

*A final report for grant #81-IJ-CX-0020 from the National Institute of Justice to the Georgia Institute of Technology; Principal Investigator Dr. Stuart Jay Deutsch, Professor, School of Industrial and Systems Engineering, Atlanta, GA 30332

95232

MULTIVARIANT CONSIDERATIONS

IN

SPACE-TIME MODELING*

Prepared By

Stuart Jay Deutsch

and

C.C. Wang

ACKNOWLEDGEMENT

Û.

1T

Γ

T

T

L

T

翻

17

T.

M

50

Π

24

Change of the second se

14

l i

Π

Chapter

I.

II.

2.9

2.10

ii

This work was partially performed under Grant Number 81-IJ-CX-0020 from the National Institute of Law Enforcement and Criminal Justice. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the United States Department of Justice.

-

U.S. Department of Justice National Institute of Justice

This document has been reproduced exactly as received from the person or organization originating it. Points of view or opinions stated in this document are those of the authors and do not necessarily represent the official position or policies of the National Institute of Justice.

Permission to reproduce this copyrighted material has been granted by Public Domain/NIJ

U.S. Department of Justice

to the National Criminal Justice Reference Service (NCJRS).

Further reproduction outside of the NCJRS system requires permis-sion of the copyright owner.

TABLE OF CONTENTS

ACKNOWLEDGEMEN			_	_										• 1									Pa	ge
	•	•	•	•		٠	•	•	••	•	• •	•	•	• .		•	٠	•	•	٠	•	•		i
LIST OF TABLES .		•	•	e	•							_	5											
						ŝ			· •	•	•	•			•	•	- 🖷 1	•	•	(.	۰.	•		x
LIST OF FIGURES	•	• .	•	•	•	•.	•	•			· •												٠	
													•	• •	-		•	•	•.	•	•	•	5 I	XIV

INT	RODUCTION	l
MUL	TICONSEQUENCE INTERVENTION MODEL.	12
2.1	Multiconsequence Model Structure.	15
L.	Maximum Likelihood Estimation Considerations. 2.2.1 Case I: Mean Shift Function Form Known (Model Parameters Known)	19
	2.2.2 Case II: Mean Shift Function and Influence of Environmental Process	
	2.2.3 Case III: Estimating μ , $\delta(t)$ Given β_{i} , Unknown (Model Parameters Not All	
2 3	Known)	
2.4	Hypothesis Testing and Confidence Intervals	33 39
Z .J	Anticipated Causes of Bias in Estimation of the Shift in Process Level.	43
2.6	Bias of $\hat{\mu}$ and $\hat{\delta}$. Modeling Procedures	43 50
2.8	Consideration in Designing Interrupted Time	62
	2.8.1 Sample Sizes for Detecting a Change in Covariance	63
	2.8.2 Sample Sizes for Detecting a Change in Mean Level	
2.9	Optimal Design of Interrupted Time Series Experiments	
.10	Modeling Examples 2.10.1 A Direct Stimulus Response Structure:	83 86
	2.10.2 An Indirect Stimulus Response Structure: Gun Control	

iii

			τv	1	
-				6 B	
Chapter			Page		
III.	THE	SPACE-TIME INTERVENTION MODELING.	95		
					in de la companya de
	3.1	The Space-Time Intervention Model	96	Incur.	
		3.1.1 An Alternative Representation			
		3.1.2 Multiple Interventions		T)	
	3.2	Physical Representations of the Model	100		
		3.2.1 Diffusion Mechanism	105	تل _ا و	
		3.2.2 Characterization of the Diffusion		17 15	
		Processes Types by the STARIMA (p_{λ}, d, q_{m}) I			
		Models		6.11	
		3.2.2.1 Processes and Pulse Inputs			
	•	3.2.2.2 Homogeneously Nonstationary		and the second se	
		Processes		Presso Marine	
		3.2.2.3 Steady State Gain for the			
		Step Function Input			
		3.2.3 Properties of the Diffusion Process			
		3.2.3.1 AR Type		-	
		3.2.3.2 MA Type	1		
	1.1	3.2.3.3 ARMA Type		and the second se	
	3.3	Simulations of the Diffusion Process of the Low		1.11	
		Order STARMA(p,,0,q_)I_ Models	130		
	3.4	Modeling Snace-Time Intervention Processes	146		
	3.5	Estimation for Space-Time Intervention	2.0	n Ha	
		Models	1/0 0		
		3.5.1 Transformation to Linear Model Form	T43		
		3.5.2 Least Squares Estimates and Hypothesis			
		Tests for ϕ , θ Known	е.		
		3.5.3 L.S. Estimators and Hypothesis Tests			
		for ϕ , θ Unknwon		and the second se	
		3.5.4 L.S. Estimators for the Multi-		2,4	
		Consequence Space-Time Model		# 73	
	3.6	An Example: Los Angeles Carbon Monoxide (CO)			
		Data	169		
		3.6.1 The System, Structure and Data			
		3.6.2 Initial Considerations of the Forms			
		of the Interventions		11	
	1. j	3.6.3 Modeling the LA CO Data			
		3.6.3.1 Modeling the Pre-T_ Space-		1 8	
		Time Process		112	
		3.6.3.2 Modeling the Post-T. Dynamic			
	1. 1. 1.	Components		(7	
		3.6.3.3 Modeling the Post-I, Space-		and the second	
	e e constante La constante	Time Intervention Model		1 18	T
		3.6.4 Refining the Noise Model and Diagnostic		Res (
		Checking			
		3.6.5 Checking Alternative Forms: The No		1	
		Feedback Structure			
		3.6.6 Model Interpretation		T	

Chapter

CYCLOCK3

iv

IV. N

			Page
	3.6.7	Comparison to a Univariate Intervention Analysis Approach	
NON-	EQUAL D	IFFUSION PREFERENCE MODELS	223
4.1	The In	terpretation of the Diffusion Preference	
	Weight	Matrix	224
	4.1.1	The Boundary Effect on the Scaled	
		Weight Matrices	
	4.1.2	The Needs of Constructing the Non-	
		Equally Preferential Neighbor	
		Structure	
	4.1.3	The Construction of Non-Equally	•
		Preferential Neighbor Structure	
		4.1.3.1 Strip Region Approach	
	The St	4.1.3.2 Angular Kegion Approach	
+ • 4	Diffue	ion Process	244
	4.2.1	The Simulation of the One-Direction	244
		Preferential Diffusion Processes	
	4.2.2	The Simulation of the Two-Direction	
		Preferential Diffusion Processes	
4.3	Detect	ing the Non-Equally Preferential Diffusion	
	Proces	5	266
	4.3.1	Theoretical Analysis of Residual	-
		Patterns	
1	4.3.2	Simulation Examples	•
+.4	Updati	ng the Non-Equally Preferential Diffusion	200
	STARMA	Trocess	200
	4.4.L	Testing the Significance of the	
	442	Testing the Significance of the Non-	
	7.8784	Faual Preference Structures	ê de s
4.5	Non-Ea	ual Preference Space-Time Model	
	Estima	tion	296
	4.5.1	The Application of Linear Model for the	
		M.L. Estimation when the Covariance of	
		the Noise is Known	the second second
		4.5.1.1 STAR Model Parameter	
		Estimation	
		4.5.1.2 STMA Model Parameter	
		4.J.L.J Mixed STARIMA Parameter	
	450	Escimation Procedure then the	
	₩ 8 J 8 6	Covariance of the Noise is Unknown	

ν

n o graga soere oagewording C		د. معمور کا میں دیکھر میں دی	n na standar en an ar an anna anna an an an an an an an an an	n norder der er		Į.		an a
				4	π			
				vi			107	
							1411	Chapter
Chapter				Page			T	
							.L	
	4.6	The Ex	cample of the Non-Equally Preferential	202				•
		4.6.1	Building the Model of Preference by	303			ľ	
	•		the Strip Region Approach				1.27	
		4.6.2	Building the Model of Preference by		en de la populación		T	5.6
		1.6.2	the Weight Matrix Decomposition	: ·	gaatta Kii			JøD
		4.0.7	Discussion of Modeling Results		· · · •			
V.	THE	PURELY	SPATIAL ARMA MODELS	321			T	IIT comm
	5 7	T1 1 1		0.0.0				VI. COUP
	2.1	Existe	The Evistence Conditions of the Purely	322			19 1 9	6.1
			Spatial AR(λ_0) Model					
		5.1.2	The Existence Conditions of the Purely				1	
		E 1 0	Spatial MA(m ₀) Model				10970	
		2.1.2	Spatial ARMA(), ma) Model		August St.		1	
	5.2	The Id	lentification of the Purely Spatial					
		Models		333				
	. •	5.2.1	The Autocovariance and the Autocorrela-				2	
		5.2.2	The Identification of the Purely Spatial		43		7	
			MA(m ₀) Process					
		5.2.3	Partial Autocorrelation Function Sets					
	5 3	5.2.4 The Tr	The Pattern Recognition		Ē.		T	
		Spatia	al Model Parameters	360				
		5.3.1	The Initial Estimates of the MA(2) Model				# # 0	
		5.3.2	The Initial Estimates of the ARMA(1,1)					
		5 3 3	Model The Initial Estimates of the AR(2) Model		13		ula	
	5.4	The Es	stimation Procedures of the Purely Spatial		6.8		T	
en en ser ser		Models	5	373				6.2
	· ·	5.4.1	M.L. Estimation					
	4	5.4.2	The Estimation Procedures of the Purely Spatial $AP(\lambda_{e})$ Processes				A	6.3
		5.4.3	The Estimation Procedures of the Purely		19			
		,	Spatial MA(m ₀) Processes		1 13			
		5.4.4	The Estimation Procedures of the Purely	• The second se	11			
		5 / 5	Spatial ARMA(λ_0, m_0) Processes The Confidence Pagions		1.22			
		5.4.6	Estimation When G is Known and $G=\sigma^2 I$		m			
		5.4.7	Estimation When G is Unknown					
	5.5	Diagno	ostic Checking	387				ντ אחד איז
		5.5.1	Diagnostic Checking That is Applied to	an an taon an t				ATTS MODITY
		5.5.2	Testing the Significance of STARMA				<u>u</u>).	7.1 7
			Parameters	tan dan san san san san san san san san san s	753		黄琛	
					1 2		44,344 	
an an Artan An Artan An Artan				andra ann an Aonaichte Anns an Aonaichte Anns an Aonaichte	(Č		1.	
		y an e e e			Ľ	0		
			${f u}_{i}$, ${f $		1			

		rage
	5.5.2.1 The Confidence Region	
	Approach for Joint	
	Inferences	
	5.5.2.2 Testing the Significance of	
	the Model Parameters by	
	Overfitting	
6 Examj	ples	303
5.6.1	The Mohawk River Heights	575
5.6.2	2 The Northeast Boston Assaults Data	
JPLING A	AND REPARAMETERIZING MODELS	406
Count	ine and Based to the second	
Coupi	ing and Reparameterizing the Purely	
611	ar Models and the Space-Time Models	407
0.1.1	Toma Models with Contemporaneous	
	0.1.1.1 All LN Streams of Residuals	
	are or the Same Univariate	
	ARIMA Model	
	0.1.1.2 The LN Streams of Residuals	
	are from the STARIMA Process	
	0.1.1.5 The LN Streams of Residuals	
	are from Different ARIMA	
	Frocesses	
1. A.	0.1.1.4 The Equivalence of Modeling	
612	Sequences	
U . I . Z	comparison of the Reparameterized Models	
6 1 3	Encomple Application	
0.1.0	6 1 2 1 The Main 1	
	U.I.J.I The Models of the Mohawk River	
	Acarda Anna Anna Anna Anna Anna Anna Anna An	
Coupli	ASAULT ATTESTS	
6.21	The Excelled Determined to the termined of termine	454
6.2.2	The Freedin Medeline Description	
The E	redia Systems with Outling	
6.3.1	Detecting the Outliers	462
	the Example Decision and Modeling	
6.3.2	An Example Analisation	
0.000	6 3 2 1 Outline Detection	
	Model Building	
	6.3.2.2 Consequences of Tourst	
	Homogoneity Annual the	
e Januar - Ar	nomogenercy Assumption	
TVARTAT	E STARMA MODELTNO	
· • • • • • • • • • • • • • • • • •	- OTHERTIGS	510
The Mu	Itivariate STARMA Model Class	-
	Contract Oracle Crass.	יוור

vii

viii Page 7.1.2 Other Special Subset of the MULSTARMA 7.1.2.1 Parameter Simplification 7.1.2.2 System Simplification 7.1.3 Physical Interpretation of the 7.2 Stationary and Invertible Conditions. 531 7.3 A-Weight Representation for the Stationary General Multivariate Space-Time Models. 542 7.4 Multivariate Space-Time Autocorrelation 545 7.4.1 The Multivariate Space-Time Autocorrela-7.4.2 Expectation and Variance of the Multivariate Autocorrelation Function 7.4.3 Theoretical Properties of the Autocorre-- lation Function for MULSTARMA Processes 7.5 Multivariate Partial Space-Time Autocorrelation 559 7.5.1 The Multivariate Partial Space-Time

The second se

Æ

in pasta

691

693

0

Í

Autocorrelation Function 7.5.2 Computational Consideration 567 572 7.7 Estimation 7.7.1 Conditional Maximum Likelihood Estimation with G Known 7.7.1.1 MULSTAR(ζ, p, λ) Model Estimation 7.7.1.2 MULSTMA(ζ,g,m) Model Estimation 7.7.1.3 MULSTARMA(ζ , \tilde{p} , q, λ , m) Model Estimation 7.7.2 Conditional Maximum Likelihood Estimation When G is Unknown 591 592 7.9.1. MULSTARMA Model Building 7.9.2 Using the Model 7.9.2.1 Forecasting 7.9.2.2 Preliminary Intervention Analysis VIII. SUMMARY, CONCLUSIONS 682 683 8.2 The Non-Equally Preferential Model. 689

8.3 The Purely Spatial Model

7.1.1 Model Formulation

MULSTARMA

7.2.1 Stationarity Regions 7.2.2 Invertibility Regions

tion Function

Chapter

Chapter								Page
	8.5 8.6	The Multivariate STARMA Model	•••	•	•	•	•	 696 698
BIBLIOGR	APHY	• • • • • • • • • • • • • • • • • • •						699

ix

L L Table LIST OF TABLES L 3-9 Estimat Table vention Page Values of (√ Var(ô)MCI/Var(ô)SCI)⁻¹ for Determining The Nei 4-1 2-1 Consequences of Over/Under Estimation of Significance Strip R 47 The Fir 4-2 11 2-2 Value of B and D for Misspecification of β Parameters Equal P 124 (Entries are B above and D below)..... 56 面 4-3 The Nei 2-3 Computed Values of h for Misspecified Parameters β . . . Angular 60 4-4 The Wei 2-4 Sample Sizes of n₂ for Detecting Covariance Change of M STMA(1) Process Given n₁=kn₂, and k=1.0, 0.5, 2.0 . . . Directi 71 Computed Values of Limit $E[Var(\hat{\delta}/\sigma_a)]$ Given $n_1=10...$ 4-5 The Wei 2-5 78 Directi $n_1 \rightarrow \infty$ 2-6 82 4-6 The Sam Residua D 3-1 170 M 4-7 The Sam 3-2 The Sample Space-Time Autocorrelation Functions and the Res R the Standardized Sample S-T Autocorrelation Functions the Pre for the Observations from March, 1965 to December, ALC: NO 176 4-8 The Sam the Res 3-3 The Sample Space-Time Autocorrelations and Partial for the Autocorrelations of the Observations from March, 183 The Sam 4-9 the Sta 3-4 The Sample Space-Time Autocorrelations and Partial of the Autocorrelations of the Pre-I, Residuals 185 Model. 3-5 Mean Shift Function Forms. 194 5-1 The Nec Spatial 3-6 The Sample Space-Time Autocorrelations and Partial Autocorrelations of the Residuals of the Post-I Model 5-2 Charact 198 for Pur 3-7 The Sample Space-Time Autocorrelation Functions and 5-3 The Sam 11 the Standardized S-T Autocorrelation Functions of the Res the Residuals, ε_{t} , of the Post-I, Noise Model. 201 Model o 3-8 The Sample Space-Time Autocorrelation Functions and 5-4 The Sam the Standardized Sample S-T Autocorrelation Functions the Sta of the Residuals of the Post-I1 Model Without Any Functio 210 Model,

T

х

	Page
tes of Parameters in the Univariate Inter- n Model	222
Ighbor Structure Obtained by Applying the Region Approach	235
rst Order Scaled Weight Matrices of Non- Preference	237
lghbor Structure Obtained by Applying the Region Approach	239
Ight Matrices of Preference in the Lons	241
ight Matrices of Preference in the lons	242
aple Space-Time Autocorrelations of the als from the Mistaken Models for Simulations	279
aple Space-Time Autocorrelation Functions of siduals of the Equally Preferential Model for e-I ₁ Observations of the LA CO Data	308
aple Space-Time Autocorrelation Functions of siduals of the Non-Equally Preferential Model Pre-I ₁ Observations of the LA CO Data	308
nple Space-Time Autocorrelation Functions and andardized Sample S-T Autocorrelation Functions Residuals of the Non-Equally Preferential	
	315
cessary Existence Conditions of the Purely Models	332
ceristics of the Autocorrelation Functions cely Spatial ARMA Models	347
aple Space-Time Autocorrelation Functions of Siduals from the Purely Spatial ARMA(1,1) of the Mohawk River Heights Data	399
nple Space-Time Autocorrelation Functions and andardized Sample Space-Time Autocorrelation	
Equation (5-61)	404

xi

era.

				n n			
•			xii	2	J.	•	
	Table		Page	La companya		Table	
	6-1	The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Reparameterized		And Andrewson and Andrewso Andrewson and Andrewson and Andre		6-14	The Sample
		Model for the Mohawk River Heights	431	A construction of the second			lations of Equation (6
	6–2	The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Model, Equation (6-28)	434	instantistic provident and a second s		6-15	The Sample of the Resi (6-47)
	6–3	The Individual Purely Spatial Model of the Differenced Northeast Boston Assault Arrests	469	Andreas and a second se		7-1	Variance of Autocovaria
	6-4	The Summarized Results of the Tests of Ergodic Property for Two Consecutive Observations	473	and the second s		7–2	the White No The Statist:
	6-5	The Estimated Input Outliers of Northeast Boston Assault Arrests	475	ואיניניסאיסארטיניערעייערעייערעייער ארביגעריייייייייייייייייייייייייייייייייי			Multivariate
	6-6	The Observation Correction Values for the Northeast Boston Assault Arrests	476			7-3 7-4	The Concentr Mean Levels
	6-7	The Individual Purely Spatial Model of the Outliers Corrected Northeast Boston Assault Arrests	478	A second s		7–5	The Sample M and Partial
i i	6–8	The Sample Space-Time Autocorrelation Functions of the Residuals of the Aggregated Purely Spatial Model of the Outlier Corrected Data	482			7-6	Crime Data . The Sample M
	6–9	The Sample Space-Time Autocorrelation Functions of the Residuals of the Model, Equation (6-40)	483	A STATE AND A STAT		7-7	Cleveland Cr THe Forecast
	6-10	The Sample Space-Time Autocorrelation Functions of the Residuals of the Coupled Model for the Outlier Corrected Data	485	A CONTRACTOR			
	6-11	The Sample Space-Time Autocorrelation Functions of the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Aggregated Purely					
		Spatial Model	488				
	6–12	The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Model, Equation (6-44)	489				
	6–13	The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Coupled Model.		restrictions of the second sec			
		Equation (6-42),	494	Variate Paralesta Succession Succession			
		$r_{ m r}$					

	Page
Space-Time Autocorrelation Functions andardized Sample Space-Time Autocorre- the Residuals of the STMA Model, 6-43).	494
Space-Time Autocorrelation Functions iduals of the STMA(1 ₀) Model, Equation	497
E Sample Multivariate Space-Time ance and Autocorrelation Function of Noise Process	555
ical Properties of the Multivariate Autocorrelation Functions and the e Space-Time Partial Autocorrelation	•
	570
rated Crime Patrol (CCP) Data	595
and Variances of the CCP Data	597
Multivariate Space-Time Autocorrelations Autocorrelations for the Cleveland	500
Autocorrelations for the Residuals of	299
	629
s at T=35 for the CCP Data	659

xiii

				and the second	X		
an a							
			XIV			Figure	
			en de la composition de la com			- ISULE	
		TIST OF FICIRES				3-13	k(t) Va.
	71.		Deca			3-14	Post-I
	Figure		гаде	• • • • • • • • • • • • • • • • • • •		3-15	Feedback
	2-1	Transfer Function Representation of Multiconsequences Intervention Model	18			3-16	The Mean
	2-2	Identification Procedure for Dynamic Component	28			4_1	The Une
	2_3	The Covariance Matrix of the ARTMA(1.0.1)MCT Model.	37			4T	Grid Sys
	2-4	Variations in k(t) Weights	45			4–2	The Scal Grid Sys
	2-5	Multiconsequence Intervention Model Building Procedure	64			4-3	The Scal Grid Sys
	2-6	Optimal Design of Experiments, $(0,0,1)$ MCI with $\theta_{10}=0.98$, $\gamma_1=0.82$, $\alpha_1=0.05$, $\alpha_2=0.05$	85			4-4	A Detern Circular
	2-7	Talk Out (Data and Mean Shift Function)	88			4-5	The Stri
	2-8	Assault with a Gun (Data and Mean Shift Function)	91			46	The Rela
•.	3-1	Data Generating Processes	98	3.7et ¥*			
	3-2	Diffusion Mechanisms	111			4-/	The Angu
	3–3	Permanent Impact System Diffusion Type Interpretation	123			4-8	The Puls at time
	3-4	Intervention Input of Diffusion Process Simulations	134			4-9	Diffusio
lar Sila	3-5	Diffusion Process of AR Type	135			4-10	Diffusio
	3_6	Diffusion Process of MA Type	139			4-11	Preferen
15		Diffusion Process of ADMA Ture	140			4-12	One-Dire
	3-/	Diffusion Process of ARMA type	140 - 7 /			4-13	One-Dire
	3–8	Diffusion Process of Relocation Type	144			4-14	One-Dire
a di Geogra	3-9	Procedure of Dynamic Modeling Building	148	n an			Process
	3–10	The Relative Positions of Lennox, Long Brach, LA County, Burbank, Downtown LA and Azusa	171			4–15	Two-Dire
۰.	3-11	LA CO Measurement	174			4–16	Two-Dire
	3-12	The Dynamic Component $\hat{\delta}(t)$	186	1			
			2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				

ſ

	Page
Values for Six Measurement Sites	189
$I_1 \delta(t)$ vs. k(t) Plot · · · · · · · · · · · · · · · · · · ·	190
ack Connections Between Intervention Process Invironment Process	205
fean Shift $\hat{\delta}(t)$	214
Inscaled Weight Matrix W ⁽¹⁾ of the 3×3 Regular System	227
caled Weight Matrix W ⁽¹⁾ of the 3×3 Regular System, (By Equation (4-2))	228
Scaled Weight Matrix W ⁽¹⁾ of the 3×3 Regular System, (By Equation (4-3))	229
erministic One-Direction Preferential lar System	230
trip Regions Approach Identifier	232
elative Positions of the Six Locations of os Angeles Basin	234
ngular Region Approach Identifier	236
ulse Input of Amplitude 10 at the (6,6) Location me $t=T_0$	245
sion Preference in One Direction	245
sion Preference in Two Directions	246
renrial Direction of Line System	247
Pirection Preferential Diffusion STAR Process	251
virection Preferential Diffusion STMA Process	254
Direction Preferential Diffusion STARMA	255
pirection Preferential Diffusion STAR Process	260
virection Preferential Diffusion STMA Process	263

xv

	n narodijacija k docinalna postana 194 -	a franziska star star star star i vista star star star star star star star s	a ga ann a' suir a' stàir a' s a'	Π			
				Π			
							XVII
			YAT.				
						Figure	Page
	Figure		Page			5-13	The Two-Stage Iteration Scheme for the General G
	4-17	Two-Direction Preferential Diffusion STARMA	264				
	•		204			5-14	The \hat{G} Matrix at $(\phi_{10}, \theta_{10}) = (1.285, 1.100) \dots 396$
	4–18	The Circular Line System with the Preferential Direction Toward the Right	275	1 1		5–15	The Approximate 95% Confidence Interval of (ϕ_{01}, θ_{01}) of the Mohawk River Heights Data
	4–19	The $N_{\phi_1 \phi_1}$ -1 Matrix for the Simulations	285			5-16	The Sample Covariance Matrix of the Estimated Residuals from the STMA(1) Model Fountion (5-60) (01
	4-20	The $\ \phi \phi \ _{\Phi} = \frac{1}{\Phi} \Phi^{-1}$ Matrices of the Models Based					1 Noter, Equation (5-00) 401
	7-20	on the Weight Matrices that were Obtained by Applying	313			6-1	Coupling the Purely Spatial Observation Model and the Space-Time Residual Model
	5-1	The One-Direction Circular Purely Spatial AR(1) System	313			6–2	Coupling the Space-Time Observation Model and the Purely Spatial Residual Model
	5-2	and the Univariate Time Series AR(1) Model	323 330			6-3	The Point Forecasts and the 95% Confidence Interval Forecasts for the Mohawk River Heights
	5-3	The MR(2) Existence Parameter Space	330			6-4	The Positive Square Roots of the Diagonal Elements of
	5-4	The ARMA(1,1) Existence Parameter Space	331	** **	T		Model of the Northeast Boston Assault Data
	5-5	The ARMA(1,2) Existence Parameter Space	331	A STATUTE AND A STATUTE AN		6–5	The Point Forecasts and the 95% Confidence Interval Forecasts for the Northeast Boston Assault Arrests 447
	5-6	The 1×25 Line System and The 5×5 Regular Grid System	337			6-6	The Procedures of Aggregate Ergodic Model Building 461
•	5-7	The Graphic Solutions of the Simulations Quadratic Equations in the Example of Identifying the Purely Spatial AR(1) Model	346	11		6-7	The Procedures of Detecting the Outlier of the Ergodic System
	5-8	The Expected Sample Autocorrelation Functions $E(\hat{\rho}_k)$, k=1,2,,10 for the Purely Spatial Models of the 1×25 Line System	352			6-8	The Confidence Intervals for the Model Parameters of the Individual Purely Spatial Models (Uncorrected Data)
	5-9	The Expected Sample Autocorrelation Functions $E(\hat{\rho}_k)$, k=1,2,,10 for the Purely Spatial Models of the 5×5 Square Regular Grid System	356			6–9	The Confidence Intervals for the Model Parameters of the Individual Purely Spatial Models (Outlier Corrected)
	5-10	The Contours of the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the Purely Snatial Models of the 5×5 Square Regular Grid				6–10	Histogram of the Residuals
		System	363		I M	6-11	The Point and 95% C.I. Forecasts Computed from Equations (6-49) and (6-50) at T=71
	5-11	The Contours of the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the Purely Spatial Models of the 5×5 Square Regular Grid System	366			7-1	An Elementary Component (Category C, Location j) in
	5-12	The Contours of the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the Purely Spatial Models of the 5×5 Square Regular Grid System	369				a nulsianta flocess of 5 dategories, in Localions

		ter an anti-anti-anti-anti-anti-anti-anti-anti-	and the second sec	ogrademet statio		
1. 	n Manana an Ignaa A			$\overline{\mathbf{U}}$		
			xviii			
F	igure		Page			
	7-2	The Components Diagram of the Multivariate MA Process				
•	-	with $\zeta = 2$.	526			
	/-3	The components Diagram of the Multivariate AR Process with $\zeta = 2$	526		si s	
	7-4	The Components Diagram of the Multivariate ARMA Process with $\zeta = 2$	527			The Autoreg
	7-5	The Components Diagram of the MULSTMA Process with	520			the associated thr
	7-6	The Components Diagram of the MULSTAR Process with	J20		n III	Box and Jenkins []
		$\zeta = 2$, $LN = 2$	529			wide spread succes
	/-/	The Components Diagram of the MULSTARMA Process with $\zeta = 2$, LN = 2	530			for univariate sys
-	7-8	The Necessary Stationary Region for the MULSTAR(2,p, λ) Process with p=1	537	T	n	adapted by Box and
•	7–9	The Necessary Invertible Region for the MULSTMA(2,q,m)	5/1	с.) П	n	sis or the detection of the second se
	7-10	The Encoded Theoretical Multivariate Space-Time	J4L			tionally altered t
		Autocorrelation Functions and Partial Autocorrelation Functions of MULSTMA(2,q,m) Process	573	to an and the second		univariate time se
-	7-11	CCP Target Areas, Adjacent Areas and the Rest Areas	594		Π	success in numerou
	7-12	The Enclosed Sample Multivariate Space-Time Autocorre- lation and Partial Autocorrelation Functions of the				settings.
, ,	7_10	Scaled Cleveland Crime Data	621			accomodate systems
•	/-13	lation and Partial Autocorrelation Functions of the Residuals from the MULSTARMA Model of the Cleveland				[1980a]. These mo
			649	GB	Π	Moving Average Mod
	/-14	T=35 and the Observations	665			the form
	7–15	Comparison of 1-Step Ahead Forecasts Computed from T=35 to T=56 and the Observations	669			
	7-16	The Effects of CCP Plotted by Crime Category	673			$Z_t = \sum_{i=1}^{p}$
	7-17	The Effects of CCP Plotted by Location	677	TT.	n	E=3
			a States		HU	

CHAPTER I

INTRODUCTION

egressive Moving Average Model Class (ARMA models) and aree stage iterative model building techniques of estimation and diagnostic checking was proposed by [1970]. Since its inception these methods have had ess in problems of description, forecasting and control vstems. These univariate time series methods were and Tiao [1975] to allow their use in intervention analy- γ_a durve tion in level of a time varying attribute or the detec- Λ a time varying attribute after the process is intento induce change. The intervention models as the series models have similarly had wide applicability and bus engineering, science and social science problem

enkins univariate model⁵ have been generalized to ms that vary in space and time by Pfeifer and Deutsch models are referred to as Space-Time Autogregressive odels (STARMA models). The STARMA model class takes

 $\sum_{\substack{l=0}^{k}}^{\lambda_{k}} \phi_{kl} W^{(l)} Z_{t-k} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} \theta_{k\ell} W^{(\ell)} \varepsilon_{t-k} + \varepsilon_{t}$

1

FAL

				and Management (Arriston	
	i ang sang sang sang sang sang sang sang			J	
· · ·		2			
				T	
where					• • •
•	Z,	is the LN×1 vector of observations at time t,			
	LN	is the number of locations in the system,			
	P	is the autoregressive order,	And the second sec		
	q J	is the moving average order,			
	^k =	is the spatial order of the k th moving average term,		And the second s	
	¢ _{kl}	is the autoregressive parameter at temporal lag k and		la contracta de	
	۵. ۵	spatial lag ℓ ,			
	⁰ kl	spatial lag l,	a contraction of the second	producer and the second se	
	w ^(l)	is the LN×LN matrix of weights for spatial order l , and		Cartering of the second	
	€ ≁t	is the random normally distributed error vector at time		Construction of the second	
		t with	And a second		
		$E(\varepsilon_t) = 0$	Contraction of the second	Alexandre Alexandre	
				the second second	
		$G = \frac{1}{2}$	A STATE		
		$\mathbb{E}\left(\mathbb{E}_{t^{\sim}t^{+s}}\right)^{-} = 0 \qquad s \neq 0$			
			17		

 $E(Z_{t+s} \in) = 0 \text{ for } s > 0$

By constraining the number of locations to one (LN=1) the STARMA model class collapse to the ARMA univariate model class.

 $t \leq n_1$ and takes the form,

Della -

Contraction of the local division of the loc

A complete literature review leading to the STARMA models is contained in Pfeifer [1979]. In addition to formulating the space-time moving average class, Deutsch and Pfeifer developed the methodological considerations for a three stage iterative model building procedure for the space-time model, parallel to that proposed by Box and Jenkins' for univariate series (see Pfeifer and Deutsch [1979, 1980a, 1980b, 1980c, 1980d, 1980e, 1981a, 1981b]). The STARMA model class and associated model building was extended by Pfeifer and Deutsch [1981c] to describe seasonal phenomena and by Deutsch and Pfeifer [1981d] to incorporate contemporaneously correlated innovations. All other appropriate literature citations are contained in context in each chapter.

The purpose of this final report is to extend the currently available methodological procedures/capability of the current stateof-the-art in intervention analysis and system description of the STARMA time series methods. Each of the modeling extensions is stimulated by real world problems. Thus each of the modeling extensions in each chapter are substantively illustrated with case studies. These example applications are in behavioral science, criminology, air pollution and water resources settings.

In Chapter II, the multi-consequence intervention modeling procedure is developed based on the univariate ARMA process. The multisequence ARMA(p,d,q)MCI allows for the description of a change in mean level and covariance in a process due to an intervention initiated at $t \leq n_1$ and takes the form,

pre-intervention:

$$\Phi_{p}(B)\nabla^{d}(Z_{t}-\mu) = \Theta_{q}(B)a_{t}, \quad t=1,2,\ldots,n_{1}$$

post-intervention:

$$\Psi_{p}(B)\nabla^{d}(Z_{t}-\mu-\delta(t)) = \Gamma_{q}(B)a_{t}, t=n_{1}+1,...,n_{1}+n_{2}$$

where $\delta(t)$ is the realized intervention effect, and $\Phi_p(B)$, $\theta_q(B)$, $\Psi_p(B)$, $\Gamma_q(B)$ are functions of process parameters that contain the information of the process covariance structure. Since $\Psi_p(B)$ and $\Gamma_q(B)$ can be distinguished from $\Phi_p(B)$ and $\Theta_q(B)$, respectively, the above model has the capability of describing the process covariance change. $\delta(t)$ can be expressed as,

$\delta(t) = k(t)\delta$

where k(t) are known numerical values that can be computed from the model parameter values and the intervention model specification, and δ is the intrinsic program utility. The realized intervention effect $\delta(t) = \delta$ if k(t) = 1, which is the non-environment influenced situation since the intrinsic program utility is realized fully. However, when k(t) \neq 1, then the intrinsic program utility is not realized fully but is masked by the ecclectic environmental process in place. Situations arise that the intervention effect is not known to the influenced by

fluence situation. lated as; $\Phi_{p,\lambda}$

厕

D

即

刚

圆

砌

M

D

Î

ß

M

Ø

M

D

Ŋ

ጠ

 $\{$

 $\left\{ \right\}$

 $\{$

[]

2

 Π

where

A to ph

the environment ernet , and it is necessary to identify the nature of environment influence to build the intervention model. A dynamic component identification procedure is developed in this chapter to identify the interactive relationship between the process environment and the intervention program utility. The biases caused by model misspecification are derived for the point estimate as well as the interval estimate of δ . The statistics needed for testing the hypothesis of multi-consequence are also developed. A behavioral science example is given to illustrate the non-environmental modeling building situation and a criminology example is used to illustrate the environmental influence situation.

The univariate multi-consequence intervention model in Chapter II is followed by the space-time intervention modeling chapter. In Chapter III, the system contains more than one location and the intervention program is assumed to be initiated at any chosen locations. The single space-time intervention model, $STARMA(p_{\lambda}, d, q_m)I_m$, is formu-

$$B)\nabla^{d}(z_{t}-\mu) = [(1-I_{m})\Phi_{p,\lambda}(B)\nabla^{d} + I_{m}\Theta_{q,m}(B)]\xi(t) + \theta_{q,m}(B)\varepsilon_{t}$$

 $\xi(t) = \delta \xi_t$

 $\boldsymbol{\delta}$ is the intrinsic program utility vector, and

 ξ_{t} is the indicator variable, it takes the value 0 for preintervention periods and 1 for the post-intervention periods. In the above model, the I_m parameter is embedded to distinguish whether the intervention effect is the environmentally influenced or non-environmentally influenced.

An alternative representation is developed to decompose the process into two mutually exclusive components, the random component and the deterministic component. The diffusion behavior of the deterministic component is physically interpreted and two diffusion process types, the regenerating diffusion type and the relocation diffusion type, are characterized by the stationary and non-stationary (p_1, d_pq_m) I model. Simulations are performed to illustrate the diffusion phenomena characterized by the $(STAR)I_m$, $(STMA)I_m$, $(STARMA)I_m$ processes. Situations arise that the nature of the intervention program is unknown, so a procedure for the identification of the dynamic component is developed. A transformation formula that transform⁵ the space-time intervention model into linear model form is developed, and the results of linear model are applied to obtain the point estimation and the interval estimation. A substantive air pollution example that contains two interventions is given to illustrate the model building procedures described in this chapter.

In previous STARMA modeling procedures, the system relationships were assumed to be spatially and temporally uniform. In Chapter IV, non-equal diffusion preference systems are considered. The component of STARMA model to be modified in order to describe diffusion prefe-

a contra

A HUNNY

67

Ĩ

ł,

rence is examined in scaled weight matrides. Two approaches, the strip region approach and the angular region approach, are proposed to construct the non-equally preferential neighbor structure that reflects the non-equally preferential diffusion processes. Simulations are performed for one-direction preference system and two-direction preference system to illustrate the relationship between the non-equally preferential diffusion process and the corresponding weight matrices. Then the theoretical residual patterns, due to unexhausted non-equally preferential structures are analyzed. This analysis is followed by simulation examples to illustrate the analytical conclusion. The air pollution data used in Chapter III is revisited to illustrate the construction of the non-equally preferential neighbor structure and the construction of non-equally preferential models.

In Chapter V, the purely spatial model is introduced. The purely spatial model contains only contemporaneous terms, therefore, it doesn't have the capability to capture any spatial-temporal correlation structure. The existence conditions that corresponds to the stationary conditions and the invertible conditions of the space-time model are derived. For use in identification, the purely spatial autocorrelation functions and the purely spatial partial autocorrelation functions are defined and their statistical properties derived. Computational algorithms are developed to make the computer effort more efficient. Pattern recognition is also proposed to assist in identification. The expectation values of the sample purely spatial autocorrelation function are computed for the low order models and charts are developed for identification. The purely spatial process has no

observation and noise initial value problem in estimation, however, the initial parameter values are still needed to start the required iterative estimation procedures. Charts to obtain initial parameter values for low order spatial models are developed. Two application examples are given to illustrate the purely spatial model building procedure. The first example is from hydrology and the other is from criminology. In these examples, the purely spatial modeling procedures are applied to enhance the descriptive capability of the system. 8

2

 Ω

 \Box

M

Ø

In Chapter VI, two topics are addressed: the compling and reparameterizing of the aggregate purely spatial model and the spacetime model and the coupling of purely spatial models. The coupled models are capable of capturing the contemporaneous purely spatial correlative structure, as well as, the space-time correlative structure. Three potential space-time models are coupled with the purely spatial model, and the resulting models are then reparameterized. Here two modeling sequences are possible: 1) building the purely spatial observation model first and then the space-time residual model, or 2) building the space-time observation model first and then the purely spatial residual model. The coupled and reparameterized models may be dependent on the modeling sequence or may be independent of the modeling sequence. The systems that give rise to each are distinguished and the appropriate modeling procedures are described. Two processes that were modeled in Chapter V as separate but simultaneous space-time and purely spatial models, are presented to illustrated the coupling and reparameterizing procedures.

The purely spatial structures contained in each observation period may be identical or may be different. If the purely spatial structures in each observation period are identical, then the system is said to be ergodic and the aggregate purely spatial model captures the same purely spatial structure with better precision. However, if the purely spatial structures in each observation period are different. then the purely spatial structures are mixed and the resulting aggregated purely spatial model describes an average correlative structures. The second topic in Chapter VI is the development of the modeling procedures for the ergodic process. Here statistics are developed to test the process'ergodic property. Since these homogeneity assumptions may not hold and may mask the ergodic property, therefore a modeling procedure that estimates and corrects the outliers to obtain homogeneity is developed to model the potential ergodic processes that contain outliers. An example is given to illustrate the modeling procedure of the ergodic process with outliers. The masking effect of the outliers are illustrated in details. Forecast functions are constructed for the ergodic model as well as the model which assumes but doesn't verify the homogeneity assumption to compare the forecasting and descriptive capabilities. Differences are explained in detail. The STARMA model captures the spatial-temporal correlated structures, the multivariate ARMA model captures the inter-category correlated structures. A natural generalization of the STARMA model and the multivariate ARMA model is the MULSTARMA(MULtivariate STARMA) model that captures all the spatial-temporal, inter-category correlated

structures. The MULSTARMA(ξ , p,q, λ ,m) model class takes the form;

10

$$z^{h}(t) = \sum_{\substack{g=1 \\ g=1}}^{\xi} \sum_{\substack{k=1 \\ k=0}}^{hg} \phi_{k\ell}^{hg} W^{(\ell)} z^{g}(t-k)$$

$$- \sum_{\substack{g=1 \\ g=1}}^{\xi} \sum_{\substack{k=1 \\ \ell=0}}^{\etag} \theta_{k\ell}^{hg} W^{(\ell)} z^{g}(t-k) + z^{h}(t).$$

$$h=1, 2, \dots, \xi.$$

A specification of the system parameters ξ , the category number, and the model parameters p, q, λ , m serves to define one MULSTARMA model from the general familty of models. In this MULSTARMA model class, the spatial-temporal, inter-category correlated structures are captured by the estimatable parameters ϕ_k^{hg} , θ_k^{hg} and the weight matrix. To illustrate the model structure, a series of flow charts are plotted. These flow charts contain filters that correspond to identifiable terms in the MULSTAR model formulation. The stationary regions and the invertible regions are derived. Then the A-weight representation for the stationary process is derived. The A-weight representation express the process observation as summation of past errors, which allow derivation of statistical properties to be made easier. The multivariate space-time autocorrelation function and the multivariate space-time partial autocorrelation function are defined, and the statistical properties are derived to help identify the candidate model. Due to the high dimensionality of the model parameter space,

£Ž.

modeling.

酮

A

Part.

computational efficiency deserves attention. Therefore, efficient computation approaches are introduced and justified. Based on linear model theory, estimation procedures are developed. A criminology example is used to illustrate the multivariate space-time modeling procedure. In this example, the employed model is used in constructing forecast functions, that rely on the spatial, temporal and inter-category structure, and is augmented for use in intervention

The final report concludes in Chapter VIII with a discussion of the conclusions of this work.

CHAPTER II

MULTICONSEQUENCE INTERVENTION MODEL

The analysis of correlated time series data for changes in level using autoregressive integrated moving average (ARIMA) processes was first introduced by Box and Tiao (1965) using the ARIMA(0,1,1) form. Their work was extended by Glass, Willson and Gottman (1975) to include other types of ARIMA processes while focusing the statistical methods in a quasi-experimental design/interrupted time series framework. Here, an intervention is thought of as affecting the observation, Z_t, between n₁ and n₁+1, The process is described on follows: preintervention:

$$\Phi_{p}(B)\nabla^{d}(Z_{t} - \mu) = \Theta_{q}(B)a_{t} \quad t=1,2,\ldots,n_{1} \quad (2-1)$$

Gostintervention:

$$\phi_{\mathbf{p}}(\mathbf{B})\nabla^{\mathbf{d}}(\mathbf{Z}_{t} - (\mu + \delta)) = \Theta_{\mathbf{q}}(\mathbf{B})\mathbf{a}_{t} \quad t = n_{1} + 1, \dots n_{1} + n_{2} \quad (2-2)$$

affere :

$$\Phi_{p}(B) = 1 - \Phi_{1}B - \Phi_{2}B^{2} - \dots - \Phi_{p}B^{p}$$

$$\Theta_{q}(B) = 1 - \theta_{1}B - \theta_{2}B^{2} - \dots - \theta_{q}B^{q}$$

$$\nabla = (1 - B)$$

activity,

Property of

discount of

Fille

(Capitor)

11

12

fully realized in the n_1+1^{st} observation). This chapter focuses on the multiconsequence intervention model that allows for both a change in the mean level of the process as well as the possibility for a modification in the covariance structure. The model structures contain a mean shift function to allow for instantaneous or transient mod fication, depending upon the nature of the interrupted time series experiment and/or the environmental process in place. In Section 2.1 the multiconsequence model structures are described along with its mean shift function that allows the estimation of an intervention program's intrinsic utility which is not identical to the program's realized effect. The next section contains the maximum likelihood estimation procedures for the multiconsequence intervention model of order (p,d,q) for the mean shift function known or unknown. Section 2.3

B is a backward shift operator such that

 $(BZ_t=Z_{t-1},B\varepsilon_t=\varepsilon_{t-1})$,

u is the process mean,

 δ is the magnitude of change induced by a modification of the process, that is associate with a type of intervention

the ϕ 's and θ 's are autoregressive and moving average parameters, respectively and the

a,'s are innovations distributed normally and independent with mean and variance σ^2_a .

These models assume (1) only a single consequence in that after intervention only the mean level not the covariance can change and (2) the change in the process after time T is instantaneous (e.g., having been

develops the necessary covariance matrix specifications for low order multiconsequence models that are used in estimation and tests of significance of the mean shift function and other model parameters. These hypothesis tests are contained in Section 2.4. In Section 2.5, the effects on the ability of statistically determining the significance of an intervention program dintrinsic value due to the misspecification of the mean shift function form and/or the use of single consequence intervention model form when there is change in the covariance structure are addressed. Section 2.6 discusses the bias considerations from misspecification Intervention model form both with respect to the autoregressive and moving average parameters and the mean shift function. The modeling procedures are algorithmically described in Section 2.7 for situations that arise in the analysis of interrupted correlated time series designs. The ability to statistically detect a given magnitude of a mean level change in correlated interrupted time series design is dependent upon the number of pre and post observations, and the magnitude of the change in the covariance structure after intervention. Section 2.8 analyses these effects and develops guidelines for designing interrupted time series experiments from power considerations. Tables for pre and post intervention sample sizes are given for designing experiments in Section 2.9. Lastly, in Section 2.10, two substantive examples are given to illustrate the modeling procedures described. One example corresponds to the analysis of a direct stimulus-response interrupted time series experiment in which the environmental process does not influence the intervention changes. The second example illustrates the modeling procedures in experiments

fications.

14

The effect of an intervention is not typically expected to be directly transmitted to the observations. Depending upon the nature of the intervention activities, the transmittal of the intervention effects, δ , can be direct or influenced by the ecclectric environmental phenomena in place. When an intervention program is typified by direct stimulus to subjects whose response is monitored, the mean level of the intervention effect of the stimuli would be transmitted directly to the attribute being monitored. Similarly when the ecclectic environmental process is random or weakly correlated, the transmittal of the intervention effect would also be direct. These situations are termed the instantaneous case. On the other hand, when the intervention activities are not direct stimulus to subjects whose response is monitored but rather the stimulus is intended to alter the overall ecclectic environmental phenomena and in turn modify behavior of a segment of the population, the mean level of the intervention effect would be filtered by the environmental process causing a delayed steady state realization in the attribute monitored. The situation is labeled the transient case. In either situation, once the intervention activities are initiated, in addition to modification of the realized mean level of the attribute monitored, a second simultaneous consequence, the change in the postintervention covariance structure can occur. This may be thought of as occurring due to behavior modification of the subjects or treatment

in which the existing environmental process affects the realized modi-

2.1 Multiconsequence Model Structure

group in the instantaneous case or due to the formation of a new ecor cletic environmental process immediately after intervention for the mean level transient case.

A comprehensive model that describes both instantaneous and transient mean level changes and postintervention modification of the covariance structure is the multiconsequence intervention model form: preintervention;

$$\Phi_{p}(B)\nabla^{d}(Z_{t} - \mu) = \Theta_{q}(B)a_{t} \quad t=1,2,...,n_{1} \quad (2-3)$$

postintervention;

$$\Psi_{p}(B)\nabla^{d}(Z_{t} - \mu - \delta(t)) = \Gamma_{q}(B)a_{t} \quad t=n_{1}+1, \dots, n_{1}+n_{2} \quad (2-4)$$

where

$$\Psi_{p}(B) = 1 - \psi_{1} B - \psi_{2} B^{2} - \dots - \psi_{p} B^{p}$$

$$\Gamma_{n}(B) = 1 - \gamma_{1} B - \gamma_{2} B^{2} - \dots - \gamma_{n} B^{q}$$

the $\psi\, 's$ and $\gamma\, 's$ are postintervention autoregressive and

moving average parameters respectively and

 $\delta(t)$ is the mean shift function.

Alternatively the postintervention model can be expressed in terms of an intervention transfer function operator, T(B), and the intervention input variable, ξ_t where $\xi_t=0$ for t<n₁ and 1 for t>n₁;

¥р(В)⊽⁰ tion can be expressed as; δ()

Constraints

Ô

A STATISTICS

m

16

$$d(z_t - \mu) = T(B)\xi_t \delta + \Gamma_q(B)a_t t = n_1 + 1, \dots, n_2 + n_2$$
 (2-5)

where δ is the intrinsic utility of the process intervention. From the expectations of Equations (2-4) and (2-5), the mean shift func-

$$(t) = T(B)\xi_t \delta/\Psi_p(B)\nabla^d \quad t=n_1+1, n_1+2, \dots, n_1+n_2 \quad (2-6)$$

Figure 2-1(a) and (b) are schematic representations of the coupling of the pre and post intervention structures for the multiconsequence intervention model for systems in which the environment influences or does not influence the realize program utility, respectively. As seen from Figure 2-1(a), even when allowing for environmental influences, mathematically when $T(B) = \Psi_{p}(B)$, the postintervention environmental process does not affect the change in mean associated with the intervention in that $\delta(t) = \xi_t \delta$ as in Figure 2-1(b). The more similar T(B) is to $\Psi_{c}(B)$ the smaller the influence of the environmental process. Also mathematically, when $T(B) = \Gamma_q(B)$, the environmental process directly intluences the magnitude of the realized intervention $\delta(t)$. It should be noted that this influence or variation in the observed mean shift from the program utility, δ , is dependent upon the full transfer function associated with the postintervention environment, namely T(B)/ $\nabla^{d}\Psi_{p}(B)$. The choice of the mean shift function, $\delta(t)$ in modeling interrupted time series data is critical in estimating the intrinsic program utility δ . As seen from Equation (2-6) when $\Psi_p(B)\nabla^d = T(B)$, the

(b) Realized change in mean level not affected by environmental process

models.

1

1

-1

(---- -F

E D

Series and the series of

{}

Particular State

A CONTRACTOR

同時

印度

18

The procedures for developing maximum likelihood estimators (M.L.E.) described in this section are for various combinations of apriori information about the parameters for different modeling situations. We will first assume that the mean shift function, $\delta(t)$ is known and differentiable and the model parameters $(\phi, \theta, \psi, \gamma)$, are known for the ARIMA(p,d,q)MCI model class. Next the situation in which the mean shift function is unknown is addressed and a sequential procedure for identifying the form of the mean shift function is described. We then relax the assumption that the model parameters are all known. Sendes In the following we will denote

mean shift function contributes to the postintervention process level in magnitude equal to the program utility. This is the instantaneous model associated with direct stimulus-subject response experiments. Otherwise, the intrinsic program utility is filtered -- the transient case. Throughout this paper the mean shift function is employed in each of the different considerations presented with regard to the modeling of interrupted time series data with multiconsequence intervention

2.2 Maximum Likelihood Estimation Considerations

 $\tilde{z} = [z_1, z_2, \dots, z_{n_1}, z_{n_1+1}, \dots, z_{n_1+n_2}]^t$, $N=n_1+n_2$

 $\mu = E(Z) = [\mu(1), \mu(2), \dots, \mu(n_1+n_2)]^t$ and $\boldsymbol{\beta}^{\mathsf{t}} = [\boldsymbol{\phi}^{\mathsf{t}}, \boldsymbol{\theta}^{\mathsf{t}}, \boldsymbol{\psi}^{\mathsf{t}}, \boldsymbol{\gamma}^{\mathsf{t}}]$

pre pince tos une las tim

where

$$\mu(t) = \begin{cases} \mu & t \leq n_1 \\ \mu + \delta(t) & n_1 + 1 \leq t \leq n_1 + n_2 \end{cases}$$

with n_1 and n_2 being the number of pre and post intervention observa-

tions, respectively.

