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Is Victimization Chronic? A Bayesian Analysis of Multinomial 
Missing Data. 

* by Joseph B. Kadane 

1. Introduction 

This paper analyses, using Bayesian methods, a simple data set concerning successive 

criminal victimization drawn from the National Crime Survey. As in many surveys, not all the 

intended interviews could be conducted. Unlike many analyses, however, this paper takes that 

missing data explicitly into account, to see what difference it makes to· the conclusions. This 

leads to very substantial (and apparently novel) computational difficulties. Hence this paper is 

partly addressed to victimization, and partly to statistical computation. However, the latter is 

addressed only to the extent necessary to support the former. Whether the computational methods 

used here are wise general str:ategies for such problems is left to further investigation. 

2. The Data and a Preliminary Analyses Ignoring the fact that some Data are Missing. 

The National Crime Survey is a national household longitudinal survey conducted by the 

Census Bureau. Households are revisited to see if they have been victims of crimes in the 

intervening six month period. The data used in this paper comes from interviews six months 

apart in a rotation design (see Griffin, 1983) and are as shown in Table 1. 

A first analysis of this data set is undertaken ignoring the non-response. Thus we consider 

a "reduced" data set consisting of the upper-left 2x2 subtable of Table 1. 

* Research supported in part by National Institutes of JlL,tice Grant 81-IJ-CX-{)087. I thank Lionel Galway and Diane Griffin for 

their help. 
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2nd visit 

Jg visit Crime free Victims N on-res12onse 

Crime free 392 55 33 

Victims 76 38 9 

N on-res12onse 31 7 115 

Table 2-1: Victimization results from the National Crime Survey. 

Now We suppose that the' data in these four cells are multinomially distributed. The 

probability is u
1 

that a household is crime-free in both periods, u
2 

that it is crime free in l!leriod 

1 and victimized in period 2, u
3 

that it is victimized in period 1 not crime-free in period 2, and 

u
4 

that it is victimized in both periods. Naturally We have 

4 

u = • Lu. = 
i= 1 I 

1 and u > 0 for 
i 

= 1, ... , 4 . 

The likelihood function for the data set treated this way is proportional to 

4-

where 

II n 
U.i 

i= 1 
I 

n = 392, n = 55, n = 76 and n 38. I 2 3 4 

The Dirichlet distribution with parameter vector Q = 

k 

f(g:Q) = B(Q)-Ill 

i=l 

b -I 
U.i 

I 

r· o 

(b
l
, .", b >' has density 

k 

(2.1) 

(2.2) 

where B(Q) = [7/'k
l
' ['(b

l
) ]/r(b.) over the Simplex S = {g > 0 I} S ha u

i 
• u. = . uppose gsa 

prior distribution that is Dirichlet with parameter Q (i.e., u "" V(Q», and suppose that the data 

counts !! are multinomial. Then the posterior distribution.!! I!! "" V(Q+g). (This is the property 
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2 

of being closed under sampling, for which see Raiffa and Schlaifer (1961). We write the 

k c 
general moment of u as 1T 1 Uji. Under the above assumptions, the general prior moment of !! is 

(2.3 ) 

DIfferent choices of the vector £ can give us the prior means, variances, covariances, etc. 

of the u's. Combining (2.3) and (2.2) can give similar facts about the posterior of g given g. 

There are various ways to measure association in a contingency table like ours. (See Bishop, 

Fienberg and Holland (197~), p.,. 13ff) for a discussion.) Our choice is 

UU 

rp = 1 4 
(2.4) 

called the odds ratio or cross-product ratio which gives how many times more likely it is a 

household will be victimized the second time if they were victimized the first time than if fr.~! f 

were not. Values of r; greater than 1.0 indicate that victimization is '~catching"; values less than 

one indicate that it is not. Hence we would like to know about r;, say its mean and variance, 

under various reasonable prior beliefs !! about g. 

Happily, the expectation of r; is in the form (2.3) where £ takes the special value c = (1, 
1 

-1, -1, 1). Furthermore, the second moment of r; is in the same form, where now £ takes the 

value c
2 

= (2, -2, -2, 2). Then we have 

g) = B(!! + c + g) /B(!! + g) 
-i 

i=1,2 (1) 

Qr 
~'" 

\ 
\ 

where bl = b + n. Notice that 

4 

(!!I + c) = 2: (bl + c) = - . 1 1 

1 

Then 

4 

E( r; i) IT { r<b'.+c) } = 1 1 

1 r<b
/.> 

1 

In particular, 

r<bl +1) r(bl +1) 
E(r;) = 1 4 

r<b/ ) r(b/ ) 
1 4 

b/bl 

= _-:----.;;.1_4---:-__ 

(b/-I) (b/ -l) 
2 3 

Similarly 

4 

2: 
1 

bl = b
l 

i • 

r(b/-l) 
2 

r(b/ ) 
2 

r(b~-2) 

r(b/ ) 
2 

bl (bl +I)bl (bl +1) 
= __ ~_~1~1~ __ 4~~4 ___ ~ __ 

(b/-I) (b/-2) (b/-l) (b/-2) 
2 2 3 3 

= (Er;) 
(bl -2)(bl -2) 

