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CHAPTER I 

INTRODUCTION 

The Autoregress~ve Moving Average Model Class CARMA models) and 

the associated three stage iterative model building techniques of 

identification, estimation and diagnostic checking was proposed by 

Box and Jenkins [1970]. Since its inception these methods have had 

wide spread success in problems of description, forecasting and control 

for univariate systems. These univariate time series methods were 

adapted by Box and Tiao [1975] to allow their use in intervention analy­

sis or the detection Un ~Il.-.Of a time varying attribute or the detec-
~ f. ~~t.. t\ 

tion~n level of a time varying attribute after the process is inten­
f\ 

tionally altered to induce change. The intervention models as the 

univariate time series models have similarly had wide applicability and 

success in numerous engineering, science and social science problem 

settings. 

The Box-Jenkins univariate model?have been generalized to 

accomodate systems that vary in space and time by Pfeifer and Deutsch 

[1980a] • These models are referred to as ~~~E..gre,gre~sive 

oving Average Models (STARMA models). The STARMA model class takes 

the form 

l 
1 



~ - .,.---

2 

where 

~t is the LNxl vector. of observations at time t, 

LN is the number of locations in the system, 

p is the autoregressive order, 

q is the moving average order, 

th term, 
Ak is the spatial order of the k autoregressive 

is the spatial order of the kth moving average term, 
~ 

is the autoregressive parameter at temporal lag k and 

<Pld, 
spatial lag ,Q" 

is the moving average parameter at temporal lag k and 

spatial lag ,Q" 

W(,Q,) is the LNxLN matrix of weights for spatial order ,Q" and 

is the random normally distributed error vector at time 

t with 

s=O 

for s > 0 

of l ocations to one (LN=l) the STARMA model 
By constraining the number 

class collapse totha ARMA univariate model class. 

3 

A complete literature review leading to the STAR}~ models is 

contained in Pfeifer [1979]. In addition to formulating the space-time 

-.. ,II! 

U 
moving average class, Deutsc~ and Pfeifer developed the methodological 

considerations for a three stage iterative model building procedure for 

the space-time model, parallel to that proposed by Box and Jenkins' for 

univariate series (see Pfeifer and Deutsch [l979 s 1980a, 1980b, 1980c s 

1980d, 1980e, 1981a, 1981b]). The STAR}~ model class and associated 

model building was extended by Pfeifer and Deutsch [198lc] to describe 

seasonal phenomena and by Deutsch and Pfeifer [1981d] to incorporate 

contemporaneously correlated innovations. All other appropriate liter.-

ature citations are contained in context in each chapter. 

The purpose of this final report is to extend the currently 

available methodological procedures/capability of the current state-

of-the-art in intervention analysis and system description of the 

STARl-~ time series methods. Each of the modeling extensions is stimu-' 

lated by real world problems. Thus each of the modeling extensions in 

each chapter are substantively illustrated with case studies. These 

example applications are in behavioral science, cri~'nology, air 

pollution and water resources settinp,so 

In Chapter II, the multi-consequence intervention modeling pro-

cedure is developed based on the univariate AR}~ processo The multi-

sequence AR~~(p,d,g)~lCI allows for the description of a change in mean 

level and covariance in a process due to an intervention initiated at 
'. ~. 

\ 

t .s. nl and takes the form, 

--- ... ----.~, ----------
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pre-intervention: 

e (n)a , 
q t 

t=1,2, ••• ,nl 

post-intervention: 

where oCt) is the realized intervention effect, and ~ (n), e (B), 
p q 

ljI (B), r (B) are functions of process parameters that contain the 
p q 

information of the proc.ess covariance structure. Since ljI CB) and 
p 

r (B) can be distinguished from ~ (B) and e (B), respectively, the 
q p q 

above model has the capability of describing the process covariance 

change. oCt) can be expressed as, 

oCt) k(t)o 

where k(t) are known numerical values that can be computed from the 

model parameter values and the intervention model specification, and 0 

is the intrinsic program utility. The realized intervention effect 

oCt) = 0 if k(t) = 1, which is the non-environment influenced situation 

since the intrinsi~ program utility is realized fully. IIowever, when 

k(t) f. 1, then the intrinsic program utility is not realized fully but 

is masked by the ecclecti.c environmental process in ~lace. Situations 

arise ~'int"rVention effcct is nat knawn ta ~;~nfluenced by 

~ ,d 

p! 
'!~ 'l.. 

[K 

[~ 

m{ ... ,,/ 

....... 
iW\ 
",J( 

r!\{! 
6.c..,F 

~r til ~ lj 

~\ \;;...,' 

.. 

I i ! 
I 

I ! 
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the environment ~ and it is necessary to identify the nature of 

environment influence to build the intervention model. A dynamic 

n component identification procedure is developed in this chapter to 

!it 
( 

identify the interactive relationship between the process environment 

and the intervention program utility. The biases caused by model mis-

: , 

U specification are derived for the point estimate as well as the interval 

estimate of O. The statistics needed for testing the hypothesis of 

I ' 
, ~ mUlti-consequence are also developed. A behavioral science example is 

t. 'l 1, 

given to illustrate the non-environmental modeling building situation 

and a criminology example is used to illustrate the environmental in-

fluence situation. 

The univariate multi-consequence intervention model in Chapter 

II is followed by the space-time intervention modeling chapter. In 

mlupter III, the system contains more than one location and the inter-

vention program is assumed to be initiated at any chosen locations. 

The single space-time intervention model~ STARHA(p"d,q )1 , is forrnu-
/\ m m 

lated as; 

~ ,(B)Vd(Z -p) = [(l-I)¢ ,CB)\7d + I e (B)]~Ct) 
p,/\ -t m P,A m q,m -- -

+ e (B)£t q,m -

where 

~(t) = ~~t 
\\ 

~ is the intrinsic program utility vector, and 



--~-- ----~-------------

~t is the indicator variable, }t takes the value 0 for pre­

intervention periods and 1 for the post-intervention periods. In the 
,I' 

above model, the I parameter is embedded to distinguish whether the 
m 

intervention effect is the environmentally influenced or non-environ-

mental~influenced. 

An alternative representation is developed to decompose the 

process into two mutually exclusive components, the random component 

and the deterministic component. The diffusion behavior of the ~eter-

minis tic cOII)ponent is physically interpreted and two diffusion process 

types, the regenerating diffusion type and the relocation diffusion 

type, are characterized by the stationary and non-stationary (PA. ,d;,qm) 

I model. Simulations are performed to illustrate the diffusion 
m 

6 

phenomena characterized by the (STAR)I , (STMA)I , (STARMA)I processes. 
. ALk~ m m m 

Situations arise t'hafthe nature of the intervention program is un­
£ 

known, so a procedure for the identification of the dynamic component 

is developed. A transformation formula that tran,sform~the space-time 

intervention model into linear model form is dev~~loped, and the results 

of linear model are applied to obtain the point lestimation and the 

interval estimation. A substantive air pollution example that con­

tai'ns two interventions is given to illustrate the mod~l building pro-

cedures described in this chapter. 

In previous STARMA modeling procedures, the system relationships 

were assumed to be spatially and temporally uniform. In Chapter IV, 

non-equal diffusion preference systems are considered. The component 

of STARMA model to be modified in order to describe diffusion prefe-
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renee is examined in scaled we 4 ght 

region 
... matrit;es. 

approach and the angular region 

the(f non-equally preferential 

Two approaches , the strip 

struct 
approach, are proposed to Con-

the non-equally preferential 
neighbor structure that reflects 

diffusion processes. Simulations are 
performed for one-direction 

preference system 

ference system to illustrate 
and two-direction pre-

the relationship 
between the non-equally 

and the corresponding weight 
preferential diffusioll p ro.cess 

Then the theoretical residual 
matrices. 

preferential structures are 

Simulation examples to ill 

patterns, due 

analyzed. This 

to unexhausted non-equally 

analysis is followed by 

ustrate the l' ana yt~cal conclusion. The 
air pollution data used in CI 

lapter III is reviSited to ill 
ustrate the construction f I 

- 0 t le non-equally preferential 
neighbor structure and 

the construction of non-equally f 
pre erential models • 

In Chapter V, the purely s ti 1 
pa a model is introduced. The 

purely spatial model contains only t 
con emporaneous terms, ther.efore, it 

doesn't have the capability to c t 
ap ure any spatial-temporal correla-

tion structure. The eXistence d 
con itions that corresponds . to the sta-

t~onary conditions 
and the invertible conditions 

of the space-time 
model are derived. F 

or use in identification 
, the purely spatial auto­

correlation functions and 
the purely spatial partial 

autocorrelation 
functions are defined and 

their statistical properties derived. Com-
putational algorithms are 

developed to make I 
tle computer effort mor.e 

efficient. 
Pattern recognition is also 

proposed to assist in identi-
TIle expectation values 

of the sample purely spatial auto-
fication. 

correlation function nre 
u computed 

I\~ fl h 
are developed for identification. 

for the low order models and charts 

The purely spatial process has no 
, ' ..... III I I 

f] 
I 

D Ll 

~, 
.:. 

\ 
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observation and noise initial value problem in estimation, however, 

the in;i.tial parameter values are still needed to!1 start the required 

iterative estimation procedures. Charts to obtain initial parameter 

values f~r low order spatial models are developed. 
~. 

,( 

Two appljlcation 

examples are given to illustrate the purely spatial model building 

procedure. The first example is from hydrology and the other is 

from criminology. In, these examples, the purely spatial modeling 

procedures are applied to enhance the descriptive capability of the 

system. 

In Chapter VI, two topics are addressed: the cqr~pling a:hd 

reparameterizing of th~ aggregate purely spatial model and the space-

time model and the coupling of purely spatial models'. The coupled 

models are capable of capturing the contemporaneous purely spatial 

correlative structure, as well as, the space-time correlative struc-

ture. Three potential space-time models are coupled with the purely 

spatial model, and the resulting models are then reparameterized. Here 

two modeling sequences are possible: 1) building the purely spatial 

observation model first and then the space-time residual model, or 

2) building the space-time observation model first ~nd then the purely 

spatial residual mode 1. The coupled and reparameterized models may 

be dependent on the modeling sequence or may be independent of the 

modeling sequence. The systems that give rise to each ~re distinguished 

and the appropriate modeling procedures are described. Two processes 
c, 
j'" 

that weT:e modeled in Chapter V as separate but si~ultaneous space-time 

and purely spatial models, ar¥ presented to illustrated the coupling 

and reparameterizingprocedures. 
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The purely spatial structures contained in each observation 

period may be identica or may e ~ e • 1 b d 'ff rent If the purely spatial 

structures in each observation period are identical, then the system 

is said to be ergodic and the aggregate purely spatial model 'captures 

the same purely spatial structure with bt:tter precision. However, if 

the purely spatial structures in each observation period are different, 

then the purely spatial structures are mixed and the resulting aggre-~ 

gated purely spatial mode; de~~ribes an average correlative struc~ure!. 
The second topic in Chap ter VI is the development of the modelj:hg pro­

cedures for the e~godic process. Here statistics are developed to 

? d' t Since these homogeneity a.ssumptions test the process ergo ~c proper y. 

may not hold and may mask the ergodic property, therefore a modeling 

d t the outliers to obtain homo-procedure that estimates an correc s 

1 d t d ~l the potential ergodic processes ,that genei ty i5;;:-ci~'r.e ope a rna e ~ 
"". \.~ 

contain outlier~. An example is given to illustrate the modeling pro-

cedure of the ergodic process with outliers. The masking effect of 

the outliers are illustrated in details. Forecast functions are con­

structed for the ergodic model as well a~ the model which assumes but 

, 
I h 't u.~sunll)tlon to cofupare the forecasting dousn t verify tie omogunel y g ~ d 

and descriptive capab~ tLes. ~ 'Ii' D~fferences are expl,ained in detail. 

The STARNA model captures the spatial-temporal correlated 

structures, the multivariate AR}~ model captures the inter-category 

correlated structures. A natural generalization of the STAR}~ model 

and the multivariate ARMA model is the NULSTARMA(MULtivariate ST~F1A) 

model that captures all tbe spatial-temporal, inter-category correlated 

; 
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\ 
structures. The MULSTARMA(~,p,q,A,m) model class takes the form; 

= f 
g=l 

'V --.. 4IV #v #110# 

h Ahg 
g k 

I I 
k=l R,=O 

h=1,2, ••• ,~. 

A specification of the syst~m parameters ~, the category number, and 

the model parameters p, q, A, m serves to define one MULSTARMA model tIfIV ___ ,.. ..., 

from the general familty of models. In this MULSTARMA: model class, 

the spetial-temporal, inter-category correlated structures are cap­

tured by the estimatable parameters $~g, e~g and the weight matrix. 

10 

To illustrate the model structure, a series of flow charts are plotted. 

These flow charts contain filters that correspond to identifiable terms 

in the MULSTAR model formulation. The stationary regions and the 

invertible regions are derived. Then the A-w~ight representation for 

the stationary process is derived. The A-weight representation 

express the process observation as summation of past errors, which 

allow derivation of statistical properties to be made easier. The 

multivariate space-time autocorrelation function and the multivariate 

space-time partial autocorrelation function are defined, and the 

statistical properties are derived to help identify the candidate 

model. Due to the high dimensionality of the model parameter space, 
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computational efficiency deserves attention. Therefore, efficient 

computation approaches are introduced and justified. Based on linear 

model the,ory, estimation procedures are developed. A criminology 

example is used to illustrate the multivariate space-time modeling 

procedure. In this example, the employed model is used in con­

structing forecast functions, that rely on the spatial, temporal and 

inter-category structure, and is augmented for use in intervention 

modeling. 

The final report concludes in Chapter VIII with a discussion of 

the conclusions of this work. 

11 



12 

CHAPTER II 

MULTICONSEQUENCE INTERVENTION HODEL 

d " series data for changes in level 
The analysis of correlate tlme 

autoreg
ressive integrated moving average (ARlMA) processes \l7as 

using 
and Tiao (1965) using the ARI~~(O,l,l) form. 

first ihtroduced by Box 

by Glass', Willson and Gottman (1975) to in­
Their work was extended 

f " th statistical 
types of ARlliA processes while ocus~ng e q 

clude other 
I d tOm series frame-

methods in a quasi-experimental design interrupte ~ e 

i thought of as affecting the observa-
work. Here, an intervention s t 

fib 1tw~ pi /~'k tYl ilfl...<1N~ 
tion, Zt' between n1 and nl+l~ ~ U v ~-~v-

~eintervention: 

t= 1,2, ... , n1 ,; 

~ostintervention: 

d (+ 
1:» =: 0 (B)a

t 
t=n l +1, ••• n 1+n2 

<tl (B)17 (Zt - I-l U q 
P 

~ere: 

tlI (B) 
p 

0q(B) 

v = (I-B) 

(2-1) 

(2-2) 

1'1 1 

J~ 
L 

l'l u 
f" 

q 
.:. f;,' 

j '\ ! , 
L 

n 
f\ .. 

r~ 
.-\ L, 
{\ 

! L I 

rJ 
\ 

fl 
n 
l~ 
r'. 
I I 

t } 

n 
\1 
(0 
r, 

n .. ,. 

~ t_ 

H 
}\ ! '1 rf l. .. 

'~ t ~ .. 

r ,U .-

II ~ 

H 
H 
t1 
fl 
n 
0 
fl 
n 
fl 
f] 

fl 

B 
0 
rn 

t 
.".~~~':l~..ll:'.~>-'" 

B is a backward shift operator such that 

(BZt-Zt_l,Bet-et_l) 

~ is the process mean, 

o is the magnitude of change induced by a modification of 

the process, that is associate with a type of intervention 

activity, 

the ~'s and e's are autoregressive and moving average para-

meters, respectively and the 

at's are innovations distributed normally and independent 

with meanJ~variance a; . 

'" These models assume (1) only a single consequence in that after inter-

vention only the mean 1~~e1 not the covariance can change and (2) the 

change in the process after time T is instantaneous (e.g., having been 
r st 

fully realized in the n1+1 observation). 

This chapter focuses on the multi consequence intervention model 

13 

that allows for both a change in the mean level of the process as well as 

the possibility for a modification in the covariance structure. The 

model structures contain a mean shift function to allow for instantaneous 
.. ::..:.:....-::-~~.::.,--:~ 

r/- ~~ 

or transient modiJEication, depending ~pc~the nature o'£"'.the interrupted 
/7 <:-" 

/,' '~ 

time series experiment and/or the$~hvironmental process in'~~ace. In 
/ ~ 

,-/'" '~ 
Section 2.1 th.e mu1ticonseque~ce model structures are descrihed'''along 

p ~ J/ \' 
with its mean shift f~~~ion that allows the estimation of an int~rven-

,\ 

\, 
tion program's intrinsic uti1i-ty which is not identical to the progr\.\' s 

realized effect. The next section contains the maximum likelihood es~ 

ttmation procedures for the multiconsequence intervention model of or-

der (p,d,q) for the mean shift function known or unknown. Section 2.3 

/) 

~ 
\ 
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develops the necessary covariance matrix specifications for low order 

multiconsequence models that are used in estimation and tests of signi-

ficance of the mean shift function and other model parameters. These 

hypothesis tests are contained !~ Section 2.4. In Section 2.5, the 

\

.effects on the ability otbslkk~ de.te.rm-i-n;i~ the significance 
/\ 

\ 

of an intervention progr~ntrinsic value due to the misspecification 

of the mean shift function form and/or the use of single consequence 

\ intervention model form when there is change in the covariance 

\ structure are address~d. ·Section 2.~ discusses the bias considerations 

ltrom miSSpeCificationtntervention model form both with respect to the 

autoregressive and moving average parameters and the mean shift func-

tion. The modeling procedures are algorithmically described in Section 

2.7 for situations that arise in the analysis of interrupted correlated 

time series designs. The ability to statistically detect a given 

magnitude of a mean level change in correlated interrupted time series 

design is dependent upon the number of pre and post observations, and 

the magnitude of the change in the covar.iance structure after inter-

vention. Section 2.8 analyses these effects and develops guidelines 

for designing inter~upted time series experiments from power consider-

ations. Tables for pre and post intervention sample sizes are given 

for designing experiments in Section 2.9. Lastly, in Section 2.10, 

two substantive examples are given to illustrate the modeling pro-

cedures described. One example corresponds to the analysis of a 

direct stimulus-response interrupted time series experiment in which 

the environmental process does not influence the intervention changes. 

The second example illustra'tes the modeling procedures in experiments 
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in which the ' eX1sting environmental process 
affects the realized modi-

ficati!=lns. 

2.1 Hulticonseguence Hodel St t ruc ure 
The effect of an intervention is not typically 

expected to be 

the observations. directly transmitted to 
Depending upon the nature of 

the intervention acti ~t' 

15 

V1 1e8, the transmittal of th' , 

~ 
e 1ntervent10n effects, 

0, can be direct or influenced by th I ' 
e ec ectr1c environmental pheno-

mena in place. When an inter've t' n 10n program is typ1'f1'ed by direct 
stimulus to subjects whose 

response is monitored th 1 , e mean evel of the 
intel~ention effect of the 

stimuli would be transmitted d' 1 1rect y to the 
attribute being monitored. 

process is random or weakly 
Similarly when the e~ctic enVironmental 

correlated, the transmittal 

tion effect would also be direct. 
of the interven-

These situations are termed the in-
stantaneous case. 0 tt n ue other hand I . , W1en the 1ntervention activities 
are not direct stimulus to Subjects 

whose response is monitored but rath­

stimulus is intended to alter the ove 11 r.' . e r the 

ra e~elect1c environmen-
tal phenomena and . 

1n turn modify behavior f 
o a segment of the population 

the mean level of h 
t e intervention effect would be f 

iltered by the en-
vironmental process causing a delayed 

steady state realization in the 
attribute monitored. 

The situa tion is labeled the transient case. 
In either situat' , 

10n, once the intervention 

c

in addition to modificat:i.on of the 
activities are initiated 

realized me 1 1 an eve of the attribute monitored, 
a second simultaneous Conse 

tervention c . OVar1ance structure 
quence, the change in the postin-

, can occur. Tl' 11S may be thought of as 
Occurring due to b I ' 

elHV10r modification of the subJ' 't-
ee s or treatment 

, 

, 
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group in the instantaneous case or due to the formation of a new ec­
/ 

~ietic environmental process immediately after intervention for the 

mean level transient case. 

A comprehensive model that describes both instantaneous and 

transient mean level changes and postintervention modification of the 

covariance stru~lure is tile multiconsequ~nce intervention model form: 

preintervention; 

~ (B)Vd(Z -~) = 0 (B)a t=1,2, ••. ,n
l p t q t 

(2-3) 

postintervention; 
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~ (B)Vd(Z - ~ - oCt»~ = r (B)a 
p t q t (2-4) 

where 

.. ~ (B) 
p 

r (B) 
q 

the IV'S and y I S are postintervention autoregressive and 

moving average parameters respectively and 

oCt) is the mean shift function. 

Al ternatively the postinterventlon model can be ex.pressed in terms. of 

an intervention transfer function operator, T(B), and the intervention 

input variable, ~t where f;t=O for t<n1 and I.for t~nl; 

i'l L , 
\. . 

fJ 

n 
[J 

3 
n 
B 
[.1 

n 
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~p(B)Vd(Z -~) = T(B)~ a + r (B)a 
t t q t (2-5) 

where <5 is the intrinsic utility of the process intervention. 

From the expectations of Equations (2-4) and (2-5), the mean shift func-

tion can be expressed as; 

15 (t) = T(B)~ o/~ (B)vd 
t p (2-6 ) 

Figure 2-l(a) and (b) are schematic representations of the coupling of 

the pre and post intervention structures for the mUlticonsequence inter-

vention model for systems in which the environment influences or does 

not influence the realiZe~prOgram utility, respectively. As seen from 

Figure 2-l(a), even when allm~ing for environmental influences, mathe-

,matically when T(B) = 'P (B), the postintervention environmental pro­
p 

cess does not affect the change in mean associated with the interven-

tion in that oCt) = ~tC as in Figure 2-l(b).' The more similar T(B) is 

to If (B) the smaller the influence of the environmental prQcess. Also 
p 

mathematically, when T(B) = r (B), the environmental process directly 
q 

intluences the magnitude of the realized intervention oCt). It should 

be noted thCl.t this influence or variation in the observed mean shift 

from the program utility, 6, is dependent upon the full transfer func-

tion associated with the postintervention environment, namely T(B)I 

Vd'jI (B). The choice of the menn shift function, a (t) in modeling in­
p 

terrupted time serIes data is critical in estimating the intrinsic pro-
" 

gram utility~. As seen from Equntion (2-6) vhen ~ (B)Vd = T(B), the 
p 
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Figure 2-1. Transfer Function Representation of Mu1ticonsequences 
Intervention Model 

(a) Realized change in mean level aff~,cted by environ­
mental process 

(b) Realized change in nean level not affected by 
environmental. process 
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mean shift function contributes to the postintervention process level 

in magnitude equal to the program utility. This is the instantaneous 

model associated with direct stimulus-subject response experiments. 

Otherwise, the intrinsic program utility is filtered the transient 

case. Throughout this paper the mean shift function is employed in 

each of the different aonsiderations presented with regard to the model-

ing of interrupted time series data with multiconsequence intervention 

models. 

2.2 Naximum Likelihood Estimation Considerations 

The procedur~s for developing maximum likelihood estimators 

(M.L.E.) described in this section are for various combinations of 

friori information about the parameters for different modeling situa-

tions. He will first assume that the mean shift function, oCt) is 

known and differentiable and the model parameters (2~~,~,r), are known 

for the ARIHA(p,d,q)HCI model class. Next the'situation in which the 

mean shift function is unknown is addressed and a sequential procedure 

for identifying the form or the mean shift function is described., We 

then relax the assumption that the model parameters -are all knmm. 

In the following we will denote 

ij ~ 
_.~.r_--;.:"=--""";,,,:..:o;'+ ",~ ~ , 
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where 

~ (t) = { ~ 

~ + 0 (t) 

t ~ n1 

n1 + 1 < t ~ n1 + n2 

with n
1 

and n
2 

being the number of pre and post intervention observa­

tions, respectively. 

2.2.1 Cuse I: Menn Shift Function Form Known (Model Parameters Known) 

1. ARU1A(p, u,q)NCI mudd d=O, ,/ 

Suppose that the mean shift function is known to be p'(some ar-

bitary function of m parameters, oCt) = f(t-n1'~ ) with ~t = [01 ,0 2 , ••. 

o ]t being unknowll mean-shift measurement parameters. The mean shift 
m 

function 0 (t) is first order differentiable when (t-n1 ) ~ 1. The joint 

distribution of Z is given by, 

(2-7) 

where H(P,O,q) is the inverse of the covariance matrix of z. ~.fuen S is 
N - -

know4, f>~p,o,q) is determined. The maximization of the log likelihood 
, 

functidQ is equivalent to maximizing the quadratic function, 
'\' 
.,:~ 

~ 
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Q(~ ,e,a2) _ -(Z-~ )tu(p!O,q)(Z_~ )/a2) 
-z - a - -z·iI - -z a 

(2-8) 

Since ~, 0 , ••• 8 are independent mathematical variables and the mean 
1 m 

shift function is known and differentiable, the partial derivative of 

Q with respect to ~,oi,i-l, ••• m~ set equa'l to zero, 

o 
(2-9) 

o k-l, 2, •.• m 

. 
yields the M.L.E. of ~,Oi,i-l,2, ••• ,m. 

il 
The mean shift function of the form, 

(2-10) 

in which 1°2 1 < 1 is differentiable with respect to 01' the scale factor, 

and 02' the shape factor. When m-2, the M.L.E. for Il, 01 and 0'2 are 

obtained by solving the following normal equations; 

(~ _ ~~ _ R)t ~p,O,q)! - a 

Dt ~p,O,q)(Z - ~l - D) 
·0 ~ - ~ - a (2-11) 

~~ ~p,O,q)(~ _ ... " 111 - ~) - 0 

~ 
.:. 

} 

~ 
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n J 

H 
where : is (nl +n2) x 1 vector with 'I u 

\ ' 
, ( 
n $ 

elements zero, 

A A A A 2 n2 Ail t 
D a (a,a, ••• 1,1~~,1+02+(C2) , •.• L (15 ) - ) , with the first nl -a • i-l 

p ,J 

n ILl 

,elements zero, and 

n 
A A A 2 A i-2 i:;' 
D "" 51 (a, a, ••• 1,1+215

2
, ••• L (i-l) (5-) ), with the first (n1+1) 

-1 i-1 

elements zero. 

n 
n 

The.solution of these simultaneous equations may not be unique and the n 
function value of Q is computed in o~der to determine the global opti-

mum solution that maximize~the quadratic form Q. Similarly, we may have n 
m-1, i.e., H 

n 
which results in the normal equations; r~ 

~::-

I 
!t ~p,a,q) ~~t ~p,a,q) ! _ !t ~p,a,q) .. 

z - D - a 

~t ~p,a,q) z - "'At M(p,a,q) ! _ ~t ~p,a,q) ... 
MB D - a -5 "N 

(2-12) 

lJ 
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t @ 

ffl '1"1 ....: 

,~ 

l 
~, 

p - (a,a, ••• f(l,~ ),f(2,5 ), ••• f(n~,5 »t, with the fi • rst n1 e1e-

ments zero and 

A useful mean shift function takes the form 

oCt) _{ a 
5K~t) 

(2-13) 

where K(t) is a known numerical, va'lue. I hi n t s situation, the normal 

equations result in a unique solution, 

where 

[!~p,a,q)!] [! ~p,a,q)?;] _ [1 t~,a,q).~] [~t~p,a,q)~] 
[~~p,a,q)~][!~P,Q,q)~J _ [~~p,a,q)~]2 

6 _ :[K:1-~~(P;:'na-:-;, q;).;:.~ -][";:'!;:-~-7(~P i' a,,~q )r=!:-.1 _---.:.[ ~=:~:4(p~''na_, q __ ),::.! ]~[;:~""-:~](LP _' a_,_q )...:!~1 
[~~p,a,q)~l[!~p,a,q)!] [~~p,a,q)~12 

ments ze~':.). 

(~-14) 

23 



c 

In the analysis of intervention program two specific forms of K(t) have 

wide applicability. With d-O and T(B) - V (B), Equation (2-6) reduces 
p 

to o(t) - ~to. However, from Equation (2-13) we see o(t) a oK(t) for 

n ~ n1,;!s:, depending upon the value of K(t), the realized modifica­

tion in the process, o(t) is not necessarily identical to the intrinsic 

value or worth of intervention program's activities. When, 

24 

K(t)- { : 
t ~~1 

elsewhere 
(2-15) 

or 

K(t) - { : 

nl+l < t < nl+T - - p 

elsewhere 
(2-16) 

the intrinsic value of the intervention program activities are directly 

realized and thus are unaffected 'by the environmental process. Equation 

\ (2-15) representing a step.,c function for the interve'i)~1rograms active 

life (e.g., ~t-O, t ~ n1 and ~t-l for t > nl ; K(t) -~while Equation 

(2-16) represents a p'ulse function for the intervention program activi-
t-? 

ti~s that initiate? at time nl+l and terminate~at nl+T where T is 
, p n p 

the number of active periods for the p,rogram (e.g., K(t) - Ptl(Tp»' 
The remaining case results from situations in which the environ-

mental process T(B) affects the realized value of modification in level, 

when T(B) a rq (B) , 
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(2-17) 

The specific form of K(t) is obtained using the recursiVe equation 

~(B)K(t) -r' (B)~ 
l' q t 

when p-q-l, (i.e., 

with 

This results in 

K(t) -

... 

with initial condition K(t)-O for t ~ n
1

. For example, 

an ARIMA(l,O,l)MCI model) with ~t • P~(Tp)' we have, 

t < n 
- 1 

nl +1 < t < n +T 
- - 1 p 

(2-18) 

t-T -n -1 
1f11 P 1 ( 1f1i K (n1+Tp) - Y

l
) t > n

1
+T + 1 

- p 

In Equation (2-18) by s,etting Tp a n
2

, and deleting the last equation, 

we get the K(t) expression for the step function situation, i.e., 
, n1 n

1 ~t ., St ' since the ~t - Pt (Tp - n
2
). 
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2. d ~ 1 

For nonstationary processes, we initially assume that the mean. 

shift function is known, but let d>l. In this situation, we difference 

the original observation vector, ~, to obtain Z* - vd~, which is sta-

* * * t 
tionary. For start up consideration we use, ~ - [O,o' ••• Zd+l'···Znl+n

l
] , 

with the first d elements zero. Since there are now (nl-d) preinterven-

tion data, Equations (2-3) and (2-4) become, 

where o*(t) - vdo(t). 

This form is different from the stationary case where d-O in that 

the mean level ~ is eliminated and the interpretation of the mean shift 

. * * function changes. We stilljhowever, have E(Zt) - oCt), E(Zt) - 0 (t) 

* while oCt) can be obtained once 0 (t) is obtained by applying the re-

* d cessive relation 0 (t)- V oCt), 

* o (t) -
d 
L (_1)2 (~)o (t-i) 

i-O 

* nl For example, when d-l and 0 (t) • 0 P (T =1) results 
;; t p 

* which is used in conjunction with ~ for modeling. 

"". "\ '. 

(2-21) 
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Since the parameter ~ drop~~t of the model when d>l~ there is 

one less parameter to estimate and makes the simultaneous ~uations 

(2-9) and (2-11) simpler by reducing each by the variable, a, and 

deleting one normal equation, i.e., aQ/a~I~-~ - O. Consider the situa-
~ . 

tion ~ 0 (t) is one parameter function and can be expressed as 

* * * * o (t) • 0 ·K (t) with K (t) a known numerical value, (similar to that 

of Equation (2-13). "'* The resulting estimator for 0 is 

27 

(2-22) 

where ~(p,O,q) is the covariance matrix of ~*, and ~* - [K*(d+l), 

* * t K (d+2), ••• K (~+n2)] with K*(t) - 0 for t ~ nl • 

2.2.2 Case II: Mean Shift Function and Influence of Environmental 
'Process. Unknown (Model Parameters Known~ 

In the previous section the form of the mean shift function, oCt), 

was assumed and the time varying proportionality coefficient K(t) was 

determined to couple a program's intri~sic value 0 to the estimated mean 

'" shift function O(~). This proportionality coefficient was developed for 

the situations 'in which the 'program environment did not influence or 

influenced the realized effects of the activities. It is not unusual, 

however, to be unable to specify whether the affect of the program is 

influenced by the environment process. In addition, the form of the mean 

shift function suggested which couples oCt) to 0 (e.g., Equation (2-13») 
, ) 

may nd',t be known. In these situations the sequential estimation of 
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oCt), t-nl +l, ••• ,nl +n2 for n2-l is used to identify both whether the 

program's affect is influenced by the environment and to determine an 

appropria~~f the mean shift function. 

In estimating the mean shift function, oCt), the value of K(t) 

must be sp~cified which determine?whethe~ the environmental process 
Ii 

influences or does not influence the mean shift function. However, 

from Equation (2-l8)'the value of K(t) in the situation where the en-

vironmental process has an influence, the estimation of oCt) is un-

affected when n2-l. Figure 2.2 delineates the sequential procedure for 

estimating the mean shift function. 

3. d-O 

Initially, the M.L.E. of ~ using the n
1 

preintervention observa­

tions are obtaining using, 

A 

29 

P • l~ (P,o,q)l 
(2-23) 

..... n ... 
1 

where M(P,O,q) is the covariance matrix of the first n
l 

observations. 
nl 

If ~ is not equal to zero the nl +n2 observations are corrected by sub-
,.. 

tracting~. Then the M.L.E. of oCt) is obtained using Equation (2-22), 
() * 

with ~ specified as Zt' i.e., the (nl +n2) unit vector with n2~1, the 

vector with 1 at the tth position, 

(2-24) 

, , 



where 

~t is- the vector (Zl,Z2' ••• Z. ,Z), , . t-l t 
Mtt is the (t,t) element of M~P,O,q) and 

M is the ~ column of M(P,O,q) 
-t t . 

A st . 
If ~(nl+l) is significant, the {~+'l)---observ.ation is corrected 

by subtracting d (nl +1) and entered into the set of n
l 

observation. The 

process is repeated with nl+l preintervention observations until all 

nl +n2 observations are exhausted. 

4. d~ 1 

When the ARIMA(p,d,q)MCI process is nonstationary, e.g., d>l, ~ 

is set equal to zero with (~-d) preintervention data points. The re­

maining identification procedure is identical to the stationary situa­

* tion. Note that the mean shift function estimates obtained are for Z 
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1.Q..., * '" -not Z, e,..g., they are 0 (t) not oCt). In this case, we obtain oCt) from - ./ 
"'* o (t) by applying Equation (2-21) recursively. 

From the pattern exhibited by oCt) vs. time fOl: t=-nl+l, nl +2, ••• , 

~+n2-1 and the form of ~t which is known to be a pulse function of 

length T or a step func.tion (T -+00) the appropriate multiconsequence 
p p 

intervention representation is determined. 
,.. 

If oCt) is constant for each 

of the Tp periods, the environmental process does not exert any influence 

on the realized mean level modification, ~.D ~ K(t)al) for t=-n +l,n +2 
. ~i 1 l' 

••• ,nl+Tp and zero elsewhere. Thus the structural mod'el exhibited in 

Figure 2-1(b) is selected. In identif~'ing this configJ-i-ation the appro­

Priat~orm of the mean sh;ft fUI\~UO~' follows as 6(t) a K(t)6 with 

K(t)-l. However, if the environmental process influences the realized 

~ I 
~lt ! 

~ II 

h 

I 
f 
J 
I , 
( 

i 

J n 1\ 
• R 

j 
( 

I 

i 
I , 

.l 

H 
I 
i 

,j , 
\ 
I 

U I 
j 
j 

t. i j .( 
, ~ 

il 

1 
J 
! 

f \ " L 
I 
i 

I 
.I 

n u 
,j 
I 
"i; 

') 

H 
j 

1 
~ 

u u 
1 '; 

1 
J 

1 , 
i i 

U 

H 
" i l ~ I 

\ { 1 
l 
l 
"{ 

U 
I 

1 
'-

t] 
1 

rJ I 
1 

U 
n I 
_,,~1 

1 

1 
t 
J 

I 
] 

] . }{ 

] '1 

• 

"1"\ 
1 J{ 

JM 

i~ ,J} 

~ 

U~ 

~ 

lil 
~ 
[j 

ul 

iU 1. 

00 

ffi 11 ::£'1 

m !- \ 

m /- , 

I i ~ 

values of the mean modification, an appropriate form of K(t) must be 

established. The identification of the appropriat 

may proceed in two ways: I)' pattern matching to theoreticai 

patterns of K(t) arising from specified forms of oCt), or 2) use of 

regression to fit an empirical form of oCt) to data of 8(t) versus t 

and then computing K(t). 

.;;2~ • .;;;2~.~3~c~a~s:.;e~I;::;I:..:I:.:::;-:".::E::.s~t=ima=.t::.:i::..!n~gwll~t~o~(.=t.t...) ~Gi:.v:!.!e:.!nWS u Unknown (Madel P arame ters 
Not All Known) 

So far we have assumed that all the model parameters are known. 

Often, however, some or all of these model parameters § are unknawn. 

We will denote S as the unknown parameter of S and S - (~ ,a ,$ ,y ) 
-u - -u -u -u -u -u 

with !u'~u'~u'Yu as the unknown parameters of 2,~,~'r respectively. 

From the earlier estimation results cited, we know that the M;L.E. of 

~ and the mean shift parameters, ~i' are not independent of the model 

parameters (i.e., giving the model parameters, the M.L.E. are deter­

mined without searching through the (~'2) subspace). That is, 

when ~ all known 

I th d f '" ~ '" n e proce ures or obtaining ~, 0 and cr when S is known the ..... a.... .-

least squares estimators (L.S.E.) are equivalent to M LEd t h • • • ue 0 t e 

'" , 

31 
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normal distribution assumption of the residuals. However, when not all 

the model parameters are known, the L.S.E. ar~ not equivalent to the 

M.L.E. From Equation (3-7), we see that the unknown model parameters 

~u would appear not only in the quadratic form but also"in the term 

I M.~P, ,O,q) 11/2. Th -~ erefore, to maximize the likelihood function when , 

nc>t all model parameters are known· is equ:Lvalent to maximi::'re w~ol:e 
function. But MAX Q(~,~,a!) - -1, so it is equivalent tO~imiZ~ 
~2 -N/2 1 (p ° q) 11/2 \ 

(aa) • MN ' , · Cons~der the maximization of the likelihood 

fl.lDctioni, 

This is equivalent to minimizing, 
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Thus, to obtain the M.L.E. for (B ,~,o,a2), we search through ,the Q 
-u - a ~u 

subspace, apply previous results and minimize the value of 

N1n(a2) - 1nIM(P,0,q~1 where &2 is the L.S.E. (or M.L.E.} of 
a N a 

given ~. 

2.3 Covariance Matrix for Low-Order Models 

As just seen, the determination of the form of the covariance 

matrix is central to the development of the M.L.E. In developing this 

matrix we will focus on the four submatrices that emerge from partition-

iug realizations of the process into those associated with: the pre­

~ntervention period and the postintervention period (e.g., t ~ nl and 

~ < t ~ nl +n2 respectively). These submatrices will be denoted c jj as 

follows; 

I:(p,O,q) _ - - -- - -r- -- - -- ---
c 21 1 c 22 

1 

In the following the cij ' s olf the covariance matrix for the ARIMA 

(l,O!l)MCI model will be constructed. It should be noted that its eval­

uation for ~ - ~ - 0, or e - y - ° results in the covariance for the 

ARIMA(O,O,l)MCI and ARIMA(l,O,O)MCImodels respectively. For nonstation-

ary processes, the corresponding co"ariance matrices are obtained using 

the following results with ll-O and ~~* where z* - vdZ • 
t t t 
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For the ARIMA(l,O,l)MCI model; 

(z - II - 0 ~ t H - 1/1 (Z - II - IS (t» + a - y a , t 1 t-l t 1 t-l 

(i) Submatrix cll corresponds to the preintervention time series 

model. The development of the covariance elements are found 

in Box and Jenkins (1970). The pertinent results are; 

for k-O; 

for k>l 

q 

(ii) Submatrix c12 and c2l 

a 2 
a 

a 2 
a. 

(2-25) 

(2-26) 

-....,...-~--~-------------------------

q 
-- . 
Ii 
I,! 

'\ 
1\ 

\ J 

n 
n 
o 
n 

" n 
In 
11 Mill-- Ij 

"" 

Thus, 

Similarly, the covariance for k>2 can be shown to be, 

\ 

a 2 
a 

a 2 
a 
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1 ~ t ~ n1,-l 

(2-27) 
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i .::.. t .::.. u1-1 

(2-28) 

t=n 
1 

(iii) . S(t1.;fmatrix c22 

For 1 .:: It ~ u2, u1+1':: t+k ~ u1+n2 and t ~ u1+1, 

var(Z~+k) ,. ~i var(Zu
1
+k_1) + (1 + yi - 2~lY1) <1a2 

2k 

•• ak 1+e~-e1'1 a 2 + 1-.~ (1 + yi - 2.
1
Yl) 

1 l-~i a 1-~1 

• I <10a
2 

E(Zt,a t +k_1 ) \ 

<1 2 a (2-29) 

n 
Ii 
1 I 
; I 
t J 

\ i 1, .. 
" ~I 

H 
,: ) 
; i 

! \ 

! ,{ 
I I 

it 

t J 

/ { l-

f { 

, I L 
j'} 

1( 

11 I .• 

II 
D' 
(] 

n 
___ ~ , '''''.''i.".~~::-~,:,,:, 

I 
f, 

t 'r 
r 

f r 
f: 
t r 

~ 

o 
u 
o 
o 

" o 
n 

In 
t;l 
fJ 

o 

1 2 3 ~-1 n 
1 

1 '0 '1 +1'1 
~-3 

+1 11 
n -2 

+11 81 

" 
::;, 

+~-4 n -3 2 '0 '1 1 '1 +11 '1 

3 +1'1 '1 '0 
n -S n.-4 +11 81 '1~ 8l 

~ .. 
~ : 

n -1 +n1-3, +1l1-.4 n -S 
1 . . 1 .1 1 '1 +11 '1 80 81 

!'l,-2 Il -3 Il -4 
+1 '1 +11 11 +11 '1 ••• '1 80 

2 
WMr. , _ 1+er281+1 

o 1_+2 , -<+1-81)(1-81+1) 

1 

2 

3 
~12··· 

~-1 

~ 

Figure 2-3. 

1 1 1_+2 
1 

~+l 1l1+2 ~+a2 

'2 2 ~-2 1l2+!'J. -2 '1+~- '1. '1+1 11 ;1 1 '1 

~-3 
'1+1 '1 

2 ~-3 
'1+1 '1 

1l2+1l -3 
'1 11 '1 

'1+~-4,:..; 2 Il -4 
Ii ~-4 '1+1~ '1 '12+1. '1 . . 

'1'1 
2 

'1'1 ·~2a1 
. '1'0-'1, ':!.<;-1'0-Y1) 112-1 

'1 t 1'O-Y1) 

~e Covariance Matrix of the ARIMA(l,O,l)MCI 
Model 

37 

'. . ,r 

, ... 



;1 

n1+l ~+2 n1+n2-1 n1+n2 

~+1 
(1) h (1) ,n2-3h (1) ljIn2-2h (1) 

822 22 1 22 1 22 

~+2 
h (1) 8 (1) ljIn2-4h (1) ljIn2-4h (2) 

22 22 1 22 1 22 

n
l
+3 ljI h (1) h (2) ljIn2-5h (3) ljIn2-4h (3) 

1 22 22 1 22 1 22 
",--

:22 • 
. 

,n-3h (1) ,n-4h (2) (n2-1) h (n2-1) 
~+n-l 1 22 1 22 822 . 22 

ljIn-2h (1) ",n-3h (2) h (n2-l) (n2) 
n1+n 

822 1 22 1 22 22 

When evaluated with, 

, • , • 0, 

e • y • 0, 

t(l,O.l) • t(O,O,l) 

t(l,O,l) • t(l.O,O) 

multiconaequence covar~.~ce • single consequence 

covariance. 

Figure 2-3. (Cont'd) 
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.. It 
SUbstitut~qUation (2-29) into equation, we get 

a :2 
a 

(2-30) 

where t • t-nl • 

The results are summarized in.ma~±X~ Figure 2-3 for ease 

in evaluation of the covariance fo low order 

cesses. 

2.4 HyPothesis Testing and Confidence Intervals 

In Section 2.2, the M.L.E. procedures for three different cases of 

unknown combinations of the ~odel parameters (f,~,~,r) or the mean shift 

function, oCt), were detailed. Case I described the situation in which 

the form of the mean shift function was known along with the model para-

meters and 0 and 1.1 were to be estimated. When the influence of the en-

vironmnental process on the realized postintervention mean level is un-

known (and therefore the form of the mean shift function) but the pre-

intervention model parameters, (!,~), are known, the estimation procedures 

for. the form of mean shift was described in Case II. Case III described 

the M.L.E. procedures for e:~timating 0, 1.1 and ~ when the form of the 
u 

mean shift function is known and S is a subset of the model parameters. 
-u 

In this section the corresponding hypothesis tests of significance for 

0, 1.1, (t-~) and (~-r) needed for modeling are presented. Also the cor­

responding confidence intervals for 0 and 1.1 and the pre and post inter-

vention model parameter.s are developed • 
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Case I: 
di interest is to test 

of 15 for d-O, our imme ate 
From the M.L.E. 

i.e.-, we want to test; 
whether 0 is significant, 

A 2) wi h Since 15 ~ N(Q,~~ t, 
15 

the statistic W where, 

15 • 0 

15 '" 0 

w. lli , 
~w 

.... 
6 

(2-31) . 

2 Fo~ a selected ~ level we reject BO when Wo> t l - a / 2,N-2' 
is - N(O,l ). .. 

co1ifidence interval for 0 is, [0±WcS t a / 2 ,N-21. 
the corresponding (l-a) 100% 

i h th exception that, 
same procedure applies ,w t e 

When d?,l, the 

(2-32) 
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Case II: 

In the identification of the £orm of the mean shift function the 

significance of the preintervention mean must be determined prior to es-

to test the hypotheses; 

l1.: 

we compute the statistic W1.1 where 

1.1 • 0 

1.1 ~ 0, 

Since n - N(~,a~) with, 
lJ 

(2-33) 

We reject BO when W'~.? tl-a/2,nl-l or accept 110 when W~< t l - a / 2,n
l
-l' 

Similarly, in testing the significance of each o(i) in order to determine 

th correction of the i observed value before estimation of 0(i+1), we test 

the hypothesis, 

Ho: a (i) .. .A) 

Hl : o(i):/- 0 
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The null hypothesis is rejected when W > tl~a/2,t-l-No or accepted when 

t where N is the number of previous rejections of the 
W.< l-a/2,t-l-N

o 
0 

null hypotheses in this sequential procedur~. 

Case III: 

After estimation of the pre and post intervention model parameters 

the question whether there has been a significant change in the covar-

iance structure should be tested before different postintervention para­

meter are retained in the model. To test the significance of the change 

in covariance, we test the hypothesis, 

a - a .. u1 _u2 

The statistic, 

is computed (see Wilks (1938)).. The. null hypothesis is. rej ected when 

W > X2 or accepted when WS~ X2,.,n_m where n is the number of un-
~ a,n-m "" 

known model parameters and m is the dimension of ~i' i~l,2. 

{ i 
o ! I , 

t I I J 
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2.5 Anticipated Causes of Bias in Estimation of the Shift 
in Process Level 

The misspecification of the mean shift function form and/or the 

use of a single consequence intervention model form when there is change 

in the covariance structure affects the ability to statistically deter-

mine the significance of an intervention program's intrinsic value. 

From the estimator for 0, the program's intrinsic utility, 

Equation (2-14), the elements of K which are determined from the form of 

K(t) are seen to weight the observation vector ~. For example, when we 

have ~ as a step function coupled with a direct stimulus response in­
-t 

tervention model each observation after t > nl is weighted equally since 

K(t) = 1 for t > nl • However, when ~t is a pulse function regardless of 

the specification of K(t) each postintervention observation is not 

equally weighted. Also when K(t) is of the form appropriate ~ in­

direct stimulus response experiment regardless of the form of §t all 

postintervention observations are not in general equally weighted. The 

consequences of having weights larger or smaller than appropriate is to 

underestimate or overestimate 0, respectively. 

~~ Figure 2.4 portrays various configurations of K(t) that 

\~ step function for the (I,O,l)MCI model. Each exhibit in Figure 

2.4(~, (b) and (c) represents §t as step functions with ~l = 0.0, 0.6 

and -0.6 for a range of y values, respectively. The cases of ~l = Yl 

correspond to the direct stimulus response form of K(t), e.g., K(t) = 1 

t .:: 2., however, in 

tions are weighted 

comparisons between cases a, band c, the observa­

differenti~~lY being dependent upon the postinter~en-
tion autocorrelative structure. 
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Within Figure 2.4, K(t) a l-y for t ~ 2, and thus for a fixed 

Yl postintervention observations Zt' t ~ nl +2 are weighted equally in 

estimation of o. However, postintervention observations Zt for t ~ n
l
+2 

st 
are weighted (l-y) times the Znl+l value weight in estimation of o. 
Thus realizations Zt' t ~ nl +2 exert greater influence than Znl+l on the 

estimation of 0 when y < ° and less influence when y > 0. ~ the latter 

st case as y + 1 only the Zn+l observation influences estimation of o. 
Similar differenti~ behavior for the relative contributions of Zt' 

t ~'nl+l. in, estimation of 0 are seen for the step functions in Figures 

2.4(a) and (b). 'When ~t is a pulse function, the K(t) weights behave 

the same as the step function values for t < n-+T .and eventually decay 
- ~ p 

to zero as t increases for t > ~+Tp+l. Thus as in the step function 

case, a pulse function also behaves similarly in that the consequence 

·of not assigning an appropriate mean shift function form manifests it-

self in improper specification of K(t) and consequent overestimation of 

the magnitude of 0 if K(t) chosen is less than the appropriate K(t) or 

underestimation of 0 if the K(t) chosen is larger than the appropriate 

K(t). 

Suppose the mean shift function form K(t) is correctly specified/ 

identified b~t a single consequence model is used inappropriately. Since 

K(t) is correct the point estimates of <5 are not inflated or deflated. 

However, the tests of its significance is still impaired due to the dif­

ference in magnitude of the Var(~) that occur. For example, when the 

system should be treated as a (l,O,l)MCI process and is not, the resulting 

model parameters for the single consequence formulation aref 
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14 15 

1 

K(t) 

-1.0 

(c) 

Figure 2.4. Variations in K(t) Weights 



and 

where ~s and e ima S are approx te solution to the estimation problem, 

with a~ defined as sst (~+n2) where 

2 
where 0A' ~l' 8"1' $1' Yl is. the true (l,O,l)MCI model parameters and 

~t'S are the residuals computed from the single consequence model, e.g., 

the model with ~l a Wl a ~S' el • Yl • eS' 

Table 2.1 illustrates representative values of 

M a (I'var(~)MCI/var(5)SCI)-1 for preintervention parameter values of 
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-1 
Table 2.1. Values of (I Var(3)lMCI!Var(3) SCI ) for Determining 

Consequences of Ove,r /Under Estimation of Significance ,., 
of 0 when K(t) is Correctly Specified 

+:L • 0.60 

~ -.9.5 -.80' -.60 -.411) -.20 0.00 .20 .40 .60 .80 .95 

-.9.5 1.2.5 1.01 .80 .• tl7 .67 .84 1.14 1.49 1.80 1.93 2.02 
-.80 1.1.5 .84 .72 .1';6 .66 .73 .85 1.00 1.15 1.24 1.34 
-.60 1.28 .84 .72 .67 .67 .71 .79 .89 1.00 1.04 loll 
-.40 1.37 .87 .74 .69 .69 .71 .78 .87 .96 1.00 1.03 
-.20 1.42 .89 .75 ,,70 .69 .72 .78 .86 .96 1.00 1.00 

~- -0.60 0.00 1.4.5 .91 .77 .71 .70 .72 .77 .86 .97 1.03 1.01 
.20 1.46 .92 .77 .72 .70 .72 .77 .86 .99 1.08 1.05 
.40 1.48 .94 .79 .72 .70 .71 .76 .85 1.00 1.15 1.14 
.60 1.5.5 .98 .82 .74 .70 .70 .74 .84 1.00 1.23 1.30 
.80 1.73 1.10 .90 .79 .72 .69 .72 .82 1.01 1.32 1.63 
.95 2.04 1.30 1.04 .88 .76 .70 .70 .80 1.04 1.44 2.03 

~ - 0.60 

~ -.9.5 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95 

-.9.5 .90 .83 .78. .81 .9.5 1.21 1 • .56 1.96 2.32 2.58 2.94 
-.80 • 83 .7.5 .7' • .77 .84 .9.5 1.10 1.27 1.43 1 • .56 1.81 
-.60 .93 .74 .72 .74 .79 .86 .96 1.07 1.1.5 1.20 1.36 
-.40 1.02 .76 .7'2 .72 .76 .82 .90 .99 1.06 1.06 1.16 
-.20 1.08 .77 .71 .71 .74 .79 .86 .9.5 1.01 1.00 1.05 

~. 0.00 0.00 1.12 .77 .71 .70 .72 .76 .83 .92 1.00 .99 .98 
.20 1.13 .77 ,,70 .69 .70 .74 .80 .89 98 1.00 .95 
.40 1.13 .77 .69 .67 .68 .71 .77 .86 .97 1.04 .96 
.60 1.14 .78 .69 .66 .66 .68 .73 .82 .95 1.09 1.04 
.80 1.20 .82 .71 .66 .64 .6.5 .69 .77 '.91 1.14 1.26 
.9.5 1.3.5 .92 .78 .70 .66 .63 .6.5 .72 .87 1.16 1.59 

~ - 0.60 

~ Yl -.9.5 -.80, -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95 
, 

-.9.5 .96 1. rio 1.09 1.21 1.3.5 1.52 1.72 1.96 2.26 2.71 3.42 
-.80 .97 .96 1.01 1.08 1.15 1.23 1.31 1.38 1.48 1.67 2.09 
-.60 1.06 ,,94 .96 1.01 1.07 1.12 1.17 1.19 1.20 1.25 1.52 
-.40 1.1.5 .93 .93 .96 1.01 1.06 1.10 1.11 1.09 1.06 1.24 
-.20 1.22 .93 .90 .93 .97 1.01 1.0.5 1.07 1.03 .96 1.07 

91- 0.60 0.00 1.24 .91 .87 .&9 .92 .97 1.02 1.04 1.01 .91 .95 
.20 1.23 .88 .83 .84 .88 .92 .98 1.01 1.00 .88 .86 
.40 1.17 .83 .78 .79 .82 .87 .93 .98 1.00 .89 .80 
.60 1.09 .77 .72 .72 .7.5 .79 .86 .93 1.00 .93 .77 
.80 1.00 .71 .6.5 .65 .66 .70 .76 .84 .9.5 1.02 .84 
.9.5 .96 .68 .62 .60 .61 .62 .66 .73 .85 1.02 1.05 
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Table 2.1. (Cont'd) 

M Yl -.95 

~1-0.00 -.95 .98 

~ -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95 
Yl -.95 -.80 

-.80 1.01 
-.60 1.07 
-.40 1.12 

-.95 .99 .95 .95 1.;')1 1.11 1.25 1.41 1.57 1.73 1.98 2.75 
-.80 1.12 .96 .94 .96 .99 1.03 1.07 1.11 1.14 1.24 1.74 
-.60 1.31 1.01 .96 .96 .98 1.00 1.01 1.00 .97 .98 1.31 
-.40 1.43 1.05 .99 .98 .98 1.00 1.00 .98 .93 .88 1.10 
-.20 1.50 1.08 1.00 .99 .99 1.00 1.01 .99 .93 .84 .97 

-.20 1.15 
0.00 1.18 

.20 1.19 

.40 1.19 
~6(l 1.20 
.80 1.22 

91- -0.60 0.00 1.54 1.10 1.02 1.00 1.00 1.02 1.03 1.02 .96 .83 .88 
.20 1.55 1.11 . 1.02 1.00 1.01 1.02 1.05 1.05 1.01 .86 .83 

.95 1.29 

.40 1.54 loll 1.02 1.00 1.01 1.03 1.06 1.08 1.07 .93 .80 

.60 1.54 1.11 1.02 1.00 1.00 1.02 1.06 1.10 1.14 1.06 .84 

.80 1.59 1.15 1.04 1.01 1.00 1.01 1.04 1.10 1.18 1.25 1.04 

.95 1.73 1.24 1.11 1.05 1.01 1~00 1.02 1.08 1.17 1.34 1.44 

~ Y1 -.95 

~ a' 0.00 

~ 
, 

Yl 
-.95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95 

-.95 1.05 
-.80 1.03 
-.60 1.03 

'" 1.88 2.30 3.45 -.95 .98 1.01 1.07 1.15 1.25 1.36 1.49 1.65 
-.40 1.04 
-.20 LOS 

-.80 1.01 .99 1.01 1.05 1.08 1.11 1.14 ~.16 I( 1.21 1.39 2.06 
-.60 1.10 .98 .99 1.01 1.03 1.04 1.04 1.02l .99 1.03 1.46 

E1- 0.00 0.00 1.07 
.20 1.08 

-.40 1.19 1.00 .98 .99 1.00 1.01 1.00 C>/ 
.!'O .90 .87 1.17 .40 1.07 

-.20 1.26 1.01 .98 .98 .99 1.00 .99 .95 .87 .79 .98 .60 1.06 
91- 0.00 0.00 1.30 1.01 .97 .97 .99 1.00 .99 .95 .87 .74 .85 

.20 1.31 1.01 .96 .96 .98 .99 .1.00 .97 .89 .73 .76 
.80 1.04 
.95 1.04 

.40 1.30 .99 .94 .95 .96 .99 1.01 1.00 .93 .76 .69 

.60 1.28 .97 .92 .92 .94 .97 1.00 1.03 1.00 .84 .66 

.80 1.26 .95 .90 .89 .91 .94 .98 1.03 1.07 1.01 .74 

.95 1.29 .97 .91 .88 .88 .90 .93 .99 1.06 1.13 1.02 

41- 0.00 ~ Yl -.95 
f--: 

~ -.95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95 Yl 
-.95 1.08 
-.80 1.05 
-.60 1.03 

-.95 1.11 1.13 1.15 1.18 1.22 1.27 1.35 1.48 1.73 2.24 3.61 
-.80 1.10 1.09 1.09 1.10 1.10 1.10 1.10 1.10 1.15 1.37 2.15 

-.40 1.03 
-.20 1.03 

-.60 1.14 1.07 1.06 1.06 1.05 1.03 1.00 .96 .93 .99 1.51 
-.40 1.20 1.07 1.05 1.04 1.02 1.00 .96 .90 .84 .82 1.18 
-.20 1.27 1.08 ' 1.04 1.02 1.01 .98 .94 .87 .79 .72 .98 

0.00 1.04 
.20 1.06 
.40 1.07 

er - 0.60 

~ - 0.60 0.00 1.32 1.08 1.04 1.02 1:00 .98 .93 .86 .76 .66 .83 
.20 1.36 1.08 1.03 1.02 1.00 .98 .94 .86 .75 .62 .71 

.60 1.07 

.80 1.02 
.40 1.36 1.07 1.02 1.01 1.00 .99 .96 .89 .77 .61 .61 .95 .92 
.60 1.31 1.02 .98 .98 .99 1.00 .98 .94 .83 .63 .54 
.80 1.20 .93 .90 .91 .93 .96 .99 1.00 .94 .74 .51 
.95 1.08 .84 .81 .82 .84 .87 .91 .95 .97 .88 .60 

f I 
1 I 

-.80 

1.00 
.99 

1.00 
1.02 
1.04 
1.05 
1.07 
1.07 
1.07' 
1.09. 
1.15 

-.80 

1.07 
1.03 
1.01 
1.00 
1.00 
1.00 
1.00 
1.00 

.98 

.96 

.96 

-.80 

1.08 
1.04 
1.02 
1.00 

.99 

.99 
1.00 
1.00 
1.00 

.96 

.87 

Table 2.1.. (Cont'd) 

-.60 

1.05 
1.00 
1.00 
1.00 
1.02 
1.03 
1.04 
1.05 
1.06 
1.07 
1.11 

-.60 

1.12 
1.05 
1.02 
1:00 
1.00 
1.00 
1.00 

.99 

.98 

.96 

.95 

-.60 

1.09 
1.04 
1.01 

.98 

.97 

.97 

.97 

.98 
1.00 

.97 

.88 

-.40 

1.11 
.... 02 
1.00 

. 1.00 
1.01 
1.02 
1.04 
1.05 
1.06 
1.07 
1.09 

-.40 

1.17 
1.09 
1.03 
1.01 
1.00 
1.00 
1.00 
1.00 
1.00 

.98 

.96 

-.40 

1.11 
1.04 
1.00 

.97 

.96 

.95 

.95 

.97 

.99 

.99 

.91 

"" \ 

-.20 

1.19 
1.04 
1.00 

.99 
1.00 
1.02 
1.04 
1.05 
1.06 
1.07 
1.08 

-.20 

1.24 
1.09 
1.03 
1.01 

.99 

.99 
1.00 
1.01 
1.02 
1.01 

.98 

-.20 

1.14 
1.04 

.99 

.96 

.94 

.93 

.93 

.95 

.99 
1.01 

.94 

~1 - -0.60 

0.00 .20 

1.30 1.41 
1.06 1.07 
1.00 .98 

.98 .95 

.99 .95 
1.00 .97 
1.03 1.01 
1.06 1.05 
1.08 1.09 . 
1.09 loll 
1.09 1.10 

~1 - -0.60 

0.00 .20 

1.3~ 1.42 
1.11 1.11 
1.03 1.01 

.99 .96 

.98 .94 

.98 .94 

.98 .96 
1.01 1.00 
1.04 1.04 
1.04 1.08 
1.01 1.05 

+.t,- -0.60 

0.00 .20 

1.19 1.26 
1.04 1.03 

.97 .94 

.93 .89 

.91 .86 

.90 .85 

.90 .85 

.92 .87 

.97 .93 
1.03 1.02 

.98 1.01 
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.40 .60 .80 .95 

1.56 1.78 2.20 3.44 
1.09 L13 1.30 2.04 

.94 .91 .95 1.44 

.90 .83 .80 1.14 

.89 .80 .72 .95 

.91 .81 .68 .82 

.95 .84 .68 .72 
1.01 .91 .71 .65 
1.08 1.01 .81 .62 
1.13 1.14 1.01 .71 
1.14 1.18 1.19 1.02 

.40 .60 .80 .95 

1.58 1.83 2.35 3.80 
1.13 1.18 1.39 2.21 

.97 .93 .99 1.52 

.90 .83 .81 1.19 

.88 .79 .72 .97 

.81 .77 .66 .82 

.89 .78 .63 .70 

.94 .82 .63 .61 
1.01 .91 .69 .55 
1.09 1.06 .86 .57 
1.09 1.12 1.06 .77 

.40 .60 .80 .95 

1.39 1.64 2.18 3.73 
1.04 1.09 1.32 2.20 

.90 .87 .94 1.52 

.84 .77 .77 1.18 

.80 .72 .67 .96 

.78 .69 .60 .80 

.78 .67 .56 .68 

.80 .68 .54 .58 

.85 .73 .55 .49 

.98 .86 .63 .44 
1.02 .98 .80 .50 



, , 

~l - -0.6, 0.0 or 0.6 and 81 - -0.6, 0.0 or 0.6 tabulated for values of 

$1 and Yl , where MCI and SCI refer to multiconsequence and single con-
,.. ,.. 

sequence. In computing the tabl~d entities the values of ~S and 8s are 
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used in determining v~r(~)SCI. If the tabulated multiplier, M, is equal 
..... 

to 1.0000 then the standardization of 0 in hypothesis testing is un-

affected by ignoring the multicansequence phenomena. Although, only 

when th~ assumption of. a single consequence structure is appropriate 

(e.g., ~l • $1' 81 • Y1; is the hypothesis test unaffected. There are, 

however, many combinations of parameters that reasonably mimic correct 

est~tion of significance of o. These combinations are typically 

those with relatively sm.&ll changes :in corresponding pre and post para-

meters from correct values. However, large variations frc~ correct 

values can also mimic by chance due to the cancellation or offsetting 

of individual parameter contributions. As noted, more typically a 

severe overestimation of signJficance is obtained when M » 1 and severe 

underestimation of significance occurs when M «.1. 

bL Bias of n and ~ 

In Section 2.2, a flexible mean shift function, 

oCt) _ {O 
oK(t) 

was described where 0 is the intrinsic utility of an intervention programs 

activities· and K(t) is the dynamic coefficient whose specification is 

determined. by whether the intervention effect is influenced or not influ-
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enced by the environmental process, the indi~ect or direct stimulus-

response model forms. The M.L.E. estimators of ~ and 0 were determined, 

to be: 

and 

_ [~t~P,O,q)~][!~p,O,q~] _ [!~~p,O,q)~][~tM~P,O,q)~] 

II [;~p,O,q)~] [!~p,O,q)!] _ [;\iP,0,q)!12 

... 
o • 

[~t~p,O,q)~] [! \iP"O,q\] _ [~t~p,O,q)!] [~t~p,O,q)!] 

[!~~p,O,q)!] [!~P,0,q1] - [!\ip,0,q)!]2 

h ~~p,O,q) i h i w ere -~ s t enverse of the covariance matrix of Z and K = - -
[O,0, ••• ,K(nl +l),K(nl +2), ••• ,K(nl +n2)]t with the first n

l 
elements zero. 

Since E(:) - ~~~!, the estimators for the mean, ~, and program 

utility, 0, are unbiased when the! vector is correctly 'assigned, since 

E(~) - II and E(5) - o. However, when the! vector is incorrectly assigned, 

the estimators are biased since, we have oCt) :: OKO(t) rather than 

oCt) - oX(t), ego 
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E(~) - jJ + 

" 
E(IS) - (2-35) 

It should be notgd that only when the correct specification of model 

structure, either direct stimulus response or indirect stimulus response 

is made, in which case'does ~o +~, are the estimates of jJ and 0 unbiased. 

In this situation even when the model parameter vector of the noise process, 

composed of 1, i, 1/1, y, is not correctly assigned, i.e., the matrix 

~p,O,q) is not appropriate for the data, the estimates p and 5 are still 

unbiased. In addition, regardless whether the correct model specification 

is or is not made, the estimates of ~ and ~ are unbiased when n2 - 1. 

(Effectively K(l) for the direct stimulus or indirect stimulus response 

model is iden~ical.) This fact is exploited in the identification of the 

appropriate model structure which determines the specific form of K(t) in 

the mean shift function in the following section. Lastly, if the direct 

stimulus response structure is appropriate and identified correctly, the 

estimates of jJ and 0 are unbiased even when the noise p'rocess parameters 

are misspecified (eg. K(t) + f(i,~,t,y) - 1 all t > n1). 

The magnitude of bias due to misspecification of the K vector 

obtained from Equat~ons (2-34) and (2-35) may be expressed as 
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(2-36) 

where A-l and c-o regardless of the form of K(t) or the correct speci-

fication of the parameters of the noise process. Both B and Dare 

functions of the pre and post intervention noise process parameters. 

Thus given ,that the form of K(t) is not correct., h t e specification of 

a particular ~ombination of noise process parameter 

the magnitUde of the bias in the estimates G and ~. 

values determines 

Combinations of 

parameters ~iving rise to values of B close to ~ero d 
~ an D close to 1 

result in small biases. 

The practical consequences of incorrectly specifying a multicon­

sequence or single consequence mod'el or the 'misspecification of the 

noise parameter values for the correct specification for the indirect 

stimulus response form is illustrated in Example 1 in terms of the bias 

inGand3. 

Example 1 

Table 2.2 gives computed values of Band D for the true parame­

ters representing a multi consequence process (e.g., ¢T = 0.6, ~T = 0.3, 

aT - 0.3 and YT - 0.6) and a single consequence process (e.g., 

¢T - ~T • 0.6 and aT - YT, - 0.3). Entries a, band c in Table 2.2 are 

for the mUltiple consequence case where the preintervention parameters 

used are both set equal to the true parameters, equal to the true para­

meters plus 0.3 or minus 0.3, respectively. F or comparison entries d 

and e are for the single conseq t uence rue process in which the prein-
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tervention parameters are set equal to the true parameters and equal to 

the true parameters plus 0.3, respectively. Entries a through e are 

for nl = n2 = 10 while entry f corresponds to the parameter value of 

entry e only differing in that nl = n2 = 20. 

From Equation (2-36) the bias in G and ~ is seen to be propor­

tional to 0; the bias in G being Bo and the bias in ~ being (D-l)o. 

From Table 2.2 the estimate of 0 is seen to be unbiased when y = 0.0 
F 
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regardless of the other misspecifications of model parameters. Typically, 

however, depending upon the combinations of the misspecified parameters, 

mild t~ severe bias are noted, being in'some cases several times the 

magnitude of 0, with ~ either overestimated (B and 0 opposite signs), 

or underestimated (both Band 0 of the same sign). Similar observations 

both with regard to the magnitude of the bias and direction of the bias 

(overestimation of underestimation) are noted for o. 

The ramification of ignoring the need of a multiconsequence model 

and using a single consequence model allowing only for a shift in the 

process label is illustrated in Table 2.2(a) - (c). Although a small 

nonconsequential bias in the mean is expected the intervention i~pact is 

overestimated by approximately 40%. Similarly severe biases both 

positive and negative are illustrated in Table led) in situations in 

which a single consequence model is appropriate while th~ multiconse­

quence form is fit. The potential magnitudes and signs of the biases 

clearly indicate the need to consider the multiconsequence formulation 

in real world evaluations of intervention experiments. 

As nl and n2 increase, the bias in the estimates of ~ and 0, 
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asymptotically stabilizes to a fixed bias. The comparison of entry e 

and f which corresponds to an i'ncrease from 1 to nl • n2 • 0 nl • n2 • 

20 illustrates a rapid convergence for most combinations of parameters 

S except severe departures of the postintervention autoregressive 

parameter from its true value. Thus increasing sample size does not 

offset the biases induced by parameter misspecification. 

From Table 2.2, the relative robustness of the estimators ~ and 

o are observable. The e timat i s or ~ s more robust than the estimator 

o for depar~ures of ~ from ~T. pepartures toward the boundaries of the 

stationary o~ invertibility region are more severe. The estimator ~ is 

more robust to departures from true value of the preinterVention para­

meters ~T and aT than the corresponding postintervention parameters. 

Departures, in the ,;ll\1toregressive parameters exert a greater effect than 

equivalent magnitude departures in the moving average paramete~s. 

Regardless whether the misspecification of noise parameters cause 

a bias in the estimates of ~ and 0, it does affect the detection of the 

true significance since the Var(O) and Var(5) are not correct for im-

properly specified noise parameters. E' 0 th i di . 1 . r .e n rect st~u us response 

model, which may result in small biases in the estimate of g due to 

noise parameter misspecification resulting in KO • K, the statistical .... ,. 
significance of 0 may be severely distorted. 

Example 2 

Table 2.3 gives entries of h where 

h • [E(Var(~/& )MISs/E (Var(8Ia)' ]1/2 
a a COR (2-37) 



r 
L 

Table 2.2. Value of Band D for Misspecifications of S 
Parameters (Entries are B above, D below) -

~ Yp' -0.9 -0.6 

-0.9 0.03 0.06 
0.61 0.48 

-0.6 0.00 0.02 
0.74 0.61 

-0.3 0.00 0.01 
0.91 0.76 

0.0 0.00 0.00 . 
1.15 0.98 

0.3 0.06 0.03 
1.41 1.28 -

0.6 0.37 0.28 
0.95 1.13 

0.9 0.58 0.56 
0.12 0.26 

* Yp -0.9 -0.6 

-0.9 0.05 0.16 
0.58 0.39 

-0.6 0.01 0.05 
0.73 0.58 

-0.3 0.00 0.02 
0.91 0.75 

0.0 0.00 0.00 
1.15 0.98 

0.3 0.12 0.05 
1.28 1.22 

0.6 0.43 0.35 
0.72 0.91 

0.9 0.58 0.56 
0.23 0.35 

+T • 0.6. ST • 0.3. 'T •• 0.3, YT • 0.6 

+!'-. 0.6, Sp' • 0.3 

-0.3 0.0 0.3 0.6 0.9 

0.05 -0.03 -0.15 -0.31 -0.48 
0.40 0.35 0.29 0.20 0.06 

0.02 0.01 -0.02 -0.06 -0.12 
0.50 0.40 0.30 0.20 0.08 

0.01 0.01 0.00 -0.02 -0.04 
0.62 0.49 0.36 0.23 0.09 .. 
0.00 0.00 0.00 0.00 0.00 
0.81 0.63 0.4'6 0.29 0.11 

0.00 -0.01 -0.01 0.00 0.02 
1.10 0.88 0.64 0.40 0.16 

0.18 0.08 0.00 -0.02 0.03 
1.22 1.19 1.00 0.65 0.26 

0.53 0.49 0.39 0.19 -0.02 
0.41 0.58 0.78 0.96 0.65 

(a) 

+T • 0.6. ST • 0.3, 'T • 0.3, YT • 0.6 

.p'. 0.9. SF· 0.6 

-0.3 0.0 0.3 0.6 0.9 

0.24 0.25 0.15 0.08 -0.38 
0.27 0.20 0.18 0.16 0.06 

0.08 0.08 0.05 0.00 -0.08 
0.46 0.36 0.27 0.19 0.08 

0.03 0.03 0.02 0.00 -0.02 
0.60 0.47 0.35 0.22 0.09 

0.00 0.00 0.00 0.00 0.00 
0.81 0.63 0.46 0.29 0.14 

0.01 -0.02 -0.03 -0.02 0.01 
1.09 0.90 0.67 0.41 0.16 

0.24 0.12 0.00 -0.06 0.00 
1.05 1.10 1.00 0.69 0.27 

0 • .54 0.50 0.42 0.24 -0.05 
0.47 0:61 0.76 0.91 0.66 

(b) 
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Table 2.2. (Cont'd) 

~ • D2 • 10 'T • 0.6. aT • 0.3. ~T • 0.3. Y
T 

• 0.6 

'F • 0.3 .. SF· 0.0 

~ -0.9 -0.6 Yp' -0.3 0.0 0.3 0.6 0.9 

-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

~ YF 

-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

0.01 0.03 -0.01 -0.08 0.62 0.51 -0.19 -0.31 -0.44 0.44 0.38 0.30 o.ao 0.05 0.00 0.01 0.01 
0.74 0.62 

-0.01 -0.03 -0.07 -0.11 0.51 0.41 0.31 0.20 0.08 0.00 0.00 0.01 0.00 0.91 0.76 -0.01 -0.02 -0.04 0.63 0.50 0.36 
0.00 

0.23 0.09 
0.00 0.00 0.00 1.15 .0.98 0.00 0.00 0.00 0.81 0.63 0.46 0.29 0.11 0.05 0.02 0.00 -0.01 1.45 1.29 -0.01 .0.00 0.02 1.10 0.88 0.64 0.39 0.16 0.33 0.24 0.15 . 0.06 . 1.11 1.26 0.00 -0.01 0.04 1.31 1.23 1.00 

0.58 
0.64 0.25 

0.56 0.53 0.47 0.11 0.25 0.37 0.16 -0.01 0.42 0.61 0.83 1.00 0.64 

(.c) 

~ • D2 • 10 'T • 0.6, aT • 0.3. ~T • 0.6. Y
T 

• 0.3 

+F· 0.6. SF· 0.3 

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 
-0.03 0.13 0.02 
1 60 1,32 1,09 

-0.02 -0.10 -0.20 -0.32 0,,87 , 0,,66 o 43 0.17 -0.05 -0.03 0.00 -0.00 -0.01 1.91 1 59 1,29 1.02 a 75 
-0.04 -0.08 

0.48 0.20 -0.07 -0.04 -0.02 
2.33 1.94 1.5S 

0.00 0.00 -0.01 -0.03 1.24 0.90 0.58 
0.00 0.00 0.25 
2.S1 

0.00 0.00 0.00 2.40 1.98 1.56 
0.00 0.00 

1.15 0.73 0.46 0.30 0.31 
2, 61 258 

0.17 0.09 0.02 0.00 2 38 2,,02 1.54 
0.00 

l.00 0.43 1.71 1.42 
-1 23 

1.07 0.68 0.30 0.00 1,06 0.04 0.02 177 1.95 1 52 1.77 1.75 0.70 
-3.80 1.71 1.62 1.42 -2,.96 -2.07 -1.1n 

0.91 0.04 
O .. M 1.2Q 1 51. 

(d) 
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-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

~ YlI' 

-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

-0.9 -0.6 

-0.06 0.03 
1.63 1.30 

-O.lS -0.07 
2.01 1.64 

-0.16 -0.09 
2.46 2.01 

0.00 0.00 
2.81 2.1.0 

0~82 0.57 
1.68 2.00 

2.00 1.76 
-2.32 -1.10 

1.77 1.76 
-3.4' -2.68 

-0.9 -0.6 

0.02 0.04 
0.59 0.48 

0.00 0.01 
0.71 0.59 
0.00 0.00 
0.87 0.73 
0.00 0.00 
1.12 0.95 

0.04 0.01 
1.47 1.29 

0.29 0.22 
1.29 1.38 
0.56 0.55 
0.28 0.36 

Table 2.2r (Cont' d) 

+r • 0.6, 8r - 0.3, .r • 0.6, Yr - 0.3 

+F • 0.9, 8p'. 0'.6 

-0.3 

o.a 
1.02 

-0.01 
1.30 

-0.04 
1.61 

0.00 
1.98 

0.35 
2.06 

1.45 
0.06 

1.73 
-1.86 

-0.3 

0.03 
0.39 

0.01 
0~48 

0.01 
0.60 

0.00 
0.77 

0.00 
1.08 

0.13 
1.39 

0.53 
0.44 

0.0 0.3 0.6 0.9 

0.14 0.09 -0.05 -0.25 
0.78 0.59 0.40 0.17 
0.02 0.02 0.00 -0.06 
1.01 0.73 0.47 0.20 

-0.01 0.01 0.00 -0.02 
1.24 0.90 0.57 ... 0.25 
0.00 0.00 0.00 0.00 
1.56 1.15 0.73 0.31 ' 

0.18 0.06 0.00 0;01 
1.88 1.51 1.00 0.44 

1.03 0.55 0.12 0.00' 
1.03 1.58 1..46 0.71 

1.67 1.53 1.14 0.11 
-1.00 -0.05 1.03 1.50 

(e) 

+r • 0.6, 8r • 0.3, "'T • 0.3, YT - 0.6 

+p' • 0.6, 8F - O.l 

0.0 0.3 0.6 0.9 

-0.01 -0.10 -0.20 -0.33 
0.33 0.26 0.18 0.06 
0.00 -0.01 -0.04 -0.07 
0.38 0.28 0.17 0.06 
0.00 0.00 -0.01 -0.02 
0.46 0.33 0.20 0.07 
0.00 0.00 0.00 0.00 
0.60 0.43 0.26 0.09 

-0.01 -0.01 0.00 0.01 
0.85 0.61 0.36 0.12 
0.06 0.00 -0.01 0.02 
1.26 1.00 0.62 0.20 
0.51 0.44 0.28 -0.01 
0.55 0.70 0.90 0.62 

(f) 
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where MISS and COR denotes misspecified and correct, respectively, for 

the same combinations of the noise parameters used in Table 2.2. When 

h > 1, the misspecification of these parameters result in an overesti-
,.. ,.. 

mation of Var(o/cr ) and consequently, and underestimation of the sig­a ,.. 
nificance of o. Similarly, when h < 1, we effectively underestimate 

,.. A A 

Var(o/cr ) and overestimate the significance of O. As seen from the 
a 

range exhibited for h in Table 2.3, severe overestimation or under-
,.. A 

estimation of Var(o/cr ) can occur as values of h from 0.1 to 2.4 are 
a 

seen. 

The composite consequence of the bias in the point estimates and 

the over or under estimation of h is evaluable using the results of 

both Table 2.2 and Table 2.3. The scale factor to measure departure 

of the test statistics in testing whether HO: 0 = 0 versus Hl : o:/: 0 

is nth. When this ratio is one, the test statistic adequately portrays 

the time significance or non significance. When this scale factor is 

59 

close to one, this might be due to the compensation of severe departures 

in Band h or due to minor departures in Band h from one. In the 

former situation although adequate portrayal of the significance of-the 

intervention effect 0 is obtained severe error in the magnitude of the 

intervention program utility for subsequent policy inferences such as 

the value of a certain program type is present. 

