paper.) 

The simplest form of the general measurement model generating equally

valid measures and including shared method variance is achieved by setting all 

1 
. 2 

CiS equ~ , all ais equal~ and all error terms 0i equal. For such a model, the 

procedure outlined in Append!.."t 1 (see Eqn A: ll) , shqws that the composite mini

mizing MSE (i.e. the optimal composite) is achieved, for a composite of k mea

sures; by weighting each measure equally with weight 

2 
ao 

'. 

= -----------y~------- , 1=1, ••• k. . . . . . . . . . . . .. (15) 

In contrast, averaging the standardized measures amounts to assigning each a 

weight 



.. 
• 

, ... _-------

16. 

, i=l, ••• k: ............... (16) 

while, clearly, simple averaging assigns each measure a weight b. = 11k. 1. 

three weighting schemes on NSE of actual. 

c :: 1.0, 'and rl = rl = ; ~·1.0. That 
To illustrate the impact of these 

composites, consider the case when a = y m .e 

is, each measure consists of three compo'oents of equal variance: a true score 

term, a method term, and random error. By Eqn (2), each measure is valid .577; 

any .two measures intercorrelate .667 by Eqn (4); the HSE of each individual. 

measure is 2.0 by Eqn (3). 

For this example, the three weighting schemes are shown in Figure 2 as a 

function of k, the number of measures included in the composite. The upper 

half of Figure 2 shows the values of the weights, b. For all three schemes, 

b declines as a function of k. Simple averaging assigns larger weights at 
. ":(;:;.:. 

any given k value than does standardizing and averaging, while optimal weights 

are still smaller. The three curves tend to converge as k becomes large. 

The effects of these three weighting,schemes on the HSE of the cOl:tpoSite 

is shown in the lower half of Figure 2. In this example, simple averaging pro-

duces dramatically larger HSE than does either of the other two schemes. Stan-

dardizing and averaging~ though inferior to optimal weighting, is here quite 

close~to optimal, particularly for large values of k, and is.markedly superior 

to simple averaging. The example thus provi·des·.some support for the familiar 

practice of standardizing measures before averaging them. (As we will show 

later in the paper, however, the practice is not always advantageous.) 

Summary 
In addition to the validity of a cooposite, investigators \o1i1l often be 

• I 1/ 
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interested in their NSE. In the present section, tole provide a general forolU-

1ation for tveights ~.Jhich minimize lISE for simple" equally-valid measures, 

either with or without ,shared method variance. These optimal weights are 

compared tv-ith simple averaging of measures, both standardized and unstanclardized. 

In an example, the MSE of such an optimal composite to/as seen to be sometmat 

lower than the standardized-and-averaged composite, and markedly lower than 

that of the simple average-raw-score composite. 
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III. COHPOSITES OF UNEQUALLY-VALID HEASURES 

In the previous sections, we have considered composites of several 

,equally-valid individual measures, with and without 'shared method' variance 

components. We now turn to the more general case in which the individual mea-

.sures are not equally valid. For such measures, optimal composites will 

require differential weighting, tvith measures of 'higher va1idit~ weighted 

more heavily than those of lower validity. Our general concern here is with 

the derivation of these optimal weights, and with the assessment of the extent 

to which the effort of doing so might be justified by improvement in the 
, - , . , 

resulting measures, in comparison to measures with simpler weighting strategies. ' 
..... ,-

.. ' ... -, ... ~ . 
j. .' .. 

_ ... -. • As before, we shall consider first composites of measures that do not 

share method variance, before moving to the case in \o/hich such variance is 

involved. 

'a'. UnequallY~Valid 'He:asures, ,Zero Hethod Varia~ 

The simplest case in this category is, that in which each measure con-

tains an equal component of 'true score' variance, but unequal 'random err9r' 

components. That is, in terms of the general model, all a. = 1.0, all 
J. 

2 2 
c i .,. 0.0, and (11 i: OJ. For such measures, we have shown elsewhere (Connolly, 

1977) using the procedure of Appendix 1 that the ~mE of the composite is min-

imized by assigning each measure a weight of 

where 

, . . ' 

---

" 

............................ 

(for k = 1) 

(for k = 2) 

(17) , 

(fot' k ,= 3) 



t .. 

and so on. In each case, the numerator in ~ 
2 

is the product of a and ~ach 
y 

20 

error variance term, while the denominator is the sum of the products of these 

(k+l) terms taken k at a time. It should be noted that, once a measurement 

model of k measures has been specified, C
k 

is fixed. * Optimal weights b. are 
~ 

then computed by merely dividing ~ by the error variance term in each measure. 