2 3 

3 

4 

since 2: c. o. 
1 

1 

(2.6) 

r(b/-l) 
3 

r(b/ ) 
3 

(2.7) 

(2.8) 

Thus computation of the mean and variance of rp under these assumptions is relatively 

simple. 
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One of the features of Bayesian statistics is the choice of a prior distribution. Given that 

we have decided to limit ourselves to the conjugate, Dirichlet family (2.2), this reduces to the 

choice of a vector b = (b ,b ,b ,b), where b > ° is necessary. One of the grails of Bayesian 
- I 2 3 4 i 

theory is a theory of ignorance. There are several ideas of what that would entail. Haldane 

(1945) proposes b, ~ 0. The Jeffreys' prior (1961) gives b, = Ih. The Savage personalistic 
I I 

position (1962) rejects the idea that "ignorance" is an especially desirable state to represent in a 

prior distribution, and asks instead that the prior represent the opinion of the analyst before seeing 

the data. 

I find it useful to think of a choice of Q in two parts; first the choice of :Q = (PI···' Pk) 

where Pi = b/b., and second a choice of b •. Roughly p, represents how much of the data a 
I 

priori I expect to fall in category i, and b. represents how much weight I think my prior should 

have in the analysis. In this case I suppose I believe that p = .75, meaning I expect 75% of 
I 

households to be crime-free in both periods, p = p =.10 to be crime fr,;e in one period but 
2 3 

not the other, and, a fortiori. p = .05 to be victimized in both periods. How sure am I of 
4 

these assessments, that is, how much information do I think I have? I would choose b. = 10 

for my assessment of that. Then my prior is represented by b = (7.5, 1, 1, .5). Formal 

assessment procedures for priors for this case are available in Chaloner and Duncan (1981). 

Now the mean and variance of j1I under each assumption can be computed, and are reported 

in Table 2.2. 

Haldane 

b = (0,0,0,0) 

E(j1I) = 3.678 

SD(j1I) = .920 

Table 2-2: 

5 

prior Jeffreys prior Information prior 

(1/2,1/2,1/2,1/2) (7.5,1,1,.5) 

3.672 3.680 

.913 .912 

Expectation and standard deviation of j1I under alternative prior 
distributions ignoring missing data. 

Examining Table 2.2, we observe that the choice among prior distributions - at least among 

these three prior distributions in this circumstance - does not matter much to the mean and 

standard deviation of tjJ. There certainly are prior distributions for which this conclusion would 

not hold: as b. ~ 00, E(tjJ) ~ PI P/P2P3' cOPles to dominate the analysis. 

With this as background, the reader is invited to choose your own opinion £, and to 

compute, using (2.6) aDd (2.7), your posterior expectation and standard deviation for tjJ. I 

expect that most of the numbers so computed will look much like those of Table 2.2. 

For the three opinions reported in Table 2.3, we can address the question of whether 

victimization in one period tends to be associated with victimization in the next period. Thus we 
• 

wish to compute the probability p {p ~ l}. 
r 

A useful theorem of Bayesian analysis (Walker, 1969) states conditions under which the 

posterior distribution is asymptotically normal. as the sample size increases. I judge that here 

those conditions are satisfied. principally because the data information n. = 561 is so much larger 

than the prior information b. = 0,2 and 10 respectively for the three prior distributons under 
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discussion here. Here we use the exact moments, calculated in Table 2, instead of the asymptotic 

moments, which are respectively the maximum likelihood estimate for '/> and sampling its standard 

error calculated from the Fisher information. A more precise analysis of the distribution of '/> 

could be conducted since the characteristic function of '/> can be calculated using (2.3). 

However, the normal approximation is sufficient for these purposes. 

b 

E( 'f J-1 

so<'/> 1 

p {,/><1} 
r 

Haldane Prior Jeffreys Prior 

(0,0,0,0) 

2.91 2.94 

.00181 .00164 

Informative Prior 

(7.5,1,1,.5) 

2.94 

.00164 

Table 2-3: Probability that '/> < 1 under alternative prior 
distributions, using the normal approximation. 

Thus I find that under all three alternative prior distributions under study here. the 

probability that ~ is less than one is quite small. Under these assumptions, being victimized once 

does lead to being victimized again. The odds of being victimized again are about 3 2/3 times 

greater than if one had not been victimized in the previous year. 