More typically values of the scale factor result in severe mis-

estimation of the test statistics. For example, from entry a of Table 

2.2 and Table 2.3 for tPF = 0.6 and YF = -0.6, the scale factor is .27 

while when tPF = 0.0 and YF = 0.6 the scale factor is 1.25. When testing 

i, 
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Table 2.3. Computed Values of h for Misspecified Parameters S 

-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

-0.6 

-0.3 

0.0 

6.3 
0.6 

0.9 

-0.9 

0.98 

0.95 

0.89 

0.81 

0.71 

0.57 

0.33 

-0.9 

1.12 

1.44 

1.45 

1.35 

1.17 

0.91 

0.49 

-0.9 

0.86 

0.81 

0.75 

0.68 

0.59 

0.49 

0.28 

-0.6 

0.93 

1.05 

1.00 

0.93 

0.84 

0.70 

0.43 

-0.6 

1.43 

1.90 

1.90 

1. 79 

1.59 

1.27 

0.72 

-0.6 

0.78 

0.88 

0.84 

0.77 

0.69 

0.58 

0.36 

'T - 0.6, ST - 0.3. ~T - 0.3, YT - 0.6 

'F - 0.6, SF - .3 

-0.3 

0.69 

1.02 

1.05 

1.02 

0.95 

0.84 

0.57 

(a) 

0.0 

0.48 

0.92 

1.03 

1.05 

1.02 

0.95 

0.73 

0.3 

0.35 

0.81 

0.98 

1.03 

1.03 

1.00 

0.88 

0.6 

0.28 

0.75 

0.98 

1.05 
.1.04 

0.99 

0.93 

'T - 0.6, ST - 0.-3, tilT - 0.3, YT - 0.6 

.F ~ 0.9, SF • 0.6 

-0.3 

1.54 

2.17 

2.27 

2.22 

2.07 

1.78 

1.13 

0.0 

0.93 

1.87 

2.21 

2.35 

2.37 

2.27 

1. 73 

(b) 

0.3 

0.47 

1.28 

1.74 

2.01 

2.18 

2.27 

2.07 

0.6 

0.28 

0.86 

1.26 

1.52 

1.69 

1. 79 

1. 76 

.T n 0.6, ST - 0.3, ~T - 0.3, ~T - 0.6 

'F - 0.3, SF - 0.0 

-0.3 

0.59 

0.87 

0.88 

0.84 

0.77 
0.68 

0.46 

0.0 

0.44 

0.81 

0.89 

0.88 

0.83 

0.76 

0.58 

(c) 

0.3 

0.34 

0.76 

0.89 

0.91 

0.87 

0.81 

0.70 

0.6 

0.29 

0.74 

0.94 

0.99 

0.94 

0.85 

Q.76 

0.9 

0.24 

0.70 

1.02 

1.19 

1.22 

1.08 

0.85 

0.9 

0.24 

0.69 

1.02 

1.20 

1.30 

1.27 

1.21 

0.9 

0.24 

0.70 

1.02 

1.19 

1.20 

1.05 

0.78 
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Y, 
-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

-------- ----

-0.9 

0.86 

0.80 

0.70 

0.58 

0.45 

0.39 

0.12 

-0.6 

0.92 

0.92 

0.82 

0.70 

0 • .56 

0.38 

0.16 

Table 2.3. (Cont'd) 

. +r - 0.6, Sr - 0.3, "T - 0.6, Y
T

- .0.3 

;, - 0.6, SF - 0.3 

-0.3 0.0 

0.78 0 • .58 

0.97 0.96 

0.92 0.98 

0.82 0.92 

0.68 0.80 

0.49 0.62 

0.22 0.30 
d· 

0.3 

0.44 
0.91 

1.01 

0.99 

0.90 

0.75 
0'.43 

0.6 

0.36 

0.87 

1.07 

1.08 

1.00 
0.87 

0.61} 

·r · 0.6, ST • .0.3, "T • 0.6, 0 YT • .3 

.p - 0.9, SF • 0.6 

0.9 

0.32 

0.84 

1.15 

1.28 

1.24 

1.03 

0.74 

~~--~-~0~.~9~--~_~0~.6~ __ ~_~0~.;3~ __ ~~ ____ Jh1-____ QJL-__ ~. 
-0.9 0.98 1.42 1 73 1°·0 0.3 0.6 0.9 

• 13 0 .. ~ -0.6 1 20 • .59 '0.36 

-0.3 1:14 ~::: :.~; ~.95 1.43 1.01 ~::: 
0.0 0.98 1.35 1'79 2.

10 
1.79 1.37 1.15 

0.3 0.75 1.06 1'48 1.
06 

1.92 1.56 1.30 
• . .86 

;::. ;::: ;::: ~.~ 1.48 :::: ~::: ~::~ 

-0.9 

-0.6 

-0.3 

0.0 

0.3 

0.6 

0.9 

-0.9 -0.6 
1.02 

0.99 

0.92 

0.85 

0.76 

0.62 

0.34 

0.94 

1.06 

.1..02 

0.95 

0.87 

0.74 

0.44 

• 3 0.72 1.02 1 

+T • 0.6, ST • 0.3, >I. 0 3 
"'T· • , "T • 0.6 

+F • 0.6, SF • 0.3 

-0.3 0.0 

0.72 0.54 

1.04 0.97 

1.06 1.06 

1.02 1.06 

0.~6 1.02 

0.85 0.95 
0.56 0.71 

(f) 

0.3 

0.43 

0.92 

1.06 

1.08 

1.05 

1.00 

0.86 

0.6 

0.36 

0.94 

1.16 

1.20 

1.13 

1.03 

0.93 

0.9 

0.31 

0.99 

1.44 

1.66 

1.64 

1.36 

0.92 

61 



at the ex • 0.05 level of significance for 'lTalu~\S of the true parameter 

o between the critical value of the test and approximately four times 

the critical value would result in the incorrect inference of accepting 

HO when ~ should be preferred. In the latter case, values of the true 

parameter less than the critical value of the test but greater than 

approximately 0.80 of the critical value results in the incorrect 

inference of rejecting HO and HO is true. 

2.7. MOdeling Procedures 

62 

For the modeling of multiconsequence ~nterventio~ time series ex­

periments the time occurrence of an intervention program is known which 

determines the preintervention and postintervention series size nl and 

n
2 

respectively. Also from the experiment it is known whether the in­

tervention activities are directed specifically to subjects whose re-

sponse forms the time series monitored or is in fact directed to the 

general environment from which the time series responses are monitored. 

In the former case we start with the instantaneous mean shift multi-

consequence model structure with known mean shift function o(t) • oK(t) 

where K(t) is zero for t ~ ~ and one for t > nl , wh~le for the latter 

we start with the transient mean level change model structure to allow 

for the realized change in mean level to'be influenced by the environ-

mental process. As discussed in Section 2.2.2, when this distinction 

cannot be easily made, the analyst~ should be initiated with the more 
. 

general indirect stimulus-response case or transient mean level shift 

structure with unknown mean shift function form to identify the appro-

priate model form. 
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The steps for moC::,>ling the indirect-stimulus response case azoe; 

1) Estimate ~, 2 and ~ from the nl preintervention observations. 

2) Identif~~ the form of the mean shift function by 

sequenti£i estimation of o(t). 

Recall that when n2 = 1, K(t) is the same for both the 

transient or instantaneous mean level cases. Therefore, 

incorrect values of postintervention parameters do not bias 

the estimation of ~(t). Thus ~ and y may be set equal to ... ... 
<p -and e (e.g., the'single 'consequence model). ... ... 

3)'From the sequential estimates of the mean shift function with 

n2 = 1 determille the form of K(t). 

03 

4) Estimate ~, ~ and r from the n2 postintervention observations. 

5) Estimate ~, 2, 2, ~, ~ and r simultaneously from the nl +n2 

observations. 

Figure 2.5 pictorially describes the modeling procedures. The 

estimation procedures called for in each step here are those delineated 

in Section 2.2. As seen from this figure, the primary difference in the 

modeling of direct stimulus-response time series experiments from the 

indirect-stimulus response experiments is that in the latter, the mean 

shift function form is not known and has to be identified. The estima-

tion procedures for the mean shift is described in Section 2.2.2. 

2.8 Considerations in Designing Interrupted Time Series 
Experiments 

The design of interrupted time series experiments consists of 

specifying the ~ppropriate number of pre and post intervention observa-

tions. By appropriate, we refer to the individual size of nl and n2 and 
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Figure 2.5. 1.
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also their relative size to be able to; ~~~\ ~~ , 

1) statistically detect a given magnitude~covariance~ as 

measured by the change in the corresponding pre and post 

intervention autoregressive and moving average parameters, 

with Type I error Cl
l 

and, 

2) statistically detect a standardized magnitude of an inter-

vention program's utility o/~ with Type I error Cl2 • 

In this section we describe each of these considerations in turn and 

then focus the results deriveg for interrupted' time series designs. 

2.8.1 Sample Sizes for Detecting a Change in Covariance 

Intuitively, the smaller difference between ~l and ~2' the more 

difficult it is to ,reject the hypotheses HO: ~l - ~2. Further the 

" more observations we have, the better chance that we will be able to 

detect any real difference that exists. In developing specific sample 
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sizes, we will assume that both the multiconsequence model or the single 

consequence model forms have been correctly identified and estimated. 

.' '" A That is, we assume K(t) is assigned correctly an~ ~ - ~, 0 = 0 with 

pr~9ability 1. We will denote. z~ - Zt - ~, t ~ nl and Z~ - ~ - o·K(t), 

t ~ nl+l, i.e., ZC ~ N(O'L~P,O,q»), where N • nl + n2" 

Thus, when the correct model is a multiconsequence interventj.on 

form, 

(2-38) 



f 
66 

the incorrect single consequence model will be, 

all t. (2-39) 

For known parameter values of ~ (B), $ (B), ~ (B), r (B) of the p p Qq q 

correct model, the parameters SOof the incorrect single consequence 

° ... ° fo',t'm ,contained in i (B) and ® (B) can be estimated so as to minimize 
p q 

ni"~n2. 2 
t A. Ii Since the multi.consequence form is correct, the resulting 
l. t . 

tal 

model of the residuals of the single consequence model is, 

-1 A -1 
t~ (B)~~(B)At- ~ (B)® (B)a t ~ 0,1 

P q t 

(2-40) 
-1 A -1 

i~ (B)®~(B)At - l{I (B)r q (B) at t ~ n1+l p 

or 

,... -1 A-1 
At .. ~O(BH (B)®O (B)® (B)a t ~ n1 p p q q t 

(2-41) 

-1 -1 
A - ~O(B)l{I (B)®'" ° (B)r (B)a t p p q q t. 
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The test statistic W for the null hypothesis that a single consequence 

where ~l aud ~2 are the pre-invention and the post' intervention model 

parameter vectors, respectively, ~t _ (~~,~~), and ~O is the correspond­

ing single consequence model parameter vector, and ~p,O,q)(~) and 

(p ° q) MN " (~) are the inverses of the covariance matrix of ZC constructed 

with ~O and ~.' respectively.. Taking the expectation of (wBlnl,n2'~) 

results in, 

(2-42) 

"2 where E(At ) is approximately computed from Equation (2-40) and Equation 

(2-41) by applying the covariance generating function and SO is obtained ... 
by searching through the (§1§1-§2) subspace. If the E(w~iu1,n2'~) > 

2 X ex then the sample size (~,n2) is large enough to statistically 
- ,q 

detect the differences between §l and §2 at the (l-ex) level. 

.~ 
\ 
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For example; for the ARIMA(l,O,l)MCI model with el'~l'Yl'~l 

given, 

and the alternative single consequence model, 

t < 11 
- 1 

all t 
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(2-43) 

"0 ,,0 "21' where 411 and 91 are the parameters the minimize tE(At x;.,n2'~). The 

residuals of the single consequence set are; 

1-9 B . "0 1-9 B ... 
( ... ~-)at + 

1 A .. (411 - 411)B ( . )a
t t ~ nl t 1-9 B 1-41 B 1 1 

(2-44) 

1-y B 
'.J. . .. ~O''D 

I-Y1B ... I. 1 ,_ ..L .. ". ( )a
t t .=:. n

1
+1 .... t \-eOB/~t --r 

\'+'1 - IjI ID . 
1-ljI B 

1 1 

To compute,L E(A~lnl,n2'~) we apply the covariance generating function 

which results in, 
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(2-45) 

(2-46) 
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For a fixed preintervention s~ple size nl , the general behavior 

of the sample size n2 to detect the covariance change for the ARIMA 

(l,O,l)MCI model is indicated by the sign of the third term f9r each 

equation labeled (4-8), which is the only term that can be negative. 

When ~l > $1 and 91 > Yl or ~l < $1 and 91 < Yl each of the third 

terms are negative otherwise they are positive. In the former cases, 

n2 increase when I~l-$ll is small and decrease when I~l-$ll is large. 

From Equation (2-46), sample size requirements for the (l,O,O)MCI or 

(O,O,l)MCI model can be obtained by setting the appropriate subset of 

the noise parameters to zero. 
AO 

For example, when ~1 3 ~l - ~l - a we 

obtain the E(W81~,n2,9l'Yl) for the (0,0,1) process. -
Example 3 

In the following numerical example, the magnitude of the post 

intervention sample size required to determine a given size covariance 
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change is addressed.. Tables 2.4(a) - (c) illustrate the computed sample 

size requirements for the (0,0,1) process for n
l 

~. Kn
Z 

wi:h the tabled 

values being n2 for values of K .. 1.0, 0.5 and 2.0. Thus, equivalent 

time histories of the pre and post intervention segments are available 

when K .. 1.0 while more preintervention history is available when 

K > 1.0 and mere postintervention history than preintervention history. 

In each table, e.g., the required size of the nZ sample is seen to be 

sensitive to the combination of parameter values (91' 1)'1) for situations in 

whichISl-Yll· is relatively small (e.g., values around the diagonal whel:'e 

9i-Yl)' As expected the larger the magnitude of 19l-yll the smaller the 

requirements for the postintervention sample size. In fact, for larger 

values contained in the top right or bottom left the sample size becomes 
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Table 2-4. Sample Sizes of n2 for detecting Covariance 
O1ange of STMA(l) Process Given n = k 11 

2 1 • 

(a) K = 1.0 

Significant Level = 0.15 

-0.95 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0 U 0 ~~ . . . ~ 
- 28 10 6 4 4 3 ,3 .2 2 2 72 - 42 13 7 5 4 3 3 3 2 25 71 - 71 19 lU 6 5 4 3 3 14 24 92 - 92 24 12 7 5 4 4 9 13 27 105 - 105 27 13 6 6 c: 
6 oJ 8 13 23 109 109 28 13 - 8 G 5 6 8 13 27 105 - 105 27 13 9 4 4 5 7 12 24 92 - 92 24 14 3 3 4 5 6 10 19 71 - 71 25 2 3 3 3 4 5 7 13 42 72 -2 2 2 3 3 4 4 6 10 28 -

Significant Level = 0.05 

-0.95 -:).8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 0.95 

77 23 14 10 l3 7 6 6 242 139 39 
5 5 

20 13 10 8 7 ,.. ,.. 
82 241 

.) ,) - 241 64 31 19 14 11 '\ E 45 ::" 82 314 314 82 39 24 16 13 11 29 43 93 358 - 358 93 43 2() IE 15 20 27 45 96 373 373 9G 45 15 Ie 26 43 
27 20 

93 358 358 93 ~3 2-;: 1] 13 ,c ,,~ 

39 82 314 

LJ 
.LU - .c'i 3H 82 i!5 

9 11 H 19 31 64 2t;1 241 ! ., 

6 7 8 "'~ 0 10 13 20 39 139 .) ,I -, I c:. 5 6 6 7 
- £(~L. 

~ 8 10 14 23 77 ~- I 
~-- ... -- -.-
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Table 2-4. (Cent' d) 

(b) K = 0.5 

Significant Level = 0.15 

-0 95 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 O.SS . 
- 28 10 6 4 4 3 3 3 2 2 

7Y - 42 13 7 5 ~ 3 3 3 3 
25 71 - 71 20 10 7 5 4 3 3 
14 25 92 - 92 25 12 8 6 4 <1 

9 13 28 105 - 105 28 13 8 6 5 
7 9 14 29 109 - lU9 29 14 9 7 
5 6 8 13 28 105 - 105 213 13 9 
4 4 6 8 12 25 92 - 92 25 1~ 

3 3 4 5 7 10 20 71 - 71 25 
3 3 3 3 4 5 7 13 ~2 - 72 

3 3 4 4 
,. 

10 2(,) -2 2 3 0 

Significant Level = 0.05 

-0.S5 -0.8 -0.6 -0.4 -0.2 0.0 0.2 O.~ 0.6 0.3 C.~5 

C\ 7 7 ~) 
r S 72 23 14 11 ..- -' 

243 140 40 21 14 11 9 8 7 7 
83 242 242 65 32 20 15 12 10 9 
46 83 315 - 315 83 40 25 17 14 12 
30 45 94 359 - 359 g4 45 27 IS: I:) 

21 2n c 46 97 375 374 97 41) 2G 21 
16 19 27 45 94 359 359 94 45 30 
12 14 17 25 40 83 315 - 315 83 4(j 

c 10 12 15 20 ..- 32 65 242 - 242 ti3 
1' ... · -:t '" 
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Table 2-4. (Cent· d) 

(c) K = 2.0 

Significant Level = 0.15 

-0.95 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 O.G 0.8 0.S5 

- 28 10 6 4 4 3 3 2 2 2 72 - 42 13 7 5 4 3 3 .... 2 ~ 24 70 - 70 19 9 6 4 3 3 j 
.J 13 24 92 - 92 24 11 7 5 4 3 9 13 27 104 - 104 27 13 8 5 t.' z 6 8 13 28 109 - 109 28 13 8 G 4 5 8 13 27 104 - 104 27 13 9 3 4 5 7 11 24 92 - ~2 24 13 3 3 3 4 6 9 19 70 - 70 24 2 2 3 3 4 5 7 13 42 - 72 2 2 2 3 3 4 4 6 10 2b -

Significant ~ve1 = 0.05 

-0.95 -0.8 -o.G -0.4 -0.2 0.0 0.2 0.4 o ,. O.L 0.95 .0 

76 22 13 9 8 6 6 5 5 4 241 137 30 19 13 9 0 G ,. 
5 u 81 239 - 239 62 30 18 13 10 8 7 44 81 313 - 313 81 37 22 15 12 10 28 42 91 357 357 91 42 25 17 14 19 26 44 95 372 372 95 4"; ..,,. 

1 ( ~') --' 14 17 25 42 91 357 357 91 ~2 21:.-10 12 15 22 37 81 313 313 &1 ~/2 ., 
6 10 13 is 30 62 239 239 <Jl 

T 

5 6 ,. 
8 9 13 19 3U 137 21,1 0 

4 5 5 6 G 8 9 13 22 7;; 
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fixed without variation for diffel:ent parameter combinations. Further, 

in comparison to the case exhibited in which n1 • n2, increasing the 

relative length of the preintervention history to the postintervention 
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history results in smaller magnitudes of n2, for comparable size changes 

in covariance for a given a level while decreasing the relative size of 

the preintervention history to the postintervention history dictates a 

larger postintervention history n2 for equivalent magnitude changes in 

covariance for a given a level. This tradeoff is exploited, in Section 

2.9, in the generation of optimal designs for interrupted.time series 

experiments. 

2.8.2 Sample Sizes for Detect'ing a Change in Mean Level 

The test of significance of e involves the evaluation of the 

hypothesis, 

in which the test statistic We is, 

qr ~/oa 
J .~ 

"t,JVar(%a) 

For a preselected type I level, a 2, we accept HO when lWei < 

In Equation (2-47), we see the ability to detect a 

(2-47) 

standardized magnitude of the program utility is dependent upon the 
,. 

behavior of Var(e/cr ) with variations in the pre and post intervention 
a 
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sample sizes nl and n2-

For stationary processes, 

Lim E(Var(d/oil)] • 11M, 
n2-k'D 
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where M is a constant that is determined by the model parameters as well 

as n
l

• For ~~le in the case of the (l,O,l)MCI model, 
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(2-48) 
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Since for a given value of n1 , E(Var(5Iaa» doesn't go to zero as n2 

increases there is a lower bound of 101, 'be1ow which a given magnitude 
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of 0 cannot be statistically detTcted even as n~ goes to infinity. That 

falls in the region [0, t /2 co~rLim E(Var(~/O' »] we 
"2 ". -+GO a n2 

cannot detect the significance of the mean-shift. Alternatively from 

the width of the (1- "2) 100% confidence interval for III a a which is 

2t 12 co /Lim E Var(5la ), I (ll+o)/aal falls in the (1-"2)100% confidence 
"z ' n -+GO a , 

Z 
interval for ll, therefore the magnitude of mean shift cannot be detected 

at the "z significance level. 

For nonstationary processes, d ~ 1, II • 0 and Var(~) = O. In this 

case where only 0 is estimated Lim E[Var(5/q;a)] • O. Therefore any 
nZ-+GO 

mean shift magnitude, 0 ~ 0, can be detected to be statistically significant 

by increasing the postintervention observations nZ' 

Example 4 

In the following numerical example" the effect of the preintervention 

correlative stxucture on the ability to detect a minimum threshold shift 

in the process mean for stationary processes and the magnitude of the 

postintervention s~mple size n2 required to determine a given change in 

process level is illustrated. Table 2.5 displays numerical values of the 

" , Lim E[Var(o/O'a)] fbrd=O, nl = 10 and -1.0 < 1jJl'Yl < 1.0. For a basis 
ni~oo 

of comparison of the effect of varying the preinter'vention parameters 

" <PI' 81 on the Lim E[Var(o/O'a)]' entry a contains the case where' <PI = 
nZ~ 

81 = 0.0. Entries b-e are for <1>1 = 0.4, -0.4"and 81 = 0.4, respectively 

for all other conditions in entry a. Within each entry a-e, the closer 

(, 
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Table 2.5. Computed Values of Limit E[Var(o/cra)] Given nl = 10 
n2-+<xl 

-0.95 

0.022 

0.059 

0.081 

0.090 

0.093 

0.092 
. 0.087 

0.077 

0.063 

0.039 
0.012 

-0.8 

0.023 

0.061 

0.083 

0.092 

0.095 

0.094 

0.089 

0.081 

0.066 

0.043 
0.013 

-0.6 

0.025 

0.063 

0.085 

0.094 

0.097 

0.097 

0.093 

0.085 

0.071 

0.047 
0.016 

-0.4 

0.026 

0.065 

0.086 

0.095 

0.098 

0.098 

0.095 

0.089 

0.076 

0.Q53 
0.018 

~1 • 0.4, 91 - 0.0 (n1 ~ 10) 

'-0.95 

0.024 

0.090 

0.158 

0.202 

0.223 

0.222 

0.202 

0.166 

0.118 

0.062 

0.016 

-0.8 

0.027 

0.097 

0.169 

0.215 

0.236 

0.236 

0.216 

0.179 

0.129 

0.069 

0.018 

~0.6 

0.030 

0.107 

0.182 

0.229 

0.252 

0.253 

0.234 

0.198 

0.146 

0.080 

(1.021 

-0.4 

0.034 

0.116 

0.193 

0.240 

0.263 

0.266 

0.250 

0.216 

0.165 

0.093 

0.026 

0.026 

0.066 

0.086 

0.095 

0.099 

0.100 

0.097 

0.092 

0.081 

0.059 
0.022 

-0.2 

0.037 

0.124 

0.200 

0.246 

0.270 

0.275 

0.263 

0.233 

0.184 

0.109 

0.031 

0.0 

0.027 

0.065 

0.086 

0.095 

0.099 

0.100 

0.099 

0.095 

0.086 

0.065 
0.027 

(a) 

0.0 

0.039 

0.128 

0.203 

0.247 

0.270 

0.278 

0.270 

0.247 

0.203 

0.128 

0.039 

(b) 

0.2 0.4 

0.026 0.025 

0.064 0.062 

0.084 ~0.082 

0.093 0.091 

0.098 0.096 

0.100 0.098 

0.6 

0.024 

0.059 

0.079 

0.088 

0.094 

0.097 

0.8 

0.022 

0.056 

0.076 

0.085 

0.090 

0.094 

0.95 

0.021 

0.054 

0.072 

0.082 

0.088 

0.092 

0.099 0.099 0.098 0.096 0.094 

0.097 

0.090 

0.072 
0.033 

0.098 

0.093 

0.080 
0.041 

0.098 0.097 

0.096 0.097 

0.087 0.093 
0.054 0.072 

0.096 

0.098 

0.098 
0.092 

0.2 0.4 0.6 0.8 0.95 

0.041 0.041 0.040 0.038 0.035 

0.129 0.127 0.121 0.113 0.106 

0.200 

0.242 

0.265 

0.275 

0.272 

0.256 

0,.220 

0.150 

0.193 

0.232 

0.254 

0.266 

0.268 

0.259 

0.234 

0.174 

0.182 

0.218 

0.240 

0.253 

0.258 

0.256 

0.242 

0.198 

0.169 

0.202 

0.222 

0.236 

0.244 

0.247 

0.242 

0.218 

0.158 

0.189 

0.209 

0.222 

0.231 

0.237 

0.238 

0.228 
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Table 2-5. (Cont'd) 

~1 - -0.4, 91 - 0.0 (n1 • 10) 

-0.95 

0.018 

0.038 

0.046 

0.049 

0.049 

0.049 

0.047 

0.043 

0.037 

0.026 

0.009 

-0.8 

0.018 

0.038 

0.046 

0.049 

0.050 

0.049 

0.048 

0.045 

0.039 

0.028 

0.010 

-0.6 

0.018 

0.038 

0.047 

0.050 

0.050 

0.050 

0.049 

0.046 

0.041 

0.030 

0.011 

-0.4 

0.018 

0.038 

0.047 

0.050 

0.0,51 

0.051 

0.050 

0.047 

0.042 

0.032 

0.013 

~1 - 0.0, 91 - 0.4 (n1 • 10) 

-0.95 -0.8 -0.6 -0.4 

0.015 0.016 0.016 0.015 

0.031 0.032 0.032 0.031 

0.037 0.038 0.038 0.037 

0.039 0.040 0.040 0.040 

. 0.040 0.030 0.040 0.040 

'0.039 0.040 0.040 0.040 

'0.038 0.038 0.040 0.040 

'0.035 0.036 0.037 0.038 

0.031 0.032 0.033 0.034 

0.022 0.023 0.025 0.026 

0.008 0.009 0.010 0.011 

··0.2 

0.018 

0.038 

0.046 

0.050 

0.051 

0.051 

0.050 

&.048 

0.044 

0.035 

0.015 

-0.2 

0.015 

0.031 

0.037 

0.040 

0.040 

0.041 

0.040 

0.039 

0.036, 

0.028 

0.013 

0.0 

0.018 

0.037 

0.046 

0.049 

0.051 

0.051 

0.051 

0.049 

0.046 

".038 
0.018 

(c) 

0.0 

0.015 

0.030 

0.037 

0.040 

0.040 . 

0.041 

0.040 

0.039 

0.037 

0.030 

0.015 

Cd) 

0.2 

0.017 

0.037 

0.045 

0.049 

0.050 

0.051 

0.051 

0.050 

0.047 

0.040 

0.021 

0.2 

0.014 

0.029 

0.036 

0.039 

0.040 

0.041 

0.041 

0.040 

0.038 

0.032 

0.017 

0.4 

0.01.6 

0.036 

0.044 

0.048 

0.050 

0.051 

0.051 

0.050 

0.049 

0.043 

0.025 

0.4 

0.013 

0.029 

0.035 

0.038 

0.040 

0.040 

0.041 

0.040 

0.039 

0.034 

0.020 

0.6 

0.015 

,0.034 

0.043 

0.047 

0.049 

0.050 

0.051 

0.051 

0.050 

0.050 

0.031 

0.6 

D.012 

0.028 

0.034 

0.038 

0.039 

0.040 

0.041 

O.O~O 

0.040 

0.036 

0.024 

0.8 

0.014 

0.033 

0'.042 

0.046 

0.048 

0.049 

0.050 

0.051 

0.050 

0.049 

0.038 

0.8 

0.012 

0.026 

0.034 

0.(,)37 

0.039 

0.040 

0.040 

0.041 

0.040 

0.038 

0.029 
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0.95 

0.014 

0.032 

0.041 

0.045 

0.047 

0.OL.9 

0.050 

0.051 

0.051 

0.050 

0.045 

0.95 

0.011 

0.026 

0.033 

0.036 

0.038 

0.039 

0.040 

0.041, 

0.041 

0.040 

0.034 



-0.8 

-0.6 

-0.4 

-0.2 

0.0 

0.2 

0.4 

Table 2.5~ (Cont'd) 

-0.95 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 

0.024 0.026 0.028 0.031 0.033 0.035 0.035 0.035 0.034 0.032 

0.078 0.083 

0.123 0.129 

0.089 0.095 0.099 0.101 0.100 0.098 0.093 0.088 

0.136 0.142 0.145 0.145 0.143 0.138 0.132 0.124 

0.148 0.154 0.161 0.166 0.168 

0.158 0.164 0.171 0.176 0.179 

0.156 0.163 0.171 0.177 0.181 

0.145 0.152 0.161 0.169 0.175 

0.124 0.132 0.142 0.152 0.161 

0.168 0.165 0.159 

0.179 11 0.176 0.171 

0.182 0.181 '0.177 

0.179 0.180 0.178 

0.168 0.172 0.174 

0.152 

0.164 

0.171 

0.174 

0.174 

0.144 

0.155 

0.163 

0.].68 

0.170 

0.6 0.094 0.101 0.112 0.123 0.134 0.145 0.155 0.162 0.167 0.169 

0.8 0.053 0.058 0.067 0.076 0.088 0.101 0.115 0.130 0.145 0.158 

0.95 0.015 0.016 0.019 0.023 0.028 0.035 0.044 0.058 0.077 0.107 

(e) 
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0.95 

0.030 

0.083 

0.117 

0.137 

0.148 

0.156 

0.162 

0.166 

0.168 

0.165' 

0.139 

H \ , 

I .. } , ~ 
i 

n 
lJ 
n 
H 
·n 

n 
u 

'" the parameters to zero the larger the Lim E[Var(% )]. 
a Also as 8

1 n +00 

decreases from zero or ~1 2 '" 
increases from zero the Lim E[Var(% )] 

n +00 a 
2 

increases. Conversely as 81 increases from zero ana ~1 decreases from 

" zero the Lim E[Var(% )] decreases. 
a The smaller this value is, the 

n
2
+ 00 

greater the ability to detect a small magn.itude of the mean shift para-

meter. 'rhus, if the time series is smooth (e.g., described by moderate 

to long length runs above and below the mean, ~1 > 0, 8
1 

< 0) small 

magnitude changes in the mean shift parameter are harder to detect 

81 

than when the series is oscillatory (e.g., described by a high frequency 

component such as runs above or below the mean of short duration). 

Table 2-6(a) illustrates the sample size of n
1 

or n
2 

need to 

detect a given standardized shift in process level, % , for the sta­
a 

tionary (l,O,l)MCI models for a = 0.05, 8
1 

= 0.975 and Y1 = 0.816. For 

a given column entry, n1 , and row entry %a' the tabled entry is the 

minimum value of n2 such that Iwl > t / • Some entries contain 
.. a 2 2,n1+n2-2 

" 

00 wh~ch denotes the inability to detect the corresponding o/a for the 
a 

combination of (n1 ,n2). Table 2-6(b) il1~strates the sample size re­

quirement for the nonstationary model (l,l,l)MCI under the same para-

meter values and hypothesis test specification of Table 2-6(a). Since 

when d=l the Lim E [Var (0/0 )] converges to zero, all non zero magnitudes 
. +00 a n 2 

of %a will be detectable for large enough n
2

, as shown for the para-

meter set illustrated. In Table 2.6 for a fixed preintervention history 

n1 the larger the magnitude of o/a the smaller the postintervention 
a ' 

sample size n2• Similarly for a fixed o/aa as n
l 

increases n
2 

decreases 

... 
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Table 2.6. Sample Sizes for Detecting o/Oa 

d - 0 

5 10 20 

- - 163 
• 106 26 
.. 13 10 

15 8 7 

9 6 5 

754 

544 

443 

433 

333 

333 

222 

2 2 2 

111 

30 40 50 

82 70 66 

23 22 21 

10 10 9 

7 7 6 

555 

444 

444 

333 

3 3 3 

333 

222 

222 

221 

111 

75 100 

62 61 

21 21 

9 '9 

6 6 

5 5 

4 4 

4 4 
3 3 

3 3 

3 3 

2 2 

2 2 

1 1 

1 1 

200 

60 

20 

9 

6 

.5 

4 

4 

3 

3 

3 

2 

2 

1 

1 

(a) (O,O,l)MCI with 81 = 0.28 , Yl = 0.82 

d ~ 1 

1000 

59 

20 
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(b) (O,l,l)MCI with 81 = 0.98, Y1 = 0.82 
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except when oloa is large and n2 remains constant. For nonstationary 

processes the postintervention sample size is seen to be independent 

of the size of the preintervention sample size. Lastly, under the 

same conditions (comparing corresponding tabled values for d=O or d=l) 

a nonstationary process is seen to be more sensitive in detecting 

oloa since fewer postintervention observations n
2 

are required. 

1=.,9 Optimal Design of Interrupted Timq Series 
Experiments. 

In evaluating experimental programs in field settings, the cost 

of experiments is a paramount importance. Further, the ability to 

evaluate whether the program exhibited its intended impact is lost if 

the appropriate sample sizes in the pre and post period are not 

selected. Many field experimen,ts are often evaluated to have had no 

impact or non-reproducible impact when geogra~hical locations are 

changed. These outcomes ar.e Il0t necessarily program related but are 

design related i.n that sufficient data is not recorded. Similarly, the 

cost of field experiments can be reduced by specification of required 

sample sizes required to draw the des:f:red level of inference, with 

regard to, potential changes in covariance and the magnitude of shift 

in the process level, as related to an intervention programs goal. 

The optimal design for the multiconsequence intervention model is 

the solution to the nonlinear programming problem: 

/Y"l~. 
'~ ~\ 
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--~---~--~------..,..----- -----~---

Min: 

s.t.: E(W Inl,n2'~)' > x2 
a ,- l-al,s 

E(W ) > t / 
~ l-a2 2,nl +n2-(p+q) 

I) 

where c1 and c2 are the costs for obtaining pre and post intervention 

observations respectively and (WSln1,n2'~) and We are the test statis­

tics needed to detect a given magnitude change in covariance and pro-

cess level, respectively. The constraints are nonlin6ar and convex. 

Example 5 

Suppose the interrupted time series model is ~~own to be a 

84 

(O,O,l)MCI form with 81 - 0.975 ll.'.lld 1'1 - 0.816, for which the sample 

sizes nl and n2 are desired to be able to determine this u~gnitude change 

in covariance and simultaneously detect shifts in mean level as small as 

e/cr • 0.05. Figure 2.6 graphically illustrated the optimnl design sub­a 

ject to (a) the mean-shift constraint only, (b) the covariance-change 

constraints. When cl - c2 and only the mean-shift constraint is con­

sidered, the minimal cost feasible design (n1 - 37, n2 - 74) is read 

from the tangential point of the c1 - c2 cost curve (a) and the mean­

shift constraint. If c1 - 0.25c2 and only the covariance-change con­

,straint is coo,sidered,the minimal cost feasible design (n1 - 128, 

n2 - 34) is ~ead from the tangential point of the c1 - Oo25c cost curve 

(b) and the covariance-change constraint. In most situations both 

mean-shift and covariance-change constraints are considered. In such 

situations, the active constraint consists of two portions: (1) n1 ~·89 
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Optimal Design of Experiments (O,O,l)MCI with 
81:=0.98, Yl=0.S2, CXl=0.05'CX2~0.05 
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portion of the covariance-change constraint and (Z) nl ~ 90 portion of 

the mean-shift constraint. Since the MinlSlopel~ 3 for the upper­

left portion and MaxlSlopel = 1/45 for the lower-right portion, the 

minimal cost design will occur at (nl = 90, nZ = 63) when 1/45 ~ 

cl/cZ ~ 3 it will occur at the tangential point of the cost curve and 

the covariance-change constraint (the upper-left portion of the active 

constraint) when cl/cZ > 3, or the optimal design will occur at the 

tangential point of the cost curve and the mean-shift constraint (the 

lower-right of the active constraint) when 0 < cl/cZ < 1/45. 

Z.lO Modeling Examples 

Two data case studies are developed here to illustrate the 

different model structures, their associated model building and design 

considerations discussed in this chapter. 

Z.lO.l A Direct Stimulus Response Structure: Talk Out Data 

86 

The data reported by Hall et al. [1971] records the daily number 

of "talk outs" of twenty-seven pupils in the second grade of an al1-

black urban poverty area school for a total time period of forty days. 

The first twenty days were denoted as the preintervention history before 

the commencement of the intervention. Beginning on the twenty first 

day, the teacher initiated a progr~ of systematic praise for not 

talking out. Figure Z.7(a) contains the time series data. 

From the preintervention history t ~ ZO or nl = ZO, applying the 

usual univariate time series modeling of identification, estimation and 

diagnostic checking of Box and Jenkins [1970], resulted in an 
A 

ARIMA(O,O,l) model with 81 = -0.195, 
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t < 20. 

The direct stimulus response structure was postulated apriori 

since the intervention consisted of app~ying the stimulus (praise) 

d~,rectly to the subjects (students) whose response ("talk outs") was 
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the attribute of interest to evaluate the worth of the program. Figure 

2.7(b) contains the results of the identificatio~ procedure for the form 

of the mean shift function oCt) using nl ~ nt and n2 • 1 sequentially 

for 20 ~ t ~ 39. Confirmation of the initially postulated direct stimulus 

response structure is seen here since o.(t) after an initial transie't 

due to the "learning curve" associated with the intervention has little 

variation about the steady state gain level. Therefore the mean shift 

function O(t) • K(t)o is specified by, 

K(.t) -

7/15 

11/15 

1 t~23. 

The (O,O,l)MCI model was fit with parameters ~ ~ 19.35, 3 = -15.18, 

91 • -0.175 and Yl - -0.601. Diagnostic checking of the residuals proved 

adequate. However, testing the hypothesis that 61 • Yl resulted in favoring 

the alterna.te hypothesis for all values of a < 0.2869. The test of the 
~,~ 

intrinsic utility of the intervention program, ;,:,..8<" HO: 0-0, was not pre-

ferred for all, values of a
2

> 0.001. Thus the final model is the single 

consequence model, 
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t < 20 

Zt - 19.35 -K(t)(15.l3) + 0.23at _l + at t - 21,22 

t ~ 23, 

which results in the conclusion that the 'intervention program reduces 

"talk outs" by 15.13 per day in steady state. 

For the sample sizes used in the ."talkout" data, nl ... n2 - 20, there 

was not sufficient power to detect the estimated change in covariance. 

For the estimated covariance change with nl - 20, 23 and 58 postinterven­

tion observations for a - 0.15 and 0.05 respectively are needed to 

assess significance. For the mean shift detection, however with 

nl - n2 - 20 and a - 0.05 magnitudes of 6/oa - 0.78 can be detected. 

Since ~/&a - 9.10 the sample size is sufficient. If the change in 

covariance is real and was not detected because sufficient data was 

not availableJusing th~ sing~e consequence model form for the talk 

out data would represent a model misspecification in the parameters. 

For the estimated parameter values, the corresponding h value (Equation 

(2-37» is 0.7789 which would represent an overestimation of the 

significance of ,o/cr
a 

by 28.4% or alternatively, using the single con­

sequence model with ~ - 0.05 would effectively be ~ ... 0.126 if the 

multiconsequence form was needed. Since the estimated magnitude of 0 

was very large in this data set these facts do not alter the policy 

inference in the final model described. 

2.10.2 An Indirect Stimulus Response Structura; Gun Control 

The data reported by Deutsch and Alt [1977] records the number of 



reported assaults with a gun in Boston by month. 'Figure 2-8(a) 

illustrates this data for the period from January 1966 to October 

1976. In April 1975, t~e State of Massachusetts formally put into 

operation a gun control law that mandates a one-year minimum sentence 

90 

on conviction of ca~ing a firearm without a special license, thereby 

eliminating judicial descretion in sanctions. In order to assess policy 

implications of gun control legislation, the impact of the enactment 

of the legislative intervention in reducing gun related assaults were 

desiTed. 

Although imple~ented in April 

1975, there were several th this intervention 

strategy for several months prior to this date. Thus, the exact time 

point where the impact ~ght first be measured was uncertain. there­

fore, the pre~te~~tion data for the period from January 1966 to 
,-1:'.- /) 

September 1974 was used to construct the preintervention model. App1y·1A,. 1 
the usual Box and Jenkins model building procedure (Box and Jenkins 

[1970]) resulted in an ARIMA(O,l,l) x (0,1,1)12 model, 

(1-B)(1_B12)Z _ (l_Ao/ B) (1- ~B12) 
tVl Y2 at 

with 91 - 0.83 and 612 ~ 0.78. 

The indirect-stimulus response structure was chosen since the 

intervention program was intended to modify the 

process from which the behavior modification of 

~vironmenta1 
v 

a subset of the popu1a-

tion is monitored. Figure 2.8(b) contains the results of the identifi­

cation procedure for the form of the mean shift function oCt) using 
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n
1 

- n
t 

and n
2 

- 1 sequentially for 106 ~ t ~ 141. From the mean 

shift function plot, the impact of the intervention program is seen 

to start in February (perhaps due to the planned massive publicity 

campaign in early 1975) ,and, to continue through to post intervention 

period. The configuration of the mean shift function prior to reach-

ing a steady state and the variation about this form confirms the 

environmental influence. 

The mean shift function for the indirect stimulus response 

structure is 6(t) • f(K(t») where K(t) • (1-elB)(1-e12B12). As seen 

from Figure 2.8(b), a plot of oCt) vs. K(t) would indicate a slope and 

intercept term are needed to describe this relationship. Thus, 

t ~ 110 

and 

where 

t < 110 

t ~ 111. 
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Figure 2.8. Assault with a Gun 

(a) Time Series Data 

(b) Mean Shift Function 
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The intrinsic program utility 0 occurs when K(t) ~ l,~' since~ 

oCt) _ K(t)o • 0
0 

+ °lK(t), 0 - 00 + 01' For all other values of K(t) 

the environmental influence will mask the intrinsic program value 

«o(t) - 0) is the masking effect of the environment). 

The maximum likelihood estimates for the parameters of the 

(0,1,1) x (0,1,1)12MCI model are ;So - -14.79', ;S1 - -3.89, 61 = 0.98 and 

Y1 • 0.8' Diagnosti~ checking of the residuals proved adequate. In 

testing the hypothesis of no change in covariance, ,the null hypothesis 

Similarly ~he hypothesis HO: 6
1 

- Y1 is not preferred for all a > 0.06. 

HO: 0i· 0, i • 0,1 is not preferred for all a > 0.001. Thus the final 

model is, 

12 12 
(l-B)(l-B )Zt - (1-0.98B)(1-0.78B )at 

t ~ 110 

(l-B) (1-EI12)Zt - -14.79 + (-3.89K(t» + (1_.82B)(1-.78B
12

)at 

t > 110 

Thus the result of the legislative intervention of gun control was to 

reduce the observed number of reported gun assaults between 19 to 15 per 

month. Further this impact is seen to manifest itself in steadystate 

through the postintervention period. The steady state decrease is 

approximately 15 per month and the intrinsic utility of the program being 

approximately 19 per month. 

The sample size used in this analysis was n1-1l0 and n2=31 which 

is denoted by the circled X in Figure 2.6. This point is seen to be just 
"" \ 
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below the a a 0.05 constraint for E(Wa). (The hypothesis test for change 

in covari~ce was significant for values 'of a > 0.06). The program goal 

was to reduce the number of assaults with a gun by 5%. At the time of 

program the number of reported assaults per month was 52, therefore. 

%a = 0.29. For n
l 

- 110 only 4 postintervention observations are 

needed. Since 31 were used to statistically detect the change in covari­

ance a feasible design was employed. HQwever, if fewer postintervention 

data points were used and the existing change in covariance could not be 

statistically detected (resulting in the red~ced single consequence 

model), the estimate of 0 would have been biased. ~e bias in 0 would 

be 0.30 (Da l.30, Equation 2-36», thus there would have been an over~ 

estimation of 30%. Als~the ratio of the variance of the standardized 

model (Equation 2-37~oufd be 1.46, resulting in D/h - 0.89 or an 

underestimation of the level of significance of o. If the change in 

covariance was not statistically detected because of too short a post­

intervention period (n2) the corresponding single consequence model 

would have resulted in a 30% overestimation of the monthly reductions 

in assaults with a gun. Similarly, for nl fixed at 110, 59 postinter­

vention data points would be needed to statistically detect values of 

.c/aa - 0.05. In this case c/aa a 1.79. However, if the program in­

intervention resulted in values of 0.05 < c/a < 0.10, which should a 

result in favorable policy implications, the sample size would not have 

been large enough and therefore incorrect policy inferences ' would be 

drawn. 
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CHAPTER III 

THE SPACE-TIME INTERVENTION MODELING 

In Chapter II multiconsequence intervention modeling was studied 

in detail. The mUlticonsequence intervention modeling is apropriate 

for observations at one location. In this chapter, space-time inter-

vention modeling, which is appropriate for modeling an intervention 

process at multiple locations, will be studied. The space-time inter-

vention modeling procedure shares the same modeling strategies as the 

multiconsequence intervention modeling, i.e., the dynamic components 

identification procedure and the three-stage iterative model building 

scheme. The space-time intervention model class is an adaptation of 

the model formulation of the space-time model class that has been 

developed by Deutsch and Pfeifer [1980a, 1980b, 1981]. 

In the next section the space-time intervention model class 

(STARMA) I that allows for both environmental and non-environmental 
m 

influence on the intervention is de.scribed for the single intervention 

processs as well as the multiple intervention process. The physical 

properties of the space-time intervention model are discussed in sec­

tion 3.2. Here four elementary diffusion mechanisms; translation, 

domain-change, growth, and contrac~ion are described and co-n:~~ 

to the (STARMA)I model class. Simulations of the diffusion processes m 

described by low order (STARIMA)I models are presented to illustrate 
m 

the physical characteristics of diffusion speed, amplitude and 

influenced area in section 3.3. The intervention model building pro-
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cedure, that includes pre-intervention model building, dynamic compo-

nent identification, the coupling of these components and diagnostic 

checking is given in section 3.4. In section 3.5, the M.L. estimators 

of the mean-shift function are developed first for the pre-intervention 

noise model parameters known situation, and then is extended to the 

case where all parametrs are unknown. A case study of the air pollu-

tion quality as measured by ambient carbon monoxide levels in Los 

Angeles is contained in section 3.6. 

3.1 The Space-Time Intervention Model 

A linear stationary time series data-generating process can be 

expressed in transfer function form as: 

t a l,2,3 •••• ,n 

where Zt is the observation or output vector. P is the mean vector, €t - -
2 is the residual or input vector assumed to be NID(O. a I), all of which 

is of dimension (LN x 1) where LN is the number of locations and T (B) e 

is the transfer function for environment e which couples the system 

input and output (Figure 3-l(a». 

The intervention at time T, t < T < t+l is thought of as 

"switching on", Et ,. G,l causing an additional potential contribution 5 

associated with the utility of the intervention program. When a system 

intervention occurs this potential shift can cause a modification in 

the data generation process in two ways. The program utility modifica-

n 
n 

n 
n 
n 

[l 

J J 
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tion to the output is either{~fected by the environme~tal process 

(Figure 3-l(b» or unBffected by the environment (Figure 3-l(c». 

For a single region, univariate time series, Box and Tiao [1975] 

have proposed interven.tiol'i models of the characteristics exhibited in 

Figure 3-l(c), in which the intervention component is independent of 

the environmental data-generating process. For the single location 

intervention model of Box and Tiao [1975] the observation vector is 

decomposed into two components: 

where Dt • the dynamic component;monitors the mean level changes of the 

pre-intervention environmental noise model Nt. When this eclectic 

noise model influences the measurabl~ngeS in process level, as in 

Figure 3-l(b) , this estimated changel in process level corr::ouncPthe 

intrinsic utility of the intervention and the environmental noise pro-

cess. The more general framework to allow separation of these compo-

nents and thus unbiased estimation of an intervention's intrinsic 

impact is that described in Figure 3-l(d). The trgnsfer function T~(B) 

will not be a function of the environmental noise process parameters 

when there is no environmental influence on the intervention. The 

general structure of Figure 3-l(d) is used throughout the balance of 

this chapter in regard .to LN site systems. 

We denote the variable for a single intervention, ~(t)J as the 

product of the program utility IS and the switch vari.<lble ~t' which 

, , 



r 
h <::::,:;-.:".':",:.:.·,~,.,...-:-:t, 

II 
~ 
~ 

~t 

'" 
T (B) 

e 

---------~- ~ 

... ... 

Figure 3-1(a). Non-intervention Data Generating Process. 

~t 0 
'" 

\1/ 

... T (B) ~ 
e 

98 

// 

Figure 3-1(b). Intervention Data Generating Process ~ected 
by the Environment). 
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either takes the form of a pulse or step function. The pulse function 

is defined as: 
/) 

n .. { 10 P l(T ) 
t p elsewhere 

Thus, the pulse function corresponds to the situation in which an 

st 
intervention "switches on" for a period of length T , after the nl+l­

p 

observation. The step function is defined as an infinite period inter-

vention occurring between t a nl , and t a n1+1; 

The space-time single intervention model formulation for LN 

regions is; 

where 

I a{l 
m 0 

+ e (B)£ 
q,m .... t 

.... 

(3-1) 

realized intervention~fected by environmental process 

realized intervention not effected, by environmental 
process, 

n ~ . ! 
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:t is an LN x 1 vector of observations at time t, 

p 
~ A(B)" 1- r. 

p'.... K"J. 

V" .. (I-B)d, 

B is an LN x LN backward shift operator such that 

BKZ 
.... t .. ':t-K 

~KJ~ is the autoregressive parameter at temporal lagK and 

spatial lag t, 

e~~ is the moving average parameter at temporal lag K and 

spatial lag .e., 
WO~) i's an LN x LN matrl.·x f . h f o wel.g ts or spatial lag 1, 

~(t) • ~t 5, 5 is the intrinsic utility of the intervention ........ 

program, 

innovation Vi~ at ~t is the random normally distributed 

t with 

G K"'O 
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for K > 0 

Parameter p is the autoregressive order of the model and A is a vectok 

with components AK specifying the spatial order of the Kth autoregres­

sive term. Likewise, q is the moving average order of the model, and m 

is the vector of moving average spatial orders. P:aram~ter d is speci­

fying the number of differences needed to ,induce stationarity in the 

original series. 

3.1.1 An Alternative Representation 

The single intervention space-time model, equation (3-1), assum-

ing d-O without 10s9 of generality, can be expressed as, 

Z~ ~ p + AD(B) ~(t) + AN(B) ~t 
~- I'V I'W 

(3-2) 

where 

AD(B) a ~ ,(B)-I, (l-I)~ ,(B) + I e (B)I p,lI. 0 m p,1I. m q,m 

AN(B) '" ~ ,(B) -1 e (B) p,lI. q,m 

Thus Zt is the summation of two components: the deterministic compo-
_I , 

nent and th~ random component, D(t) and N(t) respectiv~~y, i.e., 

i ! 
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(3-3) 

Taking expectation of equation 3-3 yields, 

Since 

E[N(t)1 • AN(B) E[e J - 0 
,.. t -

,I 

" 

(3-4) 

(3-6) 

Therefore the expectation value of the procl'!ss observation Z is the 
t -

deterministic component, D(t). I h t 9 ould be noted that the interven-

tion variable F.(t) only appears· h 1n t e deterministic component as does 

the effect of the intervention. 

, Equation 3-4 can be expressed ;n . .. recurs love form, 

~p,A(B)(D(t)-\l)·I(1-I)~ A(B)+I9 (B)I 0 -, m p m q F.(t). - - , ,m ~ (3-7) 

The realized mean shift function at time t, S(t), is 

c' 
I 
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B(t) - D(t) - ~, thus, 

···ib ,(B) B(t) -lO-I)~ ).(B) + Ie (B)I E;(t). 
p,A,., m p, m q,m ',., 

(3-8) 
,.. 

In equation 3-8 if we set I - 1, the realized intervention is effected 
In 

by the environment, we have the deterministic component of the inter-

vention model, 

~ ,(B)(D(t)-~) - e '(B) F,(t), 
p,A ,., ,., q,m·,., 

with the realized mean shift function, B(t) of the form 

6(t) - D(t) - ~ • ~ ,(B)-Ie (B) F,(t) 
p,A q,m "" ,., 

or 

~ ,(B)6(t) a 9 (B) F.(t) 
p,A,., q,m,., 

(3-9) 

Since B(t) for the mixed process is a function of the intervention 

variahle E;(t) as well as the environmental noise model parameters, the 

realized shift-mean doesn't reach its steady state lev.el instantaneous-
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ly but rather converges to the steady state level. For the 

STARMA(q)I process (p-O and t ,(B) - I) equation 3-9 reduces to m m P,A 
\ .. ' 

q mle 
B(t) • F,(t) - r r 9

Kl
W(1) F,(t-K). 

K-l 1-0 
(3-10) 

q ~ 
Thus, the steady state level for 6(t), i.e. (1- r r eKlw(1)BK)~(t), 

K-l 1"0 ,... 

is reached in q periods. However, for the STAR(P).)I
m 

model in which 

q-O and e -I equation 3-9 reduces to q,m 

(3-11 ) 

Thus, as with the mixed model, the STAR(P).)Im model's mean shift will 

only as t + ~ approach the steady state level. 

For the case where there is no environmental influence, I =0, in 
m 

equation 3-8, we have the deterministic component of the intervention 

model =given as, 

or 

6(t) - F,(t). (3-12) 
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Thus when there is no environmental influence, the total effect of the 

intervention is fully realized instantaneously with transition to the 

steady state level at t+l for an intervention having occurred in the 

interval t, t+l. 

3.1.2 Multiple Interventions 

In the previous section only a single intervention was introduc-

ed. Often several interventions can occur. In this section we will 

generalize the (STARMA)I model to allow for multiple interventions and 
m 

discuss the interpretation of the resulting mean-shift function. 

The STARMA(P"O,q )1 model is generalized for n different 
A m m 

interventions by 

n 
t (B)(Z-lJ)- r 1(1-1 )t ,(B)+I e (B)IE;(r)(t) 

p,A _t r-l m,r P,A m,r q,m ._ 
(3-13) 

where 

I m,r 

+ e (B) q,m 

realized effect of the r-th intervention effect by 
the environmental process. 

realized effect of the r-th intervention not effected 
by the environmental process. 
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~(r)(t) is the indicator variable for the r-th intervention and is the 

product of 'the switch variable E;~r) and the program utility of the r-th 

intervention, S(r). This model will be referred to as the 

STARMA(P"O,q)I model. 
A m m,n 

The random component of the STARMA(P"O,q)1 model is, exact-
A m m,n 

ly the same as that of the corresponding single intervention 

STARMA(P"O,q )1 model. The deterministic component of the 
A m m 

STARMA(P"O,Q)1 model is, A m m,n 

D(t) .. lJ + ~ ~ ,(B)-II (1-1 ) ~ ,(B) + I e (B)I E;(r)(t), 
p,A . m,r P,A m,r q,m . 

r-l 

and the realized mean shift function 5(t) is 

~(t) - D(t) - lJ (3-14) 

-
Equation 3-14 reveals that the:'(~alized mean-shift function~~an be 

decomposed into n compone9~s: each corresponding to the n intervention 
--".:;. ",-

-:-:-:_ .. ;.::;:;....-.:-.. -
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5(t) = ~ 5(r)(t) (3-15) 
r-l ... 

(3-16) 

As in the single intervention model, when I = 1, the environ­m,r 

mental influence situation, the realized mean shift function of the 

r-th intervention, 5(r)(t). is a-function of~, 9 as well as 5(r). When ..... 
I - 0, the environment is not involved and 5(r)(t) is not a func-
m,r ... 

tion of the environmental noise parameters. From equations 3-14 and 

(3-15), we see that the interventions have a superposition property. 

This means that they will add up to give the realized mean shift func-

tion 6(t). When the situation arises that sequential interventions 
... 

interact with each other, e.g., rlth intervention occurs before r 2th 

intervention and have interactions (e.g. a synergy) equation (3-15) and 
(r ) (r ) 

(3-16) are still the app~gpriate model, however, 5 2 (t), ~ 2 (t) and ... 
(r ) 

5 2 will be interpreted differently. In this case, the mean shift 

function of rzth intervention is confounded with the (rl ,r2) interac­

(r ) 
tion, i.e. the 6 2 (t) is the summation of the mean shift function of 

... 
r

2
th intervention and the (r

l
,r

2
) interaction effect. Thus the proper 
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(r ) 
interpretation of 6 2 (t) is the mean shift function of the r 2tb 

... 
intervention given that the rlth intervention has been introduced. 

(r
2

) 
c5 should be interpreted in this way. 

(r ) 
Also ~ 2 (t) as well as 

... ... 

3.2 Physical Representations of the Model 

When an intervention program is introduced in one or more loca-

tions, the effect may also be realized at other locations via a diffu-

sion process. In this section l we will discuss the capabilities of the 

STAR1MA(p"d,q)1 models in describing diffusion phenomena. 
1\ m m 
... ... 

3.2.1 Diffusion Mechanism 

Spatial-temporal diffusion is the spread of a phenomena within a 

given space through time, so as to alter the distributional pattern of 

the phenomena over time. Four distinct types of the diffusion mecha-

nisms are useful in classifying the spatial-temporal diffusion pro-

cess. 

1) Translation: occurs when members of the population and their 

relative positions do not change, while the posi-

tions of the members are translated from time t to 

t + dt. 

2) Domain-change: occurs when members of the population do not change 

but ,their relative positions as well as the non-

zero population location number change from t to t 

+ l1t. 

3) Growth: occurs when new members are created and into the 
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4) Contraction: occurs when Some members of the population die out 

between time t and t + ~t, decreasing the popula-

These four diffusion mechanisms are illustrated in figure 3-2. A more 

detailed discussion of these mechanisms is contained in Brown [19681. 
(.a) 

There are two ,Jistinct types of spatial-temporal diffusion pro-

cess. Each are described by combinations of the four diffusion mecha-

nism3. The types of spatial-temporal diffusion processes are; 

I. Regenerating type diffusion: occurs when new members are 

generated, added into the population and/or some old members die 
(b) (c) 

(d) 
that it is a regenerating (+) type process when the net gain in 

out, and the population size changes while individual locations 

may/may not change. (A combination of type 1, type 2, type 3 and 

4 mechanisms with growth rate * contraction rate.) We will say 

the size of total population is positive, is a regenerating (-) 

type process when the net gain is negative. Diffusion Mechanisms 
(a) population Distribution at Time t /. 
(b) population Distribution at Time t+At through 

Translation 
(c) population Distribution at Time t+At through 

Domain-Change at Time t~t through Growth 
Cd) population Distribution 
(e) Population Distribution at Time t~t through , 

Contraction \ 

II. Relocation type diffusion: occurs when members of the population 

change their relative positions and/or locations while the popula-

tion size stays constant (a combination of the type 1, type 2 

mechanism and/or type 3 and type 4 mechanisms with growth rate = 
\\ contraction rate). 

3.2.2 Characteri%ation of the Diffusion Processes Types by the 

STARlMA(P~,d,qm!!m Models. 

f1 L 
~-
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In the previous section two types of general diffusion processes 

were described. Here we focus on the STARIMA(PA.d,qm)Im models to 

assess whether and which subgroups of models in this class describe 

these two types of diffusion and if so which model subgroups correspond 

f °fe 0 To assess th1°s issue, we use the to what type o. d1'~us10n process. 

equation of mean shift function of the STARIMA(PA.d.qm)Im model. 

,. I (1-1 )Vd~ ,(B) + I e (B)! ~(t). . m p,l\ m q,m 

This equation can be expressed alternatively as, 

~(t) - A(B) F.(t) (3-17) 

with 

A(B) ,. lvd~ ,(B)!-l l(l-I )Vdt ,(B) + Ie (B)\ 
p,l\ - m P.I\ m q,m 

(3-18) 

.. 
A(B)" r. A(K)BK (3-19) 

k-O 

Where A(K) is obtained recursively from equation (3-2), and A(O) m I. 

When we let: I • Oin equation (3-18), which corresponds to the 
m 

o 0 h A(O) ,. I and A(K) - 0 for non-env1ronmental 1nfluence case, we ave, 
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all K > 0, Le., 

~(t) ,. ~(t). 

The more interesting and broader characterization of the differ­

ent diffusion type occurs in the environmental influence structure with 

1m ,. 1. The balance of this section will address this situation. 

For the 1m ,. 1 case we will aSSume for descriptive purposes that 

an intervention program is introduced at location i between time t = n 
1 

and t - nl+l for one period only, i.e •• 

(3-20) 

where ~ • (0,0 ••••• ~0.0 •••• ) with 80 at location i. 

Then we have, 

~(t) ,. 0 t .. It, (pre-inte~vention) 

k > 0 (post-intervention) 

From the previous discussion, we know that the major difference between 

the regenerating processes and the relocation processes is the conser­

vation of population. For the intervention described in equation (3-
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20), the conservation of population can be stated as 

6.(t) .. 0 
J 

t < n' 1 

where 6.(t) is the jth element of 6(t). 
J -

(pre-intervention) 

(post-intervention) 

The first equation can always be satisfied, since 6(t} - 0 for 

t < n
l

, and the second one is equivalent to; 

LN (K) 
EA. • - 1 all K > 20, i-I, 2, ••• , LN. 

j-l J1 
(3-21) 

where A .• (K) il'i the (j, i) element of A (K) matrix. 
J1 

3.2.2.1 Processes and Pulse Inputs 

For the stationary STARMA(P"O,q )1 model equation (3-21) can't 
1\ m m 

be satisfied for all k > 0 no matter if it is a STAR, STMA or STARMA 

model. Therefore the station,ary STARMA(P)., O,qm)Im models are always 

kind of the regenerating (-) or regenerating (+) type diffusion pro­

cesses. Only a non-stationary STARIMA(P).,O,qm)Im model can satisfy 

/I 
equat~~on (3-21). For example, the STARIMA(O,l,q }I model will satisfy m m 
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equation (3-21) with the model parameters constrainted as follows 

for K a l,2, ••• ,q. (3-22) 

matrix. 

m
K 

is the (j,i) element of I. r (9n W(t».1 
.f.-O 

A special case of the STARIMA(O,l,q)I model class is the 
.m m 

STARIMA(O,l,O)I model i.e., p-O, d-l, q-O. Since the necessary and 
m 

sufficient conditions of the relocation type diffusion requ~res the 

conservation of population as well as the capability to move to its 

• b'l'" . d"" t A(K) neighbors, to have the mov1ng capa 1 1ty, 1t 1S requ1re t:.~a 

* I, A(K) * 0 for at least one K. Even though the STARIMA(O,l,q )1 m 
m 

has the moving capabilitYr the STARIMA(O,l,O)I model does not. For 
m 

example, for a ring system with 5 locations the first and second order 

weight structure is 

0 1 0 0 1 0 0 1 1 0 

1 0 1 0 0 0 0 0 1 1 

W(I) .. 0 1 0 1 0 
W(2) _ 

I 0 0 0 1 

0 0 1 0 1 1 1 0 0 0 

1 0 0 1 0 0 1 1 0 0 

.:. 

~I 

~ 

... 



1C 

... , m "2. q 

When e
KO 

+ 29
Kl 

+ 2en - 0 for all k-l, 2, ••• , q, we can see- that the 

requirements imposed by equation (3-22) ·l'p~ satisfied, since 

LN ~ 
E I To (e w(t»)1 a e

KO 
+ 29

Kl 
+ 2eK2 • 

. Kt 'J'1 j-l t"'O 

116 

However, if one of the en' 9K2 , K-l,2, ••• ,q is not equal to 

zero, Le. 9
kl

*O, then at least A (K) * I and A(K) * 0, so the moving 

capability requirement is satisfied and this is a relocation diffusion 

process. 

3.2.2.2 Homogeneously Nonstationary Processes 

The homogeneously nonstath'~~T}"e7AR(P).) process can be of relo-

cation diffusion type if and only if 

(3-23) 

for t - l,2, ••• ,P and r - 1,2, ••• ,LN. 

n 

1':" 

l.'lU 
LV 

. \ L 
"J l , 

n 
n 

------ ---------~--------~-----------------------------------------------

;; 
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where e . is the j~th element of vector e , which is the unit vector 
r,J .._r 

with 1 at location r. Equation (3-23) guarantees that any input to any 

location in this system will stay in the system forever. Tnis condi-

tion is very restrictive in that it requires conservation of population 

for all time t. 

A less restrictive constraint to ensure relocation diffusion 

is to not require absolute conservation of population for all time t 

but rather to consider asymptotic population conservation as t + ~. 

That is a set of conditions that will guarantee that any input will 

change the steady state of th~ system and the system will stay at the 

new steady state forever or until there is another input. Such a set 

of conditions allows a transient period for the system to adjust itself 

to a new steady state and the difference between the new state and the 

original state is the conserved part of the input and stays in the 

system forever. This kind of restrictions will be ,referred to as the 

relaxed conditions for the relocation processes. 

The stationarity conditions discussed in Hannan [1970} applied 

to the STAR process are as follows: if every Z that solves, u 
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lies inside the unit circle, then the STAR(PX) process will be station-

ary. This implies that any linear combinations of these inputs will 

damp out when t +~. However, if all the Z 's lie ~n the unit circle, 
u 

then no linear combinations of these inputs will damp out. Thus, all 

these linear combinations will be conservative. So the relaxed condi-

tions for relocation in the STAR(PX) process is; if every Zu that 

solves, 

P P 
DetlZ I - r. 

u 
(3-24) 

lies on the unit circle, then these homogeneously nonstationary 

STAR(PX) process will be of relocation diffusion type. 

To compare these constraints for a relocation type diffusion 

process, equation (3-23) can be restated as follows; if every Zu that 

solves, 

t .. 1,2, ••• ,P (3-25) 

has the same solution Zu" 1, then the homogeneously nonstationary 

STAR(P
X

) process is of the relocation diffusion type. Note that equa-

tion (3-24) is a relaxation of equation '(3-25) in the sense that the 
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allowed solution set of equation (3-25) is a subset of the allowed 

solution set of equation (3-24) and the equation set (3-24) is a subset 

of the equation set (3-25). Thus when equation (3-25) is satisfied, 

equation (3-24) is also satisfied. The reverse is however not true. 

3.2.2.3 Steady State Gain For the Step Function Input 

In previus sections the intervention program input variable e(t) 

has been assumed to be the pulse function, in this section the step 

input situation will be discussed. It is assumed that 

n 
~(t) .. S 1 IS 

t 

where IS .. (0,0, ••• ,6°,0, ••• ) with 6° at location i. 

The step input function can be viewed as superposition of a 

sequence of pulse functions with the output of this system being the 

superposition of the outputs of the sequence of pulse fun~tion inputs. 

This can be seen in equation (3-7) by letting 

~(t) - ~l(t) + ~2(t) 
,.. ,.. ,.. 

52(t) ~ A(B) ~2(t) 
,.. ,.. 

Therefore; 6(t) .. 5l (t) + 62(t) .. A(B)(~1(t)+~2(t») = A(B)F.(t). 
""", t'OIJ #IIIJ "..., "" 

, 
,! ..... 
\ 
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So at any time point, the necessary and sufficient concHtions 

for the system population to be conserved is that the system input rate 

equals the dying-out rate. In the following we will consider the 

strictly conservative system in which the. system reaches the steady 

state gain instantaneously, maintaining its population, and the asymp-

totically conservative system, in which the ~ystem reaches the steady 

state gain by passing through transient states. Thus the latter dif-

fers frcm the first in that the strictly conservative system has con-

stant population for all t > n
l

• 

The have the instantaneous and strictly conservative system, the 

system has the followng property: 

{ 
oCt) • 0 (pre-intervention) 

6(t) ,. 15 S (post-intervention) 

where t5
S 

denotes the steady state gain of the system and is a constant 

vector. 

Since l5(t) ,. A(B) F,(t) - ;, A(K) S::K 15 
K"O 

the followng conditions should be satisfied; 

l5(t) ,. 6(t+u) u = l,2""J~' t > n1 

'9'~ i'n iI" J.!t 

B 
n 
n 
r .~ 
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[J 
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\. .... 
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i.e. 
n 

A (K) S 1 <'i. 
t-K ,.. 

This gives the following equations; 

t+u-nl 
1: A(K) 

K"O 
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~ n 
A (K) s 1 O. 

t+u-K ,.. 

u ,. 1,2, ••• ,aD; (3-26) 

To satisfy these equations for u ,. 1,2, ••• ,aD, the only solution is 

A(O) • I, A(K) • 0 all K) 1. As we have pointed out in section 3.2.2, 

this is the non-environment involved intenrention process. 

The asymptotically conservative system reaches the steady state 

after the transient periods. This means that the condition in equation 

3-26 can be relaxed as follows; 

u ,. 1,2, ••• ,aD ; (3-27) 

where TO is the transient periods. 

The number of transient periods TO for the STMA(qm)Im process is 

q, since 

t-nl Min{(t+u-n),q} .(K) _ E A(K) . 
1: J\ 

K -0 

'0 
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so 

The number of transient periods TO of the STAR(P~)Im and the 

STARMA(P"q)I processes are much longer than those of the (STMA)I 
1\ m m m 

process. In fact, they will reach the steady state only when TO 14. .... 

(K) n l 
Since A St ~ represents the contribution of the intervention input, 

in order to satisfy the asymptotically conservative conditions when 

TO + ... it is necessary and sufficient to have 

n 
limit A(K) S 1 6 • 0 
K..... t 

or equivalently 

limit A (K) - o. (3-28) 
K ..... 

Solutions leo satisfy equation (3-28) are discussed in Deutsch 

and Pfeifer [19791 and are those systems who's parameters lie inside 

the stationary boundary, i.e. every Zu that solves equation (3-25) 

should lie inside the stationary boundary. 

The diffusion type of the instantaneous steady state gain pro-

cess can be interpreted as the space-time regenerating diffusion pro-
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cess of the space-time relocation diffusion process. This depends on 

how we define the system and the system input. 

In I 
n n 

I P 1 (T -1)6 I [S;J 
S 1 6 I 82 STARMA I t P t ,... 

6(t) 
pulse input I Step Function I Output. 

L --- -.J 

Figure 3-3. Permanent Impact System Diffusion Type Interpretation. 

In figure 3-3, the step transformation block transforms the 

pulse input into a step function and the step function output of Sl is 

input into the STARMA diffusion process. System U contains Sl and S2 

n 
as its subsystem, ~nd the pulse input P t 1 (Tp-O ~ is input into U to 

give 6(t) as the output. From the viewpoint of the S2 system, the 

diffusion type for the instantaneously steady state gain is of the 

nl regenerating type, since the total input St ~ isn't conserved. 
(-

While 

from the viewpoint of the system U, which has the pulse input, the 

diffusion type for the steady state gain is of the relocation type, 

n 
since the pulse input P l(T 31) 5 has been conserved. t P _ 

Similarly, the diffusion type of this asymptotically steady 

state gain process can be interpreted as the space time regenerating 

--
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process or the relaxed space-tid\e relocation diffusion process. From 

the viewpoint of the whole system U, which includes the permanent im-

pact transformation block, the asymptotically steady state process can 

be interpreted as the relaxed space-time relocation diffusion process. 

3.2.3 Properties of the Diffusion Process 

Having described the types of diffusion processes, we now turn 

our attention to the properties of a given type of diffusion process. 

Three characteristics of a diffusion process are addressed; the sphere 

of influence of the process, the speed of the process and the amplitude 

of the process. In describing these characteristics it is helpful to 

formally state the following; 

1. If location j is on~ of the lth order neighbors of location i. then 

location j is connected to location i by the !th-order neighbor-

chain, 
. . 

2. The set of locations in the space considered that are connected by 

the !th-order neighbor-chain and contains location i is called the 

!th-order connected regions of location i. 

3. The connected regions of location i for STARMA(P"O,q )I models is 
1\ m m 

4. 

the union of all 1st-order connected regions, 2nd-order connected 

regions. . .. , up to max{). ,m }th-order connected regins of max max 

location i, where ).max ~ Max{).1.).2.···').p} and mmax ~ 

Max{M1,M2,···,Mq}. 

The influenced regions of location i for STARMA(P"O,q )I models 
1\ m m 

is all regions t~at can, in the long run, be influenced by the 
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intervention program introduced at location i. 

5. If an intervention program is introduced at location i~ all-the 1st 

order neighbors, 2nd order neighbors, .••• , and !*th order neigh-

bors. but not (!*+l)th order neighbors of location i are influenced 

at the very next moment, we will say that the diffusion speed of 

this STARMA(P,JO~)I process v equals !*. 
1\ m m 

Since the characteristics of the diffusion process of the 

STAR(P,)I , STMA(q)I and STARMA(P"O,q)I process in the environment I\m mm 1\ mm 

involved situation are quite different, the following section discusses 

each in turn. We will keep the same assumption on ~(t) as that in 

equation (3-20), i.e. 

where 

with ~O at location i. 

3.2.3.1 AR Type 

The diffusion process of STAR(P).)Im model is described in the 

recursive equation that is obtained by setting e (B) = I in eqution q,m 

(3-9). 
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aCt) -

This can be re'ttitten as, 

aCt) - ° (3-29) 

p 

oCt) - r. 
K-l 

t ) n
l 

+ 2. 

From equation (3-29), we can see that for the STAR process that the 

influenced regions of any location i will be equal to the connected 

regions of that location, since the influence will be transmitted from 

location i to its neighbors and then retransmitted to all its connected 

regions before the effect of this intervention completely dies out as t 

+~. In physical/engineering systems this is intuitively appealing in 

that a given location in the system will receive a stronger and quicker 

influence from those closer-connected locations. The term "closer-

connected locations" does not necessary mean close in the sense of 

Euclidean distance. This implies that, 
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and thus the diffusion speed of the STAR process is AI" 

The amplitude of diffusion for the stationary STAR(PA)Im process 

can be computed recursively using equation (3-26). The STAR process is 

a relocation type diffusion when the parameters lie on the stationary 

boundary. The farther away the autoregressive parameter vector falls 

from this boundary the more rapid the loss of population. Thus, given 

cf>KO' K" I. 2, ••• P are fixed, the stronger the conservation of popu-

lation tendency is, the larger the diffusion amplitude will be. 

3.2.3.2 MA Type 

By setting ~ ,(B) - I in equation (3-9). we have the recursive 
P.I\ 

equation for the realized mean-shift function oCt) of the STMA{q )1 
m m 

model, 

nl with the intervention variable ~(t) ~ Pt (T -1) 0, and 
"" p "" 

15-[0,0,0, ••• ,15°,0, ••• ,0], this equation can be rewritten as, 

oCt) '"' ° (3-30) 

aCt) .. a 
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t ~ nl + K + 1, K ( q 

From equation (3-30), it is seen that the influenced regions of 

locations i will include only the 1st order neighbors, 2nd order neigh-

bors, ••• , up to the m -th order neighbors, where max 

m ~ Max{ml ,m2, ••• ,m}. Also the diffusion speed between t ~ nl+l max q 

and t = nl + 2 is ml , but the diffusion process will completely die out 

at t ~ nl + q + 2. Note that ·the SIMA type diffusion is quite differ­

ent from the STAR type in its ability to transmit the influence. In 

the STAR type diffusion processes, any connected location that has 

received influence has the ability to retransmit the influence to its 

neighbors. thus, whereas the STAR process has the received influence 

at time t behave as an intervention transmitted to (t+l) for all con-

nee ted regions for all t, in the SIMA type diffusion, the influenced 

region has no such ability to retransmit the influence to its neigh-

bors. The only influence transmitted comes directly from the location 

that the intervention program is introduced at time t. Thus the influ-

enced region of the STMA(q)I process may not cover the whole connect­m m 

ed region of location i in which the intervention was implemented. 

From equation (3-30) the amplitude of the STMA process can be 

recursively computed. This amplitude is seen to depend on the magni-

tude of the moving average model parameters as well as that of the 

input amplitude 5. 

3.2.3.3 ARMA Type 

For the STARMA(P"O,q )1 model, the recursive formula for 5(t) 
1\ m m 

is J 
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(3-31) 

Thus the STARMA type diffusion is a combination of STAR and STMA type. 

For the ~ (t) as described in equation (3-20), we can rewrite equation 

(3-31) as follows, 

5(t) '"' 0 
(3-32) 

5(t) ~ 5 t ::II nl + 1 
,'- l' 

P AI< 
~ w(t)o(t-K) 

mu 
e W(t) 5(t) - r. 1: - E t '"' nl + u + 1, u ( q K.t u1 K~l 1-0 - t,.O 

p AK 
~ W(t)5(t-K) 5(t) - r. E t ) n

l 
+ q + 2 

K-l t-o K1 -
The diffusion speed of this process may depend on the elapsed 

time since the intervention was introduced. At t ,. n
1
+l, the diffusion 

speed is Max{Al,ml }, while at t ::II nl +q+2, the diffusio~ speed will be 

AI' Thus the moving average influence will cause a change in the speed 

of diffusion if ml is larger than Al for q periods until the effect of 

the moving average term dissipates. The influenced regions of this 

mixed process is the same as the STAR process, Le. all connect~d 

regions of location i where intervention is introduced. 

The amplitude of the diffusion process for the mixed 

. , 
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STARMA(P"O,q )1 process can be recursively computed using equation 
Il m m 

(3-32). Here we see that it is composed of two parts, due 'to the AR 

the MA components. From equation (3-31), we see t~at the input to the 

MA component comes only from E;(t) which, in part, forms subsequent oCt) 

where as the input for the AR component comes from the lagged values of 

the mean shift function, o(t-K). Thus the MA component shapes/-

influences the AR component but the MA component is independent of the 

AR component. Thus, the total amplitude of the mixed process depends 

on two factors; 

the individual and relative amplitudes of the AR and MA compo-

n(.~ts and 

2) the nature of the interaction of the MA component that can be 

constructive, reinforcing, or destructive. 

3.3 Simulation of the Diffusion Pr6cess of the Low Order 

.... 

In the following, we will illustrate the diffusion processes for 

Since there is no diffusion phenomena in the non-environmental influ-

enced case, I ,. 0, we will only' illustrate the environment involved 
m 

case with I z 1. 
m 

All simula.ted illustratioll.s are from (11 x. 11) square regions. 

Thus there are 121 locations identified as (i,j)th location, i ~ 

1,2, ••• ,11, j a 1,2, ••• ,11. The neighbor structure used is; The 1st 

order neighbors of the (i,j";--location are locations (i+l,j), (i-l,j) 8 

(i,j-l) and (i,j+l). The 2nd order neighbors of the (i,j) location are 
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(i-l,j-l), (i-l,j+l), (i+l,j-l) and (i+l,j+l). Thus all the (11 xlI) 

locations form the co~nected region. The intervention is .introduced at 

the (6,6) location between time t ~ TO-l and t a TO. The amplitude of 

this intervention 0° is set to 10 in all simulations. The intervention 

input is shown in Figur(~ 3-4. 

Figure 3-5 illustrates the AR type diffusion, figure 3-6 illus­

trates the MA type diffusion process and figure 3-7 the ARMA type 

diffusion process for m~del parameters selected to ensure stationarity. 

Thus these figures all illustrate regeneration type diffusion 

processes. 

In figure 3-5(a-c), it is seen that the effect of the interven-

tion spreads over all locations. Figure 3-5(a) and figure 3-5(b) are 

both STAR(ll)I
m 

models, thus the speed of diffusion is the same (i.e. v 

_ 1). However due to the different model parameter values, the ampli­

tudes realized are different. The amplitudes in the figure 4-5(a), in 

which the process parameters are closer to the stationary bundary , are 

1.00, 0.90, 0.56, 0.36 in the (5,6) location, which is one of the 1st 

order neighbors of the~6J6) location, at time T z 1,2,3,4, respective­

ly, where T denotes the elapsed time since the intervention was intro-

duced. The corresponding amplitudes in the figure 3-5(b), in which the 

process parameters are farther ~rom the stationary boundary, are 1.00, 

0.40, 0.21, 0.10, resp~ctively. As expected, the diffusion amplitudes 

b " f th 1"n wh1"ch the process parameters are closer are 19ger or e prGcesses 

to the stationary boundary~ 

From the STAR(12)I
m 

model illustrated in figure 3-5(c), we can 

see that the velocity of spreading is twice those in figure 3-5(a) and 

(b) since Al - 2. This is clearly illustrated by the number of regions 

~'l- -....,<--.~~::',~.::;;;.::-K+ ,.~~<::':'':::::," .:--::$~~::-t:.~:;Jj;:;;<>l<-~.t.t""-~"=-""'N. 
, ... "~~., .. ,,";- . 
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influenced at a given time after the intervention is introduced between 

t • TO-l and t ,. TO' From these plots, we see that at t =- TO+2, i.e., 

T • 2, figure 3-5(c) has' 8 influenced locations while figure 3-5(a) and 

(b) have only 4 influenced locations. 