2.2.1 Case I: Mean Shift Function Form Known (Model Parameters Known)

1. d=0, ARIMA(p,U,q)MCI model

Suppose that the mean shift function is known to be of some arbitary function of m parameters, $\delta(t) = f(t-n_1, \delta)$ with $\delta^t = [\delta_1, \delta_2, \cdots$ δ_m ^t being unknown mean-shift measurement parameters. The mean shift function $\delta(t)$ is first order differentiable when $(t-n_1) \ge 1$. The joint distribution of Z is given by,

$$f_{z}(Z, \mu_{z}, \beta, \sigma_{a}^{2}) = (2\pi\sigma_{a}^{2})^{-N/2} |M_{N}^{(p, 0, q)}|^{1/2}$$
(2-7)

$$Exp(-(\underline{z}-\underline{\mu}_z)^t M_N^{(p,0,q)}(\underline{z}-\underline{\mu}_z)/2\sigma_a^2\}$$

where $M_N^{(p,0,q)}$ is the inverse of the covariance matrix of Z. When β is known, $M_N^{(p,0,q)}$ is determined. The maximization of the log likelihood function is equivalent to maximizing the quadratic function,

 $\left\{ \right\}$

{ }

 $\left\{ \right\}$

D

M

State LE

Since μ , $\delta_1, \ldots \delta_m$ are independent mathematical variables and the mean shift function is known and differentiable, the partial derivative of Q with respect to μ , δ_i , i=1,...m, set equal to zero,

$$\begin{cases} \frac{\partial Q}{\partial \mu} | \mu = \hat{\mu}, \delta_{i} = \hat{\delta}_{i}, i = 1, 2, \dots m = 0 \\ \frac{\partial Q}{\partial \delta_{k}} | \mu = \hat{\mu}, \delta_{i} = \hat{\delta}_{i}, i = 1, 2, \dots m = 0 \\ k = 1, 2, \dots m \end{cases}$$
(2-9)

yields the M.L.E. of $\mu, \delta_i, i=1, 2, \ldots, m$. The mean shift function of the form,

obtained by solving the following normal equations;

$$Q(\underline{\mu}_{z},\underline{\beta},\sigma_{a}^{2}) = -(\underline{z}-\underline{\mu}_{z})^{t} M_{N}^{(p,0,q)} (\underline{z}-\underline{\mu}_{z})/\sigma_{a}^{2}) \qquad (2-8)$$

$$\delta(t) = \delta_1 \sum_{i=1}^{t-n} \delta_2^{i-1}$$

in which $|\delta_2| < 1$ is differentiable with respect to δ_1 , the scale factor, and δ_2 , the shape factor. When m=2, the M.L.E. for μ , δ_1 and δ_2 are

$$(\underline{z} - \hat{\mu} \underline{1} - \underline{\hat{p}})^{t} M_{N}^{(p,0,q)} \underline{1} = 0$$

$$\hat{\underline{p}}_{0}^{t} M_{N}^{(p,0,q)} (\underline{z} - \hat{\mu} \underline{1} - \underline{\hat{p}}) = 0$$

$$\hat{\underline{p}}_{1}^{t} M_{N}^{(p,0,q)} (\underline{z} - \hat{\mu} \underline{1} - \underline{\hat{p}}) = 0$$

(2-11)

21

(2-10)

where 1 is $(n_1+n_2) \times 1$ vector with every elements 1.

$$\hat{\underline{p}} = \hat{\delta}_1(0,0,\ldots,1,1+\hat{\delta}_2,1+\hat{\delta}_2+(\hat{\hat{\delta}}_2)^2,\ldots,\sum_{i=1}^{n_2}(\hat{\delta}_i)^{i-1})^t, \text{ with the first } n_1$$

elements zero,

$$\hat{\mathbb{D}}_{0} = (0, 0, \dots, 1, 1 + \hat{\delta}_{2}, 1 + \hat{\delta}_{2} + (\hat{\delta}_{2})^{2}, \dots, \sum_{i=1}^{n_{2}} (\hat{\delta}_{2})^{i-1})^{t}$$
, with the first n_{1}

elements zero, and

$$\hat{D}_{1} = \hat{\delta}_{1}(0,0,\ldots,1,1+2\hat{\delta}_{2},\ldots,\sum_{i=1}^{n_{2}} (i-1)(\hat{\delta}_{i})^{i-2})^{t}, \text{ with the first } (n_{1}+1)$$

elements zero.

The solution of these simultaneous equations may not be unique and the function value of Q is computed in order to determine the global optimum solution that maximize⁵ the quadratic form Q. Similarly, we may have m=1, i.e.,

$$\delta(t) = f(t-n_1, \delta)$$

which results in the normal equations;

$$\underbrace{1^{t} \ M_{N}^{(p,0,q)} \ \tilde{z} - \hat{\mu} \underbrace{1^{t} \ M_{N}^{(p,0,q)} \ \tilde{1} - \underline{1^{t}} \ M_{N}^{(p,0,q)} \ \tilde{\underline{p}} = 0 }_{\hat{\mu}_{\delta}^{t} \ M_{N}^{(p,0,q)} \ \tilde{z} - \hat{\mu} \underbrace{\hat{\mu}}^{t} \ M_{N}^{(p,0,q)} \ \underline{1} - \underline{\hat{\mu}}^{t} \ M_{N}^{(p,0,q)} \ \underline{\hat{p}} = 0 }$$
(2-12)

where

ments zero and $\hat{\underline{\mu}}_{\delta} = \frac{\partial}{\partial \delta} \, \hat{\underline{p}} \, .$ $=\frac{[\tilde{\mathbf{k}}^{\mathsf{t}}\mathbf{M}_{N}^{(\mathsf{p},}]}{[\tilde{\mathbf{k}}^{\mathsf{t}}\mathbf{M}_{N}^{(\mathsf{p},0)}]}$ $\frac{[\underline{K}^{t}\underline{M}_{N}^{(p,0)}]}{[\underline{K}^{t}\underline{M}_{N}^{(p,0)}]}$ where

Crea

. . . .

the second s

 $\sum_{i=1}^{n}$

Ŋ

谢

M

11111

1

Constraints

the state of the s

22

 $\hat{D} = (0, 0, \dots, f(1, \hat{\delta}), f(2, \hat{\delta}), \dots, f(n_2, \hat{\delta}))^t$, with the first n_1 elements zero and

A useful mean shift function takes the form

$$\delta(t) = \begin{cases} 0 & t \leq n_1 \\ \delta K(t) & n_1 + 1 \leq t \end{cases}$$
(2-13)

where K(t) is a known numerical value. In this situation, the normal equations result in a unique solution,

$$\frac{e^{q} \tilde{k}_{1}[\tilde{1}^{t} M_{N}^{(p,0,q)} \tilde{z}] - [1^{t} M_{N}^{(p,0,q)} \tilde{k}][\tilde{k}^{t} M_{N}^{(p,0,q)} \tilde{z}]}{e^{q} \tilde{k}_{1}[\tilde{1}^{t} M_{N}^{(p,0,q)} \tilde{1}] - [\tilde{k}^{t} M_{N}^{(p,0,q)} \tilde{1}]^{2}}$$

$$e^{q} \tilde{z}_{1}[\tilde{1}^{t} M_{N}^{(p,0,q)} \tilde{1}] - [\tilde{z}^{t} M_{N}^{(p,0,q)} \tilde{1}][\tilde{k}^{t} M_{N}^{(p,0,q)} \tilde{1}]$$

$$(2-14)$$

$$e^{q} \tilde{k}_{1}[\tilde{1}^{t} M_{N}^{(p,0,q)} \tilde{1}] - [\tilde{k}^{t} M_{N}^{(p,0,q)} \tilde{1}]^{2}$$

 $K = [0, 0, ..., K(n_1+1), K(n_1+2), ..., K(n_1+n_2)]^t$, with the first n_1 elements zero.

(Fa

In the analysis of intervention program two specific forms of K(t) have wide applicability. With d=0 and T(B) = $\Psi_{p}(B)$, Equation (2-6) reduces to $\delta(t) = \xi_t \delta$. However, from Equation (2-13) we see $\delta(t) = \delta K(t)$ for $n \ge n_1$, e.g., depending upon the value of K(t), the realized modification in the process, $\delta(t)$ is not necessarily identical to the intrinsic value or worth of intervention program's activities. When,

OT

$$K(t) = \begin{cases} 0 & t \leq n_1 \\ 1 & elsewhere \end{cases}$$
(2-15)

$$K(t) = \begin{cases} 1 & n_1 + 1 \leq t \leq n_1 + T_p \\ 0 & \text{elsewhere} \end{cases}$$
(2-16)

the intrinsic value of the intervention program activities are directly realized and thus are unaffected by the environmental process. Equation (2-15) representing a step function for the intervention programs active life (e.g., $\xi_t=0$, $t \leq n_1$ and $\xi_t=1$ for $t > n_1$; $K(t) = \begin{pmatrix} s_1 \\ t \end{pmatrix}$ while Equation (2-16) represents a pulse function for the intervention program activities that initiates at time n_1+1 and terminates at n_1+T_p where T_p is the number of active periods for the program (e.g., $K(t) = p_t^{-1}(T_p)$).

The remaining case results from situations in which the environmental process T(B) affects the realized value of modification in level, when $T(B) = \Gamma_{a}(B)$,

with This results in $K(t) = \begin{cases} \frac{1}{1-t} \\ \frac{1}{1-t} \end{cases}$

24

$$K(t) = \begin{cases} 0 & t \leq n_{1} \\ \Psi_{p}^{-1}(B)\Gamma_{q}(B) \xi_{t} & t \leq n_{1}+1 \end{cases}$$
(2-17)

The specific form of K(t) is obtained using the recursive equation $\Psi_{p}(B)K(t) = \Gamma_{q}(B)\xi_{t}$ with initial condition K(t)=0 for $t \leq n_{1}$. For example, when p=q=1, (i.e., an ARIMA(1,0,1)MCI model) with $\xi_t = P^{n_i}(T_p)$, we have,

$$K(t) - \Psi_1 K(t-1) = 1 - \gamma_1$$

$$K(t \le n_1) = 0, K(n_1+1) = 1.$$

$$\frac{-\gamma_{1}}{-\Psi_{1}} + (\frac{\gamma_{1} - \Psi_{1}}{1 - \Psi_{1}}) \Psi_{1}^{t-n_{1}-1} \qquad \begin{array}{c} t \leq n_{1} \\ n_{1}+1 \leq t \leq n_{1}+T_{p} \end{array} (2-18) \\ = T_{p}^{-n_{1}-1}(\Psi_{1}K(n_{1}+T_{p}) - \gamma_{1}) \qquad t \geq n_{1}+T_{p} + 1 \end{array}$$

In Equation (2-18) by setting $T_p = n_2$, and deleting the last equation, we get the K(t) expression for the step function situation, i.e., $\xi_{t} = S_{t}^{n_{1}}$, since the $\xi_{t} = P_{t}^{n_{1}}(T_{p} = n_{2})$.

For nonstationary processes, we initially assume that the mean shift function is known, but let d>1. In this situation, we difference the original observation vector, Z, to obtain $Z^* = \nabla^d Z$, which is stationary. For start up consideration we use, $Z^* = [0,0,\ldots,Z_{d+1}^*,\ldots,Z_{n_1+n_1}^*]^t$, with the first d elements zero. Since there are now (n_1-d) preintervention data, Equations (2-3) and (2-4) become,

26

$$\Psi_{p}(B) (Z_{t}^{*} - \delta^{*}(t)) = \Gamma_{q}(B) a_{t} \qquad t = n_{1} + 1, \dots n_{1} + n_{2}$$

where $\delta^{\star}(t) = \nabla^{d} \delta(t)$.

2. $d \ge 1$

This form is different from the stationary case where d=0 in that the mean level μ is eliminated and the interpretation of the mean shift function changes. We still however, have $E(Z_t) = \delta(t)$, $E(Z_t) = \delta^*(t)$ while $\delta(t)$ can be obtained once $\delta^*(t)$ is obtained by applying the recessive relation $\delta^*(t) = \nabla^d \delta(t)$,

$$\delta^{*}(t) = \sum_{i=0}^{d} (-1)^{2} {\binom{d}{i}} \delta(t-i) \quad .$$
 (2-21)

For example, when d=1 and $\delta^{\star}(t) = \delta P_{t}^{n_{1}}(T_{p}=1)$ results in $\delta(t) = \delta S_{t}^{n_{1}}$ which is used in conjunction with Z^{\star} for modeling.

one less paramet (2-9) and (2-11)deleting one nor where $\delta^{*}(t) = \delta^{*} \cdot K^{*}(t)$ of Equation (2-1) where $M_{N}^{*}(p,0,q)$ $K^{*}(d+2), \ldots K^{*}(n_{1})$ 2.2.2 Case II: <u>Process UP</u> In the pr was assumed and determined to compare

Since the parameter μ drops out of the model when d>1, there is one less parameter to estimate and makes the simultaneous Equations (2-9) and (2-11) simpler by reducing each by the variable, $\hat{\mu}$, and deleting one normal equation, i.e., $\partial Q/\partial \mu | \mu = \hat{\mu} = 0$. Consider the situation that $\delta'(t)$ is one parameter function and can be expressed as $\delta'(t) = \delta' \cdot K'(t)$ with K'(t) a known numerical value, (similar to that of Equation (2-13). The resulting estimator for δ'' is

$$\hat{S}^{*} = \frac{z_{N}^{*t_{M}^{*}(p,0,q)} x_{N}}{x_{N}^{*t_{M}^{*}(p,0,q)} x_{N}}$$

(2-22)

where $M_N^{\star(p,0,q)}$ is the covariance matrix of Z^{\star} , and $K^{\star} = [K^{\star}(d+1), K^{\star}(d+2), \dots K^{\star}(n_1+n_2)]^{t}$ with $K^{\star}(t) = 0$ for $t \leq n_1$.

2.2.2 Case II: Mean Shift Function and Influence of Environmental Process Unknown (Model Parameters Known)

In the previous section the form of the mean shift function, $\delta(t)$, was assumed and the time varying proportionality coefficient K(t) was determined to couple a program's intrinsic value δ to the estimated mean shift function $\hat{\delta}(t)$. This proportionality coefficient was developed for the situations in which the program environment did not influence or influenced the realized effects of the activities. It is not unusual, however, to be unable to specify whether the affect of the program is influenced by the environment process. In addition, the form of the mean shift function suggested which couples $\delta(t)$ to δ (e.g., Equation (2-13), may not be known. In these situations the sequential estimation of

 $\hat{\delta}(t)$, $t=n_1+1,\ldots,n_1+n_2$ for $n_2=1$ is used to identify both whether the program's affect is influenced by the environment and to determine an appropriate of the mean shift function.

In estimating the mean shift function, $\delta(t)$, the value of K(t) must be specified which determine⁶ whether the environmental process influences or does not influence the mean shift function. However, from Equation (2-18) the value of K(t) in the situation where the environmental process has an influence, the estimation of $\delta(t)$ is unaffected when n_2 =1. Figure 2.2 delineates the sequential procedure for estimating the mean shift function.

Initially, the M.L.E. of μ using the n preintervention observaare obtaining using,

$$\hat{\mu} = \frac{1^{t} M_{n_{1}}^{(p,0,q)} Z}{1^{t} M_{n_{1}}^{(p,0,q)} 1}$$

where $M_{n_1}^{(p,0,q)}$ is the covariance matrix of the first n_1 observations. If μ is not equal to zero the n_1+n_2 observations are corrected by subtracting $\hat{\mu}$. Then the M.L.E. of $\delta(t)$ is obtained using Equation (2-22), with K^* specified as e_t , i.e., the (n_1+n_2) unit vector with $n_2=1$, the vector with 1 at the tth position,

$$\hat{\delta}(t) = \frac{Z_t^t M_t}{M_{tt}}$$

29

(2-23)

(2-24)

where

 Z_{t} is the vector $(Z_1, Z_2, \dots, Z_{t-1}, Z_t)$, M_{tt} is the (t,t) element of $M_{t}^{(p,0,q)}$ and M_{t} is the tth column of $M_{t}^{(p, 0, q)}$.

If $\hat{\delta}(n_1+1)$ is significant, the $(n_1+1)\frac{st}{s}$ observation is corrected by subtracting $\hat{\delta}(n_1+1)$ and entered into the set of n_1 observation. The process is repeated with n,+1 preintervention observations until all n_1+n_2 observations are exhausted.

30

<u>4. d≥1</u>

When the ARIMA(p,d,q)MCI process is nonstationary, e.g., d>1, μ is set equal to zero with (n_1-d) preintervention data points. The remaining identification procedure is identical to the stationary situation. Note that the mean shift function estimates obtained are for Z not Z, e.g., they are $\delta^{\star}(t)$ not $\delta(t)$. In this case, we obtain $\hat{\delta}(t)$ from $\hat{\delta}^{\star}(t)$ by applying Equation (2-21) recursively.

From the pattern exhibited by $\delta(t)$ vs. time for $t=n_1+1, n_1+2, \ldots$, n_1+n_2-1 and the form of ξ_t which is known to be a pulse function of length T_{p} or a step function $(T_{p} \rightarrow \infty)$ the appropriate multiconsequence intervention representation is determined. If $\hat{\delta}(t)$ is constant for each of the T periods, the environmental process does not exert any influence on the realized mean level modification, \dot{e} , \dot{g} , K(t)=1) for $t=n_1+1, n_1+2$, $\dots, n_1 + T_p$ and zero elsewhere. Thus the structural model exhibited in Figure 2-1(b) is selected. In identifying this configuration the appropriated form of the mean shift function follows as $\delta(t) = K(t)\delta$ with K(t)=1. However, if the environmental process influences the realized

and then computing K(t). Not All Known)

values of the mean modification, an appropriate form of K(t) must be established. The identification of the appropriate represent of K(t)may proceed in two ways: 1) pattern matching to known theoretical patterns of K(t) arising from specified forms of $\delta(t)$, or 2) use of regression to fit an empirical form of $\delta(t)$ to data of $\hat{\delta}(t)$ versus t

2.2.3 Case III: Estimating μ , $\delta(t)$ Given β_{u} Unknown (Model Parameters

So far we have assumed that all the model parameters are known. Often, however, some or all of these model parameters β are unknown. We will denote β_{u} as the unknown parameter of β_{u} and $\beta_{u} = (\phi_{u}, \theta_{u}, \psi_{u}, \gamma_{u})$ with $\phi_u, \theta_u, \psi_u, \gamma_u$ as the unknown parameters of $\phi, \theta, \psi, \gamma$ respectively. From the earlier estimation results cited, we know that the M.L.E. of μ and the mean shift parameters, $\boldsymbol{\delta}_{i},$ are not independent of the model parameters (i.e., giving the model parameters, the M.L.E. are determined without searching through the (μ, δ) subspace). That is,

$$\begin{array}{ll} \underset{\beta,\mu,\delta,\sigma_{a}^{2}}{\overset{\text{Max}}{\underset{\mu,\delta,\sigma_{a}^{2}}{\overset{\text{L}(\beta,\mu,\delta,\sigma_{a}^{2})}{\overset{\text{Max}}{\underset{\mu,\delta,\sigma_{a}^{2}}{\overset{\text{L}(\beta,\mu,\delta,\sigma_{a}^{2})}}} & \text{when } \beta \text{ all known} \\ \underset{\mu,\delta,\sigma_{a}^{2}}{\overset{\text{Max}}{\underset{\mu,\delta}{\overset{\text{Max}}{\overset{\text{L}(\beta,\mu,\delta,\sigma_{a}^{2})}}} & \text{when } \beta \text{ all known} \\ \end{array}$$

In the procedures for obtaining $\hat{\mu}$, $\hat{\delta}$ and $\hat{\sigma}_{a}$ when β is known the least squares estimators (L.S.E.) are equivalent to M.L.E. due to the

normal distribution assumption of the residuals. However, when not all the model parameters are known, the L.S.E. are not equivalent to the M.L.E. From Equation (3-7), we see that the unknown model parameters $\underset{\sim u}{\beta}$ would appear not only in the quadratic form but also in the term $|M_N^{(p,0,q)}|^{1/2}$. Therefore, to maximize the likelihood function when nct all model parameters are known is equivalent to maximize the whole function. But MAX $Q(\mu, \delta, \sigma_a^2) = -1$, so it is equivalent to Maximizer $(\hat{\sigma}_a^2)^{-N/2} |M_N^{(p,0,q)}|^{1/2}$. Consider the maximization of the likelihood function;

32

This is equivalent to minimizing,

$$ln(\sigma_a^2) - ln|M_N^{(p,0,q)}$$

given β . follows; , (p, 0, q)

Thus, to obtain the M.L.E. for $(\beta_u, \mu, \delta, \sigma_a^2)$, we search through the β_u subspace, apply previous results and minimize the value of $Nln(\sigma_a^2) - ln|M_N^{(p,0,q)}|$ where $\hat{\sigma}_a^2$ is the L.S.E. (or M.L.E.) of σ_a^2 for

2.3 Covariance Matrix for Low-Order Models

As just seen, the determination of the form of the covariance matrix is central to the development of the M.L.E. In developing this matrix we will focus on the four submatrices that emerge from partitioning realizations of the process into those associated with: the preintervention period and the postintervention period (e.g., t $\leq n_1$ and $n_1 < t \le n_1 + n_2$ respectively). These submatrices will be denoted c_{ij} as

$$\begin{array}{c|c} 1, 2, \dots, n_{1}, n_{1}+1, \dots, n_{1}+n_{2} \\ \hline \\ 1\\ 2\\ \vdots\\ n_{1} \\ n_{1} \\ \vdots\\ n_{1}+1\\ \vdots\\ c_{21} \\ \end{array} \begin{array}{c|c} c_{12} \\ c_{12} \\ c_{22} \\ c_{22}$$

In the following the c_{ij}'s of the covariance matrix for the ARIMA (1,0,1)MCI model will be constructed. It should be noted that its evaluation for $\phi = \psi = 0$, or $\theta = \gamma = 0$ results in the covariance for the ARIMA(0,0,1)MCI and ARIMA(1,0,0)MCI models respectively. For nonstationary processes, the corresponding covariance matrices are obtained using the following results with $\mu=0$ and Z_{t}^{*} where $Z_{t}^{*} = \nabla^{d} Z_{t}^{*}$.

For the ABDA(1,0,1)MCL model;

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} 4_{2} - 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} = 2_{1} + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2} = x) + 4_{1} + 1, \quad 1 \le t \le n_{1}$$

$$(T_{2}$$

:

 \bigcirc

 $\operatorname{Cov}(Z_{t}, Z_{t+k}) = \begin{cases} \psi_{1}^{(t+k-n_{1})} \phi_{1}^{n_{1}-t-1} \frac{(\phi_{1}^{-\theta_{1}})(1-\phi_{1}^{\theta_{1}})}{1-\phi_{1}^{2}} \sigma_{a}^{2} & 1 \leq t \leq n_{1}^{-1} \\ \phi_{1}^{k-1}(\psi_{1} \frac{1+\theta_{1}^{2}-2\theta_{1}\phi_{1}}{1-\phi_{1}^{2}} - \gamma_{1}) \sigma_{a}^{2} & t=n_{1} \end{cases}$ (2-28)

(iii) Summatrix c₂₂ For $1 \leq k \leq n_2$, $n_1+1 \leq t+k \leq n_1+n_2$ and $t \geq n_1+1$,

 $\operatorname{Var}(Z_{n_1+k}) = \psi_1^2 \operatorname{Var}(Z_{n_1+k-1}) + (1 + \gamma_1^2 - 2\psi_1\gamma_1) \sigma_a^2$ $= \psi_1^{2^{\underline{k}}} \frac{1+\theta_1^2-\theta_1\phi_1}{1-\phi_1^2} \sigma_a^2 + \frac{1-\psi_1^{2^{\underline{k}}}}{1-\psi_1^2} (1+\gamma_1^2-2\psi_1\gamma_1) \sigma_a^2 (2-29)$

Since

k=1 $\mathbb{E}(\mathbb{Z}_{t}, \mathbf{a}_{t+k-1}) = \begin{cases} \sigma_{a}^{2} \\ 0 \end{cases}$ <u>k>2</u>

63

then

$$Cov(Z_{t}, Z_{t+k}) = \psi_{1} Cov(Z_{t}, Z_{t+k-1}) - \gamma_{1} E(Z_{t}^{a} + k-1)$$

= $\psi_{1}^{k-1}(\psi_{1} Var(Z_{t}) - \gamma_{1}) \sigma_{a}^{2}$

10

197]

P

000

36

Comparison of the local division of the loca

Nurserson and

080

2 n 1 $s_1 \qquad \phi_1 s_1 \qquad \cdots \qquad \phi_1^{n_1-3} s_1$ •1¹⁻²g1 $\begin{bmatrix} 2 \\ 2 \end{bmatrix} \begin{bmatrix} g_1 \\ g_0 \end{bmatrix} \begin{bmatrix} g_1 \\ \cdots \\ g_1 \end{bmatrix} \begin{bmatrix} y_1^n \\ y_1^n \end{bmatrix} \begin{bmatrix} -4 \\ g_1 \end{bmatrix}$ \$11-3g1 $a_{1}^{n_{1}-1} | \phi_{1}^{n_{1}-3}g_{1} \phi_{1}^{n_{1}-4}g_{1} \phi_{1}^{n_{1}-5}g_{1} \cdots g_{0}$ **8**1 $\mathbf{n}_{1} \begin{bmatrix} \phi_{1}^{n_{1}-2} g_{1} & \phi_{1}^{n_{1}-3} g_{1} & \phi_{1}^{n_{1}-4} g_{1} & \cdots & g_{1} \end{bmatrix}$ 80 Where $s_0 = \frac{1+\theta_1^2-2\theta_1\phi_1}{1-\phi_1^2}$, $s_1 = \frac{(\phi_1-\theta_1)(1-\theta_1\phi_1)}{1-\phi_1^2}$ n1+n2 $1 \qquad \psi_1 \phi_1^{n_1-2} g_1 \qquad \psi_1^{2} \phi_1^{n_1-2} g_1 \qquad \cdots \qquad \psi_1^{n_2} \phi_1^{n_1-2} g_1$ $2 | \psi_1 \phi_1^{n_1-3} g_1 \psi_1^{2} \phi_1^{n_1-3} g_1 \cdots \psi_1^{n_2} \phi_1^{n_1-3} g_1$

Figure 2-3. The Covariance Matrix of the ARIMA(1,0,1)MCI Model

12.292 39 38 Substitute Equation (2-29) into the above equation, we get (. . . e $Cov(Z_t, Z_{t+k}) = \psi_1$ n1+n2 n,+1 n₁+2 n1+1 1 n₁+2 where $l = t-n_{1}$. The results are summarized in matrix form in Figure 2-3 for ease ⁿ1⁺³ c₂₂ = in evaluation of the covariance for other low order ARIMA(p,0,q)MCI pron_+n-1 cesses. n_+n 2.4 Hypothesis Testing and Confidence Intervals In Section 2.2, the M.L.E. procedures for three different cases of Where $g_{22}^{(k)} = \psi_1^{2k} g_0 + \frac{1-\psi_1^{2k}}{1-\psi_1^2} (1+\gamma_1^2 - 2\psi_1\gamma_1)$, $k \ge 1$ unknown combinations of the model parameters $(\phi, \theta, \psi, \gamma)$ or the mean shift function, $\delta(t)$, were detailed. Case I described the situation in which $h_{22}^{(k)} = \psi_1 g_{22}^{(k)} - \gamma_1$ the form of the mean shift function was known along with the model para-When evaluated with, meters and δ and μ were to be estimated. When the influence of the en- $\Sigma^{(1,0,1)} = \Sigma^{(0,0,1)}$ $\phi=\psi=0,$ $\Sigma^{(1,0,1)} = \Sigma^{(1,0,0)}$ vironmnental process on the realized postintervention mean level is un- $\theta = \gamma = 0,$ known (and therefore the form of the mean shift function) but the pre- $\phi = \psi \neq 0$ multiconsequence covariance = single consequence OT. intervention model parameters, (ϕ, θ) , are known, the estimation procedures covariance $\theta = \gamma \neq 0$ for the form of mean shift was described in Case II. Case III described the M.L.E. procedures for estimating δ , μ and β_u when the form of the Figure 2-3. (Cont'd) mean shift function is known and β_u is a subset of the model parameters. In this section the corresponding hypothesis tests of significance for δ , μ , $(\phi-\psi)$ and $(\theta-\gamma)$ needed for modeling are presented. Also the corresponding confidence intervals for δ and μ and the pre and post intervention model parameters are developed. U

$$\mathbf{k-1} \left[\psi_{1} \left(\psi_{1}^{2\ell} \frac{1 + \theta_{1}^{2} - 2\theta_{1} \phi_{1}}{1 - \phi_{1}^{2}} + \frac{1 - \psi_{1}^{2\ell}}{1 - \psi_{1}^{2}} \left(1 + \gamma_{1}^{2} - 2\psi_{1} \gamma_{1} \right) \right) - \gamma_{1} \right] \sigma_{a}^{2} \quad (2-30)$$

Case I:

From the M.L.E. of δ for d=0, our immediate interest is to test

40

whether δ is significant, i.e., we want to test;

H₀: δ = 0 H₁: δ ≠ 0

Since $\hat{\delta} \sim N(\delta, \sigma_{\hat{s}}^2)$ with,

 $\sigma_{\hat{\delta}}^{2} = \frac{\underline{1}^{t} M_{N}^{(p,o,q)} \underline{1}}{(\underline{K}^{t} M_{N}^{(p,o,q)} \underline{K}) (\underline{1}^{t} M_{N}^{(p,o,q)} \underline{1}) - (\underline{K}^{t} M_{N}^{(p,o,q)} \underline{1})^{2}} \sigma_{a}^{2} \quad (2-31)$

the statistic W where,

$$W_{\delta} = \frac{|\hat{\delta}|}{\sqrt{\sigma^2}}$$

is ~ N(0,1²). For a selected a level we reject H_0 when $W_{\delta} > t_{1-\alpha/2, N-2}$. The corresponding (1- α) 100% confidence interval for δ is, $[\delta \pm W_{\delta}t_{\alpha/2,N-2}]$. When $d \ge 1$, the same procedure applies with the exception that,

$$\sigma_{\hat{\delta}}^{2} = \frac{q_{a}^{2}}{\frac{g_{a}^{2}}{k^{\star} M_{N}^{\star}(p,o,q)_{K}^{\star}}}$$

(2-32)

Case II: In the identification of the form of the mean shift function the significance of the preintervention mean must be determined prior to estimation of δ_1 when $n_2=1$ for $i=n_1+1, \ldots, n_1+n_2-1$. Since $\hat{\mu} \sim N(\mu, \sigma_2)$ with, (2-33)to test the hypotheses; we compute the statistic W_{11} where We reject H_0 when $W_{\mu} > t_{1-\alpha/2, n_1-1}$ or accept H_0 when $W_{\mu} < t_{1-\alpha/2, n_1-1}$. Similarly, in testing the significance of each $\delta(i)$ in order to determine correction of the ith observed value before estimation of $\delta(i+1)$, we test

the hypothesis,

Contraction Contractor

Section Statements

And the second second

Participation of the second

Contraction of the

and the second

Charles and

L

11

11

$$\sigma_{\hat{\mu}}^{2} = \frac{\sigma_{a}^{2}}{\frac{1}{2} \sum_{N}^{(p,0,q)} \frac{1}{2}},$$

$$H_0: \mu = 0$$

 $H_1: \mu \neq 0,$

$$W_{\mu} = \frac{\left|\hat{\mu}\right| (\underline{1}^{t} M_{\underline{n}_{1}}^{(p,0,q)} \underline{1})}{\sigma_{\underline{a}}^{2}}$$

$$H_0: \delta(i) = 0$$
$$H_1: \delta(i) \neq 0$$

 \odot

by computing W where,

$$=\frac{\left|\hat{\delta}(1)\right|M_{tt}}{\hat{\sigma}^2}$$

42

Southerness of

The null hypothesis is rejected when $W > t_{1-\alpha/2, t-1-N_{\delta}}$ or accepted when $W < t_{1-\alpha/2, t-1-N_{\delta}}$ where N_{δ} is the number of previous rejections of the null hypotheses in this sequential procedure.

Case III:

After estimation of the pre and post intervention model parameters the question whether there has been a significant change in the covariance structure should be tested before different postintervention parameter are retained in the model. To test the significance of the change in covariance, we test the hypothesis,

$$H_0: \beta_{u1} = \beta_{u2}$$
$$H_1: \beta_{u1} \neq \beta_{u2}$$

where $\beta_{u1} \in (\phi, \theta)$ and $\beta_{u2} \in (\psi, \gamma)$. The statistic,

$$W_{\beta} = [N \ln(\hat{\sigma}_{a}^{2}) + \ln(|M_{N}^{(p,0,q)}|)]_{\beta_{ul} = \beta_{u2}} - [N \ln(\hat{\sigma}_{a}^{2} + \ln(|M_{N}^{(p,0,q)}|)]_{\beta_{ul} \neq \beta_{u2}} + \ln(|M_{N}^{(p,0,q)}|)]_{\beta_{ul} \neq \beta_{u2}} + \ln(|M_{N}^{(p,0,q)}|)_{\beta_{ul} \neq \beta_{u2}} + \ln(|M_{N}^{(p,0,q)}|)]_{\beta_{ul} \neq \beta_{u2}} + \ln(|M_{N}^{(p,0,q)}|)_{\beta_{ul} \neq \beta_{u2}} + \ln(|M_{N}^{(p,0,q)}|)_{\beta_{u} \neq \beta_{u2}}$$

is computed (see Wilks (1938)). The null hypothesis is rejected when $W_{\beta} > \chi^2_{\alpha,n-m}$ or accepted when $W_{\beta} < \chi^2_{\alpha,n-m}$ where n is the number of unknown model parameters and m is the dimension of β_1 , i=1,2.

2.5 Anticipated Causes of Bias in Estimation of the Shift in Process Level

The misspecification of the mean shift function form and/or the use of a single consequence intervention model form when there is change in the covariance structure affects the ability to statistically determine the significance of an intervention program's intrinsic value. From the estimator for δ , the program's intrinsic utility, Equation (2-14), the elements of K which are determined from the form of K(t) are seen to weight the observation vector Z. For example, when we have ξ_t as a step function coupled with a direct stimulus response intervention model each observation after $t > n_1$ is weighted equally since K(t) = 1 for $t > n_1$. However, when ξ_t is a pulse function regardless of the specification of K(t) each postintervention observation is not equally weighted. Also when K(t) is of the form appropriate of an indirect stimulus response experiment regardless of the form of ξ_t all postintervention observations are not in general equally weighted. The consequences of having weights larger or smaller than appropriate is to underestimate or overestimate δ , respectively.

Figure 2.4 portrays various configurations of K(t) that results for a step function for the (1,0,1)MCI model. Each exhibit in Figure 2.4(A), (b) and (c) represents ξ_t as step functions with $\psi_1 = 0.0$, 0.6 and -0.6 for a range of γ values, respectively. The cases of $\psi_1 = \gamma_1$ correspond to the direct stimulus response form of K(t), e.g., K(t) = 1 $t \ge 2$, however, in comparisons between cases a, b and c, the observations are weighted differentiably being dependent upon the postintervention autocorrelative structure.

Within Figure 2.4, $K(t) = 1-\gamma$ for $t \ge 2$, and thus for a fixed γ_1 postintervention observations Z_t , $t \ge n_1 + 2$ are weighted equally in estimation of δ . However, postintervention observations Z_t for $t \ge n_1 + 2$ are weighted (1- γ) times the Z n_{γ} +1 value weight in estimation of δ . Thus realizations Z_t , $t \ge n_1 + 2$ exert greater influence than Z_{n_1+1} on the estimation of δ when $\gamma < 0$ and less influence when $\gamma > 0$. In the latter case as $\gamma \rightarrow 1$ only the Z st observation influences estimation of δ . Similar differentiable behavior for the relative contributions of Z_{μ} , $t \ge n_1 + 1$ in estimation of δ are seen for the step functions in Figures 2.4(a) and (b). When ξ_t is a pulse function, the K(t) weights behave the same as the step function values for $t \leq n_1 + T_p$ and eventually decay to zero as t increases for $t > n_1 + T_p + 1$. Thus as in the step function case, a pulse function also behaves similarly in that the consequence of not assigning an appropriate mean shift function form manifests itself in improper specification of K(t) and consequent overestimation of the magnitude of δ if K(t) chosen is less than the appropriate K(t) or underestimation of δ if the K(t) chosen is larger than the appropriate K(t).

44

ALC: NO.

Suppose the mean shift function form K(t) is correctly specified/ identified but a single consequence model is used inappropriately. Since K(t) is correct the point estimates of δ are not inflated or deflated. However, the tests of its significance is still impaired due to the difference in magnitude of the Var($\hat{\delta}$) that occur. For example, when the system should be treated as a (1,0,1)MCI process and is not, the resulting model parameters for the single consequence formulation are $\frac{\delta}{\delta}$

10

2.0 K(t) 1.0 5.0 4.0 3.0 K(t) 2.0 1.0 0.0 2.0 1.0 K(t) -1.0

Figure 2.4. Variations in K(t) Weights

$$\hat{\theta}_{S} = \frac{n_1 \theta_1 + n_2 \gamma_1}{n_1 + n_2}$$

where $\hat{\phi}_{S}$ and $\hat{\theta}_{S}$ are approximate solution to the estimation problem,

$$\stackrel{\min}{}_{\phi_{S},\theta_{S}}\left[\hat{\sigma}_{A}^{2}(\phi_{S},\theta_{S}|\phi_{1},\theta_{1},\psi_{1},\gamma_{1},\sigma_{a}^{2}\right]$$

with $\hat{\sigma}_A^2$ defined as SS/(n₁+n₂) where

and

$$ss = \sum_{t=1}^{n_1+n_2} (\hat{A}_t)^2$$

where σ_A^2 , ϕ_1 , θ_1 , ψ_1 , γ_1 is the true (1,0,1)MCI model parameters and At's are the residuals computed from the single consequence model, e.g., the model with $\phi_1 = \psi_1 = \phi_S$, $\theta_1 = \gamma_1 = \theta_S$.

Table 2.1 illustrates representative values of

 $M = \left(\sqrt{Var(\hat{\delta})MCI/Var(\hat{\delta})SCI} \right)^{-1}$ for preintervention parameter values of

46

.

Non-transferra

And a second second

History of the local division of the local d

[].]:]

N.

 \square

 Π

 $\left[\right]$

Ω

The second

Provident and

r₁

-.95 -.80 -.60 -.20 0.00 .20 .40 .60 .80 .95

 Υ

 -.95

 -.80

 -.40

 -.20

 -.40

 -.20

 .40

 -.20

 .60

 .20

 .40

 .80

 .95

×1

-.95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95

θ₁= -0.60

e₁= 0.00

θ₁= 0.60

Table 2.1.	Values of (√ Var(δ)MCI/Var(δ)SCI) for Determining
an An an Anna Anna Anna	Consequences of Over/Under Estimation of Significance
	of $\hat{\delta}$ when K(t) is Correctly Specified

•	· n, •	10				0.6	n ·				
-	•		· · · · ·		······	1 - 0.0				· .	
1	95	80	60	40	20	0.00	. 20	. 40	• 60	.80	. 95
	1.25	1.01	.80	67	67	84	1 14	1.49	1.80	1.03	2 02
	1.15	.84	.72	.66	. 66	.73	.85	1.00	1.15	1.24	1.34
	1.28	.84	.72	. 67	. 67	.71	.79	.89	1.00	1.04	1.11
	1.37	.87	.74	. 69	. 69	.71	.78	.87	. 96	1.00	1.03
	1.42	.89	.75		. 69	.72	.78	.86	. 96	1.00	1.00
	1.45	. 91	.77	.71	.70	.72	.77	.86	.97	1.03	1.01
	1.46	. 92		.72	.70	.72	.77	.86	. 99	1.08	1.05
	1.48	. 94	.79	.72	.70	.71		.85	1.00	1.15	1.14
	1.55	08	.82	. 74	.70	.70	.74	84	1.00	1.23	1.30
	1 73	1 10		.79	.72	69	.72	82	1.01	1 32	1 63
	2.04	1.30	1.04	.88	.76	.70	.70	.80	1.04	1.44	2.03
-	1										
$= n_2 = 10$ $\phi_1 = 0.60$											
									. . .		
Ż	95	80	60	40	20	0.00	.20	.40	.60	.80	.95
	. 90	.83	.78	.81	. 95	1.21	1.56	1.96	2.32	2.58	2.94
Ì.	.83	.75	.74	.77	.84	.95	1.10	1.27	1.43	1.56	1.81
	. 93	.74	.72	.74	.79	.86	. 96	1.07	1.15	1.20	1.36
	1.02	.76	.72	.72	.76	.82	. 90	- 00	1.06	1.06	1.16
	1.08	77	71	71	76	70	86	95	1 01	1 00	1 05
	1.12	.77	.71	70	72	76	.00		1 00	00	1.05
	1.13	77	70	60	70	74	80	90	00	1 00	05
	1.13	77	60	67	68	71	77	.05	07	1 04	
	1 14	79	- 60	.07	.00	./1	73	⇒00 an	. 7/	1 00	1 0/
	1.20	/ 0			4/	.00	/ J	77	· · · · ·	1 14	1 26
	1.35	.02	78		66	63	.07	77	91	1 16	1 50
						.05		•/2			1.33
•	= n, =	10				0.6	ה				
-	<u></u>	 		<u></u>		1				<u></u>	
1	95	80	60	40	20	0.00	. 20	.40	.60	.80	. 95
1.1	96	1 00	1 00	1 91	1 35	1 52	1 72	1 06	2.26	2.71	° ' 3 // 7
		2.00	1 01	1.02	1.15	1.22	1.11	1 18	1.48	1.67	2.09
	1:04	- 50	2.02	1 01	1 07	1 12	1 17	1 10	1 20	1 25	1 52
	1 1 2	# 74 02	. 30	04 1.01	1:01	1.06	1 10	1 11	1 00	1 06	1.24
	1 23	. 73	. 73	. 70	1.01	1 01	1.05	1.07	1 03	40.00	1 07
	1 24	1 73	. 90		17/	1.01	1 03	1 0/	1 01	- 50	1.07
ļ	1.00	• 71	.3/	. 03	. 74	.7/	- T+04 -	1 01	1.00	. 71	.73
	1.23	.00	.03	. 84	.00	. 74	• 70	- T. UT	1.00	.00	.00
- 1	1.1/	.83	./8	19	.02	.0/	. 93	. 90	1.00	.07	.00
	1.09	• 17	.72	•72	./5	/.	.80	. 93	1.00		•//
2	1.00	.71	. 65	. 65	. 66	.70	.76	.84	.95	1.02	. 84
	. 96	. 68	. 62	. 60	.61	. 62	. 66	.73	.85	1.02	1.05

Table 2.1. (Cont'd)

 $n_1 = n_2 = 10$

	n 1 .	$n_2 = 10$			· · · ·	¢	1= 0.00)	.*		•	
	$\gamma_1^{\psi_1}$	-, 95	80	60	40	20	0.00	.20	.40	.60	.80	.95
θ _l = -0.60	95 80 60 40 20 0.00 .20 .40 .60 .80 .95	.99 1.12 1.31 1.43 1.50 1.54 1.55 1.54 1.54 1.59 1.73	.95 .96 1.01 1.05 1.08 1.10 1.11 1.11 1.11 1.15 1.24	.95 .94 .96 .99 1.00 1.02 1.02 1.02 1.02 1.02 1.04 1.11	1.01 .96 .98 .99 1.00 1.00 1.00 1.00 1.00 1.01	1.11 .99 .98 .98 .99 1.00 1.01 1.01 1.00 1.00 1.00	1.25 1.03 1.00 1.00 1.00 1.02 1.02 1.03 1.02 1.01 1=00	1.41 1.07 1.01 1.00 1.01 1.03 1.05 1.06 1.06 1.04 1.02	1.57 1.11 1.00 .98 .99 1.02 1.05 1.08 1.10 1.10 1.08	1.73 1.14 .97 .93 .93 .96 1.01 1.07 1.14 1.18 1.17	1.98 1.24 .98 .88 .84 .83 .86 .93 1.06 1.25 1.34	2.75 1.74 1.31 1.10 .97 .88 .83 .80 .84 1.04 1.44

	n 1 =	$n_2 = 10$)	1	:	4						
	γ_1	95	80	60	40	20	0.00	.20	.40	.60	.80	.95
	95	. 98	1.01	1.07	1.15	1.25	1.36	1.49	1.65	1.88	2.30	3.45
	80	1.01	. 99	1.01	1.05	1.08	1.11	1.14	1.16	1.21	1.39	2.06
	60	1.10	. 98	. 99	1.01	1.03	1.04	1.04	1.02	.99	1.03	1.46
	40	1.19	1.00	. 98	. 99	1.00	1.01	1.00	.%	. 90	.87	1.17
	20	1.26	1.01	. 98	. 98	. 99	1.00	. 99	. 95	.87	.79	. 98
$\theta_1 = 0.00$	0.00	1.30	1.01	. 97	.97	. 99	1.00	. 99	. 95	.87	.74	.85
±	.20	1.31	1.01	. 96	.96	. 98	. 99	1.00	. 9 7	. 89	.73	.76
	.40	1.30	. 99	. 94	. 95	.96	.99	1.01	1.00	. 93	.76	.69
	.60	1.28	. 97	. 92	.92	.94	.97	1.00	1.03	1.00	.84	.66
	.80	1.26	.95	.90	.89	. 91	. 94	. 98	1.03	1.07	1.01	.74
	.95	1.29	. 97	. 91	.88	.88	. 90	. 93	. 99	1.06	1.13	1.02

	n ₁ =	n ₂ = 1	0									
	$\gamma_1^{\psi_1}$	95	80	60	40	20	0.00	• 20	.40	.60	.80	. 95
	95	1.11	1.13	1.15	1.18	1.22	1.27	1.35	1.48	1.73	2.24	3.61
	80	1.10	1.09	1.09	1.10	1.10	1.10	1.10	1.10	1,15	1.37	2.15
	60	1.14	1.07	1.06	1.06	1.05	1.03	1.00	. 96	. 93	. 99	1.51
	40	1.20	1.07	1.05	1.04	1.02	1.00	. 96	.90	.84	.82	1.18
	20	1.27	1.08	. 1.04	1.02	1.01	. 98	.94	.87	.79	.72	. 98
60	0.00	1.32	1.08	1.04	1.02	1.00	. 98	. 93	.86	.76	. 66	.83
	.20	1.36	1.08	1.03	1.02	1.00	. 98	. 94	.86	.75	.62	.71
	.40	1.36	1.07	1.02	1.01	1.00	. 99	.96	.89	.77	.61	.61
	.60	1.31	1.02	. 98	. 98	.99	1.00	. 98	.94	.83	. 63	. 54
	.80	1.20	. 93	. 90	. 91	. 93	. 96	. 99	1.00	.94	.74	. 51
	.95	1.08	.84	.81	.82	.84	.87	.91	. 95	. 97	.88	. 60

θ₁= 0.6

Table 2.1. (Cont'd)

M

1 (Land

I

I.

Ţ

T

Ĩ

I

1

I

T

1. J

-.95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95

-.95 -.80 -.40 -.20 0.00 .20 .40 .60 .80 .95

41 Ύ

-.95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .95

θ₁= -0.60

θ**1** = 0.00

θ₁ = 0.60

proventient

Contactorial No.

Surger State

Alternative State

- Charles

Land Land

Constants

ⁿ 1 ⁻	n ₂ = 1	0			· · · · · · · · · · · · · · · · · · ·	¢ <u>1</u> = −0.	60				
Y1 41	95	80	60	40	20	0.00	.20	.40	. 60	.80	.95
95	.98	1.00	1.05	1.11	1.19	1.30	1.41	1.56	1.78	2.20	3.44
60	1.01	1.00	1.00	1.02	1.04	1.00	.98	1.09	.91	1.30	2.04
40	1.12	1.02	1.00	1.00	.99	. 98	. 95	. 90	.83	.80	1.14
20	1.15	1.04	1.02	1.01	1.00	.99	. 95	.89	.80	.72	. 95
0.00	1.18	1.05	1.03	1.02	1.02	1.00	.97	.91	.81	.68	.82
.20	1.19	1.07	1.04	1.04	1.04	1.03	1.01	.95	.84	.68	.72
.40	1.19	1.07	1.05	1.05	1.05	1.06	1.05	1.01	.91	.71	.65
.60	1.20	1.07	1.06	1.06	1.06	1.08	1.09	1.08	1.01	.81	.62
.80	1.22	1,09.	1.07	1.07	1.07	1.09	1.11	1.13	1.14	1.01	.71
• 95	1.29	1.12	_ <u> </u>	1.09	1.08	1.09	1.10	1.14	1.18	1.19	1.02
			•								
<u>"1</u>	ⁿ 2 ^{= 10}	U			4	1 = -0.	60			·	
1			_	0							
Y1	95	80	60	40	20	0.00	.20	.40	.60	.80	.95
.95	1.05	1.07	1.12	1.17	1.24	1.32	1.42	1.58	1.83	2.35	3,80
80	1.03	1.03	1.05	1.09	1.09	1.11	1.11	1.13	1.18	1.39	2.21
. 60	1.03	1.01	1.02	1.03	1.03	1.03	1.01	. 97	. 93	.99	1.52
.40	1.04	1.00	1.00	1.01	1.01	. 99	. 96	. 90	.83	.81	1.19
.20	1.05	1.00	1.00	1.00	• 99	. 98	. 94	.88	.79	.72	.97
.00	1.07	1.00	1.00	1.00	. 99	. 98	.94	.87	.77	.66	.82
.20	1.08	1.00	1.00	1.00	1.00	. 98	. 96	.89	.78	. 63	.70
.40	1.07	1.00	. 99	1.00	1.01	1.01	1.00	. 94	.82	.63	.61
- 00	1 04	. 96	- 98	1.00	1.02	1.04	1.04	1.01	.91	.69	.55
.00	1.04	- 50	. 90	. 90	1.01	1.04	1.08	1.09	1.06	.86	.57
	1104			. 90	• 30	1.01	1.05	1.09	1.1Z	1.00	.//
n ₁ =	n ₂ = 10) .			¢	1= -0.6	0		1 ×		
<u> </u>											
r1	95	80	60	40	20	0.00	.20	.40	.60	.80	.95
.95	1.08	1.08	1.09	1.11	1.14	1.19	1.26	1.39	1.64	2.18	3.73
.80	1.05	1.04	1.04	1.04	1.04	1.04	1.03	1.04	1.09	1.32	2.20
.60	1.03	1.02	1.01	1.00	.99	.97	. 94	.90	.87	.94	1.52
.40	1.03	1.00	. 98	. 97	.96	.93	.89	.84	.77	.77	1.18
.20	1.03	. 99	. 97	. 96	.94	. 91	.86	.80	.72	.67	.96
.00	1.04	. 99	.97	. 95	.93	.90	.85	.78	.69	.60	.80
.20	1.06	1.00	.97	. 95	. 93	.90	.85	.78	.67	.56	.68
40	1.07	1.00	.98	. 97	.95	.92	.87	.80	• 68	. 54	.58
80	1 02	T.00	T.00	- 99	. 99	. 97	.93	.85	.73	.55	. 49
95	1.04	. 90	. 7/	. 99.	1.01	1.03	1.02	.98	.86	.63	.44
	• 36	.0/	.00	• 71	• 94	. 98	T.0T	1.02	• 78	.80	• 50

 ϕ_1 = -0.6, 0.0 or 0.6 and θ_1 = -0.6, 0.0 or 0.6 tabulated for values of ψ_1 and $\gamma_1,$ where MCI and SCI refer to multiconsequence and single consequence. In computing the tabled entities the values of $\hat{\boldsymbol{\theta}}_{S}$ and $\hat{\boldsymbol{\theta}}_{S}$ are used in determining Var($\hat{\delta}$)SCI. If the tabulated multiplier, M, is equal to 1.0000 then the standardization of $\hat{\delta}$ in hypothesis testing is unaffected by ignoring the multiconsequence phenomena. Although, only when the assumption of a single consequence structure is appropriate (e.g., $\phi_1 = \psi_1$, $\theta_1 = \gamma_1$) is the hypothesis test unaffected. There are, however, many combinations of parameters that reasonably mimic correct estimation of significance of δ . These combinations are typically those with relatively small changes in corresponding pre and post parameters from correct values. However, large variations from correct values can also mimic by chance due to the cancellation or offsetting of individual parameter contributions. As noted, more typically a severe overestimation of significance is obtained when M >> 1 and severe underestimation of significance occurs when M << 1.