Where validity rather than ~ffiE of the composite is of interest, C
k 

need not be 

computed. Merely assigning w~ights in inverse ~roportion t9 the error term 

in each measure will yield an optimally valid composite. 

vllien the measures differ in validity, the validity of a composite formed 

from them depends on the weighting scheme used (Appendix II). In Figure 3 we 

show the validity of two-measure composites formed by the three alternative 

methods: Average Raw Scores (ARS), Average Standardized Scores (ASS) and 

Optimally Weighted (Opt). In Fi&ure 3(a), the first measure is valid .707, 

while in Figure 3(b) its validity is .302. Validity of the three composites 
, '. 

is shown as a function of the validity of the second measur.e. Figure 4 shows 

parallel results for the validity of three-measure composites as a fL~tio~ of 

the validity of one measure, holding the validity of the other two at .707 or 

.302. 

As these examples suggest, the use of non-opt~al weighting schemes may 

result in significant degradations in the validity of composites. In each 

diagram there is a point at which all individual. measures are equally valid, 

and thus at which any of the three weighting schemes produces an optimally-

.valid composite. On either side of this point the curves diverge, with opti-
-. 

mal weighting producing the most valid composite, and Average Raw Score CARS) 

weighting ehe'least v'alid. The differences are not trivia1. For exa~ple, in 

Figure 3(a) the optimal composite of two measures, one valid ~707, the other 

.30, has validity about .72, a marginal gain over Measure 1 used alone. 

---~-~-

.. 
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.. L.L. 

In contrast, the ASS composite of these two measures is valid only about .65--

worse than the best measure used alone --while the ARS composite is valid only 

about .51. 

The composite mean squared error (loISE) curves corresponding to these 

. examples are shown in Figures 5 and 6. (T . 2 . rue score var~ance, cr' , loS set at 
y. 

1.0 in these examples.) As before, optimal weighting produces smallest com-

posite HSE, ARS y,'eighting the largest.-so large, in fact, that the HSE for 

such composites cannot be plotted within the scale in Figures 5(b) and 6(b). 

Again, the.~egradation resulting from using ASS rather than optimal weighting 

is not too serious when the individual measures are of close to equal validity, 

but becomes very substantial as one moves away from this region. 

Summary 

When individual measures are of unequal validity, the use of non-optimal 

weightings d'~grades both validity and HSE of composi'tes formed from them. On 

both criteria, ARB weights are least satisfactory. ASS composites are reason-

• 
ably close to optimal when individual measures are of close to equal valid~ty, 

but are increasingly suboptimal as one'moves away from this region. 

b. 'Unequally-:VB.:lid Heasures, Shared Method Variance 

As noted earlier, the algebra for the general case with significant shared 

method. variance between unequally-valid measures is ungainly ~though not at all 

difficult).' I~ this Section, we'shall therefore confiDe attention to com-

posites of two measures of this type, proceeding as before by way of simple 

examples. -. 
We noted earlie~ (Section II: b) the possibility of shared method variance 

'. 

accounting for observed intercorrelation between measures. As shown then, an 

observed corre.lation of .707 between.two measures thought to be tapping the . . . 
"'t ,0',1 

.': ; 
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same underlying variable is consistent with tl070 very different measurement 

models. In the most favorable case, each measure contains only true score 

and random error terms, and each correlates .841 '-lith the underlying variable. 

An optimal (i.e. equally-weighted) composite of the two correlates .908 with 
" 

the underlying variable. In the least favorable case; each measure c::orrelates 

0.0 with the underlying variable, .841 with some irrelevant variable (~hich 

we have generally been treating as m, the shared method term). No composite 

of these measures correlates batter than 0.0 with the underlying variable of 

interest. 

A third, 'and most interesting, ,possibility exists if the requirement of 

equal validity is relaxed. For example, consider the two measures 

JS..=Y+m (i.e. 1, 1, 2 0.0) a
l = c

l 
= °1 = 

~ (i.e. 0, 1, 2 0.0) =m a 2 = c
2 = °2 = 

It .. ~ •• ~ 

.and 2 " 2 
° = C1 
Y m 

That is, true score and method variances ar.e equal. The first measure has 

equal components of each, the.second measure contains only method variance. 