For the MA type processes in figure 3-6, we can see that the 

effect of the pulse intervention disappear abruptly after t = TO+2. It 

is also quite different from the STAR(lU) 1m ,process in that the influ­

enced regions are limited. In figure 3-6(a) and (b) the influenced 

region contains the l~t order neighbors of the (Q,6) location and in 

figure 3-7(c), it contains the 1st order and 2nd order neighbors since 

the latter has a larger spatial influence. The speed of spreading for 

the STHA(12)I~ model is 2 at t =- TO+l, as seen in figure 3-6(c), while 

the speed of spreading for the STHA(ll)I
m models is 1. After t z T

O
+2, 

the effect disappears at all locations and the velocity of spreading 

for STHA(lml)Im model becomes 0 for t > TO+ml • Comparing figure 3-6(a) 

and (b), we see that different A-parameter values give different ampli-

tudes. In figure 3-6(a), where the model parameters are ~ =-- 4 , 10 ., 

~1l·-.4, the amplitudes at the (5.6) and (6,6) locations at T=-l are 

1.00 and 4.00 respectively, while the corresponding amplitudes in the 

figure 4-6(b), where the model parameters are A10·-.2, All=-.4, are 

1.00 and 2.00. 

In figure 3-7(a-b), the infuenced regions contain all these (11 

x 11) locations. In figure 3-7(a), the speed of spreading is constant 

all the time, Le. v"'2. But in figure 3-7(b), the speed is 2 at T '"' 1 

and 1 after T = 2. 
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Comparing figure 3-7(a),(b) with those of the STAR and STMA 

models, we can see that due to the interference of AR and MA rJ·t'r.::,~ess, 

the amplitude of the STARMA models is not equal to the superposition of 

amplitudes of the corresponding STAR and STMA models. For example the 

amplitudes in figure 3-7(b), in which the parameter values are set to 

~lO- 0.4, ~ll ,. 0.4, 910 a -0.2, 911 = -0.4, 912 =- -0.2, are 2.00~ 

1.50, 1.06, 0.75 at the (5,6) location at T = 1,2,3,4 respectively. 

The corresponding amplitudes in figure 3-6(a), which is a STAR model in 

which the parameter values are set .to ~10·0.4, ~11-0.4, are 1.00, 0.80, 

0.56, 0.36 and the corresponding amplitudes in figure 3-6(c), which is 

a STMA model in which the parameter values are set to ~10=-0.2, 011=-

0.4, 912=-0.2, are 1.00, 0.00, 0.00, 0.00. It is obvious that from T=2 

on, the amplitudes in figure 3-7{b) are not equal to the superposition 

of those corresponding amplitudes in figure 3-5(a) and figure 3-4(c). 

this phenomena is due to the interference of STMA process on the STAR 

process, which has been discused in previous section • 

A STAR(ll)Im process that satisfies equation 3-23, i.e. the 

strictly conservative conditions, is simulated and plotted in figure 

3-8. In this simulated relocaiton process, the process parameters are 

121 (O 
set to ~10-0.4, ~11·0.6, and r W .. ,. 1 for j = 1,2, ••• ,121, so that 

i=-l 1.J 

the strictly conservative conditions, equation (3-23) are satisfied. 

Comparing the figures of (3-8) with their corresponding figures of 

3-3(a), we see that the diffusion speed of the relocation process, 

which is a homogeneQusly nonstationary STAR(ll)Im process, is the same 

as that of the stationary STAR(ll)Im process in figure 3~5(a), i.e. 1 

order neighbor per observation period. But the dif'fusion amplitudes of 
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Figti.re 3-4. The Interv~ntion Input 0 =10 at Location (6,6) of the 
llXll Regular Grid System. 
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Figure 3-S(a). Diffusion Process of AR Type, STAR(ll) Model 

with ~10=0.4, ~11=0.4 
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Figure 3-5(a). (Cont'd) 
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Figure 3-5(bh Diffusion Process of AR Type, STAR(ll) Model 

with ~lO=O.2, ~11=O.4 
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Figure 3-5(c). Diffusion Process of AR Type, STAR(l ) Model 1 

with ~10=0.~, ~11=0.4, ~12=0.2 
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(a) 

(c) 

Diffusion Process of MA Type 
(a) STMA(ll) Model witli 9 =-0 4 

10 " 
(bj STMA(ll) Model with 6 =-0 2 

10 " 
(c) STMA(12) Model with 6 =-0 2 

10 '. 
(d) T=2 for Models in (a,b,c) 
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Figure 3-7(a). Diffusion Process of ARMA Type, STARlMA(12,0,11) 

Model with ~10=0.2, ~11=0.4, ~12=0.2, 

6
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Figure 3-7(b). Diffusion Process of ARMA Type, STARlMA{11 ,0,12) 

Process with ~10=0.4, ~11=O.4, 

9
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=-0.2, 9
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=-0.4, 812=-0.2 
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Figure 3-7(b). (Cont'd) 



Figure 3-8~ Diffusion Process of Relocation Type 

q,lO=O.4, q,n=O.6 
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the relocation process are always higher than those of the stationary 

STAR diffusion process, which is a regenerating (-) diffusion process. 

From T2 3 on it becomes even more obvious that the populations at every 

influenced locations of the relocation process are much higher than 

those in the correspoding regenerating (-) process. Since the total 

T-O, Whl'ch l'S the intervention input, almost damps out in population at 

figure 3-5(a) at T-3, while the total population of the relocation 

• conserved for all time, the longer the time process in figure 3~8 lS 

elapsed, the greater the differences in the diffusion amplitude will 

be. 

3.4 ~odeling Space-Time Intervention Processes 

In previous sections, we investigate the properties of the 

space-time intervention models. In this section, we describe how to 

build the space-time intervention model for a process. We still aSSume 

. t tion observations and n2 post-interven-that there are nl pre-ln erven 

tion observations. 

We will build the space-time intervention model following the 

three steps listed below: 

1. Build the model for the pre-intervention space-time process. 

2. 

3. 

Build the dynamic model for the effect of the intervention. An 

. step is to identify whether the inter­important component of thlS 

vention process is influenced by the environment or not and to 

identify the form of the impact from the dat~ structure. 

Estimation of the parameters of the total model and diagnostic 

checking of its adequacy. 

i ,1 n 

H .. 

r , 
,. 

- --. -----
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To build the STARIMA model, first the space-time sample autocor­

relation functions and the partial autocorrelation functions are com-

puted and are used in accordance with the cut-off tail-off properties 

to select a candidate model. Then the model parameters are estimated 

and diagnostic checking is applied to check the adequacy of the 

proposed model. If the diagnostic checking doesn't snow any 

inadequacy, the model is ready to be employed. otherwise the candidate 

model will be updated according to the remaining structure, then the 

parameters of the updated model are estimated. This iterative 

procedure is employed until an adequate model is found. These 

procedures and inferential statistics for building the pre-iatervention 

model are completely described in Deutsch and Pfeifer (1980). 

In building the dynamic component we employ the preintervention 

model to sequentially estimate :(t) for each observations t > n
l 

and correct these original observations by subtracting B(t) when it is 

significant. We will denote·Z. as the observation of location i at 
l~t 

time t and Z~ - Z. t - 6.(t) when 6.(t) is significant, Z~ = Z " 
l

j t 1, 1 1 1,t i,t 
when 6. (t) is non~dgnificant, where 6. (t) is the estimated mean shift 1 1 

at time t, location i. Thus, in this dynamic scheme, We start with 

using the nl observations to estimate ~, e, ~ and correct all the 
........ "" 

observations (pre- and post-intervention) by subtracting~. Setting 

n2-l we use the t<nl+l to estimate 5(n
l
+l) and correct z. 1 if 

.... 1,n
l
+ 

6i (nl +l) is significant, and set nl+l + n
l

, repeating this procedure 

until all postintervention observations are exhausted. A detailed flow 

chart of this procedure is given in figure 3-9. 



:~;.l II 
I 

n 
y, 
") 

Set iCt).6tCt) 

z1,t-Zi,t-Oi Ct) 

NO 

Estimate II 
Set ~Ct)+ZCt)-ll 

all t 

Set nl 
ZCCt)-ZCt) for t<n 

then t-nl+1 - 1 

Estimate 2Ct) 

Set 0iCt)-O 
ZC -Z i,t t,t 

NO 

Set §(t)-g 
"C _ Z 
"t -t 

Figure 3-9. Procedure of Dynamic Model Building. 

148 

-----------

}, 

ii11 
i 
! n I 

~ t I 

I 
~ ;. 

~ , 
i f J • < 

r 'j 

fk \ '~ 

n \'< 

UJ 

?fll 4, M 'l!J -

{f1 
UH 

~N 
{f ~ 
'.oW,;. 

n 
11 ~ "' .. 
G1i fl' 
all 'j} 

i11 
Il~ rl, 
,,(4 

11 [l 

Ti ~, 

n 
tf 
1"1 L 
n 

I u 

].,.' . , 
. , 

) 

J 

149 

As shown on, the flow chart p we use the nl observations, i.e., 

Zi,t' t < nl , i-I, 2, ••• t;"I.N, to determine the model class, i.e., 

STARMA, STAR or STMA, ande6 estimate 4>, A. For each estimate of oCt), 

we perform the hypothesis test HO : oCt) - 0 vs. HI : oCt) * O. If HO 
'" 

is rejected, we perform all the LN hypothesis-testing HOi o.(t) = 0 
1 

vs. Hli : 0i(t) * 0, i ~ 1,2, ••• rLN, for each individual location and 

set o.(t) - o.(t), Z: t - Z. t - o.(t), if H01' is rejected. Set o.(t) 
1 1 1, 1, 1 1 

• 0 thus Z: t ~ Z. t if 
1, 1, 

rejected, then oCt) - 0 

H • is not rejected. 
01 

and ZC .. Z • 
",t ... t 

While if HO is not 

From this sequential procedure, the plot of oCt) vs. tallows 

for the determination of whether there is environmental influence in 

the intervention process. If the plot reveals no transient behavior 

and is deterministic., no environmental influence to the mean shift 

function is present. Alternatively, when these characteristics are 

present the parameter estimators for the intervention process are those 

correspoding to 1m .. 1 structure for model fitting using all n2 

postintervention data. Recall from Chapter II that if n2>1 estimates 

of oCt) and therefore, the intrinsic utility !)f a progra.m 0 will be 

biased if the incorrect 8tructure I - 0 or I - 1 is employed. m IIi 

3.5 Estimation for Space-Time Intervention Models. 

Once the pre-intervention space-time.model irJ built in step one 

of the modeling procedures, the model parameters. i.e. (4),0) which have 

already been estimated may be treated as known in determing estimates 

..:." 
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of the other parameters. However, sometimes we do not have complete 

confidence in the cor.rectness of these estimates perhaps due to the 

smallness of the length of the preintervention history, nl • In this 

case it is desirable to refine the whole intervention model by 

estimating all the model parameters simultaneously, ego treating all 

parameters as unknown. In this section, we first will develop the 
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formula for estimating (p,~) given that ("e) known. Then we move to 

the situation in which ("e) are treated as unknown. 'Here the L.S. --
estimates of (p,5",e) are gotten by searching through the ("e) 

subspace, and the approximate hypotheses testing stati~.tics, the 

approximate confidence intervals are developed based on linearization. 

Lastly, the estimation for the multiconsequence space-time intervention 

proceSs is treated. Here in addition to the intervention potentially 

causing a change in the mean level of the process at any of the LN 

locations a simultaneous change in the covariance can occur causing the 

preintervention parameters ~,e to change to W,y after the intervention. 
I'WU 

For this situation, the conditional estimation of (W,Y,U,5!t,A) are 

discussed. In the rest of this section, we will assume that ~tJ i.e. 

the intervention variable, is well identified and is known. 

3.5.1 Transformation to Linear Model Form 

In this section we assume that the pre intervention model 

parameters, , and e, are known. .A recursive formula is developed to 

transform the original STARlMA(P, , ,0,0 )1 model into 
,,/\ 1 ' • • • J 1\ P "tnl ' • •• ,m q m 

linear model form, i.e. 

u 

I·.·· ~ , 

I 
I 

]
, 

. ') 

" ~ 

------------------------ -~---~~-
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Y=Xp+€ (3-33) 

where 

~ is [LN x (nl +n2)J by 1 vector with each element as a function 

of the observations and model parameters. 

X is [LN x (n l +n2)] by 2 LN matri~ with each element as a 

function of. model parameters only. 

Ui ' i • l,2, ••• ,LN is t~e preintervention mean value at location 

i. 

5i , i • 1,2, ••• ,LN is the intrinsic mean shift at location i 

and 

In the linear model form, 

. ., 
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Xl 1 (1) Xl 2(1) ••• 
• • 

X2, 1 (1) X2•2(1) •• • 

· · 
~N 1 (1) XLH 2(1) •• • 

• • 
Xl •l (2) Xl 2(2) ••• 

X == • 

~N l(nl ) XLN 2(nl ) ••• 
_ -'- - - - _ -1. ___ 

~ 1 (nl +1) Xl 2(n1+1) •• • 
• • 

· · 
~N.I(nl+n2) XLN.2(nl +n2) . ' .. 

----------~ -----. ----------------------------------------------------------

Xl •LH(1) I Xl •LN+l (1) 

X2• LN(1) X2•LN+l (1) 

· • 

XLN •LN(1) I XLN.LN+l (1) 

Xl LN(2) 
• Xl •LN+l (2) 

• 

~N LN(nl ) I __ .1. ____ XLN LN+l(nl ) _ -'- - - - -
Xl LN(nl+l) • I Xl.LN+L(n1+1) 

· • · I 

XLN ul n1 +°2) I 
• I 

XLN•LN+l(01+02) 

f' 

, t 

••• Xl •2LN(l) 

e •• X2•2LN (1) 

· • 

••• XLN 2LN(1) • 
Xl • 2LN(2) 

· • 
• •• XLN 2LN(~1) __ .1. ____ 

••• ~1.2LN(nl+l) 
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••• XLN 2LN(ol+02) 
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The closed form transformation formula for the STARMA(IAl,O,lml)1m 

model which will be derived is also applicable to either the 
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STAR(lA,O,O)1m model or the STMA(O,O,lml)1m model by deleting certain 

terms by setting the appropriate model parameters to zero. Once we 

have the transformed linear form. we will apply the results of linear 

model.theory, e.g. F. A. Graybill [1976], to get the L.S. estimator for 

u, 5, and construct the hypotheses testing statistics and confidence 

intervals. 

Tne STARMA(P'l "O,q I )1 model form is, A , ••• ,Ap m , ••• ,mq m 

-Z = S U + F. 0 + ,..t t 't,.. 
(3-34) 

-------------------------~------------------------------------------

.. 
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\, 
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where S~ is step function and E: t is the i.ntElrvention variable. 

Equation 3-34 can also be expressed as, 

+ (l-I)~ ,(B)+I e (B») ~t 5 + e (B) m p,A m q,m ..., q,m 
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(3-35) 

By multiplying every term by 9 q,m(B)-1 we get the lienar model form 

of, 

~ A (B) p, 

By defining 

t A (B) p, 
(l-I)~ ,(B)+I e (B) m p,A m q,m 

1.I + ----er---r{';;'B't""j --- ~t 5 
q,m ~ 

~p,A(B) 

yet) • 5 Z e (B ...,t. .... q,m 

-~(t) .. e (B) St • 
q,m 

(3-36) 

(3-37) 

(3-38) 

~-~-~--. ---
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ll-I)~ ,(B) + I e (B) m P,A m q,m 

X2(t) • 9 (B5 ~t' 
q,m 

(3-39) 

i lij iJ 
i 

where yet) is a vector and Xl(t).· X2(t) are LN by LN matrix, the model 
.... 

is reparameterized to the standard linear model form; 

t 1~ 'j 

t 

I ~il 
yet) • XI(t) 1.I2 + X2(t) 5 + €t' 
~ tf/IIIfI ,..,., #'foIJ. 

(3-40) 

, 
'~ I 'II 
~\ 

! 
,1 

1 ~ ! 

t n 
1 n t 

derived by using equations 3-37, 3-38, 3-39 recursively. 
n 

In the following, we will use ~t as a pulse function, Ptl(Tp)' 

without the 108s of generality since, if we let T a~, the pulse p 

function becomes a step fanction. Also implicitly, we assume that 

nl > Max(p,q). To obtain the initial values for yet) and Xl(t), we 
"" 

! [1 ~ 
j 

'I 

will replace the unrealized values of Zt by their expected values, e.g. 
.... 

Zt1t<0 • P. Thus, X2(t) • 0 for t < nl • 
..., 

Based on thes initial conditions, we will develop a general 

transformation formula by using equations 3-37, 3-38, 3-39. 

Define 

K ::a 1,2""IF 



r 

K '"' 1,2, ••• ,q 

K"" 1,2, ••• ,q 

F'com ~quation 3-37, 

or 

'q K P k 
Y(t)i,.. 1: W"'KB yet) + Z - .. W ~ Z 

t1 t" ,I. ~t' 
"'" K=-l ,.. .' ,.. K"l 'I' ~ 

Imposing the initial conditions, we get; 

·f 
q -1 

P 
(I - r. W

SK
) (1 -r. W~K) .~ t ( 0 

K=-l K=-l 

yet) 

~ q -p 

! WBK ~(t-K) + Z - ! WcjlK ':t-K t > 0 
K=-l ,.., t K=-l 

From equation 3-38 
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(3-41) 

(3-42) 
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I 
1 or 

I (3-43) 

""': :J --
"I 

",I 

~J .) 

,'1 ~p' 

Again imposing the initial condition, we have, 

i , 
11 i 

I itt 
'1 ~Ik 

t ( O. 

(3-44) 

t > O. 

From equation 3-33 

or 

(3-45) 
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Using the stated conditions, we have 

(3-46) 

The estimator p from linear model theory is unbiased if the Xl 

and X
2 

matrix are constructed correctly. However if we choose the 

wrong model structure, i.e., the wrong I, parameter value, the 
tlr 

estimates will not only be bi~sed, but simply incorrect. 

This transformation to lienar model form can be made more 

compact and computationally simpler to give the transformation formula 

of STARMA (IAI,O,lml)i
m 

model by defining the iterative functions, 

L. Z(t) and U~~). 
1i 1J 

L.(t)::;, 
1 

o for t < 1 

(3-47) 
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cjIUWij 
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Using these definitione, the transformation formula becomes 

For i,j ,. 1,2, ••• ,LN. 

Y.(t) .,. X. - L. B(t) 
1 1,t 1, 

t-2 
X .. (t) ,. 1- r u •• (k) 

11 k-O 11 

t-2 
x .. (t) - r u .. (k) 

1J k-O 1J 

o 

t-n -2 
1 I-I, r u .. (k) m

k
_

O 
1,1 

t-n -2 2 
-I r U (k) 
~=t-nl-Tp-l i,i 
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K=O 
(3-48) 

K~-l 

K>1 

(3-49) 

(3-50) 

(3-52) 
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(3-53) 

To obtain the transformation formula for the situation that ~t is 

f . We J·ust set T 3 n or equival~ntly, 
presumed to be a step unct10n. p 2 

1 ;n equations (3-52), (3-53), so only 
T a~. Not that T appears on y & 

P P 
these equations will be changed. 

For the step functioa situation 

therefore, 

o 

(3-54) 

t-n -2 
1 (K) 

1 - I r. u .. 
m K-O 1J 

and 

0 
t < n1+1 

~ - ( (3-55) 

Xi,j+LN1tJ't 
t-n -2 1 

u~~) t > n1+2 
-! L 

m K=O 1J 

. (3 54) (3-55) are obtained by eliminating the last 
~ote that equat10ns - , 

H , J 

1, '1 
I ) 

l \ 
U 

n 

u 
n 
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part, i.e. t ) nl+Tp+l, of equations (3-52), (3-53). To obtain the 

transformation formula for the STAR(lA)1 intervention model and the 
1 m 

STMA(l )1 intervention model, we only set e = 0 and ~ = 0, m
l 

m _ _ _ 

respectively in the de~ived pulse or step formulation. 

3.5.2 Least Squares Estimates and Hypothesis Tests for ~~e Known 

In order to apply the result of linear model theory to get the 

M.L. estimators, it is important to be sure that the X-matrix of the 

transformed form of all these models are of full rank (of rank 2LN). 

Thie can be seen by noting that X .. (1) -I, X .. {1),. 0, i*j, 1,1 1,J 

Xi ,i+LN(t<n1) ,. 0, Xi,i+LN(nl+l) ,. 1, Xi,j+LN(t<nl+l) = 0, i*j. The X-

matrix is of the' form 

!LN x LN 

X
1

(2) 

X
l

(3) 
0 . 

• 

X ,. 
X

1
(n

l
) 

- - - - - ------ - - - -
Xl (n1+1) ILNxLN 

X
I

(n
1

+2) X2(n
1

+2) 

. . 
L-X1 (n1J12) X2 ( 11 J. +n 22J 

where I LNxLN is LN by LN identity matrix, 0 is (LNxNl ) by LN null 

matrix and X
1

(t>2), X2(t>n
1

+2) are LN by LN matrices as stated in 
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equation (3-40). Therefore the transformed X-matrix always cortsists of 

2 LN independent columns and is of 2 LN rank. 

Assume that all the ~'s and e's are known. then all the X .. 's l.,J 

in the transformed model would be known. Applying the results from the 

linear model, we can immediately get the least square estimation for p 

as 

p • xt y (3-56) 

where xt is the generalized inverse of matrix X. That is, when X, the 

[LNx(n
l

+n
2
)] x (2LN) matrix, is of rank 2 LN then xt a (XlX)-lX

l 
and 

the L.S. estimator becomes p ,. (X'X)-lX'Y. Also, the sampling 

distribution of the quantity, 

(y_y),(y_y)Cii 1/2 

H-2LN 

M .. (n
1 

+n
2

)(LN) 

ii c ,. the ith diagonal 

element of (X'X)-l 

(3-57) 

is ~tudent t-distribution. Therefore, the one-at-a-time lOO(l-a)% 

confidence interval is, 

(y_y)!(y_y)Cii 1/2 

Pi ± t a/2 ,(M-2LN) M-2LN 
(3-58) 
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Also the simultaneous confidence interval is contained in the region 

(p-p)'(X'X)-l(p_p) 
N .... 

----2=-----.;; Fa,2LN, (M-2LN) 
(2LN)a 

(3-59) 

where 

To test the hypothesi.s HO : H p ,. 0, where H is a q x 2LN iIlatrix of 

rank q, with q < 2LN, the testing statistics is: 

p H'[H(X'X)-lH'J Hp 

w - --------~----------
qa2 (3-60) 

HO is rejected if W ) Fa~q~[(LN)(nl+n2-2)]. For example, if we would 

like to test the hypothesis that the shift is insignificant in all 

regions, we test, 

with H matrix of the form [O! I LN ] • 

The problem described previously of estimating ~, ~ when ~, e 

are known was a linear estimation problem. When~, e are also unknown 

and we would like to estimate (~,e,~,n) simultaneously, the problem 

becomes one of nonlinear estiill~tion. 
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paramters seaching over the sum of squares function is tedious. For a 

more efficient solution the model form is linearized and an interative 

linear least squares appraoch is used. To linearize the transformation 
o 0 0 0 

form Y :I X P + e: an initial guess value is selec.ted ( cfJ, e, p, li). In 

the following we will restrict ourself to the P<1, q<l models for 

simplicity. The discussion can be naturally extended to other models 

(p)2 or q)2). Recall that elements of X-matrix are functions of e and 

41 only, so to get the linearized approximation atB - o~ , p ... 0p, we 

will have the linearized models of the following form: 

y ... (3-61) 

0 0000 0 tot 0 t 
where Xo is the X-matr1x evaluated at ( ~, e, P, li), a 2 ( 41 ,e) 

and 0p a (OPIO~), which is the M.L. estimates of (Pili) given that 
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~ - 041 

°a~ ::a a-oe ". 

°e ,... ,... e -

o ~ 0 

where X matr1x is [L ( an N· nl +n2)J by (A + m +2) matrix, 
~ 0 (A 1 1 a 1S an 1+ml +2) vector, and we have the 1 0 

lnearized model at 

(3-62) 

Since the linearized approximate d mo ele are linear in (cfJ,e,p,li), 

so we could apply the res It f 1 0 

u s 0 1enar model theory to get h t e L.S. 
e to t 0 ~ e 0 0 ~ I s lma es of a and P, l~e., a and p. Once the L.S. estimates 

o ~ 1 
B J p are obtained 
• I the linearized model 0 th lS en established at (~,P) 

... (la,lp), where (lB,lp) _ (oQ oQ~ I ) ,... -
,... ,... p+ P J P • and the linear modal th~ory is ,... ,.. ,... 

then applied again to t th L 1 ~ e ge s .S. estimates Band p. This 

procedure is repeated u tOI b h n 1 ot of the following two stopping rules 

are satisfied. 

1. ie~ 
< ~e' where ~e is a vector of arbitrarily small 

positive number, and iR~ lOS the L.S. estimate of 

lQA 0 

P at l-th iteration. 

2. SSO-SS. l<e:, where e: lOS b O 
0 

1 1- an ar ltrarlly small positive 

number, and SSi' SSi_l are the Sum of squares at 
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i-th iteration and (i_l)th iteration 

respectively. 

Once the iterative procedure stops, the L.S. estimates of Band 

p are obtained. To construct the confidence intervals and to perform 

the hypothesis tests, the linearized model is constructed at (a,p) -

(B,p) and then the results of the linear model, which are discussed in 

3.5.2, are applied directly to obtain the confidence intervals as well 

as the test statistics. 

To illustrate the linearization in more detail, let us linearize 

the ~t pulse function situation for STARMA(lAl,O,lml)Im intervention 

model. The results are given below of the linear expression form in 

equation 3-62, 

where 

LN t-2 LN t-n -2 

0,1: t(t) D. ~~) 
1 

D~~i .. -1: 1: 
0 I 1: E 015 • lJ. -

1, jal K""O 1J J m j=-l K""t-n -T -1 1J J 
1 n r 

1 < I. < Al + 1. i .. l,2, ••• ,LN 

-----~---

n ~ I 
n 
I .' 

-1 

I I 
! I I I 

I J 

H 

H 
r ~ fr ~ J. 

r·'·u 
~ ,1 
~ ! 

H 

~~ 
!i1 
~~ 

·nU 
My 

B 
H 

ri 

J 

t 1 

" " 
f I I 
! I 

I j 



r 

: 

1 
f 

1 

\ 

, I 



r--~-~'--

[ 

[ 

r 
r 
r 

r-

[ 

[ 

[ 

[ 

[ 

I 

with D~~~ and E(K) defined recursively as follows. 
1J'" ij9. 

D~?~ = w(R.) 
1J'" ij' 

D(K) .. 
ijR. ral g=l 

E~?~ = -w~~) 
1J'" 1J 

E
(K) _ 

ijR. 
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Note that all the Do 08' sand E. 0" 's ,are functions of e, not cf>, and are 
1J'" 1J'" _ 

---

evaluated at e a °e. This is intuitively true because the moving 

average parameters are nonlinear while the autoregressive parameters 

are linear in their own nature. 

3.5.4 L.S. Estimators for the Multi-Consequence Space-Time Model 

When the intervention is believed to change the process 

covariance structure, we perform conditional L.S. estimation, i.e. 

estimate ($,y,olcf>te,~), where cf>~e,~ are the L.S. estimates of pre-

intervention model parameters and the pre-intervention process mean 

respectively. To get the L.S. estimates of ($,Ytolcf>Je,~), we need to 

search through the ($,Y) space. The transformadon needed to express 

this model in lienar model form can be obtained by modifying equation 

.. . 
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(3-42), (3-46). To get the Y(t) vector ahd X2(t) matrix, 

+ 

min{q,t-nl-l} 

1: 
Kal 

-(1-1 ) 
m 

min{P,t-ncl } 

1: 
K-l 

min{P, t-nCl} 

1: 
K"l 

which re$ults in the liear model form, 
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Note that yet), X2(t), t<nl are known when the pre-intervention 

model has been bui\1t. 
'~ 

Once the L.S. estimates (1lI,y,ol4>,e,lJ) are obtained, the 

lienarized model, which has been discussed in the previous section, is 

constrlJcted and the results of the linear model are applied to 

construct the confidence interval as well as the hypothesis testing stat, 
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3.6 An. Example: Los Angeles Carbon Monoxide (CO) Data 

In this sectioll the Los Angeles CO Data is reanalyzed to illus-

trate the space-time intervention modeling procedures. This data was 

previously analyzed by Box, Tiao and Hamming [1975J using single site 

intervention models. The data are the monthly averages of hourly 

measurements of carbon monoxide,. th~t~d from March 65 to 
,/ 

December 71 at six geographically distributed locations in the Los 

Angeles Basin, i.e., Azusa, Burbank, Lennox, Long Beach, Downtown LA 

and LA County. Two events (or interventions) occurred, which were 

expected to reduce the measurement level of carbon monoxide at these 

locations. The first intervention was the air quality legislation that 

required an engine design change. This law, enacted in January 1966, 

required the engine to be designed more efficiently so as to produce 

less air pollutants. The second intervention introduced in April 1968 

was the change in the method of calibration of the measuring instru-

ments. We will denote II as the first intervention, i.e. the engine 

design change, and 12 as the second intervention, i.e. the change of 

calibration method. 

In the following sections, the geological environment of these 

six locations in the Los Angeles Basin will be described and followed 

by the construction of weight matrix. Then these two interventions are 

analyzed to determin~ the appropriate dyna~ic component model. In the 

next section, the space-time intervention modeling procedures are fol-

lowed step by step to build the pre-II space-time noise model, to iden­

tify the model form of the dynamic components, to build the post-II' 

pre-I2 space-time intervention model and then the whole space-time 
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m~ltiple interventions model for the whole process. The implications 

revealed in the built model are discussed to draw the conclusions of 

the physical interpretation. Also comparisons are made between the 

space-time multiple intervention model and those univariate time series 

intervention models in Box, Tiao and Hamming [1975J. 

3.6.1 The System, Structure and Data 

The relative position of these six locations are illustrated in 

the actual map and computer drawn facsimile in figures 3-l0(a) and (b) 

respectively. The distances in miles as measured from this map are 

given in table 3.1. In each case these measurements represent not 

centroida1 distances but distances between measurement sites. 

Azusa 

Burbank 

Lennox 

Long 
Beach 

Downtown 
LA 

LA County 

Table 3.1 Distances between Gauge Sites 

Long Downtown 
Azusa Burbank Lennox Beach LA 

22.1 29.5 26.8 19.5 

22.1 19.0 26.8 11.3 

29.5 19.0 12.8 10.7 

26.8 26.8 12.8 15.6 

19.5 11.3 10.7 15.6 T , 
35.4 13.3 21.2 33.3 20.2 

LA 
County 

35.4 

13.3 

21.2 

33.3 

20.2 

Any two locations are assigned the same order neighbor to each 

other according to the distanc~s listed below: 
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(b) 

Figure 3-10. The Map and the Relative Positions of Lennox, Long Beach, 
LA County, Burbank, Downtown LA and Azusa. 
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o - 16 miles 

17 - 25 miles 

26 - 34 miles 
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Order Assigned 

1 

2 

3 

h' . nment is' 
The resulting neighbor structure for t 1S ass1g • 

Location 

Azusa 

Burbank 

Long Beach 

Downtown LA 

LA County 

Index 

1 

2 

3 

4 

5 

6 

1st Order 
Neighbor 

5,6 

4,5 

'3D5 

2,3,4 

2 

2nd Order 
Neighbor 

2,5 

1,3 

2,6 

1,6 

3rdOrder 
.l!.!:i gh b or 

3,4,6 

4 

1 

1,2,6 

1,4 

1
• S constructed according to the invet;:~J.e 

The scaled weight matrix 

distance and is listed below. 

1 

W(t) ,. 2 

3 

4 

5 

6 

1 

o 
o 

o 

o 

o 

2 3 4 

00 0 

00 0 

o 0 0.54 

o 0.45 0 

0.29 0.29 0.42 

1 00 

5 

o 
0.44 

0.46 

0.55 

o 

o 

6 

o 
0.56 

o 

o 

o 

o 

n 
R K 

1 

\ 

n 
n 

kJ.·.,. Ul 

i! LJ 

i 
11 ]IJ 

~r. ]; 

1 

W(2) :a 2 

3 

4 

5 

6 

1 

W(3) .. 2 

3 

4 

5 

6 

1 2 3 

o 0.53 0 

0.54 0 0.46 

o 0.48 0 

000 

0.5 0 0 

o 0 0.51 

1 2 3 

4 

o 
o 

o 

o 

o 

o 

4 

o 0 0.32 0.29 

o 0 0 1 

100 0 

0.32 0.30 0 0 

000 0 

0.52 0 0 0.48 

5 

0.47 

o 

o 

o 

o 

0.49 

5 

o 
o 

o 

o 

o 

o 

6 

o 
o 

0.52 

o 

o 

o 

6 

0.39 

o 

o 

0.38 

o 

o 

The data of each location are plo.tted in the figures 3-11(a) to 3-
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ll(f). Table 3-2 contains the sample space-time autocorrelation func-

tion and the standardized sample space-time autocor,re1ation functions 

for the 82 time points and 6 locations. In the following sections the 

modeling of this substantial, statistically significant spatially and 

temporally cdt'related informationiiwill be conducted. 

3.6.2 Initial Considerations of the Forms of the Interventions 

The first intervention, enacted in January 1966, required an 

improvement in engine design to reduce the air pollutants contained in 
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Table 3-2 

Spt,tce tag 
Time La~ 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
II 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
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The Sample Space-Time Autocorrelation Functions and the 
St.andardized Smap1e S-T Autocorrelation Functions for the 
Observations from March 1965 to December 1971. 

Space-Time Autocorre1ations/Standardized S-T Autocorre1ations 
0 1 2 0 1 2 

0.94 0.79 0.75 20.52 17.25 16.39 
0.89 0.71 0.70 18.36 15.47 15.14 
0.74 0.62 0.63 15.94 13.35 13.60 
0.63 0.52 0.56 13.52 ll.20 11.98 
0.53 0.44 0.49 11.43 9.49 10.59 
0.47 0.39 0.45 9.92 8.35 9.49 
0.44 0.39 0.43 9.29 8.24 9.02 
0.45 0.42 0.43 9.40 8.76 9.08 
0.48 0.46 0.45 9.97 9.69 9.38 
0.52 0.51 0.47 10.68 10.62 9.71 
0.55 0.56 0.49 11.29 11.43 10.00 
0.56 0.57 0.49 ll.47 ll.71 10.06 
0.53 0.54 0.47 10.69 11.02 9.54 
0.46 0.47 0.42 9.17 9.41 8 • .52 
0.35 0.36 0.35 6.96 7.11 7.00 
0.25 0.25 0.28 5.02 4.99 5.58 
0.17 0.16 0.22 3.38 3.22 4.35 
0.12 0.10 0.18 2.35 2.07 3.52 
0.10 0.09 0.16 2.03 1.80 3.23 
0.12 0.11 0.17 2 •. '32 2.21 3.37 
0.16 0.16 0.20 3.19 3.16 3.88 
0.22 0.22 0.23 4.18 4.14 4.40 
0.25 0.25 0.24 4.74 4.76 4.54 
0.25 0.25 0.23 4.73 4.76 4.28 
0.22 0.22 0.20 4.09 4.15 3.68 
0.15 0.16 0.15 2.78 2.93 2.70 
0.04 0.05 0.07 0.80 1.03 1.32 

-0.07 -0.06 -0.01 -1.26 -1.10 -0.31 
-0.18 -0.17 -0.11 -3.25 -3.08 -2.03 
-0.26 -0.25 -0.19 -4.64 -4.46 -3.31 
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the exhausted gas. Since the old cars will be replaced by the newly 

designed car with improved engine design gradually, the effect of this 

impact would be expected to increase perhaps linearly until the steady 

state is reached, i.e. all the cars on the roads are designed under the 

impact of this air quality legislation. Thus from a modeling stand-

° 0 ° bl ~(l)o 0 1 ° th ° t point, the ~nd~cator var~a e ~t 1S not , s~nce ere ~s no 

1 ° 1 to Rather ~t(l), the instantaneous tota resource ~mp ementa ~on. ~ 

indicator variable for the first intervention should be of the form 

(1)~ h (1) f1 t t'· ° 1 t to Also th~s Y t <'t' were Y t re ec s i.e resource ~mp emen a ~on. ... 

legislative intervention didn't involve any action tllat will reduce the 

quantity of air pollutants directly. Instead it put constraints on the 

air. pollutant generators (the engine) that produce the source input, 

i,e. the noise input of the STARMA process, of the whole system. 

R~call. that this noise input is the only source of input of the STARMA 

process, so the effect of this engine design change legislation will 

enter the environment process that the noise follows. That is, this 

intervention takes the form of the environmental influence situation, 

i.e. I-I. m,l 
Assuming a constant change over rate and an eight year useful 

life of an automobile, we have the intervention STARMA (PA,O,qm) lm 

process takes the following general form: 

~2(B)(Zt-~) a e2(B)l€+~(1)(t») (3-63) 
#"<J ,..." ,."" ".., 

where ~2(B), 9 2(B) are process parameters and 



~(l)(t) = ~~l)O(l) 
,... ,... 

~(l) a I~(l) ~(l) ~(l)Jt w1."th 
° ,u l ,°2 ,···,°6 

o~l) as the intrinsic program utility at the location i, and 
1. 

E;(l) a 

t 

o 

0.065 + 0.125 t-10 12 

t<lO 

t)ll 
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a _ the largest integer contained in ( ...... ,a), "a....i.s.-r.eal Dllmbe.r .... 

The second intervention, the change of instrument calibration 

method, will not have any impact on the existent air pollutants, but 

only potentially changes in the measurement readings. Suppose that for 

two instruments, one ,is calibrated by the old method and the other by 

the new method, were available at the same time and they were used to 

measure the pollution level at the same location simultaneously. 

Assume that :~ and :~ will have a one-to-one corresponding relati9nship 

of the form, 

z~ a H(Z~) .... ,... 
(3-64) or 

where H is an arbitrary function with H-l exists as its inverse fu~c-

tiona H function may be linear may be nonlinear. Here we will 

assume ;,n general that H function is nonlinear and well 'behaved, 

i.e. H(~+€) can be approximated by H(~) + H'(~)€ when € is a 
,... ,... 

"""'. II,' 

11"! 
6,2 

ffi l 
Ff\ .! 
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small quantity. 

Since zO .. ~O + A 0 and :~ = ~N + AN, where ~O, ~N are mean 
,... ,...,...t ._,..,...t 

o N 0 values of Zt and Zt measurements respectively, A and AN are the random 
,.. ,.. ... t ,...t 

portions. 

zO .. H(Z~) .. H(~N) + H' (~N) AN and t t' .... ,.. ,... ,... 

zO a lH(~N) H,(~N) ~NI + Hi(~;J) ZN (3-65) ,...t t' .... ,.. ,... 

or 

zO _ 
t 

~O a lH(~~)-H' (~N) (~N_JlO) J + H' (JlN)(Z ~_JlO) (3-66) 
,.. .... ,.. ,.. ,... ,..,... 

Since the 12 intervention doesn't have any impact on the 

existent air pollution level, in that it only changes the level 

readings, the post 11 process will not be changed by 12• What will 

change is the units that was used to describe this process. Thus, 12 

is an non-environment involved intervention with 1 .. O. m,2 

The Z~ in the equation 3-66, which is of the same descriptive 
.... 

unit as that of the :t in the equation 3-63, is not available after I2 

but can be obtained through the transformation equation 3-66. The 

process that is described by equation 3-63 in terms of Z~ ,for the pos t 
,.., . 

I pre-1 periods th b " R 1 2 en can. e expressed 1.0. terms of Zt' that is 
.... 

available for the post-12 periods, by the following equation. 



0 ..... '-------
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~2(B)l83+HI(~N)(Z~-~O») = e2(B)(€t+~(I)(t») 
,..", ~,.,.,,,.., ,.,.,~ 

(3-67) 

where 

53 .. H(~N) .., HI (~N)(pN-~O) is function of 11 0, 
,.,.,.-.w ,.,., ,..", 

b N. f . f 0 ecause P 1S unct10n 0 P too. Si~ce this unit transformation will 

be independent aQong locations, HI(pN) should be a diagonal matrix,i.e. 

R,I (pN) _ D, of whi.ch the diagonal elements d .. are functions of p., the 11 1 

mean level of location i. To simplify the notation we will denote z: ,.., 

as Zt for the post-I
2 

periods because it is available for analysis in 
,.. 

those post I,.; periods. The model, equation 3-67, is rewritten as 
L 

,', 

~2(B)(83+D(Zt-1J») • e2(B)(£t+~(I)(t») 
,.,., ..... ,.,., ,.,., ,.,., 

(3-68) 

To summarize the previous discussion, wa have the following 

general mUltiple intervention STARHA model form; 

~l(B)~Zt-~) ~ 9 1(B)€t .... .... .., 
(3-69) 

~2(B)(Zt-P) a e2(B)(€t+~(1){t») 
.... .... .... 

Post-I
2

: t 2(B)(8
3

+D(Zt-P»)· A2(B>l€t+~(l)(t») 
,.,., ".." rw ,.,., 

[, " , . . 
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where ~(l)(t) is described in equati~n (3-63), and 

and 

So 

8 is the measure level shift, 
3 .... 

tl(b), el(b) are the pre-II model parameters, and 

t
2
(b), 9

2
(b) are the post-II mo~el parameters. 

From equation (3-69), we have 

Var(DZ~) - var(~2(B-l) A2(b) ~t)' t € post-I2 periods. 
.... 
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D2 8 var(Z~) t € post-I
2 

I var(Z~) t € pre-I2, post-II' (3-70) 
.... .... 

where ZC is the mean corrected observations in the dynamic components 
t ,.. 

identification procedure. Since the D-matrix is a diagonal matrix with 

its ith diagonal element d .. interpreted as the scaled factor between 
11 

readings from the old instrument and the new instrument measured at 

location i, the element d .. can be estimated by 11 
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3.6.3 Modeling the LA CO Data 

In the following the results of each step of the model building 

procedures are presented. This includes; 

(a) Modeling the pre-II space-time process. 

(b) Modeling the po~t-Il dynamic components. 

(c) Modeling the post-II space-time intervention process. 

(d) Overall diagnostic checking and model update. 

4.6.3.1 Modeling the pre-I l space-time process 

The observations from March, 1965 to December, 1965 comprise the 

pre~Il periods. The sample space-time autocorrelation functions in the 

table 3-3(a) and the sample space-time partial autocorrelation 

functions in the table 3-3{b) suggest the candidate model STAR(2A) 

model with A .. (l,l)~ i.e. 

1 <: t <: 0 (3-72) 

The M.L. point estimaters and their associated 95% confidence 

intervals are; 

95% eI 

~10 .. 0.668 ( 0.359, 0.976) 

~11 .. 0.336 (-0.044, 0.715) 

~20 .. -0.130 (-0.459, 0.201) 

~2l .. -0.056 (-0.482, 0.370) 
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Table 3-3(a). 
The Space-Time Autocorrelation Functions and The Standardized S­
T Autocorrelation Functions of the Pre-II Observations. 

Space-Time Autocorrelati6ns/Standardized S-T Autocorrelations 
Space Lag 0 1 2 0 1 2 
Time Lag 

1 0.68 0.57 0.50 4.438 3.716 3.298 
2 0.38 0.38 0.35 2.321 2.329 2.148 
3 0.01 0.06 0.12 0.106 0.329 0.704 
4 -0.26 -0.24 -0.11 -1.274 -1.196 -0.578 
5 -0.52 -0.59 -0.43 -2.222 -2.541 -1.834 

Table 3-3(b). 
The Space-Time Partial Autocorrelation Functions and The 
Standardized S-T Partials of The Pre-II Observations. 

Space-Time Autocorrelations/Standardized S-T Autocorre1ations 
Space Lag 0 1 2 0 1 2 
'rime Lag 

1 
2 
3 
4 
5 

0.686 
-0.214 
-0.381 
-0.149 
-0.263 

0.252 
-0.144 
-0.319 
-0.126 
-0.570 

0.089 
-0.025 
-0.001 
-0.100 
-0.370 

'5.033 
-1.481 
-2.471 
-0.896 
-1.449 

1.849 
-0.999 
-2.065 
-0.757 
-3.124 

0.655 
-0.175 
-0.008 
-0.603 
-2.026 

.' 
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The extra sum of. squares associated with ~ 21 was insignificant. Since 

~2l is insignificant, it was deleted which results in the STAR(2 l ,O) 

model. The M.L. point estimates and their associated 95% confidence 

intervals are: 

~10 - 0.671 

tll ~, 0.319 

t 20 - -0.146 

0
2 - 1.438 

95% CI 
( 0.366, 0.976) 

(-0.007, 0.624) 

(-0.449, 0.158) 

The sample space-time autocorrelation functions and the sample 

partial autocorrelation functions of the residuals of this model are 

listed in tables 3-4(a) and 3-4(b) respectively. No addit';;onal 

structure is seen here and thus these residuals approximate to be 

uncorrelated. Thus the STAR(2 l ,O) model is adequate for the pre-II 

process. 

3.6.3.2 Modeling the Post;"I1 Dynamic Components 

Following the dynamic component modeling procedures as shown in 

the figure 3-9, the mean shift function ~i(t) i~l,2, •••• 6 for 11<t<82 

(e.g. for the post-II period) are estimated. These estimated values, 

~ .(t), are plotted in figure. 3-12(a)-(f) for locations 1 through 6 
1 

respectively. The 5
i
(t) in the pre-I2 period characterizes the effect 

of II intervention, while the ~l(t) in the post-I2 periods should be 
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Table 3-4(a) The Sample Space-Time Autocorrelation Functions and The 
Standardized Sample S-T Autocorrelation Functions of the Pre-II 
Residuals. 

Space-Time Autocorre1ations/Standardized S-T Autocorrelations 
Space Lag 0 1 2 0 1, 2 
Time La~ 

1 -0.019 -0.001 -0.004 -0.125 -0.005 -0.024 
2 0.113 0.091 0.102 0.679 0.543 0.612 
3 0.100 0.140 0.081 0.546 0.766 0.441 
4 -0.107 ' -0.067 -0.060 -0.525 -0.326 -0.294 
5 -0.105 -0.187 -0.144 -0.445 -0.792 -0.611 
6 -0.022 -0.041 -0.060 -0.017 -0.144 -0.207 
7 -0.278 -0.146 -0.261 -0.682 -0.357 -0.639 

(b). The Sample Space-Time Partial Autocorrelation Functions and The 
Standardiz\~d Sample S-T Partials of The Pre-II Residuals. 

SpaceTi~::e:--AA:::u+'t:-o::c o::r::r::e::"ili":a:";t::i-=o:':n:':s'/(;'S':"t a:-n:-d';'"a:-r:-d;-:i""z-e-;d-;;"S-~T=--A:-u-:t-o-c-o-r-r-e'="l-a-t ~.,... o-n-8-'" 
Space Lag 0 1 ~ 0 1 2 
Time Lag 

1 
2 
3 
4 
5 
6 
7 

-0.019 
0.112 
0.106 

-0.121 
-0.150 
-0.031 
-0.212 

0.011 
0.069 
0.156 

-0.050 
-0.286 

0.057 
0.059 

0.010 
0.049 

-0.019 
-0.006 
-0.090 

0.181 
-0.173 

-0.141 
0.781 
0.680 

-0.728 
-0.823 
-0.149 
-0.899 

0.078 
0.481 
1.009 

-0.300 
-1.568 

0.278 
0.251 

0.072 
0.342 

-0.122 
-0.034 
-0.491 

0.885 
-0.732 

:.. 
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interpreted as the effect of 12 given that 11 has been initiated in 

this system. 

188 

From figure 3.12 the 12 intervention is seen to shift the mean 

shift function instactaneously for each location suggeating its effect 

to be additive not interactive with II' Thus) although in general, the 

effect of multiple interventions that overlaps should be viewed as 

conditional depending on the physical nature of the intervention they 

may be additive. Thus the 12 intervention which is solely a 

measurement change does not appear to interact with the engine design 

enange as expected apriori. In addition, from the data plots in figure 

3-11(a)-(f), we see that at April, 1978 the air poll?tion levels of 

these six locations were about the same. Thus even under a nonlinear 

transformation assumption, i.e. the transformation between raadings of 

different calibration methods are nonlienar nature and state dependent, 

the 12 intervention had the same level changE! effect and the same scale 

factor at these six locations would be appropriate. That is, the mean 

shift vector :3 ~ B3 : and the scale factor matrix between 

measurements) D ~ dIe 

From the initiation pqint of the engine design modification the 

pattern of B.(t) which is not a constant shift but rather exhibits 
l. 

seasonal fluctuations about a change in mean level indicates that the 

11 inter-..i'ention is environmentallY influenced. Figures 3-13(a),(b) 

exhibit the K(t) values for the six locations and figures 3-l4(a)-(f) 

contains the B(t) versus K(t) plots for each location. From the latter 

plots the appropriate form of the dynamicS of the intervention can be 

identified. From these plots we see an apparant change in slop between 

the post-II' pre-1
2 

segment and the post-I2 segment. Regression fits 
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to each of these segments for all six locations were developed for 

first and second order polynomials of the form; 

Table 3-5 contains the estimated parameters. For the post-I1, pre-I2 

segment only in locations 3, 4 and 5 (Lennox, Long Beach and Downtown 

LA) is there a significant shift in carbon monoxide tentatively 

identified. Further only in Lennox is there any indication that there 

is a 2nd order transient effect. For the post 12 period, all sites are 

seen to have an instantaneous measurement effect (e.g. the slope ~, 

being statistically significant)~ Basing on the above considerations, 

the f~'l1owing tentative model for post-I1 periods is identified. 

Post-Iv pre-I2: 

(1-"'10 1:8-111
11 

w(1)B-"'20 IB2)(Zt-lJ) .. A + ~(1)(t), 
,..,.. .... t ,.. 

Post:-I2 : 

(I-~10 IB-"'ll W(1)B-1JI 20 IB2)(n3 l+d(Zt-lJ)) .. At + ~(2)(t) 
N ,.,., ~ t"W 

where ~(1) (t) .. ~(1) ~(1) as defined in equation 3-63, 
t 

~(1) ~(2) ~(2) _ 1 ~(2) ~(2) ~(2)lt 
"'t U • U ,u 1 '°2 ,···,°6 . , ,.. ,.. ,.. 

(3-73) 

c5
3 

and d are the mean change and the scale faactor between 

readings of ~ifferent calibration methods. 
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Table 3-5 Mean Shift Function Forms. 

-(Post lIs Pre 12) 

location aO (Var) a1 (Var) 6 2 (Var) CJ2 

1 0.748(0.152) 2.435(2.249) 1.337 
2 -0.174(0.169) -2.425(1.168) 4.399 
3 -8.268(0.434) -3.639(1.169) ll. 200(13. 306) 4.014 
4 -1.437(0.082) -0.079(0.568) 2.138 
5. -2.916(0.768) 0.826(0.530) 1.947 
6 -0.637(0.136) 2.483(0.935) 3.S22 

(Post 12) 

2 
location aO (Var) aJ. (Var) a2 (Var) CJ m i" , 

tt,:·.• .. 1 t . ~ 

I 

1 -5.33S(0.041) 0.181{0. S06) 1.902 
2 -7.279(0.1l9) -0.292(0.145) -- S.495 
3 -13.810(0.132) 0.264(0.19S} 6.076 
4 -7.683(1.09) -0.094(0.161) 4.992 
5 -7.115(0.059) -0.147(0.087) 2.708 
6 -7.513(0.081) 0.449(0.119) 3.711 
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3.6.3.3 Modeling the Post-II Space-Time Intervention Model 

Keeping the pre-II model, equation (3-72) unchanged, the M.L. 

estimation has been performed to give the conditional M.L. estimates of 

... ... This resulted in non-significance of W
1l 

= 0.004 • 

The associated extra sum of square SSE ~ 0.432 being less than the 

corresponding critical F for reasonable a levels. Therefore the W
1l 

term was dropped from the models and th~ M.L. estimation for the 

following reduced model was obtained. 

Post-I2! 
(3-74) 

2 (I-W10 IB-W20 IB )(Zt-~) 
... -

Post-12: 

(I-W10 IB-I~20 IB2>( 63 1 + d(ZI: -~») 
,... ,.. "" 

"" At,' + ~ ( 2 ) ( t ) 
"" ' 

The conditional M'.L. esti~ation results are; 

Model Parameter C.M.L. Estimate 95% C.l. 

WlO 0.900 ( 0.821, 0.979) 

W20 -0.247 ( -0.324, -0.170) 
6(1) 

1.647 ( -1.119, 4.414) 1 
6(1) 

-2.574 (;-5.350, 0.193) 2 
6(1) 

3. -14.895 (-17.660,-12.130) 
~(1) 
4 -3.674 ( -6.440, -0.907) 
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5(1) 
5 

-5.677 ( -8.443, ~2.910) 

.s (1) 
6 

-1.382 ( -4.148, 1.385) 

.s (2) 
1 

-2.105 ( -1.148, 0.727) 

5(2) 
2 

-1.503 ( -2.441, -0.566) 

5 (2) :-' 

3 
-5.410 ( -6.347, -4.472) 

5(2) 
4 

-1.687 ( -2.628 e -0.750) 

5(2) 
5 

-1.300 
, -2.237, -0.362) \ 

5(2) 
6 

-1.534 ( -2.471, -0.596) 

53 -5.123 ( -6.128, -4.117) 

and 

2 '1 517 0A .. 1.. ). 
d ,. 1.048 

3.6.4 Refining the Noise Model and Diagnostic Checking 

From'the estimated residuals At of the post-II model (equation -
3-76), the sample space-time autocorrelation functions and the sample 

space-time partial autocorrelation functions were estimated. Table 3-

6(a) and 3-6(b) contain these autocorrelation functions and their 

standardized forms. The autocorrelations are seen to repeat in blocks 

of size 11 indicating the need of seeeasonal components in the noise 

model. Furthr, within each block, the autocorrelation and partial 

autocorrelation functions appar to tail off for spatial log 0 and 1. 

Thus a tentative noise model for the post-II period is the seasonal 

STARMA(ll,O,ll) x (1 1,0,0)11 model. It's form is, 

" \ 
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(I - \f1~0 IB - ~~l W(1)B)(I - ~~1,0 IBll - ~N W(l)B11) (3-75) 
11, 1 ~t 

The M.L. point estimates and their associated 95% confidence intervals 

are; 

95% C.I. 

N t
lO 

.. 0.698 ,( 0.311, 1.085) 

N 
~11 .. -0.145 (-0.614, 0.325) 

N 
t U •O .. 0.060 (-0.057, 0.178) 

.. ', N 
't U •l 

.. 0.389 ( 0.244, 0.535) 

N 
910 .. 0.575 ( 0.137, 1.014) 

N 9 .. -0.211 (-0.746, 0.324) 11 

0
2 .. 1.236. e: 

The residuals of this fitted model :t' were computed and their 

sample space-time autocorrelation functions wers estimated. Table 3-7 

From contains these autocorrelations and their standardized forms. 

this table no additional identifiable structure is Seen. An overall 

test of the adequacy'of this model in that there is no additional 

structure (the residuals areuncorrelated) can be made using x2 and F 

tests. The standard portmanteau X2 test used in univriate modeling is 

not appropriate since the zeroth, first and second spatial lags are not 

:' ' 

.. 
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Table 3-6 
(a) The Sample Space-Time Autocorrelation Functions and The 

Standardized S-T Autocorrelation Functions of the Rersidua~s of 

the Post-II Model. 

Space-Time Autocorre1ations/Standardized S-T Autocorre1ations 
Space Lag 0 1 2 0 1 . 2 

Time Lag 

1 0.16 0.17 0.05 3.38 3.49 1.05 

2 0.20 0.12 0.10 4.13 2.54 2.15 

3 0.15 0.07 0.09 3.11 1.59 1.84 

4 -0.08 -0.19 -0.10 -1.61 -3.83 -2.14 

5 -0.17 -0.16 -0.05 -3.51 -3.15 -h10 

6 -0.15 -0.23 -0.02 -3.03 -4.58 -0.53 

7 -0.27 -0.25 -0.19 -5.26 -4.92 -3.78 

8 -0.06 -0.03 0.03 -1.21 -0.64 0.75 

9 0.03 0.09 0.09 0.67 1.88 1.74 

10 0.04 0.03 -0.04 0.82 0.74 -0.84 
\ 11 0.26 0.39 0.22 5.04 7.38 4.25 

12 0.19 0.22 0.05 3.59 4.17 0.98 

13 0.15 0.26 0.07 2.90 4.84 1.46 

14 0.21 0.21 0.16 3~89 4.00 2.95 

15 -0.18 -0.14 -0.09 -3.33 -2.69 -1.77 

16 -0.13 -0.13 -0.08 -2.45 -2.35 -1.45 

17 -0.23 -0.22 -0.09 -4.27 -3.93 -1.68 

18 -0.36 -0.37 -0.22 -6.43 -6.63 -3.94 

19 -0.23 -0.23 -0.15 -4.12 -4.09 -2.79 

20 -0.18 -0.21 -0.11 -3.14 -3.67 -1.95 

21 -0.16 -0.10 -0.13 -2.90 -1.74 ':"2.26 

22 Q.26 0.22 0.18 4.42 3.87 3.14 

23 0.15 0.17 0.02 2.53 2.89 0.47 

24 0.23 0.21 0.08 3.96 3.55 1.38 

25 0.32 0.31 0.21 5.26 5.11 3.50 

26 0.06 0.02 -0.05 1.00 0.36 -0.97 

27 -0.00 0.03 0.06 -0.13 0.52 1.02 

28 -0.08 -0.11 -0.03 -1.34 -1.84 -0.48 

29 -0.25 -0·.29 -0.24 -3.95 -4.57 -3.83 

30 -0.23 -0.21 -0.12 -3.71 -3.36 -1.99 

, 
, , 

n 
L' 

rn
l 

~! 
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Table 3-6 
(b) The Sample Space-Time Partial Autocorrelation Functions and The 

Standardized S-T Partials of the Rersidua1s of the Post-II 
Model. 

Space-Time Autocorre1ations/Standardized S-T Autocorre1ations 
Space Lag 0 1 2 0 1 2 
Time Lag 

1 0.16 0.13 -0.08 3.43 2.87 -1.68 
2 0.17 -0.01 0.04 3.51 -0.33 0.97 
3 0.10 -0.06 0.05 2.21 -1.39 1.21 
4 -0.15 -0.31 -0.05 -3.19 -6.41 -1.17 
5 -0.19 -0.02 0.03 -3.86 -0.59 0.63 
6 -0.08 -0.10 0.13 -1.67 -2.16 2.77 
7 -0.13 -0.04 -0.11 -2.75 -0.79 -2.19 
8 0.04 0.14 0.08 0.82 2.90 1.72 
9 0.14 0.20 0.10 2.78 3.95 2.03 

10 0.02 -0.07 -0.09 0.48 -1.45 -1.91 
11 0.14 0.25 0.03 2.81 4.87 0.75 
12 0.02 0.02 -0.09 0.49 0.43 -1.86 
13 0.03 0.19 0.00 0.62 3.75 0.06 
14 0.04 0.02 0.11 0.88 0.52 2.07 
15 -0.23 -0.22 0.04 -4.36 -4.13 0.85 
16 -0.09 -0.00 -0.00 -1.65 -0.08 -0.14 
17 -0.16 -0.12 -0.08 -2.93 -2.20 -1.49 
18 -0.11 -0.04 -0.09 -1.98 -0.84 -1.65 
19 -0.02 -0.04 -0.15 -0.37 -0.88 -2.77 
20 -0.14 -0.23 -0.09 -2.48 -4.12 -1.74 
21 -0.07 01"02 0.01 -1.3s3 0.45 0.29 
22 0.17 0.05 0.12 2.99 0.94 2.11 
23 0.04 -0.01 0.07 0.80 -0.33 1.23 
24 0.16 0.08 0.08 2.72 1.44 1.37 
25 0.11 0.02 0.04 1.90 0.48 0.80 
26 0.01 0.05 -0.06 0.2Q n~99 -1.13 
27 -0.01 0.23 0.16 -G.t2 3.84 2.75 
28 -0.03 0.10 -0.01 -0.64 1.69 ... 0.29 
29 0.07 0.15 -0.19 1.23 2.47 -3..12 
30 -0.11 0.02 -0.19 ~, -1.77 0.36 -3.04 
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independent. However since the current model doesn't have any seecond 
. 

order spatial terms the sample autocorrelations for the second order 

spatial terms ,can be checked for adequacy. (being uncorrelated or 

informationless using the X2 statistic). If the computed X2 statistic 

is insignificant, the magnitude of the statistic could have come about 

by chance alone and thus can be used to check the adequacy of the 

proceeding spatial lags usig an F test. 

From Table 3-7 we have 

30 2 
! P

KI 
- 58.27 

Kal 

For a .. 0.05, the theoretical X2 - 43.77 and . 30 •• 05 

i ~42.l5 < 2 X 30 •• 05. 

Thus the second spatial lag is uncorre1ated and the magnitude q2.l5 is 

associated with chance error. For the,first spatial lag, 
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Table 3-7 
The Space-Time Autocorrelation Functions and the Standardized S-T 
Autocorrelation Functions of the Rersiduals, €t' of the Post-I ... 1 Noise Model. 

Space-Time Autocorrelations/Standardized S-T Autocorrelations 
Space Lag 0 1 2 0 1 2 
Time La~ 

1 -0.03 0.00 -0.02 -0.78 0.19 -0.49 
2 0.03 -0.01 0.00 0.78 -0.26 0.12 
3 0.08 0.04 0.03 1.70 0.81 0.67 
4 0.01 -0.04 -0.04 0.28 -0.88 -0.85 
5 -0.09 -0.03 -0.01 -1.95 -0.70 -0.21 
6 -0.04 -0.07 0.04 -0.87 -1.49 0.82 
7 -0.13 -0.08 -0.11 =2.59 -1.64 -2.19 
8 =0.02 0.01 0.06 -0.54 0.19 1.29 
9 0.06 0.12 0.09 1.30 2.38 1.88 

10 0.00 -0.03 -0.08 0.12 -0.62 -1.54 
11 -0.03 -0.04 -0.02 -0.61 -0.90 0.41 
12 0.09 0.07 0.00 1.73 1.47 0.14 
13 0.04 0.09 0.00 0.85 1.83 0.00 
14 0.10 0.06 0.06 1.94 1.17 1.21 
15 -0.13 -0.11 -0.03 -2.46 -2.00 -0.64 
16 -0.04 -0.02 -0.05 -0.88 -0.44 -0.92 
17 -0.08 -0.05 -0.02 -1.51 -1.05 -0.50 
18 -0.14 -0.12 -0.03 -2.58 -2.19 -0.70 
19 -0.09 -0.06 -0.08 -1.58 -1.18 -1.44 
20 -0.11 -0.15 -0.09 -2.00 -2.63 -1.59 
21 -0.06 -0.00 -0.03 -1.15 -0.16 -0.67 
22 0.11 0.07 0.09 1.99 1.20 1.61 
2!J 0.04 0.02 -0.02 0.70 0.36 -0.42 
24 0.04 -0.00 -0.02 0.69 -0.02 -0.40 
25 0.09 0.07 0.05 1.61 1.19 0.96 
26 0.03 0.00 -0.04 0.54 0.05 -0.67 
27 -0.00 0.05 0.07 -0.03 0.81 1.20 
28 0.00 -0.00 0.00 0.04 -0.03 0.14 
29 -0.06 -0.06 -0.09 -1.01 -1.04 -1.48 
30 -0.05 -0.01 -0.01 -0.90 -0.20 -0.28 

I, .:. 

" 

.~ 

.. 
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= 1.84 

Also since the first spatial lag is uncorrelated, 

F _ 77 71/(42.15 + 58.27) ~ 1 44 < F = 1.65 
O' 2 • 30,60,.05 

Thus the space-time residuals are uncorre1ated in both space and time. 

Therefore the model is accepted as statistically adequate. 

Therefore we have the overall intervention model as follows; 

Pre-II process: (3-76) 

(I - (~10 I + ~l1w(1» B - ~20 IB2)(:t_~) .. e: , 
t ... t < 10 

Post-II' Pre-I2 process: 

( ,f, IB d. IB2)(Z II) s ~t + k,lt)~(l) , I - ~10 - ~20 ... t-: _ _ 11 < t < 37 

Post-I2 process: 

2 
(I - "'10 IB -"'20 IB )(0 3 : 

The noise process of A : 
... t 

38 < t < 82 

-l" r . 
~ 

r :1 1, 
] I , 

n "1", 

I i U "'. 

1 -
I 

',I 

~~ 

Hq ..... 

; J n !; l 

Where the model parameter values ~10' ~llP ~20 have been listed in 

equation 3-72, "'10' "'20' 0(1), 0(2), 03 and d have been listed in 
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N N N N N 
equation 3-74, ~lO' ~ll' ~ll,O' 910 , 9 11 have been listed in equation 

3-75, and ~t has been listed in equation 3-63. 

Note that the autoregressive operator, 

(I-(0.698I-0.145W(1»B)(I 

• I - (0.698I-0.1445W(1»B - (0.060I+0.389W(1»Bll 

reveals that the noise process contains both seasonal terms of an 11 

months lag and a 12 months lag. Also, the space-time autocorrelation 

seasonal pattern of 11 months lag of At in the table 3-6(a) is similar 
,., 

to the seasonal pattern of 12 months lag. This indicates that the 

noise process doesn't repeat the seasonal mechanism exactly every 12 

months. instead the aeasonal mechanism repeat,s itself somewhere between 

11 months and 12 months. That is, for this data a non-integer seasonal 

lag between S~ll and Ss12 would be appropriate. If this were done a 

model with even fewer parameters would be obtained, since the 

correlative structure associated with S=ll and S=12 in the current 

model form are similar. 

3.6.5 Checking Alternative Forms: The No Feedback Structure 

The current model which is statistically adequate, suggests 

another modeling alternative. This alternative is: 
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(3-77) 
Pre-II process: 

(1) Z 
(I - (~lOI + ~llW )B - tZOIB ) (Zt - ~) ,.. ,.. 

Post - 1
1

, pre-I2 process: 

(1-$101B - $Z01B )(Zt-~) ,.., ,.., 

Post-II' Pre-IZ process: 

.. £ 
t ,.. .. 

I - (e+ 1+9+ W(O)B 
10 11 

,. -(-I -_-( ~-+-I+-t-+--w""(l"")-)-B)-=(:.;.I----=(:.=.t-+ --I -t-t---.,N,.---W-?(..,-l .... ) )-B""'l"--l) 
10 11 11.0 11,1 

This model differs from the model. equation 3-76. in one respect. Rere 

the intervention effect follows the exactly environmental process that 

the noise input follows, whereas the interventional effect of the 

model. equation 3-76, follows a process that is similar to the 

environment process. These two modeling alternatives' stJ;ucture3 are 

illustrated in the Figure 3-15(a) and (b). 

Figure 3-l5(a) illustrate the situation that there is no 

feedback from the environment process, thus the intervention effect 

directty enters the evironmental process Ilnd is influenced by it 

solely. In the figure 3-15(b), the situation where there is feedback 

of some degree and the interventio~ effect that enters the environmet 

process will follow a modified environmental process TF,(B). The 

1'1 I: 
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Figure 3-15 (a). 

(b) • 

-..,... TE;(B) .. Te(B) 

Te(B) 
, 

/ 

(a) 

.. T~(B) 

Feedback 
Connection 

. __ i 
- Te(B) 

(b) 

Intervention Process Follows Exactly the Environment 
Process, i.e., No Enviro~ment Feedback. 
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Intervention Process Gets Feedback from the Environment 
Process and Follows the Environment Process Partially. 
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existence of tbe feedback looP can be interpreted as tbe intervention 

effect behaves non-linearly, e.g. the magnitude of the realized effect 

is dependent upon the level the system is operating. Thus when there 

is no feedback tbe interventio' exerts the same influence regardless of 

the operating level of the system. 

The post-II model of the non-feedback model can be rewritten 

equivalet1y as; 

(3-78) 

Post-I
l 
.... Pre-I2 process: 

Post-I2 p'rocess : 

The conditional M.L. estimates of the model parameters and the 

associated 95% confidence intervals are; 

95% C.I. 

If 

+ 1.514 ( 1.249, 1.779) 

~10 
:II 

+ 0.053 (-0.268, 0.375) 
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+ 
~20 

+ 
~21 
+ 

t U •O 
+ 
~U.1 

+ 9 10 
+ e
U 

0(1) 
1 

0(1) 
2 

0(1) 
3 

0(1) 
4 

0(1) 
5 

0(1) 
6 

0(2) 
1 

0(2) 
2 

0(2) 
3 

~(2) 
4 

0(2) 
5 

0(2) 
6 

= -0.636 

,. 0.093 

,. 0.092 

,. 0.243 

- 0.923 

,. -0.400 

- 5.349 

,. -1.985 

,. -11.040 

,. -3.370 

- -4.182 

• -0.739 

,. -0.863 

• -1.183 

• -3.577 

,. -1.287 

• -0.954 

• -1.075 

,. -4.906 

,. 1.202 

1.259 

(-0.904, -0.368) 

(-0.434, 0.248) 

( 0.037, 0.146) 

( 0.177, 0.308) 

( 0.64·6, 1.201) 

(-0.739, -0.069) 

(7.869, 2.830) 

( 0.535, -4.504) 

(-8.521,-13.56 ) 

(-0.850, -5.889) 

(-1.663, -6.701) 

( 1.781, -3.258) 

( 1.136, -2.861) 

(-0.469, -1.898) 

(-2.856, -4.297) 

(-0.506, -2.007) 

(-0.228, -1.680) 

(-0.344, -1.805) 

(-4.057, -5.755) 

207 



r 
208 

The residuals of the non-feedback model were computed and their' 

sample space-time autocorrelation function estimated. Table 3.8 

contains these estimates and their standardized form. Siince the zero-

th spatial lag, 1st spatial lag and the 2nd spatial lag autocorrelation 

function, i.e. PKO ' PKl , P.K2 , K-l,2, ••• ,3Q, are not independent, so it 

is not appropriate to perform the X2 tesl'()~all these 90 

autocorre1atiQns. Instead, the x2 test is performed on the 2nd lag 

autocorrelat.ion functions first., and then followed by the F test to 

test the significance of differences of the population of PK,O~ P
K1 

and 

From table 3-8, we have 

30 2 1.: PKO - 92.68, 
K-l 

30 2 t PKl - 83.84, 
K-l 

-,.-

30 2 ! PK2 -78.12. 
K'""l 

; Even with a :II 0.01, 

2 2 
X :II 78.12 > X30,.Ol - 50.89, 

this test can't be past to conclude that the P
K2

, K .. l.2 •••• ,30 are 

uncorrelated. 
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Based on these diagnostic checks the non-feedback model 

alt.ernative is seen to be statistically inadequate. 
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Table 3-8 
The Sample Space-Time Autocorrelation Functions and the 
Standardized Sample S-T Autocprrelation Functions of the 
Residuals of the Post-II Model without Any Feedback from the 
Environment Process. 

Space-Time Autocorrelations/Standardized S-T AutocorrelationS-
Space Lag 0 1 2 0 , 2 ... 
Time Lag 

1 -0.01 0.01 -0.01 -0.38 0.32 -0.38 
2 -0.05 -0.03 0.00 -1.02 -0.83 0.18 
3 0.08 0.05 0.05 1.62 1.17 1.10 
4 0.06 0.00 -0.04 1.23 0.11 -0.91 
5 -0.00 0.07 0.03 -0.17 1.46 0.78 
6 0.02 -0.01 0.06 0.39 -0.19 1.25 
1 -0.09 -0.03 -0.10 -1.84 -0.72 -2.10 
8 0.02 0.07 0.06 0.47 1.45 1.30 
9 0.11 0.15 0.10 2.12 3.03 2.07 

10 -0.02 -0.10 -0.11 -0.47 -1.89 -2.10 
11 -0.06 -0.03 0.03 -1.13 -0.71 0.61 
12 0.07 0.05 -0.00 1.45 1.09 -0.08 
13 0.04 0.10 -0.00 0.82 1.97 -0.13 
14 0.10 0.06 0.09 1.85 1.14 1.81 
15 -0.24 -0.22 -0.04 -4.41 -4.13 -0.86 
16 -0.08 -O~06 -0.09 -1.47 -1.23 -1.63 
17 -0.07 -0.00 -0.02 -1.37 -0.16 -0.37 
18 -0.13 -0.07 -0.03 -2.37 -1.41 -0.58 
19 -0.08 -0.04 -0.09 -1.47 -0.77 -1.67 
20 -0.11 -0.14 -0.10 -1.96 -2.44 -1.85 
21 -0.09 -0.00 -0.03 -1.51 -0.01 -0.53 
22 -0.14 -b.ll -0.15 2.47 1.93 2.68 
23 0.01 -0.00 -0.04 0.25 -0.02 -0.71 
24' 0.00 -0.07 -0.04 0.10 -1.26 -0.82 
25 0.10 0.05 0.09 1.73 0.84 1.48 
26 0.02 -0.01 -0.03 0.36 .,.0.17 -0.51 
27 -0.00 0.09 0.13 -0.03 1.44 2.23 
28 0.01 0.01 0.01 0.31 0.19 0.26 
29 -0.06 -0.07 -0.16 -1.03 -1.17 -2.56 
30 -0.02 -0.07 0.00 -0.32 1.17 . 0.10 
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3.6.6. Model Interpretation 

In the model, equation (3-76), ~he intrinsic utility of II' 

which is represented by the terms that contain ~~l), followed the noise 

component At' and it is interpereted as the situation that the realized -
e~fect of II was influenced by the environment. While the intrinsic 

utility of 12, which includes the mean shift 53': and the scale factor 

d, didn't follow the noise process and the effect was realized 

instantaneously, this is interpreted as the situation that the realized 

effect of 12 wasn't influenced by the environment process. In the 

model. equation (3-76), the intrinsic utility of II didn't follow 

exactly the process that the white noise followed, i.e. the 

interventional input followed a modified environmental process, this 

modified environment process has been found its interpretation in the 

existenc~ of environmental feedback. 

A non-lienear investment-return system has the prop~rty that the 

system equilibrium state, the bigger the 

be, and the state of the non-linear system converges to the 

equilibrium state at a reducing rate. When the system is far away from 

the equilibrium, the convergence rate is high. The convergence rate, 

at the very beginning~ is dramatically. non-linearly reduced, and this 

period is usually referred to as the transient period. After the 

transient period, the system state converges to the equilibrium state 

at a 8teady state convergence rate, and it is referred to as the 

steady state. The mean values of each location at pre-II and pre-I2 

are listed below. 
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Pre-I1 Pre-I2 

1. Azusa 9.3 10.7 

2. Burbank 13.5 11.2 

\p 3. Lennox 20.0 9.6 
\\ 

4. Long Beach 13.3 10.,4 r \ 
'\ \j'1(; 

" 
\j~ 

5. Downtown LA 13.0 9.0 

6. LA County 12.9 12.2 

The tendency, that the mean levels moved to about the same level 

at all locations, is seen in the above mean level }iSC~n the model, 

equaiton (3-74), it is seen that between II an~.-~ons, 
i.e. Lennox, Long Beach, Downtown LA and Burbank, receive significant 

impact. Here we see that Lennox has the highest pre-II' mean, Long 

Beach and Downtown LA, that are the first order neighbors of Lennox, 

The absolute values of o~l), and Burbank have high pre-II' mean, too" 1 

'h . d" absolute values of o~2), i • 2,3,4,4 are larger than t e correspon 1ng 1 

Th1"S means that the system state converged to the i • 2,3,4,5. 

equilibrium state, which may be somewhere between 9.0 and 12.2, at 

reducing convergence rate, since the scaled factor d a 1.048 can't have 

such a slope-reduction power. These observations confirm that this is 

a nonlinear investment-return system. Since the pre-Ii mean is highest 

at Lennox, so the gain of the engine design change is the biggest. The 

" h 0 (t) is appropriately fitted into the gecond order pre-I2 per10d, w en 3 

form is interpreted .as the transient period, and the steady state was 

reached when 12 was initiated. 
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The effect of II and 12 on ·these six locations a::e plotted in 

figure 3-l5(a)-(b) to compare the relative effects at the same time. 
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The height of these three dimension plots reflect the magnitude of the 

effect at that location, at that plotted time. 

The figur.es 3··l6(a) and 3-16(b) show the effect of II at t=22 

and t-34, i.e. 1 yeall: after II and 2 years after II respectively. The 

figures 3-l5(c) and :3-15(d) show the effect at t:r37 and t:r38, i.e. 

immediately before and after the introduction of 12 respectively. Here 

we see a significant reading shift at all these six locations by the 

cS · ... ;0e figures 3-16(e)-(h) show the effoet of II and I2 

after the initiation of 12, The figures 3-l6(e), (f), (g), (h) show 

the effect at t-46, 58, 70, 82, i.e. 3 years, 4 years, 5 years and 6 

years after the introducing of II' respectively. From these plots. all 

the time we see that Lennox has the shortest effect, Downtown LA the 

second and Long Beach the third. Note that Downtown LA and Long Beach 

are the 1st order neighbors of Lennox. 

From the model 3-76, we read that there was no diffusion 

phenomena in the intervention effec!t, and the magnitude of the 

diffusion mechanism of the noise p1cocess among l-st order neighbors was 

N reduced, since I~lll • 0.319 while I~lll - 0.145, it is interpreted 

that th~ diffusion mechanism among the l-st order neighbors has been 

reduced by more than one half in stlt'ength due to the II intervention. 

This phenomena ilJ consistent with the fact that the II intervention 

reduced the difference of the carbon monoxide levels among these six 

locations, i~e. II forced the CO levels of these six locations to 
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. T=34 

Figure 3-16. The ~ean Shift iCt) . 
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Figure 3-16. (Cont'd) 
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Figure 3-16. (Cont'd) 
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approach the same equilibrium level under the effectiveness of the 12 

legislation, so the driving force of the diffusion mechanism was 

weakened, this resulted in the reduced diffusion rate of the noise 

process and no diffusion phenomena of the intervention effect, i.e. 

~~l),~nd ~~2). 

All the models, i.e. the pre-II model, post-II model and noise 

model in the model equation (3-76) are either (STAR) model or (STARMA) 

model. Recall that it has besen discussed in section 3.2.3.1. that the 

inputs, i.e. :t' of the (STAR) model or the (STARMA) model of non-zero 

spatial order vector will diffuse through space and the influenced 

regions will be the whole connected regions. The diffused process of 

the (STAR) model and the (STARMA) model are of the AR type and the 

diffused particles will not die out immediately in the very next period 

like those of the MA type diffusion process. This long lasting 

property of the diffused particles of the AR diff~sion type is quite 

matched to the fact that the carbon monoxide is essentially inert and 

will last long in the air. 

3.6.7. Comparison to A Univariate Intervention Analysis Approach 

Box, Tiao and Hamming [1975] have analyzed the Los Angeles CO 

data at seven locations. these locations are: Downtown LA, Lennox, 

Long Beach, Burbank, Azusa, Pasadena ,and West LA. They built the 

univariate intivention model for each individual location. The model 

for each location was; 

fill i" I. 
¥J.O 

~,' ',' j '0 

r \~ 

I 

r'\ 

I 
r li 1. { ,l I ., ' 

t ~ , " ] 
where E: It -f: 

~2t -f: 

t < April, 1968 

t ) April, 1968 

t < January, 1966 

t ) January, 1966 

(1-9
1 

B) (1-9 2B12) 

(1-9B) (l-B,12) ~t 
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(3-79) 

The estimates of the model parameters are listed in table 3-9. 

Comparing the model form, we see that they are different in 

three major respects: 

1. The univariate intervention model, equation (3-79), doesn't 

imply any geological information, i.e. this model doesn't 

have the capability to model the pollutant's diffusion 

through the neighbors (space). The space-time intervention 

model, equation (3-76), has the capability to explain the 

space correlated structures. 

2. The space-time intervention model considers the transient 

period effect. ~(1) in the pre-I2 period, and the steady 

state effect, 0(2) in the post-I2 period. The univariate 
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intervention models consider only the steady state efffect, 

this is not true as was revealed in the dynamic component 

identification step. 

3. The univariate models have different mean shift effects of 

I 2for each location. This maans that different locations 

was operating at significantly different pollution levels at 

pre-I2 has been assumed. As is seen from the data itself, 

it is seen that at pre-I2 the pollution level at all the 

locations are about the same. The space-time intervention 

incorporates the non-linear transformation conditions and 

has only one mean-shift mean effects and a transformation 

scaled factor. 

Comparing the modeling procedures, we see that the space-time 

interventional modeling procedures contain the dynamic components 

identification procedure, which is a necessary procedure to determine 

the intervention effect formulation, i.e. environment involved or non-

environment involved. A mistaken model formulation will result in a 

misleading monel, from which the incorrect conclusions will be drawn. 

The univariate intervention modeling procedures do not contain the 

dynamic components identification procedure and do not have the 

capability to model the environment involved intervention process. 

Comparing the analysis results of the univariate intervention 

models, equation (3-79), with the space-time intervention model, 

equation (3-76), we have the following: 

1. Both models aggre that 12, the change of calibration method, 

has significant negative effect on the measurements at all 

2. 
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locations. The univariate models have different mean shift 

effects for each location, and the space-time intervention 

model has only an overall mean shift and a transformation 

scale factor for all the locations. 