2.6 Bias of $\hat{\mu}$ and $\hat{\delta}$

In Section 2.2, a flexible mean shift function,

$$\delta(t) = \begin{cases} 0 & t \leq n_1 \\ \delta K(t) & n_1 + 1 \leq t \end{cases}$$

was described where δ is the intrinsic utility of an intervention programs activities and K(t) is the dynamic coefficient whose specification is determined by whether the intervention effect is influenced or not influ-

to be: $\mu = \frac{[\tilde{\mathbf{K}}^{\mathsf{t}}\mathbf{M}_{\mathsf{N}}^{\mathsf{N}}]}{[\tilde{\mathbf{K}}^{\mathsf{t}}]}$ and $\delta(t) = \delta K(t), eg.$

Cardina Cardina

Summer of the second

the second

A A A

an in the second second

Street and

Series James

Harrison The

50

0

R

T

enced by the environmental process, the indirect or direct stimulusresponse model forms. The M.L.E. estimators of μ and δ were determined

$$\frac{(p,0,q)}{N} \underbrace{\tilde{k}}_{N}[\underline{1}^{t} \underline{M}_{N}^{(p,0,q)} \underline{z}] - [\underline{1}^{t} \underline{M}_{N}^{(p,0,q)} \underline{k}][\underline{k}^{t} \underline{M}_{N}^{(p,0,q)} \underline{z}]}_{N} - [\underbrace{\tilde{k}}^{t} \underline{M}_{N}^{(p,0,q)} \underline{1}]^{2}$$

where $M_N^{(p,0,q)}$ is the inverse of the covariance matrix of Z and K = $[0,0,\ldots,K(n_1+1),K(n_1+2),\ldots,K(n_1+n_2)]^t$ with the first n_1 elements zero. Since $E(Z) = \mu 1 + \delta K$, the estimators for the mean, μ , and program utility, δ , are unbiased when the K vector is correctly assigned, since $E(\hat{\mu}) = \mu$ and $E(\hat{\delta}) = \delta$. However, when the K vector is incorrectly assigned, the estimators are biased since, we have $\delta(t) = \delta K^0(t)$ rather than

$$E(\hat{\mu}) = \mu + \frac{[\underline{\tilde{k}}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{\tilde{k}}^{0}][\underline{1}^{t}\underline{M}_{N}^{(p,0,q)}\underline{\tilde{k}}] - [\underline{1}^{t}\underline{M}_{N}^{(p,0,q)}\underline{\tilde{k}}^{0}][\underline{\tilde{k}}^{0}(\underline{t})\underline{M}_{N}^{(p,0,q)}\underline{\tilde{k}}]}{[\underline{\tilde{k}}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{\tilde{k}}^{0}][\underline{1}^{t}\underline{M}_{N}^{(p,0,q)}\underline{1}] - [\underline{\tilde{k}}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{1}]^{2}}$$
(2-34)

52

A contained

N

in the

8

P

$$E(\hat{\delta}) = \frac{[\underline{K}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{K}][\underline{1}^{t}\underline{M}_{N}^{(p,0,q)}\underline{1}] - [\underline{K}^{t}\underline{M}_{N}^{(p,0,q)}\underline{1}][\underline{K}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{1}]}{[\underline{K}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{K}^{0}][\underline{1}^{t}\underline{M}_{N}^{(p,0,q)}\underline{1}] - [\underline{K}^{0^{t}}\underline{M}_{N}^{(p,0,q)}\underline{1}]^{2}} \delta \qquad (2-35)$$

It should be noted that only when the correct specification of model structure, either direct stimulus response or indirect stimulus response is made, in which case does $\mathbb{K}^0 \neq \mathbb{K}$, are the estimates of μ and δ unbiased. In this situation even when the model parameter vector of the noise process, composed of $\underline{\phi}$, $\underline{\theta}$, $\underline{\psi}$, $\underline{\gamma}$, is not correctly assigned, i.e., the matrix $\mathbb{M}_N^{(p,0,q)}$ is not appropriate for the data, the estimates $\hat{\mu}$ and $\hat{\delta}$ are still unbiased. In addition, regardless whether the correct model specification is or is not made, the estimates of $\hat{\mu}$ and $\hat{\delta}$ are unbiased when $n_2 = 1$. (Effectively K(1) for the direct stimulus or indirect stimulus response model is identical.) This fact is exploited in the identification of the appropriate model structure which determines the specific form of K(t) in the mean shift function in the following section. Lastly, if the direct stimulus response structure is appropriate and identified correctly, the estimates of μ and δ are unbiased even when the noise process parameters are misspecified (eg. K(t) $\neq f(\underline{\phi}, \theta, \psi, \underline{\gamma}) = 1$ all t $> n_1$).

The magnitude of bias due to misspecification of the K vector obtained from Equations (2-34) and (2-35) may be expressed as

result in small biases. in $\hat{\mu}$ and $\hat{\delta}$. Example 1

$$\mathbf{E}\begin{bmatrix}\hat{\boldsymbol{\mu}}\\\boldsymbol{\delta}\end{bmatrix} = \begin{bmatrix}\mathbf{A} & \mathbf{B}\\\mathbf{C} & \mathbf{D}\end{bmatrix}\begin{bmatrix}\boldsymbol{\mu}\\\boldsymbol{\delta}\end{bmatrix},$$

where A=1 and C=0 regardless of the form of K(t) or the correct specification of the parameters of the noise process. Both B and D are functions of the pre and post intervention noise process parameters. Thus given that the form of K(t) is not correct, the specification of a particular combination of noise process parameter values determines the magnitude of the bias in the estimates $\hat{\mu}$ and $\hat{\delta}$. Combinations of parameters giving rise to values of B close to zero and D close to 1 result in small biases.

The practical consequences of incorrectly specifying a multiconsequence or single consequence model or the misspecification of the noise parameter values for the correct specification for the indirect stimulus response form is illustrated in Example 1 in terms of the bias

Table 2.2 gives computed values of B and D for the true parameters representing a multiconsequence process (e.g., $\phi_T = 0.6$, $\psi_T = 0.3$, $\theta_T = 0.3$ and $\gamma_T = 0.6$) and a single consequence process (e.g., $\phi_T = \psi_T = 0.6$ and $\theta_T = \gamma_T = 0.3$). Entries a, b and c in Table 2.2 are for the multiple consequence case where the preintervention parameters used are both set equal to the true parameters, equal to the true parameters plus 0.3 or minus 0.3, respectively. For comparison entries d and e are for the single consequence true process in which the prein53

(2-36)
tervention parameters are set equal to the true parameters and equal to the true parameters plus 0.3, respectively. Entries a through e are for $n_1 = n_2 = 10$ while entry f corresponds to the parameter value of entry e only differing in that $n_1 = n_2 = 20$.

1. martin

1

T

1. Second second

A Designation

Ø

E

54

From Equation (2-36) the bias in $\hat{\mu}$ and $\hat{\delta}$ is seen to be proportional to δ ; the bias in $\hat{\mu}$ being B δ and the bias in $\hat{\delta}$ being (D-1) δ . From Table 2.2 the estimate of $\hat{\mu}$ is seen to be unbiased when $\gamma_{_{\rm F}}$ = 0.0 regardless of the other misspecifications of model parameters. Typically, however, depending upon the combinations of the misspecified parameters, mild to severe bias are noted, being in some cases several times the magnitude of δ , with μ either overestimated (B and δ opposite signs), or underestimated (both B and δ of the same sign). Similar observations both with regard to the magnitude of the bias and direction of the bias (overestimation of underestimation) are noted for δ .

The ramification of ignoring the need of a multiconsequence model and using a single consequence model allowing only for a shift in the process label is illustrated in Table 2.2(a) - (c). Although a small nonconsequential bias in the mean is expected the intervention impact is overestimated by approximately 40%. Similarly severe biases both positive and negative are illustrated in Table 1(d) in situations in which a single consequence model is appropriate while the multiconsequence form is fit. The potential magnitudes and signs of the biases clearly indicate the need to consider the multiconsequence formulation in real world evaluations of intervention experiments.

As n_1 and n_2 increase, the bias in the estimates of μ and $\delta.$

offset the biases induced by parameter misspecification. significance of $\hat{\delta}$ may be severely distorted. Example 2 Table 2.3 gives entries of h where

asymptotically stabilizes to a fixed bias. The comparison of entry e and f which corresponds to an increase from $n_1 = n_2 = 10$ to $n_1 = n_2 =$ 20 illustrates a rapid convergence for most combinations of parameters β except severe departures of the postintervention autoregressive parameter from its true value. Thus increasing sample size does not

From Table 2.2, the relative robustness of the estimators μ and δ are observable. The estimator μ is more robust than the estimator δ for departures of β from β_{T} . Departures toward the boundaries of the stationary or invertibility region are more severe. The estimator μ is more robust to departures from true value of the preintervention parameters $\boldsymbol{\varphi}_{_{\mathbf{T}}}$ and $\boldsymbol{\theta}_{_{\mathbf{T}}}$ than the corresponding postintervention parameters. Departures in the autoregressive parameters exert a greater effect than equivalent magnitude departures in the moving average parameters. Regardless whether the misspecification of noise parameters cause a bias in the estimates of μ and δ , it does affect the detection of the true significance since the $Var(\hat{\mu})$ and $Var(\hat{\delta})$ are not correct for improperly specified noise parameters. For the indirect stimulus response model, which may result in small biases in the estimate of $\widehat{\delta}$ due to noise parameter misspecification resulting in $K^0 = K$, the statistical

> $h = \left[E(Var(\hat{\delta}/\hat{\sigma}_a)_{MTSS}/E(Var(\hat{\delta}/\hat{\sigma}_a)_{COR}) \right]^{1/2}$ (2-37)

	$\varphi_{\mathbf{p}} = 0.0, \ \varphi_{\mathbf{p}} = 0.0$										
Y _F	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9				
-0.9	0.03 0.61	0.06	0.05	-0.03	-0.15 0.29	-0.31 0.20	-0.48 0.06				
-0.6	0.00 0.74	0.02	0.02	0.01	-0.02 0.30	-0.06 0.20	-0.12 0.08				
-0.3	0.00	0.01 0.76	0.01 0.62	0.01	0.00	-0.02 0.23	-0.04				
0.0	0.00	0.00	0.00	0.00	0.00 0.46	0.00	0.00				
0.3	0.06	0.03	0.00	-0.01 0.88	-0.01 0.64	0.00	0.02				
0.6	0.37 0.95	0.28	0.18	0.08	0.00	-0.02	0.03				
0.9	0.58 0.12	0.56	0.53	0.49	0.39 0.78	0.19 0.96	-0.02 0.65				

Table 2.2. Value of B and D for Misspecifications of β Parameters (Entries are B above, D below) ~

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$

 $n_1 = n_2 = 10$

(a)

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $n_1 = n_2 = 10$ $\phi_{\rm p} = 0.9, \ \theta_{\rm p} = 0.6$

			· 5	_			
YF YF	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9
-0.9	0.05	0.16 0.39	0.24 0.27	0.25	0.15 0.18	0.08 0.16	-0.38
-0.6	0.01 0.73	0.05	0.08 0.46	0.08	0.05 0.27	0.00 0.19	-0.08
-0.3	0.00 0.91	0.02 0.75	0.03	0.03 0.47	0.02 0.35	0.00	-0.02 0.09
0.0	0.00	0.00	0.00	0.00	0.00 0.46	0.00	0.00 0.14
0.3	0.12	0.05	0.01	-0.02	-0.03 0.67	-0.02 0.41	0.01 0.16
0.6	0.43 0.72	0.35 0.91	0.24	0.12 1.10	0.00	-0.06	0.00 0.27
0.9	0.58 0.23	0.56 0.35	0.54 0.47	0.50 0.61	0.42 0.76	0.24 0.91	-0.05 0.66

(b)

Ţ 1

L

Ĩ

T

Eres A

(man-

Patrone Concerns

· The processing

Parterent California

S. Dipeasion and

A Constant Press

ALTER CONTRACTOR

A last new second

A State of the sta

the second

And a second second

 $\left[\right]$

11

-

1

56

0.9 -0.9

 $r_{\rm F}$ -0.9 -0.6 -0.3 0.0 0.3 0.6

-0 -0.6 -0. -0.3 -0 0.0 0.

0.3

0.6

0.9

Table 2.2. (Cont'd)

<u></u>	ⁿ 2 ⁼	10
---------	-----------------------------	----

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $\phi_{\rm F}=0.3,\ \theta_{\rm F}=0.0$

-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9
0.0 <u>1</u> 0.62	0.03	-0.01 0.44	-0.08	-0.19	-0.31	-0.44
0.00	0.01 0.62	0.01 0.51	-0.01 0.41	-0.03	-0.07	-0.11
0.00 0.91	0.00 0.76	0.01 0.63	0.00	-0.01 0.36	-0.02	-0.04
0.00	0.00	0.00	0.00	0.00	0.00	0.09
0.05 1.45	0.02	0.00	-0.01 0.88	-0.01	0.00	0.11
0.33 1.11	0.24 1.26	0.15 1.31	0.06	0.00	-0.01	0.16
0.58 0.11	0.56 0.25	0.53 0.42	0.47	0.37	0.16	-0.01
						0.04

(c)

ⁿ1 = ⁿ2 = 10

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.6, \ \gamma_{\rm T} = 0.3$ $\phi_{\rm F} = 0.6, \ \theta_{\rm F} = 0.3$

		1	1				
	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9
	-0.03	0.13	0.02	-0.02	-0.10	-0.20	-0.32
	-0.05	-0.03 1.59	0.00	-0.00	-0.01	-0.04	-0.08
	-0.07	-0.04 1.94	-0.02 1.58	0.00	0.00	-0.01	-0.03
	0.00 2.81	0.00 2.40	0.00	0.00	0.00	0.00	0.00
	0.46 2.61	0.30 2.58	0.17	0.09	0.02	0.00	0.31
-	1.71 -1.23	1.42 0.00	1.07	0.68	0.30	0.04	0.43
	1.77 -3.80	1.75	1.71	1.62	1.42	0.91	0.70
						1.29	1.54

(d)

Table 2.2. (Cont'd)

58

Ŋ

N

國

M

D

 \bigcirc

测

T

$$n_{1} = n_{2} = 10 \qquad \phi_{T} = 0.6, \ \theta_{T} = 0.3, \ \psi_{T} = 0.6, \ \gamma_{T} = 0.3 \\ \phi_{F} = 0.9, \ \theta_{F} = 0.6 \\ \hline -0.9 \qquad -0.6 \qquad -0.3 \qquad 0.0 \qquad 0.3 \qquad 0.6 \qquad 0.5 \\ \hline -0.06 \qquad 0.03 \qquad 0.11 \qquad 0.14 \qquad 0.09 \qquad -0.05 \qquad -0.2 \\ \hline 1.63 \qquad 1.30 \qquad 1.02 \qquad 0.78 \qquad 0.59 \qquad 0.40 \qquad 0.1 \\ \hline -0.15 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.01 \qquad 1.64 \qquad 1.30 \qquad 1.01 \qquad 0.73 \qquad 0.67 \quad -0.01 \\ \hline -0.15 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.07 \qquad -0.01 \qquad 0.02 \qquad 0.02 \qquad 0.00 \qquad -0.05 \\ \hline -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \\ \hline -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \\ \hline -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \\ \hline -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \qquad -0.05 \\ \hline -0.05 \qquad -0.05 \\ \hline -0.05 \qquad -$$

Y.

-0.9

-0.6	-0.15 2.01	-0.07 1.64	-0.01 1.30	0.02	0.02 0.73	0.00 0.47	-0.06 0.20
-0.3	-0.16 2.46	-0.09 2.01	-0.04 1.61	-0.01	0.01 0.90	0.00 0.57	-0.02 0.25
0.0	0.00 2.81	0.00 2.40	0.00 1.98	0.00	0.00	0.00 0.73	0.00 0.31
0.3	0.82	0.57	0.35 2.06	0.18 1.88	0.06	0.00 1.00	0.01
0.6	2.00 -2.32	1.76 -1.10	1.45 0.06	1.03 1.03	0.55	0.12 1.46	0.00 [.] 0.71
0.9	1.77 -3.47	1.76 -2.68	1.73 -1.86	1.67 -1.00	1.53	1.14	0.11

(e)

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $n_1 = n_2 = 20$ ψ., = 0.6, θ., = 0.3

	1. A.				•		
Y.F	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9
-0.9	0.02	0.04 0.48	0.03 0.39	-0.01	-0.10 0.26	-0.20 0.18	-0.33
-0.6	0.00 0.71	0.01 0.59	0.01 0.48	0.00	-0.01	-0.04	-0.07
-0.3	0.00	0.00 0.73	0.01 0.60	0.00 0.46	0.00	-0.01 0.20	-0.02
0.0	0.00	0.00 0.95	0.00	0.00 0.60	0.00 0.43	0.00 0.26	0.00
0.3	0.04 1.47	0.01 1.29	0.00	-0.01 0.85	-0.01 0.61	0.00 0.36	0.01
0.6	0.29 1.29	0.22 1.38	0.13	0.06	0.00	-0.01 0.62	0.02
0.9	0.56 0.28	0.55 0.36	0.53 0.44	0.51	0.44	0.28 0.90	-0.01

seen.

(f)

where MISS and COR denotes misspecified and correct, respectively, for the same combinations of the noise parameters used in Table 2.2. When h > 1, the misspecification of these parameters result in an overestimation of $\operatorname{Var}(\hat{\delta}/\hat{\sigma}_a)$ and consequently, and underestimation of the significance of $\hat{\delta}.$ Similarly, when h < 1, we effectively underestimate $\operatorname{Var}(\hat{\delta}/\hat{\sigma}_a)$ and overestimate the significance of $\hat{\delta}$. As seen from the range exhibited for h in Table 2.3, severe overestimation or underestimation of $Var(\hat{\delta}/\hat{\sigma})$ can occur as values of h from 0.1 to 2.4 are

The composite consequence of the bias in the point estimates and the over or under estimation of h is evaluable using the results of both Table 2.2 and Table 2.3. The scale factor to measure departure of the test statistics in testing whether H_0 : $\delta = 0$ versus H_1 : $\delta \neq 0$ is D/h. When this ratio is one, the test statistic adequately portrays the time significance or non significance. When this scale factor is close to one, this might be due to the compensation of severe departures in B and h or due to minor departures in B and h from one. In the former situation although adequate portrayal of the significance of the intervention effect δ is obtained severe error in the magnitude of the intervention program utility for subsequent policy inferences such as the value of a certain program type is present.

More typically values of the scale factor result in severe misestimation of the test statistics. For example, from entry a of Table 2.2 and Table 2.3 for $\psi_{\rm F}$ = 0.6 and $\gamma_{\rm F}$ = -0.6, the scale factor is .27 while when ψ_F = 0.0 and γ_F = 0.6 the scale factor is 1.25. When testing

				(0)		5°		
•	$n_1 = n_2 = 2$	10	$\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \psi_{\rm T} = 0.6$					
			$\phi_{\rm F}=0.3,$	θ _F = 0.0				
YF YF	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9	
-0.9	0.86	0.78	0.59	0.44	0.34	0.29	0.24	
-0.6	0.81	0.88	0.87	0.81	0.76	0.74	0.70	
-0.3	0.75	0.84	0.88	0.89	0.89	0.94	1.02	
0.0	0.68	0.77	0.84	0.88	0.91	0.99	1.19	
0.3	0.59	0.69	0.77	0.83	0.87	0.94	1.20	
0.6	0.49	0.58	0.68	0.76	0.81	0.85	1.05	
0.9	0.28	0.36	0.46	0.58	0.70	0.76	0.78	

(c)

n ₂ = 10	ľ,	φ _T = 0,	$\theta_{\rm T} = 0.3$	$, \psi_{\rm T} = 0.3,$	$\psi_{\rm T} = 0.$
		· . · · ·	(b)		
0.49	0.72	1.13	1.73	2.07	1.76
0.91	1.27	1.78	2.27	2.27	1.79

$\phi_{\overline{F}} = 0.9, \ \theta_{\overline{F}} = 0.6$									
F	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9		
0.9	1.12	1.43	1.54	0.93	0,47	0.28	0.24		
0.6	1.44	1.90	2.17	1.87	1.28	0.86	0.69		
0.3	1.45	1.90	2.27	2.21	1.74	1.26	1.02		
0.0	1.35	1.79	2.22	2.35	2.01	1.52	1.20		
0.3	1.17	1.59	2.07	2.37	2.18	1.69	1.30		
0.6	0.91	1.27	1.78	2.27	2.27	1.79	1.27		
0.9	0.49	0.72	1.13	1.73	2.07	1.76	1.21		

	$n_1 = n_2 = 1$	0	$\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $\phi_{\rm T} = 0.9, \ \theta_{\rm T} = 0.6$				
				(a)	-		
	0.33	0.43	0.57	0.73	0.88	0.93	0.85
	0.57	0.70	0.84	0.95	1.00	0.99	1.08
	0.71	0.84	0.95	1.02	1.03	.1.04	1.22
	0.81	0.93	1.02	1.05	1.03	1.05	1.19
	0.89	1.00	1.05	1.03	0.98	0.98	1.02
1							

$n_1 = n_2 = 10$			$\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $\phi_{\rm F} = 0.6, \ \theta_{\rm F} = .3$					
YF	-0.9	-0.6	-0.3	0.0	0.3	0.6	0.9	
-0.9	0.98	0.93	0.69	0.48	0.35	0.28	0.24	
-0.6	0.95	1.05	1.02	0.92	0.81	0.75	0.70	
-0.3	0.89	1.00	1.05	1.03	0.98	0.98	1.02	
0.0	0.81	0.93	1.02	1.05	1.03	1.05	1.19	
0.3	0.71	0.84	0.95	1.02	1.03	. 1.04	1.22	
0.6	0.57	0.70	0.84	0.95	1.00	0.99	1.08	

Table 2.3. Computed Values of h for Misspecified Parameters β

0.9

60

passand and

The summary states and

11. There is a 1980 -

a and a set of the set

gradment .

A discourse of the second

Caroline La

and a subsection of the

T UNEARDINE!

Antonia and

Constants.

Construction of

A STREET

Table 2.3. (Cont'd)

 $n_1 = n_2 = 10$

γ<u>γ</u> -0.9

-0.6 -0.3 0.0 0.3 0.6 0.9

•••

[₩]Fj

rk.

-0.9

-0.6

-0.3

0.0 0.3

0.6

0.9

°- •

7<u>F</u> -0.9

-0.6 -0.3 0.0 0.3

0.6

0.9

'n

-0.9

Ţ

T

A CONTRACTOR

12元1

I

 $\phi_{T} = 0.6, \ \theta_{T} = 0.3, \ \psi_{T} = 0.6, \ \gamma_{T} = 0.3$ $\phi_{F} = 0.6, \ \theta_{F} = 0.3$

-0.9	-0.6	-0.3	0.0	·		
0.86	0.92	0 70	0.0	0.3	0.6	0.9
0.80	0.00	0.78	0.58	0.44	0.36	0.32
0.00	0.92	0.97	0.96	0.91	0.87	0.04
9.70	0.82	0.92	0.98	1 01	0.07	0.84
0.58	0.70	0.82	0.00	1.01	1.07	1.15
0.45	0.56	0.02	0.92	0.99	1.08	1.28
0.20	0.00	0.68	0.80	0.90	1.00	1 24
0.39	0.38	0.49	0.62	0.75	0.97	4.44
0.12	0.16	0.22	0.30	0000	0.8/	1.03
		. (d).	0.43	0.60	0.74
•			-/		• •	
" "2 " 1	.0	∳ _m = 0.6.	8 = 0 3	*		
		↓	T	Ym = 0.6,	Y_ = 0.3	

 $\phi_{\mathbf{p}} = 0.9, \ \theta_{\mathbf{p}} = 0.6$

	-0.0	-0.3	0 n i	• •		
). 98	1.42	1 72	0.0	0.3	0.6	0.9
. 20	1 66	4.73	1.13	0.59	0.36	0.31
14	1.00	2.07	1.95	1.43	1.01	0.51
а . 14 .	1.56	1.99	2.10	1 70	T.OT	0.83
• 98	1.35	1.79	2.06	2.73	1.37	1.15
.75	1.06	1 / 9	2.00	1.92	1.56	1.30
.47	0 60	4.40	1.86	1,91	1.63	1.31
	0.05	1.04	1.48	1.71	1 57	1.01
1/	0.26	0.43	0.72	1 02	2.57	1.22
		((e)		1.15	1.06

 $n_1 = n_2 = 20$

 $\phi_{\rm T} = 0.6, \ \theta_{\rm T} = 0.3, \ \psi_{\rm T} = 0.3, \ \gamma_{\rm T} = 0.6$ $\phi_F = 0.6, \ \theta_F = 0.3$

-0.9	-0.6	-0.3				
1.02	0.04		0.0	0.3	0.6	0 0
0.00	0. 94	0.72	0.54	0.43	0.36	0.9
0.79	1.06	1.04	0.97	0 02	0.50	0.31
0.92	1.02	1.06	1 06	0.92	0.94	0.99
0.85	0.95	1 02	1.00	1.06	1.16	1.44
0.76	0 97	1.02	1.06	1.08	1.20	1 66
0 67	0.07	0.96	1.02	1.05	1 13	2.00
0.02	0.74	0.85	0.95	1 00	4.43	1.64
0.34	0.44	0.56	0.71	1.00	1.03	1.36
		(f)	0.86	0.93	0.92

at the $\alpha = 0.05$ level of significance for values of the true parameter δ between the critical value of the test and approximately four times the critical value would result in the incorrect inference of accepting H_0 when H_1 should be preferred. In the latter case, values of the true parameter less than the critical value of the test but greater than approximately 0.80 of the critical value results in the incorrect inference of rejecting H_0 and H_0 is true.

62

2.7. Modeling Procedures

For the modeling of multiconsequence intervention time series experiments the time occurrence of an intervention program is known which determines the preintervention and postintervention series size n, and n, respectively. Also from the experiment it is known whether the intervention activities are directed specifically to subjects whose response forms the time series monitored or is in fact directed to the general environment from which the time series responses are monitored. In the former case we start with the instantaneous mean shift multiconsequence model structure with known mean shift function $\delta(t) = \delta K(t)$ where K(t) is zero for $t \le n_1$ and one for $t > n_1$, while for the latter we start with the transient mean level change model structure to allow for the realized change in mean level to be influenced by the environmental process. As discussed in Section 2.2.2, when this distinction cannot be easily made, the analysis should be initiated with the more general indirect stimulus-response case or transient mean level shift structure with unknown mean shift function form to identify the appropriate model form.

for moduling the indirect-stimulus response case are; e μ , ϕ and θ from the n₁ preintervention observations. **Intervention** of the form of the mean shift function by ial estimation of $\delta(t)$.

that when $n_2 = 1$, K(t) is the same for both the nt or instantaneous mean level cases. Therefore, ct values of postintervention parameters do not bias imation of $\delta(t)$. Thus ψ and γ may be set equal to

(e.g., the single consequence model). e sequential estimates of the mean shift function with determine the form of K(t).

e δ , ψ and γ from the n₂ postintervention observations. e μ , δ , ϕ , θ , ψ and γ simultaneously from the n₁+n₂ tions.

pictorially describes the modeling procedures. The ures called for in each step here are those delineated As seen from this figure, the primary difference in the t stimulus-response time series experiments from the response experiments is that in the latter, the mean rm is not known and has to be identified. The estimaor the mean shift is described in Section 2.2.2.

iderations in Designing Interrupted Time Series riments

of interrupted time series experiments consists of propriate number of pre and post intervention observariate, we refer to the individual size of n₁ and n₂ and

velune, 1) statistically detect a given magnitude covariance, as measured by the change in the corresponding pre and post intervention autoregressive and moving average parameters, with Type I error α_1 and,

65

he in ,

2) statistically detect a standardized magnitude of an intervention program's utility δ/σ with Type I error α_2 . In this section we describe each of these considerations in turn and then focus the results derived for interrupted time series designs. 2.8.1 Sample Sizes for Detecting a Change in Covariance

Intuitively, the smaller difference between β_1 and β_2 , the more difficult it is to reject the hypotheses $H_0: \beta_1 = \beta_2$. Further the more observations we have, the better chance that we will be able to detect any real difference that exists. In developing specific sample sizes, we will assume that both the multiconsequence model or the single consequence model forms have been correctly identified and estimated. That is, we assume K(t) is assigned correctly and $\hat{\mu} = \mu$, $\hat{\delta} = \delta$ with probability 1. We will denote $Z_t^c = Z_t - \mu$, $t \le n_1$ and $Z_t^c - \mu - \delta K(t)$, $t \ge n_1+1$, i.e., $Z^c \sim N(0, \sum_{N}^{(p,0,q)})$, where $N = n_1 + n_2$.

Thus, when the correct model is a multiconsequence intervention

$$\Phi_{\mathbf{p}}(\mathbf{B}) \mathbf{Z}_{\mathbf{t}}^{\mathbf{c}} = \widehat{\mathbf{H}}_{\mathbf{q}}(\mathbf{E}) \mathbf{a}_{\mathbf{t}} \qquad \mathbf{t} \leq \mathbf{n}_{\mathbf{1}}$$

$$\psi_{\mathbf{p}}(\mathbf{B}) \mathbf{Z}_{\mathbf{t}}^{\mathbf{c}} = \Gamma_{\mathbf{q}}(\mathbf{B}) \mathbf{a}_{\mathbf{t}} \qquad \mathbf{t} \geq \mathbf{n}_{\mathbf{1}} + \mathbf{1}$$
(2-38)

the incorrect single consequence model will be,

$$\hat{\Phi}_{p}^{0}(B)Z_{t}^{c} = \hat{\mathbb{H}}_{q}^{0}(B)A_{t} \quad \text{all t.} \quad (2-39)$$

For known parameter values of $\Phi_p(B)$, $\psi_p(B)$, $\hat{H}_q(B)$, $\Gamma_q(B)$ of the correct model, the parameters β^0 of the incorrect single consequence form contained in $\hat{\phi}_{n}^{0}(B)$ and $(\hat{H}_{n}^{0}(B)$ can be estimated so as to minimize $n_1 + n_2$ $\sum_{t=1}^{n_1 + n_2} A_t^2$. Usince the multiconsequence form is correct, the resulting model of the residuals of the single consequence model is,

 $\hat{\phi}_{p}^{0^{-1}}(B) \left(\widehat{\mathbb{H}}_{q}^{0}(B) \widehat{\mathbb{A}}_{t} = \phi_{p}^{-1}(B) \left(\widehat{\mathbb{H}}_{q}^{0}(B) \stackrel{a}{=}_{t} t \leq n_{1}^{-1} \right)$

(2-40)

$$\hat{\phi}_{p}^{0^{-1}}(B) \stackrel{\circ}{\oplus}_{q}^{0}(B) \hat{A}_{t} = \Psi_{p}^{-1}(B) \Gamma_{q}(B) a_{t} \quad t \ge n_{1}^{+1}$$

or

$$\hat{A}_{t} = \hat{\phi}_{p}^{0}(B)\phi_{p}^{-1}(B)\hat{H}_{q}^{0^{-1}}(B)\hat{H}_{q}^{(B)a_{t}} \quad t \leq n_{1}$$

$$(2-41)$$

$$\hat{A}_{t} = \hat{\phi}_{p}^{0}(B)\Psi_{p}^{-1}(B)\hat{H}_{q}^{0^{-1}}(B)\Gamma_{q}^{(B)a_{t}} \quad t \geq n_{1}^{+1}$$

 $(W_{\beta}|n_1,n_2,\beta)$ results in, E(W_β|n₁,n₂,

66

A submersion of

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

and an and a second

Support Support

A REAL PROPERTY.

the state of the s

and the second

Consectation of

Contraction of

1.20mman.

Stationard .

Season -----

1

· January

間間

The test statistic W for the null hypothesis that a single consequence model is appropriate (e.g.: $H_0: \beta_1 = \beta_2$) is

$$= \min_{\hat{\beta}^{0}} (n_{1}+n_{2}) \ln(\sum_{t=1}^{n_{1}+n_{2}} \hat{A}_{t}^{2}/\sigma_{\epsilon}^{2}) + \ln(M_{N}^{(p,0,q)}(\hat{\beta}^{0}))$$

 $-ln(M_N^{(p,0,q)}(\beta))$

where β_1 and β_2 are the pre-invention and the post intervention model parameter vectors, respectively, $\beta^{t} = (\beta_{1}^{t}, \beta_{2}^{t})$, and $\hat{\beta}^{0}$ is the corresponding single consequence model parameter vector, and $M_N^{(p,0,q)}(\hat{\beta})$ and $M_N^{(p,0,q)}(\beta)$ are the inverses of the covariance matrix of Z^c constructed with $\hat{\beta}^0$ and β , respectively. Taking the expectation of $(W_{\beta}|n_1,n_2,\beta)$

$$\hat{\beta} = \frac{\min_{\hat{\beta}^{0}}(n_{1}+n_{2})}{\hat{\beta}^{0}(n_{1}+n_{2})} \frac{\ln[\sum_{t=1}^{n_{1}+n_{2}} E(\hat{A}_{t}^{2})] + \ln(|M_{N}^{(p,0,q)}(\hat{\beta}^{0})|)}{t=1} - \ln(|M_{N}^{(p,0,q)}(\hat{\beta})|)$$

$$(2-42)$$

where $E(\hat{A}_{+}^{2})$ is approximately computed from Equation (2-40) and Equation (2-41) by applying the covariance generating function and $\hat{\beta}^0$ is obtained by searching through the $(\beta | \beta_1 = \beta_2)$ subspace. If the $E(W_{\beta} | n_1, n_2, \beta) > \beta$ $\chi^2_{\underline{\alpha},q}$ then the sample size (n_1,n_2) is large enough to statistically detect the differences between β_1 and β_2 at the (1- α) level.

For example, for the ARIMA(1,0,1)MCI model with $\theta_1, \phi_1, \gamma_1, \psi_1$

given,

$$Z_{t}^{c} = \phi_{1} Z_{t-1}^{c} - \theta_{1} a_{t-1}^{a} + a_{t} \qquad t \leq n_{1}$$

$$(2-43)$$

$$Z_{t}^{c} = \psi_{1} Z_{t-1}^{c} - \gamma_{1} a_{t-1}^{a} + a_{t} \qquad t \geq n_{1}^{a+1}$$

t

and the alternative single consequence model,

$$z_{t}^{c} = \hat{\phi}_{1}^{0} z_{t-1}^{c} - \hat{\theta}_{1}^{0} \hat{A}_{t-1} + \hat{A}_{t}$$
 all

where $\hat{\phi}_1^0$ and $\hat{\theta}_1^0$ are the parameters the minimize $\text{EE}(\hat{A}_t^2|n_1,n_2,\beta)$. The residuals of the single consequence set are;

$$\hat{A}_{t} = (\frac{1-\theta_{1}B}{1-\theta_{1}B})a_{t} + (\phi_{1} - \hat{\phi}_{1}^{0})B (\frac{1-\theta_{1}B}{1-\phi_{1}B})a_{t} \qquad t \leq n_{1}$$
(2-44)

$$\hat{A}_{t} = (\frac{1-\gamma_{1}B}{1-\hat{\theta}_{1}^{0}B})a_{t} + (\psi_{1} - \hat{\phi}^{0})B (\frac{1-\gamma_{1}B}{1-\psi_{1}B})a_{t} \qquad t \ge n_{1}+1.$$

To compute $\sum E(\hat{A}_t^2 | n_1, n_2, \beta)$ we apply the covariance generating function which results in,

$$E(\hat{A}_{t}^{2}) = [1 + \frac{(\hat{\theta}_{1}^{0} - \theta_{1})^{2}}{1 - \hat{\theta}_{1}^{0}} + \frac{2(\hat{\theta}_{1}^{0} - \theta_{1})(\phi_{1} - \hat{\phi}_{1}^{0})(1 - \hat{\theta}_{1}^{0}\theta_{1})}{1 - \phi_{1}\hat{\theta}_{1}^{0}} + \frac{(\phi_{1} - \hat{\phi}_{1}^{0})^{2}(1 + \theta_{1}^{2} - 2\theta_{1}\phi_{1})}{1 - \phi_{1}^{2}}]\sigma_{a}^{2} \quad t \leq n_{1}$$

69

(2-45)

慶

Thus,

where

-

, Der and State

11

 $\left(\right)$

nation and the second

100

68

$$E(\hat{A}_{t}^{2}) = [1 + \frac{(\hat{\theta}_{1}^{0} - \gamma_{1})^{2}}{1 - \hat{\theta}_{1}^{0}} + \frac{2(\hat{\theta}_{1}^{0} - \gamma_{1})(\psi_{1} - \hat{\phi}_{1}^{0})(1 - \hat{\theta}_{1}^{0}\gamma_{1})}{1 - \psi_{1}\hat{\theta}_{1}^{0}}$$

$$+\frac{(\psi_{1}-\hat{\phi}_{1}^{0})^{2}(1+\gamma_{1}^{2}-2\gamma_{1}\psi_{1})}{1-\psi_{1}^{2}}]\sigma_{a}^{2} \quad t \geq n_{1}+1$$

 $E(W_{\underline{\beta}} | n_1, n_2, \underline{\beta}) = \hat{\theta}_{1, \hat{\phi}_1}^{\min} (n_1 + n_2) \ln f_1 + \ln f_2 - \ln f_3 \qquad (2-46)$

$$f_{1} = \frac{n_{1}}{n_{1}+n_{2}} E(\hat{A}_{t}^{2} | t \le n_{1}) + \frac{n_{2}}{n_{1}+n_{2}} E(\hat{A}_{t}^{2} | t \ge n_{1}+1),$$
(1.0.1)

 $f_2 = |\sum_{N}^{(1,0,1)} (\hat{\phi}_1^0, \hat{\theta}_1^0)|^{-1}$ and

$$f_{3} = \left| \sum_{N}^{(1,0,1)} (\phi_{1}, \theta_{1}, \psi_{1}, \gamma_{1}) \right|^{-1}$$

For a fixed preintervention sample size n_1 , the general behavior of the sample size n_2 to detect the covariance change for the ARIMA (1,0,1)MCI model is indicated by the sign of the third term for each equation labeled (4-8), which is the only term that can be negative. When $\phi_1 > \psi_1$ and $\theta_1 > \gamma_1$ or $\phi_1 < \psi_1$ and $\theta_1 < \gamma_1$ each of the third terms are negative otherwise they are positive. In the former cases, n_2 increase when $|\phi_1-\psi_1|$ is small and decrease when $|\phi_1-\psi_1|$ is large. From Equation (2-46), sample size requirements for the (1,0,0)MCI or (0,0,1)MCI model can be obtained by setting the appropriate subset of the noise parameters to zero. For example, when $\phi_1 = \psi_1 = \hat{\phi}_1^0 = 0$ we obtain the $E(W_{\underline{\beta}}|n_1,n_2,\theta_1,\gamma_1)$ for the (0,0,1) process.

Example 3

In the following numerical example, the magnitude of the post intervention sample size required to determine a given size covariance change is addressed. Tables 2.4(a) - (c) illustrate the computed sample size requirements for the (0,0,1) process for $n_1 = Kn_2$ with the tabled values being n_2 for values of K = 1.0, 0.5 and 2.0. Thus, equivalent time histories of the pre and post intervention segments are available when K = 1.0 while more preintervention history is available when K > 1.0 and more postintervention history than preintervention history. In each table, e.g., the required size of the n_2 sample is seen to be sensitive to the combination of parameter values (θ_1, γ_1) for situations in which $|\theta_1 - \gamma_1|$ is relatively small (e.g., values around the diagonal where $\theta_1 = \gamma_1$). As expected the larger the magnitude of $|\theta_1 - \gamma_1|$ the smaller the requirements for the postintervention sample size. In fact, for larger values contained in the top right or bottom left the sample size becomes

70

provincia, M

A substantian and and

and the second s

Distant, a

Party Second 1

United and

 \square

and the second

Table 2-4. Sample Sizes of n_2 for detecting Covariance Change of STMA(1) Process Given $n_2 = k n_1$.

(a) K = 1.0

-0.95

-0.80

-0.60 -0.40

-0.20

0.20 0.40

0.60 0.80

0.95

-0.95

-0.80

-0.40 -0.20

0.00

0.40 0.60

0.80

Significant Level = 0.15

-0.	95	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95	
		28 - 71 24 13 8 6 4 3 3 2	10 42 92 27 13 8 5 4 3 2	6 13 71 105 28 13 7 5 3 3	4 7 19 92 - 109 27 12 6 4 3	4 5 10 24 105 105 24 10 5 4	3 4 6 12 27 109 - 92 19 7 4	3 3 5 7 13 26 105 - 71 13 6	. 2 3 4 5 8 13 27 92 42 10	2 3 4 6 8 13 24 71 28	2 2 3 4 5 6 9 14 25 72	-
-0.9	Siq 5 -	gnifi • J. 8	cant -9.6	Level	= 0.(-0.2	0.0	0.2	0.4	0.6	0.8	0.95	-
24 8 4 20 11 1 8	- 2 2 2 5 9 0 5 1 5 5 1 5 5 5 1 5 5 5 5 1 5 5 5 5 5	77 241 82 43 27 18 13 9 6 5	23 139 314 93 45 26 16 16 11 7 6	14 39 241 	10 20 64 314 - 373 93 39 19 10 7	8 13 31 82 358 358 32 31 13 8	7 10 19 39 93 373 314 64 20 10	6 8 14 24 43 95 358 	6 7 11 16 26 45 93 314 139 23	5 6 9 13 18 27 43 62 241 77	5 5 11 15 20 25 45 52 242	

<pre>72 Table 2-4. (Cont'd) (b) K = 0.5 Significant Level = 0.15</pre>	Table 2-4. (Cont'd) (c) $K = 2.0$ Significant Level = 0.15
-0.95 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.3 0.95 $-0.80 -7Y - 42 13 7 5 4 3 3 3 3 2 2$ $-0.80 -7Y - 42 13 7 5 4 3 3 3 3 3$ $-0.60 -25 71 - 71 20 10 7 5 4 3 3$ $-0.40 -14 25 92 - 92 25 12 8 6 4 4$ $-0.20 -9 -13 28 105 - 105 28 13 8 6 5$ $0.00 -7 -9 -14 29 109 - 109 29 14 9 7$ $0.20 -5 -6 -8 -13 28 105 - 105 28 13 9$ $0.40 -4 -4 -6 -8 12 25 92 - 92 25 14$ $0.60 -3 -3 -4 -5 -7 -10 20 -71 - 71 25$ $0.80 -3 -3 -3 -3 -4 -5 -7 -13 -42 - 72$ $0.95 -2 -2 -3 -3 -3 -4 -6 -0 -7 -71 -71 -71 -71 -71 -71 -71 -71 -71$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c} -0.95 \\ -72 \\ 23 \\ 243 \\ -140 \\ 40 \\ 21 \\ 14 \\ 11 \\ 9 \\ 7 \\ 7 \\ 6 \\ 5 \\ 243 \\ -140 \\ 40 \\ 21 \\ 14 \\ 11 \\ 9 \\ 7 \\ 7 \\ 6 \\ 5 \\ 7 \\ 7 \\ 6 \\ 5 \\ 10 \\ 12 \\ 14 \\ 17 \\ 25 \\ 40 \\ 83 \\ 315 \\ -315 \\ 83 \\ 40 \\ 25 \\ 17 \\ 14 \\ 12 \\ 10 \\ 9 \\ 7 \\ 14 \\ 12 \\ 10 \\ 9 \\ 10 \\ 14 \\ 17 \\ 25 \\ 40 \\ 83 \\ 315 \\ -374 \\ 97 \\ 46 \\ 26 \\ 21 \\ 19 \\ 16 \\ 19 \\ 27 \\ 45 \\ 94 \\ 359 \\ -359 \\ 94 \\ 45 \\ 30 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

I

T

- Particular and the second

4

fixed without variation for different parameter combinations. Further, in comparison to the case exhibited in which $n_1 = n_2$, increasing the relative length of the preintervention history to the postintervention history results in smaller magnitudes of n_2 , for comparable size changes in covariance for a given α level while decreasing the relative size of the preintervention history to the postintervention history dictates a larger postintervention history n_2 for equivalent magnitude changes in covariance for a given α level. This tradeoff is exploited, in Section 2.9, in the generation of optimal designs for interrupted time series experiments.

2.8.2 Sample Sizes for Detecting a Change in Mean Level

The test of significance of δ involves the evaluation of the hypothesis,

in which the test statistic W_{A} is,

$$W_{\delta} = \frac{\hat{\delta}}{\sqrt{Var(\hat{\delta})}} \quad \text{or} \quad \frac{\hat{\delta}/\sigma a}{\sqrt{Var(\hat{\delta}/\sigma_{a})}} \quad (2-47)$$

For a preselected type I level, α_2 , we accept \mathbb{H}_0 when $|\mathbb{W}_{\delta}| < t_{\alpha_2/2, n_1+n_2}$. In Equation (2-47), we see the ability to detect a standardized magnitude of the program utility is dependent upon the behavior of $\operatorname{Var}(\hat{\delta}/\sigma_a)$ with variations in the pre and post intervention

74

Andrewson -

Constraints of

The line of the li

H.

-

sample sizes n₁ and n₂.

1

For stationary processes,

$$\lim_{n_2 \to \infty} E[Var(\hat{\delta}/\sigma_a)] = 1/M,$$

where M is a constant that is determined by the model parameters as well as n_1 . For example in the case of the (1,0,1)MCI model,

1. 1

 \bigcirc

 \bigcirc

 $M = \left[\left(\frac{1 - \phi_1}{1 - \theta_1} \right)^2 \left(n_1 - 2 \frac{\theta_1 \left(1 - \theta_1^{\frac{H_1}{1}} \right)}{1 - \theta_1} + \frac{\theta_1^2 \left(1 - \theta_1^{\frac{2H_1}{1}} \right)}{1 - \theta_1^2} \right] + \left(\frac{1 - \psi_1}{1 - \gamma_1} \right)^2 \left(\frac{-2\gamma_1 - 1}{1 - \gamma_1^2} \right)$ + $2(\frac{1-\phi_1}{1-\theta_1})(1-\theta_1) [\frac{\gamma_1(1-\psi_1)}{(1-\gamma_1)(1-\gamma_1^2)} - \frac{\gamma_1}{(1-\gamma_1^2)} (1 + (\frac{1-\psi_1}{1-\gamma_1})\gamma_1)]$ $-2 \frac{\gamma_{1}(1-\psi)}{(1-\gamma_{1}^{2})(1-\gamma_{1})} + (\frac{1-\phi_{1}}{1-\theta_{1}})^{2}(1-\theta_{1}^{n_{1}})^{2}(\frac{\gamma_{1}}{1-\gamma_{1}^{2}}) - 1$ + $2\frac{(1-\psi_1)(\psi_1-\gamma_1)\gamma_1}{(1-\gamma_1)^3}$ + $2\psi_1$ - $2(\frac{1-\psi_1}{1-\gamma_1})^2\frac{\gamma_1^3-1}{(1-\gamma_1)(1-\gamma_1^2)}$ + $(\frac{\psi_1 - \gamma_1}{1 - \gamma_1})^2 (\frac{\gamma_1}{1 - \omega^2})$. (2-48)Note that.

 $\lim_{n_2 \to \infty} \mathbb{E}[\operatorname{Var}(\hat{\delta}/\sigma_a)] = \lim_{n_2 \to \infty} \mathbb{E}[\operatorname{Var}(\hat{u}/\sigma_a)] > 0$

when $n_1 < \infty$ and

MA

at the α_2 significance level. Example 4 $n_2^{+\infty}$

) |

 $\left[\right]$

 $\left(\right)$

A STREET

5

 $\left[\right]$

76

Since for a given value of n_1 , $E(Var(\hat{\delta}/\sigma_a))$ doesn't go to zero as n_2 increases there is a lower bound of $|\delta|$, below which a given magnitude of δ cannot be statistically detected even as n_2 goes to infinity. That is when $|\delta/\sigma_a|$ falls in the region $[0, t_{\alpha_2/2, \infty} \sqrt{\lim_{n_2 \to \infty} E(Var(\hat{\delta}/\sigma_a))}]$ we cannot detect the significance of the mean-shift. Alternatively from the width of the $(1 - \alpha_2)100\%$ confidence interval for μ/σ_a which is $2t_{\alpha_2/2,\infty} \sqrt{\lim_{n_2 \to \infty} E Var(\hat{\delta}/\sigma_a)}, |(\mu+\delta)/\sigma_a|$ falls in the $(1-\alpha_2)100\%$ confidence interval for μ , therefore the magnitude of mean shift cannot be detected at the α_2 significance level.

For nonstationary processes, $d \ge 1$, $\mu = 0$ and $Var(\hat{\mu}) = 0$. In this case where only δ is estimated Lim $E[Var(\hat{\delta}/\alpha_a)] = 0$. Therefore any $n_2^{\rightarrow\infty}$ mean shift magnitude, $\delta \neq 0$, can be detected to be statistically significant by increasing the postintervention observations n_2 .

In the following numerical example, the effect of the preintervention correlative structure on the ability to detect a minimum threshold shift in the process mean for stationary processes and the magnitude of the postintervention sample size n_2 required to determine a given change in process level is illustrated. Table 2.5 displays numerical values of the Lim $E[Var(\hat{\delta}/\sigma_a)]$ for d=0, $n_1 = 10$ and $-1.0 < \psi_1, \gamma_1 < 1.0$. For a basis $n_2^{+\infty}$ of comparison of the effect of varying the preintervention parameters ϕ_1 , θ_1 on the Lim $E[Var(\hat{\delta}/\sigma_a)]$, entry a contains the case where $\phi_1 = n_2^{+\infty}$ $\theta_1 = 0.0$. Entries b-e are for $\phi_1 = 0.4$, -0.4 and $\theta_1 = 0.4$, respectively for all other conditions in entry a. Within each entry a-e, the closer

	-					(a)					
	φ ₁ = 0.4	, θ ₁ = 0	0.0 (n ₁	= 10)							
γ ₁ ^ψ 1	-0.95	-0.8	. 0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95
-0.95	0.024	0.027	0.030	0.034	0.037	0.039	0.041	0.041	0.040	0.038	0.035
-0.8	0.090	0.097	0.107	0.116	0.124	0.128	0.129	0.127	0.121	0.113	0.106
-0.6	0.158	0.169	0.182	0.193	0.200	0.203	0.200	0.193	0.182	0.169	0.158
-0.4	0.202	0.215	0.229	0.240	0.246	0.247	0.242	0.232	0.218	0.202	0.189
-0.2	0.223	0.236	0.252	0.263	0.270	0.270	0.265	0.254	0.240	0.222	0.209
0.0	0.222	0.236	0.253	0.266	0.275	0.278	0.275	0.266	0.253	0.236	0.222
0.2	0.202	0.216	0.234	0.250	0.263	0.270	0.272	0.268	0.258	0.244	0.231
0.4	0.166	0.179	0.198	0.216	0.233	0.247	0.256	0.259	0.256	0.247	0.237
0.6	0.118	0.129	0.146	0.165	0.184	0.203	0.220	0.234	0.242	0.242	0.238
0.8	0.062	0.069	0.080	0.093	0.109	0.128	0.150	0.174	0.198	0.218	0.228
0.95	0.016	0.018	0.021	0.025	0.031	0.039	0.051	0.067	0.091	0.128	0.167

(b)

γ ₁ γ ₁	-0.95	-0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95
-0.95	0.022	0.023	0.025	0.026	0.026	0.027	0.026	0.025	0.024	0.022	0.021
-0.8	0.059	0.061	0.063	0.065	0.066	0.065	0.064	0.062	0.059	0.056	0.054
-0.6	0.081	0.083	0.085	0.086	0.086	0.086	0.084	0.082	0.079	0.076	0.072
-0.4	0.090	0.092	0.094	0.095	0.095	0.095	0.093	0.091	0.088	0.085	0.082
-0.2	0.093	0.095	0.097	0.098	0.099	0.099	0.098	0.096	0.094	0.090	0.088
0.0	0.092	0.094	0.097	0.098	0.100	0.100	0.100	0.098	0.097	0.094	0.092
0.2	0.087	0.089	0.093	0.095	0.097	0.099	0.099	0.099	0.098	0.096	0.094
0.4	0.077	0.081	0.085	0.089	0.092	0.095	0.097	0.098	0.098	0.097	0.096
0.6	0.063	0.066	0.071	0.076	0.081	0.086	0.090	0.093	0.096	0.097	0.098
0.8	0.039	0.043	0.047	0.053	0.059	0.065	0.072	0.080	0.087	0.093	0.098
0.95	0.012	0.013	0.016	0.018	0.022	0.027	0.033	0.041	0.054	0.072	0.092
		<u> </u>				<pre></pre>					

 $\phi_1 = 0.0, \ \theta_1 = 0.0 \ (n_1 = 10)$

.•

Table 2.5. Computed Values of Limit E[Var(δ/σ_a)] Given n = 10 n₂^{- ∞}

> ٠, -0.95 -Y --0.95 0.018 -0.8 0.038 -0.6 0.046 -0.4 0.049 -0.2 0.049 0.0 0.049 0.2 0.047 0.043 0.4 0.037 0.6 0.8 0.026 0.95 0.009 • ****^{\#}1 Y₁ -0.95 -0.8 -0.6 -0.4 -0.2 0.0 -0.95 -0.015 0.031 0.037 0.039 0.040 0.039 ·0.038 0.2 0.4 0.035 0.6 0.031 0.022 0.8 0.008 9.5

78

a particular and a second

A THE PARTY PARTY

a , and a subscript of the second

- Sector particular

a Canada and a sub-

Support and

A COLOR DE MARINE

Account of the second second

A THE PARTY

(เราครามเ³⁶²⁶านุ โรงบุรสมัน

a Managarana ang Kangarangan Sangarangan Sangarangan Sangarangan Sangarangan Sangarangan Sangarangan Sangarang

Prostantalismon or

Construction of the second

L' LE SCHRIght I.