3. Data Missing at Random 

To ignore information is against statistical principles. and in particular, Bayesian principles. 

Consequently we return to the analysis of Section 2. but no longer ignore the non-response. In 

this section we assume instead that the data is missing in such a way that the fact of being 

missing does not impinge on which category may be correct. Under this assumption, the 

likelihood is proportional to 

'), 

1 
r 

I 

j , 

! 
I , ! 
! 

;1 
, I , i 
\ I 

.! 
H 
II 
II 
; it I, 

I 
\ , 
[ 

I 

I. 
!4 
r 
t 

I 
[I 
lJ 

f· 

1). 
1,\ 

,; 

i , 

~. 

i·· 
{ 
l' 

t 

4 

II n. 
U.l 

I 

7 

(3.1) 

where n = 33, n = 9, n 31 d 
12 34 13 = an n24 = 8. In a rough, qualitative way one can see 

that because the n 's 
ij are smaller than the n. 's, 

I 
and the information I'n tllem I'S less specific 

anyway, an analysis of (3.1) is likely to be similar to the analyses 
already given for (2.1). 

Let us continue to consider the Dirichlet faml'ly of prl'or 
distributions (2.2) indexed by ,Q. 

When the likelihood is in the fOI'm (3.1), th 
e posterior distribution of !! given the data is no 

longer in Dirichlet form. 
Thus another, more general family of distributions must be introduced 

to discuss the posterior distribution. 
Such a family is introduced in Dickey, Jiang and Kadane 

(1983). 

With the likelihood function (3.1) and the prl'or 
(2.2), the posterior distribution is 

proportional to 

4 
II ° +b -I ° 

U. i i (u +u ) 12(U +u )°34 (u +u )°13 (u +u )°24 
i-I I 1 2 3 4 1 3 2 4 (3.2) 

In order to find the constant of proportionality, (3.2) must be integrated over the simplex. 

We consider this integral in two parts; (I b) h( 
g !! - y.,Q + !!>. where g(!! I,Q) is given in (2.3) and 

(3.3) 

under the Dirichlet distribution (V(,Q + !!). 
, 

Thus we consider the integral (3.2) as if the 

complete data had come first, allowing updating to th D" hI 
e mc et distribution V(,Q + n), and then 

the incomplete data, requiring the integral h. For brevity, we'll write v = 
J.. (n

12
, n

34
, n

13
, n

24
). 
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Once the integral h is understood, the general moment is Haldane· Prior Jeffreys Prior Informative Prior 

(3.4) 

b = (0,0,0,0) (1/2,1/2,1/2,1/2) (7.5,1,1,.5) 

3.667 3.661 3.669 

(see Dickey et al., 1983, (2.13». .908 .902 .903 

The next result, Theorem 4.1 from Dickey et al. (1983), relates the integral h to the 

Table 3-1: Expectation and standard deviation of rp under alternative 
prior distribution assuming data missing at random. 

literature on special functions. The integral h can be represented as The results of this computation are given in Table 3.1. 

= R (Q,Z,-g), 
d. (3.5) 

The import of these calculations are similar to those reported in Table 2.3. Notice that the 
where 

1 1 o o standard deviations are slightly smaller, due to the gain in information from using the missing 

z = 
o o 1 1 data. But the overall message is very similar: The odds of being victimized again are about 3 

1 o 1 o 
2/3 greater than if one had not been victimized in the previous year. 

o 1 o 1 

4. Informative Non-Respo.nse 

is an indicator matrix, and R is Carlson's function (Carlson, 0977), Dickey (1983». 
The assumption of Section ,3 that non-response is uninformative is not necessary to Bayesian 

r·· 
While this representation allows us to prove various facts about h, it apparently does not offer 

analysis. In fact, one of the main advantages of the Bayesian viewpoint is its flexibility in 

readily available computational methods. 
incorporating varying beliefs about the data. In this section I explore the consequences of a 

belief that non-response is associated with victimization. 

To compute the expectation of rp and rp2 from our data, we have, using (3.4) and 

Let a be the probability that a household will not respond to a survey given that it was 

g( c.:.Q+g) h(y;.Q+g+c) /h(Y;.Q+g) 
I I 

= 1,2 (3.6) 
victimized in that period, and fl be the probability that a household will not respond given that it 

Since we have previously computed g( c.;.Q+n) 
I 

(see (2.7) (2.8) and Table 2), the was crime free. It is reasonable to SUppose a > fl. 

bi . t I I t th t' f h fun tl' ns The method for dOl'ng this is computational pro em IS 0 ca cu a e e ra 10 0 co. 

With this assumption, there are five configurations to analyze: 

given in Appendix A. 