Neither' measure contains any random error variance. Substitution in Eqn (4) 

shows these measures ~orrelate with one another .707, a~ in the earlier 

example. ~" is yalid .707, X2 is valid 0.0. It is clear that merely sub

tracting ,the second measure from the first will yield aperfectiy valid com-

posite. TIlat is, an optimal composite of the two measures is formed by 

assigning b
l 

~ 1.0, b
2 

= -1.0 (sea~qn A:IO) and (by Eqn A:12) this composite 

:$.s valid 1.0. In contrast, an ARS compos.ite (bl /b2 = LO) is valid only .447" 
'. 

while a~ ASS comp,osite (b
1
ib2 :;; .707) is valid only .383! 

It may be worth clarifying our intuition on this somewhat odd result. 

The optimal use of these two measures is clear: tl1e second is. a perfectly-

~------ ---- ----~ 

• 1 

. , 
• t ••• . , 

valid measure of the 'method' term; subtrac.ting it from the first measure 

leaves a perfectly-valid measure of the true score term, Y. (Alternatively, 

the second measure can be seen as a 'suppressor variable' in the mUltiple 

regression sense.) Weighting the raw scores equally amounts dd to a ing a 

25 

'further irrelevant: source of variance to Heasure 
1, fo'rming a composite l~hich 

now contains only one third true-score variance, two-thirds irrelevant variance. 

Finally, weighting each measure in inverse proportion to its standard deviation 

assigns a relatively smaller weight to Heasure 1 (and thus to the only true 

score term in th~ composite) than to Heasure 2 (lvhich contains only irrelevant 

variance), reducing the validity of the composJ.·te t'll f 
5 ~ urther. ASS campos-. 

'ites are not always superior to ARS composites. 

As a final example, let us examine the behav~or f h h 
' • 0 t e tree alternative 

weighting schemes for a slightly less extreme case of the general model. Con-
sider the two measures: 

"" 't,," 
.' 

with 

. That is. we set all varial'1ce terms equal, and all coeff~cients equal to 1.0 

with the exception of c2, the coefficient for method term ~n the • secondllleasure. 
The behavior of the model as c2 is varied is shown in Figure 7. : . 

, Figure 7(a) ShO~o1S the validity of each measure, and the correlation between 

them, as c2. increases from zero.I-The validity of the first measure p 
, x y' 

remains constant (a~ .• 577), wh,ile that of· the second measure de~lines. 1 'J;'heir . 

intercorrelation at first i . h . r ses, reac es a maximum of .707 at c
2 

= 2.0, and 

the'a. slowly declines • 

Figure 7(b) shows the ratio of b
1

/b
2 

for three 1 ' a ternat~ve weighting .. 
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FIGURE 7: Characteristics of a 'l,i,vo-'Heasure Composite as a Function of 

Parameter c
2

• 

A: Validities al1d In tercorrelation of I·ieasures. 
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schemes for increasing values of cZ" Using ARS weights,.the ratio remains 

constant at 1.0. For ASS weighting, the ratio slowly increases with cz 
since the variance of the second measure is increasing, so bZ de~lines. Under 

optimal weighting, however, the behavior of the ratio bl/bZ as c
2 

increases 

shows a sharp discontinuity. As Cz increases from zero, the ratio at first 

rises (reflecting the optimal weight of assigning b
2 

smal.ler and smaller values). 

At cz = Z.O, the optimal weight for the second measure is zero, so the ratio 

bl/bZ becomes undefined. As Cz increases beyond this point, negative weights 

for Xz become optimal, so the ratio b
l
/b2 takes on negative values. That is, 

for Cz values-less than 2.0, the second measure is best used as a.positive 

component of the composite. For c
2 

values above 2.0, X
2 

is best used as a 

'suppressor variable,' since its values are increasingly dominated by its 

method variance component, and it enters the optimal composite with a negative 

coefficient •. 
~ .... ,~~ 

Figure 7 (c) shows the validity, p A, of the three alternative composites, 
yy 

using these weights. All three schemes yield composites ?f roughly equal 
. 

validity for c2 values less than 1.0, though optimal composites are slightly 

more valid than ar~ ASS with ARS slightly the poorest. At c2 = 1.0, the ~vo 

measures are equally valid, and all three schemes yield equal composite va~i-

dities. As c 2 inc~eases further, the three schemes diverge more and more. 

The optimal scheme reaches a minimum at c2 ,.. 2.0 (with b
2 

= 0.0,' and ~omposite 

validity equal to·p ,.577), with composite validity increasing thereafter. 
~y, . 