- Consulation and

 \bigcap

The second se

Weiner

Particular States

E.C.

The second second

T

T

Table 2.5. (Cont'd)

 $\phi_1 = -0.4, \theta_1 = 0.0 \quad (n_1 = 10)$

0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95
0.018	0.018	0.018	0.018	0.018	0.017	0.016	0.015	0.014	0.014
0.038	0.038	0.038	0.038	0.037	0.037	0.036	0.034	0.033	0.032
0.046	0.047	0.047	0.046	0.046	0.045	0.044	0.043	0.042	0.041
0.049	0.050	0.050	0.050	0.049	0.049	0.048	0.047	0.046	0.045
0.050	0.050	0.051	0.051	0.051	0.050	0.050	0.049	0.048	0.047
0.049	0.050	0.051	0.051	0.051	0.051	0.051	0.050	0.049	0.049
0.048	0.049	0.050	0.050	0.051	0.051	0.051	0.051	0.050	0.050
0.045	0.046	0.047	5.048	0.049	0.050	0.050	0.051	0.051	0.051
0.039	0.041	0.042	0.044	0.046	0.047	0.049	0.050	0.050	0.051
0.028	0.030	0.032	0.035	0.038	0.040	0.043	0.050	0.049	0.050
0.010	0.011	0.013	0.015	0.018	0.021	0.025	0.031	0.038	0.045

(c)

 $\phi_1 = 0.0, \theta_1 = 0.4$ (n₁ = 10)

0.8	-0.6	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95
0.016	0.016	0.015	0.015	0.015	0.014	0.013	0.012	0.012	0.011
0.032	0.032	0.031	0.031	0.030	0.029	0.029	0.028	0.026	0.026
0.038	0.038	0.037	0.037	0.037	0.036	0.035	0.034	0.034	0.033
0.040	0.040	0.040	0.040	0.040	0.039	0.038	0.038	0.037	0.036
0.030	0.040	0.040	0.040	0.040	0.040	0.040	0.039	0.039	0.038
0.040	0.040	0.040	0.041	0.041	0.041	0.040	0.040	0.040	0.039
0.038	0.040	0.040	0.040	0.040	0.041	0.041	0.041	0.040	0.040
0.036	0.037	0.038	0.039	0.039	0.040	0.040	0.040	0.041	0.041
0.032	0.033	0.034	0.036	0.037	0.038	0.039	0.040	0.040	0.041
0.023	0.025	0.026	0.028	0.030	0.032	0.034	0.036	0.038	0.040
0.009	0.010	0.011	0.013	0.015	0.017	0.020	0.024	0.029	0.034
				(d)					

مید ود و ۱۹۷۹ میں ۱۹	ana ana ang ana ang ang ang ang ang ang	an an an an an air an		n parto de la composición. L	ang waxaa ka k	1	n na sana sa s	المراجع (من من م	n an	an an an an An An Anna an An	مودونت محب کی د	general and an		a ana ang ang ang ang ang ang ang ang an			
														1)			
												7. 1	80				
														1 5			
																	the parameters to
																司日	• • • • • • • • • • • • • • • • • • • •
												•					decreases from zero
														· · · · ·		ា	
																<u>s</u>	increases. Convers
-															data with of	10	zero the lim E[Va
						•										IJ	$n_{2} \rightarrow \infty$
		•				m_11_	9 E	(Cont)	141							-13	greater the ability
						Table	2.30	(COIL	α).					5 3	•		meter Thus if th
			0.0	0 –	0 % 6-	- 10)								and the second secon			metere inus, it ti
		•	φ ₁ = 0.0	, 1	- U. 4 (2	1 = 10)											to long length runs
		√ ⊮1	10 0 F													1	magnitude changes i
		$\frac{\gamma_1}{\gamma_1}$	-0.95	-0.8	-0.5	-0.4	-0.2	0.0	0.2	0.4	0.6	0.8	0.95	¥.4		T	than when the series
		-0.95	0.024	0.026	0.028	0.031	0.033	0.035	0.035	0.035	0.034	0.032	0.030	Ĩ			than when the serie
		-0.6	0.123	0.129	0.136	0.142	0.145	0.145	0.143	0.138	0.132	0.124	0.117			T	component such as r
		-0.4	0.148	0.154	0.161	0.166	0.168	0.168	0.165	0.159	0.152	0.144	0.137	A.L.		1	Table 2-6(a)
		-0.2	0.158	0.164	0.171	0.176	0.179	0.179	0.176	0.171	0.164	0.155	0.148			and the second se	
		0.0	0.136	0.153	0.171	0.169	0.181	0.182	0.181	0.178	0.171	0.168	0.150	₫ [*] \$			detect a given stan
		0.4	0.124	0.132	0.142	0.152	0.161	0.168	0.172	0.174	0.174	0.170	0.165				tionary (1,0,1)MCI
		0.6	0.094	0.101	0.112	0.123	0.134	0,145	0.155	0.162	0.167	0.169	0.168				a given column entr
		0.8	0.053	0.058	0.067	0.076	0.088	0.101	0.115	0.130	0.145	0.158	0.165			-	
	•				0.015			(e)	0.044	0.000				1. T		T	minimum value of n
8 8								`						I			∞ which denotes the
		7 - 1 1												Ş. 2			
														1 N			combination of (n1,
		•														171	quirement for the n
														1 ~}			meter values and hy
																	wnen d=1 the Lim E n _c →∞
																-	of δ/σ will be det
				tin na Co tin tin	•									4.4		T	8
														[]			meter set illustrat
				ang sa										1. }			n ₁ the larger the m
														11			sample size n Si
										an an Ar Agus Ar				()		71	• • • • • • • • • • • • • • • • • • • •
														Г. Т.		U	
	1997 - 1997 -							-								•	

zero the larger the Lim $E[Var(\hat{\delta}/\sigma_a)]$. Also as θ_1 o or ϕ_1 increases from zero the Lim $E[Var(\hat{\delta}/\sigma_a)]$ $n_2 \rightarrow \infty$ sely as θ_1 increases from zero and ϕ_1 decreases from $(\hat{\delta}/\sigma_a)$] decreases. The smaller this value is, the v to detect a small magnitude of the mean shift parae time series is smooth (e.g., described by moderate above and below the mean, $\phi_1 > 0$, $\theta_1 < 0$) small In the mean shift parameter are harder to detect es is oscillatory (e.g., described by a high frequency uns above or below the mean of short duration). illustrates the sample size of n_1 or n_2 need to ndardized shift in process level, δ/σ_a , for the stamodels for $\alpha = 0.05$, $\theta_1 = 0.975$ and $\gamma_1 = 0.816$. For ry, n_1 , and row entry δ/σ_a , the tabled entry is the such that $|W| > t_{\alpha_2/2, n_1+n_2-2}$. Some entries contain inability to detect the corresponding δ/σ_a for the n₂). Table 2-6(b) illustrates the sample size renonstationary model (1,1,1)MCI under the same parapothesis test specification of Table 2-6(a). Since $\mathbb{E}[\operatorname{Var}(\delta/\sigma_a)]$ converges to zero, all non zero magnitudes cectable for large enough n,, as shown for the paraed. In Table 2.6 for a fixed preintervention history

he magnitude of δ/σ_a the smaller the postintervention Similarly for a fixed δ/σ_a as n_1 increases n_2 decreases

81,

82 except when δ/σ_a is large and n_2 remains constant. For nonstationary processes the postintervention sample size is seen to be independent of the size of the preintervention sample size. Lastly, under the 1 same conditions (comparing corresponding tabled values for d=0 or d=1) a nonstationary process is seen to be more sensitive in detecting δ/σ_a since fewer postintervention observations $n_2^{}$ are required. 的 2.9 Optimal Design of Interrupted Time Series Experiments Ŋ In evaluating experimental programs in field settings, the cost D of experiments is a paramount importance. Further, the ability to 1000 100 200 evaluate whether the program exhibited its intended impact is lost if 60 59 61 the appropriate sample sizes in the pre and post period are not 20 21 20 - 9 selected. Many field experiments are often evaluated to have had no Ø impact or non-reproducible impact when geographical locations are changed. These outcomes are not necessarily program related but are design related in that sufficient data is not recorded. Similarly, the 3 cost of field experiments can be reduced by specification of required sample sizes required to draw the desired level of inference, with 1 regard to potential changes in covariance and the magnitude of shift 1 in the process level, as related to an intervention programs goal. The optimal design for the multiconsequence intervention model is the solution to the nonlinear programming problem: 1 00

Table 2.6. Sample Sizes for Detecting δ/σ

δ/σε 5 10 20 30 50 75 0.05 163 82 70 62 0.10 26 23 22 21 0.20 0.30 15 0,40 0.50 0.60 0.70 0.80 0.90 1.00 1.50 2.00 2 2.50 1 1 1 1 1 1 ° .1 (a) (0,0,1)MCI with $\theta_1 = 0.98$, $\gamma_1 = 0.82$

d ≥ 1

 $\mathbf{d} = \mathbf{0}$

δ/σε	0.05	0.10	0.20	0.30	0.40	0.50	0.60 0.70	0.80	0.90	1.00	1.50 2.0
ⁿ 2	59	20	9	6	5	4	4 3	3	3	2	2 1
	1										

(b) (0,1,1)MCI with $\theta_1 = 0.98$, $\gamma_1 = 0.82$

Min: $c_1n_1 + c_2n_2$ s.t.: $E(W_{\beta}|n_{1},n_{2},\underline{\beta}) > \chi^{2}_{1-\alpha_{1}},s$ $E(W_{\delta}) > t_{1-\alpha_{2}/2,n_{1}+n_{2}-(p+q)}$

where c_1 and c_2 are the costs for obtaining pre and post intervention observations respectively and $(W_{\underline{\beta}}|n_1,n_2,\underline{\beta})$ and W_{δ} are the test statistics needed to detect a given magnitude change in covariance and process level, respectively. The constraints are nonlinear and convex. <u>Example 5</u>

Suppose the interrupted time series model is known to be a (0,0,1)MCI form with $\theta_1 = 0.975$ and $\gamma_1 = 0.816$, for which the sample sizes n_1 and n_2 are desired to be able to determine this magnitude change in covariance and simultaneously detect shifts in mean level as small as $\delta/\sigma_a = 0.05$. Figure 2.6 graphically illustrated the optimal design subject to (a) the mean-shift constraint only, (b) the covariance-change constraints. When $c_1 = c_2$ and only the mean-shift constraint is considered, the minimal cost feasible design $(n_1 = 37, n_2 = 74)$ is read from the tangential point of the $c_1 = c_2$ cost curve (a) and the mean-shift constraint is constraint is considered, the minimal cost feasible design $(n_1 = 128, n_2 = 34)$ is read from the tangential point of the $c_1 = 0.25c_2$ cost curve (b) and the covariance-change constraint. In most situations both mean-shift and covariance-change constraints are considered. In such situations, the active constraint consists of two portions: (1) $n_1 \leq 89$

0

Sacarda .

61

84

Figure 2.6. Optimal Design of Experiments, (0,0,1) MCI with $\theta_1 = 0.98$, $\gamma_1 = 0.82$, $\alpha_1 = 0.05$, $\alpha_2 = 0.05$

portion of the covariance-change constraint and (2) $n_1 \ge 90$ portion of the mean-shift constraint. Since the Min Slope = 3 for the upperleft portion and Max Slope = 1/45 for the lower-right portion, the minimal cost design will occur at ($n_1 = 90$, $n_2 = 63$) when $1/45 \le$ $c_1/c_2 \leq 3$ it will occur at the tangential point of the cost curve and the covariance-change constraint (the upper-left portion of the active constraint) when $c_1/c_2 > 3$, or the optimal design will occur at the tangential point of the cost curve and the mean-shift constraint (the lower-right of the active constraint) when $0 \le c_1/c_2 < 1/45$.

86

2.10 Modeling Examples

Two data case studies are developed here to illustrate the different model structures, their associated model building and design considerations discussed in this chapter.

2.10.1 A Direct Stimulus Response Structure: Talk Out Data

The data reported by Hall et al. [1971] records the daily number of "talk outs" of twenty-seven pupils in the second grade of an allblack urban poverty area school for a total time period of forty days. The first twenty days were denoted as the preintervention history before the commencement of the intervention. Beginning on the twenty first day, the teacher initiated a program of systematic praise for not talking out. Figure 2.7(a) contains the time series data.

From the preintervention history t ≤ 20 or $n_1 = 20$, applying the usual univariate time series modeling of identification, estimation and diagnostic checking of Box and Jenkins [1970], resulted in an ARIMA(0,0,1) model with $\hat{\theta}_1 = -0.195$,

consequence model,

 $Z_t = (1+0.195B)a_t, t \le 20.$

The direct stimulus response structure was postulated apriori since the intervention consisted of applying the stimulus (praise) directly to the subjects (students) whose response ("talk outs") was

the attribute of interest to evaluate the worth of the program. Figure 2.7(b) contains the results of the identification procedure for the form of the mean shift function $\delta(t)$ using $n_1 = n_t$ and $n_2 = 1$ sequentially

for $20 \le t \le 39$. Confirmation of the initially postulated direct stimulus response structure is seen here since $\delta(t)$ after an initial translet due to the "learning curve" associated with the intervention has little variation about the steady state gain level. Therefore the mean shift function $\delta(t) = K(t)\delta$ is specified by,

•	7/15	t≓21
K(t) =	11/15	t=22
	1	t>23.

The (0,0,1)MCI model was fit with parameters $\hat{\mu}$ = 19.35, $\hat{\delta}$ = -15.18, $\hat{\theta}_1 = -0.175$ and $\hat{\gamma}_1 = -0.601$. Diagnostic checking of the residuals proved adequate. However, testing the hypothesis that $\theta_1 = \gamma_1$ resulted in favoring the alternate hypothesis for all values of $\alpha < 0.2869$. The test of the intrinsic utility of the intervention program, e.g. H_0 : $\delta=0$, was not preferred for all values of $\alpha_2 > 0.001$. Thus the final model is the single

 $Z_{t} = 19.35 + 0.23a_{t-1} + a_{t} \qquad t \le 20$ $Z_{t} = 19.35 - K(t)(15.13) + 0.23a_{t-1} + a_{t} \qquad t = 21,22$ $Z_{t} = 4.22 + 0.23a_{t-1} + a_{t} \qquad t \ge 23,$

which results in the conclusion that the intervention program reduces "talk outs" by 15.13 per day in steady state.

For the sample sizes used in the "talkout" data, $n_1 = n_2 = 20$, there was not sufficient power to detect the estimated change in covariance. For the estimated covariance change with $n_1 = 20$, 23 and 58 postintervention observations for $\alpha = 0.15$ and 0.05 respectively are needed to assess significance. For the mean shift detection, however with $n_1 = n_2 = 20$ and $\alpha = 0.05$ magnitudes of $\delta/\sigma_a = 0.78$ can be detected. Since $\delta/\hat{\sigma}_a = 9.10$ the sample size is sufficient. If the change in covariance is real and was not detected because sufficient data was not available, using the single consequence model form for the talk out data would represent a model misspecification in the parameters. For the estimated parameter values, the corresponding h value (Equation (2-37)) is 0.7789 which would represent an overestimation of the significance of δ/σ_a by 28.4% or alternatively, using the single consequence model with $\alpha = 0.05$ would effectively be $\alpha = 0.126$ if the multiconsequence form was needed. Since the estimated magnitude of δ was very large in this data set these facts do not alter the policy inference in the final model described.

2.10.2 An Indirect Stimulus Response Structure; Gun Control

The data reported by Deutsch and Alt [1977] records the number of

ean.

reported assaults with a gun in Boston by month. Figure 2-8(a) illustrates this data for the period from January 1966 to October 1976. In April 1975, the State of Massachusetts formally put into operation a gun control law that mandates a one-year minimum sentence on conviction of carrying a firearm without a special license, thereby eliminating judicial descretion in sanctions. In order to assess policy implications of gun control legislation, the impact of the enactment of the legislative intervention in reducing gun related assaults were desired.

90

Contractioners of

Andrew March

Variation

Supervised and

and

where

Although the gun control law was formally implemented in April 1975, there were several associated activities with this intervention strategy for several months prior to this date. Thus, the exact time point where the impact might first be measured was uncertain. Therefore, the preintervention data for the period from January 1966 to September 1974 was used to construct the preintervention model. Apply w 4 the usual Box and Jenkins model building procedure (Box and Jenkins [1970]) resulted in an ARIMA(0,1,1) \times (0,1,1)₁₂ model,

$$(1-B)(1-B^{12})Z_t = (1-\tilde{\mathcal{V}}_1B)(1-\tilde{\mathcal{V}}_1B^{12})a_t$$

with $\hat{\theta}_1 = 0.83$ and $\hat{\theta}_{12} = 0.78$.

The indirect-stimulus response structure was chosen since the intervention program was intended to modify the eclectric environmental process from which the behavior modification of a subset of the population is monitored. Figure 2.8(b) contains the results of the identification procedure for the form of the mean shift function $\delta(t)$ using

 $n_1 = n_t$ and $n_2 = 1$ sequentially for $106 \le t \le 141$. From the mean shift function plot, the impact of the intervention program is seen to start in February (perhaps due to the planned massive publicity campaign in early 1975) and to continue through to post intervention period. The configuration of the mean shift function prior to reaching a steady state and the variation about this form confirms the environmental influence. The mean shift function for the indirect stimulus response structure is $\delta(t) = f(K(t))$ where $K(t) = (1-\theta_1 B)(1-\theta_{12} B^{12})$. As seen from Figure 2.8(b), a plot of $\delta(t)$ vs. K(t) would indicate a slope and intercept term are needed to describe this relationship. Thus,

$$\delta(t) = \delta_0 + \delta_1 K(t) \qquad t \ge 110$$

 $\delta(t) = [\delta_0 + \delta_1 K(t)]\xi_t$

 $t \le 110$ t > 111.

The intrinsic program utility δ occurs when K(t) = 1, e.g. since, $\delta(t) = K(t)\delta = \delta_0 + \delta_1 K(t)$, $\delta = \delta_0 + \delta_1$. For all other values of K(t)the environmental influence will mask the intrinsic program value $((\delta(t) - \delta))$ is the masking effect of the environment).

The maximum likelihood estimates for the parameters of the $(0,1,1) \ge (0,1,1)_{12}$ MCI model are $\hat{\delta}_0 = -14.79$, $\hat{\delta}_1 = -3.89$, $\hat{\theta}_1 = 0.98$ and $\hat{\gamma}_1 = 0.82$ Diagnostic checking of the residuals proved adequate. In testing the hypothesis of no change in covariance, the null hypothesis $H_0: \theta_1 = \gamma_1$ is not preferred for all $\alpha > 0.06$. Similarly the hypothesis $H_0: \delta_1 = 0$, i = 0, 1 is not preferred for all $\alpha > 0.001$. Thus the final

$$-B)(1-B^{12})Z_{+} = (1-0.98B)(1-0.78B^{12})a_{t} \qquad t \leq 110$$

 $(1-B)(1-E^{12})Z_t = -14.79 + (-3.89K(t)) + (1-.82B)(1-.78B^{12})a_t$

t > 110

Thus the result of the legislative intervention of gun control was to reduce the observed number of reported gun assaults between 19 to 15 per month. Further this impact is seen to manifest itself in steadystate through the postintervention period. The steady state decrease is approximately 15 per month and the intrinsic utility of the program being approximately 19 per month.

The sample size used in this analysis was $n_1 = 110$ and $n_2 = 31$ which is denoted by the circled X in Figure 2.6. This point is seen to be just

below the $\alpha = 0.05$ constraint for $E(W_{g})$. (The hypothesis test for change in covariance was significant for values of $\alpha > 0.06$). The program goal was to reduce the number of assaults with a gun by 5%. At the time of program the number of reported assaults per month was 52, therefore $\delta/\sigma_a \simeq 0.29$. For $n_1 = 110$ only 4 postintervention observations are needed. Since 31 were used to statistically detect the change in covariance a feasible design was employed. However, if fewer postintervention data points were used and the existing change in covariance could not be statistically detected (resulting in the reduced single consequence model), the estimate of δ would have been biased. The bias in δ would be 0.30 (D=1.30, Equation 2-36)), thus there would have been an overestimation of 30%. Also, the ratio of the variance of the standardized model (Equation 2-37) would be 1.46, resulting in D/h = 0.89 or an underestimation of the level of significance of δ . If the change in covariance was not statistically detected because of too short a postintervention period (n2) the corresponding single consequence model would have resulted in a 30% overestimation of the monthly reductions in assaults with a gun. Similarly, for n₁ fixed at 110, 59 postintervention data points would be needed to statistically detect values of $\delta/\sigma_a = 0.05$. In this case $\delta/\sigma_a = 1.79$. However, if the program inintervention resulted in values of $0.05 < \delta/\sigma_a < 0.10$, which should result in favorable policy implications, the sample size would not have been large enough and therefore incorrect policy inferences would be drawn.

In Chapter II multiconsequence intervention modeling was studied in detail. The multiconsequence intervention modeling is apropriate for observations at one location. In this chapter, space-time intervention modeling, which is appropriate for modeling an intervention process at multiple locations, will be studied. The space-time intervention modeling procedure shares the same modeling strategies as the multiconsequence intervention modeling, i.e., the dynamic components identification procedure and the three-stage iterative model building scheme. The space-time intervention model class is an adaptation of the model formulation of the space-time model class that has been developed by Deutsch and Pfeifer [1980a, 1980b, 1981]. In the next section the space-time intervention model class $(STARMA)I_{m}$ that allows for both environmental and non-environmental influence on the intervention is described for the single intervention processs as well as the multiple intervention process. The physical properties of the space-time intervention model are discussed in section 3.2. Here four elementary diffusion mechanisms; translation, domain-change, growth, and contraction are described and corresponded to the (STARMA)I model class. Simulations of the diffusion processes described by low order (STARIMA)I models are presented to illustrate the physical characteristics of diffusion speed, amplitude and influenced area in section 3.3. The intervention model building pro-

94

1

Π

CHAPTER III

THE SPACE-TIME INTERVENTION MODELING

cedure, that includes pre-intervention model building, dynamic component identification, the coupling of these components and diagnostic checking is given in section 3.4. In section 3.5, the M.L. estimators of the mean-shift function are developed first for the pre-intervention noise model parameters known situation, and then is extended to the case where all parametrs are unknown. A case study of the air pollution quality as measured by ambient carbon monoxide levels in Los Angeles is contained in section 3.6.

3.1 The Space-Time Intervention Model

A linear stationary time series data-generating process can be expressed in transfer function form as:

$$Z_{t} = \mu + T_{e}(B) \varepsilon_{t}, \quad t=1,2,3,...,n$$

where Z_{t} is the observation or output vector, μ is the mean vector, ε_{t} is the residual or input vector assumed to be NID(0, σ^2 I), all of which is of dimension (LN x 1) where LN is the number of locations and $T_{A}(B)$ is the transfer function for environment e which couples the system input and output (Figure 3-1(a)).

The intervention at time τ , $t < \tau < t+1$ is thought of as "switching on", $\xi_t = 0,1$ causing an additional potential contribution δ associated with the utility of the intervention program. When a system intervention occurs this potential shift can cause a modification in the data generation process in two ways. The program utility modification to the output is either Affected by the environmental process (Figure 3-1(b)) or undffected by the environment (Figure 3-1(c)). For a single region, univariate time series, Box and Tiao [1975] have proposed intervention models of the characteristics exhibited in Figure 3-1(c), in which the intervention component is independent of the environmental data-generating process. For the single location intervention model of Box and Tiao [1975] the observation vector is decomposed into two components:

96

 $Z_{t} = D_{t} + N_{t}$

where D,, the dynamic component, monitors the mean level changes of the pre-intervention environmental noise model N_t . When this eclectic noise model influences the measurable changes in process level, as in Figure 3-1(b), this estimated changes in process level confound the intrinsic utility of the intervention and the environmental noise process. The more general framework to allow separation of these components and thus unbiased estimation of an intervention's intrinsic impact is that described in Figure 3-1(d). The transfer function $T_c(B)$ will not be a function of the environmental noise process parameters when there is no environmental influence on the intervention. The general structure of Figure 3-1(d) is used throughout the balance of this chapter in regard to LN site systems.

We denote the variable for a single intervention, $\xi(t)$, as the product of the program utility δ and the switch variable ξ_{r} , which

 $T_F(B)$ as the Intervention Transfer Function.

either takes the form of a pulse or step function. The pulse function is defined as:

$$P_{t}^{n_{1}}(T_{p}) = \begin{cases} 1 & n_{1}+1 \leq t \leq n_{1}+T_{p} \\ 0 & \text{elsewhere} \end{cases}$$

Thus, the pulse function corresponds to the situation in which an intervention "switches on" for a period of length T_p , after the $n_1+1\frac{st}{p}$ observation. The step function is defined as an infinite period intervention occurring between $t = n_1$, and $t = n_1+1$;

$$s_{t}^{n_{1}} = \begin{cases} 1 & t > n_{1}^{+1} \\ 0 & t < n_{1} \end{cases}$$

The space-time single intervention model formulation for LN regions is;

+ $\Theta_{q,m}(B)\varepsilon_{t}$

$$\Phi_{p,\lambda}(B)\nabla^{d}(Z_{t}-\mu) = \frac{1}{t}(1-I_{m})\Phi_{p,\lambda}(B)\nabla^{d} + I_{m}\Theta_{q,m}(B)|\xi(t)$$
(3-1)

where

I_ =

{1 realized intervention effected by environmental process
0 realized intervention not effected by environmental
process,

100

Augentration A

Addresser,

And a second sec

Construction of the second

provide the second

1

.

12.63

3

 Z_t is an LN x 1 vector of observations at time t,

$$\Phi_{p,\lambda}(B) = I - \sum_{K=1}^{P} \sum_{\ell=0}^{\lambda_{K}} \Phi_{K\ell} W^{(\ell)}_{B}^{K}$$

$$\nabla^d = (I-B)^d$$
,

 $\Theta_{q,m}(B)$

t with

$$= I - \sum_{K=1}^{q} \sum_{\ell=0}^{m_{K}} \Theta_{K\ell} W^{(\ell)} B^{K},$$

B is an LN x LN backward shift operator such that

$$B^{K}Z_{t} = Z_{t-K}$$

 $\boldsymbol{\varphi}_{K\!L}$ is the autoregressive parameter at temporal lag K and

spatial lag L,

 $\theta_{K\ell}$ is the moving average parameter at temporal lag K and spatial lag ℓ ,

 $W^{(\ell)}$ is an LN x LN matrix of weights for spatial lag ℓ ,

 $\xi(t) = \xi_t \delta, \delta$ is the intrinsic utility of the intervention

program,

Et is the random normally distributed innovation veector at time

$$\frac{\mathbf{E}[\mathbf{e}]}{\mathbf{e}} = 0$$

$$E \begin{bmatrix} Z & \varepsilon' \\ -t & t+K \end{bmatrix} = 0 \quad \text{for } K > 0$$

Parameter p is the autoregressive order of the model and λ is a vector. with components λ_{K} specifying the spatial order of the Kth autoregressive term. Likewise, q is the moving average order of the model, and m is the vector of moving average spatial orders. Parameter d is specifying the number of differences needed to induce stationarity in the original series.

3.1.1 An Alternative Representation

The single intervention space-time model, equation (3-1), assuming d=0 without loss of generality, can be expressed as,

$$Z_{t} = \mu + \Lambda_{D}(B) \xi(t) + \Lambda_{N}(B) \varepsilon_{t}$$
(3-2)

where

$$\Lambda_{D}(B) = \Phi_{p,\lambda}(B)^{-1} | (1-I_{m}) \Phi_{p,\lambda}(B) + I_{m} \Theta_{q,m}(B)$$

$$\Lambda_{N}(B) = \Phi_{p,\lambda}(B)^{-1} \Theta_{q,m}(B)$$

Thus Z_t is the summation of two components: the deterministic component and the random component, D(t) and N(t) respectively, i.e.,

Since

and the second se

and and

打け行

Į.

F.

Junio and

102

11

1

particular.

31

August a

Common of

the effect of the intervention.

 $\Phi_{p,\lambda}(B)$

$$Z_{t} = D(t) + N(t)$$

$$D(t) = \mu + \Lambda_{D}(B) \xi(t)$$

$$N(t) = \Lambda_{N}(B) \varepsilon_{t}$$

Taking expectation of equation 3-3 yields,

$$E[Z_{t}] = D(t)$$

$$E[N(t)] = \Lambda_{N}(B) E[\varepsilon_{t}] = ($$

Therefore the expectation value of the process observation $\frac{2}{t}$ is the deterministic component, D(t). It should be noted that the intervention variable $\xi(t)$ only appears in the deterministic component as does

Equation 3-4 can be expressed in recursive form,

$$\begin{bmatrix} D(t) - \mu \end{bmatrix} = |(1 - I_m)^{\phi} p_{,\lambda}(B) + I_m^{\phi} q_{,m}(B)| \xi(t).$$
 (3-7)

The realized mean shift function at time t, $\delta(t)$, is

103

(3-4)

(3-3)

(3~5)

(3-6)

(ji))

$$\delta(t) = D(t) - \mu, \text{ thus,}$$

$$\sim \sim \sim \sim \sim$$

$$\varphi_{p,\lambda}(B) \delta(t) = \left\lfloor (1-I_m) \varphi_{p,\lambda}(B) + I_m \varphi_{n,m}(B) \right\rfloor \xi(t). \quad (3-8)$$

104

And a second second

TI

In equation 3-8 if we set $I_m = 1$, the realized intervention is effected by the environment, we have the deterministic component of the inter- \mathcal{D} vention model,

$$\Phi_{p,\lambda}(B)(D(t)-\mu) = \Theta_{q,m}(B) \xi(t),$$

with the realized mean shift function, $\delta(t)$ of the form

$$\delta(t) = D(t) - \mu = \Phi_{p,\lambda}(B)^{-1} \Theta_{q,m}(B) \xi(t)$$

or

 $\langle \rangle$

$$P_{p,\lambda}(B)\delta(t) = \Theta_{q,m}(B) \xi(t)$$
(3-9)

Since $\delta(t)$ for the mixed process is a function of the intervention

variable $\xi(t)$ as well as the environmental noise model parameters, the realized shift-mean doesn't reach its steady state level instantaneous-

 $\langle \gamma \rangle$

T

model given as,

or

ly but rather converges to the steady state level. For the STARMA(q_m)I_m process (p=0 and $\Phi_{p_{j}\lambda}(B) = I$) equation 3-9 reduces to

$$\delta(t) = \xi(t) - \sum_{K=1}^{q} \sum_{\ell=0}^{m_{K}} \Theta_{K\ell} \Psi^{(\ell)} \xi(t-K). \qquad (3-10)$$

Thus, the steady state level for $\delta(t)$, i.e. $(I - \Sigma \Sigma \Theta_{K\ell} W^{(\ell)} B^K) \xi(t)$, ~ $K=1 \ell=0$ ~ is reached in q periods. However, for the $STAR(P_{\lambda})I_{m}$ model in which

q=0 and $\Theta_{q,m}$ =I equation 3-9 reduces to

$$\delta_{\mathbf{p},\lambda}(\mathbf{B}) \begin{array}{l} \delta(\mathbf{t}) = \xi(\mathbf{t}) \\ \sim \end{array}$$
(3-11)

Thus, as with the mixed model, the STAR(P_{λ})I_m model's mean shift will

only as $t + \infty$ approach the steady state level.

For the case where there is no environmental influence, $I_m=0$, in equation 3-8, we have the deterministic component of the intervention

$$p_{p,\lambda}(B)(\delta(t)-\xi(t)) = 0$$

 $\delta(t) = \xi(t),$

(3-12)

Thus when there is no environmental influence, the total effect of the intervention is fully realized instantaneously with transition to the steady state level at t+1 for an intervention having occurred in the interval t, t+1.

3.1.2 Multiple Interventions

In the previous section only a single intervention was introduced. Often several interventions can occur. In this section we will generalize the (STARMA)I model to allow for multiple interventions and discuss the interpretation of the resulting mean-shift function.

The STARMA(P_{λ} ,0, q_m)I_m model is generalized for n different

interventions by

 $\Phi_{p,\lambda}(B)(Z_t-\mu) = \sum_{r=1}^{\eta} |(1-I_{m,r}) \Phi_{p,\lambda}(B) + I_{m,r} \Theta_{q,m}(B)| \xi^{(r)}(t) \quad (3-13)$

+ $\Theta_{q,m}(B) \in \mathbb{Z}^{+}$

where

1 realized effect of the r-th intervention effect by the environmental process.

realized effect of the r-th intervention not effected by the environmental process. $\xi^{(r)}(t)$ is the indicator variable for the r-th intervention and is the ~
product of the switch variable $\xi_t^{(r)}$ and the program utility of the r-th intervention, $\delta^{(r)}$. This model will be referred to as the ~

STARMA($P_{\lambda}, 0, q_{m}$) I model.

106

NAL S

I

The random component of the STARMA($P_{\lambda}, 0, q_{m}$)I model is, exact-

ly the same as that of the corresponding single intervention

STARMA($P_{\lambda}, 0, q_m$) I model. The deterministic component of the

STARMA(P_{λ},0,Q_m)I_{m,n} model is, ~ $D(t) = \mu + \sum_{r=1}^{n} \Phi_{p,\lambda}(B)^{-1} | (1-I_{m,r}) \Phi_{p,\lambda}(B) + I_{m,r} \Theta_{q,m}(B) | \xi^{(r)}(t),$

and the realized mean shift function $\delta(t)$ is

 $\delta(t) = D$

(3-14)

 $= \sum_{\substack{r=1\\r=1}}^{n} \Phi_{p,\lambda}(B)^{-1} \lfloor (1-I_{m,r}) \Phi_{p,\lambda}(B) + I_{m,r} \Theta_{q,m}(B) \rfloor \xi^{(r)}(t).$

Equation 3-14 reveals that the realized mean-shift function can be decomposed into n components, each corresponding to the n intervention 108

-

- Andrew

$$\delta(t) = \sum_{r=1}^{n} \delta^{(r)}(t) \qquad (3-15)$$

and

$$\Phi_{p,\lambda}(B)\delta^{(r)}(t) = [(1-I_{m,r})]\Phi_{p,\lambda}(B) + I_{m,r}\Theta_{q,m}(B)]\xi^{(r)}(t), \quad (3-16)$$

As in the single intervention model, when $I_{m,r} = 1$, the environmental influence situation, the realized mean shift function of the r-th intervention, $\delta^{(r)}(t)$, is a function of ϕ , Θ as well as $\delta^{(r)}$. When $I_{m,r} = 0$, the environment is not involved and $\delta^{(r)}(t)$ is not a function of the environmental noise parameters. From equations 3-14 and (3-15), we see that the interventions have a superposition property. This means that they will add up to give the realized mean shift function $\delta(t)$. When the situation arises that sequential interventions interact with each other, e.g., r_1 th intervention occurs before r_2 th intervention and have interactions (e.g. a synergy) equation (3-15) and (3-16) are still the appropriate model, however, $\delta^{(r_2)}(t)$, $\xi^{(r_2)}(t)$ and $\delta^{(r_2)}$ will be interpreted differently. In this case, the mean shift

function of r_2 th intervention is confounded with the (r_1, r_2) interaction, i.e. the $\delta^{(r_2)}(t)$ is the summation of the mean shift function of r_2 th intervention and the (r_1, r_2) interaction effect. Thus the proper

	interpretation
	intervention gi
	Also ξ (r ₂) (t) a
	· ·
	1
	When an
	tions, the effe
	sion process.
	STARTMA(n.d.c
	3 2 1 Diffuci
	<u>3.2.1</u> 51110310
	Spatial-
	given space the
	the phenomena of
	nieme are usefi
	UISMS ALE USEI
1 · · · ·	cess.
	1) Translation
	2) Domain-char
	3) Growth:
	•

N M

P

and the second

of $\delta_{-}^{(r_2)}(t)$ is the mean shift function of the r_2 th iven that the r_1 th intervention has been introduced. as well as $\delta_{-}^{(r_2)}$ should be interpreted in this way.

3.2 Physical Representations of the Model

intervention program is introduced in one or more locaect may also be realized at other locations via a diffu-In this section, we will discuss the capabilities of the m)I models in describing diffusion phenomena.

on Mechanism

-temporal diffusion is the spread of a phenomena within a rough time, so as to alter the distributional pattern of over time. Four distinct types of the diffusion mechaul in classifying the spatial-temporal diffusion pro-

occurs when members of the population and their
 relative positions do not change, while the positions of the members are translated from time t to
 t + Δt.

nge: occurs when members of the population do not change but their relative positions as well as the nonzero population location number change from t to t + Δ t.

occurs when new members are created and into the

Ę٩,

			and the second sec	
	9 9 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1 9 1			
11	.O			
population between time t and t + Λ t, increasing	3			
the nonulation in size	taunar na gar. A annski ta			
the population in size.				
occurs when some members of the population die out	K.	T		
between time t and t + Δ t, decreasing the popula-			-	tan an tan
tion size.	Contractor of the second s			
mechanisms are illustrated in figure 3-2. A more				
of these mechanisms is contained in Brown [1968].		0		
Sistinct types of spatial-temporal diffusion pro-	and the second sec			
ribed by combinations of the four diffusion mecha-	• 73			
spatial-temporal diffusion processes are;				
pe diffusion: occurs when new members are	**** ****			
d into the population and/or some old members die				
pulation size changes while individual locations	<i>σ</i> π.			
nge. (A combination of type 1, type 2, type 3 and				•
th growth rate \neq contraction rate.) We will say				
generating (+) type process when the net gain in				1
al population is positive is a reconstration (-)	F (
ai population is positive, is a regenerating (-)				
en the net gain is negative.				Figur
e diffusion: occurs when members of the population	<u>i i i</u>			
lative positions and/or locations while the popula				
constant (a combination of the type 1, type 2	2.			
or type 3 and type 4 mechanisms with growth rate =				
e).	I S			
ion of the Diffusion Processes Types by the	cy Charles			
<u>q_)I_Models.</u>	11			
	nyunita in a sa s			

4) Contraction:

3

These four diffusion mechanisms detailed discussion of these mec

There are two distinct ty cess. Each are described by com nisms. The types of spatial-tem

I. Regenerating type diffusion

generated, added into the p out, and the population siz may/may not change. (A com 4 mechanisms with growth ra that it is a regenerating (the size of total populatio type process when the net g

II. Relocation type diffusion: change their relative posit tion size stays constant (a mechanism and/or type 3 and contraction rate).

3.2.2 Characterization of the D STARIMA(P,,d,q)I_Models

•

111

e 3-2. Diffusion Mechanisms

- (a) Population Distribution at Time t
- (b) Population Distribution at Time t+At through Translation
- (c) Population Distribution at Time t+At through Domain-Change
- (d) Population Distribution at Time t+At through Growth
- (e) Population Distribution at Time t+At through
- Contraction

113 112 all K > 0, i.e., In the previous section two types of general diffusion processes were described. Here we focus on the STARIMA(P_{λ}, d, q_{m})I models to (Common of the local data assess whether and which subgroups of models in this class describe these two types of diffusion and if so which model subgroups correspond The more interesting and broader characterization of the differ-. to what type of diffusion process. To assess this issue, we use the ent diffusion type occurs in the environmental influence structure with I = 1. The balance of this section will address this situation. equation of mean shift function of the $STARIMA(P_{\lambda},d,q_m)I_m$ model, Ţ For the I = 1 case we will assume for descriptive purposes that man intervention program is introduced at location i between time $t = n_1$ $\nabla^{d} \phi_{p,\lambda}(B) \delta(t) = |(1-I_{m})\nabla^{d} \phi_{p,\lambda}(B) + I_{m} \Theta_{q,m}(B)| \xi(t).$ and $t = n_1 + 1$ for one period only, i.e., This equation can be expressed alternatively as, $\delta(t) = \Lambda(B) \xi(t)$ (3-17)A Sector where $\delta = (0, 0, \dots, \delta^0, 0, \dots)$ with δ^0 at location i. Then we have, $\delta(t) = 0$ $A(B) = \left\lfloor \nabla^{d} \phi_{p,\lambda}(B) \right\rfloor^{-1} \left\lfloor (1 - I_{m}) \nabla^{d} \phi_{p,\lambda}(B) + I_{m} \theta_{q,m}(B) \right\rfloor$ n) (3-18) $\delta(t) = \Lambda^{(K)} \delta, \quad t = n_1 + K + 1, \quad k > 0$ (post-intervention) $\Lambda(B) = \sum_{k=0}^{\infty} \Lambda^{(K)} B^{K}$ (3-19) From the previous discussion, we know that the major difference between Where $\Lambda^{(K)}$ is obtained recursively from equation (3-2), and $\Lambda^{(0)} = I$. the regenerating processes and the relocation processes is the conser-When we let: $I_m = 0$ in equation (3-18), which corresponds to the vation of population. For the intervention described in equation (3non-environmental influence case, we have, $\Lambda^{(0)} = I$ and $\Lambda^{(K)} = 0$ for H **M** I Luci 2. 47. (200):en

with

$$\delta(t) = \xi(t),$$

$$f(t) = P_t^{n_1} (T_p=1) \delta$$
 (3-20)

(FA)

equation (3-21) with the model parameters constrainted as follows

$$\frac{{}^{m}K}{\sum_{\ell=0}^{\infty} (\Theta_{k\ell} W^{(\ell)})} = 0 \text{ for } K = 1, 2, \dots, q. \quad (3-22)$$

$$W^{(\ell)})|_{j,i} = 0$$
 is the (j,i) element of $\sum_{\ell=0}^{m_{K}} (\Theta_{K\ell} W^{(\ell)})$

A special case of the STARIMA(0,1, q_m)I model class is the

STARIMA(0,1,0)I_m model i.e., p=0, d=1, q=0. Since the necessary and sufficient conditions of the relocation type diffusion requires the conservation of population as well as the capability to move to its neighbors, to have the moving capability, it is required that $\Lambda^{(K)} \neq I$, $\Lambda^{(K)} \neq 0$ for at least one K. Even though the STARIMA(0,1,q_m)I_m

has the moving capability, the STARIMA(0,1,0)I model does not. For example, for a ring system with 5 locations the first and second order weight structure is

	I II			
116				
	¥ 5			
	gettere ^{Ar} ia			
We have a STAPIMA(0.1 g.) T model with $m = 2, m = 2, \dots = m = 2$.	ñÝ			where e , is the j-
we have a SIARIMA(0,1, q) i model with m^2 , m^2 , m^2 , q	and the second			with 1 at location r
When $\Theta_{K0} + 2\Theta_{K1} + 2\Theta_{K2} = 0$ for all k=1,2,,q, we can see that the				location in this sys
requirements imposed by equation (3-22) We satisfied, since	Fice.			tion is very restric
n en stand en gelegen en e				for all time t.
$\frac{LN}{\Sigma} \frac{M_k}{ \Sigma } = \Theta_{\mu 0} + 2\Theta_{\mu 1} + 2\Theta_{\mu 2}$				A less restri
j=l L=0 KL ji KU KI KZ				is to not require at
	-			but rather to consid
However, if one of the Θ_{K1} , Θ_{K2} , $K=1,2,\ldots,q$ is not equal to	19			That is a set of cor
zero, i.e. $\Theta_{k1} \neq 0$, then at least $\Lambda^{**} \neq I$ and $\Lambda^{**} \neq 0$, so the moving				change the steady st
capability requirement is satisfied and this is a relocation diffusion				new steady state for
process.				of conditions allows
	F			to a new steady stat
3.2.2.2 Homogeneously Nonstationary Processes				original state is th
The homogeneously nonstationary $SiAR(P_{\lambda})$ process can be of relo-				system forever. This
cation diffusion type if and only if				relaxed conditions i
	Harris and Andrews			The stationar
	ш., r			to the STAR process
τη + λκ τη	Strategy P			
$\Sigma \mid \Sigma \Sigma \Sigma \phi_{K\ell} W_{i,j}^{(\ell)} = 1 (3-23)$	₩ 1			Det
for $t = 1, 2, \dots, R$ and $t = 1, 2, \dots, LN_{n}$	1	L	1	

1

.

-th element of vector e_r , which is the unit vector r. Equation (3-23) guarantees that any input to any stem will stay in the system forever. This condictive in that it requires conservation of population

ictive constraint to ensure relocation diffusion bsolute conservation of population for all time t der asymptotic population conservation as t + nditions that will guarantee that any input will tate of the system and the system will stay at the rever or until there is another input. Such a set s a transient period for the system to adjust itself te and the difference between the new state and the he conserved part of the input and stays in the is kind of restrictions will be referred to as the for the relocation processes.

rity conditions discussed in Hannan [1970] applied are as follows: if every Z_u that solves,

 $et | Z_{u}^{P} I - \sum_{k=1}^{P} (\sum_{\ell=0}^{\lambda_{K}} \phi_{K\ell} W^{(\ell)}) Z_{u}^{P-K} | = 0$

ary. This implies that any linear combinations of these inputs will damp out when $t \rightarrow \infty$. However, if all the Z 's lie on the unit circle, then no linear combinations of these inputs will damp out. Thus, all these linear combinations will be conservative. So the relaxed conditions for relocation in the STAR(P_{χ}) process is; if every Z_{u} that

solves,

$$\operatorname{Det}\left[Z_{u}^{P} \mathbf{I} - \sum_{K=1}^{P} \left(\sum_{\ell=0}^{\lambda_{K}} \phi_{K\ell} \mathbf{W}^{(\ell)}\right) Z_{u}^{P-K}\right] = 0 \qquad (3-24)$$

lies on the unit circle, then these homogeneously nonstationary

STAR(P_{λ}) process will be of relocation diffusion type.

To compare these constraints for a relocation type diffusion process, equation (3-23) can be restated as follows; if every Z_u that solves,

$$Det |Z_{u}^{t} I - \sum_{K=1}^{t} (\sum_{\ell=0}^{\lambda K} \phi_{K\ell} W^{(\ell)}) Z_{u}^{t-K}| = 0, \quad t = 1, 2, \dots, P \quad (3-25)$$

has the same solution $Z_u = 1$, then the homogeneously nonstationary $STAR(P_{\lambda})$ process is of the relocation diffusion type. Note that equa-

allowed solution set of equation (3-25) is a subset of the allowed solution set of equation (3-24) and the equation set (3-24) is a subset of the equation set (3-25). Thus when equation (3-25) is satisfied, equation (3-24) is also satisfied. The reverse is however not true.

3.2.2.3 Steady State Gain For the Step Function Input

In previus sections the intervention program input variable $\xi(t)$ has been assumed to be the pulse function, in this section the step input situation will be discussed. It is assumed that

$$\xi(t) = s_t^{n_1} \delta_t^{n_2}$$

where $\delta = (0, 0, \dots, \delta^0, 0, \dots)$ with δ^0 at location i.

The step input function can be viewed as superposition of a sequence of pulse functions with the output of this system being the superposition of the outputs of the sequence of pulse function inputs. This can be seen in equation (3-7) by letting

 $\xi(t) = \xi_1(t) + \xi_2(t)$

 $\delta_1(t) = \Lambda(B) \xi_1(t), \quad \delta_2(t) = \Lambda(B) \xi_2(t)$

Therefore; $\delta(t) = \delta_1(t) + \delta_2(t) = \Lambda(B)(\xi_1(t)+\xi_2(t)) = \Lambda(B)\xi(t).$

So at any time point, the necessary and sufficient conditions for the system population to be conserved is that the system input rate equals the dying-out rate. In the following we will consider the strictly conservative system in which the system reaches the steady state gain instantaneously, maintaining its population, and the asymptotically conservative system, in which the system reaches the steady state gain by passing through transient states. Thus the latter differs from the first in that the strictly conservative system has constant population for all $t > n_1$.

The have the instantaneous and strictly conservative system, the system has the followng property:

$$\delta(t) = 0$$
 (pre-intervention)

$$\delta(t) = \delta^{S}$$
 (post-intervention)

$$\sim \sim \sim \sim$$

where δ^{S} denotes the steady state gain of the system and is a constant vector.

Since
$$\delta(t) = \Lambda(B) \xi(t) = \sum_{K=0}^{\infty} \Lambda^{(K)} S_{t-K}^{n_1} \delta$$
,

the followng conditions should be satisfied;

 $\delta(t) = \delta(t+u) \qquad u = 1, 2, \dots, \infty, t > n_1$

調査

7

IN

51

1

Ti 1 i.e.
$$\sum_{K=0}^{\infty} \Lambda^{(K)} S_{t-K}^{n_1} \delta = \sum_{K=0}^{\infty} \Lambda^{(K)} S_{t+u-K}^{n_1} \delta$$

This gives the following equations;

$$\begin{array}{ccc} t^{-n} & t^{+u-n} \\ \Sigma & \Lambda^{(K)} &= \Sigma & \Lambda^{(K)} \\ K=0 & K=0 \end{array} \qquad u = 1, 2, \dots, \infty; \ t \ge n_1 \qquad (3-26)$$

To satisfy these equations for $u = 1, 2, \ldots, \infty$, the only solution is $\Lambda^{(0)} = I, \Lambda^{(K)} = 0$ all K > 1. As we have pointed out in section 3.2.2, this is the non-environment involved intervention process. The asymptotically conservative system reaches the steady state after the transient periods. This means that the condition in equation 3-26 can be relaxed as follows;

$$\begin{array}{ccc} t^{-n} & t^{+u-n} \\ \Sigma & \Lambda^{(K)} &= \Sigma & \Lambda^{(K)} \\ K=0 & K=0 \end{array} \\ \begin{array}{ccc} t^{+u-n} & u = 1, 2, \dots, \infty; \\ t^{-n} & t^{-n} & t^{-n} \\ t^$$

where T_0 is the transient periods.

Σ K=0

q, since

t-n1

Σ K=0

The number of transient periods T_0 for the $STMA(q_m)I_m$ process is

$$\int_{\Lambda} (K) = \sum_{K=0}^{Min\{(t+u-n),q\}} \Lambda(K)$$
$\begin{array}{ccc} t - n_{1} & t + u - n_{1} \\ \Sigma & \Lambda^{(K)} = \Sigma & \Lambda^{(K)} = \Sigma & \Lambda^{(K)} \\ K = 0 & K = 0 & K = 0 \end{array}$ when $t > n_{1} + T_{0}$

The number of transient periods T_0 of the $STAR(P_{\lambda})I_m$ and the STARMA(P_{λ}, q_{m}) I processes are much longer than those of the (STMA) I

80

process. In fact, they will reach the steady state only when $T_0 + \infty$. Since $\Lambda^{(K)} S_t^{a_1} \delta$ represents the contribution of the intervention input, in order to satisfy the asymptotically conservative conditions when $T_0 + \infty$ it is necessary and sufficient to have

imit
$$\Lambda^{(K)} \stackrel{n_1}{\underset{t \sim \sim}{}^{\delta} = 0}$$
 or equivalently
imit $\Lambda^{(K)} = 0$.