,.~J 
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= P(NR I CF ,CF )P(CF ,CF )+P(NR I V ,CF )P(V ,CF ) 
22121 22121 

= fJu +aU 
1 2 (4.1) 

P(NR ,V) = P(NR I CF ,V )P(CF ,V )+P(NR I V ,V )P(v ,V ) 
21 221 21 22112 

=fJu +au 
3 2 

P(NR ,CF) = P(NR I CF ,CF )P(CF ,CF )+P(NR I CF ,V )P(CF ,V ) 
12 121 2 I 12121 

=fJu +au 
1 3 

P(NR ,V) ::: P(NR I CF ,V )P(CF ,V )+P(NR I V ,V )P(V ,V ) 
12 112 12 11212 

=fJu +au 
2 4 

Finally, supposing the non-response on the two surveys is independent, conditonal on their 

victimization status, we have 

?(NR ,NR) = P(NR ,NR I CF ,CF )P(CF ,CF )+P(NR ,NR I CF ,V )P(CF ,V ) 
12 1212 12 121212 

+ P(NR1,NR21 VI,CF2)P(V1,CF2)+P(NRI,NR21 V1,V)P(V
I
,V

2
) 

= P(NR I CF ,CF )P(NR I CF ,CF )P(CF ,CF )+P(NR I CF ,V )P(NR I CF ,V )P(CF ,V ) 
112 2 12 12 112 21212 

+ P(NR I V CF )P(NR I V ,CF )P(V ,CF )+P(NR I V ,V )P(NR I V ,V )P(V ,V ) 
112 21212 112 21212 

(4.2) 
~ 2 

= fJ-u +jJau +afJu +a U 
1 2 3 4 

~. 

Thus the new likelihood is proportional to 

4 

:n Unj (jJu +aU )n12 (jJu +aU )n34 (jJu +aU )n13 
j 12 34 13 

n (2 2 ) n (jJu +aU ) 24 jJ U +ajJ(u +U )+a U 1234 
2 4 1 2 3 4 (4.3) 

When a = jJ, \I.'hich is the case considered in the last section, the last term does not 

enter, since u. = 1. The likelihood (4.3) can be simplified by dividb.g and multiplying by 

n +n +n +n +n /jJ jJ 12 34 13 24 1234, and substituting y = a . Then we have a likelihood proportional to 

11 

4 

II U~j (u +yU )n12 (u +yU )1134 (u +yU )n13 (u +yu )n24 (u +yu +yu )n1234 i-I I 1 2 3 4 1 3 2 4 1 2 4 (4.4) 

It is reasonable, although not required, to Suppose y > 1. There are several special cases 

of (4.4) available already. When y = 1, the analysis reduces to that of section 3. When y = 

0, we are saying that we are sure all non-reporting households were crime-free, Which is not 

particularly reasonable. 

In this case, this likelihood (4.4) becomes 

(4.5) 

Thus the data reduces to a 2x2 table, then as follows: 

2nd 

cf .v 

cf 571 63 

1st 

v 85 38 

and the analysis is similar to that ~iven in Section 2. By analogy to Table 2-2, we have 

Haldane Jeffreys Informative 
b (0,0,1),0) (1/2,1/2,1/2,1/2) (7.5,1,1,.5) 

E( j6) 4.17 4.17 4.16 

SD(j6) .992 .987 .989 

Table 4-1: Expectation and Standard Deviation of ~ under alternative prior 
distributions assuming y = O. 

A second easy special case to analyse is y = 00. In this case all the non-reporting 
.:. 

households are assumed to be victimized, which is only slightly more reasonable than y = O. In 

this case, after dividing the likelihood in (4.4) by n +n +n +n +n 
y 12 34 13 24 1234, and we obtain the 

likelihood proportional to 



,-. ----.- ~ ....... -- - ~ - --

--------~ ---- ~------ ------~----

12 

, ) 3 14 / ) ( / 2 / ) n 
nn) / )12 (u /y+u )3 .. (U /y+U) (U /y+U)~ (U~ y+U.; u y +U y+U )2 

i (U) y+U2 3 .; I 3 2 .;.:. I 2 4 

Now allowing 0/ y) ~ 0, we have a likelihood proportional to 

n n +n n +n n +n +n +n 
U i U 2 12 U 3 )3 U.; 34 24 1234 

) 2 3 4 

which yields a 2x2 table, 

2nd 

cf v 

cf 392 88 

1st 

v 107 170 

and estimates as follows: 

b 

E(~) 

SD(~) 

:qaldane Jeffreys Informative 

(0,0,0,0) (1/2,1/2,1/2,1/2) (7.S,l,l,.S) 

7.23 7.18 7.23 

1.239 1.243 1.2S6 

Table 4-2: Expectation and Standard Deviation of ~ under alternative 
prior distributions assuming y = 00. 