Both ARS and ASS weighting schemes yield composites whose validities continue 

, --
to decline with increasing c

Z
" 

As with the earlier ex~~les, care should be exercised in drawing over-
, 

strong inferences from the results shown he,re.. However, the same general 

pattern can be identified: for equally-valid rr:easures, each of the three 

" 

~ " 29 

~Jeigh~ing schemes produces equally valid composites. For small divergences 

from equal validity for the measures, optimal composites are only marginally 

superior t.o the alternatives. For measures of rather different validity, how

ever, the differences in validity bet'tJeen optimal, ASS, and ARS-weighted com

posites become more marked, and can be very large. Finally, ASS weights gen-

erally, though not always, yield composites superior to tho·se formed by ARS -: 

weighting. 

:1 

" 
" " 
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Concl:usions 

The primary purpose of this paper has been to propose a simple linear 

measurement model for settings in which several indicators or measures are 

associated with a single underlying.variable of interest; and to examine the 

adequacy of three strategies for forming composite measures of t~e underlying 
. ' 

variable. The composite measures have been assessed in terms of (a) their 

validity and (b) their loISE. A general algebraic treatment has been illustrated 

by means of a number of specific examples ranging from the simplest case 

(equally valid measures with no shared method variance) to the most complex 

(unequally valid measures with shared method variance). 

Substantively, the examples have been chosen to s~ow both the general 

robustness, and the possible weaknesses, of so~e familiar rules of thumb and 

standard practices in developing composite measures. For example: 

A t Of more measures are better than aggregates of fewer measure~. a.. ggrega.7.s -- -

Exceptions: 

•. 

-1. For measures that are individually reasonably. valid, the 
.. ' 

' .. 
assymptote of· composite validity' is approache~ with small 

numbers of measures (see Figure 1). Adding more measures may 

produce negligible improvements. 

2~ "If ~on-optimal weights are used (e.g. averaging of either stan

dardized or raw scores), a composite of one highly-valid measure 

with several low-validity measures may.p·roduce a composite less 

valid than the single best measure taken alone. 
-. 

b. Hea.sures that differ in method are preferable to measures using the 

same method. '. 

Exceptions: 

1. It fD!3.Y be possible to ident'ify a measure that reflects m,:!!thod 

." .. . " .. 

--~-- ~~---

" 

variance alone, or is dominated by such a component. In such 

circu~stances, the measure can be used in an optimal composite 

as a 'suppressor' on the ~ethod component of other measures 

sharing the same method, to produce a composite of potentially 

high validity • 

c. Averages of standardized measures are preferable to averages of raw scores. 

~ception: (as b:l, above). 

d. Composites formed by standardizing and averaging are generally good 

approximations of optimal composites. 

Exceptions: 

1. Depending on the interpret;ation of 'a good approximation,' 

nearly all of the examples show regions in which this rule is 

violated. In general, the greater the difference between the 

val~dities and structures of the individual measures, the 

larger is the departure of. the ASS composite from optimal-

ity. This departure is~ in many cases, very far from 

negligible., . 

2. Even when averages of standardized measures are of close-to-

optimal validity, they may still be very far from optimality 

in the MSE sense. Such departure may be important in many 

pract~cal casas. 

Our centr'a1 purpose, however" is not to er..dorse one familiar practice 

rather' than another. It is to argue that the use of ~ standard practice 

,:-=:: -
without examination of the implicit-measurement model is a dangerous pro-

cedure. Practices such as .~ddtng more measures to a composite, or routinely 

standardizing measures before averaging~ are perfectly reasonable in certain 

circumstances, but cxcept~ons, and sometimes important exceptions, ,can be 
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found. Herely follo\.;ing some standard practice in aggregating meas,ures, with-

out specifying the implicit measurement model, amounts' to leaving the quality 

of one's measures up to chance: they may be optimal, near-optimal, or com~ 

pletely mi~leading; but, without an explicit measurement model, one has no 

way to assess which. 

The central thrust of this paper, then, is that any procedure for 

aggregating several measures into a composite measure implies a set of assump-

tions about the process that is generating the measures. Haking these assump-

tions explicit by specifying a measurement model -- that is, specifying the 

sources of variance in each measure, and their relative magnitudes -- allows 

the investigator, at mini~um, to consider whether or not a given procedure 

(such as standardize-and-average) 'is likely to lead to grossly misleading 

measures, given a particular measurement situation. To the extent that the 

magnitudes pf the variances can be reliably e~timated, the algebra presented 

her.e allows the investigator to develop procedures that out-perform standard' 

rules of thumb. 