The univariate intervention models conc~uded that 11 has the 

significant impact at Azusa, Downtown LA, Lennox, Long Beach 

and West LA. The space-time intervention model concluded 

that 11 has the significant impact at Downtown LA, Lennox 

and Long Beach. Both models agree that the impacts of 11 at 

Downtown LA, Lennox and Long Beach were significant and 

decreasing the pollution levels. But they don't agree in 

the impact of 11 at Azusa. The space-time intervention 

model concluded that the impact of 11 at Azusa was non­

significant, where the univariate intervention model 

concluded that the impact of 11 at Azusa was significant and, 

positive, i.e. the pollution level was raised. The results 

of the space-time intervention model is then justifiable to 

be closer to what was happeni~g, since the the impact of 11 

is expected to reduced the pollution levels at all locations 

and the conclusion of the univariate intervention ~odel 

disagree this e~pectation at Azusa. 
t 

Comparing the model pars~o~y, ~e see that the space-time 

intervention, equation (3-76), cO,ntains 25 model parame~ers, while the 

univariate intervention models, equation (3-79), needs 36 model 

parameters for 6 locations, so the space-time intervention model is 
1 

more parstmonious. 
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Location 

""usa 

Pasadena 

Burbank 

LA County 

Downtown LA 

Lennox 

( Long Beach 

i'" .-.. 

\ 

Table 3-9. Estimates of Parameters in the Univariate Intervention. Model. 

He •• ur ... nt ~end Trend Trend 
effect April 1968 before 1966 aince 1966 ntfference Nobe Model. ParealOten .. ~I R2 ft2-~1 • Ii I 82 

-6.50 -0.05 0.29* 0.34 0.84 0.42 0.97 
(0.70) (0.13) (0.15) (0.23) (0.07) (0.12) (0.04) 

-5.44 -0.29 -0.04 0.25 ·0.60 0.05 0.65 
(0.93) (0.20) (0.23) (0.33) (0.12) (0.15 (0.07) 

-5.72 0.40 -0.33 -0.73 0.78 0.22 0.79 
(1.10) (0.25) (0.26) (0.40) (O.OB)· (0.12; (0.05) 

-5.17 0.11 -0.43 -0.54 0.79 0.2B 0.82 
(0.117) (0.19) (0.20) (0.31) (0.07) (0.11 ) (0.05) 

-4.32 0.09 -0.28* -0.31 0.71 0.20 0.83 
(0.73) (0.12) (0.16) (0.23) (0.10) (0.13) (0.05) 

-5.08 0.51 -0.36* -0.87 0.79 0.19 1>.59 
(0.85) (0.55) (0.25) (0.61) (0.08) (0.13) (O.OB) 

-5.29 0.40 -0.45* -0.B5 0.77 0.27 O.Bl 
(0.84) (0.17) (0.19) (0.29) (0.09) (0.13) (0.06) 
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CHAPTER IV 

NON-EQUAL DIFFUSION PREFERENCE MODELS 

In previous. chapters, we have considered STARIMA models in 

which, every location has an equally weighted influence from those 

locations that shar~ it as a common neighbor of th~ same spatial 

order. Situations arise that this equal diffusion preference 

mechanism is not appropriate and a non-equal diffusion preference 

phenomenon is needed. For example, point pollution in the air 

and/or in the sea diffuse from one region to its neighbors with 

near neighbor regions exert stronger and quicker influence than the 

distant neighbor regions. Without the wind and/or marine currents, 

the pollution diffusion mechanism will exhibit equal preference for 

all directions. However, when there is wind and/or current, the 

pollution of one location will be effected most strongly by the 

downward regions and most weakly by the leeward regions. Thus the 

diffusion mechanism will not be isotropic. The nature extention of 

these STARIMA models is thus the extension to accomodate the modeling 

of non-equal diffusion preferences. 

The interpretation of the diffusion in the weight matrix is 

discussed for the unscaled weight matrix as well as the scaled weight 

matrix in the first section. A discussion of the need for con-

structing the non-equally preferential weight matrices and the methods 

for their construction are then described. In Section 4.2, one-
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direction preferential space-time processes and two-direction pre-· 

ferential space-time processes are stmulated to illustrate the 

diffusion processes of the non-equally preferential process. 

Model inadequacies due to the ignored non-equally preferential 

structure are studied in Section 4.3. In Section 4.4, two methods 

of model updating to account for detected nonisotropic behavior are 

proposed. The first method is based on the decomposition of the 

equally preferential weight matrix into the non-equally preferential 

weight matrices. The second method adds the potential non-equally 

preferential terms into the equally preferential models. The 

maximum likelihood estimation procedure that is based on the 

results of the linear model theory is briefly discussed in Section 

4.5 for the STAR, STMA and STARIMA models. In Section 4.6, the 

Ambient Carbon Monoxide observations at Los Angeles during the 

pre-Il,that have been modeled in Chapter III without isotropic 

characterization is used to illustrate the non-equal diffusion 

modeling methods developed in this chapter. 

4.1 The Interpretation of the Diffusion Preference Weight Matrix 

Here we are going to examine the physical meaning of the 

weights in the weight matrix. Let W~~1 be the (i,j) element of the 

.9., th order weight matrix W(.9.,) and l-l~~) :; o only when location i is an 

R,th order neighbor of location j. (R,) 
$kR,Wij indicates the strength of 
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influence that the observation at location j has on the k time period 

laged observation of its R,th order neighbor of location i, i.e., 

Z.(t-k) on Zi(t). J . 
(R,) 

Similarly 6kR,Wij indicates the influence from 
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Ej(t-k) to Zi(t). Since all elements of W(R,) are premultiplied by 

$kR, or 6kR, to express the strength of influence, then amplitude of 

W~~) is a measure of how strong the state of location i depends on 

th the state of location j as an R, order neighbor. The larger 

W~~) is~ the stronger the dependence. Let ~~R,) denote the ith row 

of weight matrix W(R,) and c~R,) the jth column. Then R~R,) contains 
J /\,~ 

the information of the influence on location i from those locations 

that share location i as their common R,th order ,neighbor and C~R,) 
/\,J 

contains the information of the influence that location j has on all 

th 
its R, order neighbor. 

4.1.1 The Boundary Effect on the Scaled Weight Matrices 

We have defined the unscaled weight matrix W(R,) as 

1 th if location i is an R, order neighbor of 
location j 
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W(R,) :a 

ij I (4-1) 
o otherwise • 

th In the unscaled weight matrix of R, spatial o~der, all the non-

zero elements are equal to 1. This means that every location i is 

equally influenced by all the locations that share the location i as 

their common R,th order neighbor, and every location j has equal influ­

th ence on all its R, order neighbors. 

In previous chapters, we have used the scaled weight matrix 

W(R,) which is defined as 
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th if location j has location i as its ,Q; 
order neighbor 
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w(,Q;) = 'j ij 
(4-2) 

o otherwise 

(,Q;) of nth where ni is the number ~ order neighbors of location i. From 

this definition, every non-zero element in each row are equal. This 

means that the scaled weight matrix still keeps the property that all 

th locaticns that share the location i as their common,Q; order neigh-

bbr have equal-influence on the location i. However, not all the 

. 1 f h IIi h (,Q;) f nC::'1-zero e ements 0 t e same co umn are equa , s nce t e ni 0 

those locations for boundary sites is smaller than that of those 

locations in the central area. This implies that every location will 

have larger (or equal) influence on those locations on 

boundary. When this boundary is extended to infinity, 

(or near) the 

all the n(,Q;) 
i 

will be equal and the scaled weight matrix ~dll have exactly the same 

physical interpretation as that of the unsealed weight matrix. 

Alternatively, if we define thE'; scaled weight matrix as 

if location j has location i as its 9.,th 
order neighbor, 

otherwise 

(4-3) 

where n~,Q;) is the number of locations that have the location i as their 
J 

common ,Q;th order neighbors, then the scaled weight matrix is scaled in 

columns. In this case we have the property that ever~ location i has 
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equal influence to each of its ~th order 
neighbors, but, for any 

location which is a common ,Q;th d 
or er neighbor to some boundary 

locations and some non-boundary locations , the influence from those 
boundary locations will be stronger 

locations. 
than that from the non-boundary 

As an example, consider the 3 x 3 1 regu ar grid system; 

1 1 7 

2 t: '8 -. 

3 6 9 

The unsealed weight matrix is listed in Figure 4-1. 

1 2 3 '+ :5 6 7 8 9 

1 0 ~ 0 1 0 "I. 0 0 0 0 
2 1 0 1 0 1 '0 0 0 0 
3 0 1 0 0 0 1 

w(l) • 
0 0 0 

4 1 0 0 0 1 0 1 0, 0 
5 0 1 0 1 0 1 0 1 0 
6 0 0 1 0 1 0 0 0 1 
7 0 0 0 1 0 0 0 1 0 
8 0 0 0 0 1 0 1 0 1 
9 0 0 0 0 0 1 0 1 0 

Figt,lre 4-l. The Unscaled Weight Matrix w(l) of the 
3 x 3 Regular Grid System 
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are listed in Tables 4-6 (e) and (f) for simulation 3 and simulation 

4, respectively. These sample space-time auto correlations shown in 

Tables 4-6 (e) and (f) clearly indicate the unexhausted structures. 

In previous discussion for STAR models, it has been shown that 

N -1 if the ~K~K matrix in Equation 4-24 is close to identity matri~ 

I, then the residuals will behave closely to the white noise. How­

N -1 ever, if the ~k~K matrix are far away from the identity matrix I, 

then the residuals will show model inadequacy and repeatedly modeling 

the residuals from the previous mis~aken equal preference space-time 
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model can't exhaust the process structure even when enough observation 

for appropriate power are available. In these Simulations, we have 

N~l~~l of the first two simulations listed in Figure 4-l9(a) and 

N~l~il of the last two simulations listed in Figure 4-l9(b). The 

matrix in Figure 4-l9(a) is very closed· to identity matrix, because 

in the first two simulations, the strength of the equally preferen-

tial components, that is represented bY~lO' is relatively stronger 

than the strength of the non-equally preferential components, that 

N is represented by ~11. The matrix in Figure 4-19. (b) is far away from 

the identity matrix, because in the last two simulations, the strength 

of the non-equally preferential component is relatively stronger than 

the strength of the equally pref:erential components. Comparing the 

matrix shown in Figure 4-l9(a) ~~th that in Figure 4-l9(b) and looking 

N -1 back to the statement ~K~K mat:rix is related to the sample space-

time autocorrelations of the estimated residuals, we see that the 

diagnostic checking passes the m.istaken models ot simulation 1 and 

simulation 2, while the inadequacies for the mistaken models of 
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Table 4-6(a). ~e Sample Space-Time Autocorrelations of 
~ie ~S~dUalSfrom the Mistaken MOdel for 

mu at on 1. 

The Sample S-T Autocorreltions! 
The Standardized S-T Autocorrelations 

Space Lag 
0 Time Lag 1 0 1 

1 0.03 0.04 0.97 2 -0.00 -0.02 
1.24 

3 -0.13 -0.7.4 -0.01 -O.O~ -0.28 -6.82 '+ -0.02 0.04 5 -0.69 1.29 -0.00 -0.07 6 -0.23 -1.94 -0.01 0.01 7 -0.41 0.51 -0.02 -0.03 8 -0.62 -1.04 -0.02 -0.02 -0.73 -0.70 9 -0.10 0.02 -2.78 0.56 10 0.04 -0.00 1.11 -0.08 11 0.00 0.00 . 0.14 0.11 U -D.01 
13 0.04 -0.30 1.10 
14 

-0.02 0.00 -0.63 0.22 -0.02 0.01 -0.73 0.46 15 -0.02 -0.03 -0.56 =-0.84 

, 



Table 4-6 (b) .' The Sample Space-Time Autocorrelations of 
the Residuals from the Mistaken Model for 
Simulation 2. 

The Sample S-T Autocorrelations/ 
The Standardized.S-T Autoc?rrelations 

Space Lag 0 1 0 1 
Time Lag 

1 0.02 0.00 1.21 0.43 
2 -0.01 -0.00 -0.82 -0.34 
3 -0.03 -0.00 -1.70 -0.26 
4 -0.03 0.00 -1.39 0.43 
5 0·.00 -0.01 0.19 -0.58 
6 -0.00 0.01 -0.34 0.72 
7 0.02 -0.02 0.92 -1.22 
8' -0.01 -0.04 -0.,80 -2.02 
9 -0.03 0.00 -1,.55 0.37 

10 0.02 -0.00 0.95 -0.17 
11 0.00 0.02 0.20 0.89 
12 -0.00 0.00 -0.25 0.24 
13 -0.04 ...Q.01 -1.85 -0.61 
14 -0.02 -0.00 -1.00 -0.22 
15 -0.02 0.00 -0.96 0.25 
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Table 4-6(c). The Sample Space-Time Autocorrelations of 
the Residuals from the Mistaken Model for 
Simulation 3. 

The Sample S-T Autocorrelations/ 
The Standardized S-T Autocorrelations 

Space Lag 
0 1 0 1 Time Lag 

1 0.12 0.14 3.47 4.08 2 -0.22 -0.01 -6.22 -0.38 
3 -0.15 -0.20 -4.26 -5.66 
4 -0.11 -0.05 -3.04 -1.45 
5 0.02 -0.04 0.73 -1.33 6 0.11 0.02 3.13 0.79 
7 0.05 -0.04 1.44 -1.28 
8 -0.11 -0.03 -3.08 -1.00 
9 -0.16 0.02 -4.32 0.54 

10 0.07 0.00 2.02 0.24 
11 0.09 0.04 2.37 1.13 
12 0.00 0.06 0.12 1.66 
13 -0.00 -0.00 -0.05 -0.04 
14 -0.01 -0.03 -0.49 -0.92 .\ 

15 -0.08 -0.03 -2.01 -0.87 
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Table 4-6(d). The Sample Space-~ime Autocorre1ations of ~ J.w 
the Residuals from the Mistaken Model for 
Siluu1a tion 4. ,-

j ~ ! I 
The Sample S-T Autocorre1ations/ ..... 
The Standardized S-T Autocorre1ations -)·t 

Space Lag 0 1 0 1 Time Lag 
LJ 

1 0.11 0.13 4.95 5.81 
2 -0.21 0.00 -9.53 0.36 

i7 I i 

U 
3 -0.14 -0.14 -6.47 -6.60 
4 -0.06 -0.07 -2.84 -3.45 
5 0.02 -0.01 1.06 -0.78 8 ! 3 

6 0.04 0.01 1.99 0.86 
" 7 0.03 -0.05 1.56 -2.20,< 

8 -0.07 -0.07 -3.11 -3.:1:.7 
9 -0.09 0.00 -3.97 0.'05 

r 
ill 

10 0.05 0.02 2.18 1.20 
11 0.08 0.06 3.80 2.97 
12 0.03 0.04 1.36, 1.92 ill 
13 -0.03 -0.02 -1.36 -0.92 
14 -0.04 -0.02 -1.85 -1.23 
15 -0.04 0.00 -1.75 0.34 ~ It 

~ 

in 

in J 
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o 
ill 
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Table 4-6(e). The Sample Space-Time Autocorrelations of 
the Residuals from the STHA (11) Model of 
the Residuals from the Mistaken Model for 
Simulation 3. 

The Sample S-T Autocorre1ations/ 
The Standardized S-T Autocorre1ations 

Space Lag 0 1 0 1 Time Lag 

1 -0.01 0.01 -0.38 0.36 
2. -0.18 0.03 -5.18 0.83 
3 -0.11 -0.19 -3.08 -5.40 
4 -0.06 0.00 -1.82 0.01 
5 0.01 -0.04 0.45 -1.08 
6· 0.11 0.05 3.10 1.44 
7 0.04 -0.05 1.32 -1.40 
a -0.09 -0.02 -2.51 -0.62 
9 -0.16 0.01 -4.28 0.36 

10 0.08 0.00 2.32 0.03 
11 0.07 0.02 1.88 0.76 
12' -0.01 0.05 -0.34 1.53 
13 -0.00 -0.00 -0.17 -0.07 
14 -0.00 -0.01 -0.00 -0.33 
15 -0.07 -0.03 -1.96 -0.78 



r 

Table 4-6 (f) • The Sample Space-Time Autocorrelations of 
the Residuals from the STMA (11) MOdel of 
the: Residuals from the iiUstaken Model for 
Simulation 4. 

The Sample S-T Auto~orre1at:f..onsl . 
The Standardized S-T Autocot!fre1ations 

Space Lag 0 1 0 1 
Time Lag 

1 0.13 0.24 5.86 10.76 
2 -0.19 0.01 -8.56 0.64 
3 ·-0.14- -0.15 -6.61 -6.96 
4 -0.08 ' . .() .08 -3.78 -3.86 
5 0.01 -0.03 0.58 -1.71 
6 0.03 0.00 1.40 0.30 
7 0.02 -0.06 1.11 -2.65 
g -0.07 -0.07 -3.29 -3.27 
9 -O.C~ 0.00 -4.01 0.11 

10 O.G5 0.03 2.47 1.49 
11 0.09 0.07 4.05 3.32 
12 0.03 0.04 1.62 2.11 
13 -0.02 -0.01 -1.18 -0.63 
14 -0.04 -0.03 -1.80 -1.41 
15 -0.,03 0.01 -1.55 0.50 

--- -- ~~ ------~ 
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-0.02 0.07 
0.00 -0.02 
0.00 0.00 
0.00 0.00 
0.02 -0.00 

-0.07 0.02 
0.27 -0.07 

0.05 0.70 
-0.45 -0.10 

0.47 -0.16 
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Figure 4-19(a). N -1 The t1t1 Matrix for the Simulations with 

N 
~10 m 0.6, ~11 - 0.3. -

1.55 , .. 1.18 0.01 0.50 ~0.29 -0.05 0.15 ... 0.15 
1.07 1.43 -1.28 0.12 0.48 -0.32 -0.02 0.35 

-0.38 0.86 1.67 -1.32 0.04 0.54 -0.33 ... 0.11 
-0.67 0.19 0.75 1.49 -1.17 0.03 0.48 -0.68 

1.77 -0.93- -0.23 1.10 1.47 -L31 0.12 1.15 
-0.B1 0.78 -0.10 -0.28 0.77 1.68 -1.29 0.04 
-3.06 1.12 0.67 -0.86 0.20 0.82 1.44 -2.75 

5.97 -3.31 -0.66 1.80 -0.74 -0.35 1.09 3.56 
-0.81 1.81 -0.69 -0.38 0.51 -0.13 -0.15 1.66 
-2.11 0.71 0.49 -0.59 0.12 0,,18 -0.16 0.03 

Figure 4-19(b). N -1 The t1t1 Matrix for the Simulations with 

N N 
~10 = 0.2. ~11 = 0.7. (» 
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simulation 3 and simulation 4 are detected. 

4.4 Updating the Non-Equally Preferential Diffusion STARMA 
Process 

In this section, two topics of modeling the non-equally pre-
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ferential STARMA processes are discussed. First, the topic of testing 

the significance of the isotropic property of the space-time process 

is studied. This is followed by the topic of testing the significance 

of the non-equally preferential model parameters. In this section, 

we will apply the M.L estimation procedure to get the test statistics. 

Also, it is assumed that the equal preference STARMA model has been 

built already. 

4.4.1 Testing the Significance of the Isotropic Property 

In this section, the discussion on testing the isotropic pro-

perty is started using a simple system, the STARMA (1
1

,0,1
1) process of 

a circular line system, and then it is generalized to the arbitrary 

system. 

Assume that we have a circular line system with the preferen-

tial direction toward the right as in Figure 4-18, and assume that the 

system follows the STARMA (11 ,0,11) process. For simplicity it is 

assumed that the preference is absolute, and the 1st order weight matrix 

~(l) is; 
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1 o 1 o · .. o 

2 o o 1 · .. o 

~(l) == • 

o o o · .. 1 

LN 1 o a · .. o 

Then the true model for this sytem is 

(4-28) 

If this process is mistaken as an equal preference process, then the 

mistaken weight matrix W(l) will be assigned as follows; 



~-
It 
" 

1 O. 0.5 O. O. O. 0.5 

2 0.5 O. 0.5 ... o. O. O. 

W(l) ,. · • • 

O. O. ... 0.5 O. 0.5 

LN 0.5 O. O. 0.5 O. 

and the model that is built in terms of W(l) is, 

z ,. 
'Vt 

Here ~l" all and N <Pll , N all will have the relations, 

and the residuals of model 4-29 will have the tendency to have 

dependence on the residuals of the right-hand-side neighbors and on 

the residuals of the left-hand-side neighbors. Since model 4-29 

doesn't exhaust the dependence on the right-hand-side neighbors, 
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(4-29) 

while it overdraws the dependence on the left-hand-side neighbor, these 

two dependencies will be of opposite sign. 

To test the significance of the non-equally preferential 

tendency in both directions, we reconstruct the model, Equation (4-29), 

in terms of ~(l) and Rw(l) that are given below to obtain model, 
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Equation (4-30). 

1 0 0 ... 0 0 0.5 

2 0.5 0 0 0 0 

~(l) ,. 3 0 0.5 0 0 0 

. 
• 

0 0 0.5 0 0 

LN 0 0 0 0.5 0 

1 0 0.5 0 0 0 0 

2 0 0 0.5 ... 
~(l) - 3 . 

• 

0 0 0 0 0 0.5 

LN 0.5 0 0 0 0 0 

Note that the only non-zero elements in ~(l) (or ~(l» are the ele-

ments that correspond to the 1st order left-hand-side neighbors (or 

right-hand-side neighbors). Note also that ~(l) + ~(l) = w(l), and 

~(l) ,. ~(l). 
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-alO~t-l - Ra ~(l)R - La ~(l)R + R 
y 11 'Vt-l 11 'Vt-l 'Vt (4-30) 
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where R is the residual. 

t the estimates of parameters in M.L estimation will give 

Equation (4-30) as 

L<I> .. 0 
11 

i circular line system i' ndicates that this o'ne-direct on which clearly 

ally directional preference. is of non-equ 

h built an equally preferential space-In general, when we ave 

time model, 
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z .. 
'Ut 

(4-31) 

true process may be highly preferential and it is suspected that the 

construct the model based on the along some given direction, then we 

principle of overfitting, 

z = 
'Ut 

p 

+ t 
K=l 

---------
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(4-32) 

where 1w(~) and ~(~), ~~1,2, ••• are constructed according to the 

approaches that were described in Section 4.1.3. Then the M.L. estima-

1-' L'" R'" R", 
tion is performed to give ~, S, ~, S, and is followed by hypothesis 

testing that tests the significance of the non-equally preferential 

structure; 

vs. 

If the HO hypothesis is not rejected, we will keep the equally pre­

ferential space-time model" Equation (4-31). If the HO hypothesis is 

rejected, then the non-equally preferential space-time model, Equation 

(4-32), will be considered to be appropriate. 

h h h i H Lo -_ Ro we h. . To test t e ypot es s 0: f.l f.l compute t e stat~st~c~ 
'U 'U' 

suggested in Wilks (1938J, 

We = LN.N[~n(a~) - ~n(ai)J 
'U (4-33) 
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2 The null hypothesis is rejected whein WR > X or accepted when 
I\, Cl,n 

WQ < X2 ,where n is the total num'ber of parameters in La or Ra• I" - ct,n '" '" 
'" If the hypothesis test shows that the non-equally preferential 

diffusion process is significant, then based on this conclusion, we 

may update the weight matrix by sett:i.ng, 

(4-34) 

LN e (n) LN tI. ( n) .. _ 
and scale them to have ~ Wi; ~ 1 and I ~wi; 1, i-l,2, ••• ,LN. 

jal j~l 

Then the model in Equation (4-32) can be updated in terms of 

CPw(~) and eW(~) as follows, 

(4-35) 

4.4.2 Testing the Significance of the Non-Equal Preference Structures 

In this section the proper procedure of adding in the non-equal 

diffusion preference components to update the equal diffusion pre-

ference STARIMA models is discussed. Assume that we ~ave the candiate 

equally preferential STARIMA model built as follows 
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~t = (4-36) 

where 

• 1 

i ,] ~ 

f I ' 
'1 i o : . \ i . i ",,' 0, 

k=O 

otherwise 

\1 -~ " 
,ll [ i 

I " .... 

I ill\ 

t; ill I 
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. ~-(l) ~(2) ~ (nO) Also, assume that we have the weight matrices, -W ,-W , ••• ,-W , 

of which the corresponding non-equal diffusion preference mechanism 

is probably significant to the data generating process. We need a 

procedure that allows us to select the significant ones to add in the 
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model and discard the non-significant ones. Two such procedures are 

discussed here. One is by fitting the whole model with all components 

that probably are Significant, another is by the overfitting technique, 

Draper and Smith [1966]e 

First, we will discuss the procedure of fitting the whole model 

with all possible components. Without loss of generality, the whole 

model can be assumed to ~e of the form; 

(4-37) 

.7T;:::::;';~.::x'~~"'::""~~~~I'·~-m> 



r 

where 

k=O 

otherwise 

An estimation procedure ha~~ been applied to get the estimates 

~, e and S($,S;) for model, Equation (4-36). Although we add in the 
t\, 'V 'V '\t 
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non-equal diffusion preference terms, model, Equation (4-37), can still 

"N" " N" be estimated by the same procedure to get the results $, $, a, a and 
'V 'V 'V 'V 

S($,N$,:a"N:a) _ '" r\,v 'v ~ Also note that the model, Equation (4-37), is a mor'e 

generalized model in Equation (4-32) presented previously. 

According to Whittle [1953], we constructed the estimated 

variance-covari.mce matrix of the estimated parameters. 

where 

and we tested the hypothesis HO: HS = 0 by computing 
'V 'V 
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HO will be rejected if Wf < kF(k,LN-T-kO,l-a) where k is the rank of H 

matrix and kO is the number of parameters included .,in model, Equation 

(4-36), i.e., 

k .. o 
p q 

I (~+ ~k + 1) + I (~+ Sc + 1). 
k-1 k-1 

H is the null matrix with the diagonal elements that correspond to the 

tested parameters replaced by 1. So, k is also the number of parameters 

that will be tested simultaneously. 

HO is accepted, then all parameters that are subjected to this 

test will be non-significant ana/the corresponding terms will be dropped 

from the model. When HO is rejected, some of the parameters that are 

subjected to this test are significant. (This does not necessarily 

imply that all of the parameters that are subjected to this test are 

significant). By this procedure, we can perform a series of tests 

usiug the same variance-covariance matrix to find out the siguificant. 

components. 

To apply the overfittingtechnlque, the procedure described in 

Draper and Smith is employed. We can add any number of new components 

in and apply the extra sum of squares principle to test their signifi-

cance. We keep only those components that pass the test. 

After the Significant non~equa1 diffusion preference, components 

'::" 

--
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are selected end added into the model, the updated model will be sub-

jected to diagnostic checking again. 

4.5 Non-Equal Preference Space-Time Model Estimation 

In previous sections, the detection of non-equal preference 

structure, the test for the significance of isotropic property as well 

as the proceduras for updating the no~-equally preferential diffusinn 

model from the already built equally preferenti~l diffusion model have 

been studied in detail. In this section the M.L. estimation procedures 

that are appropriate for the non-equal preference model building are 

discussed. '!'he application of the linear model to obtain the M.L. 

estimates when the covariance of the noise G is kno~~ is discus~ed in 

Sectibn 4.5.1. Here the M.L. estimation proced'ures for STAR, STMA and 

STARMA are discussed separately. These discussions are foll;~wed by 

the M.t.. estimation pz-.::;cedure when G is unknown in Section 4.5.2. 

4.5.1 The Applicatioi:L of the Linear I"!odel for the M~JH Estimation 
When the Covariance of ' the Noise is Known 

In the model building procedure, we need to estimate the candi-

date model parameters. Here we will briefly review the estimation 

technique for estimating the STARIMA macel parameters by applying the 

linear model transformation and se.lrching through the parameter spaCE:. 

F,Dr computational convenience and for desirable properties of the 

estimates, we will limit ourselves here to the conditional M.L. esti-

mation p~ocedure only. 

4.5.1.3. STAR Model Parameter Estimatioll. Consider the foHow-

ing model 
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where 

and 

Z 
tVt 

= 

p 

I ~k~t-k + ~t k=l 

k=I,2, ••• ,p. 

~t are normally distributed with 

E[E ] = 0 
tVt tV 

k-O 

otherwise. 

Since ';he jo;,~nt density of the (LN·T) x 1 random error vector E is 
tVt 

where ~ represents the p ~k matrices, i.e., ~1'~2' ••• '~p' LN is the 

location n~?er 'and T is the total observation period. The trans­

formation of the Z's is 
tV 

29: 

(4-38) 

(4-39) 
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P 
€ - Z - I ~ Z 
~t ~t k-l k~t-k 

which has a unit Jacobin. Thus the density function of Z't· c,onditional 
~. 

on ~, G and to, ... ,~-p is 

f (Z I ~,G, Zo ' Z 1"'" ~, ) 
~ ~ ~ .~-p 

P 

[~t -'k~l ~ktt-k]} 

[Z -
~t 

p 
~... ~ -1 
L '*'tJ,t-l] G 

k-l 

Remember ~ is a linear function of ~ for STAR models. Letting 
~ 

1 T P-l p. ' 
SS(~,G) - - L [Zt - I B,(k)Zt_k] ~G [Zt - I B(k).tt_k]}, 

2 t-l ~ k-l ~ ~ k-l 

We obtain the log conditional likelihood function as 

1n L(~,GIZ,~n""'Zl ) - -T/2 1nlGI - SS(~,G). 
"" i'\, 'IN ~ -p 

(4-40) 

Usually, we set .tt' t ~ 0 to its unconditional mean, .tt • ~, t < O. 

From Equation (4-40) we see that to maximize the conditional likeli-

hood function for given G is equivalent to minimize the ~S(~) terms. 

-We use SS(~) instead of SS(~,G) because G is given. We call get the 
~ .. 

I: f 
f 

I I' ol 

I•·· ~ I ; 

I'·.' , . 
, .~ 

I 

I 

conditional maximum likelihood estimatol~2 for STAR models by applying 

the results of linear models, ' 
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i - (X~X)-l~ (4-41) 

where 

t - [t~(l), t~(2), ••• ,Y~(t)]~ 

'with yet) - c-lz , 1 2 ~ ~t t- , , ••. ' , T • 

x - [~'X2""'Xp] 

Xk is the matrix defined as; 

k-l,.2, ••• ,p; 1-0,1,2, ••• , ~. 

~d cc~ - G, since G is positive definite matrix. 

4.5.1.2 STMA Model Parameter Estimation. The STMA models are 

non-linear in the model parameters, and it is impossible to get a 

cl.osed form expression for the estimators of model parameters. Con­

sider the STMA model, 

Z(t) 
~ (4-42) --
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where 

The transformation from E'S to Z's is 
'V 'V 

q 

~t = ,t,t + L ® ~t-'k' 
k-l, 

t"1,2, ••• , T (4-43) 

which has unitary Jacobin. Thus, the conditional log likelihood func-

tion is 

R.n L(S,GI Z~?ME 1' ••• ,8'1 ) = (-LN-T/2) - R.n 27T 
'V 'V '\N 'V- t'I" -q 

-(LN-T/2) - !LniGI - SS(S,G) •. 
'V 

(4-44) 

Usually, we set ~(t), t~, ° to their unconditional expections, 

E(t) = 0, t ~ 0. From Equation (4-43), we see that for given G, to 
'V 

maximize the likelihood function is equivalent to minimizeSS(S). We 
'V 

..... 
search through S space to get S that minimizes SS(9). SS(S) can be 

'V 'V 'V 'V 

derived easily by using the recursive Equation (4-44) with the 

~t~ t < ° set to zero. 

4.5.1.3 Mixed STARIMA Parameter Estimation. The mixed 

STARIMA(p,d,q) models are linear in autoregressive parameters but non-

linear in moving average parameters. So for a given G, 6, we can have 
'V 

the autoregressive parameters estimated by applying results from linear 

models. Consider the STARIMA(p,O,q) model. 
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Z = 
'Vt 

<I> Z 
k'\,t-k 

t=1,2, ••• ,T. 

When S is given, Equation (4-45) can be 
'V 

where 

where 

t - x~ + ~* 

~ - (~lO'~ll'···'~lA '···'~pO'~pl,··o'~PA ) 
'V 1 p 

Y _ A-lZ 
'V 'V 

with ~ - '(~i ,,tZ' ••• ,,t~) 

A is the (LN-T) by (LN-T) null matrix with the T diagonal 
q 

(LN x LN) blocks replaced by ~NxLN and the kth, 1 < k ~ q, 

subdiagonaJ. (LN x LN) blocks replaced by ® k' 

CT is the (LN-T) by (LN-T) null matrix with the T diagonal 

(LN x LN) blocks replaced by c, cc~ = G, and 

matrix defined as, 
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(4-45) 

(4··46 ) 
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r 

and 

B
' = «t) ) ~ ( () ) ~ ( (t) )' ~] ~ 

'Vld [W kJ.-k ' loJ ~2-k ' ••• , W ~T-k 

e:* 
'V 

w'ith e: '" (e:~(I),e:'-(2), ••• ,e:'-(T» 
'V 'V 'V 'V 

Since e:* 'V NID(O,I), the conditional maximum likelihood esti­
'V 

mat or for .t with ~ are, 

Once ~(~) is computed, we can recursively compute the ~(t) and get 

55(9). By searching through the 9 space, we obtain the conditional 
'V 'V 

maximum likelihood estimates for (.t'-,~')'-. 
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4.5.2 The M.L. Estimation Procedure When the Covariance of the Noise 
Is Unknown 

The estimation procedure described above is for the situation 

that G is known. It is not an unusual case, that G is unknown. In 

such situations, we will apply the two-stage estimation procedure. At 
,? ' . 

the first stage, we assume that G z 10- to get the estimates. Following 

the estimation, we check the G 3 I02 assumption. If G = I02 assumption 

is acceptable, then we have the appropriate estimates. If G = I02 

assumption is not acceptable, then we will use'(tE'-) as the true 
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covariance and apply the estimation procedure described above to get 

the second stage estimates and ac,cept this second stage estimates as 

the appropriate conditional maximum likelihood estimates. 

4.6 The Example of the Non-Equally Preferential Diffusion 
Process Modeling 

The pre-II observations of the Los Angel~"s ambient Carbon 

Monoxide data are used to serve as an example to illustrate the non-

equally preferential space-time modeling procedure. In the paper by 

Tiao, Box and Hamming [1975] the effect of the wind speeds on the air 

quality law was found to be of little effect. Their explanation was 

that wind speed at 8 A.M. varies little between seasons. From the 

space-time intervention analysis in Chapter III, we found that the 
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effects of the intervention Program II are more similar in locatins 

located geographically in directions that are approximately perpen­

dicular to the coast line. In the rest of this section, the directions 

that are perpendicular to the coast line will be denoted by the 

phrase "the , directions", and the directions that are parallel to the 

coast line will be denoted by the phrase "the" directions". 

4.6.1 Building the Model of Preference by the Strip Region Approach 

The geographical locations of 1. Azusa, 2. Burbank, 3. Lennox, 

4. Long Beach, 5. Downtown LA, 6. LA County are marked in the map 

of the Figure 3-l0(a). The non-equally preferential weight matrices 

'W(l), "w(l) has been obtained in the example of Section 4.1.3.1 by 

applying the strip region approach. 'w(l)," W(l) were listed in 

Table, 4-2 (a) and (b), respectively. 



Using this neighbor structures we built the following two 

STAR models: 

where 

1. The Equally Preferential Model 

,., 
<PlO .. 0.6923 
,., 
<P .. -0.1404 20 
'" <P11 :or 0.1371 

(0.4229, 0.9617) 

(-0.3908, 0.1101) 

(-0.0891, 0.3634) 
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(4-47) 

The sample space-time autocorrelation functions and the standardized 

sample 8-T autocorrelation functions are listed in the Table 4-7. The 

th sum of squares of the i order autocorrelations SS(i) are 

and 

88(2) = 0.034753 

8S(1) = 0.06260 

8S(0) = Oe06273l 
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2 
X(2) = (6)(10)S(2) = 2.0852 

X~l) = (6)(10)S8(1) = 3.756, 

X~O) .. (6)(10)SS(0) :or 3.7639, 1.2887 • 

2 2 
Since X(2) < XO•l ,4 = 7.78, Fl < FO•l ,4,4 = 4.11 and FO < FO•l ,4,8 = 

2.81 diagnostic checking doesn't reveal any inadequacy of the equally 

preferential model. 

2. The Non-Equally Preferential Model 
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z ,. N~lO~.t_l + N~20?-.t_2 + II ~ II w(l)". + ,<~ 'w(l)z + R (4-48) 'Vt ~·v ~·v ~ll ~t-l -II 'Vt-1 'Vt 

where 

N 
<PIa" 0.7464 

1'1'" <P20 "" -0.1621 

'$ = -0.0043 11 

11$11 :I 0.2555 

cri = 1.9608804 

95% C.!. 

(0.4770, 1.0160) 

(-0.4125, 0.0884) 

(-0.2214, 0.2128) 

(0.0292, 0.4817) 

For this above model, the model parameter '<P1l is nonsignificant at 

a significant level equal 0.1, so the following non-equally proferen­

tial model without the perpendicular term, '<Pll 'w(l).tt_l' is built. 



This resulted in, 

where 

N" <1>10 ,. 0.7450 

N .... 
<1>20 = -0.1625 

II~ = 0.2558 
11 

cri :::0 1.9608895 

95% C.l. 

(0.4756, 1.0140) 

(-0.4310, 0.0879) 

(0.0295, 0.4820) 

The extra sum of squares due to the 1$ Iw(l)z terms 11 ~t-1 ' 

F1 = 0.000546/1.9608804 = 0.000273 < FO•1 ,1,50 
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(4-49) 

Therefore the non-equally preferential model, Equation (4-49), without 

the perpendicul,ar term i.s appropriate. 
, 

The sample space-time ati~ocorre1ation functions and the 

standaydized sample S-T autocorrelation functions for the residuals of 

the model in Equation (4-49) are listed in the Table 4-8. The sum of 

squares of the ~th order auto correlations SS(~) are: 
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88(2) = 0.03035 

88(1) = 0.053986 

88(0) = 0.05547 

2 2 
Since X(2) < XO•1,4 = 7.78, F1 < FO•1 ,4,4 = 4.11 and FO < FO•1,4,8 = 
2.81, so the diagnostic checking passes the adequacy of the non-

equally preferential model. 

Comparing the model in Equation (4-49), which is of preference 

in the \I directions, with the equally preferential model 4-47, we 

see that the model 4-49 and the model 4-47 have the same number of 

model parameters, and the model of preference in the II directions is 

closer to the true process and the structures among neighbori;in the 
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II directions are underestimated in the equally preferential model 4-47, 

while the structures among neighbors in the I directions are overdrawn. 

Also, the extra sum of squares test confirms that the diffusion 

process in the I directions is non-significant and the diffusion 

phenomenia appears only in the II directions that are parallel 

to the coast line. 
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Table 4-7. 

.~----------.-- -

The Sample Space-Time AutocQrrelation Fun:tions 
of the Residuals of the Equally Preferent~al 
Model for the Pre-Il Observations of the LA CO 
Data 

Space-Time Autocorrelations/Standardized S-T Auto~orrelations 

Space Lag 0 1 2 0 1 2 
Time Lag 

1 -0.04 0.02 -0.03 -0.29 0.16 -0.19 

2 0.10 0.12 0.11 0.61 0.75 0.67 

3 0.11 0.17 0.09 0.65 0.96 0.53 

4 :"0.18' -0.12 -0.10 -0.92 -0.60 -0.53 

Table 4-8. The Sample Space-Time Autocorrelation Functions 
of the Residuals of the Non-Equally Preferential 
Model for the Pre-Il Observations ?f the LA CO 
Data 

Space-Time Autocorrelations/Standardized S-T Autocorrelations 

Space Lag 0 1 2 0 1 2 
Time Lag 

1 -0.04 0.00 -0.03 -0.29 0.06 -0.22 

2 0.11 0 .. D9 0.09 0.68 0.54 0.59 

3 0.11 0.17 0.09 0.63 0.95 0.52 

4 -0.16 -0.12 -0.10 -0.80 -0.60 -0.49 
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\. 

I 
I 

It should be noted that the· equal preference model, Equation 

(4-47), was not found to have any statistical model inadequacies. 

This is due to the following two reasons: 
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1. " ~ 1 
.. N$ I + II $ II W(l) with N~ = 

10 11 10 0.745, II $ = 0.256 
11 

... 
0.692, <P11 = 0.137 

The "¢l' ¢l as well as "¢l¢i
l 

matrices were computed and listed in 

Figures 4-20 (a), (b) and (c), respectively. Here we see that the 

product " ¢l~il is pretty close to the identity matrix I. According to 

the discussions in Section 4.3, we see that the inadequacies due to the 

ignoring non-equal preference structure are hard to be detected from 

the sample space-time autocorrelation functions of the residuals when 

the product matrix is ~he identity matrix. 

2. In 'Equation (4-48), we found that /I $11 can't be signifi­

cantly distinguished from 1$11' although" $11 can be significantly 

distinguished from 0 while 1$11 can't be distinguished from 0 

significantly. This is because the available observations couldn't 

offer enough power to test the difference of 1 <P11 and" <Pll • 

4.6.2 Building the Non-Equally Preferential Model by the Weight 
Matrix Decomposition 

In the last section it .1as been found that the space-time moClel 

of preference in the " directions is "more appropriate to describe the 

pre-II observations of the ambient carbon monoxide in Los Angeles. The 

neighbor structure in the" directions and the neighbor structure in 

the 1 directions,were obtained by applying the strip regions approach, 

the union of these two neighbor structures is hot equal to the neighbor 
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structure described :l.n the Chapter III. So the models that have been 

constructed in the last section are not comparable to the space-time 

mod,el that has been built in the Chapter III. 

In Section 4.1.3.2 the weight matrices that were employed in 

the Chapter TIl were decomposed according to the neighbor structures 

obtained by applying the~angular region approach. In this section, 

the non-equally preferential model, that is comparable with the equally 

preferential model, is constructed. It should be noted that 

,lw(.2,) + IIw(.2,) = w(.2,) for .2,=1,2,3, where w(.2,) , s are constructed in 

Section 3.6.1. 

These non-equally preferential weight matrices are then employed 

to construct the non-equally preferential space-time model. The 

following results were obtained 

where 

95% C.l. 
N$ = 0.6344 (0.3497, 0.9177) 10 

N$ = -0.1488 (-0.4001, 0.0998) 20 

1$ = 
11 0.5126 (-0.1425; 1.1650) 

II" <Pll = 0.2967 (0.0622, 0.5336) 

"2 
oR = 1.92486 
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The model parameter l<Pll is significant at the a = 0.1186 level • 

Therefore model, Equation (4-50), of non-equal preference appears 

more appropriate in describing the process. Before accepting the 

mode\ the residuals are subjected to diagnostic checking to examine 

the adequacy of this model. 
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The sample space-time autocorrelation functions of the estimated 

residuals are listed in Table 4-9. The portmanteau lack of fit test 

for the space-time system is performed. The sum of squares of the 

.2,th order space-time autocorrelatioos 88(.2,) are computed· to be 1. 

and 

8ince 

88(2) = 0.030084 

88(1) = 0.061734 

88(0) = 0.062276, 

2 
X(2) = (6)(10)88(2) = 1.805, 

2 
X(l) = (6)(10)88(1) = 3.704, Fl 

2 
X(o) = (6)(10)88(0) = 3.737, FO 1.357 



2 2 
X(2) < Xo.1,4 = 7.78, 

F1 < F = 4.11, 0.1,4,4 

FO < FO•1 ,4,8 = 2.81, 

the residuals do not contain any additional structure. Thus the non­

equal preference model which contains the 1 directions from the II 

directions terms is concluded to be adequate. 

Both equal preference model in Section 1.6 and the non-equal . 

preference model, Equation (4-50), do not show any model inadequacies 

in the sample space-time autocorrelation functions of the model 

residuals, this is due to the following two reasons: 

1. The 95% CI of 1$11 and the 95% CI of 11$11 are not disjoint 

sets, and 1 </>11 can't be said to be significantly dis tinguished froti. 

II $11. 
2. 

N N -1 
The ~1' ~l as well as ~1~1 matrices were computed and listed in 

Figure~ 4-21 (a), (b) and (c), respectively. N -1 
It is seen that ~1~1 
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is pretty close to the identity matrix I, according to the discussions 

N -1 in Section 4.3, since ~1~1 ; I, so the inadequacies due to the 

ignored non-equal preference structure are not able to be detected 

from the sample space-time autocorrelation functions. 
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Figure 4-20. 

0.745 0 0 0 0 0 
0 0.745 0 0 0.128 0.128 
0 0 0.745 0.256 0 0 
0 0 0.128 0.745 0.128 0 
0 0.128 0 0.128 0.745 0 
0 0.256 0 0 0 0.745 

(a) The II ~ 
1 Matrix 

0.692 0 0 0 0 0 
0 0.692 0 0 0.068 0.206 
0 0 0.692 0.137 0.137 0 
0 0 0.068 0.692 0.068 0 

0 0.068 0.137 0.068 0.692 0 
0 0.274 0 0 0 0.692 

(b) The ~1 Matrix 
, , ,~ ... 

The II ~ ~ /I -1 < 
11' 1 and ~11~1 Matrices of the Node1s 

:as:d ~n the Weight Matrices That Here Obtained 
y pp ying the Strip Region Approach. 
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q 
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n I! • 

c; 
II t tr ... 

1 1.08 0.00 0.00 0.00 0.00 0.00 
ll'~ 
"' ... 

2 0.00 1.13 -0.02 -0.01 0.08 -0.15 
"1'" IH; 
)1 r .... 

II ~ ~ -1 = 3 0.00 0.03 1.11 0.17 -0.02 -0.01 
1 1 

4 0.00' -0.01 -0.01 1.06 0.07 0.00 
~ 

I \;~ 
\11 
~,.a 

5 0.00 0.01 -0.23 0.12 1.10 -0.03 rrr, 
~ , \ 

6 0.00 -0.07 -0.00 -0.00 0.01 1.10 J1: 

""" 
(c) The 1I~1~i1 Matrix 
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Figure 4-20. (Continued) 
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Table 4-9. The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample S-T Autocorrelation 
Functions of the Residuals of the Non-Equally 
Preferential Model 

Space-Time Autocorrelations/Standardized S-T Auto~orrelations 

Space Lag 0 1 2 0 1 2 Time Lag 

1 -0.03 0.01 -0.04 -0.02 0.11 -0.03 
2 0.11 0.09 0.08 0.68 0.57 0.53 
3 0.11 0.18 0'.10 0.64 0.98 0.57 
4 -0.18 -0.13 -0.09 -0.90 -0.68 -0.46 
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The <1>1' 1 1 1 
Based on the Weight Matrices That Were Obtained 
by Applying the Angular Region Approach. 
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4.6.3 Discussion of Modeling Results 

In the non-equally preferential model, II ~lll is greater than 

I" ~lll, which revels the fact that the diffusion process is stronger 

in the I directions than in the II directions. The driving force of 

the diffusion process in the II directions, between locations that 
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are parallel to the coast line, is the unassisted diffusion mechanism, 

while the driving force of the diffusion process in the I directions, 

between locations that are perpendicular to the coast line, should be 

the combination of the unassisted diffusion mechanism and the effect 

of the sea breeze that increases the normal speed of diffusion as well 

as the magnitude' of the mass transfer. The extra driving force from 

the sea wind makes the diffusion process in the I directions stronger. 

Recall that in Section 3.6, we have analyzed the intervention effect 

of the II intervention and found that the effect of the II interven­

tion is stronger in the I direction. This implies the same non-

equally preferential diffusion involvements as those that are implied 

in the non-equally preferential noise model. Although the sea wind 

assists the diffusion mechanism in the I directions, it is not strong 

enough to change the diffusion speed, the diffusion speed is one order 

neighbor/month (or 16 miles/month) for both I directions and II 
directions. 

In the model, the average value of 1$11 and "~ll is 0.405, and 
A 

the estimated $:U of the equally preferential model that has been built 

in Section 3.6 is 0.309. The average value of the I $11 and" $11 in 
A 

the model 4-48 is 0.126 and the estimated $11 of the equally pre-

ferential model, Equation .(4-42) in the I directions and the II directions 



\ 

'" is 0.137. It is seen that the ~11 is estimated to be approximately 

the average of 1~11 and 11~11 in the models that only the I directions 

and the II directionu; are considered to give the preliminary test of 

the significance of different preference. 

In Section 3.6, the interventiona1 model has been built for 

the Los Angeles CO data without considering the non-equally pre-

ferential structure. Since the non-equa1 preference structure is 

significant for the pre-I1 process, the consequences of ignoring the 

non-equal preference structure arises. In particular, will it make 

the estimates of the intrinsic utilities biased? In the following, 

this question will be answered for the non-environmental influence 

situation, i.e., I ~O, first and then for the environmental influence 
m 

situation, i.e., I =L. 
m 

The non-environment involved non-equal preferential interven-

tion model, Equation (4-51), 

(I -

where 

~ = t 

pre-intervention perioOE 

post-intervention periods, 

(4-51) 
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~ is the intrinsic utility vector, 

can be put into the linear model form as 

z -; 0 + (I -'\it t'\i 

Since the coefficient matrix of 0 will not contain d 1 . '\i '. any mo e para-
N N 

meters t,~, so the estimates of ~ will be unbiased even if signifi-

cant non-equally preferential structures are ignored. This is not 

the sam..! situation foT. the environment involved intervention process. 

The environment in~olved, non-equal preference intervention 

model, Equation (4-52), 

P 
(I - L 

k-1 

can be put into the linear model form as 

z - (I -'\it 

... 
\ 
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N R(1) N R.(1) h If all the ~k1-~ , ek1·~ terms are correctly assigned, t e 

estimates of 0 is unbiased, otherwiee it is biased. Further, the 
'" 
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N R.(1) N IL(t) i clo$er ~k1·~ , ek1~ are to their corresponding correct matr ces, 

the less the bias in the 0 estimates. An efficient way to check ,the 

'" closeness of matrices of full rank, say A and B, is to check how far 

-1 ~l f AB-l - I BA-l I AB or BA is from the identity matrix I. I - or ~, 

tilen for practical purposes, we may say that A = B. 

N -1 In Figure 4-21(c), it is seen that ~1~1 is pretty close eo 

N identity matrix I, where ~l is the estimate of the correct non-equal 

preference matrix and ~l is the mistaken eq~~~ preference matrix. 

Since the lAt intervention 11 is environment involved and the 2nd 

intervention 12 is non-environment involved, we may conclude that 

the estimates of the intervention effect of 11 is biased, while the 

estimates of the effect of 12 is unbiasedo Although the estimates of 

N -1 the effect of 11 is biased, since ~1~1! the biasness is not severe. 

------------- ------ ----------- -----------~------------------------------------
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CHAPTER V 

THE PURELY SPATIAL ARMA MODELS 

A process that is related to the space-time process is the 

purely spatial process. For this process the influence spreads at a 

pretty high speed and the equilibrium state is reached before the next 

observation so that no influence is transmitted to the n~xt period. 

We will refer to the following model as the general purely spatial 

model. 

where 

~t = B(O)Z(t) - A(O)E
t 

+ E , 
'" '" ",t 

t=1,2, ••• ,T. 

Z(t) is LN x 1 column observation vector, 
'" 
E(t) is multivariate normal random vector with mean 0, and 
'" '" 

k=O 

otherwise 

B(O), A(O) are LN x LN square parameter matrices. LN is the 

location number of the system. 

(5-1) 
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The existence conditions of the purely spatial model, that 

correspond to the stationary conditions of the space-time model, are 

studied in Section 5.1. The parameter constraints that form the 

existence regions are discussed and the necessaxy existence conditions 

are developed for the purely spatial AR, MA and ARMA models. In 

Section 5.2 the model identification problems are discussed. This 

includes defining the purely spatial autocorrelation function set, 

determining their characteristic properties and developing the expected 

sample purely spatial autocorrelation functions of low order models 

for the pattern recognition. In Section 5.2 charts/monograms are 

developed to yield initial estimates of the parameters for low order 

models. The M.L. estimation procedures and joint confidence intervals 

2 for purely spatial models assuming G = cr I are obtained in Section 5.4. 

Diagnostic checking considerations include the test of the noise 

~pherity assumption, the white noise assumption and significance tests 

of the model parameters, are detailed in Section 5.5. In Section 5.6, 

the M.L. estimation procedures for a more general noise covariance 

2 assumption of G = cr I is developed. An hydrology example, involving 

the Mohawk River Heights and a crimenology example, Assault in North-

east Bos.ton, are given in Section 5.7 to illustrate the purely spatial 

model building procedures. 

5.1 Existence Conditions 

Comparing the general purely spatial model with the following 

general space-time model, 

-------~.---
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z • ",t t=-1,2, ••• ,T, (5-2) 

we see that the general purely spatial model contains no temporal back­

shift operators while the general space-time model does. Both models, 

Equations (5-1) and (5-2), represent the structure that describes how 

the observations of one location are influenced by the observations and 

the white" noise of other locations. The purely spatial model repre-

sents the structure that spe3:ls out only "instant influences" whereas 

the space-time model represents only the "delayed influences". To 

further compare and contrast these models, it is instructive to con-

sider the backward spatial regressive structure of the One-Direction 

Circular Purely Spatial ARCl) System and the backward temporal 

regressive structure of the univariate time series AR(l) model. This 

One-Direction Circular Purely Spatial AR(l) System is a specific case 

of the purely spatial process, while the univariate time series AR(l) 

model is a space-time AR(iO) process with only one location. 

()

1 : 

3 ,/ -
(a) (b) 

Figure 5-1. (a) The One-Direction Ciruclar Purely 
Spatial .AR(l) System 

(b) The Univariate Time Series AR(l) 
Model 
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In the One-Direction Circular Purely Spatial AR(l) System, 

Figure 5-1, the location (i+l) is the first order neighbor of the 

N l and location 1 is the first order location i for i=1,2, ••• ,L - , 

LN This model can be expressed as, neighbor of location • 

{ 
Z. t = Q>OlZi-l,t + 8 i ,t 

t=1,2, ••• ,T. 
~, i=2,3, ••• ,LN. 

Zl,t - Q>OlZLN,t + 8 l ,t 
t=1,2, ••• ,T. 

Setting t = to' we have 

i==2,3, ••• ,LN 

h spatial order backward operator and is defined as where BL is t e 

2 < i < LN 

for the One-Direction Circular Purely Spatial System. Comparing 
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(5-3) 

(5-4) 

(5-5) 

Equations (5-4) and (5-5) with the following time series univariate 

AR(l) model, 

t=1,2, ••• ,LN (5-6) 

-------~~---
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We see that the Equation (5-4) has the same backward regressive 

structure as that of the Equation (5-6), but Equation (5-5) cannot 

be equivalent to Equation (5-6) because 

operator, while Equation (5-5) contains 

Equation (5-6) contains B­

(LN-l) 
a BL -operator which 

causes the influence that transmits through the system to be input 

back to the system again. So if the parameter ¢l makes model, 

Equation (5-6), a non-stationary process, then due to the "instant 

feedback effect" of model, Equation (5-3), setting ¢Ol = ¢l will 

make model, Equation (5-3), explosive immediately and. non-existent., 

From the above discussion we see that the existence conditions of the 

purely spatial models correspond to the stationary, reversible condi-

tions of the Space-Time Models. The m~jor difference in physical 
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meaning lies in the interpretation that one is "nonexistence immediately" 

while the other is "non-stationary or non-reversible in the long run". 

A very important consideration concerning the purely spatial 

model is the existence condition, under which the vector process Z(t) 

'" exists. ' By self-substitution nO times, the model, Equation (5-3), can 

be rewritten as, 

no 
\' -1 i 
t. B (O)A(O)~t + E· 
i=Ov ",t 

(5-7) 

or 



---------~- ~ 

326 

(5-8) 

From the Equations (5-7) and (5-8)" it is clear that we should impose 

the following restrictions on the parametric matrix to avoid explo-

sion. 

n -1 n 
The limit B 0 (0), limit 

o . 
1: Bl.(O)A(O), 

i=O 

n 
limit A'O(O), 
nO +00 

nO-l _ 

limit 1: Ai(O)B(O) all must converge. 
nO +00 i=O 

P~y violation of these restrictions means that no such vector 

process Z(t) can exist. rv 

-that 

nO-l 

Since limit 1: 
nO +00 i=O 

n 
limit B 0(0) = O. 
no +00 

to exist are 

and 

n 
Bi(O) and limit B 0(0) must converge implies 

nO +00 

Therefore the conditions for the purely model 

n 
limit B 0(0) = 0 
nO +00 

n 
limit A 0(0) = 0 
no +00 

(S-9) 

-------~- ---

ffl '..., .. 

I 

i 
J 

It 

A matrix M is·said to be power convergent when the powers 

2 3 . .n M,M ,M , ••• ,M. .' •• are a convergent sequence. It is well known in 

linear algebra that a matrix M is power convergent if and only if 

for each eigenvalue A of M, IAI < 1. Thus, Equation (S-9) is to 

satisfy these conditions, B(O) and A(O) must be power convergent. 

This is equivalent to constrain that each eigenvalue A of B(O) and 

A(O) to be IAI < 1. 

S.l.l The Existence Condition of" the Purely Spatial AR(AO) Model 

BY'setting 

B(O) = $ Wei) and A(O) = 0 
Oi 
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for the general purely spatial model cl~ss we obtain the purely spatial 

z os 
rvt 

$ W,(i) Z + ~~t' 
Oi rvt ~" 

t=1,2, ••• ,T, (S-10) 

where Wei) is the weight matrix of the ith spatial order. Since all 

the eigenvalues A of A(O) = 0 are 0, so 

that IAI < 1 for all the eigenvalues of 

the existence 
AO 
1: $ Wei) 

i=l Oi 

condition requires 

It is known that 

the eigenvalue A of K x K matrix M satisfies IAI ~ Yi for i=1,2, ••• ,K, 
K 

where Y = 1: m j and mij is the (i,j) element of M. Under the 
i j=l i 

assumption that all the weight matrix are normalized, the necessary 
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condition of existence becomes, 

(5-11) 

For example, the necessary existence conditions for AR(l) and AR(2) 

are I¢oll < 1 and I¢oll + 1¢02 1 < 1, respectively. The existence region 

of AR(2) is the interior region of the diamond in Figure 5-2. 

5.1.2 The Existence Condition of the Purely Spatial MA(mo) Model 

. By setting 

B(O) = a and A(O) 

for the general purely spatial model, we obtain the purely spatial 

~t = -

mO 
t;' 8 w(i)e: + 
l. on t f t , i=l )(, 'V 'U 

t=1,2, ••• ,T. (5-12) 

Following the same approach that has been made in the AR(AO) models, 

we obtain 'the necessary existence condition for the MA(mO) models as 

(5-13) 

1~1 , ~'\ 
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For example, the necessary existence conditions for MA(l) and MA(2) 

are 18011 < 1 and 18011 + 18021 < 1, respectively. The necessary 

existence region of MA(2) is the interior region of the diamond in 

Figure 5-3. 
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5.1.3 The Existence Condition of the Purely Spatial ARMA(AO~O) Model 

By setting 

for the general purely spatial model we obtain th'e purely spatial 

(5-14) 

The necessary existence condition for ARMA(AO,mo) model is then, 

(5-15) 

For example, the necessary existence region for ARMA(l,l) is 

1801
1 < 1 and I¢oll < 1, which is the interior region of the square in 

the Figure 5-4. The necessary existence region for ARMA(1,2) is bounded 

by I ¢oll < 1 and 180il + 1802\ < 1, which is the interior region of the 
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Figure 5-4. The ARMA(l,l) Existence Parameter Space 
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rectangular bar in the Figure 5-5. 

In summary, low order model forms and the necessary existence 

conditions corresponding to that model form are shown in Table 5-1. 

AR(AO) 

MA(mO) 

Table 5-1. The Necessary Existence Conditions of the 
Purely Spatial Models 

Necessary 
Existence 

Model Area 
AO AO 

z - r 41 w(R.),t + ~t' , t-l,2, ••• ,T. I I 41 OR. I ",t 1-1 01 t .2.-1 

m mO o (R.) 
Z - -I 60R.W .fC.t + .fC.t' t-l,2, ••• ,T. I 160.2.1 ",t 

R.-l .2.-1 

AO m AO ... o (.2.) 
ABMA(AO,mO) 

.tt -
I 4» w(R,),t I 60R,W ~t + .tt LI4Iot l t-l Ot t t-l t-l, 

t-l,2, ••• ,T. 
and 

mO 
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< 1 

< 1 

< 1, 

L 160.2.1 < 1 
t-l 

It' should be noted that the necessary existence region does not mean the 

best existence region, i.e., the largest region that the vector process 

can exist. Those model parameters that fall in the necessary existence 

region make the purely spatial process exist, but every parameter that 

does not fall in the necessary existence ~egion will not~necessarily make 

the purely spatial process explosive. According to the paper by 

Deutsch and Pfeifer [1980], the necessary existence condition for 

AR(AO)' MA(mO)' ABMA(AO,mO) models of the regular grid system is also 
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the sufficient existence condition for AO' mO ~ 2, i.e., the necessary 

existence region given in Table 5-1 is the best existence region for 

the regular grid system with AO' mO ~ 2. 

?:2 The Identification of the Purely Spatial Models 

The identification of the candidate spatial model is addressed. 

The sample autocovariance Yks and sample autocorrelation function PkS 

are defined along with their corresponding partial spatial autocorrela-

tion function. Characteristic properties of these functions are 

addressed for different types of purely spatial process for the purpose 

of pattern recognition. 

5.2.1 The Autocovariance and the Autocorrelation Function 

The autocovariance function Yks ' k ~ 0, s > 0 is defined as, 

(5-16) 

The autocorrelation function Pks is defined in terms of the au~oco-

variance functions as, 

(5-17) 

In order to estimate Pks and Yks ' the E(ZtZ~) has to be first computed. 

Note that in the Equation (5-16) only the term, E(ttt~) contains the 

information about ~'s and 6's. For the purely spatial ARMA(AO,mO) 
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model, we have 

1..0 
<p W(R.»-l(I 

mO 
eOR.w(R.) ), E(ZtZ~) = (I - L L "''V R. ... l OR. 

R.-l 

mO 
e w(R.»"'(I_ 

mO 
<p W(Z) (-10'2 (I - L L (5-18) 

R.=l OR. 
R."'l 

OR. c· 

By setting eOR. ... 0 for all R., we have the E(~t~;) of the purely spatial 

AR(AO) model as, 

(5-19) 

, 

By setting <POR. ,. 0 for all R., we have the E(~t.t;) of purely spatial 

MA (m
O) mOde'l as, 

(5-20) 

For given w(R.)'s, it can be proven that the autocorrelation functibns, 

defined in Equation (5-17), will cut off for the purely spatial MA(m
O

) 

model by substituting Equation (5-20) into Equat~on (5-17) and 

rearranging. The cut-off point depends on the weight matrices W(R.)'s. 
" \\, 

The E(~t~;) of purely spatial AR(AO) and Ai(AO,mO) models contain the 
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mo 
\' (R.) -1 

inversed term (I - L <POR.W ) ,which can be e~panded into infinite 
R.=l 

mO 
power series in terms of (L <POR.w(R.». So substituting Equation 

R.=l 
(5-18) and Equation (5-19) into Equation (5-17), we result in the 

autocorrelation functions of purely spatial AR(AO) and ARMA(AO,mO) 

models will tail off. 

5.2.2 The Identification of the Purely Spatial MA(mO) Processes 

Since the cut-off property of the autocorrelation functions is 

useful in identifying the MA processes, we will discuss the cut-off 

property of Pks for the purely spatial MA(mO) model in more detail. 

The following definitions of sets that contain the information of the 

neighbor structure are given to help in studying the nature of this 

cut-off property. For each location i of the system, we associate 

two sets, which indicate the neighbor structure, with it, i.e., 
',( 

S,(k) 
1:. ' 

Si(k): Set which contains all the kth order neighbors 

of location i .. 

Hi(k): Set which conta;{,ns all the locations that location 

th i is their k order nE~ighbor. 

For example, in the 5x5 regular grid system plotted in Figure 5-6(b), 

we have S13(l) '" {S,12,14,lS}, S13(1) =='{S,12,llf,18}. 

For the purely spatial MA(mO) model, Pks == 0 iff 

Szz (i,j) ... <P or SWW(i,j ,k,s) = <P for all locations i,j. (5-21) 



f 

\. , 

~~----- ~~~------ ---

where 

denotes the empty set. 

~, 
k -0 2 

Since the cut-off behavior is influenced by the neighbor 

structure, we need to be more specific about the type of neighbor 

structure before we can go further. We will use a line system and 
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two dimension regular grid system in this section to serve as examples. 

Tb:ese two systems as well as their neighbor structures are given in 

Figure 5-6. For practical purpose, these two systems can'be treated 

as the representative for the line system and the 2-dimension system 

respectively given that there are more than or equal to 25 locations 

in the system since the boundary effect is negligible. See Deutsch 

and Pfeifer [l980e]. 

For the line system, let eZ(i,j) be the (i,j) element of the 

E(.tt .t~), then 

iff (5-22) 
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Let d (i,j) is the (i,j) element of W~(s)W(k), then 
'sk 

iff 

(a) 

@, ®@ @ @ 

0 CD@ @ @ 

Q) ®@ @ @ 

@ @@ @ @ 

® @ @ @) @ 

(b) 

Figure 5-6(a). The lX25 Line System 

(b) • The SxS Regular Grid 
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(5-23) 

System 

Combing Equations (5-22) and (5-23), we have the cut-off property of 

~k for MA(mo) as follows: 

Pks - 0 if k > s + 2mO or 0 < k < s - 2mO (5-24) 



:\1' li 
I 

'l~ i ! 
i 
" 

, , 

Order 

Location / 
1 2 3 4 5 6 7 8 9 10 

1 2 3 4 5 6 7 Ii 9 10 1l 

2 1,3 4 5 6 7 8 Q 10 11 12 
3 2,4 1,5 6 7 8 q 111 11 12 13 

4 3,5 2,6 1,7 8 9 10 11 12 11 14 
5 4,6 3,7 2,8 1,9 10 11 12 13 14 15 

6 5,7 4,8 3,9 2,10, I,ll 12 13 14 15 1,6 
7 6,8 5,9 4,10 3,11 2,12 1,13 14 15 16 17 

8 7,9 '6,10 5,11 4,12 3,13 2,14 1,15 16 17 18 
9 8,10 7,11 6,12 5,13 4,14 3,\5 2,16 1,17 18 19 -

10 9,11 8,12 1,13 6,14 5,15 4,16 3,17 2,18 1,19 20 
11 10,12 9,13 8,14 7,15 6,16 5,17 4,18 3,19 2,20 1,21 

12 ll,U 10,14 9,15 8,16 7,17 6,18 5,19 4,20 3,21 2,22 
13 12,14 n,15 10,16 9,17 8,18 7,19 6,20 5,21 4,22 3,23 

14 13,15 12,16 11,17 10,18 9,19 8,20 7,21 6,22 5,23 4,24 
15 14,16 13,17 12,18 11,19 10,20 9,21 8,22 7,23 6,24 5,25 

16 15,17 14,18 13,19 12,20 11,21 10,22 9,23 8,24 7,25 6 
17 16,18 15,19 14,20 13,21 12,22 11,23 10,24 9,25 8 7 

18 17,19 16,20 15,21 14,22 13,23 12,24 11,25 10 9 8 
19 18,20 17,21 16,22 15,23 14,24 13,25 12 11 10 9 

20 19,21 18,22 17,23 16,24 15,25 14 13 12 11 10 
21 20,22 19,23 18,24 17,25 16 15 14 13 12 11 

22 21,23 20,24 19,25 18 17 16 15 14 13 12 
23 22,24 21,25 20 19 18 15 16 15 14 13 

24 23,25 22 21 20 19 18 17 16 15 14 
25 24 23 22 21 20 19 18 17 16 15 

Figure 5-6(c). The Neighbor Structure of the lX25 
Line System 
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-:, 
d 

~ .. ~ Spatial Order 

-m 
.4J< 

tJ-
0 ,1- 2 3 4 5 6 7 8 9 10 ~ 

',-

in 
'j '11 

I 2, 6 7 3,11 8,12 13 4,16 9,17 14,18 1~ 5,21 

2 1, 3 6, 8 4,1219,11 14 5,17 10,16 15,19 20 22 
7 13 18 

~ 
. 

ir .... 4 3 2, 4 7, 9 1, 5 6,10 11,15 18 17,19!16,20 23 i L.,<.. 

8 13 12,14 ! ! 

~ 
I , 

4 3, 5 8,10 2,1i;l 7,13 12 1,19 6, 18 111 ,17 16 i 24 i I 
9 15 20 I I I 

I 

JTI [ 

q t 

n 

, 

! 5 4,10 9 3,15 8,14 13 2,20 7,19'12,18 17 1,25 

6 8, 16 1 3,13 9,21 
I 

1,7 2,12 18 4,14 19,23 24 ! 10 
11 17 22 I 

, , 
; 

7 2, 6 1, 3 9,17 4,14 19 10,22 5,15 20,24 25 I -I 8,12 11,13 16,18 21,23 I 

I I 
8 3, 7 2, 4 6,10 1, 5 16,20 23 22,24 21,25 - I -! 

U 
U 

9,13 12,14 18 11,15 1 

17,19 I 
9 4, 8 3, 5 7,19) 2,12 17 6,24 I,ll 16,22 21 -, 

10,14 13,15 \18,20 23,25 

10 5, 9 4,14 8, 20 1 3,13 18 7,25 2,12 17,23 22 6 
15 19 24 

~ 
--

11 6,12 7,17 1,13 2, £3 3,23 14 9,19 4,24 15 10,20 
16 21 18,22 -, . ' " . 

-
" 

ftfl ....... 

rn L· I J ... ,~ 

2,14 1';':3 
4.

24
1 

15 
. 
(0.20 5,25 12 7,11 6, 8 - -

13,17 16,18 22, I 9,19 
" 21,23 '. , 

Figure 5-6~r~' The Neighbor Structure of the 5X5 Regu1;Fr Grid System. 
, 
t: 1 I 
I 
I 
I ~-



13 8,12 7, 9 3,11 3, 4 
14,18 17,19 15,23 6,10 

16,20 
22,24 

14 9,13 8,10 4,12 3, 5 
15,19 18,20 24 7,17 

23,25 

15 10,14 9,19 5,13 4, 8 
20 25 18,24 

16 11,17 12,22 6,18 7,13 
21 23 

17 12,16 11,13 7,19 6, 8 
18,22 21,23 14,24 

18 13,17 12,14 8,16 7, 9 
19,23 22 24 20 11 15 

21,25 

19 14,18 13,15 9,17 8,10 
20,24 23,25 12,22 

20 15,19 14,24 10,18 9,13 
25 23 

21 16,22 17 11,23 12,18 

22 17,21 16,18 12,24 11,13 
23 19 

23 18,22 17,19 13,21 12,14 
24 25 16,20 

24 19,23 18,20 14,22 13,15 
25 17 

25 20,24 19 15,23 14,18 

Figure 5-6(d). (Cont'd) 
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2,22 11 6,16 1,21 -

3,23 12 7,l7 2,22 11 

8 1,19 2,14 3, 9 4 
24 

9 2,20 1, 3 4,10 5 
15,25 

6,10 3 2, 4 1, 5 -

7 4,16 3, 5 2, 6 1 
11,21 

8 5,17 4,12 3, 7 2 
22 

13 6,24 7,1g 8,14 9 

14 7,25 6, 8 9,15 10 
20 

11,15 8 7, 9 G,lO 3 

2 9,21 8,10 7,l.1 6 
16 

13 .10,22 9,17 8,12 7 
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For the two dimension grid system, becau£e there is no ordered 

location alignment and neighborhood structures are more complicated, 

the resulting cut-off orders of Pks cannot be put in a closed form • 

However, for the SX5 regular grid system, the following results for 

the MA(l) , MA(2), MA(3) and MA(4) processes were obtained. 

{ 
1< 0 

- 0 otherwise 

1 

{ 
1< 0 

- 0 

if k 1< 5, k < 6 

otherwise 

{ 
1< 0 

- 0 

if k ~ 7, k -; 6 

otherwise 

{ 
1< 0 

- 0 

if k ~ 10, k -; 5,8,9 

otherwise 

MA(2) 

{ 
1< 0 

:a 0 otherwise 
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MA(3) 

{ 
+ 0 if k ~ 10 

- 0 
otherwise 

MA(4) 

{ " 0 
if k ~ 12 

- 0 otherwise 

Note that for MA(l) and MA(2) processes, the POk of the line system 

cut off at k-l and k-2, respectively. While the POk of the 2-dimension 

system doesn't cut off at k-l and k-2, but cuts off at k-3 and k-5, 

respectively. 

5.2.3 Partial Autocorrelation Function Sets 

The partial autocorrelation function sets are helpful in 
(, 

identifying the purely spatial AR models. To analyze their character­

istic properties we employ the following AR(;\.O) model, 

Since 

AO 
E[(w(k)e; )"Z ] - E(W(k)(I _ \' A. w(R.»Z )"Z ] 
ttl ~on n·t n.t ' IV IV i-O NVV 

n /1 i ..... 

t 
i 
I 
I 
'1 
1 

and 

E[(W(k)~ ) .. ~] 0 k ~ 0 
.\;t .\;t -, T, 

We have the.fgllowing simultaneous equations, 

Defining, 

Equation (5-25) can be rewritten as, 

k-l,2,3, •.• ,AO ' 
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(5-25) 

(5-26) 

... 
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Equation (5-26) which contains AO equations is a simultaneoUS quadratic 

equation. 

th We define the kO partial autocorrelation function set S(kO) as 

the se'i:' of all the solutions of this equation with AO = kO. If 

k1 > kZ' then the set 8(k1) shares a solution with the set 8(k2) if 

the set S(k1) has a solution with $01,$02, ••• ,$Ok2 equal to a solution 

contained in the solution set of S(k2) and has $0(k2+1), ••• ,$Ok1 = 0 

in the solution. Theoretically, if the true mode~ is purely spatial 

AR(A
O
)' then we will have the situation that 8(1) ,.8(2), .0 •• ,S(AO) share 

no solution, while S(AO),S(A0+1), ••• share a solution, i.e., ($01' 

$02, ••• ,$OA ,0,0, ••• ). In such situations, the partial autocorre1a-
o 

tion function sets cuts-off at k .. AO' 

partial autocorrelation substitute for 

In order to estimate the spatial 
T 

E(ZtZ~) with the (L ZtZ~/T), 
'V 'V t=l 'V 'V 

the sample autocQvariance matrix, and then need to solve the simu1-

taneous quadratic equations to obtain the sample partial autocorre1a-

",,, ~ 

tion function sets, S(1»)S(2), ••• ,i:)(AO)' •• ' • The following example 

for a purely spatial AR(l) process in a5x5 regular grid system is used 

to illustrate the cut-off property of the partial autocorrelation 

function sets. 

Suppose we have an AR(l) model with $01 = 0.9, for a 5x5 regular 

grid system whose neighbor structure is given in Fisure 5-6(d), we 

want to compute the partial autocorrelation set. At first, we set 

k=l, and obtain the following quadratic equation to solve for the $01; 

1'3.0374277151$~1 - 27.2580923337$01 + 13.971957651620 = 0 
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The solutions are $01 - 0.9 or $01 - 1.19076 or s(l) ={(0.9,1.19076)}. 

Then we set k-2, and have the follOwing two simu1t~neous qt:ladratic 

equations to solve for $01 and $02; 

k .. 2 

13.0374277151 CP~l + 23.2482853728 CP01CP02 + 10.9886205076 

- 27.2580823337 CP01 - 23.3810108136 CP02 

+ 13.9719576516 - 0 

2 
CP02 

? 

11.7515601773 CP01 + 22.301871282 CP01cj102 + 10.2'628662299 CP~2 

- 23.5812615590 CP01 - 23.4004319218 CP02 

+ 11.7043716595 - 0 

The above simu1tane.ous quadratic equations can be solved gr,aphically. 

In Figure 5-7, the whole ellipse is plotted according to the first 

quadratic equation and the partial ellipse is plotted according to the 

second quadratic equation. Then the intersection of these two ellipses 

are the solutions of the above simultaneous quadratic equations. The 

solution set 8(2) .. {(0.9,0), (1.04,0.14)} is read from Figure 5-7. 

Note that S(l), 8(2) share the solution ~01 - 0.9, $02 - O. We see 

that the partial autocorrelation function sets cut-off after the 1st 

space lag for this purely spatial AR(l) model. 

, 



(0.9,0.0) 

I 
I 
! 
I. 
I 

<1»02 

1.6 

2.0 

Figure 5-7. The Graphic Solutions of the Simultaneous Quadratic 
Equations in the Example of Identifying the Purely 
Spatial AR(l) Model. 
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Applying the power expansion on (I - the 

purely spatial ARMAO"O,mO) model, we ca1,1 transform the purely spatial 

ARMA(AO,mO) model into its equivalent infinite order purely spatial 

MA model with the amplitudes of' the co,efficients decay exponentially, 

so the purely spatial autocorrelation functions of the purely spatial 

ARMA(Ao,mo) model tail off. Applying the power expansion on 

AO 
(I \ 60nW(R.»-l of h 1 i 1 ARMA(' ) d 1 . - l I(; t e pure y spat a 1\0,mO mo e , we can 

R.-O 
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transform this model into its equivalent infinite order purely spatial 

AR model. So.the purely spatial partial autocorrelation function 

sets tail off. For the purely spatial ARMA(AO,mO) model, neither the 

autocorrelation function nore the partial autocorrelation function 
I 

sets cut-off. The cut-off, tail-off properties of the autocorrelation 

function and partial autocorrelation function sets is summarized in 

Table 5-2. 

Table 5-2. Characteri~tics of the Autocorrelation Functions 
for Pur~ly Spatial ARMA Models 

Partial Autocorrelation 
Model Class Autocorrelation Function Pk Functions Sets S(k) 

Tail-.off 

Cut·-off at k = kO 

KO is determined by mO and 

the neighbor structure 

Tail-off 

Cut-off at k = AO 

Tail-off 

Tail-off 

, 



f 

348 

From Table 5-2, we see that when the sample autocorrelation functions 
n ~ 

Pk tail-off while the sample autocorrelation function sets S(k) cut-

off at k = AO' then the ~~der1ying process is an AR(AO) process. When 
n n 
Pk cut-off and S(k) tail-off, the candidate model is a MA model. Also 

'" ,......, ~~ ~ .. , ~.~..,.- ,.- ]", 

wnen Pk and S(k) both tail-off the underlying process is an ARMA model. 

5.2.4 Th~Patt~rn Recognition 

Since all the informations are contained in the autocorrelation 

functions, equations for the partial autocorrelation is computationally 

difficult, the approach for identification will emphasize a pattern 

comparison approach based upon the sample to theoretical autocorre1a-

tion to identify the candidate model. To do this pattern comparison, 

it is necessary to develop tne expactation values of the sample auto-

correlation function for all the ARMA(AO,mO) models~ 

The expectation values of the sample autocorrelation function 

can be derived from the general purely spatial model, 

t=1,2, ••• ,T (5-27) 

Defining 

---- --------
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We have the following formula 

E(Pks) . Yks {l - cov(Yks ' Ykk) cov(Yk ,y ) 
= s ss 

(y Y )1/2 2yks 'Ykk 2yks Y ss 
kk ss 

cov(Ykk,Y ) 3var<Ykk) 3var(y ) 

} + ss + + ss 
4Ykk~S 2 8 2 

(5-28) 
8Ykk rSG 

where 

4 
cov(Yks'Y 1m) • (~2) (~0 M m + ~ 0 M~m) 

... 
Note that although E(pks) ~ ~s' where Pks is defined in the E~u3tion 

(5-17), the cut-off property of the MA process is still held for 
... 

E(Pks), since the cut-off property of E(Pks) depends on Y
ks 

only. 

Also, according to the customary procedure, we have 



f 
11 

Sj " 

~ ~ r 
"~I 

------ -- -- .-

YksYkk COV(Yks'Yss ) + YksYss cov(Yks,Ykk) 
2 2 

4
33 

Ykk Y ss 

YkkYss 
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A Since POS are enough in identifying the potential model, so we 

A A A 

define Ps • POS' and the pattern of E(PS) is used to help in the model 

identification. The sign of E(PS) depends on YkO = W~(k) 
the E(ZtZt~) depends on the neighbor structure as well as the true 

"'''' . 
model parameters, i.e., ~Ol' ••• '~OA ' and the magnitude of E(Pk) 

o 
depends on Y

kO 
and Y

kk
, so we have come up with the general conclusion 

that the sign and magnitude of E(Pk) depend heavily on the neighbor 

structure as well as the model parameters, i.e., AO'~Ol' ••• '~OA • 
o 

In the purely white noise process, i.e., A(O) - 0, B(O) - 0, 
A 

we have the simpler formula for E(Ps) that corresponds to the Equations 

(5-28) and (5-29) t . . 