(4.6) 

Thus we see that victimization appears to be catching even at the extreme assumptions y = 

a and y = 00, although assumptions about a seem somewhat important to estimates E( ~) of how 

catching it is. However the computational used to obtain the numbers for Table 4 do not appear 

feasible at present for y'S other than 0,1, and 00. Nonetheless, we may anticipate that the 

results would not be qualitatively different from those reported here. 
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5. Conclusions 

To answer the question posed by the title, yes, victimization is chronic. This data set 

indicates a factor of about 3 2/3 greater odds of one household being victimized again if it was 

victimized before. A deeper analysis of victimization would look for household characteristics 

that "explain" victimization, in the sense that, given those characteristics, victimization is not 

chronic. Perhaps socio-economic status, or some surrogate of it, would be a good first variable 

to use. 

We have also demonstrated a Bayesian approach to missing data that is computationally 

feasible for some, but not all, of the calculations the study of victimization led us to. This 

aspect will be more fully developed in subsequent work. 
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I. Appendix A. Computational Method 

We consider integrals of the form (3,1) over the simplex S, Let 

I(g,y) (AI) 

Then the expectations sought can be rewritten 

0= 1,2) (A2) I(!!+g+c.,y) /I(!!+g,y), 
I 

Hence evaluation of ratios of 1's is sufficient, and is equivalen.t to evaluation of ratios of 

h's, 

The basic approach used here is a binomial expansion of each of the four sums in (AI), as 

follows: 

I (g,y) 
s 

n24 ) 

m 

n -m 
m U 24 du 

U2 4 r - (A3) 

where the summation extends over the set T = { 0 ~ r :s; n , 0 ~ j :s; n , 0 :s; l ~ nand 0 
12 34 13 

~ m ~ n }. 
24 

Since T has finitely many elements, the integral and summation can be 

interchanged, and each term in the summation evaluated as a Dirichlet integral: 

n +n -r+m 
2 12 

U
2 

n +j+n ...e. n +n -jn 
3 13 U 4 34 24-m d_u 

U3 4 

(A4) iO 

where 

and 

and 

15 

Continuing (A4), we have 

I(g,y) = ~ (n12 )(~34)(t3)t24)['(n +r+.t+I)['(n +1-r+m) 
T r J m 1 12 

= 
n !n !n !n ! 

12 34 13 24 

(n. +y .+3)! 

['(n +y +4)! • • 

['(n +j+n -.tl+l)f(n +n -j+l+n -m) 
3 13 4 34 24 

['(n +r+.t+I)['(n +n -r+m+l)['(n +j+n -.t+l)['(n +n -j+n -m+I) 
~ ____ ~1 ________ ~2~~12~ ____ ~.~3 __ ~1~3 ______ ~4~3~4 __ ~24~ __ __ 

T r!(n -r)!j!(n -j)!.t!(n -.t)!m!(n -m)! 
12 34 13 34 

= K(g,y) 1: r*(r,j,i.,m) 

K(g,y) = 

T 

n !n !n !n ! 
12 34 13 24 

['(n. + y. + 4) 

1* (r,j,.e.,m)\ = ['(n +r+.t+l)['(n'+n -r+m+l)['(n +j+n -.t+l)['(n +n -j+n -m+l) 
1 2 12 3 13 4 34 24 

r!(n -I.')!j!(n -j)!.t!(n -.t)!m!(n -m)! 
12 34 13 24 

r* (r,j,l,m) = ['(n +r+.t+l)['(n +n -r+m+l)['(n +j+n -.t+l)['(n +n -j+n -m+l) 
1 2 12 3 13 4 34 24 

r!(n -r)!j!(n -j)!.t!(n -.t)!m!(n -m)! 
12 34 13 24 

(A5) 

Direct evaluation of I is not attractive because it, would involve the summation of (n + 1) 
, 12 

(n +I)(n +I)(n +0 terms, in our case 34'10'32'9 = 97,920 terms, each of which involves 8 
34 13 24 

factorials and 4 gamma functions. Consequently a different strategy must be used. However, 

one aspect of (A5) less unpleasant is that 
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K (£+g + c.,y) = 
I 

But c. = 0, so I. 
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n !n !n !n ! 
12 34 13 24 

r(~n +~b +c +n +n +n +n +4) 
iii. 12 34 24 13 

K(b+n+c. ,y) 
- - I 

K(Q+Q;Y) for all £,Q and y, i= 1,2 

Hence for computing expectations as in (A2), the constants K in (AS) cancel. 