(3-28)

122

Solutions to satisfy equation (3-28) are discussed in Deutsch and Pfeifer [1979] and are those systems who's parameters lie inside the stationary boundary, i.e. every Z_u that solves equation (3-25) should lie inside the stationary boundary.

The diffusion type of the instantaneous steady state gain process can be interpreted as the space-time regenerating diffusion pro $P_{t}^{n_{1}}$ (T_p=1)8 pulse input

-1

L

1

Nonrestanda

i Statisti

THE REAL PROPERTY IN

A LINCOLD

- Children - A

Contestant

R

Similarly, the diffusion type of this asymptotically steady state gain process can be interpreted as the space time regenerating

cess or the space-time relocation diffusion process. This depends on how we define the system and the system input.

Figure 3-3. Permanent Impact System Diffusion Type Interpretation.

In figure 3-3, the step transformation block transforms the pulse input into a step function and the step function output of S, is input into the STARMA diffusion process. System U contains S_1 and S_2 as its subsystem, and the pulse input $P_t^{n}(T_p=1) \delta$ is input into U to give $\delta(t)$ as the output. From the viewpoint of the S₂ system, the diffusion type for the instantaneously steady state gain is of the regenerating type, since the total input $S_t^{n_1} \delta$ isn't conserved. While from the viewpoint of the system U, which has the pulse input, the diffusion type for the steady state gain is of the relocation type,

since the pulse input $P_t^{n_1}(T_p=1) \delta$ has been conserved.

process or the relaxed space-time relocation diffusion process. From the viewpoint of the whole system U, which includes the permanent impact transformation block, the asymptotically steady state process can be interpreted as the relaxed space-time relocation diffusion process. 3.2.3 Properties of the Diffusion Process

Having described the types of diffusion processes, we now turn our attention to the properties of a given type of diffusion process. Three characteristics of a diffusion process are addressed; the sphere of influence of the process, the speed of the process and the amplitude of the process. In describing these characteristics it is helpful to formally state the following;

- 1. If location j is one of the *l*th order neighbors of location i, then location j is connected to location i by the *lth-order* neighborchain,
- 2. The set of locations in the space considered that are connected by the *k*th-order neighbor-chain and contains location i is called the Lth-order connected regions of location i.
- 3. The connected regions of location i for $STARMA(P_{\lambda}, 0, q_m)I_m$ models is the union of all 1st-order connected regions, 2nd-order connected regions, ..., up to $\max{\{\lambda_{max}, m_{max}\}}$ th-order connected regins of location i, where $\lambda_{\max} = \max\{\lambda_1, \lambda_2, \dots, \lambda_p\}$ and $m_{\max} = \max$ $Max\{M_1, M_2, \dots, M_d\}.$ 4. The influenced regions of location i for $STARMA(P_{\lambda}, 0, q_m)I_m$ models
 - is all regions that can, in the long run, be influenced by the

equation (3-20), i.e.

with δ^0 at location i. 3.2.3.1 AR Type

(3-9),

124

Courses of

Shinking

11

And a state of the

ALL DESCRIPTION

ŧ.

0

intervention program introduced at location i.

5. If an intervention program is introduced at location i, all the lst order neighbors, 2nd order neighbors,, and 1*th order neighbors, but not (*k**+1)th order neighbors of location i are influenced at the very next moment, we will say that the diffusion speed of this STARMA($P_{\lambda}, 0, q_{m}$) I process v equals ℓ^{*} .

Since the characteristics of the diffusion process of the $STAR(P_{\lambda})I_{m}$, $STMA(q_{m})I_{m}$ and $STARMA(P_{\lambda}, 0, q_{m})I_{m}$ process in the environment involved situation are quite different, the following section discusses each in turn. We will keep the same assumption on $\xi(t)$ as that in

 $\xi(t) = P_t^{n_1} (T_p=1) \delta$

where $\delta = [0, 0, 0, \dots, \delta^0, 0, \dots]$

The diffusion process of $\text{STAR}(P_{\lambda})I_m$ model is described in the

recursive equation that is obtained by setting $\Theta_{q,m}(B) = I$ in eqution

 $\delta(t) = \sum_{K=1}^{P} \sum_{\ell=0}^{A_{K}} \phi_{K\ell} W^{(\ell)} \delta(t-K) + \xi(t),$

(3-29)

D

P

This can be rewritten as,

$$\begin{cases} \delta(t) = 0 & t \leq n_1 \\ \sim & & \\ \delta(t) = \delta & t = n_1 + 1 \\ \sim & \sim & \\ \delta(t) = \sum_{K=1}^{N} \sum_{\ell=0}^{K} \phi_{K\ell} W^{(\ell)} \delta(t-K) & t > n_1 + 2. \end{cases}$$

From equation (3-29), we can see that for the STAR process that the influenced regions of any location i will be equal to the connected regions of that location, since the influence will be transmitted from location i to its neighbors and then retransmitted to all its connected regions before the effect of this intervention completely dies out as t + . In physical/engineering systems this is intuitively appealing in that a given location in the system will receive a stronger and quicker influence from those closer-connected locations. The term "closerconnected locations" does not necessary mean close in the sense of Euclidean distance. This implies that,

$$\lambda_{K+1} - \lambda_K < \lambda_K - \lambda_{K-1}$$

3.2.3.2 MA Type model,

I

and thus the diffusion speed of the STAR process is $\boldsymbol{\lambda}_1.$ The amplitude of diffusion for the stationary $STAR(P_1)I_m$ process

can be computed recursively using equation (3-26). The STAR process is a relocation type diffusion when the parameters lie on the stationary boundary. The farther away the autoregressive parameter vector falls from this boundary the more rapid the loss of population. Thus, given ϕ_{K0} , K = 1, 2, ... P are fixed, the stronger the conservation of population tendency is, the larger the diffusion amplitude will be.

By setting $\Phi_{p,\lambda}(B) = I$ in equation (3-9), we have the recursive equation for the realized mean-shift function $\delta(t)$ of the STMA(q_)I_

$$\delta(t) = \xi(t) - \sum_{K=1}^{q} \Theta_{K\xi} W^{(\ell)} \xi(t),$$

with the intervention variable $\xi(t) = P_t^{"1} (T_p=1) \delta$, and $\delta = [0, 0, 0, \dots, \delta^0, 0, \dots, 0]$, this equation can be rewritten as,

> $t < n_1 \text{ or } t > n_1 + q + 2$ (3-30) $\delta(t) = 0$

 $\delta(t) = \delta$ $t = n_1 + 1$

From equation (3-30), it is seen that the influenced regions of locations i will include only the 1st order neighbors, 2nd order neighbors, ..., up to the m -th order neighbors, where $m_{max} = Max\{m_1, m_2, \dots, m_q\}$. Also the diffusion speed between $t = n_1 + 1$ and $t = n_1 + 2$ is m_1 , but the diffusion process will completely die out at t = n_1 + q + 2. Note that the STMA type diffusion is quite different from the STAR type in its ability to transmit the influence. In the STAR type diffusion processes, any connected location that has received influence has the ability to retransmit the influence to its neighbors. thus, whereas the STAR process has the received influence at time t behave as an intervention transmitted to (t+1) for all connected regions for all t, in the STMA type diffusion, the influenced region has no such ability to retransmit the influence to its neighbors. The only influence transmitted comes directly from the location that the intervention program is introduced at time t. Thus the influenced region of the STMA(q_m)I process may not cover the whole connected region of location i in which the intervention was implemented.

 $\delta(t) = \sum_{k=0}^{m} \Theta_{k\ell} W^{(\ell)} \delta_{k\ell} P_{t-K}^{n} \qquad t = n_1 + K + 1, K < q$

From equation (3-30) the amplitude of the STMA process can be recursively computed. This amplitude is seen to depend on the magnitude of the moving average model parameters as well as that of the input amplitude δ .

3.2.3.3 ARMA Type

is,

For the STARMA($P_{\lambda}, 0, q_m$)I model, the recursive formula for $\delta(t)$

 $\delta(t) = \Sigma$ K=1 $\delta(t) = \sum_{K=1}^{\infty} \phi_{K\ell} W^{(\ell)} \delta(t-K)$

 $\delta(t) = 0$

 $\delta(t) = \delta$

4.30

Card and a second

A I

IJ

的

 $\left(\right)$

Î.

 $\left\{ \right\}$

1

128

$$\sum_{k=1}^{P} \sum_{\ell=0}^{\lambda_{K}} \phi_{k\ell} W^{(\ell)} \delta(t-K) - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{K}} \Theta_{k\ell} W^{(\ell)} \xi(t). \quad (3-31)$$

Thus the STARMA type diffusion is a combination of STAR and STMA type. For the ξ (t) as described in equation (3-20), we can rewrite equation (3-31) as follows,

$$t < n_1$$
 (3-32)

 $t = n_1 + 1$

 $t > n_1 + q + 2$

$$\lambda_{K} \sum_{\ell=0}^{\lambda_{K}} \phi_{K\ell} W^{(\ell)} \delta(t-K) - \sum_{\ell=0}^{m} \Theta_{u\ell} W^{(\ell)} \quad t = n_{1} + u + 1, \quad u \leq q$$

$$\lambda_{K} \qquad (\ell)$$

The diffusion speed of this process may depend on the elapsed time since the intervention was introduced. At $t = n_1 + 1$, the diffusion speed is $Max{\lambda_1,m_1}$, while at t = n_1+q+2 , the diffusion speed will be λ_1 . Thus the moving average influence will cause a change in the speed of diffusion if m_1 is larger than λ_1 for q periods until the effect of the moving average term dissipates. The influenced regions of this mixed process is the same as the STAR process, i.e. all connected regions of location i where intervention is introduced. The amplitude of the diffusion process for the mixed

129

STARMA(P_{λ} ,0,q_m)I_m process can be recursively computed using equation

(3-32). Here we see that it is composed of two parts, due to the AR the MA components. From equation (3-31), we see that the input to the MA component comes only from $\xi(t)$ which, in part, forms subsequent $\delta(t)$ where as the input for the AR component comes from the lagged values of the mean shift function, $\delta(t-K)$. Thus the MA component shapes/influences the AR component but the MA component is independent of the AR component. Thus, the total amplitude of the mixed process depends on two factors;

1) the individual and relative amplitudes of the AR and MA componeats and

2) the nature of the interaction of the MA component that can be constructive, reinforcing, or destructive.

3.3 Simulation of the Diffusion Process of the Low Order

$\frac{\text{STARMA}(P_{\lambda}, 0, q_{\text{m}}) I \text{ Models}}{\text{Models}}$

In the following, we will illustrate the diffusion processes for low order STARMA($P_{\lambda}, 0, q_m$) I model with Max{P,q} < 1 and Max{ λ_{1,m_1} } < 2. Since there is no diffusion phenomena in the non-environmental influenced case, $I_m = 0$, we will only illustrate the environment involved case with $I_m = 1$.

All simulated illustrations are from (11 x 11) square regions. Thus there are 121 locations identified as (i,j)th location, i = $1, 2, \dots, 11, j = 1, 2, \dots, 11$. The neighbor structure used is; The 1st order neighbors of the (i,j-location are locations (i+1,j), (i-1,j), (i,j-1) and (i,j+1). The 2nd order neighbors of the (i,j) location are processes.

1

 \bigcirc R

 Ω

130

(i-1,j-1), (i-1,j+1), (i+1,j-1) and (i+1,j+1). Thus all the (11 x 11) locations form the connected region. The intervention is introduced at the (6,6) location between time $t = T_0^{-1}$ and $t = T_0^{-1}$. The amplitude of this intervention δ^0 is set to 10 in all simulations. The intervention input is shown in Figure 3-4.

Figure 3-5 illustrates the AR type diffusion, figure 3-6 illustrates the MA type diffusion process and figure 3-7 the ARMA type diffusion process for model parameters selected to ensure stationarity. Thus these figures all illustrate regeneration type diffusion

In figure 3-5(a-c), it is seen that the effect of the intervention spreads over all locations. Figure 3-5(a) and figure 3-5(b) are both $STAR(1_1)I_m$ models, thus the speed of diffusion is the same (i.e. v = 1). However due to the different model parameter values, the amplitudes realized are different. The amplitudes in the figure 4-5(a), in which the process parameters are closer to the stationary bundary , are 1.00, 0.90, 0.56, 0.36 in the (5,6) location, which is one of the 1st order neighbors of the (6,6) location, at time T = 1,2,3,4, respectively, where T denotes the elapsed time since the intervention was introduced. The corresponding amplitudes in the figure 3-5(b), in which the process parameters are farther from the stationary boundary, are 1.00, 0.40, 0.21, 0.10, respectively. As expected, the diffusion amplitudes are bigger for the processes in which the process parameters are closer to the stationary boundary e

From the $STAR(1_2)I_m$ model illustrated in figure 3-5(c), we can see that the velocity of spreading is twice those in figure 3-5(a) and (b) since $\lambda_1 = 2$. This is clearly illustrated by the number of regions influenced at a given time after the intervention is introduced between $t = T_0^{-1}$ and $t = T_0^{-1}$. From these plots, we see that at $t = T_0^{+2}$, i.e., T = 2, figure 3-5(c) has 8 influenced locations while figure 3-5(a) and (b) have only 4 influenced locations.

For the MA type processes in figure 3-6, we can see that the effect of the pulse intervention disappear abruptly after $t = T_0 + 2$. It is also quite different from the $STAR(1_{\lambda 1})I_m$ process in that the influenced regions are limited. In figure 3-6(a) and (b) the influenced region contains the lst order neighbors of the (4,6) location and in figure 3-7(c), it contains the 1st order and 2nd order neighbors since the latter has a larger spatial influence. The speed of spreading for the STMA(1₂)I_m model is 2 at t = T_0 +1, as seen in figure 3-6(c), while the speed of spreading for the STMA(1)I models is 1. After $t = T_0^{+2}$, the effect disappears at all locations and the velocity of spreading for $STMA(1_{m1})I_m$ model becomes 0 for $t > T_0 + m_1$. Comparing figure 3-6(a) and (b), we see that different Θ -parameter values give different amplitudes. In figure 3-6(a), where the model parameters are, $\theta_{10} = -.4$, θ_{11} =-.4, the amplitudes at the (5,6) and (6,6) locations at T=1 are 1.00 and 4.00 respectively, while the corresponding amplitudes in the figure 4-6(b), where the model parameters are $\Theta_{10}^{=-.2}$, $\Theta_{11}^{=-.4}$, are 1.00 and 2.00.

In figure 3-7(a-b), the infuenced regions contain all these (11 x 11) locations. In figure 3-7(a), the speed of spreading is constant all the time, i.e. v=2. But in figure 3-7(b), the speed is 2 at T = 1 and 1 after T = 2.

Sector N

1 3

N A

1

132

Comparing figure 3-7(a), (b) with those of the STAR and STMA models, we can see that due to the interference of AR and MA provess, the amplitude of the STARMA models is not equal to the superposition of amplitudes of the corresponding STAR and STMA models. For example the amplitudes in figure 3-7(b), in which the parameter values are set to $\phi_{10} = 0.4, \phi_{11} = 0.4, \theta_{10} = -0.2, \theta_{11} = -0.4, \theta_{12} = -0.2, \text{ are } 2.00,$ 1.50, 1.06, 0.75 at the (5,6) location at T = 1,2,3,4 respectively. The corresponding amplitudes in figure 3-6(a), which is a STAR model in which the parameter values are set to $\phi_{10}=0.4$, $\phi_{11}=0.4$, are 1.00, 0.80, 0.56, 0.36 and the corresponding amplitudes in figure 3-6(c), which is a STMA model in which the parameter values are set to $\theta_{10} = -0.2$, $\theta_{11} = -$ 0.4, $\Theta_{12}^{=-0.2}$, are 1.00, 0.00, 0.00, 0.00. It is obvious that from T=2 on, the amplitudes in figure 3-7(b) are not equal to the superposition of those corresponding amplitudes in figure 3-5(a) and figure 3-4(c). this phenomena is due to the interference of STMA process on the STAR process, which has been discused in previous section.

A STAR(1₁)I_m process that satisfies equation 3-23, i.e. the strictly conservative conditions, is simulated and plotted in figure 3-8. In this simulated relocaiton process, the process parameters are set to $\phi_{10}=0.4$, $\phi_{11}=0.6$, and $\frac{121}{\Sigma}$ $W_{1j}^{(1)} = 1$ for $j = 1, 2, \dots, 121$, so that the strictly conservative conditions, equation (3-23) are satisfied. Comparing the figures of (3-8) with their corresponding figures of 3-3(a), we see that the diffusion speed of the relocation process, which is a homogeneously nonstationary STAR(1₁)I_m process, is the same as that of the stationary STAR(1₁)I_m process in figure 3-5(a), i.e. 1 order neighbor per observation period. But the diffusion amplitudes of

-

 \square

.

The name

T=7

Figure 3-7(a). (Cont'd)

Figure 3-7(b). (Cont'd)

143

T=8

the relocation process are always higher than those of the stationary STAR diffusion process, which is a regenerating (-) diffusion process. From T=3 on it becomes even more obvious that the populations at every influenced locations of the relocation process are much higher than those in the correspoding regenerating (-) process. Since the total population at T=0, which is the intervention input, almost damps out in figure 3-5(a) at T=3, while the total population of the relocation process in figure 3-8 is conserved for all time, the longer the time elapsed, the greater the differences in the diffusion amplitude will be.

3.4 Modeling Space-Time Intervention Processes

In previous sections, we investigate the properties of the space-time intervention models. In this section, we describe how to build the space-time intervention model for a process. We still assume that there are a_1 pre-intervention observations and a_2 post-intervention observations.

We will build the space-time intervention model following the three steps listed below:

- 1. Build the model for the pre-intervention space-time process.
- 2. Build the dynamic model for the effect of the intervention. An important component of this step is to identify whether the intervention process is influenced by the environment or not and to identify the form of the impact from the date structure.
- 3. Estimation of the parameters of the total model and diagnostic checking of its adequacy.

146

到

印度

-13

H.

To build the STARIMA model, first the space-time sample autocorrelation functions and the partial autocorrelation functions are computed and are used in accordance with the cut-off tail-off properties to select a candidate model. Then the model parameters are estimated and diagnostic checking is applied to check the adequacy of the proposed model. If the diagnostic checking doesn't show any inadequacy, the model is ready to be employed, otherwise the candidate model will be updated according to the remaining structure, then the parameters of the updated model are estimated. This iterative procedure is employed until an adequate model is found. These procedures and inferential statistics for building the pre-intervention model are completely described in Deutsch and Pfeifer (1980). In building the dynamic component we employ the preintervention model to sequentially estimate $\delta(t)$ for each observations $t > n_1$ and correct these original observations by subtracting $\delta(t)$ when it is

significant. We will denote $Z_{i,t}$ as the observation of location i at time t and $Z_{i,t}^{c} = Z_{i,t} - \delta_{i}(t)$ when $\delta_{i}(t)$ is significant, $Z_{i,t}^{c} = Z_{i,t}$ when $\delta_{i}(t)$ is noneignificant, where $\delta_{i}(t)$ is the estimated mean shift at time t, location i. Thus, in this dynamic scheme, we start with using the n_{1} observations to estimate ϕ , Θ , μ and correct all the observations (pre- and post-intervention) by subtracting μ . Setting n_{2} =1 we use the t < n_{1} +1 to estimate $\delta(n_{1}$ +1) and correct $Z_{i,n_{1}+1}$ if $\delta_{i}(n_{1}+1)$ is significant, and set n_{1} +1 + n_{1} , repeating this procedure until all postintervention observations are exhausted. A detailed flow chart of this procedure is given in figure 3-9.

As shown on the flow chart, we use the n_1 observations, i.e., $Z_{i,t}$, $t < n_1$, $i = 1, 2, \dots, LN$, to determine the model class, i.e., STARMA, STAR or STMA, and to estimate ϕ , Θ . For each estimate of $\delta(t)$, we perform the hypothesis test H_0 : $\delta(t) = 0$ vs. H_1 : $\delta(t) \neq 0$. If H_0 is rejected, we perform all the LN hypothesis-testing H_{0i} : $\delta_i(t) = 0$ vs. H_{1i} : $\delta_i(t) \neq 0$, $i = 1, 2, \dots, LN$, for each individual location and set $\delta_i(t) = \delta_i(t), Z_{i,t}^c = Z_{i,t} - \delta_i(t)$, if H_{0i} is rejected. Set $\delta_i(t)$ = 0 thus $Z_{i,t}^c = Z_{i,t}$ if H_{0i} is not rejected. While if H_0 is not rejected, then $\delta(t) = 0$ and $Z_t^c = Z_t$.

From this sequential procedure, the plot of $\delta(t)$ vs. t allows for the determination of whether there is environmental influence in the intervention process. If the plot reveals no transient behavior and is deterministic, no environmental influence to the mean shift function is present. Alternatively, when these characteristics are present the parameter estimators for the intervention process are those correspoding to $I_m = 1$ structure for model fitting using all n_2 postintervention data. Recall from Chapter II that if $n_2 > 1$ estimates of $\delta(t)$ and therefore, the intrinsic utility of a program δ will be \sim biased if the incorrect structure $I_m = 0$ or $I_m = 1$ is employed.

3.5 Estimation for Space-Time Intervention Models.

Once the pre-intervention space-time model is built in step one of the modeling procedures, the model parameters, i.e. (ϕ, Θ) which have $\sim \sim$ already been estimated may be treated as known in determing estimates

of the other parameters. However, sometimes we do not have complete confidence in the correctness of these estimates perhaps due to the smallness of the length of the preintervention history, n_1 . In this case it is desirable to refine the whole intervention model by estimating all the model parameters simultaneously, eg. treating all parameters as unknown. In this section, we first will develop the the situation in which (ϕ, Θ) are treated as unknown. Here the L.S. $\sim \sim$ estimates of $(\mu, \delta, \phi, \Theta)$ are gotten by searching through the (ϕ, Θ) subspace, and the approximate hypotheses testing statistics, the approximate confidence intervals are developed based on linearization. Lastly, the estimation for the multiconsequence space-time intervention process is treated. Here in addition to the intervention potentially causing a change in the mean level of the process at any of the LN locations a simultaneous change in the covariance can occur causing the preintervention parameters ϕ, θ to change to ψ, γ after the intervention. For this situation, the conditional estimation of $(\psi,\gamma,\mu,\delta|\phi,\Theta)$ are discussed. In the rest of this section, we will assume that ξ_t , i.e. the intervention variable, is well identified and is known.

3.5.1 Transformation to Linear Model Form

In this section we assume that the preintervention model parameters, ϕ and Θ , are known. A recursive formula is developed to \sim transform the original STARIMA($P_{\lambda_1}, \ldots, \lambda_p, 0, q_{m_1}, \ldots, m_q$)I model into linear model form, i.e.

	1			
	whe	ere		
			Yi	8
			~ 1	
	of	the	aba	
	Ŭ1	cile	008	er
			Xi	S
	£			é
	run	CLI	on o	I. 1
		* .	· •	
•				
			••	
			"i?	1
	i			
. *			•	
			°;,	1
			-	
	and			
		÷ .		
	_ '	_	-	
	In t	:he	line	ear
		*.		

150

T.

11

The Party of the P

And and the

$$\begin{array}{cccc} Y &= & X & \rho &+ & \varepsilon \\ \sim & & \sim & \sim \end{array} \tag{3-33}$$

[LN x (n_1+n_2)] by 1 vector with each element as a function vations and model parameters. [LN x (n_1+n_2)] by 2 LN matrix with each element as a model parameters only.

$$\rho^{\mathsf{t}} = [\mu^{\mathsf{t}}, \delta^{\mathsf{t}}] = [\mu_1, \mu_2, \dots, \mu_{\mathsf{LN}}, \delta_1, \delta_2, \dots, \delta_{\mathsf{LN}}]$$

= 1,2,...,LN is the preintervention mean value at location

= 1,2,...,LN is the intrinsic mean shift at location i

 $\varepsilon \sim N(0, I\sigma_a^2)$

model form,

x _{2,1} : x _{LN,1}	(1) $x_{2,2}$ (1) $x_{LN,1}$	2 ⁽¹⁾	x _{2,LN} (1) :	x _{2,LN+1} (1) ····	x _{2,2LN} (1) :
X _{LN,1}	(1) X _{LN}	(1)	•		• •
X _{LN,}	(1) X _{LN} ,	(1)			•
1	•	2(1)	$X_{LN,LN}(1)$	X _{LN,LN+1} (1) ····	X _{LN,2LN} (1)
$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{1,1} \end{bmatrix}$	(2) X _{1,2}	.(2)	X _{1,LN} (2)	$x_{1,LN+1}(2)$	X _{1,2LN} (2)
			• 1	• • • •	
ĽĽŅ, I	$\binom{(n_1)}{}$	$2^{(n_1)}$	$X_{LN,LN}(n_1) $	$X_{\underline{LN},\underline{LN+1}}(\underline{n_1})$	$X_{LN_2LN}(n_1)$
×1,1	ⁿ 1 ⁺¹) ^X 1,2	(n ₁ +1) •••	$X_{1,LN}(n_1+1)$	$x_{1,LN+L}(n_1+1)$	X _{1,2LN} (n ₁ +1)
	•	an an an an Arrange An Arrange an Arrange Arrange			an an an Arrange An Arrange An Arrange Arrang Arrange Arrang Arrang Arrange Arrang Arrange Arrang Arrang Arrang Arrang Arrang Arrang
X _{LN,1}	$(n_1 + n_2) X_{LN},$	$2^{(n_1+n_2)}$	$X_{LN,LN}(n_1+n_2)$	$X_{LN,LN+1}(n_1+n_2)$	$x_{LN,2LN}(n_1+n_2)$

.

.

$$Y = \begin{bmatrix} Y_{1}(1) \\ Y_{2}(1) \\ \vdots \\ Y_{LN}(1) \\ Y_{1}(2) \\ \vdots \\ Y_{LN}(n_{1}+n_{2}) \end{bmatrix} \qquad \rho = \begin{bmatrix} \mu_{1} \\ \mu_{2} \\ \vdots \\ \mu_{LN} \\ \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{LN} \end{bmatrix} \qquad \varepsilon = \begin{bmatrix} \varepsilon_{1}(1) \\ \varepsilon_{2}(1) \\ \vdots \\ \varepsilon_{LN}(1) \\ \varepsilon_{1}(2) \\ \vdots \\ \varepsilon_{LN}(n_{1}+n_{2}) \end{bmatrix}$$

The closed form transformation formula for the STARMA($1_{\lambda 1}, 0, 1_{m1}$) I_m model which will be derived is also applicable to either the STAR($1_{\lambda}, 0, 0$) I_m model or the STMA($0, 0, 1_{m1}$) I_m model by deleting certain terms by setting the appropriate model parameters to zero. Once we have the transformed linear form, we will apply the results of linear model theory, e.g. F. A. Graybill [1976], to get the L.S. estimator for μ , δ , and construct the hypotheses testing statistics and confidence ~ ~

The STARMA($P_{\lambda 1,\ldots,\lambda p}, 0, q_{m 1,\ldots,mq}$) I model form is,

$$Z_{t} = S_{t}^{-\infty} \mu + \xi_{t} \delta + \sum_{K=1}^{p} \xi_{t=0}^{K} \phi_{K\ell} W^{(\ell)} B^{K} (Z_{t} - S_{t}^{-\infty} \mu - (1 - I_{m}) \xi_{t} \delta)$$
(3-34)

 $\begin{array}{ccc} q & {}^{m}K \\ -\Sigma & \Sigma & \Theta_{K\ell} W^{(\ell)} B^{K} (\varepsilon_{t} + I_{m} \xi_{t} \delta) + \varepsilon_{t} \\ K=1 \ \ell=0 & \qquad \sim t \end{array}$

THE PARTY OF

Contraction of the second

And Andreas

and the second is

Aller Constants for

supervised was

-

"The measure of

(3-38)

where $S_t^{-\infty}$ is step function and ξ_t is the intervention variable. Equation 3-34 can also be expressed as,

$$\Phi_{\mathbf{p},\lambda} \overset{(\mathbf{B})Z}{\underset{\sim}{}^{t}} = \Phi_{\mathbf{p},\lambda} \overset{(\mathbf{B})}{\underset{\sim}{}^{t}} \overset{\mathbf{c}^{\infty}}{\underset{\sim}{}^{\mu}}$$
(3-35)

+
$$((1-I_m)^{\phi}_{p,\lambda}(B)+I_m \Theta_{q,m}(B)) \xi_t \sim \phi_{q,m}(B) \varepsilon_t$$

By multiplying every term by $\Theta_{q,m}(B)^{-1}$ we get the lienar model form

of,

$$\stackrel{\Phi_{p,\lambda}(B)}{\xrightarrow{\sim}} Z_{t} = \stackrel{\Phi_{p,\lambda}(B)}{\xrightarrow{\sim}} S_{t}^{\infty} \mu + \frac{(1-I_{m})\Phi_{p,\lambda}(B)+I_{m}\Theta_{q,m}(B)}{\xrightarrow{\sim}} \xi_{t} \delta + \varepsilon_{t}. \quad (3-36)$$

By defining

$$\begin{aligned}
\Psi(t) &= \frac{\tilde{\Phi}_{p,\lambda}(B)}{\tilde{\Theta}_{q,m}(B)} \sum_{i=1}^{Z} t. \\
&\sim \sum_{i=1}^{N} \tilde{\Theta}_{q,m}(B) \sum_{i=1}^{Z} t.
\end{aligned}$$
(3-37)

$$x_{1}(t) = \frac{\tilde{\phi}_{p,\lambda}(B)}{\tilde{\phi}_{q,m}(B)} S_{t}^{-\infty}.$$

A COLUMN A

A CONTRACTOR OF A CONTRACTOR O

and the second se

Define

$$X_{2}(t) = \frac{(1-I_{m})\phi_{p,\lambda}(B) + I_{m}\phi_{q,m}(B)}{\Theta_{q,m}(B)} \xi_{t}$$
(3-39)

where Y(t) is a vector and $X_1(t)$, $X_2(t)$ are LN by LN matrix, the model is reparameterized to the standard linear model form;

$$Y(t) = X_1(t) \mu_2 + X_2(t) \delta + \epsilon_t$$
 (3-40)

where Y(t), $X_1(t)$, $X_2(t)$ of given STARMA($P_{\lambda}, 0, q_m$)I_m model can be derived by using equations 3-37, 3-38, 3-39 recursively.

In the following, we will use ξ_t as a pulse function, $p_t^{"1}(T_p)$, without the loss of generality since, if we let $T = \infty$, the pulse function becomes a step function. Also implicitly, we assume that $n_1 > Max(p,q)$. To obtain the initial values for Y(t) and X₁(t), we will replace the unrealized values of Z_t by their expected values, e.g.

 $\sum_{t=1}^{Z} |t < 0 = \mu. \text{ Thus, } X_2(t) = 0 \text{ for } t < n_1.$

Based on thes initial conditions, we will develop a general transformation formula by using equations 3-37, 3-38, 3-39.

$$W_{\phi K} = \sum_{\ell=0}^{K} \phi_{K\ell} W^{(\ell)} \qquad K = 1, 2, \dots, P$$

From equation 3-37,

 $\Theta_{q,m}(B) Y(t) = \Phi_{p;\lambda}(B) Z_{t}$

or

$$\mathbf{Y}(t) = \sum_{K=1}^{q} \mathbf{W}_{\Theta K} \mathbf{B}^{K} \mathbf{Y}(t) + \sum_{t} - \sum_{K=1}^{p} \mathbf{W}_{\phi K} \mathbf{B}^{k} \sum_{t} \mathbf{K}^{T} \mathbf{$$

Imposing the initial conditions, we get;

From equation 3-38

156

A ST DE LE D

יין אלנופרן באבער בערך ע

ALL ADDRESS

- HARDAN WELLING

♦shttarchanolite V'' "shipetitites

Charlester Teacher

A the second states of the

Providence -

A HERRICAL

A State of Contrasts

ACTING TO A CONTRACTOR

All and a supplicity of

and the second

Survey Survey

and the second

Ŧ.

T

A New York

Contraction of

The second se

I

or

 $X_1(t) = \langle$

or

$$\Theta_{q,m}(B) X_1(t) = \Phi_{p,\lambda}(B) S_t^{\infty}$$

$$X_{1}(t) = \sum_{K=1}^{q} W_{\Theta K} B^{K} X_{1}(t) + I - \sum_{K=1}^{p} W_{\phi K}$$
 (3-43)

Again imposing the initial condition, we have,

$$\left(\left(\mathbf{I} - \sum_{K=1}^{q} \mathbf{W}_{\Theta K} \right)^{-1} \left(\mathbf{I} - \sum_{K=1}^{p} \mathbf{W}_{\phi K} \right) \quad \mathbf{t} \leq 0.$$

$$\begin{pmatrix} q & P \\ \sum W_{\Theta K} X_1(t-K) + I - \sum K=1 & W_{\phi K} \\ K=1 & K=1 & K=1 \end{pmatrix}$$

From equation 3-33

$$\Theta_{q,m}(B) \times_{2}(t) = ((1-I_{m}) \Phi_{p,\lambda}(B) + I_{m} \Theta_{q,m}(B)) P_{t}^{n}(T_{p}).$$

$$X_{2}(t) = \sum_{K=1}^{q} W_{\Theta K} B^{K} X_{2}(t)$$

+
$$(I - (i-I_m) \sum_{K=1}^{p} W_{\phi K} B^K - I_m \sum_{K=1}^{q} W_{\Theta K} B^K) P_t^{n_1}(T_p).$$
 (3-45)

(3-44)

লেন

Using the stated conditions, we have

158

(3-46)

IJ

E L

Contraction of the second

PRESERVAL.

Alternation of

The estimator ρ from linear model theory is unbiased if the X_1 and X_2 matrix are constructed correctly. However if we choose the wrong model structure, i.e., the wrong I parameter value, the estimates will not only be biased, but simply incorrect.

This transformation to lienar model form can be made more compact and computationally simpler to give the transformation formula of STARMA $(1_{\lambda 1}, 0, 1_{ml})I_{m}$ model by defining the iterative functions, $L_{i,Z}(t)$ and $U_{ij}^{(K)}$.

 $L_{i}(t) = \begin{cases} 0 & \text{for } t \leq 1 \\ \\ L_{i}(t) = \begin{cases} 0 & \lambda_{1} & (3-47) \\ \sum_{j=1}^{N} \sum_{\ell=0}^{\lambda_{1}} \psi_{ij}^{(\ell)} Z_{j,t} & -\sum_{\ell=0}^{m_{1}} \psi_{ij}^{(\ell)} (Z_{j,t}^{-L}_{j,Z}(t-1)) | & \text{for } 2 \leq t \leq n_{1} + n_{2} \end{cases} \end{cases}$

i = 1,2,...,LN

$$U_{ij}^{(K)} = \begin{cases} \lambda_{1}^{0} & m_{1} \\ \Sigma & \phi_{1\ell} W_{ij}^{(\ell)} - \Sigma & \Theta_{i\ell} W_{ij}^{(\ell)} & K = 0 \\ \ell = 0 & \ell = 0 & \ell = 0 \end{cases} (3-48)$$

$$M_{1}^{(K)} & K = 0 \\ m_{1} & LN \\ \Sigma & \Sigma & \Theta_{1\ell} W_{ig}^{(\ell)} U_{gj}^{(K-1)} & K > 1 \\ \ell = 0 & g = 1 & K > 1 \end{cases}$$

Using these definitions, the transformation formula becomes For i,j = 1,2,...,LN.

$$i^{(t)} = X_{i,t} - L_{i,8}^{(t)}$$
 $1 \le t \le n_1 + n_2$ (3-49)

$$\begin{array}{c} t-2 \\ X_{ii}(t) = 1 - \sum_{k=0}^{\infty} u_{ii}(k) \\ k = 0 \end{array} \begin{array}{c} 1 \le t \le n_1 + n_2 \\ 1 \le t \le n_1 + n_2 \end{array}$$
(3-50)

$$\begin{array}{c} t^{-2} \\ X_{ij}(t) = \sum U_{ij}(k) \\ k^{=0} \\ \end{array}$$
 1 < t < n₁+n₂, i^{\pm j} (3-51)

In order to apply the result of linear model theory to get the

equation (3-40). Therefore the transformed X-matrix always consists of 2 LN independent columns and is of 2 LN rank.

Assume that all the ϕ 's and θ 's are known, then all the X. 's i,j in the transformed model would be known. Applying the results from the linear model, we can immediately get the least square estimation for ρ

as

 $\rho = X^{\dagger} Y$ (3-56)

where X[†] is the generalized inverse of matrix X. That is, when X, the [LNx(n_1+n_2)] x (2LN) matrix, is of rank 2 LN then $x^{\dagger} = (x^1x)^{-1}x^1$ and the L.S. estimator becomes $\rho = (X'X)^{-1}X'Y$. Also, the sampling distribution of the quantity,

 $M = (n_1 + n_2)(LN)$ cⁱⁱ = the ith diagonal $\frac{\rho_i - \rho_i}{(Y-Y)'(Y-Y)C^{ii} - 1/2}$ (3-57)element of $(X'X)^{-1}$

is student t-distribution. Therefore, the one-at-a-time $100(1-\alpha)$ % confidence interval is,

$$p_{i} = t_{\alpha/2, (M-2LN)} \frac{(Y-Y)!(Y-Y)C^{ii} 1/2}{\frac{2}{M-2LN}}$$
. (3-58)

reason of the second

•••
rank q, with q <
H ₀ is rejected if
like to test the
regions, we test,

No.

where

Also the simultaneous confidence interval is contained in the region

$$\frac{(\rho-\rho)'(X'X)^{-1}(\rho-\rho)}{\sim \sim \sim \sim \sim} < F\alpha, 2LN, (M-2LN)$$
(3-59)

$$\sigma^2 = SS_E / (M - 2LN).$$

To test the hypothesis H_0 : H ρ = 0, where H is a q x 2LN matrix of $q \leq 2LN$, the testing statistics is:

$$W = \frac{\rho H' [H(X'X)^{-1}H']}{q\sigma^2}$$
(3-60)

ed if $W > F\alpha_{q}[(LN)(n_{1}+n_{2}-2)]$. For example, if we would the hypothesis that the shift is insignificant in all

$$\mathbf{H}_{0}: \delta = 0.$$

with H matrix of the form $[0; I_{LN}]$.

3.5.3 L.S. Estimators and Hypothesis Tests for \$, 0 Unknown

The problem described previously of estimating $\mu_{\text{,}}$ δ when $\varphi_{\text{,}}$ Θ are known was a linear estimation problem. When ϕ , Θ are also unknown and we would like to estimate $(\phi, \Theta, \mu, \delta)$ simultaneously, the problem $\sim \sim \sim \sim \sim$ becomes one of nonlinear estimation. Since there are $(m_1 + \lambda_1 + 2LN + 2)$

A

$$\mathbf{x} = \sum_{\ell=0}^{\lambda_1} \left(\frac{\partial \mathbf{x}}{\partial \phi_{1\ell}} \middle|_{\beta} = {}^{\mathbf{o}}_{\beta} \right) \left(\phi_{1\ell} - {}^{\mathbf{o}}_{\phi_{1\ell}} \right) \stackrel{\rho}{\sim} (3-61)$$

$$+\sum_{\substack{\ell=0}}^{m_1} \left(\frac{\partial X}{\partial \Theta_{1\ell}}\right|_{\beta} = \circ_{\beta} \left(\Theta_{1\ell} - \Theta_{1\ell}\right) \circ_{\rho} + X_0 \circ_{\rho} + \varepsilon.$$

where X_0 is the X-matrix evaluated at $({}^{\circ}\phi, {}^{\circ}\theta, {}^{\circ}\mu, {}^{\circ}\delta), {}^{\circ}\beta^{t} = ({}^{\circ}\phi^{t}, {}^{\circ}\theta^{t})$ and ${}^{\circ}\rho = ({}^{\circ}\mu, {}^{\circ}\delta)$, which is the M.L. estimates of (μ, δ) given that $(\phi^{t}, \theta^{t}) = ({}^{\circ}\phi^{t}, {}^{\circ}\theta^{t}).$ Let ${}^{\circ}X^{\Lambda} = ({}^{\frac{\partial X}{\partial \phi_{10}}} |_{\beta = {}^{\circ}\beta}){}^{\circ}\rho, ({}^{\frac{\partial X}{\partial \phi_{11}}} |_{\beta = {}^{\circ}\beta}){}^{\circ}\rho,$ $\dots, ({}^{\frac{\partial X}{\partial \phi_{1\lambda_{1}}}} |_{\beta = {}^{\circ}\beta}){}^{\circ}\rho, ({}^{\frac{\partial X}{\partial \phi_{10}}} |_{\beta = {}^{\circ}\beta}){}^{\circ}\rho, \dots, ({}^{\frac{\partial X}{\partial \Theta_{1m_{1}}}} |_{\beta = {}^{\circ}\beta}){}^{\circ}\rho)$ 1

(Arter)

Since the linearized approximate models are linear in $(\phi, \Theta, \mu, \delta)$, so we could apply the results of lienar model theory to get the L.S. estimates of ${}^{\circ}{}_{\beta}{}^{\Delta}$ and ${}^{\Theta}{}_{\rho}$, i.e., ${}^{\circ}{}_{\beta}{}^{\Delta}$ and ${}^{1}{}_{\rho}$. Once the L.S. estimates ${}^{\circ}{}_{\beta}{}^{\Delta}$, ${}^{1}{}_{\rho}$ are obtained, the linearized model is then established at (β, ρ) $= ({}^{1}{}_{\beta}, {}^{1}{}_{\rho})$, where $({}^{1}{}_{B}, {}^{1}{}_{\rho}) = ({}^{\circ}{}_{\beta}{}_{+}{}^{\circ}{}_{\beta}{}^{\Lambda}, {}^{1}{}_{\rho})$, and the linear model theory is then applied again to get the L.S. estimates ${}^{1}{}_{\beta}{}^{\Lambda}$ and ${}^{\Theta}{}_{\rho}$. This procedure is repeated until both of the following two stopping rules are satisfied. 1. ${}^{i}{}_{\beta}{}^{\Lambda} < {}^{\circ}{}_{\beta}$, where ${}^{\circ}{}_{\beta}$ is a vector of arbitrarily small

$${}^{\circ}{}_{\beta}{}^{\Delta} = {}^{\beta}{}_{\beta}{}^{\circ}{}_{\beta} = {}^{\circ}{}^{\circ}{}_{\theta} = {}^{\circ}{}^{\circ}{}_{\theta}$$

where ${}^{o}x^{\Delta}$ matrix is an [LN• (n_1+n_2)] by $(\lambda_1 + m_1+2)$ matrix, β^{Δ} is an (λ_1+m_1+2) vector, and we have the linearized model at \sim $(\beta,\rho) = ({}^{o}\beta, {}^{o}\rho)$ as

$$Y = {}^{\circ}X^{\Delta} \beta^{\Delta} + X_{0} \rho + \varepsilon \qquad (3-62)$$

 $< \varepsilon_{\beta}$, where ε_{β} is a vector of arbitrarily small positive number, and i_{β}^{Δ} is the L.S. estimate of $\widetilde{}^{i_{\beta}\Delta}$ at i-th iteration.

2. $SS_{i-1} \leq \varepsilon$, where ε is an arbitrarily small positive number, and SS_{i} , SS_{i-1} are the sum of squares at

i-th iteration and (i-1)th iteration respectively.

Once the iterative procedure stops, the L.S. estimates of β and \sim ρ are obtained. To construct the confidence intervals and to perform \sim the hypothesis tests, the linearized model is constructed at $(\beta, \rho) =$ (β, ρ) and then the results of the linear model, which are discussed in \sim 3.5.2, are applied directly to obtain the confidence intervals as well as the test statistics.

To illustrate the linearization in more detail, let us linearize the ξ_t pulse function situation for STARMA($1_{\lambda 1}, 0, 1_{m1}$)I_m intervention model. The results are given below of the linear expression form in equation 3-62,

where

a street a second and and and an angle of a street of the

$${}^{\mathsf{O}}\beta^{\Lambda} = |(\phi - {}^{\mathsf{O}}\phi)^{\mathsf{L}}|, \quad (\Theta - {}^{\mathsf{O}}\Theta)^{\mathsf{L}}|^{\mathsf{L}}, \text{ and}$$

$${}^{\mathsf{O}}X^{\Lambda}_{i,\ell}(t) = {}^{\mathsf{LN}}t^{-2} \sum_{\substack{j=1 \ K=0 \ j \neq \ell}}^{(K)} {}^{\mathsf{O}}\mu_{j} - {}^{\mathsf{LN}}\sum_{\substack{j=1 \ K=t-n_{1}-T_{p}-1 \ j \neq \ell}}^{\mathsf{LN}} {}^{\mathsf{LN}}j_{j} = {}^{\mathsf{LN}}K^{-1} {}^{\mathsf{LN}}_{j} {}^{\mathsf{C}}h_{j}$$

$${}^{\mathsf{LN}} t^{-2} \sum_{\substack{j=1 \ K=0 \ j \neq \ell}}^{(K)} {}^{\mathsf{O}}\mu_{j} - {}^{\mathsf{LN}}\sum_{\substack{j=1 \ K=t-n_{1}-T_{p}-1 \ j \neq \ell}}^{\mathsf{D}}j_{j} {}^{\mathsf{C}}h_{j} {}^{\mathsf{C}$$

$${}^{o}X_{i,\ell+\lambda_{1}}^{\Delta}(t) = -\sum_{j=1}^{LN}\sum_{K=0}^{t-2} E_{ij\ell}^{(K)} \circ_{\mu_{j}} - I\sum_{m_{j}=1}^{LN}\sum_{K=t-n_{1}-T-1}^{t-n_{1}-2} E_{ij\ell}^{(K)} \circ_{\delta_{j}}$$

166

Cutation

(and a second second

(Transmitted)

Marina .

Internet A

1

ł

with $D_{ij\ell}^{(K)}$ and $E_{ij\ell}^{(K)}$ defined recursively as follows.

$$D_{ij\ell}^{(0)} = W_{ij}^{(\ell)}$$

$$D_{ij\ell}^{(K)} = \sum_{\substack{r=1 \ g=1}}^{m_1} \sum_{\substack{l \\ r=1 \ g=1}}^{N} \Theta_{l\gamma} W_{ig}^{(r)} D_{gj\ell}^{(K-1)}$$

$$E_{ij\ell}^{(0)} = -W_{ij}^{(\ell)}$$

$$E_{ij\ell}^{(K)} = \sum_{\substack{g=1}}^{LN} W_{ig}^{(\ell)} U_{gj}^{(K-1)} + \sum_{\substack{r=2 \ \Sigma \\ \gamma=0 \ g=1}}^{m_1} \Theta_{l\gamma} E_{gj\ell}^{(K-1)}$$

Note that all the D_{ijl} 's and E_{ijl} 's are functions of Θ , not ϕ , and are evaluated at $\Theta = {}^{O}\Theta$. This is intuitively true because the moving average parameters are nonlinear while the autoregressive parameters are linear in their own nature.

3.5.4 L.S. Estimators for the Multi-Consequence Space-Time Model

1

Π.

And the second s

	168
, (3-46). To get the $f(t)$ vector and $x_2(t)$ matrix, \sim	
$k=t-a_{1} \qquad \qquad$	
$\min\{q,t-n_1-1\} \qquad \min\{P,t-n_1-1\}$	
$\Sigma = W_{\gamma K} Y(t-K) + \Sigma = W_{\psi K} Z_{t-K}$	
K=1 ° ~ K≠1 ° ~	
$= \sum_{k=1}^{q} W_{\Theta K} X_{2}(t-K) + P_{t}^{(1)}(T_{p}) - (1-I_{m}) \sum_{k=1}^{r} W_{\Theta K} P_{t}^{(1)}(T_{p})$	
$K=t-n_1$	
q n_1 $\min\{q,t-n_1-1\}$	
$- I \Sigma W_{\Theta K} P_{t-K} (T_p) t \Sigma W_{\gamma K} X(t-K)$ $= K^{\pm t-n_1+1} K^{\pm t-K} K^{\pm 1} K^{\pm 1}$	
\mathbf{L}_{i} , L	
$min\{P_t - n_t - 1\}$ $min\{a_t - n_t - 1\}$	
$-(1-I)$ Σ W_{1} $P_{1}^{n}(T) - I$ Σ W_{1} P_{1}^{n}	"(T_),
$\mathbf{m} \mathbf{K=1} \mathbf{\psi K t p m} \mathbf{K=1} \mathbf{\gamma K t-1}$	S. P

(Second

M

presents in the second

-

which results in the liear model form,

 $Y(t) = X_2(t) \delta + \varepsilon_t$

Note that Y(t), $X_2(t)$, $t \le n_1$ are known when the pre-intervention

model has been built.

(3-42),

Y(t) =

 $X_2(t) =$

Once the L.S. estimates $(\Psi, \gamma, \delta | \phi, \Theta, \mu)$ are obtained, the

lienarized model, which has been discussed in the previous section, is constructed and the results of the linear model are applied to construct the confidence interval as well as the hypothesis testing stat.

3.6 An Example: Los Angeles Carbon Monoxide (CO) Data

In this section the Los Angeles CO Data is reanalyzed to illustrate the space-time intervention modeling procedures. This data was previously analyzed by Box, Tiao and Hamming [1975] using single site intervention models. The data are the monthly averages of hourly measurements of carbon monoxide, that was recorded from March 65 to December 71 at six geographically distributed locations in the Los Angeles Basin, i.e., Azusa, Burbank, Lennox, Long Beach, Downtown LA and LA County. Two events (or interventions) occurred, which were expected to reduce the measurement level of carbon monoxide at these locations. The first intervention was the air quality legislation that required an engine design change. This law, enacted in January 1966, required the engine to be designed more efficiently so as to produce less air pollutants. The second intervention introduced in April 1968 was the change in the method of calibration of the measuring instruments. We will denote I, as the first intervention, i.e. the engine design change, and I_2 as the second intervention, i.e. the change of calibration method.

In the following sections, the geological environment of these six locations in the Los Angeles Basin will be described and followed by the construction of weight matrix. Then these two interventions are analyzed to determine the appropriate dynamic component model. In the next section, the space-time intervention modeling procedures are followed step by step to build the pre-I₁ space-time noise model, to identify the model form of the dynamic components, to build the post-I₁, pre-I₂ space-time intervention model and then the whole space-time

multiple interventions model for the whole process. The implications revealed in the built model are discussed to draw the conclusions of the physical interpretation. Also comparisons are made between the space-time multiple intervention model and those univariate time series intervention models in Box, Tiao and Hamming [1975].

170

11

11

CANCELLE

Concession of the

P

LANS.

Party and the second

Construction of the second

Contrasting .

Construction of the local division of the lo

National Street, N

ñ.

Construction of the local division of the lo

3.6.1 The System, Structure and Data

An ere the second s

The relative position of these six locations are illustrated in the actual map and computer drawn facsimile in figures 3-10(a) and (b) respectively. The distances in miles as measured from this map are given in table 3.1. In each case these measurements represent not centroidal distances but distances between measurement sites.

	Azusa	Burbank	Lennox	Long Beach	Downtown LA	LA County
Azusa		22.1	29.5	26.8	19.5	35.4
Burbank	22.1		19.0	26.8	11.3	13.3
Lennox	29.5	19.0		12.8	10.7	21.2
Long Beach	26.8	26.8	12.8		15.6	33.3
Downtown LA	19.5	11.3	10.7	15.6		20.2
LA County	35.4	13.3	21.2	33.3	20.2	

Table 3.1 Distances between Gauge Sites

Any two locations are assigned the same order neighbor to each other according to the distances listed below:

Figure 3-10. The Map and the Relative Positions of Lennox, Long Beach, LA County, Burbank, Downtown LA and Azusa.

Distance Range	Order Assigned
0 - 16 miles	1
17 - 25 miles	2. /
26 - 34 miles	3

The resulting neighbor structure for this assignment is:

al an air an air ann an	Index	lst Order Neighbor	2nd Order Neighbor	3rd Order Neighbor
Locariou	1		2,5	3,4,6
Azusa Burbank	2	5,6	1,3	4
Lennox	3	4,5	2,6	1
Long Beach	4	3,5		1,2,6
Downtown LA	5	2,3,4	1,6	₩ ₩
LA County	6 W.	2	3,5	1,4

The scaled weight matrix is constructed according to the inverse

distance and is listed below.