{ 
1 s - 0 

A 

E(Ps ) -
0 otherwise 

0 s - 0 

var(ps) -

w(s) 0 ~w(s) + W" (s) l 
s > 0 

(T '. LN)T ("W'~(s)W(s» (5-30) 
r 
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The expectation values of the sample autocorrelation functions 

E(Pk), k=1,2, •.•• ,10 of the purely spatial ARMA(AO,mO) models with 

AO + mO ~ 2 for ~he lx25 line system and the 5x5 regular grid system 

are plotted. These plots are useful in identifying the low order 

purely spatial ARMA models. 
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In Figures 5-8' (a) - Cd), the expected sample autocorrelation 

functions E(Pk) for the 1~~5 line system of the AR(1) , MA(l), ARMA(l,l), 

AR(2) and MAe2) models are plotted, and the expected sample autocorre-

lation functions for the 5x5 regular grid 'system are plutted in Figures 

5-9 (a) - (d). Comparing the plots gf lx25 line system with those of 

the 5x5 regular grid system, we see that most of the patterns are 

similar except those of the AR(l), ARMA(l,l) models with negative 4> 01 

values and the AR(2) models with (~01'~02) negative. The similarity 

comes from the same nature of the model specification and the 

difference comes from the different natures ~f the neighbor structures 

between the I-dimension line system and the 2-dimension regular grid 

system. 

From the plots in F~gures 5-8 (a) and 5-8 (d)!, we see that MA(mO) 

models do have cut-off correlations as we expect for the line system. 

From the plots in Figures 5-9(a) and 5-9(d), we see that the auto-

correlations of the MA(mO) models for the 2-dimension regular grid 

system cut-off and follow exactly what have been derived in Section 

5.2.2. 
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Figure 5-8(a). The Expected Sample Autocorrelation Functions E(Pk), 
k=l.2, ... ,lO for the Purely Spatial AR(l) and MA(l) 
Models of the 1X25 Line System. 
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Figure 5-8(b) The Expected Sample Autocorrelation Functions E(~k), 
k=l,2, ... ,lO for the Purely Spatial ARMA(l,l) Models 
of the lX25 Line System. ' 
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Figure 5-8(c). The Expected Sample Autocorrelation Functions E(Pk), 
k=l,2, •.. ,lO for the Purely Spatial AR(2) Models of 
the 1X25 Line System. 
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If the candidate m~del selected is nonlinear in the parameters, 

initial estimates of the model parameters are needed to initiate any 

estimation procedure. A set of good initial estimates will make their 

computational effort reasonably efficient. 

5.3.1 The Initial Estimates of the MA(2) Model 

Substituting B(O) and A(O) in Equation (5-27) with 0 and 
2 
\' 6 W(R.) l OR. ,respectively, we get the Ks matrix for the MA(2) model 

R.=l ~K 

as, 

-~ 
2 

= (I - L 
R.'""l 

Equation (5-28) is then applied to compute the E(Pl) and E(P2) for the 

purely spatial MA(2) model. In the Figure 5-l0(a), the contours of 

the E(Pl ) and E(P2) are plotted in every 0.1 interval for the 5x5 

regular grid system. The surfaces of (E(Pl)'~01'~02) and (E(P2)'~01' 

~02) of the purely spatial MA(2) model are plotted in Figures 5-10 (b) 

and (c), respectively. THe levels of the square boundary edges, that 

are served as the reference level, are set to zero for these three 

dimension plots. To obtain the initial estimates for the purely spa­

tial MA(2) model, we compute the purely spatial autocorFelation 

functions P2' s""l,'2, ••• first, identify the MA(2) model as the candidate 
. . 

model by the patt(!rn comparison, and then read the initial estimates 

from Figure 5-l0(~). For example, we have the process that has been 

~" . I 
~ . . ~ 

l'F,' ,1 
LU 

<"""I 

W 

m tlJ 

ffl 
~~ 

IV 
ill 

.1 
! 

j 

J identified to be MA(2) process with PI = 0.5, P2 = 0.4, in Figure 

5-l0(a), the value (601 ,602) = (0.5,-0.22) is read to be the initial 

estimate for (601 ,602), 

5.3.2 The Initial Estimates of the ARMA(l,l) Model 

Substituting B(O) and A(O) in Equation (5-27) with ~Olw(l) and 

(1) 60lW ,respectively, we get the l\s matrix for the ARMA(l,l) model 

as, 
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Equation (5-28) is then applied to compute the E(Pl ) and E(P2) for the 

purely spatial ~~(l,l) model. In the Figure 5-ll(a), the contours 

of the E(Pl ) and E(P2) for -the 5x5 regular grid system are plotted in 

every 0.1 interval. The surfaces of (E(Pl)'~Ol,eOl)' (E(~2)'~01,60l) 

are plotted in Figure 5-11 (b) and (c) respectively. To obtain the 
J 

initial estimates for the purely spatial A,RMA(l,l) model,\~e locate 

(POl ,P02) position in Figure 5-ll(a) to read the initial estimate of 

(~01,60l) from the coordinates, where Pal' P02 are computed in the 
-;'-y/ 

identificatjLon stage. For example, we have a process that has been 

identified to be the ARMA(l,l) process with PI = -0.5, P2 = 0.4, in 

Figure 5-ll(a), the value (~01,60l) '"" (-0.9,-0.7) is read to be the 

initial estimate. 

5.3.3 The Initial Estimates of the AR(2) Models 
2 

Substituting B(O) and A(O) in Equation (5-27) with L ¢ W(R.) 
R.=1 OR. 
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and 0, respectively, we have the Mks matrix for the AR(Z) model as, 

~s 

Equation (5-Z8) is then applied to compute the E(P
l

) and E(P
Z

) for, the 

purely spatial AR(Z) model. In the Figure 5-lZ(a), the contours of 

the E(Pl ) and E(PZ) for the 5x5 regular grid system are plQtted in 

every 0.1 interval. The surfaces of (E(Pl ) ;tP01'tPOZ)' E(PZ~ ,$Ol'tPOZ ) 

are plotted in Figure 5-lZ (b) and (c), respectively. To obtain the 

initial estimates for the purely spatial AR(Z) model, we locate 

(POl'POZ) position in Figure 5-l2(a) to read the initial estimate of 

(tP eJ1 ,<P02 ) from the coordina·tes. For example, given that (Pl'P
Z

) = 

(-0.5,0.4), in Fig~re 5-l2(a), the value (<POl,<POZ) = (-0.35,0.ZO) is 

read to be the initial estimate. 

In previous sections the contour charts have been given with 

the three dimension plots of the E(Pl ) sur~~aces al1d E(P
2

) sur-faces. 

Comparing the surfaces of (E(Pl),eOl,e02)' (E(Pl),<POl,eOl)' 

(E(Pl)'~01,<P02)' we see that these surfaces share the same property 
"-

that values of E(pi) go smoothly from very positive (+1) to very 

negative (-1). H~~~ver, the surfaces of E(pZ) do not share this 

property. The surfaces of (E(P2),eOl,e02) and (E(PZ),<POl'<POZ) have 

the E(PZ) values go smoothly from very positive to very negative, 

while the surface of (E(PZ),<POl ,eQ1) is symmetric about <POI = e
Ol 

axis, it ~oes down and up again along any .axis that is perpendicular 

to the <POI = eOl axis. The similarity of E(Pl ), E(PZ) surfaces of 
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Figure 5-l0(a). The Contours of the E(Pl) and E(P Z) for the Purely 

Spatial MA(2) Models of the 5X5 Square Regular 

Grid System. 
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ARMA(l,l) Model of the 5X5 Square Regular Grid 
System. 

367 



r 
i'! 

~ 
~ 

368 

01 

Figure S-ll(c). The (E(P2), ~01' 901) Surface of the Purely Spatial 

ARMA(l,l) Models of the SXS Square Regular Grid 
System. 
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Figure 5-12 (b). The (E(P1), ~ 01' ~ 02) Surface of the Purely Spatial 
AR(2) Models of the 5X5 Square Regular Grid System. 
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Figure 5-12(c). The (E(P2)' ~01' ~02) Surface of the Purely Spatial 

AR(2) Models or the 5X5 Square Regular Grid System. 

371 

0. 



r 
I , 

-------~-- -

372 

the pur~ly spatial ~(2) model to the corresponding surfaces of the 

purely spatial MA(2) model reveals the fact that it is difficult to 

tell the AR(2) candidate model from the MA(2) candidate model if we 

" " should select the candidate model base on P1 and P2 only. And it is 

not so difficult to tell the ARMA(l,l) candidate model from the AR(2) 

candidate model or the MA(2) candidate model base on the information 

" " contained in P1 and P2• 

It should be noted that for practical purposes, the plots of 

the 5x5 regular grid system that are applied to help in the pattern 

recognition and initial "estimation are capable of representing most 

of the neighbor structures. This is especially appropriate when the 

location number exceeds 24, since the boundary effect is negligible. 

See Deutsch and Pfeifer [1980e]. 

5.4 The Estimation Procedures of the Purely Spatial Models 

In this section, we will develop th~ procedures to get M.L. and 

L.S. estimates for the parameters of the candidate spatial model. The 

likelihood function for the purely spatial process is developed in 

Section 5.4.1 and the estimation procedures for AR(AO)' MA(mO) and 

2 ARMA(AO,mO) under the assumption of G = cr I will be given in Sections 

5.4.2, 5.4.3 and 5.4.4, respectively. In Section 5.4.5 joint confidence 

regions for the model parameters are developed. The estimation pro-

cedures under the general G assumption are covered in Section 5.4.6 

and in Section 5.4.7 the estimation procedures when G is unknown are 

discussed. 
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5.4.1 M.L. Estimation 

Given the purely spatial ARMA(A ,m ) model 
00' 

where 

Z == rut 

are power convergent and 

and 

~t ru NID(O,G), 

the distribution function for E 1 rut' t= ,2, ••• ,T is 

and ~t = M~t with 

373 

t=1,2, ••• ,T. 

(5-31) 

(5-33) 
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We have the distribution for Z , t=1,2, ••• ,T as 
I\)t 

Then the likelihood function for given observations ~'."'~T is 

where 
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Taking the natural log and dropping the constant term involving 2rr gives 

the log likelihood to be 

(5-35) 

In Equation (5-35), the first term, - f tnlGI, is .not a function of 
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model parameter, and is not important in the searching procedure if 

G is known. Thus to obtain M.L. estimates we need to maximize 

Given the true model parameters (~,~) and (~l'.'.'~i)~' tnlMI 

is constant. Since JTtnlMI I .. ToltnlMI I, so when T increases ITtnlMj I 

will increase according to the same ratio. Also, the third term, 

2 
. S(41,e) .. LN-T-cr , will increase according to the same ratio. For, 

1\)1\) 

moderate size systems and mc)derate T, typically LN o cr2 > ItnlMl1 and 

TOLN·cr
2

» T·I tnlMII, thus typically S(~,~) will dominate the second 

termT.tnIMI, and the M.L. estimates will be approximately equal to 

the L.S. estimates. 

5.4.2 The Estimation1?rocedures of the Purely Spatial AR(AoL 
Processes 

To obtain the log likelihood equation for the AR(A
O

) model, we 

set eOt - 0 for t"1,2, ••• ,mO in Equation (5-35). This yields, 

where 

375 
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(5-36) 

To get the M.L. estimator for t's in AR(AO) mode:, we take the 

derivative of this log likelihood, set it equal to zero and solve for 

t. Thus, 

(5-37) 

where 

Ao Ao 
a I! II-'~.I. w(R.)!-l-ao '!I- r ~ w(R.)! ,-- R.n M - l. 't'OD .I. l. OR. 

acfl i 'R.-l'" 't'i R.-l 
(5-38) 

a at set) 

T,,' 
Ji 

1 
,1 
,;r"',,.: I 

Tr, ; 

It 

~ 
It 

~ 
lli, ~ W 

,f1j 
W 

In the above formulation M
C 

is the matrix of co-factors of the matrix 

M. 

To solve these equations is, not an easy task since the trarm 
AO 

II - I ~OtW(t)lin Equation (5-38) contains the terms of t's up to 
1.-1 

approximately the LN power. If we drop the first term in Equation 

(5-38) and maximize - S(t) , we get the L.S. estimates, which can be 

easily solved and expressed in closed form~ 
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(5-39) 

where 

,.t (1) 

.t(2) 

.t(T) 

~i -

W(i)~(l) 

w(i)~(2) 

5.4.3 The Estimation Procedures for the Purely Spatial HA(moL 
Processes 

To obtain the log likelihood for MA(mO) model, we set ~ot a 0, 

t-l,2, ••• ,AO in Equation (5-35). Thus, 

, , 
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where 

and 

Because of the non-linearity in the parameters, we can't obtain 

a closed form for the M.L. estimators or L.S. estimators. Thus, 

search over the parameter space will be needed to get the M.L. esti­

mates, which n~imize the in L(~I~' ••• '~T)' or the L.S. estimates, 

which maximize the S(6). 
'V 

5.4.4 The Estimation Procedures for the Purely S,patial ARMA(AOz]loL 
Models 

As in the case of the MA(mO) process because of the non-linear 

n~ture in the 6's parameters, we can't obtain a closed form solution for 
rv 

the M.L. estimators or L.S. estimators for theARMA(AO,mO) process. 

However, we can reduce the searching e'ffort to get the L.S. estimators 

by exploiting the linear nature in the fs parameters. 

can transform the model into the linear model form, ,-" 
'1.,\ 

~'-'> ;\ 

Given 6's, we 
'V 

where 

t-l,2, ••• ,T 

X(t) - [~l (t).'~2(t), ••• '~AO(t)] 

mO 
Xi(t) ~ (I - I e )-lw(i)z 
~ t-l Ot ~t 

The L.S. estimator under the assumption of ~t 'V NID(0,cr21) is, 

where 

x -

X(l) 

X(2) 

X(T) 
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. (5-40) 

(5-41) 
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5.4.5 The Confidence Regions 

In the previous sections the procedures to get the point esti-

mates for the parameters of ARO,O)' MA(mO) and ARMA(AO,mO) models 

2 under the assumption of G • cr I have been detailed. In, this section, 

we will find the variance-covariance matrix for the estimated para-

meters. This will be an approximate variance-covariance matrix and 

will be used to construct the approximate confidence region for both 

M.L. estimators and L.S. estimators. 

Acc~rding to the work'done by Whittle [1953J, the variance­

covariance matrix of the parameter estimators V(~), ~ • [i~,~~], is, 
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(5-42) 

or equivalentlY9 

(5-43) 

A "" " where Vij(S) denotes the· (i,j) element of V(~)& By substituting the log 

likelihood expression in the Equation (5-42), we have 
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or. equivalently 

(5-45) 

For moderate T and LN, S(S) dominates Te£nlMI in most cases, the 

'" 
Vij(~) is relatively constant. Thus 

(5-46) 

A further approximation can be made by using the actually observed sum 

of squares as S(~) in place of the expectation operator. Thl~ 

(5-47) 

For the AR(A
O

) model, S(~) is quadratic in ~ over the relevant 

region, and thus the second order derivative of S(~) will be constant over 

this region, and the confidence regions can be directly approximated by 

For the MA(m
O

) model and the ARMA(AO,mO) model, S(~) is not 

strictly quadratic in~. Since for the MA(mO) and ARMA(AO,mO) models, 

S(~) will be approximately quadratic over the relevant region of the 

.. , 



that ill use the same approximation and assume parameter space, we w A 

d ar the point 8. these derivations are best determine ' at or ne '" 

i we use the results To construr.t the joint confidence reg on, 

found in Drapper Smith [1966]. The 100(1-a)% confidence regions are 

f 8' = (~' e') which solves bounded approximately by the value 0 '" '" '", 

where 

5.4.6 

k F N-k o 1-a,kO' 0 

2 
Estimation When G Is Known and G + a I 

2 
h assumed G = a I for In previous estimation sections, we ave 

simplicity. Now we look at estimation under the more general G 

assumption. 

where 

Consider the Spatial ARMA(AO,mO) model, 

e: "'NID(O,G), 
",t 

2 
G + a I 
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(5-48) 

(5-49) 

I ' [' .. " ", " , 

, j 
i 

] 

\n. ' 
UJ 
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G is known and 

Since G is a positive definite matrix of rank LN, so there exists a 

matrix B of rank LN such that BB' = G (Graybill [1976]). Let C = B-1 , 

and pre-multiply Equation (5-49) with C and defining ~c(t) = C~t to get 

cz ,. 
",t 

e CW(t)Z + ~C(t) 
Ot ",t· v 

~(t) '" NID(O,I) and 

E(~(t)~(t+k» = 0, k + 0 

(5-50) 

This form allows the application of the same estimation procedures 

2 that has been developed for the G = a I. Further, to check the assump-

tion that ~t '" NID(O,G), the components of ~(t) are checked to be 

independent with variance 1. Therefore all the estimation and diag­

nostic checking techniques appropriate under the assumption of G = a2
1 

can be applied to the transformed model. Therefore in case that G is 

known and G , a2I, we will transform the original data, and model the 

transformed data with the same estimation techniques, diagnostic 

2 checking that are appropriate for the G = a I case. 
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5.4.7 Estimation When G 1S Unknown 

Usually G is unknown, and it is natur~l to assume that G'= cr2I 

first and then check this assumption at diagnostic checking stage. 

So the estimation procedure under the G m cr2I assumption is applied 

" " 2 directly to get the palameter estimates (<p,e) and the G == cr I assump-
"'''' 

tion is tested upon the estimated residuals ~t' t=1,2, ••• ,T. Situa-

2 
tions may arise when the assumption G = cr I is unacceptable, then the 
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assumption G=D is tested, where D is diagonal matrix with all diagonal 

elements ·positive. The GmD assumption is equivalent-to the assump.tion 

that the contemporaneous noise ~t are independent. If G=D hypothesis 

". is not rejected, D is estimated by D, which is constructed as follows, 

(5-51) 

where dij - 0ijGij , Gij is the (i,j) element of G, and 

i=j. 

" Then D is treated as the true D to estimate the model parameters (~,~). 

If GmD hypo~hesis is rejected again, it then is appropriate to 

" " assume the general G covariance and estimate G with G, treat G as the 

true covariance to estimate the model parameters (~,~). 

The estimation procedure for the covariance matrix G unknown 
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situation is shown in Figure 5-13. This procedure assumes G = cr2I 

in the very beginning and performs the estimation under the G = cr2I 

assumption. If the residuals pass the G = cr2I test, the procedure 

stops. The procedure enters the iterative subroutine if G = cr2I 

can't pass. In the iterative subroutine, G=D assumption is tested 

in every iteration, the estimation procedure under G=D assumption 

is performed if G=D assumption is accepted, otherwise the estimation 

procedure under general G assumption is applied. This two-stage 

iterative procedure may be applied to get the L.S. estimates of (<P e) 
",'", 

as well as the M.L. estimates of (~,~) • 
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An alternative method to get the M.L. estimates can be obtained 

directly from Equation (5-35). Since G is unknown, the log likelihood 

function without the term involving 2rr is now expressed as, 

(5-52) 

Since S(~,~,G) = LN-T is constant when G is set to its M.L. estimates 

" G, so maximizing the log likelihood function is equivalent to mini-

tnizing 

A search routi~e is then needed to search t~rough the existence regions 

of the (~,~) space to get the M.L. estimates (i,~) such that 
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No 

Yes 

Figure 5-13. The Two-Stage Iteration Scheme for the General 
G Models (G Unknown) 
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and G(~,~) is the M.L. estimate of covariance G. 

5.5 Diagnostic Checking 

After a candidate model is selected and its parameters lire esti-

mated, two questions need to be addressed, 

1. Do the residuals from the fitted model adhere to the 

assumptions. concerning the properties of the purely. 

spatial ARMA model? and 

2. Is this model parsimonious? or equivalently, could 

the data be adequately represented by a simpler model? 

In Section 5.5.1 we will discuss the first question, i.e., 
" 

procedures to check the white noise assumption and contemporaneous 

correlation' assumption for the unobservable residuals. In Section 

5.5.2, we will discuss the I)econd quest,ion, which is equivalent to 

check the significance of 'model parameters in the purely spatial 

ARMA(AO,mo) model. 

5.5.1 Diagnostic Checking 'That Is Applied to the Residuals 

In order to check the adequacy of the usual assumptions of the 

residuals ts equivalent to testing the following two hypothesis: 

1. G is consistent with the assumption under which the 

estimation is performed. 

2. ~t are white noise. 

To test the constency of the assumption about G, the two as sump-

tions stated below may arise: 
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1. 2 
G - a I, and 

2. GaD. 

To test the hypothesis G - a
2I, we first construct the matrix 

T ,.. 1 '\' ,..,.. ,.. h 
G • T L E E~, where €t are estimated residuals, and then use t e 

t-l 'Ut'U 'U 

following procedure; 

1. Calculate 

2. Find Z such that the probabilities on the righ-hand-side 

of the equation below is equal to l-a. 

2 2 
~r{-(T-l)p 1n W < Z} - ~r{Xf'~ Z}+ W2[~r{~f+4 ~ Z} 

where 

f -

. 2 
- Pr{Xf ~ Z}] + 0 «T_l»-3 

1. LN (LN+l) - 1 
2 

p. 1- 2 (LN) 2 + LN + 2 
6LN(T~1) 

w -2 

, 

(LN+2) (LN-l) (LN-2) (2LN3+6LN2+3LN+2) 

288 (LN)2(T-l) 2p2 

(5-53) 

(5-54) 
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3. 2 Reject the hypothesis G = a I if -(T-l)p R-n tv .::. Z. 

The table of Z values for chosen LN, T and a has been given by 

Deutsch and Pfeifer [1980]. Here Z values are computed by applying 

Equations (5-53) and (5-54). The LN, T a.nd a have been tabled fpr 

combinations of the following values: 

I ]1 
1 
J ] 1 
I 
10 ' -
t ; ,Ii 

,~u 

LN - 3, 5, 10, 20, 30, SO~ 

T - 10, 20, 30, 50, 75, 100, 200, 

a - 0.01, 0.05, O~lO. 

I i 

ri 1 I 

l! 
... 

, 

ill I 
~ 

~! 

1 
I ~ 
I [J , 
I 

2 . 
Since the Pr{Xf ~ Z} term of Equation (5-54) dominates the other right-

hand terms for large T, so the Z can be approximated by the z','a 

value easily determined from X2 tables such that pr{x~ ~ z'} = l-a. 
~ ~11 

--:: I' 

To test the hypothesis GaD, we ap'ply the following procedure by 

Deutsch and Pfeifer [l980~]: 

1. Compute 

,I 
,J 

[J j 

" 

1 
(5-55) 

1 n 
II ~ 
H 1 ! 

ru I! I 
r nI ' ! ~ 
, 1 

i i l] :, ! 

1 ~ , 
1 , 1 
~ ! rn :t \ 
j I i, I 

~ I 
~~,t 

2. Find v such that 

prfx.~ ~ v} + r2 [pr{x;~+4 ~ 'v) - PrfX~ ~ v}] = l-a 
m 

(5-56) 
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where 

f :::t LN(LN+1)/2 

~ s T - (2LN+11)/6 

2 
r = LN-(LN-1)-(2LN -2LN-13)/288 

3. Reject the G=D hypothesis if -m ~n V > v at the 

significant level a. 

The v values computed from Equation (5-56) have been tabled by 

Deutsch and Pfeifer [1980] for combinations of those LN, T and a values 

2 
that have been tabled for the G = cr I test. 

In the context of the three stage iterative model building proce-

dure, one of the best way ft)!; testing the statis·tical independence of 

random process is to check the calculated s~Aple space-time autocorre-

lation function. If there is no structure detected in the calculated 

sample space-time autocorrelation functions, the residuals pass the 

white noise assumption and the fitted model is accepted as adequate. 

This has been developed by Deutsch and Pfeifer [198ld]. However, they 

didn't include.the purely spatial autocorrelation functions within 

sample space-time auto~orrelation functions, and this. noise check 

didn't have the capability for checking the existence of contemporaneous 

dependence am10ng residuals. 

'" For the LN dimensional pure white noise process, the var(p (k» s 
-1 

for k > a is approximately equal to [LN(T-k)] • From Equation (5-29) 

of Section 5.2.4, we have 
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1 and this is of order of (LN.T). So we compute the purely spatial auto-

correlation functions ps(O), s=1,2, ••• , to compare the corresponding 

Ivar(ps(O» of the white noise to detect the e~istence of the unex­

hausted contemporaneous structure. Also we will compute the sample 

space-time autocorrelation function and compare the absolute valu1~ of 

these sample autocorrelation function with (LN_(lT_S» to detect th\~ 

unexhausted temporal structure among the estimated residuals. The 

fitted model will be accepted as adequate if no structures are detected. 

5.5.2 Testing the Significance of STARMA Parameters 

To test the significance of the model parameters» two approa~hes 

may be used. The .first approach is through constructing the joint con­

fidence interval and inf.erencing from tl1e locatj.on of a zero element for 
. th . 

the i parameter whether the i param~ter is significant. The second 

method is by overfitting and tes~ing the significance a particular 

trailing parameter. 

5.5.2.1 The Confidence Region Approach for Joint Inf~~. To 

test the hypothesis, 

kO 

HO: II a == a (all the paramE7ters are insignificant) 
i=l i 

vs. 
kO 

H, : II ai :/: 0 (all the parameters are significant) ... i=l 

.:. 

tI. 
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at the significance level of a, the (I-a) joint confidence region is 

constructed according to the formula given in the Equation (5-48). 

We accept the hypothesis that the kO parameters are insignificant when 

o is contained in the (I-a) confidence region. In addition, subsets 
'V 

of parameters can be evaluated. If there is not a plausibility of the 

ith element in 0 to be :f. 0 (the ith zero element is not contained in 

th the (l-a)% contour) the i parameter can be individually accepted to 

be significant. 

5.2.2.2 Testing the Significance of the Model Parameters ·by 

Overfitting. Based on the "extra sum of squares" principle, Draper and 

Smith [1966], we compute the sum of squares for both the original candi-

date model parameters and the model with added parameters. For linear 

e~timation problems with normal errors, 

(5-57) 

where ~ 
o 

is the parameter vector of the original candidate model and 

?" +. is the parameter vector of the o'"erfitted model which contains 
'V'-O J 

all the original parameters. We will reject the hypothesis that some 

of the added j parameters are significant at the a levels if the left-

hand-side of Equation (5-57) is less than Fa,j,N-(ko+j). 

The direct !extension of a test as above to the nonlinear purely 

spatial MA and ARMA is not necessarily valid. However, in practice, 

this test is used since these models are approximately linear over the 
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region of interest around the point estimates • 

5 • 6 EJtamp les 

To illustrate the modeling procedure for purely spatial 

ARMA(AO,mo) models, two examples ar~ presented, one from hydrology 

and the second from crimenology. The first eJtample is the heights of 

the Mohawk River at 6 locations observed twice a year. These data 

2 have been modeled by Perry and Aroian [1979] with G = a I assumption. 

These data also have been modeled using STARIMA models by Deutsch and 

Pfeifer [1980a]with the general G innovations addressed. The second 
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example is the monthly total number of arrests for assault in 14 areas 

of Northeast Boston. This set of data now examined in Deutsch and 

Pfeifer using STARIMA models [1979] and again by Deutsch and Pfeifer 

[1980~ iu which this modeling effort has been extended to include the 

possibility of a contemporaneously corrected innovation. All these 

models are not able to describe the contemporaneously correlated 

structure. In this section, the purely spatial modeling techniques, 

that have been developed in the previous sections of this chapter, are 

applied to model the residuals of these two data sets to exhaust the 

contemporaneouID correlations. 

5.6.1 The Mohawk River Heights 

The heightg at six lccaticr~ along the ~~hawk River ware ob= 

served every six months for the years 1967 to 1976 yielding 20 observa-

tions. These observations were recorded in feet above sea level. The 

series Zt = W - W, where W is the observations at time t and H' is the 
'V 'V t 'V 'Vt; 'V 

average, was modeled as a STMA(~) process, 



"~--------------------------------------------------------------------------------------------------------

with 

G-

z = -a a - a W(l) + a 
'Vt 10i\;t-1 11 ~t-1 'Vt 

a10 - 0.140 

" a :II -0.066 
11 

I."GI - 1.095, 

0.56 

1.82 12.42 

-0.05 0.16 

1.25 11.42 

0.25 0.96 

0.96 6.52 

0.47 

0.03 

-0.07 

0.07 

Symmetric 

14.81 

0.68 

8.30 

and W(l) is given as: 

r: 0 0 0 :l 0 0 0 

W(l) = 0 1 0 0 0 

0 0 1 0 0 

0 0 0 1 0 

0 ,0 0 0 1 
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Applying the purely spatial modeling procedure, we model the 

" residuals ~t' t=1,2, ••• ,20 as the purely spatial process to exhaust 

the c~ntempo~aneous correlations. 

Computing the sample purely spatial autocorrelation functions 

of the residuals of the STMA(ll) model, we get 

POl ~ 0.0687 and var(P01) = 0.00266 

·Since we have only the 1st order neighbors, so we. construct the pu.re1y 

spatial ARMA(l,l) model for these residuals, i.e., 

~ W(l)A _ a w(l) + 
0/01 ~t 10 ~t ~t' 

First, the L.S. estimation under the G ,. a2I assumption 'i,as per-

formed to give the following parameter estima.tes, 

A alO ,. 1.100 

a2 
"" 4.568 

IGI "" 1. I (€ € .. ) == 1.093, f t are the estimalted residuals, 
T i=-l 'Vt'Vt" 

The procedures that have been described in Section 5.5.1 are 

2 applied to test the G "" a I assumptioll and the GaD assumption. To 

2 test the G "" a I hypothesis, the W-statistics in Equcltion (5-53), p and 

- (T-1)p tn Ware computed, 



0.'55 

1.89 

-0.51 
"'-
G = 

0.94 

-0.60 

0.06 

W ,. 0.000117.2 

P ,. 0.883 

-(T-1)p in W = 151.58. 

12.50 

-2.62. 0.88 

8.22 1. 76 

-4.58· 0.79 

0.20 -3.41 

Symmetric 

9.58 

-3.60 

1.62 

2.13 

0.16 1.85 

Figure 5-14. The G Matrix at (~10,a10) = (1.285,1.100). 
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The Z value in Equation (5-54) are· computed at a ,. 0.01 to give 
2 

37 783 Since -(T-1)p in W > ZN •. O.Ol' so the G a cr I hypo-,Za=-O.Ol = • • .... 
thesis is rejected and G=-D hypothesis is tested. Applying Equations 

(5-55) and (5.56), we obtain, 

v ,. 0.0047373 

m ... 16.167 

-m in V :II 96.53 

'l? 7A7 
oJ ..... '--r~ 

Since -m in V > v at a == 0.01, so the G=-D hypothesis is rejected. 

S estimation under G = G assumption is executed to Then the L •• 
20 
~ E~ "'-I" 120 The model give ~Ol = 1.285, ~01 = 1.100 and SS = t~l ~t G ~t = • 
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'parameter (~01,601,G) converges to (~01 = 1.285, ~01 = 1.100, G), 

and the estimation procedure stops. The sample space-time autocorre-

1ation functions of the residuals are computed to check the white 

noise assumption. In Table 5-3, we see that the sample space-time 

autocorrelation functions of thl';; .residua1s do not reveal any inade-

quacy and this purely spatial ARMA(l,l) model is accepted as adequate. 

To see how significant the model parameters (~01,601) are, 

we construct the 95% confidence in~erval, shown in Figure 5-15. The 

contour is corresponding to the sum of squares SS ~ 126. 

From Figure 5-15, we see that both ~Ol' 601 are significant, and 

we have the final model as fo1lm17s, 

t"1,2,3, ••• ,20, (5-59) 

where 

"'-
a10 .. 0.140 

" ~Ol = 1.285 

~01- 1.100 

~t ~ NID(O,G), G is given in Figure 5-14 • 

Comparing the model, Equation (5-59), with the space-time 

STMA(11) model, Equati,Qn (5-58), we see that the space-time model has 

--

.:. 



SS = 126.0 

1.10 (1.285,1.100) 

0.95 

0.80 

4>01 

1.00 1.15 1.30 1.45 

Figure 5-15. The Approximate 95% Confidence Interval of 
(4)01,901) of the Mohawk River Data. 
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Table 5-3. The Sample Space-Time Autocorrelation Functions 
of the Residuals from the Purely Spatial ARMA(l,l} 
Model of the Mohawk River Heights Data 

The Sample Space-Time Autocorre1ations/ 
The Standardized Sample S-T Autocorre1ations 

Space Lag 0 1 0 1 Time Lag 

0 1.00 0.02 1.00 0.28 
1 0.04 0.04 . 0.42 0.41 
2 0.01 0.00 0.14 0.03 
"3 -0.00 0.01 -0.03 0.09 
4 0.01 -0.02 0.12 -0.23 
5· 0.06 -0.03 0.59 -0.32 
6, -0.19 -0.09 -1.68 -0.76 
7' -0.06 ... 0.01 -0.54 -0.08 
8 0.01 0.03 0.10 0.25 
9 -0.14 -0.01 -1.04 -0.09 

10 -0.04 -0.03 -0.31 -0.26 
11 -0.03 0.00 -0.21 0.00 
12 -0.27 0.02 -O~16 0.12 
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I , , 

the capability to model the spatial-temporal correlations, but it 

cannot model the contemporaneously correlated structures, and the 

model, Equation (5-59), has the capabi1it.y to describe the contem-

poraneous1y correlated structures as well as the spatial-temporal 

correlations. Also th~ 161 ~ 1.093· of model, Equation (5-59), is 

smaller than the \61 = 1.095 of the space-time STMA(ll) model. 

5.6.2 The Northeast Boston Assaults Data 

As the second application example, we consider the T = 72 

monthly observations of the LN - 14 sites·Northeast Boston Assault 

Data. The mean corrected first differences of these data, Z(t), 
rv 

t a 2,3, ••• ,72, have been modeled via the STMA(11) process~ i.e., 

,... A~ A;'" 

where G1/ 2Gl / 2 - G, G1/ 2 is a lower triangular matrix, and 

T 

400 

(5-60) 

" 1 LA" G - --- a a~ is given in Figure 5-16. The M.L. estimates that have T-1 rvtrvt t=2 
been obtained by Deutsch and Pfeifer [1980] are, 

" 6
10 

::I 0.861 

§11 := -0.035, and 

1 j e is limited in the Figure 5-16. ~ 

This space-time STMA(lll m~h~ xhausted the spatia::temporal 

correlations, but it doesn't describ~ntemporaneous correlatiotls. 
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1 1.11 

2 -0.19 1.57 

3 0.18 -0.09 1.81 

.- 4 -0.07 0.37 0.34 6.64 SytJIIletric 

5 -0.42 -0.06 0.61 0.21 3.87 

6 0.36 0.62 -0.11 1.19 0.10 7.17 

7 -0.22 1.14 0.02 1.00 0.10 0.83 14.80 

8 -0.32 0.53 -0.36 1.17 -0.43 0.60 -0.74 5.23 

9 -0.16 0.54 0.00 0.79 0.14 0.27 1.42 0.60 4.57 

10 -0.33 0.04 -0.16 -0.88 -0.22 -0.61 1.63 -0.53 0.59 6.06 

11 0.23 0.19 0.66 1.92 0.30 1.48 1.77 -0.10 -0.19 0.38 14.50 

12 -0.24 0.08 0.62 0.46 1.00 0.56 1.11 0.15 0~03 -0.05 1.49 5.57 ~, 

13 -0.31 -0.20 -1.65 -0.05 2.24 0.94 0.77 -0.40 -0.64 -1.87 -1.81 1.63 14.90 

14 -0.08 0.16 -0.32 1.20 -0.13 0.10 0.08 -0.37 0.14 . 0.17 0.79 0.38 1.77 3.14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

Figure 5-16. The Sample Covariance Matrix of the Estimated Residuals from 
the STI1A(11) Model, Equation (5-60). 
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To exhaust the contemporaneously correlated structures, the purely 

spatial modeling ~rocedures a:e applied to build the purely spatial 

model. The sample purely spatial auto correlations and the standard-

ized sample purely spatial auto correlations are computed to give the 

following results, 

Sample Autocorrelation 

POI "" 0.098 

P02 ~ -0.002 

0.063 

Standardized Autocorrel§tion 

2.400 

-0.041 

1.621 
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The pattern of expected sample autocorrelation functions for the 

purely spatial AR(l) model in Figure 5-9 matches the pattern of these 

sample purely ~patial autocorrelation functions best. Reading Figure 

5-11 (a) , we obtain the initial estimate ~Ol x 0.1. The L.S. estimation 

under.G = a21 assumption gives 

a~ = ~ W(l)aA + E t=2,3, ••• ,72 
~t ~Ol ~t ~t' 

where 

~ 

~Ol = 0.221 

To test the G = a21 hypothesis, Equations (5-53) and (5-54) are 

used to compute the following statistics: 

- ~ ------- ---- ------ ------~---- ---_. --------- ----_. - .. -------
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w = 0.23382 

P = 0.9306 

-(T-l)p in W = 109.31 

Za=O.os = 123.47 

Since -(T-l)p in W < Za=0.05' so the G = a2
1 assumption for ~t cannot 

be rejected. Also the diagnostic checking applied on the estimated 

residuals ~t to check the white noise assumption doesn't reveal any 

model inadequacies. The sample space-time autocorrelation functions 

are shown in Table 5-4. 

To check the model parsimony, the model parameter ~Ol is tested 

for significance in the following, 

va. 

Thla extra sum of squares SSE = 18.339 with a; = 0.9,32, and 

F '" 18.68 

Performing the F-test, we have 

F > F = 3.84, 0.05,1,991 

so ~Ol is significant and the following final model is obtained, 
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Table 5-4. The Sample Space-Time Autocorrelation Functions and 
the Standardized Sample Space-Time Autocorrelation 
Functions of the Residuals of the Purely Spatial 
Model, Equation (5-61) 

The Sample Space-Time Autocorrelationsl 
The Standardized Sample S-T Autocorre1ations 

Space Lag 0 1 2 0 1 '2 
Time Lag 

0 1.00 0.03 0.03 1.00 0.08 0.95 
1 0.00 0.02 0.02 0.25 0.90 0.76 
2 0.04 -0.02 0.02 1.23 -0.85 0.63 
3 0.00 -0.01 -0.01 0.12 -0.35 -0.33 

1.02 1.12 4 -0.02 0.03 0.03 -0.64 
5 -0.06 0.02 0.03 -2.08 0.67 0.93 
6 -0,,00 -0.07 0.06 -0.05 -2.10 1.99 
7 -0.04 0.03 -0.06 -1.37 0.88 -1.89 
8 -0.02 0.02 0.02 -0.74 0.65 0.68 
9 -0.00 -0.01 0.03 -0.02 -0.53 1.03 

10 -0.03 -0.00 0.03 -1.07 -0.11 1.06 
11 0.06 0.02 -0.0l: 1.81 0.65 0.44 
12 0.03 0.01 -0.02 0.91 0.28 -0.60 
13 -0.02 0.02 0.04 -0.74 0.66 1.37 
14 -0.01 -0.02 0.00 -0.34 -0.72 0.16 
15 0.03 -0.03 -0.02 0.90 -0.32 -0.77 
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(5-61) 

A ~ ~_ W(l)aA + 
~t ~1 ~t ~t' t=2,3, ••• ,72, 

where 

§10 = 0.861 

... 
611 = -0.035 

"''' "'" G1/2Gi/2 ~ G, G1/2 is a low triangular matrix and 

T 
A 1 ~ A ... ~ 
G Z l a a is given in Figure 5-16. (T-1) t:a2 ~t~t 

The space-time STMA(i1) model, Equation (5-60), models the 

spatial-temporal correlated structure of the observed process, but it 

can't model the contemporaneous spatial structures. By adding the 

purely spatial model, that has been built for the estimated residuals 

of the STMA(ll) model, Equation (5-60), we increase the model capa­

bility to be able to describe the purely spatial structures as well as 

the spatial-temporal correlated structures. 
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CHAPTER VI 

COUPLING AND REPARAMETERIZING MODELS 

In this chapter tW9 topics concerning coupling and reparameter-

izing models are analyzed; coupling and reparameterizing an aggregate 

(for all t) purely spatial model and the space-time model and coupling 

the purely spatial models for subsets of t. The purely spatial model, 

,tt (6-1) 

where S is a non-empty subset of UT = {1,2, ••• ,T}, and observations 

a.re available from tml,to t=T, is referred to-as the individual purely 

spatial model l07hen the temporal index set S contains only one element, 

and it is referred to as the aggregate purely spatial model when S 

contains more than one element. In Chapter V, the purely spatial 

model was the aggregate purely spatial model with S = UTA In this 

chapter, the aggregate pu~ely spatial model is distinguished from the 

individual purely spatial models. In Sect~on 6.1 the procedures of 

coupling and reparameterizing the aggregated purely spatial model with 

the space-time model are developed. Three types of space-time pro-

cesses and two modeling sequences are considered. Three space-time 

process types are: 1. every location has the same univariate ARIMA 

process, 2. the system follows a STARIMA process, and 3. each location 
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has a different univariate ARIMA model. The two modeling sequences 

are: 1. Modeling the observations to be a purely spatial process, 

then modeling the residuals to be a space-time process. Compari­
( , 

sons of the STARIMA models and tha re~ulting coupled and repara-

meterized model for each model type are made and the equivalence of 

these two modeling sequences is discussed. Two application examples 

are included. 

. After the coupling procedures for the space-time model and the 

aggregated purely spatial model, the procedures for coupling the 

. purely ,spatial models are developed in Section 6.2. The ergodic 

process is introduced and the modeling procedures for the ergodic 

process are developed under the homogenity assumption. Since an 

ergodic process may behave like non-ergodic because of inhomogeneous 
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inputs, in Section 6.3 a procedure is developed to detect the outliers 

under the ergodic assumption. An example application is included to 

illustrate these procedures. 

6.1 Coupling and Reparameterizing Aggregate Purely Spatial 
Mode1s'and the Space~Time'M6del 

The space-time model has the capability of describing space-

time diffusion mechanisms with the exception of the contemporaneously 

spatial diffusion mechanism. On the other hand, purely spatial models 

describe only contemporaneously spatial correlated structures without 

any temporal relations. Once a space-time'mode1 has been constructed 

and its residuals follow a purely spatial model, we may want to couple 

these models and reparameterize the coupled model to obtain the single 

system model. In this section, the coupling and reparameterization 



of the aggregate purely spatial models and space-time models are 

, discussed. 

Two modeling sequences may arise: 1. The observations are, 

modeled to be an aggregate purely spatial process and then the 

residuals are modeled to be a space-time process, or 2. The obser-

vations are modeled to be a, space-time process and then the residuals 

are modeled by the aggregate purely spatial process. In the follow-

ing, the first modeling sequence, i.e., the aggregate purely spatial 

modeling followed by the space-time modeling, is detailed and the 

equivalence of two modeling sequences is verified in Section 6.1.1. 

Comparison of the coupled reparameterized models and the STARIMA 

models is made in Section 6.1.2. Two application examples are pre-

sented in Section 6.1.3. 

6.1.1 Space-Time Models'with'Contemporaneous Terms 

In this section it is assumed that the purely spatial model, 

408 

(I - (6-2) 

has been built and the LN streams of the estimated residuals has been 

computed. These residuals depending upon their structure, may follow 

one of three potential models; 

1. All LN streams of residuals are described by the same 

univariate ARIMA model, 

2. The LN streams of residuals follow a STARIMA process, 

-----~---
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3. The LN streams of residuals are described by different 

univariate ARIMA models. 
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6.1.1.1 All LN Streams of Residuals Are of the Same Univariate 

ARIMA Model. Here the residuals are assumed to be generated from the 

same univariate ARIMA(p,d,q) model. Without loss of generality, we 

will assume d~O and have the aggregate purely spatial model, 

D (I - , t=1,2, •• ,T, (6-3) 

and 

.. (I , t .. l,2, .... /f, (6-4) 

for the LN'streams of residuals with E ~ NID(0,cr2 I). By substi-
~t 

tuting for ~t we obtain the coupled model for the system. 

mO 
9
0

Q.W(Q.»-1(I -
AO 

(I - I l tP w(Q.»Z = 
Q.=! Q.=1 OQ. ~t 

P 
k -1 

q 
(I l l k 

tPkOIB) (1- 9kOIB )~t 
k=l k=l 

Since 



so, 

mo 
Multiplying both sides with (I - r aOiw(1)), we get, 

i-I 

This can be reparameterized to the modol, 
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"0 p "0 
Z = L $ w(t)z + I >. $* w(t)z 
rut i=l ot rut k=l i~O ki rut-k 

mo q mo 
w(t)g a* W(i)E + E I e - I t: (6-5) Oi ''vt ki rut-k rut' t=l 

where 

k=l i=O 

k:::, 1, i > 1 

a~i = -akO·eOt ' and 

~t ru NID(0,cr2 I). 

6.1.1.2 The LN Streams of Residuals Are from the STARIMA 

Process. In this section, the residual of the purely spatial model is ---
assumed to be generated by the STARIMA(P~,O,~) process. These resi­

dual models are, 

t=1,2, ••• ,T (6-6) 



r 

2 with € ~ N1D(O,a I). 
~t 

coupled system model. 

or 

This is equivalent to 

Equating the a expressions results in the 
~t 

z '. 'Ut 

~ ~ (1) k 
- (I - 1. ~ 9k1 W B) ~t • 

k-l 1-0 
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mO 
Multiplying both sides with (I - L eOiw(~) and rearranging the 

i-l 
coefficients, we have 

• € k + €t· ~t- ~ 

Equation (6-7) can be reparameterized as folJ.ows; 

where 

-
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(6-7) 

(6-8) 

.~ 



r 

W(h) 
mO 

w(R.» W(h) (I _ 
mO 

w(R.»-l(I _ 
"0 

.. (I - I eOR. I. eOR. I $ w(R.») $ R.-l R.-l R.-l OR. 

w(h) 
mo 

e w(R.» w(h) .. (I - I e 
R.-l OR. 

In the isotropic preference STARIMA system since the weight matrices 

are symmetric, by applying the matrix multiplication, we see that 
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T.T(i)w(h) - 1 - (w1i+h1 + w1i-hl) where n(i) and n(h) denote the 
I~ -(i) (h) '. 

n +n 
~ ~ 1 average number of the i and the g order neighbor3, respective y. 

It should be ~oted that in the regular grid system, the avera~e number 

of the arbitrary g,th order neighbor is approximately 4, and w(i)H(h) 

is negligible when compared to the identiy matrix I, where i~O, h~O. 

By omitting all negligible terms in Equation (6-8), we obtain, 

W~h) == W(h) 

w~h) :!: W(h) 

This approximation holds closely for the low spatial order models, 

i.e., models with AO,mO ~ 2. 

6.1.1.3 The LN Streams of Residuals Are from Different ARIMA 

Processes. The residuals of the aggregate purely spatial model are 

assumed to be generated from LN different ARIMA(Pi,di,qi) i::ol,2, •.•• ,LN 

univariate models. The models that describe the whole system are, 
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mO 
e w(R.»-l 

"0 
$ w(R.» a .. (I - I (I - L ~t rut OR. OR. R.-l R.:IIl 

t"1,2, ••• ,T, 

Pi 
k -1 

qi 
k a..,' - (1 - I i<jlkO B) (1 - I iekO B ) e::it ru~t 

kal k-l 
t-l,2, ••• ,T 

i'"'1,2, •.• ,IlJ, (6-9) 

where 

i41tO' k-l,2, •••. 'Pi are AR parameters of the :!;th residual stream. 

iekO' k-l,2,···,qi are MA parameters of the :!;th residual stream. 

In order to simplify ~e expression of Equation (6-9), we define 

Dk - [kdi,g,], Fk - [kfi,g,l below, 

o otherwise 

(6-10) 

o otherwise. 

and DO .. I, Fa - I. The matrices Dj and Fk are diagonal which allows 

the LN different univariate ARIMA models in Equation (6-9) to be 

written as 



f 

,at --'" 

where p -max{Pi' i-l,2, ••• ,LN} and q - max{qi' i-l,2, ••• ,LN}. 

Coupling the aggregate spatial model in Equation (6-9) and 

the residual model in Equation (6-11) yields, 

'This is equivalent to, 

or 
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(6-11) 

I 
11 

I :t. , " 

I·; > 
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:jt . 
Ij 

,~ 
Ji 

mo 
Multiplying both sides by (I - r e W(~», we have 

R.ool O~ 

Reparameterizing Equation (6-12) and we get, 

--
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(6-12) 

(6-13) 

, 



r 

where 

* 
4»01 -

.~---- -- --- -
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1 when 1-0 

h > 0 

Note that W$(O,h) - W(h) 

We(O,h) - w(h) 

1 when 1-0 

6.1.1.4 The Eg,uivalence of Modeling Seguences. Two modeling 

sequences can be followed to model the same space-time observed process. 

The observations may be modeled to be an aggregate purely spatial pro-

cess then the residuals are modeled to be a space-time model, or the 

observations can be modeled to be a space-time model and then the 

residuals are modeled to be an aggregate purely spatial model. Models 
.\. 

obtained fro~ either sequence are coupled and reparameterized. In 

~ 

] 

l! 
>1 

"~ 1) 
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Ir: ('1c- ~ • . ; 
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I 

I 

this section, the equivalence of these two modeling sequences is 

discussed. 

In all the three coupled models discussed in Section 6.1.1.1 

to 6.1.1.3 coupling sequence employed followed block diagr~ in 

Figure 6-1, where 

.tt 
11-__ T

_(B_)_-41 ~t '1,-__ ~_~_~t_e~_~_1_-4 ---...~ ~ t 
Figure 6-1. Coupling the Purely' Spatial Observation 

Model and the Space-Time Residual Model 

T(B) denotes a transfer function involving the temporal back shift 

operator B. In the coupled model 6-5, the case where the residuals 
q -1 

are described by the same ARMA process, T(B) -(1-2 e 1Bk) (1-
p k-l kO 
2. 4»kOIBk)" ill the coupled model. 6-8, the case where the residuals 

k-l 

are d'escrfbed by the· STARMA proces~ .1) '., 

T(B) - ·(I (I 

and in the coupled model 6-13, in which the residuals are from 
p k -1 P k 

different ARMA processes, T(B) - (I - 2 FkB) (I - I DkB). 
k-l k-l 

Changing th:f.s modeling sequence to the al ternati ve sequence, we have 

the modeling sequence shown in Figure 6-2. 

-
419 
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Figure 6-2. 

-----~----- -

Purely a n..t • T(B) ~ 

Spatial 
. 

Coupling the Space-Time Observation Model 
and the Purely Spatial Residual Model 

q k -1 P k 
For the sequence, let T(B)-(.I-r ekOIB) (I- - r cj>kO IB ) , 

k-l k-l . 
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i Z is modeled as LN same ARMA(p,q) processes and the residuals .e., 'Vt . 

are modeled as a purely spatial model. In this case the' two system 

models are; 

a -'Vt 

Equating Equations (6-14) and (6-15), we obtain the coupled system , 

model, 

(6-14) 

(6-15) 
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This is equivalent to 

! 
1 ii] t· H 

li 
L • 

n 
[} 

[J Reparameterizing Equation (6~~6), and we get, 

~l 
~} 

~ rrl ~ 

[J q 0 * (1) 'm ] 

~l[ 1-0 kL ~t-k ~t - I I a w € + € (6-17) 

! ~, 
, I LJ 
j 

111 vi '-
where 

!~ 

Uj . i 
* ~kO - cfl kO J(~l 

* 
~ cflkR. • -'kO • cfl 01 k ~ 1, 1~1 

* 

1 
akO - akO k > 1 

* akR. ,. -akO • a OR. It ~ 1, R. > 1 

I 
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; } i 



r 
h 

t~· , 
l~ ~ 

ill \: 

~ 
\' < 

Comparing Equations (6-5) and (6-17), we see that they are exactly 

the same. This is because the transfer function of·the same LN ARMA 

models T(B) is interchangeable with the transfer function of the 

purely spatial model, 
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T(B)T(pure1y spatial) = T(pure1y spatial)T(B). (6-18) 

This property comes from the fact that identity matrix I is interchange­

able with any matrix, and Equation (6-18) is true among the purely 

spatial transfer functions and the transfer function of STAR1MA(PA,d,qm' 

'" 'V 
with A = (0,0,0, ••• ,0) and m - (0,0, ••• ,0), A and mare p dimensions 

'" '" . '" '" 
vector and q dimensions vector, respectively. 

The STARIMA model is a more general case than LN streams of uni-

variate ARIML~ models. The STARMA system with isotropic preference has 

the property that if the location i is an ith order neighbor of the 

th location j, then the location j is an i order neighbor of the loca-

tion i. In such isotropic systems, the following relationship holds, 

(i
1

) (i
2

) 
When the weight matrices W , Ware symmetric. Thus, 

.,! 
til II 

I, I, 
1. \ " I 
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mO 
<I> Wei»~ 

AO 
<I> w(i»-l(I_ 

mO 
e W(i» (I - I ,. (I - L L 

i-1 Oi i:o:l Oi i=l Oi 

q Ak 
<I> w(i)Bk)-l(I 

q ~ 
e W(i)Bk) (I - I I I I 

k=l i=O ki 
k-1 i=O ki ' (6-20) 

(ii) th 
where n is ,the average number of the ii neighbors in the system 

~ki' k ~ 1 are in the stationary region, <l>ki' k > 1 are in the inverti­

ble region, and <l>Oi' eO~are in the existence region. The transfer 

functions of the STARIMA process and the purely spatial model are, 

q 

I 
k=l 

and .~~ .... 

respectively. Equation (6-20) shows the relationship 

T(B)·T(Pure1y Spatial) = T(Pure1y Spatia1)·T(B). 

~. , 



r 
" 

!,:l! 
ii 
r 
~ 
~ 

-------~--- ---

424 

Therefore the exchange property, Equation (6-18), holds ,approximately 

for the system of equal preference. 

In the STARMA system of two parallel preferential directions 

the weight matrices are symmetric, too. So Equation (6-19) and 

Equation (6-20) hold, and the exchange property, Equation (6-18) also 

holds. Similarly, in the STARMA system of one-direction preference, 

we have, 

and Equations (6-20) and (6-18) hold. 

For the case where the residuals follow LN different univariate 

ARIMA models,. we have the following: 

1. If the system is isotropic or preferential in two 

parallel directions and it is large enough to make the 

boundary effect negligible, i.e., w(~) is approximately 

symmetric, then the exchange property in Equation 

(6-18) holdE ~ecause the relation W(~)D = DW(~) holds 

when W(~) is symmetric and D is diagonal. 

2. If the system is preferential in one direction, the 

W(~)'s are not symmetric, and the exchange property 

in Equation (6-18) doesn't hold. 

In the situations that the interchange property in Equation 

(6-18) holds, these two modeling sequences are equivalent and the 

transfer functions, i.e., T(B) and T(Purely Spatial), are independent. 

~ If 

,I" ' ~I 

I 

I 

---- ----- -----~----

}1 
~~IJ 

],:1 
,,' 

1. 
tit 

1 

In the situations that the interchange property does not hold, these 

two modeling sequences are not equivalent, transfer functions T(B) 

and T(Purely Spatial) are dependent. This means that the overall 

transfer function of this process is decomposed into two different 

m9deling sequences. However, since they are decompositions of the 

same overall transfer function, so they have the same description 

ability even though the model interpretations of different modeling 

sequences are different. Since the overall transfer function can't 

be decomposed into sequence independent transfer functions when T(B) 

and T(Purely Spatial) are dependent, therefore sequential modeling i~ 

not recommended and the overall transfer ,function should b~ obtained 

from simultaneous estimation of the space-time model with contem-

poraneous terma. 
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6.1.2 Comparison of 'the Reparameter1zed Models and the STARIMA Models 

The reparameterized models are expressed in Equation (6-5), 

Equation (6-8) and Equation (6-13). Equation (6-5) is the reparame-

terized model of the purely spatial model and LN same univariate ARIMA 

models. Equation (6-8) is that of the purely spatial model and the 

STARIMA model. Equation (6-13) is the reparameterized model of the 

purely ~patial model and LN different univariate ARIMA models. Com-

paring Equations (6-5), (6-8) and (6-13) with the STARIMA(PA,O,qm) 

model, 

z ,. 
'Vt 

'V 'V 
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we see that all these coupled models still keep the purely spatial 

terms unchanged ~d the STARIMA model doesn't have any terms to pre­

sent the Oth lag dependence between observations and unobservable 

errors. Looking at the temporal lag terms of the coupled models, we 

see that except the LN same univariate ARIMA case, all the weight 

matrix of non-zero time lags are transformed. In Equation (6-8), the 

1 terms are transformed by the matrix weight matrix of the non-zero ag 

. that contain purely spatial model parameters only. The weight matrices 

W(h) W(h) in Equation (6-8) are independent of the temporal lag, 
4> ' e 

while the transformed weight matrix W4>(k,h), We(k,h) in Equation (6-13) 

are temporal lag k dependent, i.e., W4>(kl ,h) ~ W4>(k2,h), We(kl,h) ~ 

We (k2,h) for different temporal lags kl and k2• Also, for practical 

W(h) ~ w(h) ~. W(h) in Equation (6-8) for the low order purposes, 4> - - e 

spatial system. 

We have already seen that all the coupled models keep the same 

th zeroth lag terms, while the STARIMA models do not contain any zero 

lag terms. There are situations in which the influence of one loca-

tion on another is so quick that there is no lead time before this 

d If we employ the STARIMA models to model such influence is reache • 

quick influence-spreading processes., we can't exhaust the whole 

structure and the resulting model will usually have the residuals 

distributed as NID(O,G). This can be seen more clearly in the coupled 

process represented in Equation (6-5) or (6-8). If the residuals from 

the observation model of Equation (6-6) are not modeled by the purely 

spatial model, the resulting STARIMA model will have the residuals 

a distributed as NID(O,G) with 
",t 

1 i 
I I 

II 
\1 

Ii 
I 
I 

(J . 
I jl .. 

\I~. ; 

I 

1·~·· , 
) 

]~ , 

]! 
~ ~ 

G os (I - e W(R,»(I 
OR, 

AO 
~ 4> w(R,)-l]~cr2 even when the true residual (after being fitted I.. OR, 

R,-l 
2 by 'a spatial model) E: is dis'tributed as NID(O,cr I). So by coupling 

",t 

the purely spatial model with the space-time models, we add in the 

zeroth terms to generalize the capability of des,(:.ribing the instan­

taneous influence mechanism with the contemporaneous temrs. Thereby 

unconfounding. the purely spatial structure from the noise covariance. 

Since the most obvious change by ~oupling and reparameterizing 

these models lies in the insertion of purely spatial terms, so the 

models presented in Equations (6-8) and (6-13) will be referred. to as 

the STARIMA model with the contemporaneous terms and the LN different 

univariate ARIMA models with the contemporaneous terms. They will be 

classified as space, space-time models denoted by [ARMA(AO,m
O

) + 
. LN 

STARIMA(pA,d,~)] and [ARMA(AO,mO) + ARIMA(p,d,q) ], respectively. 

'" '" The coupled model in Equation (6-5) is a special case of Equation 

(6-8) and can be denoted by [ARMA(AO,mO) + STARIMA(pO,O,qO)]' here ~ 

'" '" and m are set to the null vector O. 
'" '" 

6.1.3 Example Applications 

In this section, two examples, i.e., the Mohawk River Heights 

Data and the Northeast Boston Crime Data, are given to illustrate the 

coupl:tng procedures. The STARIMA models have been built by Deutsch 
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and Pfeiffer [1980] and the purely spatial models have been constructed 

in Chapter V. The forecasts, based on the STARIMA models and the 

coupled models, are also computed and compared to illustrate the 
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practical consequences of ignoring the contemporaneously correlated 

structure. 
/.' 

6.1.3.1 The Models of the Mohawk River Heights Data. In 

Chapter V we had the STARIMA model for the observations and the purely 

spatial model for the residuals as listed below, 

where 

The STARIMA model for the observations: 

the purely spatial model for the residuals: 

a -'Vt 

,.. 

$ W(l)a 
01 'Vt 

910 == 0.140 

,.. 
<POl == 1.285 

,.. 
eOl == 1.100 

§ W(l)~ 2 01 ~t + ~t' t-l, , ••• ,20. 

~t 'V NID(O,G), e is given in Figure 5-13. 

The observations are modeled to be STMA(ll) process and the residuals 

1 
1 
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are modeled as purely spatial ARMA(l,l) model. According to the 

equivalent discussion in Section 6.1.1.4, this modeling sequence is 

equivalent to the other alternatives. Coupling and reparameterizing 

the models, we have the space, space-time [ARMA(l,l) + STARIMA(O,O,l)] 

model as follows, 

. 
lvith the .initia1 guess value.9· 'of the coupled model parameters being, 

c 9
01 

2 1.100, 

c 
910 - 0.140, 

c 911 - -0.22. 

The M.L. estimation, which minimize IGlp gives 

95% CI 
c .... 

<1>01 == 1.23~ (1.228, 1.245) 

c§ ., 
01 0.382 (0.366, 0.397) 

c .... 
910 = 0.146 (0.102, 0.190) 

c .... 
911 - -0.120 (-0.136, -0.103) 

Ical ... 1.063 



r • 

c"" and G as 

r 
0.554 l 1.513 10.160 Symmetric 

c"" ) -1.909 -10.140 10.880 
G = 

0.750 6.138 -6.299 8.079 

-1.252 -9.554 9.250 -8.831 11.880 

0.247 1.123 -1.110 1.502 -1.926 1~585 

The sample space-time autocorrelation functions and the sample space­

time partial autocorrelation functions are listed in Table 6-1. No 

additional patterns are seen, so the repa~ameterized space, space­

time [ARMA(l,l) + STARIMA(O,O,l)] model is ,~iM;o;pted 8S adequate. 

To test the general G assumption, we test the hypothesis, 

vs. 

where D is arbitrary diagonal matrix with positive diagonal elements. 

Following the testing procedures described in Section 5' 5 1 •• , we 

have, 

IGI V '" ~L""'N"""""",,- '" 0.0001141, where GU is the (i,i) element of G, 
}I Gii 

. l.=1 
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Table 6-10 The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Reparameterized Model for the Mohawk River 
Heights 
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Space-Time Autocorrelations / Standardized S~T Autocorrelations 

Space Lag 
Time Lag 

0 1 0 1 

0 1.00 0.03 1.00 0.32 

1 -0.03 -0.(}·5 ':'0.26 -0.58 

2 -0.05 0.01 -0.51 0.13 

3 -0.23 0.08 -2.18 0.79 

4 -0.10 0.15 0.94 1.37 

5 ~0.10 -0.28 -0.84 -2.47 

6 -0.84 -0.09 -0.7l -0.72 

7- -0.19 -0.13 -1.59 -1.06 

8 0.21 0.13 -1.65 . 1:.04 

9 0.13 0.06 0.97 0.43 

10 -0.09 0.01 -0.61 0.09 

11 -0.27 -0~08 -1. 77 -0.54 

12 -0.09 0.12 -0'.55 0.71 

13 -0.15 0.22 -0.81 1.19 



r 

T = 20, LN = 6, 

-m in V = 146.768 

f ,. 21 

? 
-m in V = 146.768 > XO.Ol,f = 38.93. So the null hypo-Since 

thesis HO: G=D is rejected. Since G ~ D, so G can't be a21 and the 

contemporaneous white noise· are correlated. It should be noted that 

in the Section 6.1.2, it has been pointed out that without the capa­

bility of modeling the purely spati:u structure, the contemporaneous 
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structure is confounded with the noise structure. Unconfounding doesn't 

guar8~Gee the simplification of the covariance G to give G = a21 or 

G-D. However, if the process noises are distributed as N(0,a2I), then 

the unconfounding of the purely spatial structure and the noise 

structure gives G = a2I. 

Once the process is modeled, it will be employed to build the 

forecasting modal for the purpose of process forecasting and/or process 

control. The forecast functions for both the coupled model and the 

STARMA model are constructed by taking conditional expectations at 

time T. The resulting forecast functions are, 

i > 2 (6-22) 

I 
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i > 2 (6-23) 

where 

T is the last time index of the observations that were used 

to build the model, 

~T(i) is the i-step ahead forecast at time point T, 

1 A C c 1 c A 
pp - G and p p ,. G. 

The forecasting function contained in Equation (6-22), is based 

on the coupled [ARMA(O,l) + STARMA(Opll )] model and the forecasting 

function contained in Equation (6-23), is based on the STARMA(O,l
l

) 

model. The primary difference in these forecasting functions is the 

contemporaneous spatial information that is contained in the 

AC (1) -I' 
(I - ~OlW ) matrix, which is numerically computed and listed 

below. 

1 1 0 0 0 0 0 

2 1.24 1 0 0 0 0 

c~ W(l»-l 
3 1.53 1.74 1 0 0 0 

(I - = 01 4 1.89 1.53 1.24 1 0 0 

5 2.3.:1. 1.89 1.53 1.24 1 .0 

6 2.89 2.34 1.89 1.53 1.24 1 

This 'matrix is lower triangular with all non-zero elements positive and 
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e(il,j) > e(i2,j), i l > i 2, where e(i,j) is the (i,j) element of 

(I - c~Olw(l»-l. Th (i j) 1 ~ e e , e ements represent the instantaneous 

influence from location j to location i. It can be seen that loca-

tion 1 has the strongest influence to the other locations, and that 

location 2 has the second strongest influence. The downstream loca-

tions have less influence to their downstream locations than their 

upstream locations. This corresponds to the fact that the stream 

flows down the river and the heights at downstream locations will 

have no influence on the heights at the upstream locations. Also 

since the influence accumulates along the downstre~ direction, the 

influence from some upstream location, say location j, is stronger 

than the influence from any downstream location of the location j. 

Since the process is a space-time moving average process, the 

c" " point forecasts tT(i) and tT(i) and of the same zero value for 

C" " i > 2, i.e., Z~(iL = ZT(i) = 0 for i > 2. However, the I-step ahead 
- 1\i.L '" 

forecasts are different and the variances of these forecasts as well' 

as the interval forecasts are different. c" The variance of ~T(i) is 

(c c ~ ) the conditional e;pectation of ~T+i ~T~ given that observations 

~t are realized for t 2 T, so, 

(6-24) 

1 

I 
I 
I 
I 

1,';,'J' j 
J 

","j' II 
~ 

',I} 1) 
::. 

11 
J» 

Similarly, the variance of Z (.e.) is 
T 

" " Var(tT(l»= G i=lw 
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var(~T(i»= (l+Sio)G, i>2. (6-25) 

The point forecasts as well as the interval forecasts are computed and 

plotted in Figures 6-3(a) - (f) for location 1 to location 6 for both 

models. 

From, these plots, we see that the point forecasts Cz (i) and 
",T 

" ~T(i) do not differ too much for all these 6 locations since they are 

all unbiased forecasts. While the interval forecasts differ the most 

at location 6, which is the last downstream location. Since the con-

temporaneous influence from the upstream locations to the, downstream 

locations accumulates, so it is reasonable that the forecasts from the 

forecasting model with the contemporaneous spatial structure will 

differ most from the corresponding forecasts that are from the fore-

casting model without the contemporaneous spatial structure at the 

last downstream location. The interval forecasts of the model 

always, Equation (6-22),lie inside the interval forecasts of the model, 

Equation (6-23), reflecting the improved model structure due to the 

addition of the contemporaneous spatial information. Th"!-s, the pre­

cision of the forecasts are signi~icantly improved. 

6.1.3.2 The Models of Northeast Boston Assault Arrests. In 

Chapter V we have the ~FrARIMA model for the observations of assaul,t 

arrests in Boston and the purely spatial model for the residuals of 

this model as, 
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Figure 6-3. (Cont'd) 
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where 

the STARIMA model for the observations: 
:i 

thle purely spatial model for the residuals: 

a '" 'Ut . 
~ W(l) + e: 
'1'01 ~t· 'Ut 

tt is the monthly observations, 

tt is the differenced data, and 

"" 910 ,. 0.861 

"" 911 ,. -0.035 

"" <POI ,. 0.2213 

"" " e: 'U NID(O,G) and G is given in Figure 5-15. 
'\It 
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(6-26) 

Coupling and repar~eterizing these models, we have the space, 

space-time [ARMA(l,O) + STARL~(O,l,l)] model as follows, 

{ (6-27) 

.. 
f\\. , 
" 
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'>J with the initial guesses of the model parameters, C~Ol = 0.2213, 

c c 2 6
10 

"" 0.861, 6
11 

a -0.035. The M.L. estimation with G = a I 

c~ c~ CA 

assumption gives, CPOl = 0.2394, 610 "" 0.8162, 611 " -0.0748. 

Then the following hypotheses concerning the sphericity of G are 

subjected to test. The testing procedures described in Section 5.5.1 

are used to test the following hypotheses, 

VB 

2 Applying the approximate X test, Equation (5-55), we 

2 
have'-m ~n V 2 108.45, f=9l and -m ~n V < XO.10,f = 108.67, 

so the null hypothesis liO: GzD can't be rejected at 

significant level a - 0.10. 

2. EO: G = a2
1 

vs. 

Applyin~ the approximate X2 test, Equation (5-50), we 

have -(T-l.)p ~n W - 383.45, f "" 104 and -(T-l)p ~n ~l > 

X~.Ol,f = 129.48, so HO: G = a2
1 is rejected at a = 0.01. 

So G=D assumption is appropriate and the GaD M.L. estimation is per-

formed. The positive sq~'re roots of the diagonal elements of Dare 

lis teq, in Figure 6-4. The G=D M.L. estimation gives the model, 
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Figure 6-4. The Positive Square Roots of the Diagonal Elements 
of the Diagonal Covariance Matrix for the Repara­
meterized Model of the Northeast Boston Assault Data 
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(6-28) 

1/2 1/2 1/2 where D is the diagonal matrix such, that D D = D, 

c;i: ::Ii 0 1087 
'1'01 • 

c,... 
610 - 0.848 

... 2 
(J .. 0.9913. 

c'" The extra sum of squares and F-statistics associated w~th 611 are, 

F-statistics :..' 1..648 :z .. FO•17 ,1,1991· 

So the null hypothesis HO: 911 " 0 is rejected at significant level 

CI. = 0.17. 

To confirm the assumption that ~he covariance matrix G=D is 

equivalent to test the covariance of ~t in Equation (6-28) that 

E(~t~;) = a2
I. Testing the hypothesis 

HO: 
2 

E(e: e:~) ,. a I rvtrv 

vs. 

H1 : E(~t~;) :f a
2

1 

1 
1 
~ s 

'. \ a; 

I 
il'· l 
i 
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we have -(T-1)p tn W = 103.65 2 
= XO•49 ,104· The null assumption that 

2 
E(e:te:~) .. a I is accepted and G=D assumption is justified. The sample 

space-time autocorrelation functions are'listed in Table 6-2. This 

disgnostic check doesn't reveal any further inadequacy, so the model, 

Equation (6-28), is accepted as adequate. 

In addition to the space-time structure, the coupled model, 

Equation (6-28), has the capability of modeling the purely spatial 

structure and unconfollnding the purely spatial structure from the con-

temporaneous noise structure. The space-time model, Equation (6-26), 

'can't model the purely spatial structure and the purely spatial 

structure is confounded with the contemporaneous noise structure. 'The 

physical interpretations are different, the coupled model distinguishes 

the purely spatial structure from the contemporaneous noise structure 

while the space-time model doesn't have the capability to extract the 

information of purely spatial structure and the estimated noise co-

variance represents the confounded white noise structure and the pure 

spatial stnlcture. In this example, we have the purely spatial 

ARMA(l,O) process structure and independent noise structure with 

different variances for different locations, i.e., G=D. Without the 

inclusion of the purely spatial terms, in Equation (6-26), the noise 

structure is misunderstood as general G, since the purely spatial 

ARMA(l,O) process structure is confouncied with the G=D noise structure 
. . 

to give the general G noise covariance. Because the purely spatial 

structure is embedCled in the estimated noise structure, the interpreta-

tion of these two models are different, the descriptive capabilities 

of these two models are the same, however, since both models include 
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Table 6-2. The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Model, Equation (6-28) 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 0 1 2 / 0 1 2 
Time Lag 

0 0.02 0·.01 -0.03 0.84 0.58 -1.21 
1 0.01 0.03 0.02 0.42 1.23 0.87 
2 0.04 -0.01 0.01 1.35 -0.37 0.53 
3 0.00 -0.00 -0.01 0.10 -0.07 -0.35 
4 -0.01 0.03 0.04 -0.37 1.05 1.20 
5 -0.06 0.02 0.03 -1.86 0.62 1.04 
6 -0.00 -0.07 0.06 -0.00 -2.09 2.07 
7 -0.04 0.02 -0.06 -1.26 0~87 -1.84 
8 -0.02 0.02 0.03 -0.74 0.63 0.88 
9 -0.00 -0.01 0.03 -0.07 -0.45 1.02 

10 -0.03 -0.00 0.04 -1.05 -0.02 1.17 
11 0.06 0.03 0.01 1.81 0.85 0.31 
12 0.03 0.00 -0.02 0.89 0.20 -0.65 
13 ... 0.02 0.02 0.05 -0.67 0.64 1.44 
14 -0.01 -0.03 0.00 -0.33 -0.93 0.20 
15 0.02 -0.02 -0.02 0.79 -0.61 -0.80 

------~~--
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the purely spatial structure. 

The coupled model is.employed t~ build the following point 

forecasting function by taking conditional expectations at time T 

to yield, 

R.=1 

R.>2 

445 

(6-29) 

{ 

~T + ,tor(l) 

YT(R.-l) + ,tT(R.) , R.>2 • 

The forecasting function developed from the STARIMA(O,l,l) model is, 

i=l 

, R.>2 

(6-30) 

R.=l 

R.>2. 

Comparing these results, we see that only the forecast function, Equa-

tion (6-29), is inf1uended by the contemporaneous spatial structure. 

The variances of the point forecasts for both models are given 

below in Equation (6-31) and for the coupled model and Equation 

(6-32) for the STARMA model, 
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(6-31) 

Var(X;T(t» ~ {Var(~T(l)l 

Var(~T(.II.-l» + Var(tT(.II.» + covT(.II.) 

+ (covT(.II.»", 

where 

COVT(.II.) = 0 

-W W"cr2 
c B 

.11.-1 

.11.<1 

, .11.>2 

Var(tT(.II.» ~ G + r A(K)GA(K)" 
k:al 

A(K) s 0.8611 - 0.035W(1) , .11.>2 

, .11.=1 

.11.>2 

(6-32) 

The point forecasts ~T(.II.) as well as the interval forecasts are com­

puted at T = 72 for .11.=1,2, ••• ,12 and are plotted in Figures 6-5(a) -

(n) for location 1 to location 14, respectively. From these plots, we 

see that although the point forecasts of both models are close, because 

they are all unbiased, the 95% confidence intervals of the forecasts 

of the coupled model always lie inside the corresponding intervals of 

the STARMA model without contemporaneous terms. The inclusion of the 
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Figure!; 6-5. The Point Forecasts and the 95% Confidence Interval 
Forecasts for the Northeast Boston Assault Arrests. 
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contemporaneous spatial ~nformation refines the model and improves 

the forecasting precision. 

6.2 Coupling Purely Spatial Models 

The purely spatial model doesn't contain any information of 

temporal correlations among process observations but only contains 

information about contemporaneous spatial structure. Thus the in i-

tial value problem doesn't.arise in the purely spatial model estima-

tion procedures. The purely spatial model can be constructed period 

by period to extract the information of the contemporaneous spatial 

structures contained in each individual observation period. It also 

can be constructed for a set of observation periods, that are not 

necessarily consecutive, to extract the "averaged" information of the 

contemporaneous spatial correlations for the modeled periods. A system 

is said to be ergodic if every individual purely spatial model contains 

the information of the same contemporaneous spatial structures that are 

contained in the aggregate purely spatial model. 

The ergodic process is defined in Section 6.2.1. Here the 

necessary and sufficient condition for a process to be ergodic are dis-

cussed under the assumption of noise homogeneity, and the behaviour of 

the coupled models are detailed for the ergodic processes as well as 

the mixed processes. In Section 6.2.2, the procedures of coupling purely 

spatial models are addressed. Two methods for testing ergodic property 

under the homogeneity assumption are proposed and these two testing 

methods are implemented in coupling procedures. 
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6.2.1 The Ergodic Process 

In this section it is assumed that the system contains LN 

locatins and the observations are available from time t=l to t2T and 

the following aggregate and/or individual purely spatial models 

describe the system, 

AD mO 
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Z :II 

rut I cp W(R,)Z 
OR, rut I e W(R,)E 

OR, rut + ~t' tEUT, (6-3·3) 

and 

where 

Z .. 
rut 

z ,. 
rut 

R,=-l 

Aa 
o· 
I 

R,-l 

R,-l 

. a 

cpa W(R,)z 
mO 

ea W(R,)E I + E , tES , OR, rut R,=-l OR, rut rut a (6-34) 

eb w(R,)£ 
OR, tVt + ,t,t' (6-35) 

Sa n Sb = cp, 

are model parameters. If the observations {Zt' tES } share the same ru a 

contemporaneous spatial structure with the observations {Z , tESb}, rut 

then the observations {~t' tEUT} inherit the same structure, and the 
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purely spatial models in Equations (6-33), (6-34) and (6-35) contain 

the same contemporaneous spatial relations. Therefore, this system 

is ergodic. 

It should be noted that under the homogeneity assumption., the 

necessary and sufficient condition for the process {~t' tEUT} to 

have erg:-dic property is that the process parameters do not change 

during the observation periods tEDT, 

m~, $O~ = $~t ='$~~, eat a'e~t = e~t 
such that Sa' Sb = $, Sa U Sb = UTe 

a m = o 
for any non-empty subset Sa' Sb 

Given that the~oises ~t are 
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distributed the same for all tEDT, if the process parameters do not 

chauge, then the distribution of {~t' tESa } and {~t' tESb} is the same 

as that of {Z , tED
T

} , and the observed process is ergodic. Tlierefore, 
'Vt 

the unchanged purely spatial parameter condition is the sufficient 

condition. On the other thand, given that {Z ,tEUT} is an ergodic 'Vt 

process, then {~t' tESa } and {tt' tESb} are of the same distribution, 

i.e., 

or 

where 

P L P" = P L P~ a a a b b b 

La' lb are the covariance matrix of {~t,tESa} and {~t' tESb}, 

respectively, and 
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Pa ' Pb are the transfer matrix of the {~t' tESa } and 

{tt' tESb } process, respectively. 

Since the noise is distributed homogeneously, so I = I and we have 
a t 

Pa = Pb or ~he process parameters unchanged because Sa and Sb are 

arbitrary non-empty set such that Sa n ~ = $ and Sa U Sb = DT, and 

DT may contain arbitrarily many elements, i.e., T may be arbitrarily 

large. 

If the observations {tt' tESa } and the observations {~t' tESb } 

do not share the same contemporaneous spatial structure, then the 

observations {tt' tEUT} still inherit the individual structure but 

result in a mixed pattern or a compromise between the structure con-

tained in {~t' tESa 3 and the structure contained in {~t' tESb }. The 

overall purely spatial model, Equation (6-33), will thus contain the 

"averaged" information. 

When coupling a set of individual or aggregate purely spatial 

models, we always obtain an aggregate overall model no matter if the 

process is ergodic or not. But if the process is not ergodic, then 

there are infinite such processes that share the same aggregate 
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overall model, since-the aggregate overall model contains the "averaged" 

structures of the coupled models. However, if the ergodic property is 

imposed, then there is only a set instead of infinite sets of ergodic 

illdividual or aggregate processes to be c~iUpled to give the aggregate 

overall model, since the overall model contains the "averaged" 

structures of the coupled models that are of the same spatial ~ 

structure •. 
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6.2.2 The Ergodic Modeling Procedures 

It has been made clear in the last section that if the system 

is ergodic, then the coupled model, Equation (6-33), contains the 

more precisely estimated information of the purely spatial structure 

than that contained in the models, Equations (6-34) and (6-35), but 

the coupled model mixed the information of the purely spatial 

structures that are contained in the models in Equation (6-34) and 

(6-35), respectively when they are not ergodic. The quality of the 

~stimated informations of the purely spatial process is not improved 

except that the ergodic property is held. 

In the models, Equations (6-33), (6-34) and (6-35), if 

aDsolutelyEquations (6-33), (6-34) and (6-35) contain the information 

of the same structures. However, due to the limited observations and 

the random nature of stochastic process, this can hardly happen even 

if the observations {Zt' tESa } and {Zt' tESb} are from the same pro­

cess. The statistical testing procedures are then needed to test the 

homogeneity between the structures contained in any two arbitrary dis-

joint observation sets. Two methods, that afe the confidence inter-

2 val method and the X test method, are proposed for testing the equiva-

lence of models in Equations (6-33), (6-34) and (6-35). 

1. The confidence interval method: This method includes the 

following steps, 

(i) Construct the lOO(l-a)% confidence regions Ra and Rb 

of (ma,~.a) d (mb eb) 1 ~.U an ~'IV ,respective y. 
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(ii) Reject the ergodic hypothesis at significant level 

~ if Ra n Rb = ~, and accept the ~rgodic hypothesis 

if Ran Rb 
" ~. 

a b Here the confidence regions Rand R can be constructed according 

to Equation (5-47). This method is especially useful when 

AO + mo 2 2, since it is easy to figure out Ra n Rb = ~ or not once 

RaandRb 1 d are p otte in one or two dimensions. 