(A6) 

(A7) 

Each of the terms r* is non-negative. Furthermore, they are likely to decrease exponentially 

fast from the maximum, so that only a few contribute nearly everything to I, and the vast bulk 

of i.nem are negligible. Consequently I wish to find the largest term in T, and to study how it 

relates to other relatively large terms in T. While succssive differences of r*'s are a mess, 

successive ratios are not. Thus we have 

I* (r+ l,j,.e.,m) 

I*(r,j,l,m) 

I*(r-1,j,.t.m) 

r*(r,j,l,m) 

I*(r ,j+ l,l,m) 

I* (r ,j,.e.,m) 

I*(r-1,j,.e.,m) 

I*(r,j,.e.,m) 

= 

= 

n +r+.e.+1 
1 

r+1 . 

r 

n +r+..t 
1 

n -r 
12 

n +n -r+m 
2 12 

n +n -r+m+1 
2 12 

n -r+1 
12 

n+j+n -.e.+1 
= --..:3::...-~1;.3 __ 

n -j 
34 

j+1 n +n -j+n -m 
4 34 24 

j n +n -j+n -m+1 = _______ 4.;........::;3..;..4 __ 2:;...4:......-__ 

n +j+n -.e. 
3 13 

n -j+1 
34 

(ABa) 

(ABb) 

(ABc) 

(ABd) 

ti· 

F 
j 

1 
I 
\ 
! 
~ 
I f=. 
} 1 

\ 
l 
I 
I 

I 
I 
I 
1 

I 

I 

'.1 

! • 

r*(r,j,.e.+ I,m) 

r*(r,j,l,m) 

r*(r,j,.e.-1,m) 

r* (r,j,.e.,m) 

r*(r ,j,.e.,m+ 1) 

r*(r,j,.e.,m) 

r*(r,j,.t.m-l) 

r*(rmj,.e.,m) 

._-- -----_.-
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n +r+l+1 n-.e. 
= 

1 ___ 1~3 __ _ 

b1 n +j+n -.e. 
3 13 

l n +j+n -l+l = ____ 3 13 

n +r+.e. n -.e. + 1 
1 13 

n +n -r+m+1 
= _2=--...:.12=--. ___ _ 

n -m 
24 

m+1 n +n -j+n -m 
4 34 24 

m n +n -j+n -m+1 = _______ 4 34 24 

n +n -r+m n -m+1 
2 12 24 

(ABe) 

(AB£) 

(ABg) 

(ABh) 

Consider the set So of all points in T for which each of the eight expressions AB is less 

than or equal to 1.0. So is not empty, since the maximum of r*(r,j,.e.,m) OVer the finite set T is 

an element of S . o We call So the set of coordinate-wise local maxima. 

The property of being the unique coordinate-wise local maximum is stronger than being the 

unique global maximum, as the following example shows: 

Example 1 Suppose on a 2x2 discrete grid, f takes the following values: 

f(1,l) = 3, f(O,O) = 2, and f(O,l) = f(1,O) = 1. 

Then 0,1) is the global maximum, but both 0,1) and (0,0) are coordinate-wise local 

maxima. 

If f has a unique coordinate-wise local maximum, maximization coordinate-by-coordinate is 



~--..--- -- -~ --

f 

--~.~-------
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sufficient to find the global maximum. This is so because such maximization can terminate only 

which, 1°f lOt lOS unique, is the global maximum. at a coordinate-wise local maximum, 
The 

t t t of maximization that is particularly convenient if following theorem shows an impor an proper Y 

So is small. 

Let S be a set of points containing So. Then the maximum of f(s) over the Theorem 1. 

S hat ° t pOiOnts of the form s ± ~'o where s E Sand set S E S, occurs at the boundary of ,t IS a ~ 

e has a 1 in the kth coordinate position and is zero otherwise. 
\: 

Proof: th t that '" maxlomizes f over the set S. where s* is not on the Suppose to ° e con rary s 

* lOS a coordiOnate-wise local maximum, which contradicts the hypothesis. boundary of S. Then s 
• 

Theorem I suggests an algorithm for computing I. We start with its set So of all 

We show IOn AppendIXo B that in our case, this is the single point 
coordinate-wise local maxima. 

(29,6,26,5). We divide all terms in r by r*(29,6,26,5), that is 

r = 1: r*(r,j,k,.t) 
T 

= r*(29,6,26,5) LT ( 
r*(r,j,k,.t) ) 
--

r*(29,6,26,5} 

= r*(29,6,26,5) LT J(r,j,k,.t) 

* .t * 6 5) Now since (29,6,26,5) maximizes r*, we have 0 < J where J(r,j,k,.t) = I (r,j,k, )/r (29,6,2, . 