		1	2	3	4	5	6
	, 1		0	0	0	0	0
_w (1) =	2	0	0	0	0	0.44	0.56
	3	0	0	0	0.54	0.46	0
	4	0	0	0.45	0	0.55	0.4
	5	0	0.29	0.29	0.42	0	0
	6	0	1	0	0	0	0

[] I Å. T فشنه P.C

6

0.52

0

3.6.2 Initial Considerations of the Forms of the Interventions The first intervention, enacted in January 1966, required an improvement in engine design to reduce the air pollutants contained in

172

 \overline{M}

M

创

T_a

M

m

77

	1	2	3	4	5	. 6
1	0	0.53	0	0	0.47	0
$W^{(2)} = 2$	0.54	0	0.46	0	0	0
3	0	0.48	0	0	0	0.52
4	0	0	0	0	0	0
5	0.5	0	0	0	0	0
6	0	0	0.51	0	0.49	0
	1	2	3	4	5	6
1	Го	0	0.32	0.29	0	0.39
W ⁽³⁾ = 2	0	0	0	1	0	
3	1	0	0	0	0	. 0
4	0.32	0.30	0	0	0	0.38
5	0	0	0	0	0	0

The data of each location are plotted in the figures 3-11(a) to 3-11(f). Table 3-2 contains the sample space-time autocorrelation function and the standardized sample space-time autocorrelation functions for the 82 time points and 6 locations. In the following sections the modeling of this substantial, statistically significant spatially and temporally correlated information will be conducted.

0

0

0.48

The Sample Space-Time Autocorrelation Functions and the Table 3-2 Standardized Smaple S-T Autocorrelation Functions for the Observations from March 1965 to December 1971.

176

M

	Space-Time	Autoco	rrelations/	Standardized	S-T Auto	correlatio	ons
Sp/Ice Lag Time Lag	0	1	2	0	· · · 1	2	
1	0.94	0.79	0.75	20,52	17.25	16.39	
2	0.89	0.71	0.70	18.36	15.47	15.14	
3	0.74	0.62	0.63	15.94	13.35	13.60	
4	0.63	0.52	0.56	13.52	11.20	11.98	
5	0.53	0.44	0.49	11.43	9.49	10.59	
6	0.47	0.39	0.45	9.92	8.35	9.49	
7	0.44	0.39	0.43	9.29	8.24	9.02	
8	0.45	0.42	0.43	9.40	8.76	9.08	
9	0.48	0.46	0.45	9.97	9.69	9.38	
10	0.52	0.51	0.47	10.68	10.62	9.71	
11	0.55	0.56	0.49	11.29	11.43	10.00	
12	0.56	0.57	0.49	11.47	11.71	10.06	
13	0.53	0.54	0.47	10.69	11.02	9.54	
14	0.46	0.47	0.42	9.17	9.41	8.52	
15	0.35	0.36	0.35	6.96	7.11	7.00	
16	0.25	0.25	0.28	5.02	4.99	5.58	
17	0.17	0.16	0.22	3.38	3.22	4.35	
18	0.12	0.10	0.18	2.35	2.07	3.52	
19	0.10	0.09	0.16	2.03	1.80	3.23	
20	0.12	0.11	0.17	2.32	2.21	3.37	
21	0.16	0.16	0.20	3.19	3.16	3.88	
22	0.22	0.22	0.23	4.18	4.14	4.40	
23	0.25	0.25	0.24	4.74	4.76	4.54	
24	0.25	0.25	0.23	4.73	4.76	4.28	
25	0.22	0.22	0.20	4.09	4.15	3.68	
26	0.15	0.16	0.15	2.78	2.93	2.70	
27	0.04	0.05	0.07	0.80	1.03	1.32	
28	-0.07	-0.06	-0.01	-1.26	-1.10	-0.31	
29	-0.18	-0.17	-0.11	-3.25	-3.08	-2.03	
30	-0.26	-0.25	-0.19	-4.64	-4.46	-3.31	

i.e. $I_{m,1} = 1$.

0

Π

I

-

the exhausted gas. Since the old cars will be replaced by the newly designed car with improved engine design gradually, the effect of this impact would be expected to increase perhaps linearly until the steady state is reached, i.e. all the cars on the roads are designed under the impact of this air quality legislation. Thus from a modeling standpoint, the indicator variable $\xi_t^{(1)}$ is not 0,1 since there is not instantaneous total resource implementation. Rather $\xi_t^{(1)}$, the indicator variable for the first intervention should be of the form $\gamma_t^{(1)}\xi_t$, where $\gamma_t^{(1)}$ reflects the resource implementation. Also this

legislative intervention didn't involve any action that will reduce the quantity of air pollutants directly. Instead it put constraints on the air pollutant generators (the engine) that produce the source input, i.e. the noise input of the STARMA process, of the whole system. Recall, that this noise input is the only source of input of the STARMA process, so the effect of this engine design change legislation will enter the environment process that the noise follows. That is, this intervention takes the form of the environmental influence situation,

Assuming a constant change over rate and an eight year useful life of an automobile, we have the intervention STARMA $(P_{\lambda}^{}, 0, q_{m}^{})$ I

process takes the following general form:

$${}^{\Phi}2^{(B)(Z_{t}-\mu)} = \Theta_{2}^{(B)(\epsilon+\xi^{(1)}(t))}$$
(3-63)

where $\Phi_2(B)$, $\Theta_2(B)$ are process parameters and

 $\xi^{(1)}(t) = \xi^{(1)}_{t}\delta^{(1)}$ $\delta^{(1)} = [\delta_1^{(1)}, \delta_2^{(1)}, \dots, \delta_6^{(1)}]^{t}$ with $\delta_i^{(1)}$ as the intrinsic program utility at the location i, and

178

A.

-

1

1

I

The second

 $\xi_{t}^{(1)} =$ $0.065 + 0.125 \frac{t-10}{12} t>11$

0

a = the largest integer contained in (---,a), a is real number-

t<10

The second intervention, the change of instrument calibration method, will not have any impact on the existent air pollutants, but only potentially changes in the measurement readings. Suppose that for two instruments, one is calibrated by the old method and the other by the new method, were available at the same time and they were used to measure the pollution level at the same location simultaneously. Assume that Z_t^0 and Z_t^N will have a one-to-one corresponding relationship of the form,

$$z_{t}^{0} = H(z_{t}^{N}) \text{ or } z_{t}^{N} = H^{-1}(z_{t}^{0})$$
 (3-64)

where H is an arbitrary function with H^{-1} exists as its inverse function. H function may be linear may be nonlinear. Here we will assume in general that H function is nonlinear and well behaved, i.e. $H(\mu+\epsilon)$ can be approximated by $H(\mu) + H'(\mu)\epsilon$ when ϵ is a

portions. 13 or

small quantity.

Since $Z^{0} = \mu^{0} + A_{t}^{0}$ and $Z_{t}^{N} = \mu^{N} + A_{t}^{N}$, where μ^{0} , μ^{N} are mean values of Z_t^0 and Z_t^N measurements respectively, A_t^0 and A_t^N are the random

$$Z_{t}^{0} = H(Z_{t}^{N}) = H(\mu^{N}) + H'(\mu^{N}) A_{t}^{N}, \text{ and}$$

$$Z_{t}^{0} = [H(\mu^{N}) - H'(\mu^{N}) \mu^{N}] + H'(\mu^{A}) Z_{t}^{N}, \qquad (3-65)$$

$$Z_{t}^{0} - \mu^{0} = \left[H(\mu^{N}) - H'(\mu^{N})(\mu^{N} - \mu^{0})\right] + H'(\mu^{N})(Z_{t}^{N} - \mu^{0})$$
(3-66)

Since the I, intervention doesn't have any impact on the existent air pollution level, in that it only changes the level readings, the post I1 process will not be changed by I2. What will change is the units that was used to describe this process. Thus, I, is an non-environment involved intervention with $I_{m,2} = 0$. The Z_t^0 in the equation 3-66, which is of the same descriptive unit as that of the Z_t in the equation 3-63, is not available after I_2 but can be obtained through the transformation equation 3-66. The process that is described by equation 3-63 in terms of Z_t^0 for the post I_1 pre- I_2 periods then can be expressed in terms of Z_t^N , that is available for the post-I2 periods, by the following equation.

$$\Phi_{2}(B)\left(\underset{\sim}{\delta_{3}}^{+}H'(\mu^{N})(z_{\tau}^{N}-\mu^{0}) \right) = \Theta_{2}(B)\left(\underset{\sim}{\epsilon_{t}}^{+} \underset{\sim}{\xi^{(1)}}^{(1)}(t) \right)$$
(3-67)

where

 $\delta_3 = H(\mu^N) - H'(\mu^N)(\mu^N - \mu^0) \text{ is function of } \mu^0,$ because μ^N is function of μ^0 too. Since this unit transformation will

be independent among locations, $H'(\mu^N)$ should be a diagonal matrix, i.e. $\mathbb{R}^{\prime}(\mu^{N}) = D$, of which the diagonal elements d_{ii} are functions of μ_{i} , the mean level of location i. To simplify the notation we will denote Z_t^N as Z_t for the post-I₂ periods because it is available for analysis in those post I_2 periods. The model, equation 3-67, is rewritten as

$$\Phi_{2}(B)\left(\delta_{3}+D(Z_{t}-\mu)\right) = \Theta_{2}(B)\left(\varepsilon_{t}+\varepsilon^{(1)}(t)\right) \qquad (3-68)$$

To summarize the previous discussion, we have the following general multiple intervention STARMA model form;

$$Pre-I_{1}: \Phi_{1}(B)(Z_{t}-\mu) = \Theta_{1}(B)\varepsilon_{t}$$

$$Post-I_{1}: \Phi_{2}(B)(Z_{t}-\mu) = \Theta_{2}(B)(\varepsilon_{t}+\xi^{(1)}(t))$$

$$Pre-I_{2}$$

$$(3-69)$$

$$\operatorname{Post-I}_{2}: \quad \Phi_{2}(B)\left(\underset{\sim}{\delta_{3}}+D(Z_{t}-\mu)\right) = \Theta_{2}(B)\left(\underset{\sim}{\varepsilon_{t}}+\xi^{(1)}(t)\right)$$

where $\xi^{(1)}(t)$ is described in equation (3-63), and δ_3 is the measure level shift, $\Phi_1(b)$, $\Theta_1(b)$ are the pre-I₁ model parameters, and $\Phi_2(b)$, $\Theta_2(b)$ are the post-I₁ model parameters. From equation (3-69), we have $Var(Z_t^c) =$ and Var(DZ So _D² = where Z_t^c is the mean corrected observations in the dynamic components identification procedure. Since the D-matrix is a diagonal matrix with its ith diagonal element d interpreted as the scaled factor between readings from the old instrument and the new instrument measured at location i, the element d_{ii} can be estimated by d_{ii} = |Var(Z_i

180

前出

T

T

X.4.1

Ţ

T

 \square

四日

R.M.

Anna State

L'una la pol

$$Var(\Phi_2(B)^{-1} \Theta_2(b)\varepsilon_t)$$
, t ε pre-I₂, post-I₁ periods,

$$Z_{t}^{c}$$
 = Var $(\Phi_{2}(B^{-1}) \Theta_{2}(b) \varepsilon_{t})$, $t \varepsilon \text{ post-I}_{2}$ periods

$$Var(Z_t^c)$$
 t \in post-I₂ / $Var(Z_t^c)$ t \in pre-I₂, post-I₁, (3-70)

i,t't
$$\varepsilon$$
 post-I₂ / Var(Z_i,t't ε pre-I₂, post-I₁ $|$ (3-71)

•		a da anti-arresta a construir a constru Arresta a construir a const Arresta a construir a const					
					<u>N</u>		
			182				
			102		5446 Avrts		
3	.6.3 Modeling the LA CO Dat	<u>a</u>		province of the second se			
	In the following the r	esults of each step of th	e model building		taget	Table 3-	-3(a). he Space-Ti
P	rocedures are presented. Th	is includes;		per Change 20		T	Autocorrel
	(a) Modeling the pre-1	1 space-time process.					Space-Time
	(b) Modeling the post-	I dynamic components.				Space La	g 0
	(c) Modeling the post-	-I ₁ space-time interventio	n process.		And the second se	11me Lag	0.69
	(d) Overall diagnostic	checking and model updat	.e∙			2	0.88
						4	-0.26
4	.6.3.1 Modeling the pre-I1	space-time process			đ٦	ر	-0.52
	The observations from	March, 1965 to December,	1965 comprise the		and a second sec		
P	re-I, periods. The sample	space-time autocorrelation	n functions in the		N. Lawrence		
t	able 3-3(a) and the sample	space-time partial autocom	rrelation		()		041
: f	Functions in the table 3-3(b) suggest the candidate m	odel STAR(2λ)		200	Table 3	-3(b). he Space-Ti
	nodel with $\lambda = (1,1)_{\circ}$ i.e.				2-1 2-1	S	tandardized
	~						Space-Time
•	2 1	(0)			()	Space La	g U
	$Z - \mu = \Sigma \Sigma \Phi$ $Z^{t} \sim k=1 \ell=0$	$Kt^{W(L)} (Z_{t-K} - \mu) + \varepsilon 1$	< t < 0 (3-72)		Sector and the sector	1	0.686
					Π	3	-0.214
	The M.L. point estima	iters and their associated	95% confidence		<u>.</u>	4 5	-0.149
	intervals are;						
					2 ⁷³		
		95% CI					
	$\Phi_{10} = 0.1$	(0.339, 0.370)					
	$\Phi_{11} = 0.$	(-0.044, 0.713)			A STREET	•	
	$\Phi_{20} = -0.$	130 (-0.459, 0.201)					
	$\phi_{21} = -0.$	UD6 (-0,482, 0,370)			10	and a second secon	
				5			

مېر سايد دي. د تند ي ۲۰ م و

-Time	Autoco	rrelatio	ns/Standardized	S-T Autocorrelations		
	1	2	0	· 1 ·	2	
68	0.57	0.50	4.438	3.716	3.298	
38	0.38	0.35	2.321	2.329	2.148	
01	0.06	0.12	0.106	0.329	0.704	
26	-0.24	-0.11	-1.274	-1.196	-0.578	
52	-0.59	-0.43	-2.222	-2.541	-1.834	

e-Time Autocorrelation Functions and The Standardized S-rrelation Functions of the $Pre-I_1$ Observations.

ce-Time Partial Autocorrelation Functions and The dized S-T Partials of The Pre-I₁ Observations.

-Time	Autocorrelations/Standardized S-T Autocorrelations						
	1	2	0	1	2		
686	0.252	0.089	5.033	1.849	0.655		
214	-0.144	-0.025	-1.481	-0.999	-0.175		
381	-0.319	-0.001	-2.471	-2.065	-0.008		
149	-0.126	-0.100	-0.896	-0.757	-0.603		
263	-0.570	-0.370	-1.449	-3.124	-2.026		

GAL

 $\sigma^2 = 1.4377$

The extra sum of squares associated with Φ_{21} was insignificant. Since Φ_{21} is insignificant, it was deleted which results in the STAR(2_{1,0}) model. The M.L. point estimates and their associated 95% confidence intervals are:

184

A CHARTER A

1

T

1 ---- A

t-----

[

Sen.

T

1

Ĩ

1

Sources.

	95% CI			
$\Phi_{10} = 0.671$	(0.366, 0.976)			
$\Phi_{11} = 0.319$	(-0.007, 0.624)			
$\Phi_{20} = -0.146$	(-0.449, 0.158)			
$\sigma^2 = 1.438$				

The sample space-time autocorrelation functions and the sample partial autocorrelation functions of the residuals of this model are listed in tables 3-4(a) and 3-4(b) respectively. No additional structure is seen here and thus these residuals approximate to be uncorrelated. Thus the $STAR(2_{1,0})$ model is adequate for the pre-I₁ process.

3.6.3.2 Modeling the Post-I Dynamic Components

Following the dynamic component modeling procedures as shown in the figure 3-9, the mean shift function $\delta_i(t)$ i=1,2,...,6 for 11<t<82 (e.g. for the post-I₁ period) are estimated. These estimated values, $\delta_i(t)$, are plotted in figure 3-12(a)-(f) for locations 1 through 6 respectively. The $\delta_i(t)$ in the pre-I₂ period characterizes the effect of I₁ intervention, while the $\delta_1(t)$ in the post-I₂ periods should be

	Table	3-4	(a)
		Sta	ndar
		Roe	idua
		NC3	Luua
1			مىرىك
		S	pace
	Space 1	Lag	0
	Time La	ag	
	1		-0,
	2		0.
	2		<u> </u>
			_0
	4		-0-
	5		-0.
	. 6		-0.
	. 7		-0.
		, i	
	· · · ·		
	(Ъ).	The	Sam
		Sta	ndar
			é de
		S	DACE
	Shace	T.ao -	0
	Time T	Lag	
	TTHE D	ag	
	1		-0.
	2	19	0.
	3		0.
	4		-0.
	5		-0.
	6		-0.
	7		_0
an a			
			. 11
		· · * .	
	an a		

The S	ample	Space	-Time	Autoc	orrel	ation	Func	tior	is an	d The
dized	Samp1	e S-T	Auto	correl	ation	Funct	ions	of	the	Pre-I1
ls.										

-Time	Autocor	Autocorrelations/Standardized S-T Autocorrelations						
	1	2	0	Ţ	2			
019	-0.001	-0.004	-0.125	-0.005	-0.024			
113	• 0.091	0.102	0.679	0.543	0.612			
100	0.140	0.081	0.546	0.766	0.441			
107	-0.067	-0.060	-0.525	-0.326	-0.294			
105	-0.187	-0.144	-0.445	-0.792	-0.611			
022	-0.041	-0.060	-0.077	-0.144	-0.207			
278	-0.146	-0.261	-0.682	-0.357	-0.639			

ple Space-Time Partial Autocorrelation Functions and The dized Sample S-T Partials of The Pre-I₁ Residuals.

Autocor 1	relation 2	s/Standardized 0	S-T Autocorrelations 1 2		
0.011	0.010	-0.141	0.078	0.072	
0.069	0.049	0.781	0.481	0.342	
0.156	-0.019	0.680	1.009	-0.122	
-0.050	-0.006	-0.728	-0.300	-0.034	
-0.286	-0.090	-0.823	-1.568	-0.491	
0.057	0.181	-0.149	0.278	0.885	
0.059	-0.173	-0.899	0.251	-0.732	
	Autocor 1 0.011 0.069 0.156 -0.050 -0.286 0.057 0.059	Autocorrelation 1 2 0.011 0.010 0.069 0.049 0.156 -0.019 -0.050 -0.006 -0.286 -0.090 0.057 0.181 0.059 -0.173	Autocorrelations/Standardized 1 2 0 0.011 0.010 -0.141 0.069 0.049 0.781 0.156 -0.019 0.680 -0.050 -0.006 -0.728 -0.286 -0.090 -0.823 0.057 0.181 -0.149 0.059 -0.173 -0.899	Autocorrelations/Standardized S-T Autonomic 1 2 0 1 0.011 0.010 -0.141 0.078 0.069 0.049 0.781 0.481 0.156 -0.019 0.680 1.009 -0.050 -0.006 -0.728 -0.300 -0.286 -0.090 -0.823 -1.568 0.057 0.181 -0.149 0.278 0.059 -0.173 -0.899 0.251	Autocorrelations/Standardized S-T Autocorrelations 1 2 0 1 2 0.011 0.010 -0.141 0.078 0.072 0.069 0.049 0.781 0.481 0.342 0.156 -0.019 0.680 1.009 -0.122 -0.050 -0.006 -0.728 -0.300 -0.034 -0.286 -0.090 -0.823 -1.568 -0.491 0.057 0.181 -0.149 0.278 0.885 0.059 -0.173 -0.899 0.251 -0.732

Figure 3-12. (Cont'd) (d) at Long Beach (e) at Downtown LA (f) at LA County 187
interpreted as the effect of I_2 given that I_1 has been initiated in this system.

From figure 3.12 the I_2 intervention is seen to shift the mean shift function instantaneously for each location suggesting its effect to be additive not interactive with I_1 . Thus, although in general, the effect of multiple interventions that overlaps should be viewed as conditional depending on the physical nature of the intervention they may be additive. Thus the I_2 intervention which is solely a measurement change does not appear to interact with the engine design change as expected apriori. In addition, from the data plots in figure 3-11(a)-(f), we see that at April, 1978 the air pollution levels of these six locations were about the same. Thus even under a nonlinear transformation assumption, i.e. the transformation between readings of different calibration methods are nonlienar nature and state dependent, the I_2 intervention had the same level change effect and the same scale factor at these six locations would be appropriate. That is, the mean shift vector $\delta_3 = \delta_3 \frac{1}{2}$ and the scale factor matrix between

measurements, D = dI.

From the initiation point of the engine design modification the pattern of $\delta_i(t)$ which is not a constant shift but rather exhibits seasonal fluctuations about a change in mean level indicates that the I_1 intervention is environmentally influenced. Figures 3-13(a),(b) exhibit the K(t) values for the six locations and figures 3-14(a)-(f) contains the $\delta(t)$ versus K(t) plots for each location. From the latter plots the appropriate form of the dynamics of the intervention can be identified. From these plots we see an apparant change in slop between the post- I_1 , pre- I_2 segment and the post- I_2 segment. Regression fits

American A

A STREET AND A STREET

1

*

-

2

1

6.4

-

1

T

1

- İi

作り取

to each of these segments for all six locations were developed for first and second order polynomials of the form;

$$\delta(t) = \beta_0 + \beta_1 (K(t) - \overline{K}_t) + \beta_2 (K(t) - \overline{K}_t)^2.$$

Table 3-5 contains the estimated parameters. For the $post-I_1$, $pre-I_2$ segment only in locations 3, 4 and 5 (Lennox, Long Beach and Downtown LA) is there a significant shift in carbon monoxide tentatively identified. Further only in Lennox is there any indication that there is a 2nd order transient effect. For the post I_2 period, all sites are seen to have an instantaneous measurement effect (e.g. the slope β , being statistically significant). Basing on the above considerations, the following tentative model for post- I_1 periods is identified.

where $\xi^{(1)}(t) = \xi^{(1)}_{t} \delta^{(1)}_{t}$ as defined in equation 3-63, $\xi^{(2)}(t) = \xi^{(1)}_{t} \delta^{(2)}_{t}, \delta^{(2)}_{t} = \lfloor \delta^{(2)}_{1}, \delta^{(2)}_{2}, \dots, \delta^{(2)}_{6} \rfloor^{t},$

 δ_3 and d are the mean change and the scale faactor between readings of different calibration methods.

	194	4	California States
ır)	σ ²		
8.306)	1.337 4.399 4.014 2.138		
	1.947 3.522		Marrie A
1 10 1 1 1 1 1			
	e que ser		
	2		
ir)	σ		D
- -	1.902 - 5.495 6.076 4.992		
	2.708		Į,
•			

The second

0

ł,

1 (]

P

T

Table 3-5 Mean Shift Function Forms.

1	(Post I ₁		J.	
location	β ₀ (Var)	β ₁ (Var)	β ₂ (Var)	σ2
1	0.748(0.152)	2.435(2.249)		1.337
2	-0.174(0.169)	-2.425(1.168)	. a 2	4.399
3	-8.268(0.434)	-3.639(1.169)	11.200(13.306)	4.014
4	-1.437(0.082)	-0.079(0.568)		2.138
5	-2.916(0.768)	0.826(0.530)		1.947
6	-0.637(0.136)	2.483(0.935)		3.522

		(Post	t I ₂)		
10	cation	β ₀ (Var)	β _j (Var)	β ₂ (Var)	2 σ
	1	-5.335(0.041)	0.181(0.506)		1.90
	2	-7.279(0.119)	-0.292(0.145)		- 5.49
	3	-13.810(0.132)	0.264(0.195)	—	6.070
	4	-7.683(1.09)	-0.094(0.161)	en 🛁 🚽 🖓	4.992
	5	-7.115(0.059)	-0.147(0.087)	-	2.70
	6	-7.513(0.081)	0.449(0.119)		3.71

	aatim
	COLIM
	(
	ψ, δ`
	~ ~
	The as
1	
	corres
	term v
	follor
	TOTION
	a) -
	<
	3
	1
	1
	1
	• 1
1000	The cor
	01

(I-

nditional M.L. estimation results are;

Model Pa

Ψ20

 $\delta_{1}^{(1)}$ $\delta_{2}^{(1)}$ $\delta_{3}^{(1)}$ $\delta_{4}^{(1)}$

3.6.3.3 Modeling the Post-I Space-Time Intervention Model

Keeping the pre-I₁ model, equation (3-72) unchanged, the M.L. nation has been performed to give the conditional M.L. estimates of (1), $\delta^{(2)}$, δ_3 . This resulted in non-significance of $\psi_{11} = 0.004$. associated extra sum of square $SS_E = 0.432$ being less than the esponding critical F for reasonable lpha levels. Therefore the ψ_{11} was dropped from the model, and the M.L. estimation for the wing reduced model was obtained.

Pre-I₁, Post-I₂:
(I-
$$\psi_{10}$$
 IB- ψ_{20} IB²)(Z_t- μ) = A_t + $\xi^{(1)}(t)$

Post-I₂:

$$(I-\psi_{10} IB-\psi_{20} IB^2)(\delta_3 \frac{1}{2} + d(Z_{t}-\mu)) = A_{t} + \xi^{(2)}(t)$$

del Parameter	C.M.L. Estimate	95% C.I.		
Ψ10	0.900	(0.821, 0.979)		
Ψ20	-0.247	(-0.324, -0.170)		
δ ⁽¹⁾ 1	1.647	(-1.119, 4.414)		
$\delta_2^{(1)}$	-2.574	(-5.350, 0.193)		
δ ⁽¹⁾ 3	-14.895	(-17.660,-12.130)		
δ ⁽¹⁾ 4	-3.674	(-6.440, -0.907)		

(3-74)

$\delta_{5}^{(1)}$	-5.677	(-8.443, -2.910)
δ(1)	-1.382	(-4.148, 1.385)
δ ⁽²⁾	-2.105	(-1.148, 0.727)
δ ⁽²⁾	-1.503	(-2.441, -0.566)
δ ⁽²⁾	-5.410	(-6.347, -4.472)
δ ⁽²⁾	-1.687	(-2.628, -0.750)
$\frac{4}{\delta^{(2)}}$	-1.300	(-2.237, -0.362)
δ ⁽²⁾	-1.534	(-2.471, -0.596)
٥ گ	-5.123	(-6.128, -4.117)
3		

and

 $\sigma_A^2 = 1.517$, d = 1.048

3.6.4 Refining the Noise Model and Diagnostic Checking

From the estimated residuals A_t of the post-I₁ model (equation 3-76), the sample space-time autocorrelation functions and the sample space-time partial autocorrelation functions were estimated. Table 3-6(a) and 3-6(b) contain these autocorrelation functions and their standardized forms. The autocorrelations are seen to repeat in blocks of size 11 indicating the need of seeeasonal components in the noise model. Furthr, within each block, the autocorrelation and partial autocorrelation functions appar to tail off for spatial log 0 and 1. Thus a tentative noise model for the $post-I_1$ period is the seasonal STARMA(1,0,1) x (1,0,0) model. It's form is,

 $\langle f \rangle$

are;

1

CT1500

n L

1-----

A Constanting

A suspension

L'entre 1

4

Contraction of the second

196

$$(I - \phi_{10}^{N} IB - \phi_{11}^{N} W(1)B)(I - \phi_{11,0}^{N} IB^{11} - \phi_{11,1}^{N} W^{(1)}B^{11}) A_{t}$$
 (3-75)

=
$$(I - \Theta_{10}^{N} IB - \Theta_{11}^{N} W^{(1)}B) \varepsilon_{t}$$

The M.L. point estimates and their associated 95% confidence intervals

	95% C.I.
$\Phi_{10}^{N} = 0.698$	(0.311, 1.085)
$\Phi_{11}^{N} = -0.145$	(-0.614, 0.325)
$\Phi_{11,0}^{N} = 0.060$	(-0.057, 0.178)
$\Phi_{11,1}^{N} = 0.389$	(0.244, 0.535)
$\Theta_{10}^{N} = 0.575$	(0.137, 1.014)
$\Theta_{11}^{N} = -0.211$	(-0.746, 0.324)
$\sigma_{\varepsilon}^2 = 1.236.$	

The residuals of this fitted model ε_{t} , were computed and their sample space-time autocorrelation functions were estimated. Table 3-7 contains these autocorrelations and their standardized forms. From this table no additional identifiable structure is seen. An overall test of the adequacy of this model in that there is no additional structure (the residuals are uncorrelated) can be made using χ^2 and F tests. The standard portmanteau χ^2 test used in univriate modeling is not appropriate since the zeroth, first and second spatial lags are not 198

Contract of the second s

肕

I MAN

B

Ø

Ø

例

Table 3-6 (a) The Sample Space-Time Autocorrelation Functions and The Standardized S-T Autocorrelation Functions of the Rersiduals of the Post-I1 Model.

S	pace-Time	Autocor	relations/S	Standardized	S-T Auto	correlations
Space Lag	0	1	2	0	1	2
Time Lag			·			
		0.19	0.05	3_38	3.49	1.05
1	0.16	0.17	0.03	4 13	2.54	2.15
2	0.20	0.12	0.10	3 11	1 50	1.84
3	0.15	0.07	0.09	J.II _1 61	-3.83	-2.14
4	-0.08	-0.19	-0.10	-1.0L	-3.15	-1.10
5	-0.17	-0.16	-0.05	-3•2T	-7.26	-0.53
6	-0.15	-0.23	-0.02	-3.03	-4.00	-0.55
7	-0.27	-0.25	-0.19	-5.20	-4.92	-3.70
8	-0.06	-0.03	0.03	-1.21	-0.04	1 74
9	0.03	0.09	0.09	0.67	1.88	1.74
10	0.04	0.03	-0.04	0.82	0.74	-0.84
11	0.26	0.39	0.22	5.04	7.38	4.25
12	0.19	0.22	0.05	3.59	4.17	0.98
13	0.15	0.26	0.07	2.90	4.84	1.46
14	0.21	0.21	0.16	3.89	4.00	2.95
15	-0.18	-0.14	-0.09	-3.33	-2.69	-1.77
16	-0.13	-0.13	-0.08	-2.45	-2.35	-1.45
37	-0.23	-0.22	-0.09	-4.27	-3.93	-1.68
19	-0-36	-0-37	-0.22	-6.43	-6.63	-3.94
10	-0.23	-0.23	-0.15	-4.12	-4.09	-2.79
19	-0.18	-0.21	-0-11	-3.14	-3.67	-1.95
20	-0.16	-0.10	-0.13	-2.90	-1.74	-2.26
21	-0.10	0.22	0.18	4.42	3.87	3.14
22	0.15	0.17	0.02	2.53	2.89	0.47
23	0.15	0.11	0.02	3.96	3,55	1.38
24	0.23	0.21	0.00	5.26	5.11	3.50
25	0.32	0.31	-0.05	1 00	0.36	-0.97
26	0.06	0.02	-0.05	-0.13	0.52	1.02
27	-0.00	0.03	0.00	-U.IJ	-1 8/	-0.48
28	-0.08	-0.11	-0.03	-1.34	-1.04	-3-83
29	-0.25	-0.29	-0.24	-3.93	-4.57	_1 00
30	-0.23	-0.21	-0.12	-3./1	-2.20	-1.77

Model.

Space Lag Time Lag

1 2

ેર

8

30

T

T

D

States.

(

 $\left(\right)$

 $\left(\right)$

 \square

the second second

Ø

T

n na sana an Tanang kabupatén an

Table 3-6

(b) The Sample Space-Time Partial Autocorrelation Functions and The Standardized S-T Partials of the Rersiduals of the Post-I1

	·							
50	Space-Time	Autocor	relation	ns/Stand	ardized	S-T Auto	ocorrelations	3
3	0	1	2		0	1	2	
	0.16	0.13	-0.08		3.43	2.87	-1.68	
	0.17	-0.01	0.04		3.51	-0.33	0.97	
	0.10	-0.06	0.05		2.21	-1.39	1.21	
	-0.15	-0.31	-0.05		-3.19	-6.41	-1.17	
	-0.19	-0.02	0.03		-3.86	-0.59	0.63	
	-0.08	-0.10	0.13		-1.67	-2.16	2.77	
	-0.13	-0.04	-0.11		-2.75	-0.79	-2.19	
	0.04	0.14	0.08		0.82	2,90	1.72	
	0.14	0.20	0.10		2.78	3.95	2.03	
	0.02	-0.07	-0.09		0.48	-1.45	-1.91	
	0.14	0.25	0.03		2.81	4.87	0.75	
	0.02	0.02	-0.09		0.49	0.43	-1.86	
	0.03	0.19	0.00		0.62	3.75	0.06	
	0.04	0.02	0.11		0.88	0.52	2.07	
	-0.23	-0.22	0.04		-4.36	-4.13	0.85	
	-0.09	-0.00	-0.00		-1.65	-0.08	-0.14	
	-0.16	-0.12	-0.08		-2.93	-2.20	-1.49	
	-0.11	-0.04	-0.09		-1.98	-0.84	-1.65	
	-0.02	-0.04	-0.15		-0.37	-0.88	-2.77	
	-0.14	-0.23	-0.09		-2.48	-4.12	-1.74	
	-0.07	0,02	0.01		-1.383	0.45	0.29	
	0.17	0.05	0.12		2.99	0.94	2.11	
	0.04	-0.01	0.07		0.80	-0.33	1.23	
	0.16	0.08	80.0		2.72	1.44	1.37	
	0.11	0.02	0.04		1.90	0.48	0.80	
	0.01	0.05	-0.06		0.20	0-99	-1.13	
	-0.01	0.23	0.16		-0.22	3.84	2.75	
	-0.03	0.10	-0.01		-0.64	1.69	-0.29	
	0.07	0.15	-0.19		1.23	2.47	-3.12	
	-0.11	0.02	-0.19	the second second	-1.77	0.36	-3.04	

independent. However since the current model doesn't have any seecond order spatial terms the sample autocorrelations for the second order spatial terms can be checked for adequacy, (being uncorrelated or informationless using the χ^2 statistic). If the computed χ^2 statistic is insignificant, the magnitude of the statistic could have come about by chance alone and thus can be used to check the adequacy of the proceeding spatial lags usig an F test.

From Table 3-7 we have

$$\sum_{K=1}^{30} \rho_{K0}^2 = 77.71$$

$$\sum_{K=1}^{30} \rho_{K1}^2 = 58.27$$

$$\sum_{K=1}^{30} \rho_{K2}^2 = 42.15$$

$$\sum_{K=1}^{30} \rho_{K2}^2 = 42.15$$

For $\alpha = 0.05$, the theoretical $\chi^2_{30,.05} = 43.77$ and

$$\chi^2 = 42.15 < \chi^2_{30..05}$$

Thus the second spatial lag is uncorrelated and the magnitude 42.15 is associated with chance error. For the first spatial lag,

$$F_1 = 58.27/42.15 = 1.38.$$

Noise Model. Space-Space Lag 0 Time Lag -0. 0. 0. 0. -0. -0. -0. -0. 0. 0. 10 11 -0. 12 0. 13 0. 0. 14 15 -0. -0. 16 17 -0. 18 -0. 19 -0. 20 -0. -0. 0. 0. 21 22 23 24 25 26 0. 0. 27 -0. 28 0.

29

30

Particular .

M

Supervision State

D

1T

8

1212-Harris

(1)

200

Table 3-7 The Space-Time Autocorrelation Functions and the Standardized S-T Autocorrelation Functions of the Rersiduals, ε_t , of the Post-I Noise Model.

ace-Time	Autoco	rrelation	s/Stand	ardized	S-T Auto	correlati	ons
0	1	2		0	1	2	
-0.03	0.00	-0.02		-0.78	0.19	-0.49	
0.03	-0.01	0.00		0.78	-0.26	0.12	
0.08	0.04	0.03		1.70	0.81	0.67	
0.01	-0.04	-0.04		0.28	-0.88	-0.85	
-0.09	-0.03	-0.01		-1.95	-0.70	-0.21	
-0.04	-0.07	0.04		-0.87	-1.49	0.82	
-0.13	-0.08	-0.11		-2.59	-1.64	-2.19	
-0.02	0,01	0.06		-0.54	0.19	1.29	
0.06	0.12	0.09		1.30	2.38	1.88	
0.00	-0.03	-0.08		0.12	-0.62	-1.54	
-0.03	-0.04	-0.02		-0.61	-0.90	0.41	
0.09	0.07	0.00		1.73	1.47	0.14	
0.04	0.09	0.00		0.85	1.83	0.00	
0.10	0.06	0.06		1.94	1.17	1.21	
-0.13	-0.11	-0.03		-2.46	-2.00	-0.64	
-0.04	-0.02	-0.05		-0.88	-0.44	-0.92	
-0.08	-0.05	-0.02		-1.51	-1.05	-0.50	
-0.14	-0.12	-0.03		-2.58	-2.19	-0.70	
-0.09	-0.06	-0.08		-1.58	-1.18	-1.44	
-0.11	-0.15	-0.09		-2.00	-2.63	-1.59	
-0.06	-0.00	-0.03		-1.15	-0.16	-0.67	
0.11	0.07	0.09		1.99	1.20	1.61	
0.04	0.02	-0.02		0.70	0.36	-0.42	
0.04	-0.00	-0.02		0.69	-0.02	-0.40	
0.09	0.07	0.05		1.61	1.19	0.96	
0.03	0.00	-0.04		0.54	0.05	-0.67	
-0.00	0.05	0.07		-0.03	0.81	1.20	
0.00	-0.00	0.00		0.04	-0.03	0.14	
-0.06	-0.06	-0.09		-1.01	-1.04	-1.48	
-0.05	-0.01	-0.01		-0.90	-0.20	-0.28	

201

GAL

 $F_1 = 1.38 < F_{30,30,.05} = 1.84$

ALC: NO.

1

T

T

T

202

Also since the first spatial lag is uncorrelated,

$$F_0 = 77.71/(\frac{42.15 + 58.27}{2}) = 1.44 < F_{30,60,.05} = 1.65$$

Thus the space-time residuals are uncorrelated in both space and time. Therefore the model is accepted as statistically adequate.

Therefore we have the overall intervention model as follows;

Pre-I₁ process: (3-76)
(I -
$$(\Phi_{10} I + \Phi_{11} W^{(1)}) B - \Phi_{20} IB^2)(Z_t - \mu) = \varepsilon_t$$
, $t \le 10$

Post-I₁, Pre-I₂ process:

$$(I - \psi_{10} IB - \psi_{20} IB^2)(Z_t - \mu) = A_t + \xi_t^{(1)}\delta^{(1)}, \quad 11 \le t \le 37$$

Post-I₂ process:

$$(I - \psi_{10} IB - \psi_{20} IB^2)(\delta_3 \frac{1}{2} + d(Z_t - \mu)) = A_t + \xi_t^{(1)}\delta^{(2)}, \quad 38 \le t \le 82$$

The noise process of A_t:

$$(I - (\Phi_{10}^{N} I + \Phi_{11}^{N} W^{(1)})B)(I - (\Phi_{11,0}^{N} I + \Phi_{11,1}^{N} W^{(1)})B^{11}) \overset{A}{\sim} t$$
$$= (I - (\Theta_{10}^{N} I + \Theta_{11}^{N} W^{(1)})B) \overset{\varepsilon}{\sim} t$$

203 Where the model parameter values Φ_{10} , Φ_{11} , Φ_{20} have been listed in equation 3-72, ψ_{10} , ψ_{20} , $\delta^{(1)}$, $\delta^{(2)}$, δ_3 and d have been listed in T. T. equation 3-74, Φ_{10}^{N} , Φ_{11}^{N} , $\Phi_{11,0}^{N}$, Θ_{10}^{N} , Θ_{11}^{N} have been listed in equation 3-75, and ξ_{t} has been listed in equation 3-63. Note that the autoregressive operator, $(1-(0.6981-0.145W^{(1)})B)(1-(0.0601+0.389W^{(1)})B^{11})$ (partnerses 1 = I - $(0.698I - 0.1445W^{(1)})B - (0.060I + 0.389W^{(1)})B^{11}$ Turner of $-(-0.041-0.263W^{(1)}+0.056W^{(2)})B^{12}$ reveals that the noise process contains both seasonal terms of an 11 months lag and a 12 months lag. Also, the space-time autocorrelation seasonal pattern of 11 months lag of A_t in the table 3-6(a) is similar to the seasonal pattern of 12 months lag. This indicates that the noise process doesn't repeat the seasonal mechanism exactly every 12 months, instead the seasonal mechanism repeats itself somewhere between 11 months and 12 months. That is, for this data a non-integer seasonal lag between S=11 and S=12 would be appropriate. If this were done a model with even fewer parameters would be obtained, since the correlative structure associated with S=11 and S=12 in the current model form are similar. Construction of 3.6.5 Checking Alternative Forms: The No Feedback Structure A second second The current model which is statistically adequate, suggests another modeling alternative. This alternative is:

GA.

204

(3-77)

1

The second

the second se

T

Find the

() B

而世

M

The second second

ĩ

H

Constant, a

Constant of

Citime)

Sciences of

(T)

HILL

Pre-I process: $(I - (\phi_{10}I + \phi_{11}W^{(1)})B - \phi_{20}IB^2) (z_t - \mu) = \varepsilon_t$ Post - I1, pre-I2 process: $(I-\psi_{10}IB - \psi_{20}IB)(Z_t-\mu)$

$$=\frac{(I - (\Theta_{10}^{+}I + \Theta_{11}^{+}W^{(1)})B)}{(I - (\Phi_{10}^{+}I + \Theta_{11}^{+}W^{(1)})B)(I - (\Phi_{11,0}^{+}I + \Phi_{11,1}^{+}W^{(1)})B^{11})} \overset{(\varepsilon}{\sim} t^{+\xi}t^{\delta} t^{(1)})$$

Post-I1, Pre-I2 process:

$$(I - \psi_{10}^{IB} - \psi_{20}^{IB^{2})(\delta_{3}^{I+d}(Z_{t} - \mu))} = \frac{I - (\Theta_{10}^{+}^{I+\Theta_{11}^{+}} \Theta_{11}^{(1)})_{B}}{(I - (\Phi_{10}^{+}^{I+\Phi_{11}^{+}} \Theta_{11}^{(1)})_{B})(I - (\Phi_{11,0}^{+}^{I+\Phi_{11,1}^{N}} \Theta_{11,0}^{(1)})_{B}^{11})} \stackrel{(\varepsilon_{t} + \varepsilon_{t} \delta_{t}^{(2)})}{(\varepsilon_{t} + \varepsilon_{t} \delta_{t}^{(2)})}$$

This model differs from the mode2, equation 3-76, in one respect. Here the intervention effect follows the exactly environmental process that the noise input follows, whereas the interventional effect of the model, equation 3-76, follows a process that is similar to the environment process. These two modeling alternatives' structures are illustrated in the Figure 3-15(a) and (b).

Figure 3-15(a) illustrate the situation that there is no feedback from the environment process, thus the intervention effect directly enters the evironmental process and is influenced by it solely. In the figure 3-15(b), the signation where there is feedback of some degree and the intervention effect that enters the environmet process will follow a modified environmental process $T_{g}(B)$. The

Figure 3-15 (a). Intervention Process Follows Exactly the Environment Process, i.e., No Environment Feedback.

> (b). Intervention Process Gets Feedback from the Environment Process and Follows the Environment Process Partially.

existence of the feedback loop can be interpreted as the intervention effect behaves non-linearly, e.g. the magnitude of the realized effect is dependent upon the level the system is operating. Thus when there is no feedback the intervention exerts the same influence regardless of the operating level of the system.

The post-I₁ model of the non-feedback model can be rewritten

equivaletly as;

(3-78)

Post-I₁, Pre-I₂ process:

$$(I - \sum_{\substack{k=0 \\ \ell=0}}^{1} \phi_{11,\ell}^{\dagger} W^{(\ell)} B^{11})(I - \sum_{\substack{k=1 \\ K=1}}^{2} \sum_{\substack{k=0 \\ \ell=0}}^{1} \phi_{K\ell}^{\dagger} W^{(\ell)} B^{K})(Z_{t} - \mu)$$

= $(I - (\Theta_{10}^{\dagger} + \Theta_{11}^{\dagger} W^{(1)}) B)(\varepsilon_{t} + \varepsilon_{t} \xi_{t}^{\delta})$

Post-I2 process:

$$(I - \sum_{\ell=0}^{1} \phi_{11,\ell}^{\dagger} W^{(\ell)} B^{11})(I - \sum_{K=1}^{2} \sum_{\ell=0}^{1} \phi_{K\ell}^{\dagger} W^{(\ell)} B^{K})(\delta_{3} \sum_{\ell=1}^{1+d(Z_{t}-\mu))}$$

= (I - ($\phi_{10}^{\dagger} I + \phi_{11}^{\dagger} W^{(1)})B$)($\varepsilon_{t} + \xi_{t} \delta^{(2)}$)

The conditional M.L. estimates of the model parameters and the associated 95% confidence intervals are;

ەر بەسىپ، ي شر يۈنىيەت

206

A CONTRACT NUMBER OF

and and a second second

, and the second
A Distantian

A statements of the

-

A second

A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF

61

8

Current .

1

Į

1 {)

 \int

T

T

T

^ф ⁺ 20	= -0.636	(-0.904, -0.368)
Φ ⁺ 21	= 0.093	(-0.434, 0.248)
¢ ⁺ 11.0	= 0.092	(0.037, 0.146)
Φ ⁺ 11,1	= 0.243	(0.177, 0.308)
θ ⁺ ₁₀	= 0.923	(0.646, 1.201)
θ ⁺ ₁₁	= -0.400	(-0.739, -0.069)
$\delta_{1}^{(1)}$	= 5.349	(7.869, 2.830)
$\delta_{2}^{(1)}$	= -1.985	(0.535, -4.504)
$\delta_{3}^{(1)}$	= -11.040	(-8.521,-13.56)
$\delta_{4}^{(1)}$	= -3.370	(-0.850, -5.889)
$\delta_{5}^{(1)}$	= -4.182	(-1.663, -6.701)
$\delta_{6}^{(1)}$	= -0.739	(1.781, -3.258)
δ ⁽²⁾ 1	= -0.863	(1.136, -2.861)
$\delta_{2}^{(2)}$	= -1.183	(-0.469, -1.898)
δ ⁽²⁾ 3	= -3.577	(-2.856, -4.297)
δ ⁽²⁾ 4	= -1.287	(-0.506, -2.007)
$\delta_{5}^{(2)}$	= -0.954	(-0.228, -1.680)
δ ⁽²⁾ 6	= -1.075	(-0.344, -1.805)
8 ₃	= -4.906	(-4.057, -5.755)
b	= 1.202	
σ ² ε	= 1.259	

The residuals of the non-feedback model were computed and their sample space-time autocorrelation function estimated. Table 3.8 contains these estimates and their standardized form. Since the zeroth spatial lag, 1st spatial lag and the 2nd spatial lag autocorrelation function, i.e. ρ_{K0} , ρ_{K1} , ρ_{K2} , K=1,2,...,30, are not independent, so it is not appropriate to perform the χ^2 test on all these 90 autocorrelations. Instead, the χ^2 test is performed on the 2nd lag autocorrelation functions first, and then followed by the F test to test the significance of differences of the population of $\rho_{K,0}$, ρ_{K1} and ρ_{k2} .

From table 3-8, we have

$$\begin{array}{c}
30 \\
\Sigma \\
K=1
\end{array} \rho_{K0}^{2} = 92.68, \\
\begin{array}{c}
30 \\
K=1
\end{array} \rho_{K1}^{2} = 83.84, \\
\begin{array}{c}
30 \\
\Sigma \\
K=1
\end{array} \rho_{K2}^{2} = 78.12. \\
\end{array}$$

Even with $\alpha = 0.01$,

$$x^2 = 78.12 > \chi^2_{30,.01} = 50.89,$$

this test can't be past to conclude that the ρ_{K2} , K=1,2,...,30 are uncorrelated.

1.0

208

Manual Contract

Participant Party -

Collimation And

A surface and

圈

Company of

Construction of

H.

printer and the second s

新祝品

(

Based on these diagnostic checks the non-feedback model alternative is seen to be statistically inadequate.

Table 3-8	
The Sample Space-Time Autocorrelation Functions and the	
Standardized Sample S-T Autocorrelation Functions of the	
Residuals of the Post-I ₁ Model without Any Feedback from (the
Environment Process.	

	Space-Time	Autoco	rrelatio	ns/Standa:	rdized	S-T Auto	correlati	ons
Space I	ag 0	1	2		0	1	2	
Time La	g	بەتتىمىيە تەرىپىيە تە						
1	-0.01	0_01	-0.01		-0.38	0 32	-0.39	
2	-0.01	-0.03	-0.01			0.52	-0.30	
, <u>2</u>	0.08	0.05	0.05		1 62	-0.03	0.10	
- A	0.06	0.00	-0.04		1 23	1.1/		
5	-0.00	0.07	-0.04		_0 17	1 / 6	-0.91	
6	0.00	-0.01	0.05		0.30	_0 10	1.25	
7	-0.02	-0.01	-0.10	4	-1 9/	-0.19	2 10	
	0.02	0.07	0.06		0 /7	1 45	-2.10	
° °	0.11	0.15	0.10		0 47	3 03	2 07	
10	-0.02	-0.10	-0 11		-0 47	_1 80	-2.10	
11	-0-06	-0-03	0.03		-0.47	-1.09	-2.10	
12	0.07	0.05	-0.00		1 45	1 00	-0.09	
13	0.04	0.10	-0.00		0.82	1.07	-0.08	
14	0.10	0-06	0.09		1.85	1.14	1 91	
15	-0.24	-0.22	-0.04	-	-4-41	-4.13	-0.86	
16	-0.08	-0.06	-0.09		-1.47	-4.13	-0.80	
17	-0.07	-0-00	-0.02	-	-1-37	-0.16	-1.03	
18	-0.13	-0.07	-0.03		-2.37	-1.41	-0-58	
19	-0.08	-0.04	-0-09	· ·	-1.47	-0.77	-1.67	
20	-0.11	-0.14	-0.10	•	-1.96	-2.44	-1.85	
21	-0.09	-0.00	-0.03	-	-1.51	-0-01	-0-53	
22	-0.14	-0.11	-0.15		2.47	1.93	2.68	
23	0.01	-0.00	-0.04		0.25	-0.02	-0.71	
24	0.00	-0.07	-0.04		0.10	-1.26	-0.82	
25	0.10	0.05	0.09		1.73	0.84	1.48	
26	0.02	-0.01	-0.03		0.36	-0.17	-0.51	
27	-0.00	0.09	0.13		-0.03	1.44	2.23	
28	0.01	0.01	0.01		0.31	0.19	0.26	
29	-0.06	-0.07	-0.16		-1.03	-1.17	-2.56	
30	-0.02	-0.07	0.00		-0.32	1.17	0.10	
							0.70	

3.6.6. Model Interpretation are listed below.

 $\left(\prod_{i=1}^{n} \right)$

Street I

1.0

Ţ

THE

1

TY-S

李

T

E

T

In the model, equation (3-76), the intrinsic utility of I_1 , which is represented by the terms that contain $\xi_t^{(1)}$, followed the noise component A_t , and it is interpereted as the situation that the realized effect of I, was influenced by the environment. While the intrinsic utility of I_2 , which includes the mean shift δ_3^1 and the scale factor d, didn't follow the noise process and the effect was realized instantaneously, this is interpreted as the situation that the realized effect of I, wasn't influenced by the environment process. In the model, equation (3-76), the intrinsic utility of I_1 didn't follow exactly the process that the white noise followed, i.e. the

interventional input followed a modified environmental process, this modified environment process has been found its interpretation in the existence of environmental feedback.