2 2. The X test method: This method eomputes the W statistics 

(see Wilks [1938]), 
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(6-36) 

is rejected when W > X2 or accepted 
~,(AO+mO) 

The ergodic hypothesis 

2 
when W 2 cr ~,(AO+mO)' 

Similar to the fact in set thiaory that A n B = ~, B n C = ~ is 

true does not imply that A n (j ... ~ is true, situations may arise that 

observations {Zt' tES } and {~t' tES
b

} 
IV a are ergodic, {~t' tESb} and 

{~t' tES } are ergodic, but {~t' tES } and {Zt' tES } are not c . a IV c 

ergodic, where Sa n Sb = 4>, S n S = ~, Sb n S :: ~ are assumed. a c c 

Based on this consideration and the fact that the individual purely 

spatial process is the elementary process for testing the ergodic 

property over the observed periods, the following two alternative 

schemes are proposed for testing the ergodic property of the observed 

process. 

j. 
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1. Based on the confidence interval method, this scheme 1 

builds T individual purely spatial models. If these 

T individual models share some common confidence 

interval, the observed process is accepted as ergodic. 

Otherwise, the observed process is not accepted as 

ergodic. 

2. 
2 Based on the X test method, this scheme 2 tests the 

ergodic property for every combination of two individual 

purely spatial model. If any test fails the-ergodic 

property, the observed processed is rejected to be 

ergodic. This scheme' needs (T) (T-l)' tests to accept the 

hypothesis that the observed process is ergodic. 

These T individual purely spatial models are coupled to obtain 

the aggregate purely spatial model for the observed process if the 

system is accepted as ergodic. The procedures for building the aggre-

gated purely spatial model have been developed in Chapter V. 

The procedures for modeling the aggregated purely.spatial models 

for the observed procesg are summarized in Figure 6-6. 

The construction of purely spatial models exhausts the contem-

poraneously correlated structures, but nothing has been done for the 

spatial-temporal correlations. The residuals from the purely spatial 

model may be modeled as the space-time process. Two situations may 

arise: 1. The system is not ergodic and invidividual purely spatial 

models are employed to compute the estimated ,residuals; 2. The 

system is ergodic and the aggregated ergodic purely spatial model is 

built and employed to compute the estimated residuals. For the first 
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No 

Construct the 
Confidence Intervals 
of the T Individual 
Purely Spatial Mod~ls 

Construct T Individual 
Purely Spatial Models 

Yes Not 
Ergodic 

No 

No 

Yes 

2 Compute the 
X - Statistics for 
Selected Periods 

Yes 

Build the 
Aggregate 

Ergodic Model 

Yes No 

Figure 6-6. The Procedures of Aggregate Ergodic Model Building. 
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situation, the residual models are constructed and the modeling pro-

cedl~res :;top at the multiplicative form of individual purely spatial 

models and the space-time models. For the second situation, the 

coupling and reparameterizing procedures, that are detailed in 

Section 6.1, are applied to construct the space, space-time [ARMA 

[ARMAo..O,mo) 

[ARMA(A
O 

,m
O

) 

+ STARIMA(pA,d,~)] model or the space, space-time 
'V LN'V 

+ ARMA (p,d,q) ] model.. 

6.3 The Ergodic Systems with Outliers 
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In the models, Equations (6-33), (6-34) and (6-35), it has been 

assumed that ~t' tEUT, are identically distributed. This assumption 

may not be always true, situations may arise that some locatable out-

liers, that comes from unrecognizable sources, are input to the system 

and follow the transfer process that the white noises follow. If such 

outliers exist and are not corrected, then the ergodic property cannot 

be detected even the true proce,ss parameters do not change. The 

informations of the contemporaneous ~urely spatial structures that . 
are extracted from the aggregated model as well as from the individual 

models might be very, misleading. 

The process with the inputed outliers is formulated as, 

(6-37) 

where 0 is the outliers input at time t, tEUT• Given the model para­
rut 

meters ~o~'s and eat'S, the M.L. estimates of ~t, is 

I· ; i 
- r 

I, , t .~ 

1·

·1 
r J" 

r' 
1 
1 c: 

I 
[1 

lJ 
&1 
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(6-38) 

'" It should be noted that the ~t is estimated every period, so all the 

degrees of freedom are used up, and no degrees of freedom will be 

",2 
estimating the noise variance, cr. Since ~t and ~t are confounded, 

'" ",2 so if all the ~t are accepted as significant, we have cr = 0 situa-

tion. 

The process described in Equation (6-37) can be described 

alternatively in terms of outlier outputs (0) as follows, 
ru t 

z - (0) ,. 
'Vt 'V t 

mo 
(t) ~ (t) 

~ w (Z' - (0) ) - l. eO n W ~·t + ~.t· at 'Vt 'V t i-~ N ·vv 
(6-39) 

It should be noted that (~t)' the outlier output, can be expressed in 

terms of ~t' the outlier input, and vice versa. 

(6-40) 

These two modeling alternatives, Equations (6-38) and (6-39), are 

equivalent but stand at different viewpoints. The formulation, Equation 

(6-38), finds the roots of process outliers in the input source, and 

the realized effect of the outlier inputs are influenced by the en-

virollments. The formulation, Equation (6-39), detects the process out-
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liers as the realization of outliers themselves and these realiza-

tions are not influenced by the environments any more, they just 

appear as outliers that are realized and imposed on the output ob-

servations. In the following analysis, it is based on the formulation 

in Equation (6-38), however, it should be reminded that this analysis 

can be based on the formulation in Equation (6-39) as well. 

In the following sections, the procedure for detecting the 

outliers based on the unchanged purely spatial structure assumption 

is developed in Section 6.3.1, here the modeling sequence for the 

ergodic process with outliers are dis,cussed in detail. In Section 

6.3.2, an example of building the ergodic process by correcting the 

outliers are given to illustrate the modeling procedures described in 

Section 6.3.1. The same set of observations are also modeled without 

the outlier corrections in Section 6.3.2 to serve as a comparison to 

the outlier corrected ergodic model. 

6.3.1 Detecting ,the Outliers ~:md:Modeling the Ergodic Proeess 

A procedure for detecting the outliers is developed and shown 

in Figure 6-7. Following this procedure, the significant level a for 

testing the significance of estimated outliers and ~t = 0, tEUT are 

set in the very beginning. Then the estimation of the aggregate 

ergodic purely spatial model are performed to obtain the model para-

'" '" "'2 meter estimates $0.1/,' ,~=1,2, ••• ,AO' 80.1/,' .1/,=1,2, ••• ,mO and cr. Three 

alternatives may be used here for estimating the aggregate ergodic 

purely spatial model parameters: 1. Build the overall aggregate 

purely spatial model and accept the model parameters as the aggregate 

ergodic purely spatial model parameters; 2. Build T individual purely 
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cv­
t 
a/2, (LN.T-NSIGO) cv= 

No 

Yes 

Set tal 

NSIG- 0 

15 = g 
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Figure 6-7. The Procedure of Detecting the Outlier Inputs of the Ergodic 
System. 
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r ~J spatial mode~\s and C';'loose the aggregate ergodic purely spatial model 

parameter estimates from the common confidence region, that is shared 

by most of the confidence intervals of the individual purely spatial 

models; 3. Build T individual purely spatial models and then build 

the aggregated purely spatial models for those periods that share the 
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most popular common confidence intervals, the aggregated model para­

meters are accepted as the parameters of the overall aggregate ergodic 

purely spatial models. In most of the cases, the third alternative 

is recommended, since the estimates obtained here comes from only 

those periods that are more justifiable to be from the no outliers 

ergodic processes, and the "averaged" parameter values are estimated 

to give the aggregate ergodic model parameters. The second alter-

native allows the prpperty that the more unlike the individual model 

to the other models, the more contribution it will have in the aggre­

gate ergodic model parameter values, this is contradictive to the 

intuition that similar individual periods should have more contri-

bution in estimating the aggregate ergodic model parameters. The 

first alternative is not so attractive in the respect that the non-

ergodic individual periods still give contributions to the parameter 

estimates of the ergodic process. After the parameters are estimated, 

" " the estimated $Oi' 60i are then applied as the true model parameters 

" in Equation (6-38) to estimate ~t' t~1,2, ••• ,T. Since the estimates 

" of ~t have used up all the available degree of freedom so the resi-

dual mean square of the overall aggregated purely spatial model, i.e., 

,,2 
cr , is used as the initial estimate of residual mean square of the 

model, Equation (7-39). After setting NSIGO ~ LN-T, the procedure 
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enters an iterative routine that will exit when the solution converges. 

Here NSIGO is used to keep record of the number'of significant 6 
i,t 

of last iteration, and (LN-T - NSIGO) is the degree of freedom that 

the sum of squares of residuals has. S if' o NSIGO = LN-T, (LN'T -

NSIGO) = O. no degree of freedom is available for &2, thus CV, which 

is used as the critical value for testing significance of standardized 

" 0i,t' is set to Za/2 of normal distribution when NSIGO = LN-T, and CV 

i~ set to t of th t d : a/2, (LN-T-NSIGO) e s u ent-t distribution when 

NSIGO < LN"T. The iterative subroutine updates the a2 every iteration, 

use the statistics 13~,t/ffl to test the significance of g i e i,t' • 0, 
the significance of outliers at time t in location i. This procedure 

exits the subroutine when the number of signi~ica.nt Ii LOut ers converges. 

Equation (6-40) is applied to compute the estimated outlier output, 

" (~)t' from the estimated outlier input, ~t' and the observations are 

corrected. Then the procedures described in Figure 6-6 are applied to 

model the corrected data. If th d e correcte observations show ergodic 

property, the aggregate purely spatial model and the space-time 

residual model are constructed, and the coupling and reparameterizing 

procedures, that are described in Section 6.1, are applied to con-

struct the space, space-time models. If the corrected observations 

do not show ergodic property, the space-time model for the residuals 

is built and the modeling effort stops at the multiplicative form of 

individual purely spatial models and the space-time model. 

6.3.2 An Example Application 

In this section eleven periods, t=61 to 71, of the first 

differenced Northeast Boston Assault Arrests are modeled to illustrate 
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the modeling procedure shown in Figure 6-7 and reveal the needs of 

correcting the outliers that may mask the purely spatial information. 

In Section 6.3.2.1, the individual purely spatial models are built to 

test the ergodic hypotheses, the outliers are then estimated and 

corrected. The aggregate purely spatial model as well as the space-

time model are built for the outlier corrected data to illustrate the 

ergodic modeling procedure described in Section 6.2. In Section 

6.3.2.2, the same set of data are modeled without outlier correction 

to see the masking effect of the outliers and to serve as a contrast 

to the appropriate modeling procedures, that includes the ergodic 

tests and the outlier detection, outlier correction steps. 
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6.3.2.1 Outlier Detection and 'Ergodic Model Building. In this 

section, the eleven periods (t=6l to 71) of the Northea,st Boston 

Assault Arrest Data are first modeled as eleven individual purely spa­

tial models. The joint confidence intervals of thes~ individual purely 
;1 

spatial models are' plotted and the test of the ergocl.ic property is 

If 

performed for every consecutive two periods. Theti procedures for 

detecting the noise outliers and building the ergodic models are 

applied. 

Following the purely spatial model building procedure, i.e., the 

identification, estimation and diagnostic checking, we have the eleven 

individual purely spatial ARMA models listed in Table 6-3. The 95% 

C.I.'s and 40% C.I.'s of these 11 individual purely spatial models are 

plotted in Figure 6-8. In Figure 6-8(b), it is seen that there are 

two groups of indivj.dual modells, Le., Sl = {t==63, 64, 65, 71} and 
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Table 6-3. The Individual Purely Spatial Model of the 
Differenced Northeast Boston Assault' Arrests. 
Data 

61 

62 

65 

66 AR(l) -1.12 

67 AR(2) -0.28 -0.54 

68 AR(2) -0.92 -0.51 

69 AR(2) -0.81 -0.39 

70 AR(l) -0.72 

71 AR(2) 0.31 -0.43 

"'2 cr 

2.62 

1.68 

1.27 

2.62 

~.44 

1.79 

0.96 

1. 79 

1.34 

1.68 

2.29 
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\1 
1 , S2 = {t=6l, 62, 66, 67, 68, 69, 70}, they may contain different 

purely spatial information. In Figure 6-8(a), we see that 10 out of 
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these 11 models (except t=63) share the darkened region as their com-

mon 95% C.!. 'so 

Table 6-4 contains the results of ergodic property tests for 

the consecutive two observation periods. In this table a represents 

the significant level for these ergodic property tests, the ergodic 

assumption will be accepted for all the a values that are less than 

or equal to the values given in the table. It should be noted that 

the information contained in the confidence interval plots of Figure 

6-8 are adequate to decide the ergodic property of the process at 

~he given significant level a, but the information contained in Table 

6-4 is not adequate to make the ergodic process conclusion, since it 

2 takes all 110 combinations of i. tests to complete the test of ergodic 

property for eleven periods. However, it is seen that at. a = 0.01 

all these tests pass and the ergodic assumption for the consecutive 

two observations are accepted. These tests are consistent with the 

information of the ergodic property that are contained in the 95% 

confidence interval plots in Figure 6-8. 

In Figure 6- 8 (a), we see that 10 individual purely spatial 

models out of 11 models, except t=63, share the common darkened rag ion 

in their 95% confidence interval. In Figure 6-8 (b), we see two 

model groups, i.e., Sl and S2' These two groups may contain different 

purely spatial information. Since the input outliers may mask the 

purely spatial information, one of these two model groups may contain 

the ergodic purely spatial models, while the other model group con-
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Table 6-4. The Summarized Results of the Tests of Ergodic 
Property for Two Consecutive Observations 

Time Index Aggregated Model Parameters 'X 
2 

Statistics a 
<P ._01 <P02 

61.62 -0.89 -0.27 0.230 0.891 

62.63 1.25 -0.36 8.507 0.014 

63.64 0.33 0.06 5.464 0.065 

64.65 0.21 0.07 0.967 0.616 

65.66 0.04 -0.12 2.210 0.331 

66.67 -0.45 -0.35 3.291 0.193 

67.68 -0.71 -0.47 1.609 0.447 

68.69 -0.85 -0.46 0.089 0.956 

69.70 -0.34 0.14 0.367 0.832 

70.71 -0.40 -0.13 3.428 0.180 
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tains the masked purely spatial information. Comparing these two 

groups in Figures 6-8 (a) and (b), we may expect that models in the 

51 group contain the masked purely spatial information. In the 

following, the procedure shown in Figure 6-7 is applied to estimate 

the input outliers. The output outliers are computed by applying 

Equation (6-40) and the observations are corrected. Then the proce-

dures of aggregate ergodic model building, t?at are shown in Figure 

6-6, are applied to model the corrected observations. 

Applying the procedures described in .Figure 6-7, us.ing the 
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observations ~t' t€52 to build the aggregate purely spatial model to 

obtain the estimated ergodic process parameters (the method 3 described 

" .... in Section 6.3.1) we hav~ <POl :or -1.0432, <P02 ::a -0.2273 and the esti-
"'-

mates of the input outliers 0t that are listed in Tab1e·6~5. The output 

outliers for the observation corrections are evaluated according to 

Equation (6-40), i.e., 

where 

" 
<POl 
" 
~t 

"'-

(~\ 

(8) ::I (I -
'V t 

(6-41) 

::I -1.043, " <P02 "" -0.227 

is the estimated input outlier, and 

is the output outliers that are used in data correction. 

The evaluated (~)t values are listed in Tab1e6~6. It 

should be noted that in Table 6-5, we see that 14 out 

of 17 detected noise outliers are found in {~t' t€Sl~. 
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Table 

1 2 3 4 

0 0 0 0 

0 0 0 0 

0 0 0 0 

-6.9 -5.2 -5.7 0 

0 0 3.1 0 

0 0 0 0 

0 0 0 0 

-3.9 0 0 0 

0 0 0 0 

0 0 0 0 

3.6 3.3 0 0 
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6-5. The Estimated Input Outliers of Northeast Boston 
Assault Arrests 

Locations 

5 6 7 3 9 10 11 12 13 14 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 -4.0 0 0 0 3.2 0 0 

0 0 0 0 0 0 0 0 3.5 4.4 

0 0 0 0 0' 0 0 -3.6 -4.6 -5.1 

3.2 0 0 0 0 0 '0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

-3.2 0 0 0 0 0 0 0 0 
A' 

0 

0 0 0 0 0 -3.3 0 0 0 0 

, I 

, 
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Table 6-6. The Observation Correction Values for the Northeast 
Boston Assault Arrests 

~.~ Locations 

Time 1 2 3 4 5 6 7 B 9 10 11 12 13 14 
; 

61 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

62 0 0 0 0 0 0 0 '0 0 0 0 0 0 0 

63 0.4 -1.1 -0.3 1.7 -4.7 -0.6 5~B -11.3 4.B 0.4 -7.B 14.2 -4.9 0 

64 0.4 7.3 -B.6 4.2 -2.3 2.0 -O.B 3.2 -2.6 -6.1 9.1 -14.4 20.3 -0.4 

65 -3.9 1.6 6.2 -1.3 1.5 -1.6 -0.3 --2.5 3.2 5.2 -2.1 2.3 -20.2 -1.1 

66 -1.3 1.7 1.6 -2.4 8.5 -l.B -1.0 -3.2 1.3 0 0 -0.2 0.2 -O.B 

67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

68 -6.9 3.3 2.0 0 0.2 -0.6 0.2 0 0 0 0 0 0 -0.1 

69 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
70 -2.4 -0.6 4.5 2.0 2.3 -12 3.4 -2.3 1.5 -1.5 0.7 -0.5 0.8 -1.0 

71 2.9 3.4 -1.4 -1.0 -0.4 0.3 1.7 0.5 4.6 -13.7 9:B -6.3 7.0 -3.6 
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t, . 
r:g 
I {~ , After correction for outliers, the corrected data are modeled ·-1 
[ 

by applying the procedures described in Figure 6-6. Following the 

purely spatial ARMA model building procedure, we have the 11 indivi-

[ dual purely spatial models that are listed in Table 6-7. Six of these 

eleven purely spatial models are purely spatial AR(2) models and the 

[ remaining five are purely spatial AR(L) models. Comparing the model 

classes listed in Table 6-7 with those listed in Table 6-3, we see 

[ that the model forms as wall as the model parameters are more con-

[ 
sistent in Table 6-7 than· those listed in Table 6-3. The 95% and 

40% confidence intervals of these individual purely spatial model para-

r meters are plotted in Figure 6-9. In Figure 6-9(a), we see that all 

these models share the marked parameter region in their 95% C:I.'s. 

r From .,Figure 6-9 (b), it is even clearer that these purely spatial models 

are from the same purely spatial process, i.e., the corrected observa-

r tions are from an ergodic process. Comparing the confidence intervals 
, . 

[ 
in Figure 6-9 with those in Figure 6-8, we see that th& outlier cor-

rected data are ergodic, while the uncorrected data are not, since in 

r Figure 6-9 the 95% confidence intervals share the same marked region 

as their common confidence interval, while no such common confidence 

[ region exist in Figure 6-8. 

These individual purely spatial models show ergodic property, 

[ the aggregated purely spatial modeL is expected to contain the same 

[ 
purely spatial structures as those contained iu the individual models. 

To construct the aggregate purely spatial model, we compute the purely 

[ spatial autocorrelation functions, ~ 
\ 

[ 

[ .' 
\ 
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Table 6-7. The Individual Purely Spatial Model of the 
Outliers Corrected Northeast Boston Assault 
Arrests 

Time Model Class 4>01 4>02 
... 2 
cr 

61 AR(2) -1.06 -0.19 1.082 

"62 AR(2) -0.70 -0.34 1.628 

63 AR(2) -1.07 -0.39 1.377 

64 AR(l) -1.10 1.683 

65 AR(2) -0.92 0.14 1.864 

66 AR(l) -0.80 1.060 

67 AR(2) -0.28 -0.54 0.958 

68 AR(l) -0.92 1.375 
. 

69 AR(2) -0.81 -0.39 1.338 

70 AR(l) -0.56 1.055 

71 AR(l) -0.88 1.457 
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] " " " POI - -0.605, P02 = 0.045, P03 = 0.307, 

] 
and the standardized purely spatial autocorrelation functions, 

01 
f 'H 
..J.i 

"';'!: 

jj 

iTI .:l 

The pattern of purely spati;al autocorrelation functions suggests the 

purely spatial AR(2) candidate model with ~Ol = -.80, ~02 = -1.5. The 

"i1! oil d 
" " M.L. estimation gives ~Ol ~ -1.08, ~02 = -0.02 •. The extra sums of 

JL " ,''-squares associated with ~Ol and ~02 are 270.8 and 18.38, respectively, 

J' 
clJ 

'" "-the F-statistics associated with ~Ol and ~02 are 188.2 and 12.6, 

[f} 
J 

respectively, and $01' ~02 are significant at significant level 

a - 0.01. The sample space-time autocorrelation functions and the 

m fL 
sample space-time partial autocorrelation functions, that are listed 

in TRble 6-8, suggest the STMA(lO) model for the residuals. The MoL. 

m L. 
estimation gives 

1 It .-J 

" 910 - 0.254, 95% C.I. (0.092,0.416) 

~ The sample space-time autocorrelation functions of the residuals, that 

:T are listed in Table 6-9, do not show any model inadequacies and the 

][ 
model, Equation (6-42) 

I 
I { (6-42) 

I 
'I t,\ 
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Table 6-8(a). The Sample Space-Time Autocorrelation Functions 
of the Residuals of the Aggregated Purely Spatial 
Model of the Outlier Corrected Data 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 0 1 2 / 0 1 2 Time Lag 

0 1.00 0.07 0.00 1.00 0.89 0.00 
1 -0.30 -0.08 -0.00 -3.25 -1.03 -0.08 
2 0.12 0.05 0.06 1.21 0.58 0.68 
3 0.05 -0.00 0.06 0.47 -0.02 0.57 
4 0.11 0.19 -0.10 0.88 1.61 -0.88 
5 -0.13 -0.02 0.20 -1.00 -0.15 1.52 

Table 6-8(b). The Sample Space-Time Autocorrelation Functions 
of the Residuals of the Aggregated Purely Spatial 
Model of the Outlier Corrected Data 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 
0 1 2 / 0 1 2 Time Lag 

1 -0.30 0.09 0.01 -3.64 1.08 0.17 
2 0.02 0.06 0.11 0.32 0.71 1.28 
3 0.10 -0.05 0.18 1.09 -0.57 1.93 
4 0.17 0.22 -0.23 1. 75 2.24 -2.35 
5 -0.12 0.24 0.12 -1.10 2.27 1.12 
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Table 6-9. The Sample Space-Time Autocorrelation Functions of 
the Residuals of the Model, Equation (6-46) 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 0 i 2 / 0 1 2 Time Lag 

0 1.00 0.02 0.01 1.00 0.33 0.16 
1 -0.03 0.03 0.04 -0.38 0.38 0.45 
2 0.12 0.07 0.09 1.20 0.75 0.89 
3 0.07 0.04 0.05 0.70 0.38 0.50 
4 0.08 0.14 -0.03 0.76 1.18 -0.27 
5 -0.06 0.01 0.10 -0.45 0.11 0.79 
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is accepted as adequate. Reparameterizing the models in Equation 

(6-42) and performing the M.L. estimation, we obtain the model, 

Equation (6-43), 

(6-43) 

where 

" <POI = -1.086 

" 
<P02 

,. -0.206 

" 6
10 

,. 0.255 

,,2 
cr "" 1.352 

The sample space-time autocorrelation functions of the residuals, that 

are listed in Table 6-10, show adequacy and the model, Equation (6-43), 

is accepted as adequate. The model described by Equation (6-43) con-

t~ins purely spatial structures that are contained in the aggregate 

purely spatial model as well as the individual purely spatial models. 

6.3.2.2 Consequences of Ignoring the Homogeneity Assumption. 

In the last section we have the Northeast Boston Assault Arrests model 

by applyin.g the procedures in Figure 6-7. It has been concluded that 

the process is an ergodic process with the estimated input outliers 

listed in Table 6-5. An interesting problem may arise that what will 

happen in the modeling if the input outliers are not corrected. In 

this se(!tion, we will ignore the presence of outliers which negate 
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Table 6-10. The Sample Space-Time Autocorrelation Functions 
of the Residuals of the Coupled Model for the 
Outlier Corrected Data 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelation 

Space Lag 
0 1 2 / 0 1 2 Time Lag 

0 1.00 0.03 0.01 1.00 0.38 0.14 
1 -0.03 0.04 0.04 -0.39 0.46 0.52 
2 0.14 0.09 0.10 1.47 0.94 1.07 
3 0.10 0.05 0.07 0.96 0.54 0.69 
4 0.14 0.22 -0.05 1.22 1.88 -0.42 
5 -0.11 0.02 0.19 -0.82 0.20 1.46 
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the homogeneity assumption, build the models for the uncorrected 

observations and compare the resulting model to the outlier corrected 

model. 

Ignoring that the ergodic property doesn't hold in Figure 6-8, 

we build the aggregate purely spatial model for the eleven observation 

periods. The purely spatial autocorrelation functions and the 

standardized purely spatial autocorrelati.o'!.1 functions were computed. 

" Since for the purely spatial autocorrelation functions, POI = -0.2463, 

P02 = -0.2069~ 

(POI) = -2.19, 

" P03 = 0.1418 with corresponding standardized values of 

(P02) = -1.90, (P03) = 1.346, purely a spatial AR(2) 

model with negative $01' $02 values is suggested. The initial 

guesses ($01,$02) = (-.25,-.20) are read from the contours of Figure 

5-l0(a) in Section 5.3. The M.L. estimation gives 

where 

95% C.r. SSE F-Stat. 
.... 
<p :r: 

01 -0.165 (-0.381; 0.051) 5.537 2.267 

$02 = -0.126 (-0.291, 0.039) 7.721 3.161 

,,2 
2.4924 cr = 

SSE is the extra sum of squares given that the other 

parameters are in the fitted model, and 

a is the significant level. 

a 

0.134 

0.077 

It should be noted that ($01,$02) = (-0.165,-0.126) fall in the 

rectangular region {($01,$02) 1-0.4 ~ $01 ~ -0.1, -0.3 ~ ~02 ~ -O.OS} 
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that contaiLls the darkened region in Figure 6-8, as might be expected. 

The information of the purely spatial structure contained in this 

aggregate purely spatial model reflects the averaged structure that 

is contained in the individual purely spatial models. 

The sample space-time autocorrelation functions and the sample 

space-time partial autocorrelation functions of the residuals from 

this aggregated purely spatial model were computed and are listed in 

Table 6-11. The cut-off behavior in the sample space-time autocorre-

lations and the tail-off behavior in the sample space-time partial 

autocorrelations suggest the STMA(lO) model to be the potential candi­

date. M.L. estimation gives, 

" 810 = 0.807 95% C.I. = (0.702, 0.911) 

The sample space-time autocorrelation function of these residuals, 

listed in Table 6-12, does not reveal any unexhausted structure and 

this model 

t=1,2, ••• ~11 (6-44) 

where 
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Table 6-ll(a). The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Aggregated Purely Spatial Model 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 0 1 2 / 0 1 2 Time Lag 

0 1.00 0.03 0.00 1.00 0.39 0.05 
1 -0.53 0.05 0.00 -5.68 0.63 0.05 
2 0.04 -0.10 -0.01 0.49 -1.04 ... 0.14 
3 -0.07 -0.04 -0.10 -0.72 -0.41 -0.93 
4 0.21 0.11 0.09 1.81 0.98 0.75 
5 -0.24 -0.00 -0.01 -1.83 -0.00 -0.07 

Table 6-ll(b). The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Aggregated Purely Spatial Model 

Space Lag 
Time Lag 

1 
2 
3 
4 
5 

The Sample Space-Time Partial Autocorrel~tions/ 
The Standardized Sample S-T Partials 

0 1 2 / 0 1 

-0.53 0.16 0.04 -6.35 ¢ 1.90 
-0.35 0.05 0.04 -3.99 0.59 
-0.36 -0.07 -0.09 -3.81 -0.80 

0.02 0.15 -0.11 0.24 1.48 
-0.20 0.19 -0.10 -1.91 1.79 

2 

0.57 
0.48 

-0.96 
-LIO 
-0.94 
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Table 6-12. The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Model, Equation (6-44) 

The Sample Space-Time Autocorrelation/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 
0 1 2 / 0 1 2 Time Lug 

0 1.00 -0.05 0.00 1.00 0.64 0.10 
1 -0.04 0.0:5 0.02 -0.45 0.59 0.22 
2 0.02 -0.08 -0.05 0.21 -0.87 -0.49 
3 -0.01 -0.06 -0.09 -0.10 -0.57 -0.84 
4 0.11 0.05 0.03 0.99 0.44 0.27 
5 -0.07 -0.00 0.00 -0.53 -0.03 0.06 
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" " ~Ol ~ -0.165, ~02 = -0.126, 

" ,,2 9
10 

= 0.807, a = 1.521, 

is accepted as adequate. The purely spatial AR(2) model and the 

space-time STMA(lo) model is then coupled and reparameterized to give, 

t=61,62, ••• ,71 (6-45) 

where 

" ~02 - -0.105 

" 910 '" 0.802 

82 .. 1.475 

The extra sum of squares associated with ~Ol is 0.838 and the hypo-

thesis HO: ~Ol = 0 is accepted for a = 0.45. The extra sum of squares 
. 
associated with $02 is 3.074 and the hypothesis lln: <p,,'1 :: 0 is 

u u,c. 

accepted for a = 0.65. The ~xtra sum of squares associated with 910 

is 156.86 and the hypothesis HO: 910 =0 is rejected. The sample 

space-time autocorrelation functions, that have been computed and 

listed in Table 6-13, show adequacy of this model. 
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Table 6-13. The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlation Functions of the Residuals of the 
Coupled Model, Equation (6-42) 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorre1ations 

Space Lag 0 1 2 
Time Lag 

/ 0 1 2 

0 1.00 -0.07 0.00 1.00 0.98 0.03 
1 -0.06 0.06 0.02 -0.63 0.71 0.22 
2 0.03 -0.09 -0.04 0.37 -0.96 -Os47 
3 -0.01 -0.07 -0.13 -0.09 -0.72 -1.21 
4 0.17 0.05 0.05 1.50 0.48 0.44 
5 -0.13 -0.00 -0.00 -1.00 -0.02 -0.02 
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Since $01 and $02 are non-significant at significant level 

a = 0.45 and a = 0.15, respectively, so the STMA model, that is ob-

tained by dropping the $01' $02 terms in the model, Equation (7-42), 

is constructed. The M.L. estimation gives 

,.. 
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~t = -elO~t-l'+ ~t (6-46) 

where 

,.. ,..2 
610 = 0.7863, cr = 1.501 

The sample space-time autocorrelation functions, that are listed in 

Table 6-14, do not reveal any significant structure and this model is 

adequate. 

Comparing the model in Equation (6-43), which is built for the 

outlier corrected observations, with the model in Equation (6-46), which 

is built for the uncorrected Q'}ta, we see that the purely spatial 

structures are not masked and are significant in the model of the out-

lier connected observations. On the other hand, the purely spatial. 

structure is masked by the outliers, and $01' $02 are/'nonsignificant 

in the model of the unconnected data. It should be noted that the 

estimated residual variance of the outlier corrected model is 1.352 

which i~ smaller than that of the uncorrected model 1.501. 

An alt~rnative way to see the inadequacy of the model which 

ignores the homogeneity assumption which causes a masking of the' 

spatial structure is to build the STMA(lO) model for the outlier 

J 
~l 

I 
i 
J 
II 
,I 
I 
I 

I 
I 
,I " I 

I 
~ '. 
Ii.,. :~ t 

] , 
( 

\:./' .' 

"'I ·1 

" 
,I l' 
'~ .. 

II 11 

Table 6-14. The Sample Space-Time Autocorrelation Functions 
and the Standardized Sample Space-Time Auto­
correlations of the Residuals of the STMA Model 
Equation (6-43) , 

The Sample Space-Time Autocorrelations/ 
The Standardized Sample S-T Autocorrelations 

Space Lag 
0 1 2 Time Lag / 0 1 2 

0 1.00 -0.14 -0.13 1.00 -1. 79 -1.62 
1 -0.06 0.09 0.05 -0.64 0.99 0.55 
2 0.05 -0.03 -0.00 0.56 -0.30 -0.07 
3 0.01 -0.02 -0.06 0.11 -0.23 -0.63 
4 0.10 0.05 0.02 0.88 0.43 0.20 
5 -0.07 -0.00 0.00 -0.58 -0.04 0.02 
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Figure 6-l0(a). The Histogram of the Residuals of the model for 
the Uncorrected Data. 

--~----------
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Figure 6-l0(b). The Histogram of the Residuals of the Model 
for the Outlier Corrected Data. 
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corrected data. This results in, 

"" z = -8 e; + e; (6-47) "IJt 10"IJt-1 "IJt 
~-

where 

g10 = 0.265 95% C.!. (0.093, 0.438) 

The sample space-time autocorrelation functions of t~ese residuals, 

that are listed in Table 6-15 and clearly shows the needs of purely 

spatial AR terms. Comparing the Ij.ample space-time auto correlations 

listed in Table 6-15 with those listed :in Table 6-14, we see that by 

removing the masking effect of the outliers, makes the purely spatial 

structure significant, and the purely spatial terms are needed to build 

the adequate model. 

Since the outliers are confounded with the noise, so it is 

expected that the normality assumption for the residuals will be satis-

fied better for those that are from the outlier correct model. The 

five-block histogram for the residuals from the model, Equation (6-46), 

which is for the uncorrected data, is plotted in Fi~ure 6-10(a). The 

histogram for the residuals of the model, Equation (6-43), which is 

built for the outlier corrected data, is plotted in Figure 6-l0(b). 

Comparing these two plots, we may make the judgement that the normal 

assumption is satisfied better in Figure 6-10(a) , which is built for the 

outlier corrected data. 2 Performing the X goodness-of-fit test 

confirms this visual judgement since we have X2 = 4.49, a = 0.2129, 
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Table 6-15. The Sample Space-Time Autocorrelation Functions 
of the Residuals of the STMA(10) Model, Equation 
(6-47) 

The Sample Spac.e-Time Autocorre1ations/ 
The Standardized Sample S-T Autocorre1ations 

Space Lag 
0 1 2 / 0 1 2 Time Lag 

0 1.00 -0.60 0.06 1.00 -7.47 0.77 
1 -0.03 0.01 0.08 -0.34 0.15 0.72 
2 0.08 -0.04 0.05 0.82 -0.48 0.51 
3 0.15 -0.11 0.03 1.42 -1.05 0.36 
4 -0.08 0.10 -0.11 -0.52 0.90 -0.95 
5 -0.03 0.02 -0.02 -0.27 0.19 -0.22 
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for the residuals of uncorrected data and x2 
= 0.53, a = 0.9103 for 

the r.esidua1s of qut1ier corrected data, where a is the significant 

level. The residuals of the outlier corrected model satisfies the 

normality assumption better. 
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Based on the model in Equation (6-46), which has been built for 

the differenced observations without corrections, the forecast function 

and the variance of these forecasts are obtained as the conditional 

expectation values of mean and variance for the differenced observa­

tions Z as well as the original observatio~s ~t' They are, 
'Vt 

~T(R/) = { 

YT(9.,) = { 
"., 

var(~T(9·) ) = { 

var(YT(9.,» "" f 
( 

where 

"., "., 

-e1ot.T 

0 

YT + ~T(l) 

YT(9.,-l) + ~T(9.,) 

1a
2 

".,2 
a 

, 9.,=1 

9.,>2 

t 9.,=1 

(6-48) 

9.,>2 

9.,=1 

9.,>2 

9.,=1 

:~ ,D 

' .• 1. J 

1··· ... 

.'7' 
i!~ 
Jj 

1m· i" J. 

J 
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A .... 2 
810 = 0.7863, a = 1.501. 

Based on the model in Equation (6-43), which has been built for the 

differenced observations with outlier corrections, the forecast func-

tion and the variance of these forecasts are, 

where 

9.,=1 

9.,'::2 

(6-49) 
9.,=1 

9.,>2 

{ 

[(1-$ lor(l) -$ W(2) )(1-$ w(l) -$ w(2» -1] &2 ,11.=-1 
01 02 01 01 ' 

= 
~".,2 + W w~cr2 , 9.,>2 wBwBa c c 

(6-50) 

={ 

9.,>2 

-
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~ (I ~ "(1) _ ~ "(2»-1 Wn = 0 10 - ~Olw ~02w 

W = (I - $ W(l) 
c 01 

.... 
<POl = -1.086 

,., 
<P02 = -0.206 

'" 810 = 0.255 

,.,2 
a = 1.352 

The point forecasts as well as the 95% confidence interval fore-

casts of YT at T=7l are computed for the -step ahead forecasts, 

=1,2, •• ,12, by ap~'>.tying the forecasting function in Equations (6-49) 

and (6-50). These forecasts are plotted in Figure 6-11 for each of the 

14 locations for both the outlier corrected and uncorrected model. 

The point forecasts for these two models are different in all 14 loca-

tions. The interval forecasts of the outlier corrected model always 

contains the interval forecasts of the uncorrected model. The 95% 

cilIlfidence interval of the outlier corrected model is larger than that 

of the uncorrected model because the correctly described purely spatial 

structure in Equation (6-49) inflates the forecasting variance. 

Given the general space-time model with contemporaneous 

structure in Eq~ation (6-51) 
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Figure 6-11. The Point Forecasts and tbe 95% Confidence Interval 
Forecasts Computed from Equations 6-49 and 6-50. 
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p q 

~t = B(O)~t - A(O):t + I B(k)Z k - I A(k):t_k + :t' 
k=l -t- k=l 

(6-51) 

the space-time components describe the spatial-temporal correlations 

are contained in the forecasting functioning, but the contemporaneous 

terms, B(O)~t and A(O):t' which describe the purely spatial correla­

tions are not ~ealized in the forecasting function. On ~he other hand, 

the general space-time process 

p q 

~t = I B(k)Zt_k - ~ A(k)Et _k + _E t k=l ... "k=l ... 
(6-52) 

has the same terms contribute to the forecasting function. Thus, the 

general space-time model with contemporaneous structure has two more 

terms that have descriptive capability but do not enter the forecasting 

function and these two added terms inflates the forecasting confidence 

interval. As a simple example, let us consider the following two 

models, 

(6-53) 

and 

(6-54) 

I ' . 
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In Equation (6-54), B(O) is assumed ·to satisfy the existence 

conditions therefore Zt can be expressed alternatively as ... ' 

2 
Zt=(I+B(O)+B (O)+ ••• )E • (6-55) 
... -t 

Here we see that Zt is an infinite sum of all errors E over space for 
- ... t 

each location at a given t which is contributed through B(O). Thus 

the variance of ~t is inflated accordingly. 

It should be noted that the outlier corrected model is a space­

time model with contemporaneous spatial s'tructure, while the uncorre-

lated model is only a space-time model in which the purely spatial 

structure was masked causing an inflation in a2 • They are of different 

descriptive capability. The outlier corrected model describes the 

process correctly. The larger forecast confidence interval of the 

outlier corrected model reflects the additional terms needed ill the 

model past the space-time terms. Thus, the smaller confidence interval 

for the non-outlier corrected model reflects an over estimation of the 

true a level. The desired (l-a)% confidence interval for the uncorrect-

ed model actually represents the correct (l-a*)% conf1.dence interval 

where a* > a. 

:' 
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CHAPTER VII 

MlJLTIVARIATE STARMA MODELING 

In the STARMA model only one type of observations is consider-

ed (eg. one attribute). Occasionally more than one category of 

observations is available for each observation period on every location 

and there can be some space-time neighboring structure between different 

categories. If the structure among different categories of observations 

is significant in the data generating process, then the descriptive 

ability of models that also characterize the between-category structure 

will be better than those that don't have this capability. 

In this chap.ter we generalize the STARMA model, to the Multivari-

ate STARMA model (MULSTARMA)~ In Section 7.1, the model formulation 

is given. The stationary and invertibility conditions are developed 

in Section 7.2. Alternative MULSTARMA forms are described in Section 

7.3. In Section 7.4, the multivariate space-time autocorrelation 

function is defined and its statistical properties are derived. The 

multivariate space-time partial autocorrelation function is derived 

in Section 7.5, and the computationally efficient schemes are 

addres~ed. The model identification techniques that are based on the 

results obtained in Section 7.4 and 7.5 are contained in Section 7.6. 

The encoded multivariate space-time autocorrelation functions and the 

encoded multivariate space-time partial autocorrelation functions are 

also iptroduced here to assist in identification. The following 

1 
~t 

1<·' .. 
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section contains the parameter es~imation procedures. This includes 

conditional M.L. estimation procedures for both situations when G is 

known or unknown, where G is the covariance matrix of the noise. Also 

:]1, 
,.,. 

the situations under which the computation effort needed in estimation 

can be reduced are discussed. In Section 7.8, the model diagnostic 

checking procedures are described. Then in Section 7.9, Cleveland 

Crime Data is used to illustrate the MULSTARMA model building proce-

dure and the resulting model's use in forecasting'and intervention 

analysis. 

7.1 The Multivariate. STARMA Model Class 

The multivariate STARMA model is an extension of univariate 

STARMA model into the multi-catego.ry observation domain. It is also 

considered to be an extension of multivariate ARMA model into the 

spatial domain. The multivariate STARMA model has the capability to 

describe the spatially, temporally as well as the inter-category 

correlated structures. The multivariate STARMA model formulation is 

introduced in Section 7.1.1. This formulation is related to other 

special subsets of the multivariate STARMA model class in Section 

7.1.2. In Section 7.1.3, its physical interpretation is illustrated 

in block diagrams for simple systems. 

7.1.1 Model Formulation 

Consider the general multivariate Autoregressive Moving Average 

Model, 
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(7-1) 

and :h(t) is normally distributed with 

when k-O h,g-1,2, ••• ,r; 

otherwise 

h-l,2, ••• ,r;; t-l,2, ••• ,T. 

whete Zh(t) and €h(t) are the h-category observation vector and h-.. 
category noise vector at time t, respectively. Bhg(k) and Ahg(k), 

that are category dependent as well as temporal lag dependent, are 

LN)(LN coefficient matrix for time lag k. 

It should be noted that in the previous chapters, the temporal 

index t is represented as a subscript. Since the subscripts and 

superscripts are much more c~plicated in this chapter than those in 

previous chapters, the temporal index t is placed in the parenthesis 

in the rest of this chapter. 

Let, 

.. , . 

I 
I 
I 
I 
I 
I 
I 
I·'· 
~ , 

I 
I 
I 
I 
[I 

,I 
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Z(t)' - (Zl(t)', Z2(t)', ••• ,Zl;(t)') ... -- .... ...., .. 

€(t)' - (El(t)' 2(t)' ~( )' ... ...' : , ••• ,: t ) 

Z, - (Z(l)', Z(2)t, ••• ,Z(T)') 
... ... ... (7-2) 

E' - (E(l)', E(2)', ••• ,E(T)') ... ... ... 

Pmax - max{p
hg

lh,g-1,2, ••• ,l;} 

~ax - max{gh
g

1h ,g-1,2, ••• ,l;} 

Define A(~) - (Ahg(k)], B(k) - [Bhg(k)], G - [Ghg], i.~., A(k) is the 

[(r;-LN)x(r;-LN)] coefficient matrix which has Ahg(k) submatrix at its 

(h,g) block of size (r;;-r;;). B(k) is the [(r;;-LN)x(z;·LN)] coefficient 

matrix which.has Bhg(k) submatrix at its (h,g) block, and G has Ghg 

at the (h,g) block. 

MOdel, Equation (7-1), which will be referred to as the General 

Multivariate ARMA model, can be rewritten in terms of the definitions 

in Equation (7-2) as 

Pmax 
Z(t) - I 
... k-l 

~ax 
B(k)Z(t-k) - L 

... k-l 

t-l,2, ••• , T 

A(k)E(t-k) + E(t) (7-3) ... ... 

Two models that are related to the General Multivariate ARMA 

model are the General Multivariate AR model and the General Multi-

variate MA model. 
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By setting A(k) • 0 in Model, Equation (7-1), we have the 

General Multivariate AR model. 

B(k)Z(t-k) + €(t) (7-4) ... ... 

t-1,2, ••• ,T 

By setting B(K) - 0 in Madel, Equation (7-1), we have the 

General Multivariate MA model as 

A(k)€(t-k) + €(t) (7-5) ... ... 

t-1,2, ••• ,T 

hg hg· . 
When the coefficient matrix B (k) and A (k) in Model, Equation 

(7-1), can be decomposed and expressed in terms of the weight matriX 

(t) n-o 1 . w , N , , ••• , as 

hg 
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We get the. Multivariate STARMA model 

where :h(t) is normally distributed and 

E(€h(t)€g(t+k» .. ... {

G
hg 

,k-O 
III 

o , otherwise 

h-1,2, ••• ,r;;' t-1,2, ••• ·,T 

This model will be referred to as the MULSTAnuA (7 ') .tU\,.I.'An. . "" p , q , /\, m .... ...., ..... ...., 

model with e, g, ~, ~ vectors defined in the following 

E - (11 12 1r; 21 2r; r;1 r;r; p ,p , ••• ,p ,p , ••• ,p , ••• ,p , ••• ,p ) 

~ • (11 12 1r; 21 2r; r;1' r;r; q ,q , •• ~,q ,q , ••• ,q , ••• ,q , ••• ,q ) 

A • (All ,12 ,1r; ,21 ,2r; r;1 ~r; 
,/\ , ••• ,A ,/\ , ••• ,A , ••• ,A , ••• ,A ) 

~ ~ - - - ~ - -
ij ,ij ij ij 

~ • (1\1 '~2 , ••• ,A ij) 
P 

m _ (m11 ,m12 , ••• ,m1r; ,m21, ~ •• ,m2r;, .... ,mr;l, ••• ,mr;l;) - ~ - ~ ~ ~ - ~ 

mij _ (ij ij ij 
m1 '~2 , ••• ,m ij) 

q 
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(7-6) 

(7-7) 
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The elementary elements in the above definition are pij, qij, ~j and 

ij 
~ , the superscript ij indicates that the parameter is associated 

with the influence of the category j observations on the category i 

observation, and the subscript k indicatE:S the temporal lag. Refer-
, ij 

encing to Equation (7-6), we see that p is the maximum temporal lag 

of influence that the category j observations have on the category 

i observations, qij is the maximum temporal lag influence that the 
. ij 

category j noise have on the category i observations, Ak is the 

max1muin spatial lag influence that the category j observadons ha~;'e 

on the category i observations at temporal lag k and ~j is the 

maximum spatial lag influence that the category j noise has on the 

category i observations at temporal lag k. For example, in Equation 

(7-6), ~~j is the autoregressive parameter that measures the strength 

of influence that the category j observations at some location have 
, th 

on the c~tegory i observations of the 1 order neighbors at temporal 

lag k. 

f and S are (lX~2) row vectors. Aij are (lXpij) row vectors, ~ is 

(lX row vector. ij' ij m is (lxq ) row vector and ~ is 

(lX f I qij) row vector. 
i-1 j-l 
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In the rest of this chapter, we will always define the parameter 

vectors ~, ~ in such order as following 

l~ , , 

\' 

1 

! 
I 
I' 

I r 
~ . 

f 
~ 

f 
1 
J, 
;j. 

i 
I 
1 
! 
1 
:1 
I 
t 
i 
L 

'! 

n 
i 
,] 

J ' ' 

] 
..,. 
I~ /f 

..... 

]j 

fl 
-" 

ul 

~J 

ul 

[J 
rJ 1,\ 
lJ 
k 

m 
m .... 

a 
a ,', l 

~ if' ,! 

J ' ; ! ~, i 

' , 

~' -... 
ij' 

~ -... 

, 
(~ll' ~12' ~l~' ~21', ••• ,~~~ ) with 

'fI ,'i' t ••• ,,+, ,,+, '+' 
~ ~ ~ ~ ~ 

( ~ij ~ij ij ij ij ij 
~lO'~ll'···'cfJ ij'cfJ20 ,···,cfJ ij ~ i ) 

!Al .... "p '0' • •• , p j A ij 
pij --i' il' i2' i~' cfJ ... - (2 ,2 '·"'2 ), i-l,2, ••• ,~ (7-8) 

6f • (6tl ' 12' l~' 21' ~~' ... ,6, ••• ,6 ,6 , ••• ,6' ) 'with 
~ ~ - ~ ~ 

(etj eij ij ij ij ij 
... 10' 11'··· ~ ~ ij ,e 20' • • • ,6 ij , ••• ,6 ij ij ), 

lAl q . 1 q m ij 
q 

and 

~ f ij 
h ~ ~. p~ ij were ... is a (L. _ L. (Ak·+l» column vector, cfJ ij 

i-l j-l k-l ... a. 

column vectors; ~ is a ( ! 
ij i-l 6

ij 
is (~j+l» column vector, 

.~ ij 
2 (~+l) column vector. 

It-l . 

7.1.2 Other Special Subsets of the'MULSTARMA 

... 

In the MULSTARMA(~,e,S'~'!) model formulation, Equati.on (7-6), 

two kinds of specifications can be distinguished: the model parameter 

specifications and the system specifications. The model parameter 

specifications include e, S' ~ and !, that specify the model subclass 

of the MULSTARMA models. By setting these parameters to some speci­

fied values, we obtain a model subclass. The system specifications 

i.nclude the number of observation categories and the location number 

The system specifications are specified by the available observa-LN. 

tions themself, not by the model builder. To model the observed 

517 
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process, the syatem specifications should match the observed system 

from which the o'bservatians are obtained. In the following, subsets 
, 

of special interests are introduced. The mode'l subsets, that can be 

obtained by specifying the model parameter specifications, are pre­

sented in Section 7.1.2.1, and the model subsets, that carl be obtained 

by changing the system specifications, are presentett in Section 7.1.2.2. 

1.1.2.1 Parameter Simplification. In the univariate space­

time models, the ST:\R model ~ormulation can be ob taip.ed from the STARMA 

model by se~ting the moving average order to zero, and the STMA model 

formulation can be obtained by setting the autoregressive order to zero. 

Special subsets of the MULSTARMA(~,p,q,1,m) can be similarly obtained • .... .... .... ... 
In this section those models that can be obtained from the MULSTARMA 

model by setting elements in the autoregressive order vector E and the 

moving average o~der vector ~ to zero are presented. 

Setti~ ~ - 2 in the MULSTARMA(~,e,s,~,~) model, Equation (7-6)t 

we have' 

where =h(t) is normally distributed with 

.,{

G

O

hg 

E(:.h(t)e:g(t+k)') 
otherwise 

ha l,2, ••• ,/;; t-l,2,,, •• ,T 

(7-9) 

. ; 
\ " 

\t.' 

[", 
l I 

J 
I 

1 
III -.. 

This model will be referred to as MULSTAR(/;'E'~) model with E, ~ 

defined in Equation (7-7). 

Setting p • a in the MULSTARMA(~,p,q,A,m) model, we have, .... .... ~ .... .... 
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(7-10) 

=h(t) is no~l~y distributed wtih 

otherwise 

h-l,2, ••• , t-l,2, ••• ,T 

This model is referred to as the MULSTMA(I;,q,m) model, with m 
~ ~ ~, -

defined in Equation (7-7). 

In the MULSTARMA, MULSTAR and MULSTMA models, the current h-

category observations are expressed as weighted sum of previous obser­

vations, previous errors of all categories and the current errors of 

h-category. These models are inter-category dependent. Such inter­

category dependence can be removed by setting phg ,. 0, qhg ,. a where 

h ~ g. For example, setting phg ,. 0, qhg ,. 0, h ~ g in the 

MULSTARMA(~,p,q,A,m) model, we have 
.. -. All ... 



where ~h(t) is normally distributed, ~h ~ NID(O,Ghh), 

ha l,2, ••• , t=1,2, ••• ,T. 

In the above formulation, it is seen that Zh(t) doesn't receive any 

contributions from observations or errors of the other categories. 

The above formulation contains ~ independent STARMA models. Similar-

·hg 
ly, 'by setting p = 0, h '" g, in the MULSTAR model formulation, we 

obtain the MULSTAR model without inter-category dependence, which 

containS ~ independent ST~X models. By setting qhg - 0, h '" g, 

in the MULSTMA model formulation, we have the MULSTMA model without 

inter-category dependence, which contains. independent STMA models. 

7.1.2.2 System Simplification. In the univariate STARMA 

520 

model, if the location number is reduced to one, i.e., LN=l, the formu-

lation of univariate ARMA model is obtained. In this section the 

models that are obtained by redu~ing the system specifications are 

presented. The system specifications include the number of observa--

tion categories ~ and the number of locations LN. 

By setting the category number ~=l and canceling the dummy 

superscript, we collapse the MULSTARMA(~,p,q,A,m) model into the uni-
""'" ""'" ,... N 

variate STARMA model, i.e., 

l~···'· 1 ' 

"f>! 

,1' ; 
, , .. 

~I 
rt,'/ Ij 

j 

I
, 

t: ... f. ! 
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t-l,2, ••• ,T 
(7-11) 

=(t) is normally distributed with 

-foG E(e:(t)e:(t+k)') -.. ..... , 
otherwise 

One step further, by setting \ - 0, all k, and impOSing ~T(O) ,. I by 

definition, we have 

P 

~(t) - r ~kO ~(t-k) 
k-l 

q 

r ekO Z(t-k) + Z(t). 
k-l 

This can be expressed alternatively as, 

(7-12) 

where the subscript i denotes the location index, and i=-1,2, ••• ,LN; 

t-l,2, ••• ,T. 

!he above model formulation contains LN univeriate ARMA(p,q) 

processes. Thus the univariate STARMA model class, that describes only 

--
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one category, is a subclass of the MULSTARMA model class, and the uni-

variate ARMA model class, that describes only one location, is a sub-

class of the STARMA model class. 

Setting the location number LN=1 in the MULSTA~ model and 

cancelling the dummy neighbor structure subscripts, we obtain the 

multivariate ARMA model, i.e., 

(7-13) 

This multivariate ARMA model has been proposed by Box and Tiao [1981]. 

In summary, the multivariate ARMA model describes the inter-

category correlations, but not the space-time correlations. The uni-

i i. i 
" variate STARMA model describes the space-time correlations, but not 

~ ) l 
~ '. 

the inter-category correlations. Only the MULSTARMA model has the 
. . 

capability of describing the inter-category, space-time correlations. 

~' ! l 
) " 

7.1.3 Physical Interpretation of the MULSTARMA Model 

The MULSTARMA model can be decomposed in~o elementary comp-

ponents, that transform the noise input or the feedback from previous i ~ :. 

~ .. 
observations to give contributions to the current output observations. 

These components are identifiable and the MULSTARMA model can be 
. 

~ ( J 

represented by a diagram that contains each identifiable filter com-

ponent. Figure 7-1 shows the configuration of the elementary com-

ponents of which the outputs are added to give the observation of ~ 
Category C at location i for the 7;;-category, LN-location MULSTARMA 

~ 
T 

ft{ 
~ 

ill 

] 

1 

.1 
J 

\fl tu 

01 
til 

------ """-~--~--- - ---- -----
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process. The filters in'Figure 7-1 represent the model components 

in a one-to-one corresponding relationship as follows; 

q ~ 
T(i,j; g,cle) ,. ~ ~ ec~(t)Bk 

k"'l t=O kR. ij , 

p '1c 
T(i,j; g,clcp) ::z L L cpc~~R.)Bk. 

k=l t=O kt ~j 

The T(j,i; g,cle) and T(j,i; g,clcp) filters describe the influences 

from the noise and observations of location j, category g to the obser-

vation of category c at location i. The "add" operator, that sums up 

the inputs to give the observation output, performs the addition 

operation. The MULSTARMA process of 7;;-category and LN-location system 

consists of LNe'l; .. such elementary cons tructiont;uni ts • Each elementary 

construction unit describes this transformation-~hen-summation 

mechanism for some category observation at some location. All these 

LNer;; elementary construction units are connected together to form an 

7;;·LN input-ports, LN output-ports of an open loop system for the 

STARMA model. The system inputs are current white noise and the system 

outputs are current observaticns. Cancelling th~ T(j,i; g,cle) 

filters, we obtain the cp"rlstruction unit for the Mm,,~TAR process that 

is' a simplified mod~l of the MULSTARMA model. Connecti.~g all the con­

struction unit"s of the LN-locations, 7;;-categories, we obta;tn the open 

loop system for the MULSTAR model. Similarly, cancelling the 
':\ 
\\ 

T(j,i; g,clcp) filters, we obtain the construction unit for th\~ MULSTMA 

', .. ' 
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process that is another simplified model of the ~ruLSTARHA model. 

Connecting all the construction units of the LN-locations, s-cate-

gories, we obtain the open loop system for the ~ruLSTMA model. 

Figures 7-2 to 7-7 are drawn to illustrate the ~ruLSTARMA model 

and its collapsed models. Figure 7-2 shows the components diagram 

for the multivariate MA process of t\% observation categories systems, 

i.e., LN = 1, ~ = 2. In the diagram, it is seen that EiCt) contributes 

to Zi(t) as well as Z~(t), and E~(t) contributes both to ZiCt). There-

fore the inter-category dependence of moving average characteristics 

is implied. In Figure 7-3, the LN = 1, s = 2 multivariate STAR system 

is illustrated. Here Ei<t) doesfl't have any contribution to E~ (t), 

2 1 
and the El(t) doesn't have any contribution to Zl(t). However, both 

previous Zi(t) and Z~(t) have contributions to Zi(t) and Zi(t)~ This 

diagram doesn't show any direct contribution from Ei(t) to Z~Ct) and 

2 2 
from El(t) to Zl(t), but following the AR feedback loops, we see that 

1 the past noise of one categor.y, say El(t), does contribute to the 

1 observation of the same category at the same time, say past Zl(t), and 

the contribution of Ei(t) in Zi(t) is feedback to contribute to both 

1 2 1 
the current Zl(t) and Zl(t). Therefore, implicitly past E1(t) have 

contributions to current Zi(t) through the AR feedback loops. the 

mechanism discussed above is closely related to the well-known fact 

that AR models can be eApressed alternatively as an infinite order MA 

process. Imposing Figure 7-2 on Figure 7-3, we obtain Figure 7-4, 

that contains the di.agram for the multivariate ARHA process for LN = 1, 

s = 2. 
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Figure 7-1. An Elementary Component (Category c, Location j) in A MULSTARMA Process 

of 1; Categories, LN Locations. 
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"Figure 7-2. The Component Diagram of the MUltivariate MA Process 

with r;-2. 
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T(f.1~1 .2 $) 

<~ 
~V Zi(t) I T(l,l;l ,11 cj» 

Figure 7-3. The Component Diagram of the Multivariate AR Process 

with 1;=2. 
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} 

T (1,1; 2 , 21 cj» 

T(l 1;2,1Icp) 

T(1,1;1,2Icp) 

T(l 1·2 lie) 

T(1,1;1,11 cj» 

Figure 7-4. The Component Diagram of the Multivariate ARMA Process 

with 1;=2. 
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Figure 7-5. The Component Diagram of the MULSTMA Process with 

1;=2, LN=2. 
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Figure 7-5 shows the MULSTMA process of LN = 2, ~ = 2 system. 

This diagram contains four MULSTMA construction units. The observa-

tions do not feedback. The past noise of each category at each loca-

l 

I " 

~ =. 
I 

tion has contributions to all the current observations. Disconnecting 

the inter-category filters, or breaking tne inter-category dependence, 

I ] i 
( ..iii' 

t , I] 
I ~ ..-

f 11 1 'r .lj 
I, , 

i.e., separating the 2nd floor from the 1st floor, we have two 

independent STMA process diagrams. Disconnecting the spatial filters, 

i.e., separating the f;ront wall from the rear wall, we obtain two 

independent multivariate MA process diagrams. Figure 7-6 contains' the 

diagram for MULSTAR model of LN ,. 2, ~ = 2 system. This diagram has 

f: """ 
U~ ' : 

f; 
'1 fl iJ 

1 i 
} ; ill 11 1, 

r 
-.;. 

-
UJ 

I· 
1 1~ {, N 
I ""-
{ 

ill I 
i 
I 

four MULSTARconstn;ction units. The past obse~7ations is feedback 

to the current process outputs. Similar to that of multivariate AR 

process in Figure 7-3, the past noise has contributions to all the 

current observations implicitly. The past noise of either category at 

either location are input to the addition operator through the AR feed-

back loops to give ~ontributions to all the current observations. 

Imposing Figure 7-5 and 7-6 gives Figure 7-7, which is the diagram of 

the MULSTARMA process of LN = 2, '~ "" 2 system. The diagram 7-7 con-

sists of four MULSTARMA construction units, the past noise of either 

category at each location has explicitly contributions to all the 

current observations. The past observations are feedback to all con-

II fJ} struction units. 

'1 [ , 
~ 

7. 2Stati..:;nary and Invertible Conditions 

An important consideration for the MULSTARMA model are the 

~ t ~ 
I" conditions under which the vector process Z(t) is strictl~ stationary. 

~ 'i! 

~ 
.-:::--c'::;~'.~~~';:;;1"~~ 
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For a strictly stationary process ~(t), the distributions of 

~(tl), ••• ,!(tn) and ~(tl+s), ••• ,~(tn+s) are the same, this guarantees 

the property that the covariance of ~(tl) and ~(tl+T), i.e., 

E(~~tl)~'(tl+T», depends only on T regardless of the tl value, i.e., 

E(~(tl)~'(tl+T» z E(~(t2)~~(t2+T» for arbitrary t l , t 2• The inverti­

bility is the dual of the stationarity. The invertibility property 

assures that theprocess ~(t) depends on the latest observations most 

heavily. In the following, the stationarity regions for the MULSTARMA 

process are derived in Section 8.2.1. The derivation is followed by 

the similar derivation of the invertibility regions in Section 8.2.2. 

7.2.1 Stationarity Regions 

Stationarity implies that for any sand t, the jOint density 

distribution of Z(t) ,Z(t+l), •• '. ,Z(t) and Z(t+s) ,Z(t+l+s),@O. ,Z(T+S) ..... ~ ~ ..,..... ...., 

are the same. In modeling we are particularly concerned with second 

d ~ ti na ity Under the assumptions of normal distribution and or er s ~a , __ 0 r • 

E(~(t» = ~, this stationarity means that 

E(Z(t)Z(t+s)') = E(Z(O)~(s)') ... ... 

for all t. This is equivalent to say that the variance-covariance of 

Z(t) and Z(t+s) depends only upon the time difference s, it doesn't ... ... 
depend on time t. Without this stationarity property, the statistical 

property of the process change with time and the system becomes 

explosive. The parameter constraints to insure stationarity, form 

the stationary region. 
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By applying the result from Hannan [1970] (Equation (7-14» 

the stationary conditions fo~ the General Multivariate ARMA Model 

can be derived. If every u that solves. 

P Pmax p-k 
det[~ max I - I B(k)~ max ] = 0 

k""l 
(7-14) 

\ 

lies inside the unit circle, i.e., lui < 1, then the vector process 

~(t) for the general multivariate ARMA process will be stationary. 

Hence these stationary conditions put restrictions on the auto-

regressive parameter matrices only, and all the General Multivariate 

MA models are always stationary. Thus the stationary conditions of 

the MULSTARMA(~,p,q,A,m) model will be' exactly the same as that of ...... -
the MULSTAR(~,p,A). ...... 

Consider the MULSTAR(~,p',A) model with e ~ !, we have Pmax = 1, 

and the stationary conditions so that every that solves 

det[~I - B(l)] = 0 (7-15) 

lies inside the unit Circle, i.eo, I~I < 1. Note that the solution ~ 

for Pmax :::II 1 models is the eigenvalue of coefficient matrix B(l). It 

is known that the eigenvalue ~ of the matrj,x B = [b
ij

] is bound within 

the region that 

(7-16) 
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Since B(l) - [B~g(l)], Bhg(l) • where w(1) is the scaled 

~ (1) 
weight· matrix and L wij 

_ 1 all i, the bounds for the eigenvalue of 
j 

B(l) are 

h* {. hSI } where Al - max Al g-1,2, ••• ,~. 

Equation (8-17) is equivalent to 

hh ~ h _
< ~ ~ $10 + I L $lg1 

g+h ° 
h-1,2, ••• ,~ . 

So the necessary condition for I~I < 1 becomes that 

r:; 

1 L $~~ 1 > -1 
g-l 

and 

(7-17) 

(7-18) 

(7-19) 

.~ 

j 

1 

--~-----.. _- -'-- ---
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h-1,2, ••• ,r:;. 

It should be noted that the region restricted by Equation (7-19) is 

the necessary stationary region, which is not necessarily the best 

stationary region for this MULSTAR(~,p,A) proces&. The best station-...... 
ary region is the region that every parameter that fall in· this 

region makes the process stationary and any parameters not contained 

in this region makes the process nonstationary. 

For illustration, let us consider the stationary region for the 

MOLSTAR(2,p,A) model with p - (1,1,1,1), A - (0,0,0,0). Directly ... ..... .. ---
h* applying Equation (7-19) and setting AI' • ° for h-1,2,we get the 

necessary stationary region in the·~ parameter space to be, 
~ 

$11 _ 1$12/ 
10 10 > -1 

$11 + I$i~/ < 1 10 (7-20) 
$22 _ /$21/ 

10 10 > -1 

$22 + 
10 /$i~/ < 1 

.. 
Thus the necessary stationary region for this MULSTAR process is 

restricted to the interior region of the configurations shown in 

Figure 7-8(a). 
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As another ex~le, we consider the MULSTAR(2,p,A) model with ...... 
f - (1,1,1,1) and ~ - (1,0,.0,1)'. Applying Equation (7-19) directly 

h* 
and setting Al - 1 for h-l,2, we get the necessary stationary region 

in the 2 space as, 

<pll _ 1 <jI121 
10 10 1 <jill 1 

11 > -1 

<jill + l~i~1 + 1 <jIiil < 1 .....:: -"-':;: 

10 (7-21) 
<jI22 _ 1<jI211 
10 10 I~iil > -1 

<jI22 + 
10 l<jIi~1 + 1 <jIii 1 < 1 

Thus the necessary stationary region for the MULSTAR(2,p-l,A) process ......... 
with ~ - (1,0,0,.1) is the interior region of the diamond configuration 

11 22 for a <jill and <jill value: These regions are illustrated in Figure 7-8 (b) • 

7.2.2 Invertibility Regions 

Invertibility is the dual of stationarity. Stationarity puts 

restrictions on the autoregressive parameters, while invertibility puts 

restrictions on the moving average parameters. A non-invertible process 

implies that the current observation cumulates heavier influence from 

the earlier obserVations and errors. This can be seen clearly in the 

univariate time series. Consider the univariate MA(l) process 

(7-22) 

t-l,2, ••• ,T 
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-1.0 

Figure 7-8(a). The Ne S cessary tationary Region for th MUL 
Process with p-l and ' _ (1 0 e STAR(2,p,A) _ ~ ~ ,,0,1) ~ -

,. 
<jill 
10 

-1.0 

..!.12 
'ji10 

-1.0 

Figure 7-8(b). The Necessary Stationary Region for 
Process with p-l and A-O. the MULSTAR(2,£,~) ...... ...... 
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where B is the back shift operator defined as BE(t) - E(t-l). 
ow ... 

Obviously, when 161 > 1, the process is not invertible, and' ~(t) 

will be influenced heavier by the al:(t-l) term than the current 

error. Also without inver~ibility we cannot express E(t) in terms 

of past observations, i.e., ~(t-k), k ~ 1, 

TO n -1 
E(t) - limit r (61 B) ~(t), because we can expand (I-al B) ~ 

TO -loCI) n-O 

r (al B)~ onl! when lall < 1. Furthermore, even we put on these 
D.-O 
conditions that Z(t) - 0 for t < 0 are imposed to make it possible to ... 
express E(t) in terms of past observations, we have 

t-l 
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E(t) - l: aklZ(t-k) (7-23) 

or 

- k-O'" 

t-l 
Z(t) - E(t) - r eklZ(t-k) 

k-l ... 
t > 2 

Without imposing invertibility constraints, lall can be > 1 and thus 

E(t) and Z(t) will cumulate more influence from historically distant - ... 

observations. Intuitive~'l.y, more recent observations should have more 

similarity and influence on the current observations than the distant 

obs erva tions. 

Apply the result from Hannan [1970] again, we get the invertible 
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conditions for the General Multivariate Space-Time Model can be 

derived. If every ~ that solves 

q ~ax 
det[~ max I - 2: 

k=O 

~ -k 
A(k)~ ax ] = 0 (7-24) 

lies inside the unit circle, then the vector process will be inverti­

ble. Hence, the MULSTAR models are always invertible, and the inverti­

ble region on the moving average parameter space will be exactly the 

samef~r both MULSTMA(~,q,m) model and MULSTARMA(~,p,q,A,m) model. 
,.", .... ,.", ......... ~ 

Consider the MULSTMA(:~,q,m) model with q < 1. ...... - We have q = 1 mqx 
and the invertible conditions is such that every ~ that solves 

det[~I - A(l)] - 0 (7-25) 

lies inside the unit circle. This is equivalent to say that every 

eigenvalue of coefficient matrix A(l) lies inside the unit circle. 

Following the same procedure that we derive the stationary conditions 

for the MULSTAR(~,e,~) model with p ~ 1, we get the necessary condi­

tions for invertibility as, 
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> -1 

+ ~ I ~ a~~1 < 1 (7-26) 
1-1 gal 

h-l,2, ••• ,l; 

Not~ that this is the necessary invertible regions, and not necessarily . . 

is the best invertible regions. 

For illustration, the invertible region for the MULSTMA(2,~,~) 
I 

model with q - (1,1,1,1), m - (0,0,0,0) is considered. Applying 
ow -

Equation (7-25), we have the necessary' invertible region in the 

parameter space to be, 

all _ 
10 lai~1 > -1 

all + 
10 lai~1 < 1 

all + 
10 lai~1 > -1 

a22 + 10 lai~1 < 1. 

Thus.the necessary stationary region for this MULS~ process is the 

interior region of the configurations shown in Figure 7-9(a). 

As another example, lets consider the invertible region of the 

MULSTMA(2,q,m) with q - (1,1,1,1) and 131 - (1,0,0,1). Applying Equation 
ow ow ow 

I 
I 
1 
J; 

II II 
... l 
I.' '", .. 
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Figure 7-9(a) The Necessary Invertible Region of the MULSTMA(2,q,m) 

Process with q=l and m=O 
1\)1\) 1\)1\) 

Figure 7-9(b). The Necessary Invertible Region of h ~,~ ( t e j·J.u .... STMA 2,q ,m) 
I\) I\) 

Process with q=l and m=(l,O,O,l). 
I\) I\) I\) 
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h* (7-25) and setting ~l - 1 for h - 1,2, we obtain the necessary in-

vertible region in the e parameter space to be, -
ell _ 

10 lei~1 lelll 
11 

> -1 

11 lei~1 + lelll < 1 elO + 11 

e22 _ 
10 lei~1 - leiil > -1 

e
22 + lei~1 + leiil < 1. 
10 

Thus the necessary invertible region is restricted to the interior region 

11 22 
of the diamond configuration for a given ell and ell value. These 

regions are illustrated in Figure 7-9(b). 

7.3 A-Weight Representation for the Stationary General 
Multivariate Space-Time Models 

Any model that meets the requirement of stationarity can be ex-

i,ressed alternatively as weighted sum of past and current errors, 

(7-27) 

t-l,2, ••• ,T; h-lf2, ••• ,~ 

This will be referred to as the A-weight representation. 

In the following, we will derive the relations between the 

coefficient matrices of the A-weight representation and the coefficient 
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matrices of the Gen al M 1 er u tivariate representation. 

General Multivariate MA model 
To put the 

in the A-Weight representation repre-

sentation the coefficients of h q 
t e same € (t-k) terms in the A-weight 

representation and the General Multi i 
var ate MA model are equated. 

This yields the relationship, 

Ahg(k) _ J -Ahg(k), k.=: qhg 

lo otherwise (7-28) 

Note that Ahg(k) is null matrix when k > qhg. 

To put this General Multivariate AR model into the A-weight repre-

sentation is not as straightforward as that of 
the General Multivariate 

MA model. 

For the General Multivariate AR process, 
.-
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the !g(t-k) terms are first b 
su stituted for by these equivalent 

A~weight representation. Th 
en the coefficients of the resulting equa-

tions are equated with the corresponding 
coefficients of the A-weight 

representation. The results are as follows 
~ 
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• • • 
• • • 
• • • 

l; k-l hg g g 
Ahg(k) "" Bhg(k) + r l: B 2(k2)A 2 (k-k2) 

g2""1 k2-1 

T; k-l hg g2g 
Ahg(k) - rIB 2(k2)A (k-k2) 

g -1 k "1 2. 2 

h-l,2, ••• ,T;; g-1,2, •• ~, (7-29) 

It should be noted that the elements ,of Ahg(k) wUl eXponentially decay 

to zero for k > phS because of the matrix multiplication operation in 

the recursive formula. 

Following the same procedure, the A-weight representation for 

the General Multivariate STARMA Model with ·t~e A-we:'ghts matrix 

expressed in terms of A's, B's is, 

k-l hg g g [r B 2(j)A 2 (k-j)] 
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, or 

(7-30) 

Similar to the MULSTAR case,. the elements.of Ahg(k) wi~l exponentially 

decay to zero when k > max{phg,qhg; h,gal,2, ••• ,r,;}¥ 

7.4 Multivariate Space-Time Autocorrelation Function Considerations 

In this section, sQme statistics that will be very useful :tn 

identifying the potential candidate 'models in the model building are 

addressed. First the covariance matrix rij(u) of the observations 

zJ- (t) and zj(t+U) is defined as, ... ... 

(7-31) 

i,j-l,2, ••• ,l;; u- ••• ,-2,-1,0,1, ••• 

, .. 
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. sh() d fi d The multivariate space-time auto covariance function YS£ u is e ne 

as 

(7-32) 

Since 

(7-33) 

y:~(u) can be expressed alternatively as 

(7-34) 

A property for the multivariate space-time autocovariance func­

tion r~(u) such defined is that r~(-u) - r:f(u). According to the 

definition of rij(u) in Equation (7-31), it can be shown that 
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(7-35) 

So from expression, Equation (7-33), we have 

and we get the relation 

(7-36) 

7.4.1 The Multivariate.Spa~e-Time Autocorrelation Function 

In univariate STARMA models, the space-time autocorrelation 

function p~(u) was defined as (Pfeifer and Deutsch [1980b]). 

(7-37) 
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For the multivariate STARMA models, there are two alternatives in 

defining the multivariate space-time autocorrelation function. 

(7-38) 

g,h-1,2, ••• ,!; 

or 

(7-39) 

g,h-1,2, ••• ,Z; 

Both definitions collapse to the definition of the univariate space-

time autocorrelation function when we set Z; • 1, cancel the dummy 

superscripts. However, from the physical interpretation of these 

alternatives of P~(O), the first definition (Equation (7-38» is the 

appropriate choice. According to' the second definition, Equation 

(7-39), by setting u-O, we have 

P~(O) • 1, g,h-1,2, ••• ,Z;; k-D,l, ••• (7-40) 

This means that ~g(t) and ~h(t) are perfectly correlated, even the 

observations are not of the same category which is not reasonable. 
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Whereas for the first definition, 

(7-41) 

P~(O) - 1 pnly when g-h. This observation of any two different cate­

gories are perfectly correlated. 

The sample multivariate space-time autocovariance function 

~(u) and the sample multivariate space-time autocorrelation func'tion 

.... gh 
Pst (u). are defined analogously to their theoretical corresponding forms. 

Thus 

(7-42) 

g,h-1,2, ••• ,Z;; s,1,u-0,1,2, ••• 

and 

(7-43) 

g,h-1,2, ••• , s,1,u-0,1,2, ••• 
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7.4.2 Expectation and Variance of the Multivariate Autocorrelation 
Function 

The statistical property of the sample multivariate space-time 

autocorrelation function for the white noise process is needed for the 

diagnostic checking stage. In this section the expectation value and 

.... gh .... gh 
variance ySL(u) and Pgt(u) for the white noise process is derived. 

The white noise process is equivalent to a MULSTAR(~,O,O) model - ... 
with the assumption that Z(t) are white noise. Thus, ... 

h-1,2, ••• ,~ (7-44) 

where 

hag and k-O 

otherwise 

Applying the result from matrix algebra T (AB) - T (BA) , we have r r 

(7-45) 

, h g 
Also for h+g, applying the fact that € (t) and € (t) are statistically ... ... 
independent, we have 
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- E[(w(s)~g(t»,~(~)~h(t+U)·(~(~)th(t+U»fw(s)~g(t)j 

- E{Tr [w(s) ! w(x.)Zh(t+U) Zh(t+u) 'w (~) 'w (s) zg (t) zg( t) '] } - - - -

Using Equations (7-45) and (7-46), E(YS:<U» and var(y~(u» for g~h 

are derived as follows, 

a~Tr(w(s) 'w(~» 

LN 
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.... gh 
E(Ys~(u» - (7-47) 

o 

var(Y:~(4-» - E[(Y:~(U,T»2] 

otherwise 
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So 

(7-48) 

where 

il 

To derive the variance of the sample multivariate space-time 

autocorrelation var(p~(u», we follow the customary procedure to get 

the approximate Var(P:r(u» as expressed. in Equation (7-49). 

+ ...,gg(o)ygg(O)yhh(O) .cov(yhh(O) ,~~(u» +y::(o)y~~(O)y::(O). 
ISS R,R, 11 ss s~ 

cov(Y~~(O)y:~(u»] + l~ (y:~(u» 2. (Y::(O)~f(O) y~~(O)Y~~(O» -5/2 

[var(-~~(O»(ygg(O)yhh(O)Y~~(O)r + var(~f(o).(y::(O)Y:~(O). . . 1';35 11 SB NN 
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(7-49) 

The expression in Equation (7-49) is tedious to applYs.but by 

using the result in Equation (7-47), i.e., E(Y~(u)? - 0, we have, 

(7-50) 

By substituting Equations (7-47) and (7-48) into Equation (7-50), we 

"gh have the approximate variance of Ds (u) as, 

(7-51) 

.. 
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Setting s-t-O in the above equation, we have 

(Agh( ) _ 1 
VarPOO u) LN-(T-u) (7-52) 

Setting 1-0 in Equation (7-51), we have 

_ 1 

LN- (T-u) (7-53) 

~ Agh Therefore when grh, we have the variance of psO(u) to be approximately 

" -1 (LN -(T-u) ) • 

By setting S-h~ the multivariate definition of y:2(u), p~(u) 

reduces to the univariate definition (see Pfeifer and Deutsch [1981]). 

Table 7-1 summarizes these results and those developed here. 

7.4.3 Theoretical Properties of the Autocorrelation Function for 
MULSTARMA Processes 

The theoretical characteristics of the multivariate autocorrela-

tion function for the MULSTAR, MULSTARMA and MULSTMA models are a primary 

tool in the identification of a potential candidate model in model 

building. Since the MULSTAR, MULSTARMA and MULSTMA models are speci-

fied models of the General Multivariate STAR, STARMA, STMA model, 

respectively, in this section we address the properties of the General 

Multivariate models and apply the results directly to the MULSTAR, 

MULSTARMA and MULSTMA models. 
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Variance of Sample Multivariate . 
Autocorrelation Function of th Spa:e-T~me Autocovariance and 

e Whi~e NOise Process 

E{Estimator} 

o 

o 

o 

o 

o 

o 

o 

o 

o 

Variance{Estimator} 

LN. (T-u) 

cr~cr~'Tr(w(S)w(s)') 
2 LN .(t-u) 

cr2a.h2'Tr(w(~)w(~)' (s) (s)' 
-S.....!!.... w w ) 

2 
LN .(t-u) 

1 
LN· (t-u) 

1 
LN. (t-u) 

Tr(w(~)w(~)' (s) (s)' 
w w ) 

cr~{Tr(w(S)w(S)')+Tr(w(S) (s)')} 

LN
2

'T 

cr~Tr(w(S)w(S)'w(S)w(S)') 

LN2'T 

cr~Tr(w(S)w(S) ') 

2 LN • (T-u) 

1 
LN(T-u) 
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With Equation (7-34), 

• w (s) , w (R.). r gh ( u) 

LN 

we need to compute the covariance matrix rgh(u) of the observations 

zg(t), Zh(t+u) befor'e computing the multivariate space-time autoco-... ... 
variance function y~(u) and the multivariate space-time autocorrela-

, h i j 
tion function p,!e.(u). The ,covariance matrix of ~ (t) and ~ (t+u) for 

the General Multivariate models in the A-weight representation is 

derived below. 

i,j-l,2,3, ••• ,~; u-O,l,2, ••• ,oo 

556 

T ... :.. 