We have not been concerned here with methods by which such estimation 

could ~e attempted, -- and it is clear that it could be a difficult and 

costly effort. The logic of the present paper d?es, however, provide some 

guidart,ce as to Y,oIhen the effort might be justified. Even when such a full-

scale effort is not undertaken, however, it does seem desirable to consider 

at least the structure of measurement model one is assuming, and perha.ps to 

consider what orders of magnitude luight be assumed for the terms involved • 
. --

At minimum, one can then assess what risks one is taking in using one of the 

standard l"Ules of thumb in ,constructing a composite measu~e. At maximum, a 

full-sc~e development of a measurement model allows, confidence in the measures 

one uses, and opens the possibility of refining them in the direction of 

" . 

. ~ 
'I' ·t 

' . 

optimality. Without a measurement model, the quality of one's measures is a 

matter of chance. \ 

With such a model, the quality of one's measures is a 

matter for computation-and, to the extent justified, for refinement. 

" 

'. ',. 
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APPENDIX 1 

X. = a.Y + c.m + e k 1 J. 1 

2 2 222 
Var(X.) = ~a + c.a + a. 

1 J.y 1m J. 

2 
m - N(O,O' ) 

m 

2 
e. - N(O,a.) 

1 1 

olO 

All 
independent 

1) Validity of X.: By defn: p = ;:::=' C::o=v:::;(AB=)=== ............... '!II •• A: 1 
~ ______ ~ ____ 1-

AB '/Var(A) Var (B) 

2) 

so: 

. = E[Y(a.Y + C.m + e.)] 
11, 1 

2 
=- a a 1y 

2 a 0 
p = i Y 
xiY j 2 2 2 2 2 2 

(a.o + cia + o.)(Oy) 
1y m 1 

Intercorrelation of X.X.: l. J-
Cov(XiXj ) = E(XiXj ) ._-

" 

m E[CaiY + c.m + e.) (a.Y + c,m + e.)] 
1, l. J J J '. 

A:2 

• 

.~ . , 
<. 

so: p 
X.X. 

l. J 

2 2 a.a,a + c.c.a = l..]Y'l.]m 

[0
-, 
2 2 2 2 2 2 2" 2 2 2 

Ca
1
.ay + C.G + o.)(a,a + c,a + a.) 

,1m]. JY Jm .J 

•.•...... .. A:3 

3) Validity of'Composites: 

k 
Y= L b.X. 

i==l J. 1 

= Y L(bJ..al.') + mLCb.c.) + LCb.e.) 
, 11 J.J. 

so: , 2. p .... = 
"',I YY 
1 .. 

or: ••••••••••••••• A: 4 

4) Mean Squared Erro~ of Composites: .. 

or: MSEy' L == 0~(1~Laibi)2 + 0;<Lb i ci )2 ~L(b~O~) 

For k=l, (A:5)'becomes: 
" . 

1~.o 2 2 2 2 2 
L = 0y(l-albl ) + am(blcl ) + bla1 

" 

. , 

... •• A: 5 
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a 

Settin~ dL = 0 and rearran2ing: 
o db ~ 

1 

. Optimal Weight, 

For k=2: A:5 becomes: 

Se ' oL 0 d . tt~ng --- = an rearrang~g: 
obl ' 

" 

Similarly: 

b* = 
1 

Solving A:8 and A:9 si~ultaneously: 

where: 

and 

.............. A:7 ' 

.... " ...... . A:8 

............ A:9. 

* b ... 
2 • •.•.•.• •• A: 10 

39 
. . 

In general, for k measures, partial differentiation w.r.t. b
L 

in Equation (A:5) 

yields k solutions of the form: 

h.R. = a,a
2 

- Lb.k .. 
1. ~ ~ Y J ~J 

i':/:j,j=1,2, .• ·.k •••••••• A:l1 

where: 2 2 222 
R. = a.a + c.a + ai = Var(X.) 

l. 1y 1m 1 

2 2 () k~J' = a,a,a + c,c,a = Co~ X.X, 
.&. 1JY 1Jm 1J 

,., * * * Solving Equations (A:13) simu1t~eously yields optimal weights bl~ b
2

, ••• b
k 

APPENDIX II 

A Note on the Validity of ~~o-Measure Composites. 

,'.:;'~' 
From Eqn. (5)', any two-measure :coInposite with weights b

l
/b2 = r haS validity 

Equal weighting of raw scores ,amounts to setting r = 1 in (A:12). Equal 

weighting of 'standardized' scores amounts to setting the ratio r equal to: 

, , 
• e t " •••••••• 

, 
while the use of optimal weights,--D'9m A:IO, implies a x:atio: 

'. 

r = opt 

.. 

. ........... . 

............. 

A:12 

A:13 

A:14 

These formulations simplify some'tlhat t.'e two-measure examples discussed in the text. 
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