A non-lienear investment-return system has the property that the farer the state is from the system equilibrium state, the bigger the gain will be, and the state of the non-linear system converges to the equilibrium state at a reducing rate. When the system is far away from the equilibrium, the convergence rate is high. The convergence rate, at the very beginning, is dramatically, non-linearly reduced, and this period is usually referred to as the transient period. After the transient period, the system state converges to the equilibrium state at a steady state convergence rate, and it is referred to as the steady state. The mean values of each location at pre-I $_1$ and pre-I $_2$

		Pre-I1	Pre-I ₂
1.	Azusa	9.3	10.7
2.	Burbank	13.5	11.2
3.	Lennox	20.0	9.6
4.	Long Beach	13.3	10.4
5.	Downtown LA	13.0	9.0
6.	LA County	12.9	12.2

putib

212

T

0

M

(T)

The tendency, that the mean levels moved to about the same level at all locations, is seen in the above mean level list. In the model, equaiton (3-74), it is seen that between I_1 and I_2 only four locations, i.e. Lennox, Long Beach, Downtown LA and Burbank, receive significant impact. Here we see that Lennox has the highest pre-I1, mean, Long Beach and Downtown LA, that are the first order neighbors of Lennox, and Burbank have high pre-I₁, mean, too. The absolute values of $\delta_i^{(1)}$, i = 2,3,4,4 are larger than the corresponding absolute values of $\delta_i^{(2)}$, i = 2,3,4,5. This means that the system state converged to the equilibrium state, which may be somewhere between 9.0 and 12.2, at reducing convergence rate, since the scaled factor d = 1.048 can't have such a slope-reduction power. These observations confirm that this is a nonlinear investment-return system. Since the pre-I; mean is highest at Lennox, so the gain of the engine design change is the biggest. The pre-I, period, when $\delta_3(t)$ is appropriately fitted into the second order form is interpreted as the transient period, and the steady state was reached when I₂ was initiated.

are the 1st order neighbors of Lennox.

The effect of I_1 and I_2 on these six locations are plotted in figure 3-15(a)-(b) to compare the relative effects at the same time. The height of these three dimension plots reflect the magnitude of the effect at that location, at that plotted time.

The figures 3-16(a) and 3-16(b) show the effect of I_1 at t=22 and t=34, i.e. 1 year after I_1 and 2 years after I_1 respectively. The figures 3-15(c) and 3-15(d) show the effect at t=37 and t=38, i.e. immediately before and after the introduction of I2 respectively. Here we see a significant reading shift at all these six locations by the same amount. The figures 3-16(e)-(h) show the effect of I_1 and I_2 after the initiation of I_2 . The figures 3-16(e), (f), (g), (h) show the effect at t=46, 58, 70, 82, i.e. 3 years, 4 years, 5 years and 6 years after the introducing of I1, respectively. From these plots, all the time we see that Lennox has the shortest effect, Downtown LA the second and Long Beach the third. Note that Downtown LA and Long Beach

From the model 3-76, we read that there was no diffusion phenomena in the intervention effect, and the magnitude of the diffusion mechanism of the noise process among 1-st order neighbors was reduced, since $|\phi_{11}| = 0.319$ while $|\phi_{11}^N| = 0.145$, it is interpreted that the diffusion mechanism among the 1-st order neighbors has been reduced by more than one half in strength due to the I₁ intervention. This phenomena is consistent with the fact that the I, intervention reduced the difference of the carbon monoxide levels among these six locations, i.e. I forced the CO levels of these six locations to

Figure 3-16. (Cont'd)

215

١.

approach the same equilibrium level under the effectiveness of the I_2 legislation, so the driving force of the diffusion mechanism was weakened, this resulted in the reduced diffusion rate of the noise process and no diffusion phenomena of the intervention effect, i.e. $\xi_t^{(1)}$ and $\xi_t^{(2)}$.

All the models, i.e. the $pre-I_1$ model, $post-I_1$ model and noise model in the model equation (3-76) are either (STAR) model or (STARMA) model. Recall that it has besen discussed in section 3.2.3.1. that the inputs, i.e. ε_t , of the (STAR) model or the (STARMA) model of non-zero spatial order vector will diffuse through space and the influenced regions will be the whole connected regions. The diffused process of the (STAR) model and the (STARMA) model are of the AR type and the diffused particles will not die out immediately in the very next period like those of the MA type diffusion process. This long lasting property of the diffused particles of the AR diffusion type is quite matched to the fact that the carbon monoxide is essentially inert and will last long in the air.

3.6.7. Comparison to A Univariate Intervention Analysis Approach

Box, Tiao and Hamming [1975] have analyzed the Los Angeles CO data at seven locations. these locations are: Downtown LA, Lennox, Long Beach, Burbank, Azusa, Pasadena and West LA. They built the univariate intivention model for each individual location. The model for each location was;

218

1

ł

-

$$\sum_{n=1}^{Z} = w\xi_{1t} + \beta_1 \frac{\xi_{2t}}{1-B^{12}} + \beta_2 \frac{\xi_{et}}{1-B^{12}} + \frac{(1-\theta_1B)(1-\theta_2B^{12})}{(1-\theta_1B)(1-B^{12})} \underset{\sim}{\varepsilon}_{t} (3-79)$$

 $\xi_{3t} = 1 - \xi_{2t}$

where $\xi_{1t} =$

ξ_{2±}

The estimates of the model parameters are listed in table 3-9. Comparing the model form, we see that they are different in three major respects:

> The univariate intervention model, equation (3-79), doesn't imply any geological information, i.e. this model doesn't have the capability to model the pollutant's diffusion through the neighbors (space). The space-time intervention model, equation (3-76), has the capability to explain the space correlated structures.

2. The space-time intervention model considers the transient period effect. $\delta^{(1)}$ in the pre-I₂ period, and the steady state effect, $\delta^{(2)}$ in the post-I₂ period. The univariate

219

intervention models consider only the steady state efffect, this is not true as was revealed in the dynamic component identification step.

3. The univariate models have different mean shift effects of I_2 for each location. This means that different locations was operating at significantly different pollution levels at pre-I₂ has been assumed. As is seen from the data itself, it is seen that at pre-I₂ the pollution level at all the locations are about the same. The space-time intervention incorporates the non-linear transformation conditions and has only one mean-shift mean effects and a transformation scaled factor.

Comparing the modeling procedures, we see that the space-time interventional modeling procedures contain the dynamic components identification procedure, which is a necessary procedure to determine the intervention effect formulation, i.e. environment involved or nonenvironment involved. A mistaken model formulation will result in a misleading model, from which the incorrect conclusions will be drawn. The univariate intervention modeling procedures do not contain the dynamic components identification procedure and do not have the capability to model the environment involved intervention process.

Comparing the analysis results of the univariate intervention models, equation (3-79), with the space-time intervention model, equation (3-76), we have the following:

 Both models aggre that I₂, the change of calibration method, has significant negative effect on the measurements at all

220

Internet

 Π

T

locations. The univariate models have different mean shift effects for each location, and the space-time intervention model has only an overall mean shift and a transformation scale factor for all the locations.

2. The univariate intervention models concluded that I₁ has the significant impact at Azusa, Downtown LA, Lennox, Long Beach and West LA. The space-time intervention model concluded that I₁ has the significant impact at Downtown LA, Lennox and Long Beach. Both models agree that the impacts of I, at Downtown LA, Lennox and Long Beach were significant and decreasing the pollution levels. But they don't agree in the impact of I₁ at Azusa. The space-time intervention model concluded that the impact of I_1 at Azusa was nonsignificant, where the univariate intervention model concluded that the impact of I_1 at Azusa was significant and . positive, i.e. the pollution level was raised. The results of the space-time intervention model is then justifiable to be closer to what was happening, since the the impact of I, is expected to reduced the pollution levels at all locations and the conclusion of the univariate intervention model disagree this expectation at Azusa.

Comparing the model parsamony, we see that the space-time intervention, equation (3-76), contains 25 model parameters, while the univariate intervention models, equation (3-79), needs 36 model parameters for 6 locations, so the space-time intervention model is more parsomonious.

221

 \bigcirc

Location	Measurement effect April 1968	Trend before 1966	Trend since 1966	Trend Difference	1 A	Notse Nodel,	Parameters	
		¢1	#2	^R 2 ^{-R} 1	• •	⁶ 1	• ₂	a ^c
Azusa	-6.50	-0.05	0.29*	0.34	0.84	0.42	0.97	0.89
	(0.70)	(0.13)	(0.15)	(0.23)	(0.07)	(0.12)	(0.04)	
Pasadena	-5.44	-0.29	-0.04	0.25	0.60	0.05	0.65	1.37
	(0.93)	(0.20)	(0.23)	(0.33)	(0.12)	(0.15	(0.07)	
Burbank	-5.72	0.40	-0.33	-0.73	0.78	0.22	0.79	1.37
	(1.10)	(0.25)	(0.26)	(0.40)	(0.08)	(0.12)	(0.05)	
LA County	-5.17	0.11	-0.43	-0.54	0.79	0.28	0.82	1.10
	(0.87)	(0.19)	(0.20)	(0.31)	(0.07)	(0.11)	(0.05)	
Downtown LA	-4.32	0.09	-0.28*	-0.37	0.71	0.20	0.83	0.97
	(0.73)	(0.12)	(0.16)	(0.23)	(0.10)	(0.13)	(0.05)	
Lennox	-5.08	0.51	-0.36*	-0.87	0.79	0.19	6.59	1.05
	(0.85)	(0.55)	(0.25)	(0.61)	(0.08)	(0.13)	(0.08)	
Long Beach	-5.29	0.40	-0.454	-0.85	0.77	0.27	0.81	1.06
-	(0.84)	(0.17)	(0.19)	(0.29)	(0.09)	(0.13)	(0.06)	

Table 3-9. Estimates of Parameters in the Univariate Intervention Model.

.

Ø 8

CHAPTER IV

NON-EQUAL DIFFUSION PREFERENCE MODELS

In previous chapters, we have considered STARIMA models in which, every location has an equally weighted influence from those locations that share it as a common neighbor of the same spatial order. Situations arise that this equal diffusion preference mechanism is not appropriate and a non-equal diffusion preference phenomenon is needed. For example, point pollution in the air and/or in the sea diffuse from one region to its neighbors with near neighbor regions exert stronger and quicker influence than the distant neighbor regions. Without the wind and/or marine currents, the pollution diffusion mechanism will exhibit equal preference for all directions. However, when there is wind and/or current, the pollution of one location will be effected most strongly by the downward regions and most weakly by the leeward regions. Thus the diffusion mechanism will not be isotropic. The nature extention of these STARIMA models is thus the extension to accomodate the modeling of non-equal diffusion preferences.

0

0

The interpretation of the diffusion in the weight matrix is discussed for the unscaled weight matrix as well as the scaled weight matrix in the first section. A discussion of the need for constructing the non-equally preferential weight matrices and the methods for their construction are then described. In Section 4.2, one-

direction preferential space-time processes and two-direction preferential space-time processes are simulated to illustrate the diffusion processes of the non-equally preferential process. Model inadequacies due to the ignored non-equally preferential structure are studied in Section 4.3. In Section 4.4, two methods of model updating to account for detected nonisotropic behavior are proposed. The first method is based on the decomposition of the equally preferential weight matrix into the non-equally preferential weight matrices. The second method adds the potential non-equally preferential terms into the equally preferential models. The maximum likelihood estimation procedure that is based on the results of the linear model theory is briefly discussed in Section 4.5 for the STAR. STMA and STARIMA models. In Section 4.6, the Ambient Carbon Monoxide observations at Los Angeles during the pre-I1, that have been modeled in Chapter III without isotropic characterization is used to illustrate the non-equal diffusion modeling methods developed in this chapter.

4.1 The Interpretation of the Diffusion Preference Weight Matrix

Here we are going to examine the physical meaning of the weights in the weight matrix. Let $W_{ij}^{(\ell)}$ be the (i,j) element of the ℓ^{th} order weight matrix $W^{(\ell)}$ and $W_{ij}^{(\ell)} \neq 0$ only when location i is an ℓ^{th} order neighbor of location j. $\phi_{k\ell}W_{ij}^{(\ell)}$ indicates the strength of influence that the observation at location j has on the k time period laged observation of its ℓ^{th} order neighbor of location i, i.e., $Z_j(t-k)$ on $Z_i(t)$. Similarly $\theta_{k\ell}W_{ij}^{(\ell)}$ indicates the influence from

224

 $\varepsilon_{j}(t-k)$ to $Z_{i}(t)$. Since all elements of $W^{(\ell)}$ are premultiplied by $\phi_{k\ell}$ or $\theta_{k\ell}$ to express the strength of influence, then amplitude of $W_{ij}^{(\ell)}$ is a measure of how strong the state of location i depends on the state of location j as an ℓ^{th} order neighbor. The larger $W_{ij}^{(\ell)}$ is, the stronger the dependence. Let $R_{i}^{(\ell)}$ denote the ith row of weight matrix $W^{(\ell)}$ and $C_{j}^{(\ell)}$ the jth column. Then $R_{i}^{(\ell)}$ contains the information of the influence on location i from those locations that share location i as their common ℓ^{th} order neighbor and $C_{ij}^{(\ell)}$ contains the information of the influence that location j has on all its ℓ^{th} order neighbor.

4.1.1 The Boundary Effect on the Scaled Weight Matrices We have defined the unscaled weight matrix $W^{(l)}$ as

 $W_{ij}^{(l)} = \begin{cases} 1 & \text{if location i is an } l^{th} \text{ order neighbor of } \\ 1 & \text{location } j \\ 0 & \text{otherwise } . \end{cases}$ (4-1)

In the unscaled weight matrix of l^{th} spatial order, all the nonzero elements are equal to 1. This means that every location i is equally influenced by all the locations that share the location i as their common l^{th} order neighbor, and every location j has equal influence on all its l^{th} order neighbors.

In previous chapters, we have used the scaled weight matrix $W^{(l)}$ which is defined as

 $W_{ij}^{(l)} = \begin{cases} 1/a_i^{(l)} & \text{if location j has location i as its } l^{th} \\ & \text{order neighbor} \\ 0 & \text{otherwise} \end{cases}$

(4-2)

 \square

M

M

226

where $n_i^{(l)}$ is the number of l^{th} order neighbors of location i. From this definition, every non-zero element in each row are equal. This means that the scaled weight matrix still keeps the property that all locations that share the location i as their common it order neighbor have equal influence on the location i. However, not all the non-zero elements of the same column are equal, since the $n_i^{(l)}$ of those locations for boundary sites is smaller than that of those locations in the central area. This implies that every location will have larger (or equal) influence on those locations on (or near) the boundary. When this boundary is extended to infinity, all the $n_i^{(l)}$ will be equal and the scaled weight matrix will have exactly the same physical interpretation as that of the unscaled weight matrix.

Alternatively, if we define the scaled weight matrix as

 $W_{ij}^{(l)} = \begin{cases} 1/n_j^{(l)} & \text{if location j has location i as its } l^{th} \\ & \text{order neighbor,} \\ 0 & \text{otherwise} \end{cases}$ (4-3)

where $n_i^{(l)}$ is the number of locations that have the location i as their common l^{th} order neighbors, then the scaled weight matrix is scaled in columns. In this case we have the property that every location i has

w⁽¹⁾ =

The unscaled weight matrix is listed in Figure 4-1.

equal influence to each of its lth order neighbors, but, for any location which is a common lth order neighbor to some boundary locations and some non-boundary locations, the influence from those boundary locations will be stronger than that from the non-boundary locations. As an example, consider the 3×3 regular grid system;

1	1	7
2	5	8
3	6	9

ана 1917 — Аласан 1917 — Аласан		• 1 ~`• •	2	3	4	-5	6	7	8	9
	1	0	1	0	1	0	0	0	.0	0
	2	1	0	1	0	1	.0	0	0	0
	3	0	1	0	0	0	1	0	0	0
=	4	1	0	0	0	1.	0	1	0	0
	5	0	1	0	1	0	1	0	1	0
	6	0	0	l	0	1	0	0	0	1
	7	0	0	0	1	0	0	0	1	0
	8	0, 1,	0	0	0.	1	0	1	0	1
	9	0	0	0	0	0	1	0	1	0
Figure	4-1.	The I	Jnsca Reg	led	Weig	sht M	latri	x w ⁽	1) _o	f the

are listed in Tables 4-6 (e) and (f) for simulation 3 and simulation 4, respectively. These sample space-time autocorrelations shown in Tables 4-6 (e) and (f) clearly indicate the unexhausted structures.

In previous discussion for STAR models, it has been shown that if the ${}^{N}\Phi_{K}\Phi_{K}^{-1}$ matrix in Equation 4-24 is close to identity matrix I, then the residuals will behave closely to the white noise. However, if the ${}^{N}\Phi_{K}\Phi_{K}^{-1}$ matrix are far away from the identity matrix I, then the residuals will show model inadequacy and repeatedly modeling the residuals from the previous mistaken equal preference space-time model can't exhaust the process structure even when enough observation for appropriate power are available. In these simulations, we have ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ of the first two simulations listed in Figure 4-19(a) and ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ of the last two simulations listed in Figure 4-19(b). The matrix in Figure 4-19(a) is very closed to identity matrix, because in the first two simulations, the strength of the equally preferential components, that is represented by ϕ_{10} , is relatively stronger than the strength of the non-equally preferential components, that is represented by ${}^{N}\phi_{11}$. The matrix in Figure 4-19(b) is far away from the identity matrix, because in the last two simulations, the strength of the non-equally preferential component is relatively stronger than the strength of the equally preferential components. Comparing the matrix shown in Figure 4-19(a) with that in Figure 4-19(b) and looking back to the statement ${}^{N}\Phi_{K}\Phi_{K}^{-1}$ matrix is related to the sample spacetime autocorrelations of the estimated residuals, we see that the diagnostic checking passes the mistaken models of simulation 1 and simulation 2, while the inadequacies for the mistaken models of

278

and the second second

Constant of

Table 4-6(a). The Sample Space-Time Autocorrelations of the Residuals from the Mistaken Model for Simulation 1.

> The Sample S-T Autocorreltions/ The Standardized S-T Autocorrelations

ime Lag	0	1	0	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} 0.03 \\ -0.00 \\ -0.01 \\ -0.02 \\ -0.00 \\ -0.01 \\ -0.02 \\ -0.02 \\ -0.02 \\ -0.01 \\ -0.02 \\ -0.01 \\ -0.02 \\ -0.02 \\ -0.02 \\ -0.02 \\ -0.02 \end{array}$	$\begin{array}{c} 0.04 \\ -0.02 \\ -0.05 \\ 0.04 \\ -0.07 \\ 0.01 \\ -0.03 \\ -0.02 \\ 0.02 \\ -0.00 \\ 0.00 \\ 0.04 \\ 0.00 \\ 0.01 \\ -0.03 \end{array}$	$\begin{array}{c} 0.97 \\ -0.13 \\ -0.28 \\ -0.69 \\ -0.23 \\ -0.41 \\ -0.62 \\ -0.73 \\ -2.78 \\ 1.11 \\ 0.14 \\ -0.30 \\ -0.63 \\ -0.73 \\ -0.56 \end{array}$	1.24 -0.74 -0.82 1.29 -1.94 0.51 -1.04 -0.70 0.56 -0.08 0.11 1.10 0.22 0.46 -0.84

Table 4-6(b). The Sample Space-Time Autocorrelations of the Residuals from the Mistaken Model for Simulation 2.

The Sample S-T Autocorrelations/ The Standardized S-T Autocorrelations

Space Lag Time Lag	0	1	0	1
1	0.02	0.00	1.21	0.43
2	-0.01	-0.00	-0.82	-0.34
3	-0.03	-0.00	-1.70	-0.26
4	-0.03	0.00	-1.39	0.43
5	0.00	-0.01	0.19	-0.58
6	-0.00	0.01	-0.34	0.72
7	0.02	-0.02	0.92	-1.22
8	-0.01	-0.04	-0.80	-2.02
9	-0.03	0.00	-1.55	0.37
10	0.02	-0.00	0.95	-0.17
11	0.00	0.02	0.20	0.89
12	-0.00	0.00	-0.25	0.24
13	-0.04	-0.01	-1.85	-0.61
14	-0.02	-0.00	-1.00	-0.22
15	-0.02	0.00	-0.96	0.25

Contraction of the second

A second provide the second seco

- Contraction and

6

1 D

13

*T

A CONTRACTOR OF A CONTRACTOR O

T

Contraction of the local division of the loc

Π

Table 4-6(c). The Sample Space-Time Autocorrelations of the Residuals from the Mistaken Model for Simulation 3.

The Sample S-T Autocorrelations/ The Standardized S-T Autocorrelations

Space Lag Time Lag	0	1	0	1
1	0.12	0.14	3.47	4.08
2	-0.22	-0.01	-6.22	-0.38
3	-0.15	-0.20	-4.26	-5.66
4	-0.11	-0.05	-3.04	-1.45
5	0.02	-0.04	0.73	-1.33
6	0.11	0.02	3.13	0.79
7	0.05	-0.04	1.44	_1 28
8	-0.11	-0.03	-3.08	-1 00
9	-0.16	0.02	-4.32	0.54
10	0.07	0.00	2.02	0.04
11	0.09	0.04	2.37	1 13
12	0.00	0.06	0.12	1 66
13	-0.00	-0.00	-0.05	-0.06
14	-0.01	-0.03	-0.49	-0.04
15	-0.08	-0.03	-2.01	-0.92

Table 4-6(d). The Sample Space-Time Autocorrelations of the Residuals from the Mistaken Model for Simulation 4.

> The Sample S-T Autocorrelations/ The Standardized S-T Autocorrelations

Space Lag Time Lag	0	1	0	1
1	0.11	0.13	4.95	5.81
2	-0.21	0.00	-9.53	0.36
3	-0.14	-0.14	-6.47	-6.60
4	-0.06	-0.07	-2.84	-3.45
5	0.02	-0.01	1.06	-0.78
6	0.04	0.01	1.99	0.86
7	0.03	-0.05	1.56	-2.20
8	-0.07	-0.07	-3.11	-3.7
9	-0.09	0.00	-3.97	0.05
10	0.05	0.02	2.18	1.20
11	0.08	0.06	3.80	2.97
12	0.03	0.04	1.36	1.92
13	-0.03	-0.02	-1.36	-0.92
14	-0.04	-0.02	-1.85	-1.23
15	-0.04	0.00	-1.75	0.34

282

Paratrice at

Contraction of the second

 \square

 \square

 \square

御

-

Table 4-6(e). The Sample Space-Time Autocorrelations of the Residuals from the STMA (1_1) Model of the Residuals from the Mistaken Model for Simulation 3.

> The Sample S-T Autocorrelations/ The Standardized S-T Autocorrelations

Space Lag Time Lag	0	1	0	1
1	-0.01	0.01	-0.38	0.36
2.	-0.18	0.03	-5.18	0.83
3	-0.11	-0.19	-3.08	-5.40
4	-0.06	0.00	-1.82	0.01
5	0.01	-0.04	0.45	-1.08
6	0.11	0.05	3.10	1.44
7	0.04	-0.05	1.32	-1.40
8	-0.09	-0.02	-2.51	-0.62
9	-0.16	0.01	-4.28	0.36
10	0.08	0.00	2.32	0.03
11	0.07	0.02	1.88	0.76
12	-0.01	0.05	-0.34	1.53
13	-0.00	-0.00	-0.17	-0.07
14	-0.00	-0.01	-0.00	-0.33
15	-0.07	-0.03	-1.96	-0.78

r o seguerar en en el competitore de la
Table 4-6(f). The Sample Space-Time Autocorrelations of the Residuals from the STMA (1_1) Model of the Residuals from the Mistaken Model for Simulation 4.

The Sample S-T Autocorrelations/ The Standardized S-T Autocorrelations

Space Lag Time Lag	Ŭ	1	0	1
1	0.13	0.24	5.86	10.76
2	-0.19	0.01	-8.56	0.64
3	-0.14	-0.15	-6.61	-6.96
4	-0.08	0.08	-3.78	-3.86
5	0.01	-0.03	0.58	-1.71
6	0.03	0.00	1.40	0.30
7	0.02	-0.06	1.11	-2.65
8	-0.07	-0.07	-3.29	-3.27
9	-0.09	0.00	-4.01	0.11
10	0.05	0.03	2.47	1.49
11	0.09	0.07	4.05	3.32
12	0.03	0.04	1.62	2.11
13	-0.02	-0.01	-1.18	-0.63
14	-0.04	-0.03	-1.80	-1.41
15	-0.03	0.01	-1.55	0.50

Andreas III. Andreas and Andreas and Andreas Andre

* Conversion

and an and a second second

and the second second

11

Lange and the second

2.

1.00 0.27 -0.07 0.02 0.00 0.00 -0.02 0.07 -0.27 -0.27 1.00 0.27 -0.07 0.02 0.00 0.00 -0.02 0.07 -0.27 -0.27 1.00 0.27 -0.07 0.02 0.00 0.00 -0.02 0.07 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00 -0.02 0.07 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00 -0.02 0.07 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00 -0.02 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00 0.00 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
0.00 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02 -0.00 0.00
0.00 0.00 0.00 -0.02 0.07 -0.27 1.00 0.27 -0.07 0.02
0.02 -0.00 0.00 0.00 -0.02 0.07 -0.27 1.00 0.27 -0.07
-0,07 0.02 -0.00 0.00 0.00 -0.02 0.07 -0.27 1.00 0.27
0.27 -0.07 0.02 -0.00 0.00 0.00 -0.02 0.07 -0.27 1.00
Figure 4-19(a). The $\phi_1 \phi_1^-$ Matrix for the Simulations with
$N_{\rm H} = 0.2$
$\varphi_{10} = 0.0, \varphi_{11} = 0.3.$
0.05 0.70 1.55 ~1.18 0.01 0.50 ~0.29 -0.05 0.15 ~0.15
-0.45 -0.10 1.07 1.43 -1.28 0.12 0.48 -0.32 -0.02 0.35
0.47 - 0.16 - 0.38 0.86 1.67 - 1.32 0.04 0.54 - 0.33 - 0.11
0.42 0.44 -0.67 0.19 0.75 1.49 -1.17 0.03 0.48 -0.68
-1.66 -0.21 1.77 -0.93 -0.23 1.10 1.47 -1.31 0.12 1.15
1,23 -0.75 -0.81 0.78 -0.10 -0.28 0.77 1.68 -1.29 0.04
2.22 1.48 -3.06 1.12 0.67 -0.86 0.20 0.82 1.44 -2.75
-5.84 -0.23 5.97 -3.31 -0.66 1.80 -0.74 -0.35 1.09 3.56
2.60 -3.14 -0.81 1.81 -0.69 -0.38 0.51 -0.13 -0.15 1.66
1.45 1.14 -2.11 0.71 0.49 -0.59 0.12 0.18 -0.16 0.03

0

Figure 4-19(b). The ${}^{N}\phi_{1}\phi_{1}^{-1}$ Matrix for the Simulations with $\phi_{10} = 0.2$, ${}^{N}\phi_{11} = 0.7$.

`‡

D.

simulation 3 and simulation 4 are detected.

4.4 Updating the Non-Equally Preferential Diffusion STARMA Process

In this section, two topics of modeling the non-equally preferential STARMA processes are discussed. First, the topic of testing the significance of the isotropic property of the space-time process is studied. This is followed by the topic of testing the significance of the non-equally preferential model parameters. In this section, we will apply the M.L estimation procedure to get the test statistics. Also, it is assumed that the equal preference STARMA model has been built already.

4.4.1 Testing the Significance of the Isotropic Property

In this section, the discussion on testing the isotropic property is started using a simple system, the STARMA (1, 0, 1) process of a circular line system, and then it is generalized to the arbitrary system.

Assume that we have a circular line system with the preferential direction toward the right as in Figure 4-18, and assume that the system follows the STARMA $(1_1, 0, 1_1)$ process. For simplicity it is assumed that the preference is absolute, and the 1st order weight matrix N_W(1) is;

1

T

Townson of

TE

T

286

The second second

Constant of the second

Then the true model for this sytem is

$$\mathcal{Z}_{t} = \sum_{\ell=0}^{1} {}^{N} \phi_{1\ell} W^{(\ell)} Z_{t-1} - \sum_{\ell=0}^{1} {}^{N} \theta_{1\ell} {}^{N} W^{(\ell)} \varepsilon_{t} + \varepsilon_{t}. \qquad (4-28)$$

If this process is mistaken as an equal preference process, then the mistaken weight matrix W⁽¹⁾ will be assigned as follows;

$$W^{(1)} = \begin{bmatrix} 0. & 0.5 & 0. & 0. & 0. & 0.5 \\ 2 & 0.5 & 0. & 0.5 & \dots & 0. & 0. & 0. \\ \vdots & & & & & \\ 0. & 0. & \dots & 0.5 & 0. & 0.5 \\ 0.5 & 0. & \dots & 0. & 0.5 & 0. \end{bmatrix}$$

and the model that is built in terms of $W^{(1)}$ is,

$$Z_{t} = \sum_{\ell=0}^{1} \phi_{1\ell} W^{(\ell)} Z_{t-1} - \sum_{\ell=0}^{1} \theta_{1\ell} W^{(\ell)} A_{t-1} + A_{t}. \qquad (4-29)$$

Here ϕ_{11} , θ_{11} and ${}^{N}\phi_{11}$, ${}^{N}\theta_{11}$ will have the relations,

 $0 \le 0.5\phi_{11} \le {}^{N}\phi_{11}, \quad 0 \le 0.5\theta_{11} \le {}^{N}\theta_{11},$

and the residuals of model 4-29 will have the tendency to have dependence on the residuals of the right-hand-side neighbors and on the residuals of the left-hand-side neighbors. Since model 4-29 doesn't exhaust the dependence on the right-hand-side neighbors, while it overdraws the dependence on the left-hand-side neighbor, these two dependencies will be of opposite sign.

To test the significance of the non-equally preferential tendency in both directions, we reconstruct the model, Equation (4-29), in terms of $W^{(1)}$ and $W^{(1)}$ that are given below to obtain model,

Ĩ

The second

T

T

I

I

T

288

 $R_{W}(1) = N_{W}(1)$

Equation (4-30).

$$I_{W}(1) = 3
 \begin{bmatrix}
 0 & 0 & \cdots & 0 & 0 & 0.5 \\
 0.5 & 0 & 0 & 0 & 0 \\
 0 & 0.5 & 0 & 0 & 0 \\
 \vdots & & & & & \\
 0 & 0 & 0.5 & 0 & 0 \\
 1N & 0 & 0 & 0.5 & 0 \\
 1N & 0 & 0 & 0.5 & \cdots & \\
 R_{W}^{(1)} = 3
 \begin{bmatrix}
 0 & 0.5 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0.5 & \cdots & & \\
 \vdots & & & & \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 1N & 0 & 0 & 0 & 0 & 0.5 \\
 LN & 0 & 0 & 0 & 0 & 0.5
 \end{bmatrix}$$

Note that the only non-zero elements in $L_W^{(1)}$ (or $R_W^{(1)}$) are the elements that correspond to the 1st order left-hand-side neighbors (or right-hand-side neighbors). Note also that $L_W^{(1)} + R_W^{(1)} = W^{(1)}$, and

$$Z_{t} = \phi_{10}Z_{t-1} + {}^{R}\phi_{11}{}^{R}W^{(1)}Z_{-t-1} + {}^{L}\phi_{11}{}^{L}W^{(1)}Z_{-t-1}$$
$$-\theta_{10}R_{t-1} - {}^{R}\theta_{11}{}^{R}W^{(1)}R_{-t-1} - {}^{L}\theta_{11}{}^{L}W^{(1)}R_{-t-1} + {}^{R}\delta_{t} \qquad (4-30)$$

where R_t is the residual.

M.L estimation will give the estimates of parameters in Equation (4-30) as

$${}^{R}\phi_{11} = 2^{N}\phi_{11}$$
, ${}^{L}\phi_{11} = 0$
 ${}^{R}\theta_{11} = 2^{N}\theta_{11}$, ${}^{L}\theta_{11} = 0$

which clearly indicates that this one-direction circular line system is of non-equally directional preference.

In general, when we have built an equally preferential spacetime model,

$$Z_{t} = \sum_{K=1}^{P} \sum_{\ell=0}^{\lambda_{K}} \phi_{K\ell} W^{(\ell)} Z_{t-K} - \sum_{K=1}^{q} \sum_{\ell=0}^{m_{K}} \theta_{K\ell} W^{(\ell)} \varepsilon_{t-K} + \varepsilon_{t}, \qquad (4-31)$$

and it is suspected that the true process may be highly preferential along some given direction, then we construct the model based on the principle of overfitting,

$$Z_{t} = \sum_{K=1}^{P} \phi_{KO^{t}t-K} - \sum_{K=1}^{q} \theta_{KO^{k}t-K} + R_{t}$$
$$+ \sum_{K=1}^{P} \sum_{\ell=1}^{\lambda_{K}} L_{\phi_{K\ell}} L_{W}^{(\ell)} Z_{t-K} + \sum_{K=1}^{P} \sum_{\ell=1}^{\lambda_{K}} R_{\phi_{K\ell}} R_{W}^{(\ell)} Z_{t-K}$$

structure; vs. where ${}^{L}_{\beta} =$

1

D

D

IJ

F

0

 Π

and the second second

Contraction of the second

間

節

T ζų[

廊

節

ጠ

$$-\sum_{K=1}^{q}\sum_{\ell=1}^{m_{K}}L_{\theta_{K\ell}}L_{W}^{(\ell)}R_{\tau_{\ell}-K} + \sum_{K=1}^{p}\sum_{\ell=1}^{m_{K}}R_{\theta_{K\ell}}R_{W}^{(\ell)}R_{\tau_{\ell}-K}$$
(4-32)

where $W^{(l)}$ and $W^{(l)}$, $l=1,2,\ldots$ are constructed according to the approaches that were described in Section 4.1.3. Then the M.L. estimation is performed to give $\hat{\phi}$, $\hat{\theta}$, $\hat{R}\hat{\phi}$, $\hat{R}\hat{\theta}$, and is followed by hypothesis testing that tests the significance of the non-equally preferential

$$H_0: \quad \begin{matrix} L_\beta \\ \gamma \end{matrix} = \begin{matrix} R_\beta \\ \gamma \end{matrix}$$

$$H_{1}: \quad \overset{L}{\gamma} = \overset{R}{\gamma}$$

$$(\overset{L}{\varphi}^{t}, \overset{L}{\gamma})^{t} \text{ and } \overset{R}{\gamma} = (\overset{R}{\varphi}^{t}, \overset{R}{\gamma})^{t}.$$

If the H₀ hypothesis is not rejected, we will keep the equally preferential space-time model, Equation (4-31). If the H₀ hypothesis is rejected, then the non-equally preferential space-time model, Equation (4-32), will be considered to be appropriate.

To test the hypothesis H_0 : $L_{\beta} = \frac{R_{\beta}}{2}$, we compute the statistics suggested in Wilks [1938],

$$W_{\beta} = LN \cdot N[\ln(\hat{\sigma}_{\epsilon}^2) - \ln(\hat{\sigma}_{R}^2)]$$

(4-33)

The null hypothesis is rejected when $W_{\beta} > \chi^2_{\alpha,n}$ or accepted when $W_{\beta} \leq \chi^2_{\alpha,n}$, where n is the total number of parameters in L_{β}^{L} or R_{β}^{R} . If the hypothesis test shows that the non-equally preferential diffusion process is significant, then based on this conclusion, we may update the weight matrix by setting,

$$\Phi_{W}^{(\ell)} = {}^{L}\widehat{\Phi}_{K\ell}^{L} W^{(\ell)} + {}^{R} \Phi_{K\ell}^{R} W^{(\ell)},$$

$$\Theta_{W}^{(\ell)} = {}^{L}\widehat{\Theta}_{K\ell}^{L} W^{(\ell)} + {}^{R}\widehat{\Theta}_{K\ell}^{R} W^{(\ell)} \qquad (4-34)$$

292

ĈI1

開

加

E

The second s

and scale them to have $\sum_{j=1}^{LN} \theta_{w(l)} = 1$ and $\sum_{j=1}^{LN} \phi_{w(l)} = 1$, $i=1, 2, \dots, LN$. Then the model in Equation (4-32) can be updated in terms of $\phi_{W}(l)$ and $\theta_{W}(l)$ as follows,

$$E_{t} = \sum_{K=1}^{P} \phi_{K0} \sum_{\lambda t-K}^{Z} - \sum_{K=1}^{Q} \theta_{K0} \sum_{\lambda t-K}^{R} + \sum_{\lambda t}^{R} + \sum_{K=1}^{P} \sum_{\ell=1}^{\lambda_{K}} N_{\phi_{K\ell}} \phi_{W}^{(\ell)} \sum_{\lambda t-K}^{Z} - \sum_{K=1}^{Q} \sum_{\ell=1}^{m_{K}} N_{\theta_{K\ell}} \sum_{\lambda t-K}^{\theta_{W}(\ell)} (4-35)$$

4.4.2 Testing the Significance of the Non-Equal Preference Structures

In this section the proper procedure of adding in the non-equal diffusion preference components to update the equal diffusion preference STARIMA models is discussed. Assume that we have the candiate equally preferential STARIMA model built as follows

Z vt

where

$$= \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} Z_{t-k} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} \theta_{k\ell} W^{(\ell)} \varepsilon_{t-k} + \varepsilon_{t} \qquad (4-36)$$

$$E(\varepsilon_{t}\varepsilon_{t+k}) = \begin{cases} G, & k=0 \\ \\ 0, & otherwise \end{cases}$$

Also, assume that we have the weight matrices, $N_W(1)$, $N_W(2)$, $N_W(0)$, $N_W(0)$, $N_W(0)$, of which the corresponding non-equal diffusion preference mechanism is probably significant to the data generating process. We need a procedure that allows us to select the significant ones to add in the model and discard the non-significant ones. Two such procedures are discussed here. One is by fitting the whole model with all components that probably are significant, another is by the overfitting technique, Draper and Smith [1966].

First, we will discuss the procedure of fitting the whole model with all possible components. Without loss of generality, the whole model can be assumed to be of the form;

$$Z_{t} = \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} Z_{t-k} + \sum_{k=1}^{p} \sum_{\ell=0}^{\xi_{k}} N_{\phi_{k\ell}} N_{W}^{(\ell)} Z_{t-k} - \sum_{k=1}^{p} \sum_{\ell=0}^{m_{k}} \theta_{k\ell} W^{(\ell)} Z_{t-k} + \sum_{k=1}^{p} \sum_{\ell=0}^{\chi_{k}} N_{\phi_{k\ell}} N_{W}^{(\ell)} Z_{t-k} + \sum_{k=1}^{p} \sum_{\ell=0}^{\chi_{k}} (4-37)$$

where

$$E(\varepsilon_{t}\varepsilon'_{t+k}) = \begin{cases} G, & k=0 \\ & & \\ & & \\ 0, & otherwise \end{cases}$$

294

T

ГГ.

I

Ĩ

T

1

I

1

An estimation procedure has been applied to get the estimates $\hat{\phi}$, $\hat{\theta}$ and $S(\hat{\phi}, \hat{\theta})$ for model, Equation (4-36). Although we add in the non-equal diffusion preference terms, model, Equation (4-37), can still be estimated by the same procedure to get the results $\hat{\phi}, \hat{\phi}, \hat{\phi}, \hat{\theta}, \hat{\eta}$ and $S(\hat{\phi}, \overset{N}{\hat{\phi}}, \hat{\theta}, \overset{N}{\hat{\theta}})$. Also note that the model, Equation (4-37), is a more generalized model in Equation (4-32) presented previously. According to Whittle [1953], we constructed the estimated

variance-covariance matrix of the estimated parameters.

$$\mathbb{V}(\widehat{\beta}) \simeq \left[\frac{\partial^2 \mathbf{s}(\beta)}{\partial \beta_{\mathtt{i}} \partial \beta_{\mathtt{j}}} \right]_{\widehat{\beta}}^{-1}$$

where

$$B = (\phi^{-}, \overset{N}{\mathcal{A}}, \theta^{-}, \overset{N}{\mathcal{A}})^{-}$$

and we tested the hypothesis H_0 : $H\beta = 0$ by computing

(4-36), i.e., components.

$$W_f = (H\hat{\beta}) (V(\hat{\beta}))^{-1}(H\hat{\beta}).$$

 H_0 will be rejected if $W_f < kF(k,LN^{\bullet}T-k_0,1-\alpha)$ where k is the rank of H matrix and k₀ is the number of parameters included in model, Equation

$$k_0 = \sum_{k=1}^{p} (\lambda_k + \xi_k + 1) + \sum_{k=1}^{q} (m_k + \zeta_k + 1).$$

H is the null matrix with the diagonal elements that correspond to the tested parameters replaced by 1. So, k is also the number of parameters that will be tested simultaneously.

 H_0 is accepted, then all parameters that are subjected to this test will be non-significant and the corresponding terms will be dropped from the model. When H_0 is rejected, some of the parameters that are subjected to this test are significant. (This does not necessarily imply that all of the parameters that are subjected to this test are significant). By this procedure, we can perform a series of tests using the same variance-covariance matrix to find out the significant

To apply the overfitting technique, the procedure described in Draper and Smith is employed. We can add any number of new components in and apply the extra sum of squares principle to test their significance. We keep only those components that pass the test. After the significant non-equal diffusion preference, components

est)

are selected and added into the model, the updated model will be subjected to diagnostic checking again.

4.5 Non-Equal Preference Space-Time Model Estimation

In previous sections, the detection of non-equal preference structure, the test for the significance of isotropic property as well as the procedures for updating the non-equally preferential diffusion model from the already built equally preferential diffusion model have been studied in detail. In this section the M.L. estimation procedures that are appropriate for the non-equal preference model building are discussed. The application of the linear model to obtain the M.L. estimates when the covariance of the noise G is known is discussed in Section 4.5.1. Here the M.L. estimation procedures for STAR, STMA and STARMA are discussed separately. These discussions are followed by the M.L. estimation procedure when G is unknown in Section 4.5.2.

4.5.1 The Application of the Linear Model for the M.L. Estimation When the Covariance of the Noise is Known

In the model building procedure, we need to estimate the candidate model parameters. Here we will briefly review the estimation technique for estimating the STARIMA model parameters by applying the linear model transformation and searching through the parameter space. For computational convenience and for desirable properties of the estimates, we will limit ourselves here to the conditional M.L. estimation procedure only.

4.5.1.1 STAR Model Parameter Estimation. Consider the following model

296

aciang.

門潮

toden E

1

T

Ĩ

T

The second secon

The L

1

There

ų

ورود ومناقع ومرود المرود والمرود والمرو

44.

where

and

$$Z_{t} = \sum_{k=1}^{P} \Phi_{k,t-k}^{Z} + \varepsilon_{t}$$

$$\Phi_{k} = \sum_{\ell=0}^{\lambda_{k}} \Phi_{k\ell} W^{(\ell)}, \quad k=1,2,\ldots,p.$$

t are normally distributed with

$$E[\varepsilon_1] = 0$$

$$E \left[\begin{array}{c} \varepsilon & \varepsilon \\ \neg t \neg t + k \end{array} \right] = \begin{cases} G, & k=0 \\ & & \\ & & \\ 0, & otherwise. \end{cases}$$

Since the joint density of the (LN•T) \times 1 random error vector ε_{t} is

$$f(\varepsilon_{t} | \Phi, G) = (2\pi)^{-LN*T/2} |G|^{-T/2} \exp\{-1/2 \sum_{t=1}^{T} \varepsilon_{t} G^{-1} \varepsilon_{t}\}$$
(4-39)

where Φ represents the p Φ_k matrices, i.e., $\Phi_1, \Phi_2, \dots, \Phi_p$, LN is the location number and T is the total observation period. The transformation of the Z's is

297

(4 - 38)

$$\begin{split} & \underset{\mathbb{Q}_{t}}{\varepsilon_{t}} = \underset{\mathbb{Q}_{t}}{Z} - \underset{k=1}{\overset{p}{\sum}} \Phi_{k\mathbb{Q}_{t-k}}^{Z} \end{split}$$
which has a unit Jacobin. Thus the density function of $\underset{\mathbb{Q}_{t}}{Z}$ conditional
on Φ , G and $\underset{\mathbb{Q}_{0}}{Z}, \dots, \underset{\mathbb{Q}_{1-p}}{Z}$ is
 $f(\underset{\mathbb{Q}}{Z}|\Phi, G, \underset{\mathbb{Q}_{0}}{Z}, \underset{\mathbb{Q}_{t-1}}{Z}, \dots, \underset{\mathbb{Q}_{1-p}}{Z})$
 $= (2\pi)^{-LN-T/2}|G|^{-T/2} \exp\{-1/2 \sum_{t=1}^{T} [\underset{\mathbb{Q}_{t}}{Z} - \sum_{k=1}^{p} \Phi_{k\mathbb{Q}_{t-1}}]^{-G-1} [\underset{\mathbb{Q}_{t}}{Z} - \sum_{k=1}^{p} \Phi_{k\mathbb{Q}_{t-k}}]\}$

Remember Φ is a linear function of Φ for STAR models. Letting

$$SS(\Phi,G) = \frac{1}{2} \sum_{t=1}^{T} [Z_{t} - \sum_{k=1}^{p} B(k)Z_{t-k}]^{T} G^{-1} [Z_{t} - \sum_{k=1}^{p} B(k)Z_{t-k}] \},$$

We obtain the log conditional likelihood function as

$$\ln L(\Phi, G | Z, Z_0, \dots, Z_{1-p}) = -T/2 \ln |G| - SS(\Phi, G). \quad (4-40)$$

Usually, we set Z_t , $t \le 0$ to its unconditional mean, $Z_t = 0$, $t \le 0$. From Equation (4-40) we see that to maximize the conditional likelihood function for given G is equivalent to minimize the $SS(\Phi)$ terms. We use $SS(\Phi)$ instead of $SS(\Phi,G)$ because G is given. We can get the

J where Ŋ रू = [रू with Y(X = [X, $\mathbf{X}_{\mathbf{k}} = [\mathbf{X}_{\mathcal{X}}]$ X = C k=1,2,. sider the STMA model,

 \int

0

T

I

Ì

新聞

entra. 1

T

T

(î

Í

T

T

298

conditional maximum likelihood estimators for STAR models by applying the results of linear models,

$$\hat{\phi} = (X^{-}X)^{-1}XY$$

$$[1, x_2, ..., x_p]$$

X is the matrix defined as;

$$\begin{bmatrix} x_{k1}, x_{k2}, \dots, x_{k\lambda_{k}} \\ x_{k1}, x_{k2}, \dots, x_{k\lambda_{k}} \end{bmatrix} \\ = \begin{bmatrix} (W^{(\ell)} \\ x_{1-k}) \end{bmatrix}, & (W^{(\ell)} \\ x_{2-k}) \end{bmatrix}, \dots, & (W^{(\ell)} \\ x_{2-k}) \end{bmatrix} \\ = \begin{bmatrix} (W^{(\ell)} \\ x_{1-k}) \end{bmatrix}, \quad (W^{(\ell)} \\ x_{2-k}) \end{bmatrix}$$

and CC' = G, since G is positive definite matrix.

4.5.1.2 STMA Model Parameter Estimation. The STMA models are non-linear in the model parameters, and it is impossible to get a closed form expression for the estimators of model parameters. Con-

$$Z(t) = - \sum_{k=1}^{q} \bigoplus_{k \in t-k} + \xi_{t}$$

(4-41)

(4 - 42)

300

(T)

俪

 $\varepsilon = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_T).$

The transformation from $\epsilon^{\prime}s$ to $\zeta^{\prime}s$ is

where

$$E_{t} = Z_{t} + \sum_{k=1}^{q} (H) Z_{k = 1, 2, \dots, T}$$
 (4-43)

which has unitary Jacobin. Thus, the conditional log likelihood function is

$$\ln L(\theta, G | Z, \varepsilon_0, \varepsilon_{-1}, \dots, \varepsilon_{1-q}) = (-LN \cdot T/2) \cdot \ln 2\pi$$
$$-(LN \cdot T/2) \cdot \ln |G| - SS(\theta, G). \qquad (4-44)$$

Usually, we set $\varepsilon(t)$, $t \leq 0$ to their unconditional expections, $\varepsilon(t) = 0, t \le 0$. From Equation (4-43), we see that for given G, to maximize the likelihood function is equivalent to minimize $SS(\theta)$. We search through θ space to get $\hat{\theta}$ that minimizes $SS(\theta)$. $SS(\theta)$ can be derived easily by using the recursive Equation (4-44) with the $\varepsilon_{\chi t}$, $t \leq 0$ set to zero.

4.5.1.3 Mixed STARIMA Parameter Estimation. The mixed STARIMA(p,d,q) models are linear in autoregressive parameters but nonlinear in moving average parameters. So for a given G, θ , we can have the autoregressive parameters estimated by applying results from linear models. Consider the STARIMA(p,0,q) model.

where

$$Z_{t} = \sum_{k=1}^{p} \Phi_{k,t-k} - \sum_{k=1}^{q} \bigoplus_{k,t-k} + \varepsilon_{t}$$
$$t=1,2,\ldots,T. \qquad (4-45)$$

When θ is given, Equation (4-45) can be

$$\mathbf{Y} = \mathbf{X} \boldsymbol{\phi} + \boldsymbol{\varepsilon}^* \tag{4--46}$$

with $Z = (Z_1, Z_2, ..., Z_t)$

 $A = A_{q}C_{T}$

where A_{d} is the (LN•T) by (LN•T) null matrix with the T diagonal (LN × LN) blocks replaced by $I_{LN\times LN}$ and the k^{th} , $1 \le k \le q$, subdiagonal (LN × LN) blocks replaced by $(H)_k$,

> C_{T} is the (LN•T) by (LN•T) null matrix with the T diagonal (LN \times LN) blocks replaced by c, cc² = G, and

> $X = C_T^{-1}B_T$ with $B_T = [B_1, B_2, \dots, B_p]$, B_k is the (LN•T) by λ_k matrix defined as,

 $\mathbf{B}_{k} = \begin{bmatrix} \mathbf{B}_{k1}, \mathbf{B}_{k2}, \dots, \mathbf{B}_{k\lambda_{k}} \end{bmatrix}$ $B_{kkl} = [(W^{(l)}Z_{1-k})^{-}, (W^{()}Z_{2-k})^{-}, \dots, (W^{(l)}Z_{NT-k})^{-}]^{-}$

and

$$\varepsilon^* = C_T^{-1} \varepsilon$$

with $\xi = (\xi'(1), \xi'(2), \dots, \xi'(T))$. Since $\varepsilon^* \sim \text{NID}(0, I)$, the conditional maximum likelihood estimator for ϕ with θ are,

$$\hat{\phi}(\theta) = (X^{T}X)^{-1}X^{T}Y.$$

Once $\hat{\phi}(\theta)$ is computed, we can recursively compute the $\varepsilon(t)$ and get SS(θ). By searching through the θ space, we obtain the conditional maximum likelihood estimates for (ϕ, θ) .

4.5.2 The M.L. Estimation Procedure When the Covariance of the Noise Is Unknown

The estimation procedure described above is for the situation that G is known. It is not an unusual case that G is unknown. In such situations, we will apply the two-stage estimation procedure. At the first stage, we assume that $G = I\sigma^2$ to get the estimates. Following the estimation, we check the $G = I\sigma^2$ assumption. If $G = I\sigma^2$ assumption is acceptable, then we have the appropriate estimates. If $G = I\sigma^2$ assumption is not acceptable, then we will use $(\hat{\epsilon}\hat{\epsilon}')$ as the true

covariance and apply the estimation procedure described above to get the second stage estimates and accept this second stage estimates as the appropriate conditional maximum likelihood estimates.

1

Contraction of the second seco

302

M

T

Process Modeling The pre-I1 observations of the Los Angeles ambient Carbon The geographical locations of 1. Azusa, 2. Burbank, 3. Lennox,

Monoxide data are used to serve as an example to illustrate the nonequally preferential space-time modeling procedure. In the paper by Tiao, Box and Hamming [1975] the effect of the wind speeds on the air quality law was found to be of little effect. Their explanation was that wind speed at 8 A.M. varies little between seasons. From the space-time intervention analysis in Chapter III, we found that the effects of the intervention Program I_1 are more similar in locatins located geographically in directions that are approximately perpendicular to the coast line. In the rest of this section, the directions that are perpendicular to the coast line will be denoted by the phrase "the | directions", and the directions that are parallel to the coast line will be denoted by the phrase "the || directions". 4.6.1 Building the Model of Preference by the Strip Region Approach 4. Long Beach, 5. Downtown LA, 6. LA County are marked in the map of the Figure 3-10(a). The non-equally preferential weight matrices $\| W^{(1)}$, $\| W^{(1)}$ has been obtained in the example of Section 4.1.3.1 by applying the strip region approach. $|_{W}^{(1)}$, $||_{W}^{(1)}$ were listed in Table 4-2 (a) and (b), respectively.