:T 
: i'­......, 

m uJ 

I 
-'-<>'?"_"'""".';"'" -A ..... ,,"=-'4'~,.....,.,~!t="'"'~r.1::~~-:==:t:;:lillf •. ~t l 

i 
1 
1 
] 
~ 
I ;t 
1 :1 
~ 

557 

r ij (u) r r 00 jgl 
, 

u-O _ Gji + I 
g g ig 

A (k)G 1 2A 2(k) 
g -1 g2-1 k-1 1 

r ij (u) 
~ jg g i r r 00 jg1 g gig' u-l - I A l(l)G I + 2 A (k+1)G 1 2A 2(k) 

gl-1 gl-l g2-1 k-1 

~ 00 rij(u) jg ~i f f jg1 g gig' u-2 • I A 1(2)G + 2 A (k+2)G 1 2A 2(k) 
gl-1 gl-l g2-1 k-l . ~ . • . 

r
ij 

(u) 
~ jg1 ~i ~ ~ 00 jgl 

, 
u>O I . g g ig - A (u)G' + r I 2 (k+U)G 1 2A 2(k) A 

gl-l gl-l g2-1 k-1 

These above results can be summarized as follOWing, 

i,j-1,2, ••• ,~ • 

, u-o 

.(7-54) 
00 jg1 g gig' 
I A (k+u)G 1 2A 2(k) , u>O 

k-l 

Analogous to the univariate MA models and STMA models, we expect 

that r
ij 

(u) will be a null covariance ~tr:f.x for the General Multivari­

ate STMA model when u is large enough. By substituting Equation (7-28) 

into Equation (7-54). We get the covariance matrix Tij(u) of the 

General Multivariate STMA model, 
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a (7-55) 

i,j-l,2, ••• ,1; 

j* {jgl' I~ • where q - max q g-l, .... , ••.• ,Z;}. To compute the auto covariance function 

y!l(.u), we sub~titute Equation (7-55) into Equation (7-34) to get the 

conclusion that the autocov~riance function y!l(u) cuts off after u>qj*, 

j* '{ jg, }. where q - max q g-1,2, ••• ,I;. 

For the General Multivariate STAR model since the elements of 

Ahg(k) in the A-weight. representation exponentially decay to zero when 

k > phg, will cause the elements of rij(u) to also exponentially decay 

to zero when u > max{pj£ig-l,2, ••• ,Z;}, which in turn causes the auto­

covariance function y;i(u) to exponentially decaYA Similar consider­

ation gives similar conclusions· for the General Multivariate STARMA 

model. That is, the autocov-ariance function y!i(u) will exponentially 

decay to zero when u > ma.x{pjg,qjg lg-1,2,.,.,I;}. Since the MULSTAR, 

MULSTMA, MULSTARMA models a.re specific models.{,\f the General Mu1ti-

'variate models, the r~ults that we have gotten hold for the MULSTAR, 

MULS!MA and MULSTARMA models. 
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7.S MUltivariate Partial Space-Time Autocorrelation 
Considerations 

559 

Another important statistical property that is very helpful in 

identifying the candidate model is the partial autocorrelation func­

tion. The multivariate space-time partial autocorrelation is derived 

in Section 7.5.1. This analysis is followed by the computation con­

siderations section. Here efficient approaches for computing the 

multivariate space-time partial autocorrelation functions are proposed 

which eliminate the need of compu~ing the inverse of large dimensional 
'~ . . 

matrices. This affords comp'\.'~.tational efficiency since the effort 

needed to obtain the inverse of a full rank matr~ increases exponen­

tially when the dimension of the matrices increases linearly. 

7.5.1 The Multivariate Partial Space-Time Autocorrelation Function 

Pre-multiplying both sides of the MULSTAR(I;,p,A) model, .... 

h-l,2, ••• ,I;. 

(s) \) 
by [w Z (t-u)]' gives 



r 

560 

Taking the expectation value and dividing both sides by LN gives 

vh y (u)'" 
sO 

(7-56) 

hV hV 
Letting v-l,2, ••• ,~, h-l,2, ••• ,~, u-l,2, ••• ,p and s-O,l, ••• ,Au ' 

results in the parti;~ autocovariance function, 

v,h-l,2, ••• ,~ 

vh 
u-l,2, ••• ,p 

vh 
s-0,1,2, ••• ,A 

u 

~ r; - p vh 
This equation consists of l l I (AVh+l) linearly independent 

v-l h-l u-l u 

r; ~ phg 

equations from which we can solve for the l I I 
g-l h-l k-l 

regressive parameters. 

(7-57) 

This system of equations is the multivariate space-time analog 

of the Yule-Walker equations for 'cinivariate time series. As we will 

state in more detail later, although the system of equations defined 

by the multivariate autocorrelation function does not have a symmetric 

coefficient matrix for all the 2 parameters, for every specified h-
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category, the coefficient matrix for 2h parameters is symmetric. 

This is s~lar to th~ Yule-Walker equations for the univariate time 

series. 

Since we have Y~(-u) ,. y. ~:(u) in Equation (7-36), so in Equa­

tion (7-57) we can replace y~~(u-k) with yg\l(k_u) when u-k<O. 
::i.\t R.s 

Based on the solution set of the system of Equation (7-57), 

we will define the Multivariate Space-Time Partial Autocorrelation 

Functio~ ~(r;,p,A) as follows, ... - ... 
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Theoretically, we can construct the sequence-of Equation (7-57) 

and compute the associated Multivariate Space-Time Partial Autocorrela­

tion Function 2(~'f'~). Assume we have the MULSTAR(~'fT'~T) as the 

true model, then the sequence of Multivariate Space-Time Partial Auto­

correlation Function vectors will have the following property, 

~(l;,p,A) - _ ... { "'~ 

ft 0 otherwise 

p > p and A > A 
- -T ... T (7-58) 

Thus the Multivariate Space-Time Partial Autocorrelation Function 

2(~'f'~) cuts off after PT and A when the true model is MULSTAR(~ A ) - -T ~'fT' ... T • 

Any invertible MULSTMA(l;,~,~) and MULSTARMA(l;,p,q,A,m) model can be .... ......, .., -



r 
562 

i MULSTAR(~ p A) model with the coefficients expressed as infin te ,,_,_ 

decaying exponentially to zero after certain tim lag and spatial 
lag. 

Therefore, the Multivariate Space-Time Autocorrelation Function vector 

cut-off property of the MULSTAR model but instead it 
will not have the 

will be tail-off. 

7.5.2 COmputation Considerations 

The multivariate partial autocorrelation function, Equation 

(7-57), consists of ~ independent equation sets. Thus, it can be 

written as, 

19 A
1g 

11 ~ p k 19 19 
h-1, \1-1, u-1, s-o YOO(l) • I I I ~k~YO~(l-k) 

g-l. k-1 ~-o 

· • 
~g · • • · • • • • 19 

\1-1, u-1, All Y 11 (1) _ ~ PI I ~;~ i~ (l-k) h-l, s· 1 A110 g-l k-31 ~-o Al ~ 
1 

• · • • 
~g · • • · • • • 19 

~ 'p 
~lgy~g(l_k) (7-59) .. y~l(l) • I I I h=-l 

h-1, \1.~, u-1, s-o ~ O~ 00 g-l k-l ~-o 

· • • 
1 ~g · • • • 

• • ~ p g 
A1~ ~1 ~lgy~g (l-k) 

h-l, \1-~, u-l, Y 1~ (1) - I I I s- 1 g-l k-l ~ .. O ~ Al~~ Al 0 1 
• • • 

~g · ,. • 19 • 
'V' ·1 ~ 

\1.JJ, u-pO ~ S-A 0 0 .. ( 0) .. I PI I ~lgy\10g(1_pO) 
h-l, Y 0 P ~ AO~ A 0 g-l k-l ~-O 

where 

I 

I 
I 
I 
i 
,~ 
~ 

i 
ii,' 
\! 

I' ! .; 
.'. I 

{I 
~ 

I 
I 

i 
! 
} 

I 
r 

I 

j • .1 

..... --~----~---

0 1\10 
P - p 

AO 1\10 
-A 

pl\10 

and 

1\10 
P is the maximum time lag for h-l 

O' 0 
).1\1 0 is the maximum spatial lag for h-1 wi.th time lag .pl\1 
P~\) 
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,,0 1\1° 
v is the maximum category index number for h-! with p time lag, 

1\10 
A spatial lag. 

p1\10 

This equation also holds for h-2,3, ••• ,~, to get the other 

z; phg 
(Z;-1)' equations sets. Each equation set contains L I (l+~g) 

g-l k-1 

equations to solve for that number parameters. These parameters appear 

only in that equation set. Therefore the solution of the multivariate 

partial autocorrelation function can be computed by seqparating the Z; 

sets and solving within each. This will reduce the task of matrix 

~nverse, which is necessary for computing the solution for the linear 

equations • 

As an example, consider the following example of MULSTAR(2,p,).) ...... 
with e - (2,1,1,1), A - (1,0,0,0~1), i.e., 



r 
564 

11 1 1 
+ ~20~ (t-2) + : (t) (7-60) 

Premultiplying Equation (7-60) with z(l)(t-l)', (w(l)z(l)(t_l»', ... -
Z(2) (t-l) , and oZ(1) ft-2)':, taking the expectation value and dividing - -
both sides by LN we get 

vll(l) _ A.11 1:L( 11 11 12 12 11 11 
'00 ~lOYOO 0) + ~11Y01(0) + ~lOYOO(O) + ~20YOO(-1) 

11( 1.1 11 11 11 12 12 11 11 
Y10 1) - ~lOY10(0) + ~llYll(O) + ~10Y10(0) + ~20Y10(-1) 

(7-62) 
21(1) • A.ll 21 11 21 12 22 11 21 

YOO 0 ~lOYOO(O) + ~ilY01(0) + ~lOYOO(O) + ~20YOO(-1) 

11(2) A.ll ll( 11 11 12 12 , lx 21 
YOO '. ~lOYOO 1) + ~11Y01(1) + ~lOYOO(l) + ~20YOO(O) 

1 2 (1) 2 
Pt:'emultiplying Equation (7-61) with Z (t-l)', z (t-l)', (w Z (t-l»' - - -
and taking the expectation value and dividing both sides by LN, we 

get, 
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(7-63) 

Equation Set (7-62) contains 4 equations and will be used to solve for 

11 11 12 11 ~lO' ~ll' ~lO and ~20 that are not contained in Equation Set (7-63). 

Also Equation Set (7-63) contains 3 equations and will be used to 

21 22 22 solve for ~10' ~10 and ~lO that similarly are not contained in Equation 

(7-62). 'We could solve for all the seven ~'s simultaneously instead of 
.. 

solving for the four ~'s in Equation (7-62) and the three ~'s in 

Equation (7-63) separately. For computation efficiency however we do 

prefer to solve them separately than simultaneously. 

By applying the property y~(-u) - y~:(u) of Equation (7-36), 

we can see that the coefficient matrix of Equation Sets (7-62) and 

(7-63) are symmetric. To illustrate that this is not a special case 

for this specified mod~l, let us add an arbitrary term ~~w(~)~h(t-k) 
to madel (7-60) with k,~g{0,1,2, ••• ,}, hg{1,2} and derive the equation 

set that is similar to Equation Set (7-62). 
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11 12 + $l1y11(_l) 
I lh Ih 

+ $lOYOO(O) 
+ I $ki Y OR. (l-k) 

20 00 

I 
12 12 1111 I lh lh 

+ $10Y10(0) + $20YIO(-1) + $kR. Y 19. (l-k) 11 11 11 
Y 10 (1) ,. $10 Y 10 (0) I 

11 11 11 
YOO (2) ,. $10 YOO (1) 

We see that, with the property rSJ( -u) ,. y~:(u) in mind, the 

coefficient ma·trix of Equation Set (7-64) is symmetric. By mathe­

matical induction, we can show that the coefficient matrix for each 

of these sets of equations are symmetric. 

In computing the solution for a sequence v~lue of f'~ for 

(7-64) 

Equation Set (7-57), we do hope that a strictly recursive method 

similar t~ that due to Durbin [1960] for univariate time series 

partial autocorrelation calculation exists. But unfortunately there 

is no such method available for the ~ultivariate space-time partial 

au~ocorrelation function calculation. However, some improvement over 

the successive solution for Equation (7-57) can be made by using the 

following result from linear algebra to reduce the Matrix inversion 

task. 

b
l1.ll Rl2j 

Let R ,. -~--
R2l1 r 

be a symmtric matrix, and r a scalar. Then 
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-1 -1 J 

-R~ia12 -1 ~lR12R21Rll I 
l1.1 + -1 I -1 

-1 
Y-R21~lR12 I Y-R21~lR12 

R • -------=l 
__ L ______ 

-~2Rll I 
I 1 

-1 
Y-R21Rlll1.2 I -1 

Y-R21~lR12 (7-65) 
I 

It should be noted that the symmetric matrix R is obtained by add' . • l.ng 
.' . 

the row vector (R21 ,y) and t~e column vector (R21 ,y)' onto the 

symmetric mat:-ix ~l' of which the invt~rse is available. In the pro­

cedure of multivariate space-time partial autocorrelation function 

computation, the coefficient matrix, that contains multivariate space­

time autocorrelations, is increased by adding one row and one column 

a~ a time to compute the next partial, and the inverse of the 

coeffici.ent matrix of las.t partial is available. Applying the formula 

in Equation (7-65), that uses the last in'lTerse which is available we . ' 
avoid the task of computing the inverse from the very beginning and 

save computational effort. 

7.6 Identification 

Given a set of observations from some process, the identifica­

tion of a candidate model' is the first step in building the MULS~ARMA 

model for this process. The cut-off, tail-off properties of the 

multivariate space-time autocorrelation function have been verified 

in Section 7.4.3, and the cut-off, tail-off properties of the multi­

variate space··time partial autocorrelation function have been examined 
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in Section 7.5.1. In this section, these statistical characteristics 

of the multivariate space-time autocorrelations and the multivariate 

space-time partial autocorrelations are applied for identification 

purposes. 

The magnitude of the multivariate space-time autocovariance 

function depends partially on the magnitude of the variances of the 

errors, while the multivariate space-time autoccrrelation function is 

scaled to get rid of such dependence on the variances of erros, and 

the multivariate space-time autocorrelation function still retains 

the cut-off property for the General Multivariate SIMA models, the 

tail-off property for the General Multivariate STARMA, STAR models. 
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So instead of using the multivariate spacla-time auto covariance function, 

we will use the multivarj.ate space-time autocorrelation function to 

. identify the caadida te model. 

Sinae the theoretical auto covariance and autocorrelation function 

cannot be available, the sample multivariate space-time autocovariance 

function defined in Equation (7-42), and the sample multivariate space­

time autocorrelation function in Equation (7-43), 

g,h-1,2, ••• ,~; s,~,u-O,1,2, ••• 
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are used. Therefore, in identification the sample autocovariance 

function is used to construct the equation sets to solve for the 

sample Multivariate Space-Time Partial Autocorrelation Function 

vector. 

For convenience, the theoretical, properties of the multivari­

ate space-time auto correlations and the multivariate space-time 

partial auto correlations for the statistical properties of the Multi­

variate STAR, Multivariate STMA, Multivariate STARMA models are 

summari·zed in Table 7-2. These cut-off and tail-off 'properties are 

used in Pattern matching to the sample estimates in order to choose 

the potential candidate in the identification stage. It should be 

noted that for MULSTMA models, we can get the information qj ll: = 
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{ jg I' 2 r} j 1 2 3 r from the autocovariance function. max q '~-1, ,., •• ,,,,; .. , , ' ••• ''''' 

But for the individual qjg, we cannot tell anything until estimation 

is done and the parameter significance test is performed. 

In univariate STARMA model building, assuming that up to 

Aoth order neighbors are considered to be potentially significant, 

(A +1) streams of the sample space-time autocorrelation are computed o 
for candidate model identification. For practical purposes, 

parsemoneous models are sought so AO should not be too large. There-

for, the examination of (AO+I) streams of space-time autocorrelation 

functions to find the ~attern for identification should not be too 

cumbersome a task. However, in building a MULSTARMA process that 

2 
contains ~ observation categories, ~ such (AO+1) streams of multi-

variate space-time autocorrelations are computed and examined. 
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Table 7.2. The Statistical Properties of the Multivariate Space­
Time Autocorrelation Functions and the Multivariate 
Space-Time Partial Autocorrelation Functions 

Model Form 

MULSTAR(Z;,p,A) ...... 

MULSTMA(Z;,q,A) ... ... 

Multivariate Space-Time 
Autocorrelation Function 

Tail-off 

Cuts off after qj* time 
lag 

Tail-off 

Multivariate Space-Time 
Partial Autocorrelation 
Function 

Cuts off after p time lag 
and A spatial lag .... 

Tail-off 

Tail-off 
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'j 
Examining thesec;, ~ (AO+l) streams sample multivar:i:ate space-time 

autocorrelation functions in numerical values does become a cumber-

some task and needs to be simplified.even when is only of moderate 

size. 

To simplify this process, a three step procedure should be 

followed. The first step, the encoding step, the sample multivariate 

space-time autocorrelation functions are encoded into three coded 

classes; the significantly positive, the significantly negative and 

the insignificant. The' second step, the pattern matching step, the 

patterns of these coded sample multivariate space-time autocorrelation 

functions are matched to the theoretical patterns of know processes. 

The third step, the decision step we come back to examine the 

numerical values before making the final judgement on the viability 

of the candidate model. 

An encoding ap?roach has been proposed by Box and Tiao [1981]. 

A significantly positive is denoted by a "+" symbol, a significantly 

negative by a "_" end insignificant by a " II To encode the computed 

multivariate space-time autocorrelations, these autocorrelations are 

standardized by the estimated standard deviations that are computed 

according to the formulae listed :I.n Table 7-1. Since the standardized 

multivariate space-time autocorrelations are N(O,l) distributed for 

the white noise process fQ~ an = 0.05 level, the multivariate space-

time autocorrelation function is encoded as "+" if its standardized 

value is greater than 1.96, "_" if less than -1.96 and II II . if it is 

in between. It should be noted that these encoding values simplify 

the information for model identirication but loses all the necessary 



572 

informatioll for the initial estimates of the parameters. However, 

since the MULSTAPJ1A model contains too many parameters to make the 

effort for initial estimates practical, and the numerical values of 

the multivariate space-time auto correlations are still accessible, 

this loss is not significant. 

To illustrate how the encoded symbols will be used for model 

identification, we ex~ine the encoded multivariate space-time auto-

correlation functions and the encoded multivariate spa,ce-time partial 

, autocorrelation functions of a 1';=2 system shown i.n F'igure 7~·10.· The 

encoded 
"gh ' ' "gh p~ (k) cuts off while the encoded $s (k) tails off, so this 

pattern is from the MULS!MA processes. 
... lh 

A further step, since Ps 

"2h cuts off at k=2, and p cuts off s 

pattern that ql* = max{qll,q12} = 

at k=l, so we can tell from this 

2 and q2* _ max{q2l,q22} = 1. 

7.7 Estimation 

After selecting the candidate model in the identification stage, 

we need to estimate the parameters of the candidate model. In this 

section, we will give the procedure that leads to the conditional 

maximum Ukelihood estimates for MULSTAR(I';,p,A), MULSTMA(I';,q,mj and - ~ ~ ~ 

MULSTARMA(I';,p,q,A,m) models. We will first assume that the variance-... -- ...... 

cova~iance matrix of the noise G is known, develop the procedure to 

estimate the model parameters and then 'Vie turn to the G Ilnknown situa-

tion where we employ the two-stage estimation procedure. We will 

restrict ourself to the conditional maximum likelihood estimators and 

condit.ional least square estimatol.s because of the ,CJomputation effi-

ciency of these conditional estimators. 
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g h S 1 2 3 4 5 6 7 8 9 10 
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Figure 7-l0(b). The Encoded Theoretical Multivariate Space~Time 
Partial Autocorrelation Functions of MULS~~(2,q,m) 
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7.7.1 Conditional Maximum Likelihood Estimation with G Known 

In this section, the cov~riance, G, that has been defined in 

Section 7.1, is assumed to be known. It is well known that the uni-

variate STARMA models are linear in the autoregressive parameters 

and nonlinear in the moving average parameters. The MULSTARMA models 

inherit the same characteristics, i.e., linear, in the AR components 

and non-linear in the MA components. Due to their linearity~ we can 

apply the results of linear model theory to reduce the search efforts 

in estimating the autoregressive parameters. In the following, the 

conditional maximum likelihood estimation procedures are developed to 

estimate the model parameters in the order of MULSTAR, MULSTMA and 

MULSTARMA models. 

7.7.1.1 MULSTAR(~,p,A) Model Estimation. Consider the 
ow oW 

MULSTAR(~,p,A) model 
ow ow 

(7-66) 

h-l,2, ••• ~~; t-l,2, ••• ,T 

where eh(t) is normally distributed with 

k"'O 
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Denoting 

Z(t)' - (Zl(t)',Z2(t)', ••• ,Z(T)'); z' - (Z(1)',Z(2)', ••• ,Z(T)') 
~ ~ - - - - - -

l' 2' 1;' 
<P' I. (~ ,2 ' · .. , p.' ) 

~ir (<P~~), j 1 2 1; k 1 2' ij t ° 1 2 A
ij 

% • &N S, , ••• " -, , ••• ,p , ., , , ••• , k 

as stated pre~ious1y in Equation,s (7-2) and (7-8) of Section 7 .1.1.f7~ 

rewrite the MULSTAR model to, 

(7-67) 

where ~ (t) is ~ormal1y distributed with 

- {
Go E(e:(th:(t+k)' ) ... ... otherwise 

The matrix X(t) is a matrix where the columns that correspond to <p
hg 

. k.Q., 

defined as 

(7-68) 

.e. where N(h,g) is the r.;·LN null matrix with the (h,g) block of (I.NXLN) 

size replaced by wet), and G - [Ghg ] as defined previously. 

I 
I 
I 
}I • 

As an example, consider the MULSTAR(2,p,A) model with ..... 
f - (2,1,1,1), A • (1,0,0,0,0). 

t-1,2, ••• ,T 

which can be rewritten as 

- X(t)<P + e:(t) ... .. .. 

11 ~-~~rl-~ where the column that corresponds to <P is Z(t-l). 
11 ' 0 I 0 

577 

(7-69) 

(7-70) 

.:. 

~ .. 
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We have assumed that E(t) is normally distributed, and the joint ... 
density distribution function of E is ... 

Since the transformation of the Z's ... 

E(t) - ~(~) - X(t)~ ...... ... 
(7.-72) , 

t-l,2, ••• ,T 

ha5 unit Jacobian, we have the joint density distribution function of ~ 

h h* 
conditional on~, G and Z (t), h •. l,2, ••• ,~p I-p ~t<O, ... 
as, 

h* 
feZ 1~,G,zh (t); h - 1,2, ••• ,~, l-p ~t~O) ...... -

(7-73) 

h h* 
Denoting ~*' - (Z (t); h - 1,2, ••• ,~ and I-p ~t~O), and taking the 

logarithm of the joint density, we get the log likelihood to be 

(7-74) 

11 .jJ 

]t 

ll'·' r . 
~ " 

I ' , 
J 

I,. 11 

fl .. ·. II 

1_, ! ; i 
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where 

SS(~,G,Z*) [(Z(t)-X(t)~)'G(Z(t)-X(t)~)] ... ... ..... ...., "'" ..., 

To maximize the likelihood function is exactly the same as to minimize 

the sum of squares SS(~,G,Z*) for given G~Z*. So the conditional ... ... ... 
maximum likelihood estimator is the same as the least sum square when 

G is given. 

Since G is positive definite and symmetric, G-L'L, and 

2 
!..§.§. (~,G,Z*) - X' (tJG X(t) 
a~2 ... ... ... 

- LX(t)'(LX(t» (7-75) 

where L'L - G is positive definite. So set a;;(2,G,~*) 2 0 gives the 

least square estimator as well as the conditional maximum likelihood 

estimator 

T . T 
$ - [I X'(t)G X(t)]-l[ L X'(t)G Z(t)] 
- t-l t~l ~ 

(7-76) 

Equation (7-76) is simple inform, but computationally we prefer 
T I 

the matrix L X' (t)G X(t)!; which will be inversed, to be of smaller 
t-l 

dimension if possible. When G has the property .:.. 

n 
\; 
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when h-g 

otherwise 

i.e., eh(t) and Eg(t) are uncorrelated when h~g, we can decompose .. .. 
i Equation (7-76) and compute <p , i-l,2, ••• ,T; separately. This will .. 

give better computation efficiency" 

Denote X(t) ,. (Xl (t),X2(t), ••• ,ZT;(t).), where Xi(t) is the matrix 

that containS al~ the columns that corresponds to <pi in corresponding .. 
i . 

order. We note that X (t) contains null row vectors except those from 

«i_l)LN+l)th to (ioLN)th rows. When G contains null off-diagonal 

blocks, we have 

T T 
L X'(t)G X(t) - L [(X'(t)G X(t»gh] 

t-l t-l 
(7-77) 

where (X'(t)G X(t»gh is the (g,4) block of X'(t)G X(t) matrix, then 

i' i 
we have (X'(t)G X(t»ii ,. X (t)GiiX (t), and (X'(t)G X(t»gh" 

T 1 gh gh 
Let [1 X'(t)GX(t)]- "" [(X G X) ] g,h-l,2, ••• ,T; where XGX 

__ 1 

~4 T 
is the (g,h) block of the inverse of L X'(t)GX(t). Then we have 

t-l 

T 

I 
(2 (Xg(t) 'GXg(t» ]-1 

(XGX)gh _ t--l 

o 

wnen g-h 

otherwise 

(7-78) 
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T 
Also the vector 1 X'(t)GZ(t) is resulted in the form 

t-l 

T 
L X' (t)GZ(t) -

t-l .. 

· · • 

o 
• • 

A "'1' "'i' AT; , So the resulting estimator <p' - (<p- , ••• ,<1> , ••• ,$ ) 
.... 4IW .. .. 

581 

(7-79) 

(7-80) 

This is exactly the same results as thc)se that we estimate all 

the T;-variate separately under the condition that G contains no non-

null off-diagonal matrix. 

the ~JLSTAR(2~p:A) model with p=(2~1,1,1) -- ~ 

and ~.(l,O,O,O,O) as we ,mentioned before, we have 
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r 

where 

X(t) - (xl(t),x
2

(t» 

X1(t) - (!i~(t),xii(t),xi~(t),~~(t» 

X2(t) • (xi~(t),xi~(t» 

xi~(t) • [:~ ~J ~(t-1), ..).ll(t) - ~~lJ~J Z(t-1) . [0 , 0 ~ [0: OJ ... 

__ 12 to I IJ _..1.1 x:- (t) - --,..-- Z(t-l), x: (t) • 
10 0 J 0 ... 20 tI I OJ --+--- Z(t-2) 010 ... 

when e1(t) and e2(t) are uncorre1ated, i.e., ... 

We have 

T T 
I X'(t)GX(t)· I 

t-1 t-1 
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(7-81) 

(7-82) 
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(X'(t)GX(t»l2' (X'(t)GX(t»21 are null submatrices, 

1 (X'(t)GX(t»ll"" [gij(t)] i,j-l,2,3,4 

2 
(X'(t)GX(t»22"" [gij.(t)] i,j=-1,2 

1 1 1 
gl1 (t) - ~, (t-l) , Gll~ (t-l) 

gi2(t) - :l(t_l) 'G~lw(l)l(t-l) 

1 1 2 
g~3 (t) • ~. (t-l) , G11~ (.t-l) 

1 1 1 
g14(t) • : (t-l)'Gl1: (t-2) 

gi2(t) • (w(l)~1(t-l)'Gll(w(1)~~(t-2» 

1 1 (1)' 2 
g23(t) - ~. (t-l)'w Gll: (t-l) 

gi4(t) • ~(t-l),w(l)'Gll~l(t-2) 

1 2 2 
g33(t) - : (t-l)'Gll: (t-l) 

1 2 1 
g34(t) - : (t-l)'Gll~ (t-2) 

1 1 
gij (t) - gji. (t) 
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We get 

T 

211 
g11(t) • ·~.(t-1)'G22~ (t-l)' 

gi2(t) • ~1(t-1)'G22~2(t-l)' 

222 
822 (t) - ~ (t-1)'G22~ (t-l)' 

1 1 

iz (t-l) 'G' Z (t) ... 11 ... ' 

., (W(l): 
1 

(t-l) 'Gl1~1 (t) 

2 1 
:. (t-l) 'Gll~ (t) 

~ X' (t)GZ(t) -
t-1 ... 1 1 

: (t-2) 'GIl: (t) 

1 2 
:' (t-l) 'G22: (t) 

2 2 
Z (t-l) '<'i Z (t) ... 22 ... 

~1 ,. LX' (t)Gx(t) ]~i l (t-l) 'GU~l (t) 

(w(l)l (t-l» 'Gut (t) 

t (t-1) 'Gut (t) 

t (t-2) 'Gut (t) 
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(7-84) 

The result is exactly the same as that we get by estimating the 

first category and the second category separately, i.e., estimating 

. the MULSTAR(2'f'~)' f - (2,1,0,0), ~ - (1,0) model 

and the MULSTAR(2,p,A), p - (0,0,1,1), A - (0,0) model 
~ - - ~ 

separately. 

The above result is intuitively correct even without derivation. 
h . 

Since when € (t) and €8(t), g~h are correlated, all ~ variate parame-... ... 
ter estimators will ~~ the knowledge of Ghg and will result in 

different estimates from those gotten by separate estimation. But 

when €h(t) and €g(t), h~j, are uncorre1ated, the knowledge of Ghg = ° 
... ... ' 

is used, so ~h, ~g are independent and it is natural to get the same 

result. 

In previous discussions, we only assumed that Z* is specified. 

Z* is needed to construct the X(t) matrix. In practice, we set Z* ,. 0, 

which is its unconditional mean. 
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7.7.1.2 MULSTMA(~,q,m) Model Estimation. Consider the .... 

E(t) is normally distributed with 

otherwise 

h h* 
Denote :* • (: (t), l-q ~ t ~ 0; h - 1,2, ••• ,~) vector, we 

have the joint density distribution function of E 

feE I O',Z*) ...... 

The transformation 

h=-1,2, ••• ,Z;; 

has unit Jacobian, so the joint density distribution function of Z 

~onditional on O',E* is 
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(7-85) 

(7-86) 

(7-87) 
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f(zis *) ()-~.LN.T/2, ,-T/2 1 
.... ': • 2~ G .exp{- 2 SS(~,:*)} 

where 

(7-88) 

with 

Take the logarithm of Equation (7-87), with Z available and we 

have the logarithm likelihood function conditional on E*, ~ as 

(7-89) 

When the variance-covariance matrix G is given, we see that to 

maximize the conditional logarithm likelihood function is equivalent to 

minimize the weighted conditional sum of squares SS(~,:*), which is 

weighted by G-l~ 
» . 



r 
--~--------------------------------

Because of the nonlinear nature of the MULSTMA model in its 

moving average parameters, we cannot have closed form expression for 

the conditional 'maximum likelihood estimator. To get the conditional 

maximum likelihood estimate, we search through the ~'s space and we 

compute the e:(t), t'·1,2, oe., T by recursively applying Equation ... 
and setting :* to its unconditional mean zero. 

7.7.1.3 MULSTARMA(~,p,q,A,m) MOdel Estimation. Consider the ............ 
following ~IJ1ST.ABMA(~,p"q,A,m) model. .. .... .. .. 

where e:(t) is normally distributed with ... 

otherwise 

The joint density distribution function for e: is -

f(:IG) .. (21T)-~·LN.T/2IGI-TJ:;t exp{- i y. :(t)'G-1e:(t)} 
, ; tal 

Since the transformation 

588 

J 
'I 

" 
I 
H 
I 
I 
I 

~ 

i 
r 
I 
I 

I ! 
!l 

Iii 
I ~ 

1 

I . 

I I 

I 
I 
I 

I 
I f :f 

I l' 

I \. ~ 

[f] 

I 
, 

~ , , 

[J 

U 

1 

589 

(7-91) 

has unity Jacobian, so given ~*, :*, 2, ~, G, we have the joint density 

distribution function of Z conditional on Z*, ~*, ~, cr, G as follows, 
<00 .... IIV ...... 

where z* and e:* are the values of Z(t) and e:(t) that are needed to ...... ..... 
h 

start computing: (1), h-1,2, .o •• ,~, in Equati~n (7-91) 

where 

Z (t)' _ 'ZI( )' Z2( )' ~, ... c· \ ... c t ' ... c t '···J~c(t» 

(7-92) 
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The logarithm likelihood function of $,0 for a given ~, ~, ~*, 

e* can be gotten directly from Equation (7-92) ... 

in f(2,~I:,:*,:*,G) a -~.LN.T/2.in(2r.) - ~ inlGI 

1 - 2 SS(2,~,G,:*,:*) (7-93) 

whel:e SS($,a,G,e*,Z*) -
oIIW.... .... .... 

Z (t)'G-lZ (t) is the weighted sum square 
c ... c . 

for given $, a, Z*, E*, G. .... ......... .. 
Fro~ Equation (7-93) we see that the conditional maximum likeli-

hood estimates will be equal to the minimum weighted sum square esti-

mates because to maximize the logarithm likelihood function is exactly 

the same as to minimize the weighted sum square. 

Since the MULSTARMA(~,p,q,A,m) model are of linear nature in .............. 
autoregressive parameters and of nonlinear' nature in moving average 

parameters. So no closed form expression estimators can be available, 

and at least we have to s~arch through the ~ parameter space. Because 

all the :(t-k)'s can be expressed in terms of :(t-k), ~(t-k-l), ••• ,~*, 

and this expression is the linear function of $, so with 6 given we can ... ... 
transform the MULSTARMA model into MULSTAR model, which we have closed 

form expression for the conditional maximum likelihood estimator. 

Obviously the transformed MULSTAR model will not have the original 

weight matrix wei) as its weight matrix and will not necessarily retain 

the original model parameter p,A. By such transformation, we can only -.... 
search through the ~ parameters spa.ce rather than the whole (2'~) space 

to get the conditional maximum likelihood estimates. 

1 

I 
I 

I 

I 

i, fij 
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7.7.2 Conditional ¥.aximum Likelihood Estimation When G is Unknown 

So far in this chapter, we have assumed that G is known, and 

the conditional maximum likelihood estimators are exactly the same as 

the weighted conditional minimum least square estimators, but it is not 

unusual that G is not known. In such case, we will employ the two 

stage estimation procedure. At the first stage, we will assume the 

2 
G z a I and get the first stage, estimates, say ($*,6*) for MULSTARMA, 

($*) for MULSTAR and (6*) 'for MULSTMA. Then we compute the estimated 

residuals recursively and tes.t the hypothesis HO; 

hypothesis is accepted, the first stage estimates 

2 G=a I. If the null 

will be accepted as 

the final estimates. If the null hypothesis is rejected, we will use 
T 

the estimated covariance matrix G = I ~(t)e(t)' as the true one and 
t=l 

perform the second stage estimation to get the estimates of the second 

stage and accept it as the final estimates. 

7.8 Diagnostic Checking 

After the model parameters are estimated, the candidate model is 

subjected to the test of model adequacy as well as model parsimony, 

i.e., are examined to see if all the significant structures are included 

and to see if all the structures included are significant or should be 

eliminated. 

To test the model parsomony is equivalent to test the signifi­

cance of the individual model parameters that appear in the candidate 

model. Two approaches for testing the significance of model parameters 

has been given in Section 4.4.2, the confidence region approach and 

the overfitting approach. The confidence ~egion appr?ach is model 
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independent once the point estimates of the model parameters and the 

computed sum of squares surface are available. Similarly the over-

fittil1g approach tests the significance of the model parameter only 

based on the extra sum of squares .and is also model independent. 

Therefore since these two approaches are model independent, they can 

be app2:ied to test the significance of the parameters of the MULSTARMA 

model as well. 

To test the model adequacy, the model residuals are examined 

to see if any structure is left. The sample multivaraite space-time 

autocorrelation-functions of the model residuals are computed and en­,. 

coded into the ".", U+" and "_" sym~ols according to the procedure 

proposed in identification section. The sample multivariate space-

time auto correlations by itself can be applied to check if any un-

~hausted structures exist. However, the encoded sample multivariate 

space-time autocorrelation functions can be used by itself and is more 

practical to be applied to solely examine the possibility unexhausted 

structure. 

7. 9 Exar.lple 

The monthly crime data of murder, rape, robbery and burglary 

at Cleveland are available from February 1970 to October 1974. The 

Concentrated Crime Patrol (CCP) was. implemented as part of the 

deterrence, detection and apprehension 

Concentrated Crime Patrol involved the addition of 12 

r patrolmen to the Cleveland police force to be dep 

crime areas during ~igh crime hours; members of the CCP 
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patrolled the streets in specially marked impact cars responding to 

all crime-related requests for service. The cCP was deployed only 

in the three eastside districts (IV, V and VII) as shown on the Map 

in Figure 7-11. Districts IV, V and VI are thus referred to as the 

target area, while district III is denoted as the 'adjacent area and 

district I and II are the rest or remaining area. For greater detail 

of th~s intervention program see J. S. Dahmann (1975). The data set 
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is used to illustrate the modeling procedure described in this chapter, 

the scaled crime data is modeled, from February 1970 to December 1972. 

This model is employed to construct the forecasting function as well 

as to evaluate the effect of CCP on the monthly basis. 

The data is listed in Table 7-3 and the mean values and vari­

ance by location and crime type are contained in Table 7-4, where 

Location 1: the target area, 

Location 2: the adjacent area, 

Location 3: the rest area, 

and the follOwing category index have been assigned for the crimes, 

Category 1: Murder, 

Category 2: Rape, 

Category 3: Robbery, 

Category 4: Burglary. .:.. 

~ 
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Figure 7-11. CCP Target Areas, Adjacent Areas and Rest Areas. 
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I 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 

Table 7-3. The Concentrated Crime Patrol (CCP) Data 

Category 1 

Location 
123 

15 3 3 
21 2 9 
22 2 2 
26 2 0 
16 1 8 
13 4 3 
28 2 2 
26 2 3 
21 3 4 
10 3 4 
22 2 a 
14 a 3 
22 0 2 
1')' 0 7 
21 4 2 
19 3 7 
15 2 1 
18 3 4 
25 1 6 
18 1 2 
24 4 3 
14 2 7 
27 3 0 

• 23 2 6 
14 0 3 
17 4 0 
22 5 1 
14 3 2 
15 2 6 
32 3 8 
21 2 3 
30 4 6 
21 2 2 
16 4 3 
25 0 8 
21 1 3 
19 3 1 
14 1 8 
15 3 15 

Category 2 

Location 
123 

19 5 2 
19 3 7 
19 3 4 
18 7 2 
26 1 l 
13 1 0 
16 7 ·2 
15 7 2 
19 1 0 
26 5 1 
19 8 5 
17 6 3 
24 7 2 
26 11 0 
22 3 1 
33 6 3 
23 3 4 
19 8 4 
33 7 1 
33 9 11 
30 4 2 
28 8 1 
28 4 4 
27 8 l3 
35 6 7 
39 3 7 
22 4 8 
22 12 3 
26 6 4 
25 5 5 
23 ,. 13 0 

26 5 3 
33 3 5 
25 2 ·7 
24 3 2 
30 5 0 
23 0 9 
25 2 2 
1(1 5 5 

Category 3 

Location 
123 

394 68 52 
339 85 66 
326 65 34 
283 64 42 
246 59 30 
307 80 28 
358 57 37 
324 72 23 
379 .. 74 40 
349 60 34 
501 68 39 
401 84 40 
343 63 40 
323 67 52 
359 77 32 
316 63 36 
280 73 26 
343 99 43 
397 93 40 
369 96 49 
459 66 51 
447 80 47 
484 94 55 
391 68 51 
290 50 72 
357 58 53 
296 57 59 
2~!0 66 49 
289 73 62 
285 77 61 
335 69 52 
313 68 48 
396 78 68 
449 73 87 
406 70 73 
399 64 31 
297 52 .19 
293 42 56 
~.85 68 14 

Category 4 

Location 
123 

642 112 164 
691 124 201 
702 122 160 
578 81 140 
598 99 157 
557 126 :).34 
496 84 131 
544 71 147 
703 103 193 
676 100 184 
818 100 165 
789 72 120 
677 59 IG7 
746 76 173 
655 72 137 
575 76 176 
538 66 179 
611 S8 176 
647 107 164 
693 111 182 
838 90 173 
912 90 226 
971 H4 230 
647 63 180 
633 98 214 
699 124 225 
531 87 228 
548 84 177 
442 79 208 
422 61 226 
479 7fl; 186 
506 70 179 
644 90 231 
672 87 263 
642 85 237 
453 80 258 
356 97 260 
449 80 2G7 
393 91 203 

-- - ~---
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40 
41 
42 
43 
44 
45 
46 
47 
4'8 
49 
50 
51 
52 
53 
54 
55 
56 
57 

. Category 1 

Location 
123 

10 0 5 
17 2 11 

9 5 5 
18 4 14 

8 1 13 
11 3 8 
1~ 1 8 
23 3 7 
12 3 2 
12 4 1 

9 3 2 
16 4 3 
13 3 3 
16 3 0 
22 8 3 
16 7 2 
21 5 1 
26 9 4 

Table 7-3. 

Category 2 

Locatlion 
123 

25 2 8 
20 6 10 
43 6 0 
24 4 22 
25 4 6 
32 3 6 
38 5 2 
24 7 4 
32 8 8 
17 10 8 
40 8 12 
37 6 12 
37 3 11 
31 3 27 
23 5 7 
32 7 6 
36 5 2 
27 3 9 

(Cont'd) 

Category 3 

Location 
123 

255 58 24 
190 46 80 
222 51 53 
209 55 97 
232 47 66 
293· 67 25 
326 66 65 
321 84 59 
293 62 56 
261 53 81 
323 58 61 
274 86 92 
259 69 74 
28;1. 85 83 
359 90 04 
384 III 58 
306 82 64 
417 83 224 

Category 4 

Location 
123 

409 68 280 
361 57 277 
412 80 266 
292 63 422 
325 65 323 
430 71 257 
435 67 287 
429 85 361 
473 113 280 
478 89 253 
565 119 255 
546 109 2S4 
576 SS 337 
605 III 365 
592 104 378 
574 94 389 
505 105 455 
742 95 4C6 
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] Table 7-4(a). Mean Levels of the CCP Data 
(t=l to.35) 

1 'I' ~ I 
",".N Crime Location 

~ 
Category 1 2 3 

1 20.1 2.3 3.7 

1~ 
2 74.3 5.3 4.0 

3 355.0 71.8 47.7 

1 ~.i 
4 643.5 90.0 184.4 

, rn 

ill Table 7-4(b). Variances of the CCP Data 
(t"'l to 35) 

, 
~ ~u 

Crime Location 
......, 

Ii 
~t 

""'" 

Category 1 2 3 

1 2.7 1.8 6.6 

, 

] ;,1: 
2 36.6 7.0 11.1 

3 3746.0 133.0 206.2 

~ 4 14770.0 315.6 1147.0 

J 'J , ': 1 

I 1 
J 
~ f , ~ 

11 , 

'~,",_,:~.:::~~-;;,~,;~~:;p.~ __ ", ,w~,·,,, . 
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The standard deviations are used to scale the crime data. The dis-

tances between centroids of these three areas were measured from the 

map in Figure 7-11 and are, 

1 2 3 

1 o 4.5 7.2 

2 3.5 o 4.5 (in miles) 

3 7.2 4.5 o 
L 

According to the relative positions and the inverse centroid distances, 

the weight matrix w(l) and w(2) are assigned. The resulting weight 

matrices are, 

1 

w(l} = 2 

3 

o 

7/16 

o 

1 o 

o 9/16 

1 o 

7.9.1 MULSTARMA Model Building 

1 

w(2) = 2 

3 

o 

o 

1 

1 

o o 

o o 

To build the MULSTARMA model for the Cleveland Crime Data, the 

sample multivariate space-time autocorrelation function and the sample 

multivariate space-time partial autocorrelation function are computed 

and encoded into dot, plus, minus symbols. The numerical values are 

listed on Table 7-5 and the encoded symbols are contained in Figure 

7-12. In Figure 7-12 and Table 7-5, we see that, p~6(k), pi6(k) cuts 

f --22() --22(k) --33(k) n23() --44() ",34 ·1 ff of at k=2, POD k 'P20 ,POO ,POO k , POO k , POO tal. so, 

~-"~.'r>'"' ~ •• - .0- -.. ~, rl , ' . ' 
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Table 7-5(a). The Sample Multivariate Space-Time Autocorrelations 
for' the Cleveland Crime Data 

--II -P50 (k) 

Space Lag Standa~dized 
",11 
P50 (k) 

Time Lag 0 1 2 

1 -0.14 0.03 0.07 / -1.41 0.36 0.72 
2 -0.11 0.03 0.10 / -1.12 0.32 1.00 
3 . -0.04 0.17 0.09 / -0.42 1.67 0.88 
4 -0.09 0.08 -0.37 / -0.93 0.80 -3.57 
5 0.08 , -0.12 0.16 / 0.75 -1.19 1.:'5 
6 0.09 -o.en 0.05 / 0'.87 -0.11 0.50 
7 -0.13 -0.02 -0.06 / -1.22 -0.20 -0.57 
8 0.03 0.16 -0.00 / 0.35 1.52 -0.02 
9 -0.10 0.16 0.00 / -0.94 1.44 0.00 

10 -0.08 -0.19 -0.11 / -0.70 -1.67 -1.01 
11 0.17 -0.17 0.25 / 1.47 -1..49 2.12 
12 0.05 0.01 -0.16 / 0.44 0.15 -1.38 
13 -0.12 0.14 -0.03 / -1.05 1.15 -0.31 
14 -0.06 0024 0.16 / -0.47 1.90 1.31 
15 -0.13 0.14 -0.15 / -1.01 1.11 -1.20 
16 0.21 -0.19 0.18 / 1.64 -1.48 1.37 
17 0.13 -0.19 0.04 / 1.02 -1.42 0.34 
18~ -0.35 -0.18 -0.01 / -2.55 -1.32 -0.10 
19 0.05 -0.12 -0.14 / 0.39 -0.88 -1.00 
20 -0.11 0.00 -0.31 / -0.73 0.05 -2.11 



----------.- ~ 

r 

Table 7-5(a). (Cont'd) 

... 12 
-P50(k) 

Space Lag "12 Standardized P50 (k) 

Time Lag 0 1 2 

1 0.12 -0.02 0.11 / 1.23 -0.20 1.17 
2 0.16 -0.05 -0.08 / 1.67 -0.49 -0.86 
3 -0.03 -0.00 0.02 / -0.35 -0.01 0.19 
4 -0.12 0.08 0.12 / -1.21 0.77 1.20 
5 -0.05 0.08 -0.02 / -0.49 0.75 -0.27 
6 -0.03 -0.05 -0.17 / -0.35 -0.52 -1.58 
7 -0.06 -0~11 , 0.00 ' / -0.61 -1:.02 0.00 
8 -0.15 -0.10 -0.01 / -1.38 -0.94 -0.12 
9 -0.08 0.07 -0.06 r -0.71 0.65 -0.59 

10 0.37 0.08 -0.10 / 0.31 0.71 -0.91 
11 -0.12 -0.13 0.06 / -1.02 -1.16 0.54 
12 0.10 -0.25 -0.04 / 0.86 -2.13 -0.37 
13 -0.01 -0.23 -0.08 / -0.11 -1.87 -0.68 
14 -0.15 -0.08 -0.15 / -1.25 -0.64 -1.22 
15 0.03 0.03 -0.17 / 0.24 0.26 -1.32 
16 -0.26 0.06 0.02 / -2.00 0.65 0.19 
17 -0.04 -0.06 0.09 / -0.32' -0.46 0.66 
18 0.20 -0.05 0.01 / 1.43 -0.39 0.05 
19 0.00 -0.17 -0.15 / ,,0.04 -1 0 18 -1.03 
20 -0.29 -0.03 0.14 / -1.94 -0.24 0.96 
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Time Lag 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

"13 P50(k) 

0 

-0.10 
0.13 
0.12 
0.09 

-0.00 
-0.21 
-0.08 
-0.08 
-0.12 
-0.18 
0.01 
0.08 
0.11 
0.07 
0.10 
0.00 

-0.08 
-0.05 

0.06 
0.05 
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Table 7-5(a). (Cont'd) 

Space Lag ,,13 
Standardized P50 (k) 

1 2 

0.08 -0.00 / -1.07 0.84 -0.01 
0.00 0.15 / 1.38 0.06 1.50 
0.12 0.05 / 1.19 1.21 0.57 
0.13 0.12 / 0.87 1.25 1.16 
0.07 0.10 / -0.04 0.66 1.01 

- 0.03 0.01 / -2.01 0.28 0.12 
0.07 0.02 / -0.79 0.72 0.20 

-0.01 -0.21 / -0.73 -0.12 -1.93 
-0.22 -0~O3 / -1.12 -1.97 -0.33 
-0.12 0.02 / -1.58 -1.08 0.24 
-0.11 -0.08, / 0.14 -0.97 -0.70 

0.02 -0.06 / 0.70 0.17 -0.57 
0.06 -0.11 / 0.94 0.53 -0.92 
0.01 0.02 / 0.61 0.09 0.17 
0.07 -0.13 / 0.82 0.60 -1.06 
0.04 0.03 / 0.04 0.36 0.22 
0.03 -0.03 / -0.61 0.28 -0.24 
0.08 0.06 / -0~37 0.58 0.47 
0.01 0.01 / 0.46 0.12 0.09 

-0.15 -0.04 / 0.35 -1.00 -0.32 
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Table 7-5(a). (Cont'd) 

"'14 
'P50(k) 

Space Lag ,,14 
Standardi~ed P50 (k) 

Time Lag 0 1 2 

1 -0.04 0.02 -0.00 / -0.47 0.28 -0.06 
2 -0.00 0.02 0.09 / -0.05 0.25 0.91 
3 0.11 0.05 0.13 / 1.13 0.48 1.28 
4 0.14 0.10 0.12 / 1.42 0.98 1.22 
5 0.06 0.03 -0.04 / 0.65 0.33 -0.43 
6 -0.19 0 0 03 0.04 / -1.84 0.30 0.45 
7 -0.11 0.19 0.07 / -1.01 1.75 0.68 
8 -0.06 -0.04 -0.17 / -0.61 -0.42 -0.53 
9 -0.01 -0.29 0.00 / -0.82 -2.60 0.03 

10 -0.01 -0.21 -0.04 / -0.13 -1.85 -0.35 
11 0.02 -0.08 -0.07 / 0.18 -0.57 -0.60 
12 -0 0 03 0.03 -0.06 / -0.25 0.71 -0.57 
13 -0.09 0.00 -0.14 / -0.76 0.02 -1.19 
14 -0 .. 02 -0.08 0.02 / -0.21 -0.64 0.18 
15 0.08 -0.06 -0.05 / 0.66 -0.51 -0.40 
16 0.00 0.05 -0.06 / Qo03 0.40 -0.49 
17 0.06 0.17 -0~14 / 0.45 1.26 -1.02 
18 0.09 0.13 0.10 / 0.67 0.95 0.73 
19 0.15 0.10 0.08 / 1.04 0.72 0.61 
20 0.18 -0.05 0.07 / 1.23 -0.37 0.47 
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"'21 P50 (k) 

Time Lag 0 

1 -0.11 
2 0.07 
3 00 00 
4 0.21 
5 0.09 
6 0.04 
7 0.08 
8 0.18 
9 0.05 

10 0.21 
ll. 0.14 
12 0.07 
13 0.02 
14 0.23 
15 -0.10 
16 0.18 
17 -0.08 
18 -0.01 
19 0.16 
20 
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Table 7-5(a). (Cant' d) 

Space Lag "21 Standardized P50 (k) 

1 2 

0.11 -0.05 / -1.16 1.12 -0.55 
0.13 -0.06 / 0.72 1.30 -0.60 
0 0 00 0.09 / 0.08 0.08 0.91 
0.04 0.05 / 2.06 0.43 0.56 
0.08 0.12 / 0.87 0.81 1.19 
0.03 0.19 / 0.40 0.34 1.78 
0.19 -0.02 / 0.73 1.82 -0.22 
0.22 0 •. 02 I 1.70 2.01 0.21 

-0.16 0.13 / 0.48 -1.48 1.23 
0.16 0.08 / 1.84 1.42 b.69 
0.13 0.09 / 1.21 1.17 0.82 
0.08 0.07 / 0.58 0.68 0.58 

-0.03 -0.00 / 0.20 -0.28 -0.01 
-0.10 0.03 / 1;;89 -0.84 0.26 
-0.20 0.07 / -0.82 -1.61 0.55 

0.20 0.08 / 1.39 1.55 0.62 
0.47 -0.05 / -0.59 0.34 -0.43 
0.01 -0.08 / -0.08 0.11 -1.14 
0.09 0.27 / 1.14 0.63 1.90 



Time Lag 0 

1 0.28 
2 0.24 
3 0.08 
4 0.16 
5 0$12 
6 -0.00 
7 0.07 
8 0.01 
9 0.13 

10 0.12 
12 -0.00 
13 -0.11 
14 -0 .. 21 
15 -0.16 
16 -0.18 
17 -0.21 
18 -0.15 
19 -0.05 
20 -0.21 

Table 7-5(a). (Cont'd) 

Space Lag 

1 2 

-0.03 0.12 / 
0.02 0.15 / 
0.11 0.14 / 
0.04 0.20 / 
0.01 0.06 / 

'0.01 0.06 / 
0.12 0.11 / 

-0.06 0.23 / 
0.03 0.39 / 
0.09 0.27 / 
0.06 0.22 / 
0.02 0.03 / 
0.04 0.13 / 

-0.02 0.14 / 
0.11 0.09 / 

-0.15 -0.14 / 
-0.16 -0.08 / 

0.02 -0.08 / 
0.15 -0.04 / 

"'23 Standardized P50(k) 

2.86 -0.31 1.23 
2.47 0.22 1.53 
0.80 1.11 1.44 
1.63 0.44 2.01 
1.17 0.15 0.58 

-O.GS 0.12 0.58 
0.71 1.17 1.07 
1.04 -0.59 2.12 
1.15 0.26 3.44 
1.08 0.84 2.35 

-0.Q1 0.57 1.93 
-0 8 97 0.20 0.28 
-1.73 0.33 1.06 
-1.27 -0.16 1 .• 16 
-1.39 0.85 0..75 
-2.18 -1.10 -1 .• 07 
-1.08 -1.17 -0.61 
-0.34 0.15 -0.58 
-1.42 1.01 -0.29 
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Table 7-5(a). (Cont'd) 

P;~(k) 
Space Lag Standardized S2."4 (k) 

Time Lag 0 
50 

1 2 

1 0.07 0.04 0.17 2 0.21 0.11 
/ 0.73 0.50 1.80 0.15 / 2.14 3 0.10 0.09 1.18 1.5Q 

4 -0.07 
0.16 / 0.99 0.96 1.62 -0.00 0 .. 07 / 5 ""'I'O~06 -0.72 -0.03 0.75 0.07 -0.02 / -0.57 .6 0.09 0.67 -0.22 0.15 0.04 / 7 0.11 0.88 1.40 0.38 0.09 0.01 / 1.09 8 -0.03 0.83 0.17 -0.01 0.09 / -0.34 9 -0.00 -0.16 0.86 0.18 0.20 / -0.04 10 -0.06 1.58 1.81 0.12 0.15 / 11 -0.10 -0.59 1.06 1.38 0.07 0.10 / 12 -0.08 -0.88 0.61 0.84 0.07 0.03 / 13 -0.20 -0.73 0.61 0.28 -0.02 0.06 / 14 -0.14 -1.65 -0.16 0.56 -0.01 0.05 / 15 -0.14 -1.11 -0.09 0.42 0.17 -0.03 / 16 -0.31 -1.09 1.33 -0.26 -0.06 -0.13 / 17 -0.31 -2.35 -0.50 -1.02 -0.33 -0.12 / 18 -0.10 -0.22 

-2.32 -2.49 -0.94 
19 -0.16 

-0.09 / -0.77 -1.58 -0.68 -0.03 -0.09 / 20 -0.30 -0.12 
-1.12 -0.23 -0.67 -0.01 / -2.02 -0.85 -0.11 
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I \ j Table 7-5(a). (Cont'd) 

~. 
p31(k) 
50 

~ Space Lag "31 Standardized P50(k) i1 
Time Lag 0 1 2 

~ 
1 -0.01 0.10 0.09 / -0.10 1.08 0.95 il 2 -0.16 -0.00 0.00 / -1.59 -0.05 0.05 
3 -0.01 . -0.05 0.02 / -0.11 -0.48 0.20 I 4 -0.11 -0.00 -0.10 / 1.10 -0.06 -1.00 

~ 5 -0.10 -0.09 0.05 / -1.00 -0.85 0.47 
6 -0.03 -0.03 0.05 / -0.31 -0.28 0.53 

I 7 0.06 0.12 0.18 / b.58 1.18 1.72 
8 0.21 -0.07 0.03 / 1.89 -0.63 0.28 I 9 0.31 0.00 0.16 / 2.74 0.04 1.48 

10 0.16 0.02 0.04 / 1.39 0.24 0.38 1: 
11 0.02 -0.06 0.07 / 0.17 -0.55 0.64 'I 12 0.22 0.32 0.03 / 1.86 2.68 0.29 
13 -0 0 10 0.08 0.00 I -0.86 0.72 0.06 ] 1'. 0.03 -0 0 07 -0.06 / 0.30 -0.61 -0.48 
15 0.01 0.09 -0.19 / 0.10 0.75 -1.49 'I 16 -0.12 -0.02 -0.13 / -0.90 -0.20 -1.00 
17 -0.13 0.08 -0.10 / -0.98 0.64 -0.07 f1l 
18 -0.05 0.09 0.03 / -0.40 0.65 0.25 I ~ 
19 0.00 -0.11 0.09 / 0.01 -0.80 0.66 .. 
20 0.14 0.04 -0.03 / 0.93 0.26 -0.22 
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I 
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Table 7-5(a). (Cant' d) 

,,32(k) P50 

Space Lag "32 Standardized P50 (k) 

Time Lag 0 1 2 

1 0.19 0.16 0.20 / 1.95 l.66 2.02 
2 0.31 0.20 0.09 / 3.15 2.06 0.93 
3 0.02 0.11 0.11 / 0.21 1.11 1.09 
4 0.13 0.07 0.03 / l.30 0.67 0.32 
5 0.18 0.13 0.09 / 1.70 1.28 0.91 
6 0.13 0.07 -0.04 / l.22 0.73 -0.40 
7 -0.04 0.14 -0.05 / -0.39 1.31 -0.51 
8 0.07 0.12 0.02 / 0.65 1.15 0.25 
9 0.05 -0.03 0.02 / 0.46 -0.31 0.23 

10 0.14 -0.08 -0.06 / .. ' 1.26 -0.72 -0.54 
11 -0.04 0.05 -0!09 / -0.38 0.44 -0.78 
12 -0.09 -0.03 0.00 I -0.75 -0.27 0.04 
13 -0.04 -0.02 -0.04 / -0.39 -0.20 -0.36 
14 -0.16 0.05 -0.17 / -1.31 0.40 -1.36 
15 -0.33 -0.13 -0.14 / -2.57 -1.05 -1.14 
16 -0.24 -0.14 -0.23 / -1.84 -1.10 -1.77 
17 -0.33 -0.09 -0.21 / -2.42 -0.66 -1.61. 
18 -0.15 0.08 -0.20 / -1.13 0.57 -1.46 
19 -0~23 -0.09 -0.11 / -1.64 -0.67 -0.76 
20 -0.23 -0.21 -0.13 / -1.56 -~.41 -0.91 
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Table 7-5(a). (Cont'd) 

"'33 
P50(k) 

,,33 
Space Lag Standardized P50 (k) 

Time Lag 0 1 2 

I 
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Table 7-5(a). (Cont'd) 

"34 P50 (k) 

Space Lag "'34 Standardized P50 (k) 

Time Lag 0 1 2 

1 0.47 0.15 0.14 / 4.83 1.54 1.45 
2 0.27 0.05 0.02 / 2.71 0.52 0.23 
3 0.15 0.11 -0.06 / 1.51 1.16 -0.61 
4 0.06 0.06 -0.13 / 0.60 0.62 -1.27 
5 -0.08 0.')5 -0.15 / -0.78 0.51 -1.48 
6 -0.21 -0.07 -0.17 / -1.98 -0.70 -1.59 
7 -0.20 -0.70 -0.06 / -1.91 -0.64 -0.57 
8 -0.13 -0.14 -0.01 / -1..19 -1.33 -0.08 
9 -0.03 -0.12 0.11 / -0.26 -1.05 1.01 

10 0.14 -0.04 0.19 / 1.29 -0.38 1.64 
11 0.25 0.15 0.23 / 2.13 1.30 1.96 
12 0.22 0.08 0.27 / 1.90 0.67 2.27 
13 -0.01 -0.07 0.17 / -0.09 -0.58 1.43 
14 -0.05 -0.00 0.13 / -0.45 -0.04 1.06 
15 -0.20 0.11 -0 0 06 / -1.57 0.90 -0.53 
16 -0.29 0.13 -0.16 / -2.24 0.9!) -1.22 
17 -0.41 0.06 -0.19 / -3.05 0.47' -1.43 
18 -0.39 -0.09 -0.16 / -2.82 -0.64 -1.19 
19 -0.41 '0.03 0.02 / -2.86 0.24 0.17 
20 -0.15 -0.10 0.03 / -1.01 -0.07 0.21 
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1 0.37 0.03 0.06 / 3.80 0.35 0.69 
2 0.33 0.12 -0.00 / 3.30 1.23 --0.04 
3 0.30 0.31 -0.08 / 2.97 3.06 -0.81 
4 0.15 ' 0.27 -0.17 / 1.49 2.63 -1.70 
5 -0.02 0.17 -0.27 / -0.22 1.69 -2.58 
6 -0.13 -O.OJ. -0.27 / -1.29 -0.32 . -2.58 
7 -0.13 0.07 -0.08 /' -0.12 . 0.71 -0.76 
8 -0.00 -0.00 -0.03 / -0.04 -0.02 -0.31 
9 -0.09 -0.18 -0.01 / -0.80 -1.63 -0.09 

10 -0.02 -0.09 0.09 / -0.24 -0.78 0.77 
11 0.04 0.05 0.21 / 0.41 0.42 1.83 
12 0.03 -0.07 0.25 / 0.26 -0.66 2.13 
13 -0.05 -0.14 0.10 / -0.43 -1.19 0.85 
14 -0.03 0.09 0.09 / -0.24 0.76 0.72 f 
15 -0.20 0.14 -0.00 / -1.57 1.10 -0.00 
16 -0.29 0.05 -0.07 / -2.19 0.42 -0.54 
17 -0.39 0.03 -0.25 / -2~·h 0.26 -1.87 
18_-~ -0.48 -0.12 -0.16 / -3.'42 -0.86 -1.15 
19 -0.40 -0.05 0.06 / -2.83 -0.34 0.46 
20 -0.22 -0.04 0.04 / -1.50 -0.32 0.32 
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Table .7-5 (a) • (Cont'd) 

.... 41(k) 
P50 

. 
Space Lag 

Time Lag 0 1 2 

1 0.01 -0.03 -0.02 I 
2 -0.10 -0.05 0.01 I 
3 -0.12 -0.07 -0.06 I 
4 -0.02 0.19 -0.03 I 
5 0.04 0.12 0.03 I 
6 -0.00 -0.00 0.00 I 
7 0.07 -0.01 0.13 I 
8 0.11 -0.14 0.07 I 
9 0.12 -0.00 0.13 / 

10 -0.00 0.12 0.19 I 
11 -0.08 -0.05 -0.00 I 
12 0.13 0.11 -0.03 / 
13 -0.02 0.19 0.13 I 
14 -0.10 . -0.09 0.01 / 
15 -0.J.3 -0.15 -0.15 I 
16 -0~O3 -0.06 -0.00 / 
.17 -0.13 -0.13 -0.06 I 
18 0.01 -0.01 -0.03 I 
19 -0.01 -0.15 0.10 I 
20 0.18 -0.18 -0.04 I 

610 

.... 41 
Standardized P50 (k) 

0.17 -0.36 -0.28 
-1.02 -0.55 / 0.19 
-1.24 -0.77 -0.58 
-0.26 1.89 -0.30 

0.45 1.17 0.30 
-0.01 -0.06 0.00 
·0.70 -0.11 1.27 
0.98 -1.31 0.65 
1.08 -0.01 1.20 

-0.04 1.07 1.65' , 
-0.68 , , ~0.47 -0.02 
1.12 0.94 -0.28. 

-0.20 1.55 1.13 
-0.82 -0.71 0.15 

-1.19 ~1.16 -1.04 
-0.48 -:0.05 -0.26 

-1.00 -1.16 -0.45 
0.13 -0.12 -0.25 

-0.08 -1.05 0.69 
1.21 -1.25 -0.30 
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Table 7-5(a). (Cont'd) 

.... 22(k) 
P50 

Space Lag 
Standardized P;~(k) 0 1 2 

0.22 0.07 0.31 / 2.24 0.73 3.15 0.08 0.22 0.28 / 0.83 2.24 2.84 0.24 0.17 0.15 / 2.39 1.72 1.53 0.31 0.12 0.15 / 2.99 1.24 1.46 6.06 , 
0.13 0.26 / 0.59 1.27 2.51 0.26 0.24 0.20 / 2.47 2.28 1.91 0.19 -0.00 0.07 / 1.81 -0.02 0.72 -0.00 0.03 0.20 / -0.02 0.31 1.84 0.01 0.11 0·.06 / 0.17 0.99 0.54 0.04 -0.09 0.02 l 0.39 -0.83 0.23 -0.08 -0.00 -0.01 / -0.71 -0.07 -0.09 -0.17 0.24 -0.10 / -1.48 2.01 -0.83 ";'0.21 0.12 -0.08 / -1.74 1.04 -0.71 -0.11 -0.20 -0.09 / -0.89 -1.59 -0.72 -0.31 -0.15 -0.05 I -2.45 -1.23 -0.45 -0.20 -0.10 -0.35 I -1.54 -0.80 -2.67 -0.22 -0.06 -0.20 I -1.66 -0.49 -1.49 -0.29 -0.17 -0.28 I -2.13 -1.22 -2.03 -0.52 -0.10 -0.37 / -3.63 -0.72 -2.59 -0.22 -0.52 -0.31 I -1.53 -0.35 -2.08 



Time Lag 

1 
2 
3 
4 
5 
6 
7 
8 

'9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

--------- --

,,42 
P50 (k) 

Table 7-5(a). 

Space Lag 

0 1 2 

0.16 -0.05 0.10 
0.31 -0.08 0.12 
0.11 -0.23 0.22 
0.12 -0.15 0.07 
0.11 0.02 0.08 

-0.01 -0.09 ·0.09 
0.00 -0.24 -0.00 
0.10 -0.22 0.08 
0.08 -0.26 0.02 
0.16 -0.20 0.02 
0.19 -0.19 0.02 

-0.04 .-0.42 -0.05 
-0.03 -0.21 -0.12 
-0.05 0.07 -0.16 
-0.13 0.05 -0.07 
-0.21 -0.18 -0.12 
-0.03 0.00 -0.14 
-0.00 0.11 -0.28 
-0.14 0.15 -0.22 
-0.20 0.14 -0.16 

(Cont'd) 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

"42 Standardized P50 (k) 

1.71 -0.55 1.09 
3.08 -0.88 1.26 
1.07 -2.32 2.15 
1.20 -1.53 0.67 
1.12 0.24 0.75 

-0.16 -0.83 0.88 
0.07 -2.23 -0.06 
0.92 -2.01 0.74 
0.78 -2.36 0.19 
1.42 -1'.81 0.17 
1.64 -1.63 0.23 

-0.36 -3.56 -0.42 
-0.29 -1.72 -1.04 
-0.40 0.55 -1.29 
-1.01 0.45 -0.54 
-1.60 -.1.39 -0.94 
-0.22 0.06 -1.04 
-0.02 0.81 -2.05 
-1.02 1.10 -1.55 . 
-1.35 0.97 -1.07 
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Table 7-5(a). (Cont'd) 

,,43(k) 
P50 

Space Lag . ,,43 
Standard~zed P50 (k) 

Time Lag 0 1 2 

1 0.32 0.03 0.10 / 3.29 0.32 1.03 
2 0.12 -0.18 0.01 / 1.25 -1.82 0.12 
3 0.07 -0.18 -0.13 / 0.68 -1.79 -1.34 
4 -0.04 -0.15 -0.12 / -0.42 -1.53 -1.24 
5 -0.17 -0.18 -0.19 / -1.65 -1.72 -1.84 
6 -0.23 -0.21 -0.17 / -2.19 -1.96 . -1.66 
7 -0.10 -0.15 -0.10 / -1.00 -1.43 -0.93 
8 0.07 0.00 -0.03 / 0.65 0.02 -0.30 
9 0.21 0.04 0.07 / 1.93 0.42 0.65 

10 0.17 -0.16 0.11 / 1.48 -.1.38 1.02 
11 0.27 -0.26 0.26 / 2.35 -2.25 2.21 
12 0.40 -0.14 0.34 / 3.34 -1.20 2.85 
13 0.21 -0.09 0.27 / 1.71 -0.70 2.25 
14 0.02 -0.09 0.09 / 0&18 -0.76 0.75 
15 -0.17 -0.01 -0.03 / -1.36 -0.09 -0.27 
16 -0.13 -0.06 -0.09 / -0.99 -0.46 -0.70 
17 -0.02 -0.04 -0.13 / -0.15 -0.30 -1.00 
18 -0.16 -0.02 -0.12 / -1.20 -0.1.9 -0.91 
19 -0.24 0.04 -0.06 / -1.69 0.33 -0.42 
20 -0.07 0.19 0.06 / -0.50 1.2:8 0.42 



Table 7-5(a). (Cont'd) 

"44(k) 
P50 

Space Lag Standardized 

Time Lag 0 1 2 

1 0.56 -0.05 0.01 / 5.72 -0.52 
2 0.22 -0.14 -0.10 / 2.22 -1.40 
3 0.21 -0.10 -0.12 / 2.10 -0.10 
4 0.12 -0.03 -0.12 / 1.22 -0.34 
5 -0.03 -0.18 -0.20 / -0.30 -1.79 
6 -0.16 -0.24 -0.21 / -1.49 -2.30 
7 -0.04 -0.03 -0.13 / -0.41 -0.28 
8 0.80 0.04 -0.10 / 0.72 0.44 
9 0.04 -0.15 -0.07 / 0.38 -1.32 

10 -0.03 -0.29 -0.03 / -0.30 -2.5~ 
11 0.03 -0.15 0.15 / 0.30 -1.31 
12 0.05 -0.04 0.29 / 0.41 -0.41 
13 -0.06 -0.06 0.20 / -0.55 -0.53 
14 -0.15 -0.02 0.09 / -1.18 -0.19 
15 -Oe23 0~08 -0.03 / -1.81 0.66 
16 -0 •. 14 0.27 -0.08 / -1.10 2009 
17 -0.10 0.27 -0.10 / -0.78. 2.00 
18 -0.35 -0.04 -0.10 / -2.52 -0.30 
19 -0.28 0.06 -0.03 / -1.96 0.41 
20 -0.07 0.32 0.10 / -0.46 2.15 
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"4.4(k) P50 

0.15 
-1.00 
-1.24 
-1.18 
-1.90 
':'1.97 
-1.27 
-0.94 
-0.69 
-0.33 
1.28 
2.41 
1.65 
0.72 

-0.24 
-0.63 
-0.75 
-0.71 
-0.26 

0.72 
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Table 7-5(b). The Sample Multivariate Space-Time Partial 
Autocorrelation Functions for the Cleveland 
Crime Data' 

"II 
CPld, 

Space Lag "II Standardized CPld, 

Time Lag 0 1 2 
1 -0.17 0.06 0,,05 / -1.73 0.66 0.50 2 -0.06 0.03 0.25 / -0.63 0.34 2.52 3 -0.13 0.26 0.19 / -1.36 2.62 1.86 4 -0.06 0.02 -0.08 / -0.66 0.23 -0.79 5 0.02 -0.02 -0.21 / 0.22 -0.23 -2.04 

$12 
k 

Space Lag ,,12 Standardized <PI&. 

Time Lag 0 1 2 
1 -0.15 0.11 -0.03 / -1.54 1.18 -0.32 2 0.14 0.12 -0.07 / 1.40 1.20 -0.77 3 0.00 0.16 0.16 / 0.01 1.57 1.65 4 0.14 0.01 0.02 / 1.37 0.10 0.24 5 -0.00 0.15 -0.07 / -0.00 1.48 -0.74 

"13 
CPld, 

Space Lag "'13 Standardized CPI&. 

Time Lag 0 1 2 
1 0.01 0.12 0.31 / 0.19 1.30 3.21 2 -0.21 -0.00 -0.06 / -2.15 -0.01 -0.66 3 0.12 -0.01 0.10 / 1.22 -0.09 0.98 4 -0.00 0.06 -0.16 / -0.02 0.60 -1.55 5 -0.14 -0.12 0.57 / -1.40 -1.18 5.47 
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Table 7-5(b). (Cont'd) 

"14 
1PkR, 

"14 
Space Lag Standardized <Pld, 

Time Lag 0 1 2 

1 0.02 -0.09 -0.25 I 0.29 -0.99 -2.55 

2 ,:",0.08 -O~03 0.21 I -0.79 -0.32 2.10 

3 -0.18 -0.24 -0.11 I -1.77 -2.44 -1.16 

4 . 0.00 0.07 0.20 I 0.07 0.68 1.93 

5 0.20 0.02 -0.38 I 1.89 0.26 -3.69 

"21 
1PkR, 

",21 
Space Lag Standardized ~ld, 

Time Lag 0 1 2 

1 0.15 0.02 0.10 I 1.52 0.23 1 e 09 

2 0.11 0.01 -0.06 I 1.11 0.16 -0.64 

3 0.08 -0.05 -0.02 I 0.86 -0.54 -0.21 

4 -0.07 0.03 0.16 I -0.70 0.30 1.63 

5 -0.06 -0 .. 04 0.04 I -0.64 -0.45 0.45 

$22 
kR, 

"22 
Space Lag Standardized <PkR, 

Time Lag 0 1 2 

1 0.22 0.03 0.30 I 2.29 0.32 3.12 

2 0.00 0.20 0.21 I 0.04 2.01 2.10 

3 0.20 -0.02 0.05 I 2.00 -0.23 0.51 

4 0.07 0.01 0.16 I 0.74 0.13 1.58 

5 -0.13 -0.10 -0.28 I -1.27 -0.96 -2.71 
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I "23 
<Pld 

Time Lag 0 

1 0.08 
2 0.10 
3 -0.25 
4 0.01 
5 0.00 

"24 
<Pld 

Time Lag 0 

1 0.09 
2 0.20 
3 -0.08 
4 0.10 
5 0.02 

$~ 

Time Lag 0 

1 -0.11 
2 0.19 
3 -0.00 
4 0.03 
5 0.0.0 

I 
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Table 7-5(b). (Cant 'd) 

Space Lag Standardized $~ 

1 2 

0.17 0.20 I 0.81 1.74 2.06 
0.01 -0.26 I 1.06 0.18 -2.59 
0.08 -0.10 I -2.51 0.79 -0.98 

-0.11 -0.13 I 0.18 -1.10 -1.27 
0.03 .. 0.26 / 0.04 0.34 -2.50 

Space Lag 
,,24 

Standardized <Pld, 

1 2 

-0.11 -0.16 / 0.99 -1.11 -1.64 
-0.14 0.26 I 2.04 -1.45 2.65 
-0.10 0.22 I -0.81 -1.07 2.15 
-0.05 -0.12 I 0.98 -0.57 -1.24 

0.10 0.25 / 0.21 1.03 2.44 

Space Lag 
,,31 

Standardized CPk 

1 2 

0.06 0.00 I -1.16 0.70 0.03 
0.01 0.21 I 1.94 0.13 2.08 
0.17 0.05 I -0.40 1.75 0.54 
0.10 0.26 I 0.36 0.97 2.58 

-0.07 -0.16 I 0.00 -0.72 -1.59 
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I I Table 7-5(b). (Cont'd) 

Table 7-5(b). (Cont'd) at I 
$32 
1d 

Space Lag 
"32 Standardized cfild 

Time Lag 0 1 2 

1 0.17 -0.04 0.02 / 1.76 -0.46 0.21 
2 0.15 -0.02. 0.05 / 1.55 -0.26 0.58 
3 -0.09 0.11 0.08 / -0.90 1.14 0.87 
4 0.12 -0.06 0.42 / 1.21 -0.58 4.09 
5 0.01 -0.27 -0.40 / 0.10 -2.56 -3.80 

~ J 
~ .' ! 1, d 

~ ~B ' ~ 

I 
c r. 
t. 

I ~ 
~ f 

$41 
1d 

Space Lag Standardized ¢41 

Time Lag 0 
1d 

1 2 
1 -0.08 0.08 0.04 
2 0.05 0.00 

/ -0.90 0.90 0.42 
3 0.05 

0.13 / 0.58 0.00 1.34 0.09 0.07 / 0.50 4 0.00 0.94 0.70 0.08 0.25 / 5 0.00 
0.06 0.83 2.48 -0.04 -0.17 / 0.05 -0.39 -1.67 

$33 
ld 

Space Lag 
,,33 

Standardized cfikR, 

Time Lag 0 1 2 

1 0.39 0.11 0.01 / 4.03 1.20 0.16 
2 0.07 0.02 -0.24 / 0.72 0.24 -2.38 
3 -0.12 0.03 -0.05 / -1.18 0.35 -0.55 
4 0.06 0.01 -0.04 / 0.61 0.17 -0.46 
5 -0.13 0.26 0.06 / -1.23 2.49 0.65 

"34 
cfikR, 

Space Lag 
"34 Standardized cfikQ, 

Time Lag 0 1 2 

1 0.09 -0.08 -0.01 / 0.97 -0.85 -0.14 
2 -0.21 -0.19 0.09 / -2.17 -1.96 0.91 
3 0.07 -0.06 -0.12 / 0.68 -0.64 -1.20 
4 -0.18 -0.10 -0.17 / -1.77 -1.04 -1.69 
5 -0.03 -0.10 -0.33 / -0.30 -0.98 -3.18 
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$42 
1d 

Space Lag Standardized ~42 
Time Lag 0 

Id 
1 2 

1 0.00 0.09 0.12 
2 0.16 0.05 

/ 0.00 0.93 1.26 
0.04 / 3 -0,,10 0.07 

1.59 0.58 . 0.48 
4 -0.07 

0.13 / -1.05 0.74 1.33 -0.12 0.24 / 5 -0.04 
-0.71 -1.18 2.37 -0.19 -0.40 / -0.42 -1.84 -3.88 

$43 
Id 

Space Lag Standardized $43 

Time Lag 0 
ld 

1 2 
1 0.09 -0.25 0.01 
2 0.21 0.21 

/ 0 .. 92 -0.25 0.17 
3 -0.01 

0.04 / 2.08 2.18 0.45 
0.21 -0.18 / 4 -0.04 

.-0.18 2.05 -1.78 0.06 -0.16 / 5 -0.05 
-0.44 0.66 -1.59 0.25 -0.07 / -0.51 2.40 -0.68 

.. 

I d I 
I 1If 

I 

I 
1 

I 
I 1 
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Time Lag 

1 
2 
3 
4 
5 

0 

0.52 
-0.31 

0.23 
-0.03 

0.05 

Table 7-5(b). (Cont'd) 

,,44 
Space Lag Standardized $~ 

1 2 

-0.15 -0.07 I 5.26 -1.59 -b.76 

-0.99 -0.31 I -3.15 -0.98 -3.10 

-0.03 0.08 I 2.29 -0.34 0.82 

-0.10 0.04 I -0.33 -1.00 0.38 

-0.14 -0.16 I 0.49 -1.38 -1.58 
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Figure 7-12(a). The Encoded Sample Multivaraite Space-Time Autocorrelation 
Function of the Scaled Cleveland Crime Data 
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$22 $22 $33 cuts off at k=l, .-.43 
and $32 $44 kO' k2' kO $kO cuts off at k=2, 

kO' kO' 
$32 $42 $44 tails off. This pattern suggests the k2' kO' k2 

MULSTARMA(4,p,Q,A,m) 
..... - .-. ,.." 

where 

R ~.(0,0,0,0,0,1,0,0,0,1,1,0,0,O,2,1), 
s = (0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2), 

A = (2,0,0,0,0,0), and 

~ = (0,0,0,0,0,1) or in difference equation 

form, 

(7-94) 

The conditional M.L. estimation gives the following results, 

. ' , 
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Estimate Variance t-Statistics 

cp22 = 0.157 0.0895 1. 7542 10 

cp22 = 0.329 0.1101 2.9882 12 

cp32 = 0.184 0.0887 2.0744 10 

cp33 = 
10 0.442 0.093 4.8948 

cp44 = 
10 0.507 0.1060 4.7830 

cp43 "" 
20 0.170 0.1044 1.6284 

cp23 = 
20 0.200 0.1175 1. 7021 

cp24 = 
20 0.229 b.1263 1.8131 

44 0.1241 1.6543 cp :: -0.205 20 

44 
CP2l "" -0.213 0.1169 1.8212 

A2 
where a = 0.78.68. 