(29 6 26 5) Then we can at each stage add to a 
~ 1 for all coordinates, and J = 1 only at ",. 

mo the sum, but in the set S, and add to the set S running sum S the largest term J not already 

19 

the set of coordinate-wise neighbors of the point added to the sum. Theorem 1 assures us that 

the maximum term not in the sum at each stage will be on the coordinate-wise boundary of the 

set of terms included, and hence in S. Furthermore, since the value of the largest term excluded 

is always available, a bound of the accuracy of stopping at any given stage is available: the 

number of terms excluded from the current sum, times the maximum value excluded. If this 

criterion is not satisfied, the maximum term is added to the sum, new points not in S are joined 

to S, and the bound recomputed. When the criterion is first met, the algorithm stops and reports 

the sum obtained. 

Note that when a term is added to the sum, the ratios in A8 give the value of J at the 

new boundary points. The only limitation on this method is the numerical accuracy of 

multiplying and dividing many numbers together. By keeping track of the path length of each 

new element of S from (29, 6, 26, 5), control can be kept on how many multiplical":'..cn and 

divisions are involved, and hence whether the numerical accuracy of the result is satisfactory. 

Note that r* is a function both of !! and of (r,j,k,.t). Consequently 

* r <!!+Q+c o,29,6,26,5) 
I 

* r (!!+,2,29,6,26,5 

IrJ(!!+Q+ci;r,j,k . .t) 

IrJ (!! + Q;r, j, u,l 

The sum of terms J over the set T are computed as above. However the ratio of r* terms 

can be calculated directly: 

r*(n_+_b+co,29,6,26,5) nn +b +c +56) 
I 1 1 i1 

------~--------- = --~~~~----
r*(!!+Q,29,6,26,5) r(n +b +56) 

1 1 

nn +b +c +8) 
2 2 i2 

r(n +b +8) 
2 2 



r 

Hence 

r(n+b+c +12) 
3 3 i3 

r(n +b +c +8) 
4 4 i4 

r(n +b +12) 
3 3 

r(n +b +8) 
4 4 

I*(n+b+c.;29,6,26,5) r(448+b
1 
+ 1) _____ --__ ~I--------- = ________ _ 

r*(g+Q;29,6,26,5) 

(448+b) (46+b) 
1 4 =----.=.....----

(63+b) (88+b) 
2 3 

r(448+b) 
1 
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Similarly, 

I*(n+b+c ;29,6,26,5) 
- - .... 2 

r*(n+b+c ;29,6,26,5) 
- - 1 

= 
(449+b

1
) (47+b

4
) 

(62+b) (87+b) 
2 3 

r(63+b -1) 
2 

r(88+b -1) .r(46+b +1) 
3 4 

21 

II. Appendix B. Determination of Coordinate-Wise Local Maxima 

We wish to study which points (r,j • .e.,m) in T satisfy the inequalities generated by setting 

the eight quantities (A8) less than or equal to 1. 

Each of the four pairs of inequalities has the same form: 

a(s)+ 1 +s k(s)-s 
<1 

s+l b(s)+k(s)-s 

s b(s)+k(s)-s+ 1 
<1 

a(s)+s k(s)-s+ I 

Where a(s), b(s) and k(s) are functions given below: 

s a(s) b(s) 

r n +.e. 
1 n+m 

2 

n +(n -.e.) n +n -m 3 13 4 24 

j 

n +r n +j 1 3 

.e. 

n +(n -r) n +n 34 -j 2 12 4 

m 

n 
34 

n 
13 

k(s) 

(BI) 

(B2) 

Working with l!iequaIities (BI) and (B2), and suppressing the argument (s) for simplicity, 

we have 

(a+s+ 1) (k-s) S (s+ 1) (b+k-s) 
(B3) 

and 

(a+s)(k-s+ 1) ~ s (b+k-s+ 1) 
(B4) 

Thus ak-s+ks-s
2
+k-s S bs+ks-s2+b+k-s 

(BS) 

and ak-as+a+ks-l+s ~ bs+ks-S2+S 
(B6) 



'} 
i 
1 
.) 

22 I 

! 
I 
! 

Then, simplifying, we have 1 

j 

ak-b S s(a + b) (B7) I 
I 
\ 
l 

and I 
I 
! 

ak + a ~ s(a + b) (B8) I 
f 

I 
Now (B7) and (B8) can be joined together: I 
ak - b S s(a + b) S ak + a (B9) 

ak-b ak+a 
(BIO) or ~ s S 

a+b a+b 

Let a(s) = ak-b and jJ(s) = a + h. 

,I 

,1 
11 
:,\ 
! 

'I 
~l 
! 