After the parameter estimates were obtained, the sample multivariate 

space-time autocorrelation functions and the sample multivariate space-

time partial autocorrelation functions of the residuals were computed 

and encoded. The numerical values are listed in Table 7-6, and the 

encoded symbols are,contained in Figure 7-13. No patterns are 

detected and this model is accepted as adequate. 

7.9.2 Using the Model 

Once the time series model of the historical data is accepted 

as adequate, it is ready to be employed. It can be used for fore-

casting or intervention analysis. New data entering the system may not 
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Table 7-6(a). ~e ~~PlefMultivariate Space-Time Autocorrelation 
unc ons or the Residuals of Cleveland Crime Data 

p11(k) 
50 

Space Lag Standardized All 
P50 (k) 

Time Lag 0 1 2 
1 -0.14 0.03 0.07 / 2 -0.11 -1.41 0.36 0.72 0.03 0.10 / 3 -0.04 0.17 

-1.12 0.31 1.00 
4 0.09 / -0.42 1.67 0.88 -0.09 0.08 -0.37 / 5 0.08 -0.12 

-0.93 0.80 -3.57 
6 0.09 

0.16 / 0.75 -1.19 ISS 
7 

-0.01 0.05 / 0.87 -0.11 0.50 -0.13 -0.02 -0.06 / -1.22 :-0.20 8 0.03 . -0.57 0.16 -0.00 / 0.35 1.52 9 -0.10 0.16 ..:.0.02 
10 -0.08 

0.00 / -0..94 1.44 0.00 -0.19 -0.11 11 0 .. 17 / -0.70 -1.67 -1.01 
12 

-0.17 0.25 / 1.47 -1.49 2.12 0.05 0.01 
13 -0.12 

-0.16 / 0.45 0.15 -1.38 
14 

0.14 -0.03 / -1.05 1.15 -0.31 -0.60 0.24 0.16 / 15 -1.31 -0.47 1.90 1.31 0.14 -0.15 16 0.21 / -1.01 1.11 -1.20 -0.19 0.18 17 0;13 / 1.64 -1.48 1.37 -0.19 0.04 / 18 -0.35 1.02 -1.42 0.34 -0.18 -0.01 / 19 0.05. -2.55 -1.32 -0.10 -0.12 -0.14 / 0.39 20 -0.11 -0.88 -1.00 0.00 -0.31 / -0.73 0.05 -2.11 



r 

Table 7-6Ca). 

"12 
P50 Ck) 

Space Lag 

Time Lag 0 1 2 

1 0.13 -0.04 0.47 
2 0.08 -0.04 -0.12 
3 -0.01 -0.02 -0.05 
4 -0.17 0.07 0.10 
5 -0.11 -0.08 -0.00 
6 -0.42 -0.15 -0.18 
7 0.00 -0 •. 06 0.02 
8 -0.06 -0.05 -0.03 
9 -0.08 0.09 -0.05 

10 0.06 0.14 0.03 
11 -0.07 -0.12 0.03 
12 0.15 -0.21 -0.03 
13 -0.07 -0.08 -0.07 
14 -0.16 -0.03 -0.10 
15 0.12 0.07 -0.04 
16 -0.27 0.08 -0.03 
17 -0.03 -0.17 0.24 
18 0.24 -0.02 -0.05 
19 -0.06 -0.19 -0.25 
20 -0.27 0.01 0.13 

(Cont'd) 

,,12 
Standardized P50 Ck) 

/ 1.38 -0.44 1.48 
/ 0.79 -0.46 -1.26 
/ -0.12 -0.19 -0.49 
/ -1.67 0.68 0.97 
/ -1.11 -0.07 -0.03 
/ ~0.39 -1.39 -1.68 
/ 0.06 -0.57 0.18 
/ -0.55 -0.46 -0.29 
/ -0.74 0.85 -0.47 
/ 0.52 1.26 0.25 
/ -0.64 -1.08 0.30 
/ 1.31 -1.81 -0.32 
/ -0.56 -0.72 -0.57 
/ -1.32 -0.29 -0.81 
/ 0.98 0.60 -0.34 
/ -2.07 0.66 -0.27 
/ -0.27 -1.25 1.80 
/ 1.71 -0.19 -0.38 
/ -0.43 -1.37 -1. 73 
/ -1.87 0.09 0.86 
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i 
I' Table 7-6(a). (Cont'd) 

,,13 
P50 (k) 

~ < • 

i 

Space Lag ,,13 
Standardized P50 (k) 

Time Lag 0 1 2 

] : ' 
1 -0 •. 10 0.04 0.03 / -1.07 0.50 0.32 
2 0.18 -0.01 0.14 / 1.81 -0.13 1.45 
3 0.02 0.14 0.00 / 0.25 1.41 0.05 

~ 

J » 

4 0.06 0.09 0.13 / 0.59 0.92 1.29 
5 -0.02 -0.00 0.03 / -0.25 -0.08 0.33 
6 -0.21 -0.01 0.00 / -1.97 -0.16 0.02 

] : I 
.... , 

7 0.02 0.08' 0.05 / 0.25 0.75 0.49 
8 -0.04 -0.02 -0.28 / -0.41 -0.18 -2.58 
9 -0.08 -0.18 0.07 / -0.75 -1.64 0.66 

10 -0.14 -0.01 0.05 / -1.28 -0.12 0.45 
i ]I 11 0,,10 -0.10 -0.10 / 0.89 -0.91 -0.91 

12 0.13 0.10 -0.03 / 1.08 0.88 -0.29 
13 0.05 0.13 -0.07 / 0.44 1.05 -0.63 

ill 
14 0.04 0.02 0.10 / 0.31 0.20 0.81 
15 0.11 0.12 -0.13 / 0.87 0.98 -1.00 
16 -0.06 -0.01 0.14 / -0.49 -0.07 1.05 
17 -0.01 -0.02 -0.03 / -0.10 -0.19 -0.25 

~1 d 
18 -0.00 0.10 0.07 / -0.06 0.72 0.51 
19 0.03 -0.00 -0.05 / 0.25 -0.05 -0.35 
20 0.04 -0.12 -0.02 / 0.26 -0.84 -0.13 

ff1 d 

[1 

m 

ill 
1 L 
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JJ 
~\ r 

I 



Table' 7-6 (a". " (Cant' d) 

.... 14(k) 
P50 

.... 14 
Space Lag Standardized P50 (k) 

Time Lag 

1 -0.06 0.08 -0.00 / -0.69 0.83 -0.01 
2 -0.00 0.01 0.10 / -0.00 0.16 0.99 
3 0.16 0.02 0.12 / 1.64 0.25 1.20 
4 0.09 0.12 0.09 / 0.94 1.22 . 0.95 
5 0.01 -0.00 -0.10 / 0.11 -0.00 -1.03 
6 -0.22 0.03 0.18 / -2.09 0.32 1.76 
7 0.00 0.19 -0.00 / 0.·01 1.78 -0.08 
8 -0.02 -0.24 -0.25 / -0.19 -2.18 -2.30 
9 -0.03 -0.25 0.15 / -0.30 -2.28 1.35 

10 -0.04 -0.06 -0.14 / -0.35 -0.59 -1.22 
11 0.01 0.02 -0.05 / 0.16 0.20 -0.45 
12 -0.00 0.19 -0.06 / -0.03 1.62 -0.50 
13 -0.09 -0.01 -0.08 / -0.77 -0.14 -0.71 
14 0.06 -0.06 0.13 / 0.47 -0.49 1.07 
15 0.05 -0.04 -0.08 / 0.44 -0.34 -0.61 
16 -0.08 0.06 -0.03 / -0.60 0.47 -0.25 
17 0.07 0.10 -0 .. 11 / 0.56 0.79 -0.81 
16 0.07 0.06 0.21 / 0.51 0.44 1.55 
19 0.15 0.08 0.00 / 1.07 0.56 0.04 
20 0.20 -0.09 0.08 / 1.38 -0.60 0.56 

. , 
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Time Lag 
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2 
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13 
14 
15 
16 
17 
18 
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20 
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Table 7-6(a). (Cant'd) 

Space Lag .... 21 Standardized P
50

(k) 

0 1 2 

-0.08 0.13 -0.04 / -0.80 1.35 -0.44 
0.03 0.08 -0.02 / 0.33 0.83 -0.29 

-0.03 -0.01 0.02 / -0.31 -0.15 0.24 
0.22 0.04 0.02 / 2.12 0.46 0.20 
0.05 0.01 0.02 / 0.56 0.16 0.18 
0.02 0.00 0.21 / 0.21 0.01 1.97 

-0.02 0.17 -0.09 / -0.19 1.59 -0.83 
0.13 0.27 -0.05 / 1.22 2.44 -0.45 
0.05 -0.16 0.07 / 0.44 -1.42 0.61 
0.09 0.09 0.00 / 0.85 0.77 0.03 
0.15 0.05 0.03 / 1.32 0.50 0.31 
0.06 0.10 0.04 / 0.57 0.88 0.40 

-0.00 -0.00 0.01 / -0.04 -0.01 0.08 
0.26 -0.02 0.07 / 2.11 -0.23 0.58 

-0.11 -0 0 25 0.03 / -0.91 -1.98 0.29 
0.25 0 0 20 0.12 / 1.92 1.53 0.92 
0.00 0.09 -0.07 / 0.01 0.72 -0.55 

-0.14. 0.07 -0.20 / -1.01 0.51 -1.47 
0.03 0.08 0.20 / 0.21 0.55 1.44 
0.14 -0.03 0.06 / 0.94 -0.25 0.43 



Table 7-6 (a). (Cont'd) 

"22(k) 
P50 

Space Lag 
..... 22 

Standardized P50 (k) 

Time Lag 0 1 2 

1 -0.01 0.04 -0.07 / -0.12 0.40 -0.78 
2 -0.10 0.24 0.10 / -1.08 2.45 1.00 
3 0.12 0.03 0.01 / 1.19 0.33 0.13 
4 0.17 0.03 -0.04 / 1.72 0.35 -0.41 
5 -0.03 0.08 0.09 / -0.31 0.78 0.85 
6 0-.17 0.25 -0.02 / 1.64 2.40 -0.20 
7 '0.11 -0.12 0.01 / 1.02 -1.17 0.13 
8 -0.14 0.05 0.10 / -1.33 0.51 0.93 
9 -0.11 0.11 0.04 / -1.02 1.04 0.35 

10 0.13 -0.08 0.02 / - 1.20 -0.70 0.20 
11 -0.07 -0.08 -0.00 / -0.65 -0.71 -0.30 
12 -0.13 0.24 -0.06 / -1.12 2.01 -0.54 
13 -0.12 0.05 0.00 / -0.98 0.42 0.04 
14 0.04 -0.25 0.14 / 0.38 -2.03 1.14 
15 -0.17 -0.05 0.05 / -1.34 -0.42 0.41 
16 -0.14 -0.70 -0.21 / -1.10 -0.52 -1.63 
17 -0.00 -0.08 0.05 / -0.06 -0.62 -0.38 
18 -0.09 -0.11 -0.04 / -0.63 -0.80 -0.3':+ 
19 -0.29 0.09 -0.12 / -2.06 0.66 -0.86 
20 -0.18 0.04 -0.08 / -1.24 0.30 -0.56 

-~-- ~--------- ----------~---
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,,23 
P50 (k) 

Time Lag 0 
1 -0.03 
2 0.09 
3 -0.07 
4 0.21 
5 0.07 
6 -0.10 
7 -0.04 
8 -0.07 
9 0.01 

10 -0.02 
11 -0.04 
12 -0.14 
13 -0.13 
14 -0.02 
15 -0.10 
16 0.11 
17 -0.13 
18 -0.01 
19 0.07 
20 -0.07 
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Table 7-6 (a) • (Cont'd) 

Space Lag Standardized P~~(k) 
1 2 

-0.06 -0.01 / -0.35 -0.67 -0.17 -0 .• 01 0.04 / 0.91 -0.10 0.47 0.05 0.09 / -0.73 0.52 0.89 0.04 0.22 / 2.04 0.45 2.20 -0.01 -0.01 / 0.70 -0.11 -0.13 -0.04 -0.02 / -0.94 -0.42 -0.20 0.12 0.03 / -0.36 1.11 0.30 -0.09 0.11 / -0.63 -0.81 1.03 0.04 0.22 / 0.08 0.43 1.98 0.08 0.08 / -0.22 0.75 0.69 0.06 0.14 / -0.40 0.58 1.23 0.02 -0.14 / -1.20 0.20 -1.18 -0.02 0.15 / -1.08 -0.16 1.21 -0.10 0.21 / -0.20 -0.82 1.69 0.17 0.13 / -0.78 1.34 1.01 
-0.04 -0.04 / 0.85 -0.30 -0~02 -0.12, -0.08 / -1.01 -0.90 -0.61 -0.11 0.04 / -0.09 -0.82 0.31 0.06 0.03 / 0.49 0.47 0.24 
0.17 0.04 / -6.51 1.18 0.31 
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Table 7-6(a). (Cont'd) 

"'24 
P50(k) 

",24 
Space Lag Standardized P50 (k) 

Time Lag 0 1 2 

1 -0.11 -0.04 0.02 / -1.16 -0.40 0.27 
2 0.16 0.01 0.05 / 1.66 0.18 0.57 
3 -0.01 0.02 0.26 / -0.14 0.24 2.61 
4 -0.07 0.04 0.09 ' / -0.71 0.39 0.87 
5 -0.07 -0.05 -0.11 / -0.67 -0.49 -1.10 
6 0.08 0.07 0.06 / 0.81 0.65 0.59 
.7 0.02 0.08 0.01 / 0.24 0.75 0.12 
8 -0.15 -0.00 0.10 / -1037 -0.01 0.93 
9 -0.00 0.24 0.15 / -0.07 2.12 1.32 

10 -0.15 0.05 0.05 / -1.31 0.43 0.49 
11 -0.00 0.10 0.10 / -0.00 0.91 0.92 
12 -0.01 0.02 -0.02 / -0.14 0.18 -0.18 
13 -0.13 -0.07 0.09 / -1.12 0.60 0.79 
14 -0.00 -0.04 0.10 / -0.02 -0.38 0.79 
15 -0.01 0.10 0.07 / -0.12 0.81 0.58 
16 -0.10 -0.05 -0.07 / -0.77 -0.43 -0.56 
17 -0.09, -0.35 -0.03 / -0.67 -2.62 -0.28 
18 0.05 0.12 0 0 03 / 0.38 -0.87 0.,21 
19 -0.09 0.00 -0.07 I -0.63 0.00 -0.48 
20 -0.14 -0.04 0.16 / -0.95 -0.29 1.10 

1 I 

I I ~ 
Table 7-6(a). (Cont'd) 

I q 
"'31 

i 
... P50 (k) 

l 
~J I t ij Space Lag Standardized p31(k) 

1 
' I 50 ~,'" 

Time Lag 0 1 2 

i 1 
, m 1 0.05 0.09 0.12 / 0.53 0.98 1.23 

! il 2 -0.18 0.01 -0.02 / -1.81 0.15 -0.24 3 -0.11 -0.06 0.06 / -1.11 -0.60 0.64 

I m 
4 0.16 0.01 -0.17 / 1.60 0.18 -1.71 L 5 -0.11 -0.09 -0.01 / -1.08 -0.89 -0.09 

1 6 -0.08 -0.13 -0.02 / -0.81 -1.27 -0.20 
t [ 

7 -0.06 0.13 0.20 / -0.63 1.22 1.87 I ! 11 8 0.08 -0.04 -0.07 / 0.71 -0.43 -0.69 • 9 0.23 -0.04 0.16 / 2.10 -0.35 1.42 I 10 0.14 0.03 -0.00 / 1.27 0.30 -0.05 

I i 

t Jl 
11 -0.10 -0.24 0.05 / -0.85 -2.06 0.48 i 12 0.30 0.32 0.03 / 2.54 2.72 0.31 ! \ \ 13 -0.19 0.15 0.03 / -1.55 1.28 0.26 i 

~ f 

;]1 
14 0.06 -0.09 0.00 / 0.47 -0.73 0.06 ' " 15 0.03 0.08 -0.18 / 0.27 i [1 0.62 -1.40 ,", ., ~, 16 -0.05 

., .. 

r' 
;;./ -0.08 -0.14 / -0.43 -0.61 -1.07 

~ 11 17 -0.12 0.05 0.00 / -0.93 0.38 0.01 

I ! i i'11 
18 -0.10 0.13 -0.06 / -0.72 0.99 -0.45 1 ; {.} 19 -0.08 -0.12 0.12 / -0.62 -0 0 87 0.83 t' ... t 

20 0.14 0.02 -0.15 / 0.94 0.16 -1.05 
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"'32 
P50 (k) 

Time Lag 0 

1 0.01 
2 0.00 
3 -0.15 
4 0.04 
5 0.07 
6 0.09 
7 -0&05 
8 0.21 
9 -0.02 

10 0.21 
11 0.05 
12 -0.04 
13 -0.01 
14 -0.06 
15 -0.17 
16 -0.07 
17 -0.18 
18 0.13 
19 -0.03 
20 0.06 

-------- -~ - - ~ 

Table 7-6(a). (Cont'd) 

Space Lag Standardized 

1 2 

0,,07 0.07 / 0.14 0.75 
0.04 -0.05 / 0.00 0.44 
0.01 0.02 / -1.53 ' 0 .. 10 

-0,,02 -0.10 / 0.41 -0.21 
-0.01 0.07 / 0.72 -0;16 
-0.02 -0.03 / 0.87 -0.23 

0.05 -0.11 I -0.53 0.54 
0.20 0.10 / 1.89 1.84 

-0.12 0.04 / -0.21 -1.11 
-0.10 -0.01 / 1.87 -0.94 

0.15 -0.14 / 0.44 1.34 
-0.08 -0.02 / -0.37 -0.66 
-0.06 0.04 / -0.14 -0.54 

0.21 -0.24 / -0.50 1.71 
-0.13 0.06 / -1.34 -1.01 
-0.12 -0.22 / -0.53 -0.97 
-0.11 -0.00 / -1.35 -0.80 

0 .. 25 -0.00 / 0.94 1.83 
-0.10 0.06 / -0.23 -0.70 
-0.06 0.09 / 0.41 -0 •. 44 
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",32 
P50 (k) 

0.70 
-0.56 

0.20 
-0.97 

0.68 
-0.33 
-1.04 

0.89 
0.42 

-0.14 
-1.18 
-0.16 
0.39 

-1.94 
0.49 

-1.71 
-0.06 
-0.06 
0.41 
0.61 

]' 
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Table 7-6(a). (Cont'd) 

.... 33 
P50 (k) 

Space Lag "'33 Standardized P50 (k) 

Time Lag 0 1 2 

1 -0.04 0.11 0.08 / -0.45 1.14 0.80 
2 0.07 -0.10 -0.03 / 0.76 -1.08 -0.38 
3 -0.03 0.09 -0.06 / -0.36 0.90 -0.60 
4 0.05 -0.01 -0.11 / 0.56 -0.15 -1.06 
5 -0.04 0.08 -0.06 / -0.42 0.75 -0.64 
6 -0.21 -0.14 -0.20 / -1.96 -1.31 ':'1.88 
7 -0.16 0.03 -0.02 '/ -1-.55 '0.34 -0.24 
8 -0.07 -0.14 -0.10 / -0.68 -1.31 -0.91 
9 -0.08 -0.12 0.04 / -0.70 -1.13 0.39 

10 0.13 -0.09 0.06 / 1.12 -0.83 0.57 
11 0.17 0.20 0.11 / 1.49 1.71 0.96 
12 0.25 0.03 0.19 / 2.09 0.30 1.60 
13 -0.09 -0.11 0.03 / -0.74 -0.89 0.31 
14 0.04 -0.03 0.14 / 0.34 -0.25 1.15 
15 -0.09 0.05 -0.03 / -0.74 0.43 -0.25 
16 -0.01 0.16 -0.09 / -0.10 1.23 -0.67 
17 -0.24 0.12 -0.07 / -1.77 0.91 -0.56 
18 -0.09 -0.12 -0.12 / -0.70 -0.88 -0.88 
19 -0.33 0.06 0.12 / -2.29 0.47 0.83 
20 0.04 -0.16 -0.01 / 0.31 -1.12 -0.08 



r 

Table 7-6(a). 

..... 34 
P50(k) 

Space Lag 

Time Lag 0 1 2 

1 0.03 -0.11 0.03 
2 0.10 0.05 0.01 
3 0015 0.23 -0.05 
4 0.03 0.09 -0.07 
5 -0.08 0.17 -0.22 
6 -0.22 -0.22 -0.23 
7 0.13 0.15 0.05 
8 -0.02 -0.05 -0.10 
9 -0.00 -0.18 -0.'01 

10 0.03 -0.00 0.04 
11 0.13 0.08 0.15 
12 0 .. 08 -0.07 0.19 
13 -0.08 -0.21 -0.03 
14 0.07 0.13 0.13 
15 -0.16 0.06 -0.02 
16 -0.03 0.15 0.05 
17 -0.22 0.06 -0.29 
18 -0.24 -0.11 -D.07 
19 -0.17 0.10 0.16 
20 -0.00 -0.12 -0.08 

(Cont'd) 

"34 
Standardized PSO(k) 

/ 0.39 -1.12 0.34 
/ 1.00 0.57 0.18 
/ 1.47 2.25 -0.57 
/ 0.33 0.94 -0.76 
/ -0.81 1.63 -2.13 
/ -2.10 -2.12 -2.15 
/ 1.22 1.40 0.51 
/ -0.21 -0.53 -0.93 
/ -0.04 -1.60 -0.08 
/ 0.29 -0.07 0.42 
/ 1.14 0.73 1.33 
/ 0.72 -0.64 1.63 
/ -0.67 -1.78 -0.29 
/ 0.62 1.04 1.10 
/ -1.27 0.47 -0.19 
/ -0.29 1.15 0.40 
/ -1.63 0.50 -2.15 
/ -1.76 -0.83 -0.49 
/ -1.23 0.71 1.11 
/ -0.02 -0.80 -0.58 
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Table 7-6(a). (Cont'd) 
.....41 
P50 (k) 

Space Lag Standardized "41 P50 (k) 

Time Lag 0 1 2 
1 0.03 -0.05 -0.08 / 0 .. 36 -0.52 -0.81 
2 -0.06 -0.00 0.09 / -0.60 -0.00 0.91 
3 -0.08 -0.16 -0.04 / -0.85 -1.59 -0.43 
4 -0.07 0 •. 14 -0.10 / -0.72 1.43 -1.00 
5 0.06 0.14 0.01 / 0.58 0.37 0.14 
6 -0.11 -0.00 -0.13 / -1.05 -0.02 -1.23 
7 :"0.02 0.06 0.08 / -0.26 0.61 0.79 
8 0.06 -0.14 0.07 / 0.59 -1.30 0.65 
9 0.10 -0.11 0.02 / 0.92 -0.97 0.23 

10 0.04 0.14 0.24 / 0.34 1.27 2.12 
11 -0.13 -0.11 0.08 / -1.12 -0.93 0.75 
12 0.17 0.04 -0 0 09 / 1.45 0.35 -0.75 
13 -0.04 0.19 0.13 / -0.36 1.54 1.08 
14 -0.02 -0.01 0.13 / -0.15 -0.09 1.05 
15 -0.19 -0.23 -0.22 / -1.50 -1.81 -1.75 
16 0.04 -0.01 -0.02 / 0.35 -0.11 -0.16 
17 -0.19 -0.17 ·-0.05 / -1.4l. -1.25 -0.40 
18 -0.04 -0.02 -(}.19 / -0.32 -0.15 -1.36 
19 -0.01 0.05 0.22 / -0.12 0.36 1.58 
20 -0.02 -0.29, -0.22 / -0.15 -1.97· -1.53 



-~--- ~---~-------~----...---------------------
-~------ ----- _. --- .... 

r 
~ 

] 
~ 

641 

640 I " i \" >$ 

Table 7-6(a). (Cont'd) 

I I ,-

Table 7-6 (a). (Cont'd), I, I --42 J P50(k) 
, -

Space Lag Standardized ... 42 I P50 (k) 

1 Time Lag 0 1 2 

1 -0.06 -0.00 -0.04 / -0.63 -0.09 -0.46 J ' - ] 2 0.00 -0.09 -0.07 / 0.01 -0.95 -0.75 
3 -0.02 -0.17 0.16 / -0.21 -1.69 1.62 
4 0.04 -0.03 -0.01 / 0.40 -0.31 -0.15 1 5 0.08 0.09 -0.03 / 0.79 0.94 -0.36 

'''1j 

[ -0.08 0.00 / j 
I) 0.10 -0.74 0.07 0.98 

-7 -0.06 -0.14 -0.09 / -0.62 -1.33- -0.88 1: 8 0.16 0.01 0.12 / 1.51 0,.12 1.08 
9 0.06 -0.16 0.03 / 0.60 -1.46 0.27 

,1t 

10 -0.02 -0.15 -0.05 / -0.20 -1.36 -0.49 U 
11 0.24 0.11 '0.06 / 2.09 0.99 0.56 'J 12 -0.03 -0.44 -0.07 / -0.32 -3.66 -0.60 - , 

Nt 13 0.06 -0.05 -0.05 / 0.52 -0.45 -0.40 h.-
14 -0.10 0.10 -0.26 / -'0.83 '0.81 -2.12 I 15 '0.'07 '0.19 -0.'02 / '0.59 1.53 -'0.18 ill 16 -'0.23 -0.34 -0.14 / -1.76 -2.63 -1.'07 
17 0 0 14 '0.09 '0.'05 / 1.'03 '0.66 0.36 
18 '0.17 '0.11 -0.15 / 1.21 0.8'0 -1.07 ~ 19 -0.05 -'0.'00 -0.12 / -'0.35 -0.'0'0 -0.84 

r ,': 

m 
- ' 

20 -'0.'06 '0.22 '0.10 / -0.44 1.50 '0.67 

... 43 
P5D (k) 

... 43 
Space Lag Standardized P50 (k) 

Time Lag '0 1 2 

1 '0.11 0.07 - '0.04 / 1.12 0.70 0.48 

2 -0.'03 -0.21 0.07 / -0.35 -2.17 0.73 

3 0.'01 -0.l3 -0.15 / '0.17 -1.30 -1.53 

4 -0.'03 -0.03 -0.09 / -'0.36 -0.36 -0.89 

5 -0.13 -0.04 -0.22 / -1.29 -0.44 ·-2.09 

6 -0.23 -0.11 -0.14 / -0.20 -1.06 -1.31 

7 -'0.'02 -'0.07 -0.08 / -0.19 -0.67 -0.80 

8 0.'00 0.'08 -0.10 / 0.'0:5 0.76 -0.93 

9 0.17 '0.14 '0.01 / 1.52 1.31 0.08 

1'0 -0.'01 -0.00 -'0.03 / -'0.13 -'0.04 -0.30 

11 0.l3 -0.11 0.20 / 1.14 -1.01 1. 73 

12 0.31 "-0.05 0.19 / 2.62 -0.47 1.63 

13 '0.14 0.'04 0.28 / 1.14 '0.39 2.27 

14 0.06 -0010 0.08 / 0.47 -'0.80 0.63 

15 -'0.14 0.08 -0.'00 / -1.12 0063 -0.05 

16 -'0.'08 -0.'09 -0.04 / -0.60 -'0.67 -0.34 

17 0.20 -'0.02 -0.13 / 1.48 -0.20 -1.01 

18 -0.09 0.'03 -0.06 / -'0.69 -0.25 -0.47 

19 -'0.32 -0.10 -0.07 / -2022 -'0.70 -'0.51 

20 0.01 0.18 '0.'01 / '0.13 1.22 0.09 
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Table 7-6 (a). (Cont'd) 

.... 44 
P50(k) 

Space Lag 
.... 44 

Standardized P50 (k) 

Time Lag 0 1 2 

1 0.11 -0.14 0.01 / 1.18 -1.45 0.15 
2, 0.00 0.01 -0.02 / 0.06 0.13 -0.23 

" 3 0.10 0.02 -0.09 / 1.01 0.23 -0.94 
4 -0.00 -0.03 -0.11 / -0.02 -0.31 -1.11 
5 -0.03 -0.11 -0.16 / -0.36 -1.08 -1.51 
6 -0.20 -0.20 -0.15 / -1.92 -1.91 -1.41 
7 -0.01 0.10' -0011 / -0.14 0.99 -1.01 
8 0.05 0.08 :"0.14 / 0.51 0.77 -1.28 
9 0.11 -0.07 -0.04 / 1.03 -0.69 -0.40 

10 -0.06 -0.16· -0.11 / -0.58 -1.45 -0.94 
11 0.06 0.00 0.14 / 0.52 0.06 1.24 
12 0.04 -0.03 0.23 / 0.34 -0.29 1.95 
13 -0.04 -0.11 0.13 / -0.33 -0.95 1.12 
14 -0.01 -0.03 0.14 / -0.11 -0.30 1.17 
15 -0.16 0.01 -0 0 00 / -1028 0.11 -0.03 
16 -0.08 0.22 -0.10 / -0.66 1.67 -0.77 
17 0.15 0.29 -0.10 / 1.12 2.15 -0.79 
18 -0.26 -0.10 0.02 / -1.86 -0.77 0.17 
19 -0.16 0.02 -0.05 / -1.14 0.14 ~·0.40 

20 0.13 0.29 0.02 I 0.88 1.98 0.15 

-----~ --- ----- -----~---
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Table 7-6(b). The Sample Multivariate Space-Time Partial 
Autocorrelation Function for the Residuals 
of Cleveland Crime Data 

Space Lag Standardized $;I 
Time Lag Q 1 2 

1 -0.16 0.03 0.09 / -1.66 0.33 0.92 2 -0.08 0.02 0.27 / -0.82 0.24 2.70 3 -0.14 0.23 0.15 / -1.39 2.34 1.55 4 -0.05 0.01 -0.12 / -0.50 0.17 -1.18 5' 0.01 0.01 -0.27 / 0.09 0.10 -2.38 

$12 
k£, 

Space Lag Standardized $!i 
Time Lag 0 1 2 

1 -0.12 0.13 -0.05 / -1.21 1.40 -0.54 2 0.08 0.11 -0.00 / 0.85 1.17 -0.04 3 -0.10 0.11 0.03 / -1.03 1.12 0.34 4 0.16 -0.01 -0.01 / 1.63 -0.17 -0.15 5 -0.00 0.11 -0.18 / -0.04 1.07 -1.78 

$13 
.~ 

Space Lag .... 13 Standardized cf>k£, 

Time Lag 0 1 2 
1 0.09 0.10 0.35 / 0.95 1.09 3.58 2 -0.26 0.00 -0.13 / -2.65 0.00 -1.34 3 -0.14 -0.04 0.08 / -1.43 -0.46 0.84 4 0.04 0.11 -0.18 / 0.39 1.08 -1.81 5 0.01 -0.17 0.59 / 0.10 -1.62 5.60 
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Time Lag 

1 
2 
3 
4 
5 

Time Lag 

1 
2 
3 
4 
5 

$22 
ki 

Time Lag 

1 
2 
3 
4 
5 

0 

0.00 
0.03 

-0.03 
-0.08 

0.10 

0 

0.12 
0.09 
0.06 

-0.06 
-0.04 

0 

-0.00 
-0.06 

0.23 
0.07 

-0.05 

Table 7-6 (b) • 

Space Lag 

1 2 

-0.11 -0.38 
0001 0.18 

-0.14 -0.09 
0.03 0.11 
0.12 -0.35 

Space Lag 

1 2 

-0.04 0.13 
-0000 -0.05 
-0.06 -0.06 

0 0 01 0.12 
-0.01 0.26 

Space Lag 

1 2 

0003 -0.12 
0.29 0015 

-0.04 0.02 
0.03 0.08 

-0.01 0.24 

--, ..... -.. ~~-~-" ... '-.-' ~ .......... ' ,~- ~" .. ~. , , 

-----~---

(Cont'd) 

,,14 
Standardized $ki "23 

<PI&, 

/ 0.06 -1.19 -3.91 
/ 0.35 0.15 1.86 
/ -0.32 -1.39 -0.93 

Time Lag 

/ -0.82 0.29 1.14 1 
/ 0.99 1.15 -3.34 2 

3 
4 
5 

,,21 
Standardized $I&, 

$24 
~ 

/ 1.25 -0.41 1.38 
/ 0.90 -0.07 -0.54 
/ 0.63 -0.67 -0.67 

Time Lag 

/ -0.64 0.16 1.15 1 
/ -0.42 -0.10 2.50 2 

3 
4 
5 

"22 Standardized <PI&, 

"31 
<PkR, 

/ -0.06 0.37 -1.24 
Time Lag 

/ -0.67 2.94 1.53 1 
/ 2.34 -0.47 0.25 2 

/ 0.73 0.31 0.82 3 
/ -0.53 -0.10 2.29 4 

5 

645 

Table 7-6 (b) 0 (Cont'd) 

Space Lag ",23 
Standardi~ed ~~ 

0 1 2 
0.04 0.07 0.23 / 0.43 0.80 2.33 -0.02 -0.02 -0.07 / -0.22 -0.27 -0.76 -0.22 0.13 -0.10 / -2.23 1.20 -1.01 -0.00 -0.08 -0.17 / -0.00 -0.79 -1.68 -0.03 -0.03 -0.15 / -0.36 -0.28 -1.47 

Space Lag "24 Standardized <P~ 

0 1 2 
-0.10 0.00 -0.24 / -1.09 0.08 -2.46 
-0.00 -0,,06 0.03 / -0.05 -0.65 0.30 

0.07 -0.16 0.25 / 0.74 -1.62 2.52 
0.10 -0.03 0.04 / 0.99 -0.33 0.44 0.11 -0.00 0.14 / 1.07 -0.04 1.33 

Space Lag ,,31 
Standardized <P~ 

0 1 2 
-0.09 0.03' 0.01 / -0 0 97 0.31 0.17 

0.16 0.02 0.17 / 1.64 0.24 1.76 0.02 0.13 0.04 / 0.28 1.34 0.39 
0.02 0.09 0.22 / 0.19 0.92 2.17 
0.00 -0.06 0.12 / 0.01 -0.58 1.19 
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Table 7-6(b). (Cont'd) I .,: , 

$32 I 
kR. 

Space Lag .... 32 
Standa~dized cflkR, j 

Time Lag 0 1 2 

J 1 -0.02 -0.07 -0.01 / -0.26 -0.79 -0.15 " 
I 2 0.11 -0.01 0.04 / 1.11 -0.11 0.47 

3 -0.08 0.04 0.08 / -0.81 0.42 0.84 
4 0.16 0.01 0.22 / 1.56 0.10 2.12 ): " 5 0.07 -0.18 0.33 / 0.72 -1.73 3.21 .. -! '" 

.... 33 
~kZ 

] 
Space Lag .... 33 

Standardized cfl~ ] 
Time Lag 0 1 2 

1 -0.10 0.12 0.11 / -1.07 1.24 1.13 ] / 1 2 0.07 -0.02 -0.11 f. 0.78 -0.25 -1.17 
3 -0.12 0.10 -0.22 / -1.22 1.03 -2.21 
4 -0.00 -0.03 -0.20 / -0.07 -0.35 -1.95 ~ 5 -Oc04 0.14 -0.07 / -0.45 1.32 -0.71 ,!, i 

1 ' I .... 34 
cflkR, 

"34 ~ Space Lag Standardized cflkR, Y' ': 
j .! 

Time Lag 0 1 2 

~ 1 0.18 -0.00 -0.06 / 1.88 -0.08 -0.62 )' ( 

\-. ~ 

2 -0.13 -0.24 0.18 / -1.28 -2.40 1.86 
. I 

3 0.07 -0.20 0.08 / 0.71 -2.0l 0.83 
4 -0.03 -0.14 0.00 / -0.33 -1.38 0.08 rn 5 -0.02 -0.12 -0.05 / -0.22 -1.21 -0.55 

rn !' 1 

~ 

tl 
'=w ""~,.,".~'~"=I~'""""""""",~=~-,""""",,,,,,,,,,,,,,=c,,., •• ,','"',.c .1 " , I 

I 

.) 

] 
.... 41 
cflJ&, 

Time Lag 

1 
2 
3 
4 
5 

$42 
J&, 

Time Lag 

1 
2 
3 
4 
5 

.... 43 
cflJ&, 

Time Lag 

1 
2 
3 
4 
5 

0 

-0.07 
0.02 
0.08 
0.02 
0.00 

0 

-0.10 
0.12 

-0.04 
0.02 

-O.oj 

0 

0.00 
0.08 
0.09 

-0.04 
-0.04 

Table 7-6(b). 

Space Lag 

1 2 

0.07 0.00 
-0.00 0.15 

0.,06 0.06 
0.08 0.20 

-0.04 0.07 

Space Lag 

1 2 

-0.03 0.05 
0.00 -0.02 
0.10 0.19 

-0.05 0.10 
-0.18 0.19 

Space Lag 

1 2 

-0.08 0.03 
0.06 0.07 
0.24 -0.13 
0.07 -0.27 
0.20 -0.12 
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(Cont'd) 

Standardized $:;: 

/ -0.74 0.79 0.03 
/ 0.27 -0.09 1.57 
/ 0.84 0.65 0.61 
/ 0.20 0.81 2.00 
/ 0.01 -0.42 0.66 

Standardized $~ 

/ -1.06 -0.37 0.58 
/ 1.19 0.02 -0.19 
/ -0.41 1.01 1.91 
/ 0.22 -0.53 1.01 
/ -0.29 -1.77 1.82 

Standardized ~~ 

/ 0.09 -0.90 0.31 
/ 0.81 0.60 0.72 
/ 0.90 2.43 -1.28 
/ -0.39 0.68 -2.67 
/ -0.45 1.94 -1.22 



Table 7-6 (b) • 

~44 
kR. 

Space Lag 

Time Lag 0 1 2 

1 0.11 -0.17 0.03 
2 -0.06 0.01 -0.20 
3 0.04 -0.10 0.01 
4 -0.00 -0.08 0.13 
5 0.06 -0.10 0.02 

--~-----~-----------------------------' 

-I ~, 
UN 
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'I 
(Cont'd) J 

Standardized $44 
kR. 

J 
/ 1.13 -1077 0.32 1 ' ' 

, , 

/ -0.67 0.10 -2.00 
/ 0.44 -1.04 0.12 
/ -0.02 -0.84 1.26 
/ 0.61 -0.98 0.21 
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compare favorably to forecasted values by chance itself or because 

the process has been changed after the forecast model has been 

developed (e.g. by some intervention prog:r:am). In the former situa-

tion, the process is not changed and still can be adequately described 

by the employed model, while in the latter situation, the process has 

been changed and the forecasting or historically based model has to 

be modified to accomodate the change in the process. In the follow-

ing, from the model, Equation (7-94), the forecasting function is 

derived in Section 7.9.2.1. The ~-step ahead forecasts at T=35 for 

~2l,2, ••• ,22, the l-step ahead forecasts at T=35,36, ••• ,56 and their 

associated 95% confidence inter\rals are computed and plotted with 

the corresponding new observed values for each crime and each loca-

tion. In Section 7.9.2.2, the model, Equation (7-94) is augmented 

to allow formal intervention analysis in order to evaluate the 'effect 

of CCP which was initiated at T~40. 

where. 

7.9.2.1 Forecasting. Given the general multivariate ARMA model 

= ~ 
g=l 

phg 
l: Bhg(k)zg(t-k) 

k=l 

l; qhg 
2 I Ahg(k) Eg(t-k) 

g=l k=l 

h=1,2, ••• ,l;. 
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I 
] 

The ~-step ahead point forecast of category h at time T is the con-

J 
I 

ditional expectation taken at time T. 

So 

where 

"'h Z (~). = .. T 

~~(T~-k) = ~h(T~_k) is the realized observation if ~~k, 

Eg(T~-k) is the estimated noise if ~<k, and .. 

(7-95) 

i 
it 
II 

I 
J 

J 
fI,' " 
~ 

ii,,' tI 
\1 i1) 

, I 
To obtain the -step ahead interval forecast, we need to compute 

""h Var(~T(~»). The general multivariate ARMA model can be expressed in ~,
" 

( ; 

A-weight representation, 

z; co 

= L L Ahg(k)Eg(T~-k) + Eh(T~), 
g=l k=l 

where 

(7-96) 

m 
{!, 

'-'~'=""""""'~"'''"~'''::C'>'''''''''''''-' 1 

j.' i 

----~ -----~---- ------~------ - ~-

~,:. I, , 

~ 

I 
,J 

1 
]. 

] 

] 

,tt ;j' 

It lJ 

':3" 
,'. 
l 

J 
J 

Ahg(k)'can be expressed in terms of Bhg(k), Ahg(t) 

matrices, the equations that describe this relation­

ship are given in Section 7-3. 

Since the variance of the realized values are zeros, 
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var(~~(~» (7-97) 

Using the point forecasts and the variance estimate the ~-step ahead 

100(1-a)% forecast interval for a category h observation is , 

(7-98) 

where Za/2 is the a/2 percentage pOint of a unit normal distribution 

(e.g., 1.96 for a = 0.05). 

By setting 

;\hg 

Bhg(k) 
k 

<ph~(~) = 2 
~=O 

k ' 

hg 

Ahg(k) 
~ 

= I eh~(~) 
~=O k 



'fic forecast func-
) 

d (7 98) we obtain the spec1 
in Equation (7-95 an - , the model of 

For example, employing 
MULSTARMA model. 

tions for the . we set, 

the Cleveland CCP Data to 
build the forecast funct10n , 

,,22 ~22 (2) 
B22(1) = il>lOI + ~l2w , 

B32 (l) == ¢i~I, 

B33 (1) = $i~I, 
44 "'44 

B (1) =-,$101 , 

43 ",43 
B (2) == il>20I , 

B23 (2) = 

A24 (2) == 

A44 (2) == 
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wne have the following 
ad P

oint forecast function, 
recursive ~-step ahe 

) i is seen that: the 
function, Equation (7-99, t 

In the forecast correlat~d relationship 
. d r doesn't have any 

category 1 cr~me, mur e , 

1 
):' ,. 
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I 
~I 

I 
iI .. 
:I 

J 
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1 \ 
~, t 

it 
LI 

l·~' , I 

H 

I. J. 

IJ 

----------.---------

with the other crimes; the category 2 crime;',rape, is influenced by 

the previous rape occurrences in the same locati~n and the neighbor-

ing regions and the category 3 crime, robber, and category 4 crime, 

burglary in the same location; the category 3 crime, robbery, is 

correlated to the previous occurrences of robbery and rape in the 

same location; the category 4 crime, burglary is influenced heavily 

by the previous occurrences in the same location and ~eighboring 

locations burglary and by robbery in the same location. 

It should be noted that the forecast function is dependent on 

the inter-category as well as inter-location correlations. Dropping 

"'23 the inter-category correlated structure, i.e., dropping the $20' 
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.... 24 "'32 "43 
~20' ~10' ~20 terms, we obtain 4 sets of independent forecast functions 

that still contain the inter-location structure. Dropping the inter-

.... 22 .... 44 
location structure, that are contained in th~ il>l2' il>2l terms, we get 

3 sets of independent forecast functions that still keep the inter-

category structure. Dropping all the inter-category and inter-

location structure, we obtain 4x3 = 12 independent forecast functions 

that contain no inter-category structure nor inter-location structure. 

In the appropriate MULSTARMA model, to describe the data, Equation 

(7-99), murder is independent from the other crimes. Therefore, the 

forecast function for the category of murder would be the same if the 

categories were originally treated indpendently or jointly. However, 

the other three categories if treated independently would not give 

as refined a forecast function as the simultaneous model approach. 

Based on Equations (7-99), (7-97) and (7-98), the standardized 

N(O,l) point forecasts and the 95% confidence interval forecasts at 

~ 

k 
~ 

~, 

~ 

'" 
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T=35 were computed and listed in Table-7-7. Since the standardized 

expectation value of Z is 0, so the point forecasts converge to 
. ...t ... ' 

zero for each category and each location. Conversion to actual 

units can be accomplished using data from Table 7-4. Also, the 

. process is stationary, so the variati,.!e of the point forecast con-

verges and thus the lower bound and upper bound of 100(1-a)% confi-

dence interval forecast for given a converge. In Figure 7-14, the 

point forecasts, newly realized observations and these 95% confi-

dence interval forecasts are plotted. Here it is seen that the 

point forecasts and the bounds of the interval forecasts converge 

quickly. The forecasts do not contain any variations from the zero 

expectation when the converging rate is negligible, therefore in 

Table 7-7, these forecasts are omitted except the 22-step ahead fore-

casts to illustrate the convergent limits. 

Instead of computing the t-step ahead forecasts for R,=1,2, ••• ,22, 

the forecast function can be applied alternatively to compute l-step 

ahead forecasts for T=35,36, ••• ,56. It should be noted that the 

employed model isn't changed but the forecast values are modified by 

adopting the newly realized values. With shorter forecast horizons and 

using the newly adopted observations, the forecasts are expected to 

more closely mimic the new data than for longer forecast horizons 

which do not adapt the forecasts with new datao The l-step ahead 

forecasts at T=35,36, ••• ,56 are computed and plotted in Figure 7-15 

with their corresponding realized observations. Comparing Figure 

7-14, which is plotted for the t-step ahead forecasts, and Figure 

7-15, we see that the shorter length forecast horizons are more adap-
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Table 7-7. 

h i 

1 1 

1 2 

1 3 

2 1 

2 2 

2 3 

The Forecasts at T=35 for the CCP 
Data 

LB UB , 
1 0.00 -1.74 1.74 

22 0.00 -1.74 1.74 

1 0.00 -1.74 1.74 
22 0.00 -1.74 1.74 

1 0.00 -1.74 1.74 
22 0.00 -1.74 1.74 

-
·1 -0.20 -1.94 1.54 
2 -0.07 -1.92 1.78 
3 -0.04 -2.66 2.59 
4 -0.02 -2.73 2.70 
5 -0.01 -2.75 2.73 
6 -0.00 -2.75 2.74 

22 -0.00 -2.75 2.75 

1 -0.14 -1.88 1.60 
2 -0.02 -1.78 1.74 
3 -0.00 -2.55 2.54 

22 -0.00 -2.56 2.56 

1 -0.11 -1.85 1.63 
2 -0.08 -1.93 1.77 
3 \ -0.04 -2.66 2.59 
4 -0.02 -2.73 2.70 
5 -0.01 -2.75 2.73 
6 -0.00. -2.75 2.74 

22 -0.00 -2.75 2.75 

-
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3 2 
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4 1 

Table 7-7. (Cont'd) 

LB 

1 0.36 -1.38 
2 0.12 -1.81 
3 0.04 -1.93 
4 0.01 -1.97 
5 O.CO -1.98 

22 O.CO -1.99 

1 -0.23 -1.97 
2 -0.03 -2.06 
3 -0.06 ·-2.03 
4 -0.03 -2.01 
5 -0.01 -1.99 
6 -0.01 -1.99 
7 -0. CO -1.98 

22 -0.00 -1.98 

1 0.67 -1.07 
2 0.28 -1.65 
3 0.11 -1.87 
4 0004 -1.94 
5 0.01 -1.97 
6 O.CO -1.98 

22 0.00 -1.99 

1 0.03 -1.70 
2 0.01 -1.93 
3 0.01 -2.67 
4 0.01 -2.84 
5 0.01 -2.90 
6 0.01 -2.92 
7 0.00 -2.93 

22 0.00 -2.93 

UB 

2.10 
2.05 
2.01 
1.99 
1.99 
1.99 

1.51 
1.80 
1.91 
1.95 
1.97 
1.98 
1.98 
1.98 

2.41 
2.20 
2.08 
2.02 
2.00 
1.99 
1.99 

1.77 
1.96 
2.70 
2.06 
2.91 
2.93 
2.93 
2.93 

~-------
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Table 7-7. (Cont'd) 

UB , 
1 -0.17 -1.91 1.57 
2 -0.13 -2.08 1.81 
3 -0.10 -2.64 2.45 
4 -0.07 -2.76 2.61 
5 -0.05 -2.79 2.68 
6 -0.04 -2.79 2.71 
7 -0.03 -2.78 2.72 
8 -0.02 -2.78 2.73 
9 -0.02 -2.77 2.74 

10 -0.01 -2.77 2.74 
11 -0.01 -2.76 2.75 
12 -0.01 -2.76 2.75 
13 -0.00 -2.76 2.75 
22 -0.00 -2.76 2.76 

1 " 1.18 -0.56 2.92 
2 ) 0.86 -1.09 2.81 
3 0.64 -2.05 3.32 
4 0.47 -2.38 3.32 
5 0.35 -2.56 3.25 
6 0.26 -2.67 3.18 
-/ 0.19 -2 .. 74 3.12 
8 0.14 -2.79 3.07 
9 0.10 -2.83 3.04 

10 0.08 -2.86 3.01 
11 0.06 -2.88 2.99 
12 0.04 -2.89 2.98 
13 0.03 -2.90 2.96 
14 0.02 -2.91 2.96 
15 0.02 -2.92 2.95 
16 0.01' -2.92 2.95 
17 0.01 -2.92 2,.94 
18 0.01 -2.93 2.94 
19 0.00 -2.93 2.94 
22 o.co -2.93 2.94 
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(b) Crime Category 2 Rape 
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tive. For example, for the category I crime, murder, the ~-step 

ahead forecasts are identical to the I-step ahead forecasts, since 

the historical process of murder occurrences is a white noise pro-

cess, which has no structure and therefore newly adapted observa-

tions do not have any further information than what was already 

historically known: However, comparing the ~-~tep ahead forecasts 

of crime category 4, burglary, in Figure 7-14(d), we see that the 

I-step ahead forecasts track the realized observations more closely, 

oecause of the adaptation' of the new data and its associated informa-

tion. This is most clearly seen at the rest area. Whereas the 

observations of burglary crime at the rest area for t~52 ara clearly 

out of control with regard to the ~-step ahead forecast function while 

the corresponding I-step ahead forecast function is still tracking the 

realized observations within the 95% forecast confidence interval. 

7.9.2.2 Preliminary Intervention Analysis. '!he CCP program 

initiated at T=40 is considered as an intervention program that was 

expected to lower the crime occurrences at the target areas and per-

haps also reduce the cr~me occurrences in the adjacent areas. If the 

underlying process causing crime occurrences is chanRed by the inter-

vention program then the ~-step ahead forecasts ,\r.o.'d.r; reveal this 

forecas ts. However, if the process is not change..~, ',,,,:,,~, the ~ -s tep 

ahead forecasts should have good forecasting capabil~~y for the newly 

realized observations. In Figure 7-14, it is seen that at the target 

areas, except category 2 crime, rape, the newly realized observations 

are consistently lower than the point forecasts, i.e., lower than what 
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is expec~ed according to 
the model that describes 

11 T ~ 35 observations 
w.e • Also it is seen that at the 

rest area, the 1· rea ~zed observations 
are consistently higher th h 
. an w at is expected b h 

y t e forecast function 
Equation (7-99) and th f ' 

, e orecast function at 
T=35 has the best fore-

cast capability for the adj 
acent areas. Here the largest d 

. t iscrepancy. 
s~ uation is detected at 

the rest areas f or the burglary. To 
probabilistically assess 

see how bad this discrepancy i 
s, the probabi-

2·Pr(D~ > ID~I) can be computed, where 
lity is, the probability 

(7-100) 

and i=3, h=4 are set f 
or the adjacent areas and burglary crime 

respectively. Since th f ' 
e orecast function assumes 

the }ds torical pro ... 
cess does not change, the 

forecast function can be 
applied to evalu~te 

probabilistically whether the 
data pOints entering after t=T represent 

the process or they are out f 
o control, S~ the co t d mpu e probability 

represents the probability that any new 
observation would be worse 

this probability is high th 
than the new value observed. If 

realization is still i cons stent with th 
e structure of the historical 

, e new 

model. If this probability is 1 
ow, the new data points do 

from the historical process b 
~t rather a different prQcess. 

puted probabilities for burglary are, 

not come 

eom-

~=1-11: 0.26, 0.17, 0.19, 0.96, 0.09, 0.10, 0.01, 0.17, 0.05 0.14, 0.00, 

12-22: 0.00, 0.06, 0.18, 0.17, 
0.00" 0.00, 0.00 

0.03, 0.00, 0.00, 0.00, 

.:. 
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Clearly the new observations are not consistent with the historical 

process. Another indication of this can be found by comparing the 
!' 

~~<-step ahead forecasts contained in Figure 7-14 with the I-step 
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ahead forecasts contained in Figure 7-15. Again the largest descrepo-

ness following a nonrandom pattern occurs in the burglary crime of the 

rest areas. As seen in Figure 7-l5(d), the forecasts for the rest 

areas, these descreponess goes up rather than fluctuating about a 

zero level. 

To formally model process changes in level and to estimate the 

amplitude of the intervention effect, the historically based inter-

vention model is augmented to form the intervention model. The 

intervention model is then applied to evaluate the effects of the CCP 

on the crime rate dynamically. The intervention model takes the form, 

(7-101) 

where 

h = 1,2,3,4, 

$'s, e's are parameters of the employed model, 

" e(t-k) is the estimated residual, and 

. ~h(t) is the estimated effect at time t category h. 
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Figure 7-l6(a). The Effects of CCP on Murder. 
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Letting, 

we have, 

yh(t) (7-103) ... 

and by applying the linear model results, we have 

(7-104) 

where 02 is the estimated var~ance of the residuals. 

The observations are added to' the intervention model, Equation 

(7-101), one by one chronologically to evaluate the dynamic interven-

ff ~h h 1 2 3 4 d t 36 37 57 The estimated standardized tion e ect ~t' -", ao - , , ••• , • 

effects are plotted in F'igures 7-16 and 7-17. The evaluated effects of 

all locations are plotted' category by category in Figuxe 7-16 and the 

evaluated effects of all crimes are plotted location by location in 

Figure 7-17. For the crime category of murder, the estimated mean 

shift in the target area are below zero most of the time while the 

mean shift parameter for the other areas are positive most of the 

time. This observation suggests that the CCP was effective in lower­

ing the occurrence of murder in the target areas but displacing its 

occurrence to other areas. For the crime of rape the CCP appears to 
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have no significant impact since the mean shift estimates for all 

locations are generally ins'ignificant and randomly vary about a zero 

value with no overall pattern. The effect of the CCP on the crime of 

robbery is seen to be consistently negative in the target area and con­

sistently positive in the rest area while little discernab1e change 

occurs in 'the buffer or adjacent area. This suggests a strong'tendency 

to displace robber occurrences rather than deter them. 
The effect on bur-

glary is eve~ more pronounced than robbery. Figures 7-17(a-c) summarize 

these dynamic mean'shift effects of CCP by locations. The results 

of thi.s preliminary intel:vention analYSis consistently indicate that 

the CCP intervention was effective in lowering the crime occurrences 

in the target area. However, the additional patrol resources in the 

target area caused an increase in the occurrence of crimes in other 

areas, 'particularly those far removed (rest areas) from the target 

area. Thu..c;,. as implemented, these were not general deterrence but 

more typically displacement. However, since the CCP was primarily 

based upon differential deployment of existing police resources, 

the results of this analYSis give credence to the favorable input on 

crime rate of additional police resources. 
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CHAPTER VIII 

SUMMARY CONCLUSION 

In this final report, the univariate ARIMA: and the STARn1A. models 

were first used to formulate intervention models. These intervention 

models are developed to have the capability of modeling an environment 

influenced situation on the non-environment influenced situation, for 

situations in which, in addition to a change in process level there 

would also be a covariance change, there are multiple interventions or 

there is a space-time process. The S~ARMA model was generalized to 

include the non-equally preferential structures. The modeling proce­

dures for purely spatial models were developed. Also, the STARMA model 

was extended to the space, space-time model, that has th~ capability of 

capturing the space-time structure and the contemporaneous purely spa­

tial structure. The most generalized MULSTARMA model was constructed 

to capture the· inter-category information as well as the inter-location 

information. 

The specific results and conclusions of this report follows. 

These results have been grouped into five areas: intervention models, 

the non-equally preferential model, the purely spatial model, the space, 

space-time model and the multivariate STARMA model. The section in 

which the results were first presented is given in parenthesis. I 
I 
I 
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1. 

8.1 The Intervention Analysis 

Based on the univariate ARIMA model class, the 1 

2. 

3. 

4. 

5. 

mu ticonsequence 

intervention was given with two modeling considerations: environ-

ment influenced situation and non-environment influenced situation. 

(2.1) 

A useful mean shift function takes the form 

o 

oCt) = 
ok(t) 

where k(t) is a known numerical value that depends on the model 

specification and mode parameters. Th M L i 
e •• est mators of the pre-

intervention mean " and the intrinSic 1 ~ 
~ program uti ity u were ob-

tained in close form. (2 2 1) • • 

The dynamic component ident:i.ficat:f.on procedure that gives the 

unbiased estimates of mean shift function oCt) was developed to 

identify the intervention model specification. (2.2.2) 

The covariance matrix of the multiconsequence intervention model 

that is central to the development of the M.L.E. was derived for 

low-order models. (2.3) 

The statistics for testing the significance of intrinsic. program 

utility 0, pre-intervention mean value 11, the mean shift function 

oCt) and the change of covariance structure were given and used in 

estimations and model parsimony considerations. (2.4) 



6. 

7. 
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The bias in the ability of statistically determining the signi-

ficance of an intervention program's intrinsic utility due to the 

misispecification of the mean shift function form and/or the use 

of a single consequence intervention model from there is changed 

in the covariance structure was discussed fully. Tables that 

illustrate representative values of M = (I Var(~)SCI/Var(~)MCI ) 

were constructed to illustrate how the standarization of 8 in hypo-

thesis testing is affected by ignoring the multiconsequence phe-

nomena. (2.5) 

The bias of the pre-intervention mean estimator and the pr:ogram 

'" intrinsic utility estimator 6 due to misspecification of the model 

parameters was shmm by deriving the formula for ECD) and E(~). 

Tables of Band D where 

E [~J = [: :J 
were computed to illustrate bias tendency. It is concluded that 

the bias stablizes as n
l 

and n
2 

increase, where nl and n2 are the 

pre-intervention and post-intervention sample size. However, 

increasing sample sizes does not offset the bi;&ses induced by 

parameter misspecification. (2.6) 

8. Tables of h, where 
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were given to show the underestimation and overestimation of. 

the significance of 6 occur because of the misspecification of 

model parameters, where MISS and COR denotes misspecified and 

correct, respectively. Values of h can occur from 0.1 to 2.4. 

(2.6) 

The procedures of multi consequence intervention model building 

were developed for environment influenced situations as well as 

the non-environment influenced situations. (2.7). 

Formulae for computing sample sizes needed for detecting a change 

in covariance and sample sizes needed for detecing a change in mean 

level were derived. For a given magnitude change in covariance 

and/or mean level, a small pre-intervention sample size n
l 

requires 

a larger post-intervention sample size n2 in order to detect the 

changes. Also for given n
l

, a detection limit for the covariance 

change as well as mean level change are imposed. (208) 

Principles of optimal economic design for interrupted time series 

experiments were developed to minimize the total cost while keeping 

the capability of detecting the specified mean level change and 

covariance structure change. Typically, the optimal design is 

robust to the cost coefficient c
l 

and c
2

, where c
l 

denotes the cost 

per pre-intervention observation and c2 denotes the cost per post­

intervention observation. (2.9) 

12. TI:.,ro substantive examples were presented to illustrate the 

ARUfA(p,d,q)MCI modeling procedures. In the first example, the 

newly initiated school poling rewarded students directing in a 
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13. 

desire to modify their inclass behavior in regard to "talkouts". 

By applying the dynamic component identification procedure, the 

effect of this education program was determined to be not in-

fluenced by the environment and the form of the dynamics were 

determined to mimic a learning curve type of behavior. It was 

concluded that the program was effective in reducing "talkouts" 

by approximately 79%. In the second exampl~, a Gun Control Law 

was initiated whose purpose was to reduce the murder of gun re-

lated crimes. The intrinsic utility of the Gun Control Law was 

identified by the dynamic identification procedure. From the 

resulting multi-consequence model the law was determined to be 

effective in reducing all gun related crimes significantly. 

(2.10). 
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The space-time single intervention model, (STARIMA)Im model, for 

2N regions was introduced in a general form that has the capability 

of describing the direct-stimulus-response situation and the 

indirect-stimulus-response situation for both pulse intErventj.o~'l 

and step intervention programs. An alternative representation that 

decomposes the intervention model into two components: the deter-

minis tic component and the random component, was obtained. The 

deterministic component contains no random variables. (3.1, 3.1.1) 

14. The space-time multiple intervention model, (STARI~~)Im' mod~l 

was introduced as a generalization of (STARlMA)Im model. When the 

sequential interventions occur, from the initial realization of 

the effect of tIll! later- intervention, the latter effect. is con-

~ 

~ 'Nt 

E .. 

~ 
g .::: 

,~~,:, ill 

B ". 

.~ 

~ 

I 
I 
~ 

I 
I 
I 
I 
I 

r 

, 

\ 
\1 

i 
~ 

I 
1\ 
L 
}, 
\ 
I 
J 
I 

1 

t 
II 
I 
I 
\ , 
f 

r 

\ 

~.< 

: 

~e: 

~ 

ID 

R.· .. · n 

I 
) 

] 

687 

founded with the former interaction effect. (3.1.2) 

15. Two distinct types of spatial-temporal diffusion processes: 

regenerating type diffusion and relocation type diffusion were 

introduced as combinations of four distinct diffusion mechanisms: 

translation, domain-change, growth and contraction. The 

characterization of the different diffusion types occurring in the 

environment influence structure was detailed. The stationary 

(STARMA)I model was shown to be always of the regenerating dif­m 

fusion process. The· necessary and sufficient conditions for a 

homogeneously nonstationary process to be of 'relocation diffusion 

type were derived to show that the nonstationary (STARMA)I model 
m 

has the 'capability of describing the relocation diffusion. (3.2.1, 

3.2.2) 

16. Three characteristics of a diffusion process: the sphere of influ-

ence of the process, the speed of the process and amplitude of the 

process, were described for the diffusion processes of (STAR)I , 
m 

(STMA) I and (STARMA) models. (3.2.3) m 

17. A system of (11 11) square regions were used to simulate the 

diffusion processes of (STAR)I , (S11MA)I and (STARMA)I model for m m m 

the. regenerating diffusion process and' for the relocation diffusion 

process. The simulated results were plotted in 3-Dimension plots 

chronologically to illustrate the diffUSion phenomena. (3.4) 

18. Procedures of modeling space-time intervention processes that in-

clude the procedures for building the dynamic model of the inter-

vention effect were given. (3.5) 

e' 
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19. The recursive transformation formula that transforms the (STARMA)I m 

model into a linear model was derived for the model parameter known 

situation. Results from linear model theory was then applied to 

estimate the pre-intervention mean ~ and the mean shift vector O. ... 
A closed form transformation formula for STARIMA(l, ,0,1 )1 model 1\1 ml ' m 

was derived for convenient use. (3.5.1, 3.5.2) 

20. To avoid searching the least sum of squares function over a high-

dimension parameter space when model parameters are unknown, an 

efficient approach based on linearlization was developed to search 

for the least sum of squares iteratively. (3.5.3)' 

I" " " 21. The conditional least square estimators (~,y,o ~,cr,~) for the ... '- ... - .... ~ 

multi-consequence space-time intervention model were derived in the 

linear model form. (3.5.4) 

22. A substantive example of air pollution quality control was presented 

to illustrate the (STARIMA)I , of modeling procedures. In this 
m 

example, two interventions occurred in sequence, an engine design 

change followed by the change in the method of instrument calibra-

tion. The effect of engine design change legislation was identi-

fied to be influenced by the environment process and the effect of 

the calibration method change was identified to be non-environment 

involved. Based on eight year car change over a~sumption, this 

analysis concluded that the engine design change legislation sig-

nificantly reduced the air pol~ution levels preferentially in the 

most highly polluted areas while changing the process covariance 

structure. However, the calibration method change, of which the 
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effect was independent of environment, significantly reduced the 

pollution readings uniformly at all locations d ' an didn t change _ 

the process covariance structure. (3.6) 

8.2 The Non-Equally Preferential Model 

The physical meaning of the relative weights in the weight matrix 

which determines preferential diffusion were examined. The column 

scaled weight matrix was determined to have the property th.at 

ever! location gives equally weighted influence to its neighbors 

of the same order, while the row scaled weight matrix was deter­

mined to have the property that every location receives equally 

t at s are it as the common weighted influence from those locations h h 

neighbor of the same order. (4.1.1) 

Non-equally preferential weight matrices can't be obtained from 

linear combinations of equally preferential weight matrices and 

approaches for the construction of non-equal preference weighted 

matrix are needed. Two a h h pproac es, t e strip region approach and 

tbe Ci.Ilsular region approach, were proposed to construct the non-

equally preferential neighbor structures. The angular region 

approach results in complementary neighbor structures that together 

resolve to the equally preferential i hb ne g or structure. (4.1.2, 

4.1.3) 

A system of (llxll) locations on the two-dimension regular grids 

were used to simulate one-direction preferential space-time pro­

ceSSAS and two-dimension preferential space-time processes for 

illustrating the relationship between the non-equally preferential 



diffusion process and the corresponding weight matrices. The dif­

fusion speed, the influenced regions and the diffusion amplitude 

were described for low order STAR, STMA and STARMA processes. 

(4.2) 

26. Theoretical diagnostic checking procedures were developed to deter-

mine model inadequacies when assuming equal preference structure. 

These inadequacies are detected from the residual sa;nple space-cime 

1 i f N -1 / N -1 autocorre at on unctions only when ~k~k and or ejej are far 

away from the identity metrix I for some k, j, 1 ~ k ~ p, 1 ~ j ~ q. 

Simulation examples were used to illustrate the theory. (4.3) 

27. A procedure that performs the isotropic property test was developed 

'by decomposing the equally preferential neighbor structure into 

neighbor structures in the preferential directions and in the other 

directions and then constructing the non-equally preferential model 

accordingly. A test of~odel parameter equivalence was then applied 

to test the isotropic property. (4.4.1) . 

28. Two procedures for testing the significance of these non-equally 

were developed to update equal preference models to accomodate 

non-preferential dependies by explo:i,ting intervention from joint 

confidence intervals or over fitting. (4.4.2) 

29. An extended analysis of the pre-II' LA CO Data was presented to 

illustrate the non-equally preferential diffusion modeling proce­

dures. The preferential neighbor structures w~re constructed by 

applying the strip region approach and the angular region approach, 

and the non-equally preferential models were constructed accordingly. 
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models to compare with the identity matrix to justify the insensi-

tive diagnostic checking that had been applied on the residuals of 

the equally preferential models. This resulting pi~ferential 

model indicated that the coast line perpendicular directions were 

the directions of preference for the diffusion of the CO particu-

lates in the air. (4.6) 

8.3 The Purely Spatial Uodel 

30. The existence conditions were derived for the purely spatial model 

parameters to guarantee the process existence. The necessary 

existence conditions of the purely spatial AR(t,O) ' MA(mo) , 

ARMA(AO,m
O

) models were illustrated. These necessary existence 

conditions were shown to be also the sufficient existence for 

regular grid systems with AO,mO ~ 2. (5.1) 

31. The purely spatial autocovariance function was defined as 

Y = E(Yks ) = 
ks LN 

and the autocorrelation function waS defined in terms of tne auto-

covariance function as, 
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32. 

33. 

The cut-off property o.f P
ks 

was shown for the purely spatial 

STMA(mO) model. The tail-off property of Pks was s~own for the 

The purely spatial STAR(AO) model and the STARMA(AO,mO) model. 

cut-off, tail-off property was shown to be useful in distinguish-

ing the purely spatial STMA(mO) models from the other models. 

(5.2.1, 5.2.2) 

The partial autocorrelation function set was defined as the set 

692 

of all the solutions of the appropriate set of the.Yule-Walker 

type equations.. The cut-off property of the purely spatial 

partial autocorrelation functions for the purely spatial STAR(AO). 

model at ~O spatial lag, and the tail-off property for the purely 

spatial STMA(mO) model and STARMA(AO,mO) model were shown. A 

numerical example was given to illustrate the cut-off property of 

the purely spatial partial autocorrelation function for the STAR(l) 

model, and the computational difficulty in solving thQ simultaneous 

quadratic equations was discussed. (5.2.3) 

Pattern recognition was introduced to help in candidate model 

identification because of the difficulty in computing the purely 

spatial partial autocorrelation function sets. The expectated 

sgmple autocorrelation function E(Pk) of the purely spatial AR(l) , 

MA(l), ARMA(l,l), AR(2) and MA(2) models were computed for the 

lX25 line systems and 5x5 regular grid systems. Charts were 

developed to serve as prototypes for comparison in identifying a 

candidate model. (5.2.4) 

34. Charts were constructed to obtain initial estimates of the purely 

spatial ARMA(l,l), AR(2), MA(2) models to reduce subsequent compu-
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tation effort in estimation. (5.3.2) 

35. The estimation procedures for the purely spatial models were 

36. 

37. 

38. 

2 
developed for G = 0 I, general G and G unknown situations. (5.4) 

The residuals computed from a space-time process describing a 

hydrology process of river flow and from a space-time process 

describing ? criminology process of crime commission were modeled 

to illustrate the purely spatial modeling procedures. These two 

examples resulted in models of significant contemporaneously corre­

lated structures past the space-time autocorrelative information. 

(5.6) 

8.4 Space, Space-Time Models 

The aggregated purely spatial model was coupled with the space-time 

model and reparameterized to form the space, space-time models. The 

coupling mechanisms were detailed for three potential space-time 

models: all LN streams of residuals are of the same univariate 

ARI~~ model, the LN streams of residuals are from the STARIMA pro­

cess and the LN streams of residuals are from different ARI~~ 

processes. It was sho\vn that the modeling results are independent 

or approximately independent of modeling sequence for the equally 

preferential system~ (6.1.1) 

A 2 . space, space-time process with G = 0 I can be m1.staken as a 

space-time process with general G noise structure, which in fact 

confounds the purely spatial structure described by the con tempo-

raneous terms in the spalfe , space-time model with the process 

noise covariance. The capability of describing the observed pro-
~. 
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cess as well as forecasting is the same but the physical inter-

pretations are dj.fferent. The space, space-time process dis-

tinguishes the purely spatial structure from the noise structure 

while the purely spatial structure and the noise structure stay 

confounded in the space-time model. (6.1.2) 

39. The multiplicative models,that were represented by the space-

time observation model and purely spatial residual model, of the 

Mohawk River Heights and Northeast Boston Assault Arrests were 

coupled to give the sp.ace; space-time models. For the Mohawk River 

Height Data, the purely spatial structure was confounded with the 

general G noise structure. However, in the Northeast Boston Assault 

Arrests example, the coupling and reparameterizing procedure uncon-

founded the general G noise structure, which resulted from space-

time modeling, to give the signific~t purely spatial correlated 

structure and a diagonal G=D noise structure~ Forecast functions 

were built and numerically computed for both space, space-time 

model and general G space-time model and analyzed. Similar point 

forecast were observed but the space, space-time model had smaller 

variance of the forecasts than the space-time mode. (6.1.3) 

40. The ergodic process was defined as the purely spatial process with 

the property that any collection of observations shares the same 

contemporaneous spatial structure contained in the overall observa-

tions, {Zt' t E UT}. (6.2.1) 

41. The ergodic modeling procedures were developed. These modeling 

procedures include the test of the ergodic property. Two methods, , 
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the confidence interval method and the X2 test method, were pro­

posed for testing the process ergodic property. For low order 

purely spatial models, AO + mO ~ 2, the confidence interval method 

is preferred because it is more efficient in application. (6.2.2) 

The existence of outliers can mask the ergodic property of a purely 

spatial ergodic process. These outliers ~yere expressed as environ­

mentally influenced input outliers confounded with the process 

noise on expressed equivalently as i non-env ronmentally influenced 

outliers that are confounded wl,·th the process observations. (6.3) 

Sequential estimation of outliers was shown to result in no remain­

ing degrees of freedom in order to estimate the residual noise 

variance. An iterative procedure was d€lveloped to identify the 

potential outlier or simultaneously estimate the residual noise 

variance. Outlier correlation mayor may not result in an ergodic 

process. (6.3.1) 

An example that applied the modeling procedures of the ergodic 

systems 'with outliers on the Northeast Boston Assault Arrests for 

the last eleven observation periods was presented. The outlier 

corrected aggregate purely spatial model was built to describe the 

unmasked purely spatial ergodic process. The purely spatial model, 

that was built without outlier correction, was compared with the 

ergodic process to see the masking effect due to the presence of 

outliers. This example illustrated the importance of including the 

outlier identification procedure in the procedures of the purely 

spatial model coupling. Forecast models were built based on the 
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outlier corrected model and uncorrected model. The comparison 

of these forecasts revealed that the ergodic property mod~fied 

the point forecasts slightly but the exclusive of the purely spa-

tia1 components gave rise to larger a value in the (I-a) confidence 

interval than desired. (6.3.2) 

8.5 The Multivariate STARMA Model 

45. The multivariate STARMA model was proposed and denoted as the 

MULSTARMA model. It was shown to collapse to the multivariate ARMA 

model, STARMA model by system simplification and collapse to the 

MULSTAR, MULSTMA models by parameter simplification. (7.1.1, 7.1.2) 

46. Charts were constructed to illustrate the relationship between the 

MULSTARMA process and its collapsed subset of models. (7.1.3) 

47. Stationary and invertible regions for the low order MULSTARMA mpdels 

were derived. (7.2) 

48. A A-weight representation were derived for the stationary general 

multivariate space-time models, the A-weight matrices were computed 

recursively from the derived recursive formula. The A-weight 

representation expressed the observation of MULSTARMA process as the 

weighted sum of past process noises of all categories and all loca-

tions. (7.3) 

49. The multivariate space-time autocovariance function was defined as 
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and the multivariate space-time autoco"i)'ariance function was shown 

to cut off after qj* temporal lag for MULSTMA process, and tail off 

for MULSTAR and MULSTARMA processes. The multivariate autocorre1a<­

tion function was defined as 

(7.4.1, 7.4.3) 

The expectation and variance of the sample multivariate space-time 

autocorrelation function were derived. Th e expectation and variance 

of the sample multivariate space-time autocorrelation function of 

white noise were tabled for easy use in identifying significant 

sample multivariate space-time autocorrele.tions. (7.4.2) 

51.. The multivariate space-time partial autocorrelation function was 

52. 

defined as the last coefficient in the solution of the 'appropriate 

Yule-Walker type equations. This function was shown to cut-off 

when after e lags in time and ~ lags in space for the MULSTAR(~,p,A) .... 
model and' to tail-off for the MULSTMA model. (7.5.1) 

The Yule-Walker type equations were shown to consists of ~ indepen­

dent linear equation sets, and the coefficient matrix of each linear 

equation set was shown to be symmetric. Based on these facts, a 

moze efficient computation approach was developed to compute the 

partial autocorrelations o (7.5.2) 

The cut-off and tail-off statistical properties were summarized 



, 
r 
( 

698 

and applied to help identify the candidate ~STARMA models. 

(7.6) 

54. The linear nature of the autoregressive model par&~eters was 

applied to reduce the searching dimension. It was shown that, 

when inter-category process noises are independent, the' estimation 

of one categories' parameters are independent of the estimation 

of the parameters of the other categories, and the c~putation 

~ask of autoregressive parameter estimation can be reduced by 

separately estimating them category by category •. (7.7) 

55. A substantive exampl'e of Cleveland Crime Data, that contained four 

crime categories and three differently treated regions, was pre­

sented to illustrate the MULSTARMA modeling procedures. Based on 

the pre-intervention MULSTARMA model, the forecast function was 

built. The i-step ahead forecasts were illustrated. Also based on 

the. pre-intervention MULSTARMA model, a preliminary intervention 

analysis was performed and determined that the CCP intervention was 

effective in lowering the crime occurrences in the target areas, but 

the crime occurrences in the adjacent areas and the rest areas was 

incres$ed. Since the CCP was primarily based upon differential 

deployment of existing police resources therefore the crime reduction 

was not due general deterrence but rather displacement. (7.9) 

] 

] 

] 

j 

~ 

~ , ~, 

;, 

~ <. 

m 'f" 

~ 

~ 

I 
~ ·c 

I 
'1 .. 

I 
I 
I 
I I 

-----h--·l "~~=~~=~=."~ .• ~~,~~=~==~==~~~=====--<-=-" .. ~,.~."'"~" 

17 

r 

, . ,-
t 

} 

I 1 
.. 
I 

\ 

J 
] 

1 
".1 

] 
'iii 
l 

~I: 

!lI . ~ 
J.f ,..11 

] 

] 

] 

] 

I 
~ 
Ii 
t ~ 

.. ~ 

aIBLIOGRAPHY 

Box, G. E. P. and Jenkins, G. M. (1970), Time-Series Analysis: 
Forecasting and Control, San Francisco : Hloden Day. 

Box, G. E. P. and Tiao, G. C. A. (1965), irA Change in Level of a 
Non-Stationary Time-Series", Bionmetrika, 52, p l8l. 

699 

Box, G. E. P. and Tiao, G. C. A. (,1975), "Intervention Analysis with 
Applications to Economic and EnVironmental Problems", Journal of the 
American Statistical Association, 70, p 70. 

Brown, Lawrence A. (19~7), Diffusion Processes and Location. 
Philadelphia : Regional Science Research Institute • 

pahman , J. s. (l975), Examination of Police Patrol Effectiveness 
High Impact Anti-Crime Program, The Mitre Corporation. 

DeutSCh, S. J.·and F. B. Alt, "The Effect of Massachusett's Gun 
Control Law on Gun Related Crimes in the city of Beston", Evaluation 
Quarterly, 1977, 1, p 543. . 

Deutsch, S. J. and Pfeifer~ P. E. (198ld), "Space-Time ARMA Modeling 
with Contemporaneously Correlated Innovations", Technometrics, 
Vol. 22, No.4. 

Draper, N. R. and Smith, H. (1966), Applied Regression Analysis, 
John Wiley & Sons. 

Durbin, J. (1960), "The Fitting of Time Series Models", International 
Statistical Revue, 28, p 233. 

Glass, G. V., Wilson, V. L. and Gottman, J. M. (1975), Design and 
AnalYSis of Time-Series Experiments, Boulder Colorado ASSOCiated 
University Press. 

Grayoill,F. A. (1976), Theory and Application of the Linear Model~ 
North SCituate: Ouxourg Press. 

Hall, R. V., R. Fox D. Willard, L. GoldSmith, M. Emerson, H. Owen, 
F. Davis, and E. Porcia (~97l), "The Teacher as Observer and 
Experiment.er in the Modification of Disputing ang Talking-out 
Behaviors", Journal of Applied Behavior Analysis, 4, p 141. 



l. 

----------------~ 

700 

Hannan~ E. J. (1970), Multiple Time Series, New York: Jo'hn Wiley 
and Sons. 

KeD.dall~ M. G.~ The Advanced Theory of Statistics, Vol. :r,II"III, 
New York : Hanfner. 

Pfeifer, P. E. (1979), Spatial-Dynamic Modeling, Ph. D Dissertation, 
School of Industrial and Systems Engineering, Georgia Institute of 
Technology. 

Pfeifer, P. E. and Deutsch, S. J. (1979), "Comparison of Estimatiqn 
Procedures for the Parameters of the STAR Model", Communications 
in Statistics, Vol. B8, No.2. 

Pfeifer, P. E. and Deutsch, S. J. Cl980p), "A STARIMA Model Building 
Procedure with Application to Description and Regional Forecasting": 
Transactions of the Institute of British Geographers, Vol. 5, No.3. 

Pfeifer, P. E. and Deutsch, S. J. (J.980c), "Identification and 
Interpretation of First-Order Space-Time ARMA Models", Technometrics, 
Vol. 22, No.3, p 397. 

Pfeifer, P. E. and Deutsch, S • .1. U980e), "Stationary and 
Invertioility Regions for Low-Order STARMA Models", Communications 
in Statistics, Vol. B9, No.5. 

Pfeifer, P. E. and Deutsch, S. J. (198la), "The Variance of the 
Space-Time Autocorrelation Function", Journal of the Royal 
Statistical SOCiety, Vol. 43, No.1. 

Pfeifer, P. E. and Deutsch, S. J. U98lc), "Seasonal Space-Time 
ARMA Modeling", Geographical Analysis, Vol. 13, No.2. 

Tiao, G. C., Box, G. E~ P. and Hamming, W. J. (1975), "A Statistical 
Analysis of the Los Angeles Ambient Carbon Monoxide Date 1955-1972", 
Journal of the Air Control Association, 25, p 1129. 

Tiao, G. C. and Box, G. E. P. (1981), "Modeling Multiple Time Series 
with Applications", Journal of the American Statistical Association, 
76, p 802. 

Wilks, S. S. (1938), "The Large Sample Distribution of the Likelihood 
Ratio for Testing Composite Hypotheses", Annual Mathematical Statistics, 
Statistics, 9, p 60. 

Whittle, P. (1953), "Estimation and Information in Time Series", Arkiv 
fur Mathematik, 2, p 423. 

I 
I 

'. 

.. . , 



r 
\ 

\ 

, , 

, t 

!,. 

r ~l 
ti 

\:l n 
If 

L 

t 
I, 

E 
~ 

f~;;' 

!, 

I,· 
" '\ 

,,:, 

~ 
1 
I 

'" 

Q , ' 