Then 

, tl 

:1 
a+jJ ak-b+a+b ak+a 

a / jJ + 1 = ---= ---- =---
jJ a+b a+b , 

L 

Hence (BIO) can be rewritten 

q 
1j 
h 
!I Ii 

a/ jJ S s S a/ jJ + I (BIl) 
t 
j 
) 

1 
( 

1 
! 

Hence (BIl) leads us to be interested in the quantity 

ak-b k(a/b)-l kz-l 
(BI2) a/jJ = -- = ---- =--

a+b (a/b)+1 z+I 

a(s) 
where z(s) = --. 

b(s) 

it I 

II 
tl LJ 

U 
f, 

i 

~ 
).' 

i 
! 

Now we note that the quantities a(s) and b(s) depend on values of the other indices in the \ I 
II I 

II II 

" 

U 

-----~------- - --- -~-
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set (r,j,.e.,m) besides s. (See the table between (B2) and (B3», but k(s) does not. Then (BII) 

and B(l2) determine values for s only if z( s) is well-enough appproximated. However, bounds 

for z(s) can be generated, and are sharpened by bounds for s' :/: s. Thus recursively tighter 

bounds may be obtained for each s. I now leave the general case, and revert to the particulars of 

my data and feasible the priors specified above. I believe that the computational strategy used 

here can be generalized. 

There are in fact nine values of I that we wish to calculate, 

characterized by one of the three priors listed in Table 2, and a value of c, 

(I, -1, -1, 1), and c = (2, -2, -2, 2). 
2 

Prior .Q. .£ n n n 
J -z '"-3 

(0,0,0,0) (0,0,0,0) 392 55 76 

(.5,.5,.5,.5) 392.5 55.5 76.5 

(7.5,1,1,.5) 399.5 56 77 

(0,0,0,0) (I,-I,-I,I) 393 54 75 

(.5,.5,.5,.5) 
~. 
393.5 54.5 75.5 

(7.5,1, I ,.5) 400.5 55 76 

(0,0,0,0) (2, -2, -2,2) 394 53 74 

(.5,.5,.5,.:5) 394.5 53.5 74.5 

(7.5,1,1,.5) 401.5 54 75 

Hence We have the following inequalities governing all nine calculations: 

392 S 
53 S 
74 S 
38 S 

n, 
n 

2 
n 

3 
n 

4 

S 401.5 
S 56 
S 77 
S 40.5 

Now we calculate a (round 1) upperbound on z(s) and a/ jJ: 

each of which is 

c = (0,0,0,0), c
1 

= 
0 

n 
-:; 

38 

38.5 

38.5 

39 

39.5 

39.5 

40 

40.5 

40 . .5 



~ 
l'~ 

1 
,il 

] ~, 

~ 
i 

l' ~ 
~ , 

.[ 

r 

j 

.e. 

m 

.[ 

r 

j 

.e. 

m 
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Upper bound Lower bound Upper bound Upper bound 
for! for Q for ~ for ill 

431.5 53 8.16 29.29 

108 3~ 2.84 6.40 

434.5 74 5.87 26.34 

89 38 2.34 5.31 

Similarly we calculate a (round 1) lower bound on z(s) and a/ jJ 

Lower boune' Upper bound Lower bound Lower bound 
fOI ! for Q for ~ for El§.. 

392 64 6.125 28.22 

74 48.5 1.526 5.04 

392 86 4.558 25.24 

53 49.5 1.070 3.65 

From this calculation. we concJ.ude that S contains only points satisfying 29 ~ r ~ 30, 6 o 

~ j ::;; 7, 26 ::;; .e. ::;; 2'1 and 4 ~ m ~ 6. Using those bounds, we obtain tighter round 2 

estimates as follows: 

Upper bound Upper bound Upper bound Upper bound 
.[ for! for Q for ~ for El§.. 

r 428.5 57 7.52 29.01 

j 82 40 2.05 5.72 

.e. 431.5 80 5.39 25.995 

m 60 40 1.50 4.4 

-----~ --- ---------------.-------------------------------

, 
\ 

J 

'i 

, 
" 
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t· 
i 
\: 
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Similarly a (round 2) lower bound is calculated 

Lower bound Upper bound Lower bound Lower bound 
.[ for! for b for ~ for ill 
r 418 62 6.74 28.61 

j 78 44.5 1.75 5.36 

.e. 421 84 5.01 25.68 

m 56 43.5 1.29 4.07 

Hence we conclude: 29 ::;; r ::;; 30, j = 6, .e. = 26, m = 5. Hence we do a round 3 upper 

bound for r only. a has an upper bound of 427.5, b has a lower bound of 58; hence the upper 

bound for z is 7.37 and the upper bound for a/ jJ is 28.94. Consequently, we have r 29. 

Thus for all nine calculations, S consists only of the term (29 6 26 5) o ' , , . 
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