4.6 The Example of the Non-Equally Preferential Diffusion

		n managana an kang ara i T		
	304			
	Using this neighbor structures we built the following two	171		$\chi^2_{(2)} = (6)$
а. Ц. С.	STAR models:	4)		$\chi^2_{(1)} = (6)$
	1. The Equally Preferential Model			$\chi^{2} = (6)$
				x(0) - (0)
	$Z_{t} = \hat{\phi}_{10}Z_{t-1} + \hat{\phi}_{20}Z_{t-2} + \hat{\phi}_{11}(w^{(1)}+ w^{(1)})Z_{t-1} + \varepsilon_{t} \qquad (4-47)$			Since $\chi^{2}_{(2)} < \chi^{2}_{0}$
	where	Ĩ		2.81 diagnostic preferential mo
	$\hat{\phi}_{10} = 0.6923$ (0.4229, 0.9617)	The second se	ĮĮ įĮ	2. The
	$\hat{\phi}_{20} = -0.1404$ (-0.3908, 0.1101) $\hat{\phi}_{11} = 0.1371$ (-0.0891, 0.3634)	T		$Z_{\pm} = {}^{N}\hat{\phi}_{\pm} o Z_{\pm}$
	$\hat{\sigma}_{\epsilon}^2 = 1.9937$			
	The sample space-time autocorrelation functions and the standardized			where
	sample S-T autocorrelation functions are listed in the Table 4-7. The			
	sum of squares of the l^{LT} order autocorrelations SS(l) are			
	SS(2) = 0.034753			
	SS(1) = 0.06260			
	SS(0) = 0.062731			
	and		And Andrews	For this above
				a significant 1 tial model with
		Î		

(6)(10)S(2) = 2.0852

(6) (10) ss(1) = 3.756,
$$F_1 = \chi^2_{(1)} / \chi^2_{(2)} = 1.80127$$

(6) (10) ss(0) = 3.7639, $F_0 = \chi^2_{(0)} / (\frac{\chi^2_{(1)} + \chi^2_{(2)}}{2}) = 1.2887.$

< $\chi^2_{0.1,4}$ = 7.78, F₁ < F_{0.1,4,4} = 4.11 and F₀ < F_{0.1,4,8} = stic checking doesn't reveal any inadequacy of the equally 11 model.

The Non-Equally Preferential Model

$$10^{Z}_{t-1} + {}^{N}\widehat{\phi}_{20}{}^{Z}_{t-2} + {}^{||}\widehat{\phi}_{11}{}^{||}_{W}{}^{(1)}_{Z_{t-1}} + {}^{|}\widehat{\phi}_{11}{}^{|}_{W}{}^{(1)}_{Z_{t-1}} + {}^{R}_{\Sigma_{t}} (4-48)$$

$$95\% \text{ C.I.}$$

$${}^{N}\hat{\phi}_{10} = 0.7464 \qquad (0.4770, 1.0160)$$

$${}^{N}\hat{\phi}_{20} = -0.1621 \qquad (-0.4125, 0.0884)$$

$${}^{|}\hat{\phi}_{11} = -0.0043 \qquad (-0.2214, 0.2128)$$

$${}^{|}\hat{\phi}_{11} = 0.2555 \qquad (0.0292, 0.4817)$$

$${}^{2}_{R} = 1.9608804$$

ove model, the model parameter $|\phi_{11}|$ is nonsignificant at int level equal 0.1, so the following non-equally proferenwithout the perpendicular term, $|\phi_{11}|_{W}^{(1)}Z_{t-1}$, is built.
This resulted in,

$$Z_{t} = {}^{N} \hat{\phi}_{10} Z_{t-1} + {}^{N} \hat{\phi}_{20} Z_{t-2} + {}^{||} \hat{\phi}_{11} {}^{||} W^{(1)} Z_{t-1} + R_{t}, \qquad (4-49)$$

where

95% C.I.

$${}^{N}\hat{\phi}_{10} = 0.7450$$
 (0.4756, 1.0140)
 ${}^{N}\hat{\phi}_{20} = -0.1625$ (-0.4310, 0.0879)
 $||\hat{\phi}_{11} = 0.2558$ (0.0295, 0.4820)
 $\hat{\sigma}_{R}^{2} = 1.9608895$

The extra sum of squares due to the $\hat{\phi}_{11} |_{W^{(1)}Z_{\tau-1}}$ terms,

$$ss(|\phi_{11}|^{N}\phi_{10},^{N}\phi_{20},^{||}\phi_{11}) = 0.000546$$

 $F_1 = 0.000546/1.9608804 = 0.000273 < F_{0.1,1,50}$

Therefore the non-equally preferential model, Equation (4-49), without the perpendicular term is appropriate.

The sample space-time autocorrelation functions and the standardized sample S-T autocorrelation functions for the residuals of the model in Equation (4-49) are listed in the Table 4-8. The sum of squares of the l^{th} order autocorrelations SS(l) are:

1.

服

M

意思

SS(2) = 0.03035SS(1) = 0.053986SS(0) = 0.05547

$$\chi_{(2)}^{2} = (6)(10)SS(3) = 1.8210$$

$$\chi_{(1)}^{2} = (6)(10)SS(2) = 3.239, F_{1} = \chi_{(1)}^{2}/\chi_{(0)}^{2} = 1.7787$$

$$\chi_{(0)}^{2} = (6)(10)SS(1) = 3.328, F_{0} = \chi_{(0)}^{2}/(\frac{\chi_{(1)}^{2}+\chi_{(2)}^{2}}{2}) = 1.2798$$

and

T

E C

Ø

Ø

1

Since $\chi^2_{(2)} < \chi^2_{0.1,4} = 7.78$, $F_1 < F_{0.1,4,4} = 4.11$ and $F_0 < F_{0.1,4,8} = 2.81$, so the diagnostic checking passes the adequacy of the non-equally preferential model.

Comparing the model in Equation (4-49), which is of preference in the || directions, with the equally preferential model 4-47, we see that the model 4-49 and the model 4-47 have the same number of model parameters, and the model of preference in the || directions is closer to the true process and the structures among neighbors in the || directions are underestimated in the equally preferential model 4-47, while the structures among neighbors in the | directions are overdrawn. Also, the extra sum of squares test confirms that the diffusion process in the | directions is non-significant and the diffusion phenomenia appears only in the || directions that are parallel to the coast line.

					308			
	•					4)		It should
Table 4-	7. The Sample S	Space-Time Au	tocorrela Equally P	tion Funct referentia	ions 1			(4-47), was not f
	Model for the Data	ne Pre-I Obs	ervations	of the L	CO	H. S. S.		This is due to th
Space-Time	Autocorrelation	s/Standardize	ed S-T Aut	ocorrelat	lons			1. Φ_1 =
Space Lag Time Lag	0 1	2	0	1	2	buit per		$\Phi_1 =$
1 2	-0.04 0.0 0.10 0.1	2 -0.03 2 0.11	-0.29 0.61	0.16	-0.19 0.67			The $\ _{\Phi_1}, \Phi_1$ as w
3 4	0.11 0.1 -0.18 -0.1	7 0.09 2 -0.10	-0.92	-0.60	-0.53			Figures 4-20 (a),
								product " $\Phi_1 \Phi_1$ " i. the discussions i.
Table 4	-8. The Sample of the Resi	Space-Time Au duals of the	utocorrel Non-Equa	ation Func 11y Prefer	tions ential			ignoring non-equa
	Model for t Data	the Pre-I1 Obs	servation	s of the L	A CO			the sample space-
Space-Time	Autocorrelation	ıs/Standardiz	ed S-T Au	tocorrelat	ions	1997 (M)		the product matri:
Space Lag Time Lag	0 1	2	0	1	2			cantly distinguis
1 2	-0.04 0.0 0.11 0.0	00 -0.03 09 0.09	-0.29 0.68 0.63	0.06 0.54 0.95	-0.22 0.59 0.52	m		distinguished from
3 4	-0.16 -0.	12 -0.10	-0.80	-0.60	-0.49	() () () () () ()	1	significantly. The second power of the second
								4.6.2 Building t
					1. J.			
• • • •								<u>Matrix Dec</u> In the las
$\sum_{i=1,\dots,n\\ i=1,\dots,n\\ i=1,\dots$								<u>Matrix Dec</u> In the las of preference in
								<u>Matrix Dec</u> In the las of preference in pre-I ₁ observatio
								<u>Matrix Dec</u> In the las of preference in pre-I ₁ observation neighbor structure the directions.
								<u>Matrix Dec</u> In the las of preference in pre-I ₁ observation neighbor structure the directions. the union of these
								<u>Matrix Dec</u> In the las of preference in pre-I ₁ observation neighbor structure the directions. the union of these
								Matrix Dec In the las of preference in pre-I ₁ observation neighbor structure the directions. the union of these

1

nould be noted that the equal preference model, Equation not found to have any statistical model inadequacies. to the following two reasons:

as well as $\| \phi_1 \phi_1^{-1} \|$ matrices were computed and listed in (a), (b) and (c), respectively. Here we see that the $|\phi_1^{-1}|$ is pretty close to the identity matrix I. According to lons in Section 4.3, we see that the inadequacies due to the n-equal preference structure are hard to be detected from space-time autocorrelation functions of the residuals when matrix is the identity matrix.

In Equation (4-48), we found that $\|\hat{\phi}_{11}$ can't be signifiinguished from $|\hat{\phi}_{11}$, although $\|\hat{\phi}_{11}$ can be significantly and from 0 while $|\hat{\phi}_{11}|$ can't be distinguished from 0 by. This is because the available observations couldn't is power to test the difference of $|\phi_{11}|$ and $\|\phi_{11}|$.

ling the Non-Equally Preferential Model by the Weight Lx Decomposition

the last section it has been found that the space-time model the in the || directions is more appropriate to describe the rotations of the ambient carbon monoxide in Los Angeles. The rotations in the || directions and the neighbor structure in the structure in the light of the strip regions approach, these two neighbor structures is not equal to the neighbor

FA.

structure described in the Chapter III. So the models that have been constructed in the last section are not comparable to the space-time model that has been built in the Chapter III.

In Section 4.1.3.2 the weight matrices that were employed in the Chapter III were decomposed according to the neighbor structures obtained by applying the angular region approach. In this section, the non-equally preferential model, that is comparable with the equally preferential model, is constructed. It should be noted that $|_{W}(\ell) + ||_{W}(\ell) = W^{(\ell)}$ for $\ell=1,2,3$, where $W^{(\ell)}$'s are constructed in Section 3.6.1.

These non-equally preferential weight matrices are then employed to construct the non-equally preferential space-time model. The following results were obtained

 $Z_{t} = {}^{N} \widehat{\phi}_{10,t-1} + {}^{N} \widehat{\phi}_{20,t-2} + {}^{|} \widehat{\phi}_{11} {}^{|}_{W} {}^{(1)}_{Z_{t-1}} + {}^{||} \widehat{\phi}_{11} {}^{||}_{W} {}^{(1)}_{Z_{t-1}} + {}^{R}_{t} (4-50)$

where

The second s

$$95\% \text{ C.I.}$$

$$\widehat{\Phi}_{10} = 0.6344 \qquad (0.3497, 0.9177)$$

$$\widehat{\Phi}_{20} = -0.1488 \qquad (-0.4001, 0.0998)$$

$$\widehat{\Phi}_{11} = 0.5126 \qquad (-0.1425, 1.1650)$$

$$\widehat{\Phi}_{11} = 0.2967 \qquad (0.0622, 0.5336)$$

$$\widehat{\sigma}_{R}^{2} = 1.92486$$

310

Th

刑

M

M

 $\left[\right]$

4

The model parameter $|\phi_{11}|$ is significant at the $\alpha = 0.1186$ level. Therefore model, Equation (4-50), of non-equal preference appears more appropriate in describing the process. Before accepting the mode, the residuals are subjected to diagnostic checking to examine the adequacy of this model.

The sample space-time autocorrelation functions of the estimated residuals are listed in Table 4-9. The portmanteau lack of fit test for the space-time system is performed. The sum of squares of the l^{th} order space-time autocorrelations SS(l) are computed to be 1.

SS(2) = 0.030084SS(1) = 0.061734SS(0) = 0.062276,

 $\chi^2_{(2)} = (6)(10)SS(2) = 1.805,$

and

Since

 $\chi^{2}_{(1)} = (6)(10)SS(1) = 3.704, F_{1} = \chi^{2}_{(1)}/\chi^{2}_{(2)} = 2.052$ $\chi^{2}_{(0)} = (6)(10)SS(0) = 3.737, F_{0} = \chi^{2}_{(0)}/(\frac{\chi^{2}_{(1)}+\chi^{2}_{(2)}}{2}) = 1.357$

 $\chi^2_{(2)} < \chi^2_{0.1,4} = 7.78,$ $F_1 < F_{0.1,4,4} = 4.11,$ $F_0 < F_{0.1,4,8} = 2.81,$

312

A TANK THE D

M

圓

M

間

(II)

聞

 \square

Ĩ

the residuals do not contain any additional structure. Thus the nonequal preference model which contains the | directions from the || directions terms is concluded to be adequate.

Both equal preference model in Section 3.6 and the non-equal preference model, Equation (4-50), do not show any model inadequacies in the sample space-time autocorrelation functions of the model residuals, this is due to the following two reasons:

1. The 95% CI of $|\hat{\phi}_{11}|$ and the 95% CI of $||\hat{\phi}_{11}|$ are not disjoint sets, and ϕ_{11} can't be said to be significantly distinguished from ∥ _{∲11}.

2. Let
$${}^{N}\phi_{1} = {}^{N}\hat{\phi}_{10}I + |\hat{\phi}_{11}|_{W}^{(1)} + ||\phi_{11}||_{W}^{(1)}$$
 with
 ${}^{N}\hat{\phi}_{10} = 0.634, |\hat{\phi}_{11}| = 0.513, ||\hat{\phi}_{11}| = 0.297$
 $\Phi_{1} = \hat{\phi}_{10}I + \hat{\phi}_{11}W^{(1)}$ with $\hat{\phi}_{10} = 0.692, \hat{\phi}_{11} = 0.137$

The ${}^{N}\Phi_{1}$, Φ_{1} as well as ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ matrices were computed and listed in Figures 4-21 (a), (b) and (c), respectively. It is seen that ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ is pretty close to the identity matrix I, according to the discussions in Section 4.3, since ${}^{N_{\Phi}} \Phi_{1} \Phi_{1}^{-1} \stackrel{\circ}{\simeq} I$, so the inadequacies due to the ignored non-equal preference structure are not able to be detected from the sample space-time autocorrelation functions.

"_•] =

1	0.745	0	0	0	0	. 0
2	0	0.745	0	0	0.128	0.128
3	0	0	0.745	0.256	0	0
4	0	0	0.128	0.745	0.128	0
5	0	0.128	0	0.128	0.745	0
6	0	0.256	• 0	0	. 0	0.745
		(a) T	he $\ _{\Phi_1}$ M	atrix		ل

	1					
1	0.692	0	0	0	0	-
2	0	0.692	. 0 :	, 0	0.068	0.206
3	0	0	0.692	0.137	0.137	0
	0	0	0.068	0.692	0.068	0
;	0	0.068	0.137	0.068	0.692	0
	0	0.274	0	0	0	0.692
		(b) T	ኮ	· · ·		ل ــ

(b) The Φ_1 Matrix

Figure 4-20. The $\|_{\Phi_{11}}$, Φ_1 and $\|_{\Phi_{11}}$, Φ_1^{-1} Matrices of the Models Based on the Weight Matrices That Were Obtained by Applying the Strip Region Approach.

314 Chargenser, a . JA 0.00 0.00 0.00 1 1.08 0.00 0.00 T 0.08 -0.15 -0.01 -0.02 2 0.00 1.13 -0.01 $\|_{\Phi_1\Phi_1^{-1}} = 3$ 0.17 -0.02 0.00 0.03 1.11 Ŋ 0.00 -0.01 -0.01 1.06 0.07 4 0.00 Space L -0.23 -0.03 0.01 0.12 1.10 5 0.00 刑 Time La 1.10 -0.00 -0.00 0.01 6 -0.07 0.00 1 2 (c) The $\|_{\Phi_1 \Phi_1^{-1}}$ Matrix 3 4 1 Figure 4-20. (Continued) $\left[\right]$ The second secon ų, T I D Î I T ₹. (The

-

Table 4-9. The Sample Space-Time Autocorrelation Functions and the Standardized Sample S-T Autocorrelation Functions of the Residuals of the Non-Equally Preferential Model

Space-Time Autocorrelations/Standardized S-T Autocorrelations

rag	0	1	2	0	1	2
	-0.03	0.01	-0.04	-0.02	0.11	-0.03
	0.11	0.09	0.08	0.68	0.57	0.53
	0.11	0.18	0.10	0.64	0.98	0.57
	-0.18	-0.13	-0.09	-0.90	-0.68	-0.46

315

*

	د با با بارهم ویرو «بوروید» در ایکسیان این ویریس و ایریس	terrent and the second s	and the second
	316		
	11.2	Beite	
1 0.63 0 0 0 0 0			4.6.3 Disc
2 0 0.63 0 0.63 0.13 0.17	T.		
N 3 0 0 0.63 0.16 0.24 0			$1^{\mu}\psi_{11}$, while in the division of the dintedivision of the division of the division of
$\begin{bmatrix} \Phi_1 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0.13 \\ 0.63 \\ 0.16 \end{bmatrix} = 0$			the diffusion
5 0 0.09 0.15 0.13 0.63 0	s ar		are paralle
6 0 0.30 0 0 0 0.63			while the d
(a) The ${}^{N}\Phi_{1}$ Matrix			between loca
			the combinat
1 0.67 0 0 0 0 0			of the sea l
	-	a de la constance de la constan La constance de la constance de	as the magn
$\Phi_1 = 2 0 0 0.67 0.17 0.13 0$			the sea wind
			Recall that
			of the I, in
6 0 0.32 0 0 0			tion is stro
(b) The Φ_1 Matrix		Safe Safe	equally pres
1 0.94 0 0 0 0 0			in the non-
2 0 0.95 0 0 0 -0.01			assists the
3 0 -0.03 0.93 0.03 0.16 0.01			enough to ch
$\begin{bmatrix} N_{\Phi} & \Phi^{-1} \\ 1 & 1 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0.95 & 0 & 0 \end{bmatrix}$			neighbor/mon
5 0 0 0.10 0.02 0.93 0			directions.
6 0 -0.01 0 0 0.95			In th
(c) The ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ Matrix	24		the estimate
			in Section :
Figure 4-21. The ${}^{N_{\Phi}}_{1}$, ${}^{\Phi}_{1}$ and ${}^{*\Phi}_{1}$ ${}^{\Phi}_{1}$ Matrices of the Molecular the Weight Matrices That Were Ob	tained		the model 4-
by Applying the Angular Region Approach.			ferential mo
A , where A is the second se			

cussion of Modeling Results

he non-equally preferential model, $|\hat{\phi}_{11}|$ is greater than ch revels the fact that the diffusion process is stronger rections than in the || directions. The driving force of on process in the directions, between locations that el to the coast line, is the unassisted diffusion mechanism, riving force of the diffusion process in the | directions. ations that are perpendicular to the coast line, should be tion of the unassisted diffusion mechanism and the effect breeze that increases the normal speed of diffusion as well itude of the mass transfer. The extra driving force from nd makes the diffusion process in the directions stronger. in Section 3.6, we have analyzed the intervention effect intervention and found that the effect of the I, intervenonger in the direction. This implies the same nonferential diffusion involvements as those that are implied equally preferential noise model. Although the sea wind diffusion mechanism in the | directions, it is not strong hange the diffusion speed, the diffusion speed is one order onth (or 16 miles/month) for both | directions and ||

the model, the average value of $|\hat{\phi}_{11}|$ and $||\hat{\phi}_{11}|$ is 0.405, and ted $\hat{\phi}_{11}|$ of the equally preferential model that has been built 3.6 is 0.309. The average value of the $|\hat{\phi}_{11}|$ and $||\hat{\phi}_{11}|$ in 4-48 is 0.126 and the estimated $\hat{\phi}_{11}|$ of the equally premodel, Equation (4-42) in the | directions and the || directions is 0.137. It is seen that the $\hat{\phi}_{11}$ is estimated to be approximately the average of $|\hat{\phi}_{11}|$ and $||\hat{\phi}_{11}|$ in the models that only the | directions and the || directions are considered to give the preliminary test of the significance of different preference.

In Section 3.6, the interventional model has been built for the Los Angeles CO data without considering the non-equally preferential structure. Since the non-equal preference structure is significant for the pre-I₁ process, the consequences of ignoring the non-equal preference structure arises. In particular, will it make the estimates of the intrinsic utilities biased? In the following, this question will be answered for the non-environmental influence situation, i.e., $I_m=0$, first and then for the environmental influence situation, i.e., $I_m=1$.

The non-environment involved non-equal preferential intervention model, Equation (4-51),

$$(\mathbf{I} - \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} {}^{N} \phi_{k\ell} {}^{N} W^{(\ell)})(\mathbf{Z}_{t} - \delta \xi_{t}) = (\mathbf{I} - \sum_{k=1}^{p} \sum_{\ell=0}^{m_{k}} {}^{N} \theta_{k\ell} {}^{N} W^{(\ell)}) \varepsilon_{t}, \quad (4-51)$$

where

ξ_t =

0	pre-intervention	perioo3

1 post-intervention periods,

	can be pu
	. •
	Since the
	meters M
4	X
	Cant non-
	Cunc non-
	the second
	the same s
	_
	The
	· · · · ·
	model, Equ
	<u> </u>
	(I -
	k

318

Arra Arra

ĩ

Wint

-

Por J

1 - - - A

「注

1

D

ł.

δ is the intrinsic utility vector,

it into the linear model form as

$$\xi_{t^{\delta}} + (\mathbf{I} - \sum_{k=1}^{\mathbf{p}} \sum_{\ell=0}^{\lambda_{k}} N_{\phi_{k\ell}} W^{(\ell)})^{-1} (\mathbf{I} - \sum_{k=1}^{\mathbf{p}} \sum_{\ell=0}^{m_{k}} N_{\phi_{k\ell}} W^{(\ell)})_{\mathcal{L}_{t}}^{\varepsilon}.$$

e coefficient matrix of δ will not contain any model parab, $\stackrel{N_{\Theta}}{\sim}$, so the estimates of δ will be unbiased even if signifiequally preferential structures are ignored. This is not situation for the environment involved intervention process. The environment involved, non-equal preference intervention guation (4-52),

$$\sum_{k=1}^{p} \sum_{k=0}^{\lambda_{k}} N_{\phi_{k}\ell} W^{(\ell)}(Z_{t}) = (I - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} N_{\theta_{k}\ell} N_{W}^{(\ell)}(\xi_{t}\delta + \varepsilon_{t}), (4-52)$$

can be put into the linear model form as

$$Z_{t} = (I - \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} N_{\phi_{k\ell}} N_{W}^{(\ell)})^{-1} (I - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} N_{\theta_{k\ell}} N_{W}^{(\ell)}) (\xi_{t} \delta + \varepsilon_{t})$$

If all the ${}^{N}\phi_{k\ell} {}^{N}W^{(\ell)}$, ${}^{N}\theta_{k\ell} {}^{N}W^{(\ell)}$ terms are correctly assigned, the estimates of $\boldsymbol{\delta}$ is unbiased, otherwise it is biased. Further, the closer ${}^{N}\phi_{kl} {}^{N}W^{(l)}$, ${}^{N}\theta_{kl} {}^{W}^{(l)}$ are to their corresponding correct matrices, the less the bias in the δ estimates. An efficient way to check the closeness of matrices of full rank, say A and B, is to check how far AB^{-1} or BA^{-1} is from the identity matrix I. If $AB^{-1} \approx I$ or $BA^{-1} \approx I$, then for practical purposes, we may say that $A \approx B$.

In Figure 4-21(c), it is seen that ${}^{N}\Phi_{1}\Phi_{1}^{-1}$ is pretty close to identity matrix I, where ${}^{N}\Phi_{1}$ is the estimate of the correct non-equal preference matrix and Φ_1 is the mistaken equal preference matrix. Since the 1st intervention I_1 is environment involved and the 2nd intervention I_2 is non-environment involved, we may conclude that the estimates of the intervention effect of I₁ is biased, while the estimates of the effect of I_2 is unbiased. Although the estimates of the effect of I₁ is biased, since ${}^{N}\Phi_{1}\Phi_{1}^{-1}$, the biasness is not severe.

model.

where

E[E E

である

1. .

*

T

TA-S

R

The second second

CHAPTER V

THE PURELY SPATIAL ARMA MODELS

A process that is related to the space-time process is the purely spatial process. For this process the influence spreads at a pretty high speed and the equilibrium state is reached before the next observation so that no influence is transmitted to the next period. We will refer to the following model as the general purely spatial

$$Z_{t} = B(0)Z(t) - A(0)\varepsilon_{t} + \varepsilon_{t}, \quad t=1,2,...,T.$$
 (5-1)

Z(t) is LN × 1 column observation vector,

 $\varepsilon(t)$ is multivariate normal random vector with mean 0, and

$$\begin{bmatrix} \mathbf{G} & \mathbf{k}=\mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} = \begin{cases} \mathbf{G} & \mathbf{k}=\mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

B(0), A(0) are LN × LN square parameter matrices. LN is the location number of the system.

The existence conditions of the purely spatial model, that correspond to the stationary conditions of the space-time model, are studied in Section 5.1. The parameter constraints that form the existence regions are discussed and the necessary existence conditions are developed for the purely spatial AR, MA and ARMA models. In Section 5.2 the model identification problems are discussed. This includes defining the purely spatial autocorrelation function set, determining their characteristic properties and developing the expected sample purely spatial autocorrelation functions of low order models for the pattern recognition. In Section 5.2 charts/monograms are developed to yield initial estimates of the parameters for low order models. The M.L. estimation procedures and joint confidence intervals for purely spatial models assuming $G = \sigma^2 I$ are obtained in Section 5.4. Diagnostic checking considerations include the test of the noise spherity assumption, the white noise assumption and significance tests of the model parameters, are detailed in Section 5.5. In Section 5.6, the M.L. estimation procedures for a more general noise covariance assumption of $G = \sigma^2 I$ is developed. An hydrology example, involving the Mohawk River Heights and a crimenology example, Assault in Northeast Boston, are given in Section 5.7 to illustrate the purely spatial model building procedures.

5.1 Existence Conditions

Comparing the general purely spatial model with the following general space-time model,

1

1

322

1050 11 1150

-

1

$$Z_{t} = \sum_{k=1}^{p} B(k) Z_{t-k} - \sum_{k=1}^{q} A(k) \varepsilon_{t-k} + \varepsilon_{t}, \quad t=1,2,...,T, \quad (5-2)$$

we see that the general purely spatial model contains no temporal backshift operators while the general space-time model does. Both models, Equations (5-1) and (5-2), represent the structure that describes how the observations of one location are influenced by the observations and the white noise of other locations. The purely spatial model represents the structure that spells out only "instant influences" whereas the space-time model represents only the "delayed influences". To further compare and contrast these models, it is instructive to consider the backward spatial regressive structure of the One-Direction Circular Purely Spatial AR(1) System and the backward temporal regressive structure of the univariate time series AR(1) model. This One-Direction Circular Purely Spatial AR(1) System is a specific case of the purely spatial process, while the univariate time series AR(1) model is a space-time $AR(1_n)$ process with only one location.

(b)

Figure 5-1. (a) The One-Direction Ciruclar Purely Spatial AR(1) System (b) The Univariate Time Series AR(1) Model

In the One-Direction Circular Purely Spatial AR(1) System, Figure 5-1, the location (i+1) is the first order neighbor of the location i for i=1,2,...,LN-1, and location 1 is the first order neighbor of location LN. This model can be expressed as,

$$\begin{cases} z_{i,t} = \phi_{01} z_{i-1,t} + \varepsilon_{i,t} & t=1,2,...,T. \\ i=2,3,...,LN. \\ z_{1,t} = \phi_{01} z_{LN,t} + \varepsilon_{1,t} & t=1,2,...,T. \end{cases}$$
(5-3)

324

T

Ĩ

é:

Constant of

The second

Sector Sector

or

Setting $t = t_0$, we have

$$Z_{i,t_{0}} = \phi_{01}B_{L}^{Z}_{i,t_{0}} + \varepsilon_{i,t_{0}}$$
(5-4)
$$Z_{1,t_{0}} = \phi_{01}B_{L}^{(LN-1)}Z_{LN,t_{0}} + \varepsilon_{1,t_{0}}$$
(5-5)

where ${\tt B}_{\rm L}$ is the spatial order backward operator and is defined as

$$B_L^{Z}_{i,t_0} = Z_{i-1,t_0}, \quad 2 \leq i \leq LN$$

for the One-Direction Circular Purely Spatial System. Comparing Equations (5-4) and (5-5) with the following time series univariate AR(1) model,

$$Z_{t} = \phi_{1}BZ_{t} + \varepsilon_{t}, \quad t=1,2,\ldots,LN \quad (5-6)$$

We see that the Equation (5-4) has the same backward regressive structure as that of the Equation (5-6), but Equation (5-5) cannot be equivalent to Equation (5-6) because Equation (5-6) contains Boperator, while Equation (5-5) contains a $B_{T}^{(LN-1)}$ -operator which causes the influence that transmits through the system to be input back to the system again. So if the parameter ϕ_1 makes model, Equation (5-6), a non-stationary process, then due to the "instant feedback effect" of model, Equation (5-3), setting $\phi_{01} = \phi_1$ will make model, Equation (5-3), explosive immediately and non-existent. From the above discussion we see that the existence conditions of the purely spatial models correspond to the stationary, reversible conditions of the Space-Time Models. The major difference in physical meaning lies in the interpretation that one is "nonexistence immediately" while the other is "non-stationary or non-reversible in the long run". A very important consideration concerning the purely spatial model is the existence condition, under which the vector process Z(t) exists. By self-substitution n_0 times, the model, Equation (5-3), can be rewritten as,

$$Z_{t} = B^{n_{0}}(0)Z_{t} - \sum_{i=0}^{n_{0}} -1 B^{i}(0)A(0)\varepsilon_{t} + \varepsilon_{t}$$
(5-7)

$$\sum_{k=1}^{n} A^{0}(0) \sum_{k=1}^{n} \sum_{i=1}^{n} A^{i}(0) B(0) Z_{k} + Z_{k} \qquad (5-5)$$

$$\lim_{k \neq i=1}^{n} \sum_{k=1}^{n} A^{i}(0) B(0) Z_{k} + Z_{k} \qquad (5-5)$$

$$\lim_{k \neq i=1}^{n} \sum_{k=1}^{n} A^{i}(0) B(0) Z_{k} + Z_{k} \qquad (5-5)$$

$$\lim_{k \neq i=1}^{n} \sum_{k=1}^{n} \sum$$

I is said to be power convergent when the powers .,Mⁿ... are a convergent sequence. It is well known in gebra that a matrix M is power convergent if and only if digenvalue λ of M, $|\lambda| < 1$. Thus, Equation (5-9) is to ese conditions, B(0) and A(0) must be power convergent. uivalent to constrain that each eigenvalue λ of B(0) and $|\lambda| < 1$.

Existence Condition of the Purely Spatial $\text{AR}(\lambda_0)$ Model setting

$$B(0) = \sum_{k=1}^{\lambda_0} \phi_{0k} W^{(k)} \text{ and } A(0) = 0$$

eneral purely spatial model class we obtain the purely spatial del,

$$Z_{t} = \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)} Z_{t} + \varepsilon_{t}, \quad t=1,2,\ldots,T, \quad (5-10)$$

is the weight matrix of the l^{th} spatial order. Since all values λ of A(0) = 0 are 0, so the existence condition requires λ_0 1 for all the eigenvalues of $\sum_{l=1}^{\lambda} \phi_{0l} W^{(l)}$. It is known that value λ of K × K matrix M satisfies $|\lambda| \leq \gamma_i$ for i=1,2,...,K, $\sum_{j=1}^{K} m_{ij}$ and m_{ij} is the (i,j) element of M. Under the i that all the weight matrix are normalized, the necessary

condition of existence becomes,

$$\sum_{\ell=1}^{\lambda_0} |\phi_{0\ell}| < 1.$$
 (5-11)

Automotion a

Land Land

1 . . . I

5 er 3

CO-STORY

328

1.

K.

Constant Street

Timeser and

1

trainer.

Entertain Sta

T

T

1

For example, the necessary existence conditions for AR(1) and AR(2)are $|\phi_{01}| < 1$ and $|\phi_{01}| + |\phi_{02}| < 1$, respectively. The existence region of AR(2) is the interior region of the diamond in Figure 5-2. 5.1.2 The Existence Condition of the Purely Spatial $MA(m_0)$ Model

By setting

معينيه المعالم المراجع المحالي محالي المحالي محالي مح

$$B(0) = 0 \text{ and } A(0) = \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)}$$

for the general purely spatial model, we obtain the purely spatial MA(m₀) model,

$$Z_{t} = -\sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} \varepsilon_{t} + \varepsilon_{t}, \quad t=1,2,\ldots,T. \quad (5-12)$$

Following the same approach that has been made in the $AR(\lambda_0)$ models, we obtain the necessary existence condition for the $MA(m_0)$ models as

$$\sum_{\ell=1}^{m_{0}} |\theta_{0\ell}| < 1 .$$
 (5-13)

Figure 5-3.

The necessary existence condition for $ARMA(\lambda_0, m_0)$ model is then,

For example, the necessary existence conditions for MA(1) and MA(2) are $|\theta_{01}| < 1$ and $|\theta_{01}| + |\theta_{02}| < 1$, respectively. The necessary existence region of MA(2) is the interior region of the diamond in

5.1.3 The Existence Condition of the Purely Spatial $ARMA(\lambda_0, m_0)$ Model By setting

$$B(0) = \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)}, A(0) = \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)}$$

for the general purely spatial model we obtain the purely spatial $ARMA(\lambda_0, m_0) \text{ model},$

$$z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} z_{t} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} \varepsilon_{t} + \varepsilon_{t}$$
(5-14)

$$\sum_{\ell=0}^{m_{0}} |\theta_{0\ell}| < 1 \text{ and } \sum_{\ell=1}^{\lambda_{0}} |\phi_{0\ell}| < 1, \qquad (5-15)$$

For example, the necessary existence region for ARMA(1,1) is

 $|\theta_{01}| < 1$ and $|\phi_{01}| < 1$, which is the interior region of the square in the Figure 5-4. The necessary existence region for ARMA(1,2) is bounded by $|\phi_{01}| < 1$ and $|\theta_{0l}| + |\theta_{02}| < 1$, which is the interior region of the

Figure 5-5. The ARMA(1,2) Existence Parameter Space

rectangular bar in the Figure 5-5.

In summary, low order model forms and the necessary existence conditions corresponding to that model form are shown in Table 5-1.

332

Part -

Table 5-1. The Necessary Existence Conditions of the Purely Spatial Models

Necessary Existence $Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} + \xi_{t}, \quad t=1,2,\ldots,T. \quad \sum_{\ell=1}^{\lambda_{0}} |\phi_{0\ell}| < 1$ $AR(\lambda_0)$ $MA(m_{0}) \qquad Z_{t} = -\sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} \xi_{t} + \xi_{t}, \quad t=1,2,...,T. \qquad \sum_{\ell=1}^{m_{0}} |\theta_{0\ell}| < 1$ $\operatorname{ARMA}(\lambda_0, \mathbf{m}_0) \quad \mathcal{Z}_t = \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)} \mathcal{Z}_t - \sum_{\ell=1}^{\mathbf{m}_0} \theta_{0\ell} W^{(\ell)} \mathcal{Z}_t + \mathcal{Z}_t \qquad \sum_{\ell=1}^{\lambda_0} |\phi_{0\ell}| < 1,$ t=1,2,...,T. $\sum_{n=1}^{m} |\theta_{0k}| < 1$

It should be noted that the necessary existence region does not mean the best existence region, i.e., the largest region that the vector process can exist. Those model parameters that fall in the necessary existence region make the purely spatial process exist, but every parameter that does not fall in the necessary existence region will not necessarily make the purely spatial process explosive. According to the paper by Deutsch and Pfeifer [1980], the necessary existence condition for $AR(\lambda_0)$, $MA(m_0)$, $ARMA(\lambda_0, m_0)$ models of the regular grid system is also

	2 C	
the su	fficie	ent e
existe	nce re	gion
the re	gular	grid
	5.2	2 Th
	The i	dent
The sa	mple a	utoc
are de	fined	alon
tion f	unctio	on.
addres	sed fo	or di
of pat	tern 1	ecog
5.2.1	The A	lutoc
	The a	utoc
•		
	γ _{ks} =	= Ε(γ̂

The autocorrelation function ρ_{ks} is defined in terms of the autocovariance functions as.

existence condition for $\lambda_0^{}$, $m_0^{} \leq 2$, i.e., the necessary given in Table 5-1 is the best existence region for system with λ_0 , $m_0 \leq 2$.

e Identification of the Purely Spatial Models

ification of the candidate spatial model is addressed. covariance $\hat{\gamma}_{\mathbf{ks}}$ and sample autocorrelation function $\hat{
ho}_{\mathbf{ks}}$ ng with their corresponding partial spatial autocorrela-Characteristic properties of these functions are Ifferent types of purely spatial process for the purpose mition.

ovariance and the Autocorrelation Function covariance function γ_{ks} , $k \ge 0$, $s \ge 0$ is defined as,

$$\kappa_{s} = E\left(\frac{\left[W^{(k)}Z_{t}\right]^{\left[W^{(s)}Z_{t}\right]}}{LN}\right) = \frac{W^{(k)}W^{(s)} \odot E(Z_{t}Z_{t})}{LN} \quad (5-16)$$

$$\rho_{ks} = \frac{\gamma_{ks}}{[\gamma_{kk}\gamma_{ss}]^{1/2}}$$
(5-17)

In order to estimate ρ_{ks} and γ_{ks} , the $E(Z_t Z_t)$ has to be first computed. Note that in the Equation (5-16) only the term, $E(Z_{\Delta t \Delta t})$ contains the information about ϕ 's and θ 's. For the purely spatial ARMA (λ_0, m_0)

model, we have

$$E(Z_{l}Z_{l}) = (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell}W^{(\ell)})^{-1}(I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell}W^{(\ell)})$$
$$(I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell}W^{(\ell)})^{-(I - \sum_{\ell=1}^{m_{0}} \phi_{0\ell}W^{(\ell)})^{-1}\sigma_{\epsilon}^{2}.$$
(5-18)

334

ŢĮ.

1

I

T

I

ſ

1

H

By setting $\theta_{0l} = 0$ for all l, we have the $E(Z_{t}Z_{t})$ of the purely spatial $AR(\lambda_0)$ model as,

$$E(Z_{t^{-1}} Z_{t^{-1}}) = (I - \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)})^{-1} (I - \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)})^{-1} \sigma_{\varepsilon}^{2}.$$
(5-19)

By setting $\phi_{0l} = 0$ for all l, we have the $E(Z_{t \sim t} Z_{t})$ of purely spatial MA(m₀) model as,

$$E(\underset{\forall t \forall t}{Z}, \underset{\ell=1}{Z}) = (I - \underset{\ell=1}{\overset{m_0}{\sum}} \theta_{0\ell} W^{(\ell)}) (I - \underset{\ell=1}{\overset{m_0}{\sum}} \theta_{0\ell} W^{(\ell)}) \sigma_{\epsilon}^2.$$
(5-20)

For given $W^{(\ell)}$'s, it can be proven that the autocorrelation functions, defined in Equation (5-17), will cut off for the purely spatial MA(m₀) model by substituting Equation (5-20) into Equation (5-17) and rearranging. The cut-off point depends on the weight matrices $W^{(\ell)}$'s. The E($Z_{t}Z_{t}$) of purely spatial AR(λ_0) and AR(λ_0 ,m₀) models contain the

models will tail off. $S_{1}(k), H_{1}(k).$

inversed term $(I - \sum_{l=1}^{m_0} \phi_{0l} W^{(l)})^{-1}$, which can be expanded into infinite power series in terms of $(\sum_{l=1}^{m_0} \phi_{0l} W^{(l)})$. So substituting Equation (5-18) and Equation (5-19) into Equation (5-17), we result in the autocorrelation functions of purely spatial $AR(\lambda_0)$ and $ARMA(\lambda_0, m_0)$ models will tail off.

5.2.2 The Identification of the Purely Spatial $MA(m_0)$ Processes Since the cut-off property of the autocorrelation functions is useful in identifying the MA processes, we will discuss the cut-off property of ρ_{ks} for the purely spatial $MA(m_0)$ model in more detail. The following definitions of sets that contain the information of the neighbor structure are given to help in studying the nature of this cut-off property. For each location i of the system, we associate two sets, which indicate the neighbor structure, with it, i.e.,

S_i(k): Set which contains all the kth order neighbors of location i.

 $H_i(k)$: Set which contains all the locations that location i is their k^{th} order neighbor.

For example, in the 5×5 regular grid system plotted in Figure 5-6(b), we have $S_{13}(1) = \{8,12,14,18\}, S_{13}(1) = \{8,12,14,18\}$. For the purely spatial MA(m₀) model, $\rho_{ks} = 0$ iff

 $S_{zz}(i,j) = \phi$ or $S_{WW}(i,j,k,s) = \phi$ for all locations i,j. (5-21)

where

$$S_{ZZ}^{(i,j)} = \bigcup_{k_1=0}^{m_0} \bigcup_{k_2=0}^{m_0} [(S_i^{(k_1)}) \bigcap (H_j^{(k_2)})]$$

$$S_{WW}(i,j,k,s) = [(H_i(k)) \bigcap (S_j(s))], \text{ and }\phi$$

denotes the empty set.

Since the cut-off behavior is influenced by the neighbor structure, we need to be more specific about the type of neighbor structure before we can go further. We will use a line system and two dimension regular grid system in this section to serve as examples. These two systems as well as their neighbor structures are given in Figure 5-6. For practical purpose, these two systems can be treated as the representative for the line system and the 2-dimension system respectively given that there are more than or equal to 25 locations in the system since the boundary effect is negligible. See Deutsch and Pfeifer [1980e].

For the line system, let $e_{Z}(i,j)$ be the (i,j) element of the $E(Z_{t}, Z_{t})$, then

$$e_{Z}(i,j) = 0$$
 iff $|i-j| > 2m_{0}$ (5-22)

i.e., $S_{ZZ}(i,j) = \{j | |i-j| > 2m_0\} = \phi$

	-			
	N			
	Provide de la companya de			
			Let d sk	(i,j) is
1				
				i.
			• •	
			1234	4 5 6 7 8
and the second secon				
and a second	Land Land			1
and the second				
and the second secon				
A CONTRACTOR OF A CONTRACTOR A	and the second s			
CALIFORNIA AND AND AND AND AND AND AND AND AND AN		•		
			Combing	Equation
			ρ _{sk} for	MA(m ₀) ;
				٩ ₁
¢.				
				β.
	· · · · ·			

Ŋ

T

T

1

T

1

I

I

T

336

the (i,j) element of $W^{(s)}W^{(k)}$, then

 $d_{sk}(i,j) \neq 0$ iff $|i-j| = |k-\beta|$. (5-23)

1 C		·			
	6	1	16	21	
2	1	12	Ð	22	
3	8	13	18	23	
4	9	14	9	24	
(5)	10	15	20	25	

(a)

(Ъ)

Figure 5-6(a). The 1×25 Line System (b). The 5×5 Regular Grid System

ns (5-22) and (5-23), we have the cut-off property of as follows:

 $p_{ks} = 0$ if $k > s + 2m_0$ or $0 \le k < s - 2m_0$ (5-24)

337

Est.

1								•				
(339
		ation			Spa	tial O	rder				. · ·	•
R. Constant		Loca	1	2	3	4	5	6	7	8	9	10
TH	-	1	2,6	7	3,11	8,12	13	4,16	9,17	14,18	19	5,21
and the second se	-	2	1, 3 7	6,8	4,12	9,11 13	14	5,17	10,16 18	15,19	20	22
Takana ang t		3	2,4 8	7,9	1, 5 13	6,10 12,14	11,15	18	17,19	16,20	23	22,24
A STREET AND A STR		4	3, 5 9	8,10	2,14	7,13 15	12	1,19	6,18 20	11,17	16	24
and a start store		5	4,10	9	3,15	8,14	13	2,20	7,19	12,18	17	1,25
Cold Colored		6	1,7 11	2,12	8,16	3,13 17	18	9,21	4,14 22	19,23	24	10
		7	2, 6 8,12	1, 3 11,13	9,17	4,14 16,18	19	10,22	5,15 21,23	20,24	25	
And		8	3, 7 9,13	2, 4 12,14	6,10 18	1, 5 11,15 17,19	16,20	23	22,24	21,25		
		9	4, 8 10,14	3, 5 13,15	7,19	2,12 18,20	17	6,24	1,11 23,25	16,22	21	
The state of the s	-	10	5,9 15	4,14	8,20	3,13 19	18	7,25	2,12 24	17,23	22	6
And the second second second		11	6,12 16	7,17	1,13 21	2, 8 18,22	3,23	14	9,19	4,24	15	10,20
and the state of t		12	7,11 13,17	6, 8 16,18	2,14 22	1, 3 9,19 21,23	4,24	15	10,20	5,25		
	Fi	gure	5-6(3)	. The	Neighb	or Str	ucture	of th	e 5X5	Regula	r Grid	Syster
											19 19 19 19	

Ord	ler	.						1			
Location	/	1	2	3	4	5	6	7	8	9	10
1		2	3	4	. 5	6	7	δ	9	10	n
2	-	1,3	4	5	6	7	8	9	10	11	12
3		2,4	1,5	6	7	8	9	10	11	12	13
4		3,5	2,6	1,7	8	9	10	11	12	13	14
		4,6	3,7	2,8	1,9	10	11	12	13	14	15
6		5,7	4,8	3,9	2,10	1,11	12	13	14	15	16
7		6,8	5,9	4,10	3,11	2,12	1,13	14	15	16	17
8 9		7,9 8,10	6,10 7,11	5,11 6,12	4,12 5,13	3,13 4,14	2,14 3,15	1,15 2,16	16 1,17	17 18	18 19
10		9,11	8,12	7,13	6,14	5,15	4,16	3,17	2,18	1,19	20
11		10,12	9,13	8,14	7,15	6,16	5,17	4,18	3,19	2,20	1,21
12		11,13	10,14	9,15	8,16	7,17	6,18	5,19	4,20	3,21	2,22
13		12,14	11,15	10,16	9,17	8,18	7,19	6,20	5,21	4,22	3,23
14		13,15	12,16	11,17	10,18	9,19	8,20	7,21	6,22	5,23	4,24
15		14,16	13,17	12,18	11,19	10,20	9,21	8,22	7,23	6,24	5,25
16 17		15,17 16,18	14,18 15,19	13,19 14,20	12,20 13,21	11,21 12,22	10,22 11,23	9,23 10,24	8,24 9,25	7,25	6 7
18		17,19	16,20	15,21	14,22	13,23	12,24	11,25	10	9	8
19		18,20	17,21	16,22	15,23	14,24	13,25	12	11	10	9
20		19,21	18,22	17,23	16,24	15,25	14	13	12	11	10
21		20,22	19,23	18,24	17,25	16	15	14	13	12	11
22		21,23	20,24	19,25	18	17	16	15	14	13	12
23		22,24	21,25	20	19	18	15	16	15	14	13
24		23,25	22	21	20	19	18	17	16	15	14
25		24	23	22	21	20	19	18	17	16	15

Figure 5-6(c). The Neighbor Structure of the 1×25 Line System

ر بین روید وروید بین ماند. د البین فراید این میزان از وروید

مز میسرد ہے۔

T

338

A State of the sta

-

7 . 1

T 1

T

1

1

and the second

Lait La

麠

cer i

-										
13	8,12 14,18	7, 9 17,19	3,11 15,23	3, 4 6,10 16,20 22,24	1, 5 21,25					
14	9,13 15,19	8,10 18,20	4,12 24	3, 5 7,17 23,25	2,22	11	6,16	1,21		
15	10,14 20	9,19	5,13 25	4, 8 18,24	3,23	12	7,17	2,22	11	6,13
16	11,17 21	12 , 22	6,18	7,13 23	8	1,19	2,14 24	3, 9	4	20
17	12,16 18,22	11,13 21,23	7,19	6, 8 14,24	9	2,20	1, 3 15,25	4,10	5	
18	13,17 19,23	12,14 22 24	8,16 20	7, 9 11 15 21,25	6,10	3	2,4	1, 5		
19	14,18 20,24	13,15 23,25	9,17	8,10 12,22	7	4,16	3, 5 11,21	2,6	1	
20	15,19 25	14,24	10,18	9,13 23	8	5,17	4,12 22	3,7	2	16
21	16,22	17	11,23	12,18	13	6,24	7,19	8,14	ÿ	1,25
22	17,21 23	16,18	12,24	11,13 19	14	7,25	6, 8 20	9,15	10	2
23	18,22 24	17,19	13,21 25	12,14 16,20	11,15	8	7,9	6,10	3	2,4
24	19,23 25	18,20	14,22	13,15 17	2	9,21	8,10 16	7,11	6	4
25	20,24	19	15,23	14,18	13 .	10,22	9,17	8,12	7	5,21

Figure 5-6(d). (Cont'd)

340

Linesee 1

にかり

躗

Contrast

2 ALC: NO

...

For the two dimension grid system, becauge there is no ordered location alignment and neighborhood structures are more complicated, the resulting cut-off orders of $\rho_{\rm ks}$ cannot be put in a closed form. However, for the 5×5 regular grid system, the following results for the MA(1), MA(2), MA(3) and MA(4) processes were obtained.

MA(1)

ρ₀₁

ρ_{2k}

^ρ3k

<u>MA(2</u>)

ρ_{0k}

$$k \begin{cases} \neq 0 & \text{if } k \leq 3 \\ \\ = 0 & \text{otherwise} \end{cases}$$

ρ lk

0

= 0

= 0 otherwise

if k ≤ 10, k ≠ 5,8,9 **#** 0 -

≠0 if k≠5, k <u><</u>6

otherwise

if $k \leq 7$, $k \neq 6$

= 0 otherwise

 $\neq 0$ if $k \leq 5$

= 0 otherwise

Note that for MA(1) and MA(2) processes, the ρ_{0k} of the line system cut off at k=1 and k=2, respectively. While the ρ_{0k} of the 2-dimension system doesn't cut off at k=1 and k=2, but cuts off at k=3 and k=5, respectively.

5.2.3 Partial Autocorrelation Function Sets

The partial autocorrelation function sets are helpful in identifying the purely spatial AR models. To analyze their characteristic properties we employ the following $AR(\lambda_0)$ model,

$$Z_{\lambda t} = \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)} Z_{t} + \varepsilon_{t}, \quad t=1,2,\ldots$$

Since

$$E[(W^{(k)}_{\chi_{t}})^{2}_{\chi_{t}}] = E[(W^{(k)}(I - \sum_{l=0}^{\lambda_{0}} \phi_{0l}^{W^{(l)}})^{2}_{\chi_{t}})^{2}_{\chi_{t}}],$$

and

A Statement of the second s

-

and the second

Printer and the second second

and the second se

Contraction of the second

A Contract of the second s

The second

342

. .

Defining,

$$E[(W^{(k)}\varepsilon_{t})\varepsilon_{t}] = 0, \quad k \neq 0,$$

We have the following simultaneous equations,

$$E[Z_{t}^{W^{(k)}}Z_{t}] = \sum_{l=1}^{\lambda_{0}} \phi_{0l} [E(Z_{t}^{(W^{(l)}}W^{(k)} + W^{(k)}W^{(l)})Z_{t})]$$

$$- \sum_{s=1}^{\lambda_{0}} \sum_{l=1}^{\lambda_{0}} \phi_{0s}\phi_{0l} E[Z_{t}^{W^{(s)}}W^{(k)}Z_{t}], \qquad (5-25)$$

$$= \sum_{s=1}^{\lambda_{0}} \sum_{l=1}^{\lambda_{0}} \phi_{0s}\phi_{0l} E[Z_{t}^{W^{(s)}}W^{(l)}Z_{t}], \qquad (5-25)$$

$$C_{kl} = E(Z_{t}^{W'})^{(k)}W^{(l)}Z_{t}^{W'}) = W^{(k)}W^{(l)} \Theta E(Z_{t}^{Z_{t}})$$

$$D_{skl} = E(Z_{t}^{(s)} W^{(k)} W^{(l)} Z_{t}) = W^{(s)} W^{(k)} W^{(l)} \Theta E(Z_{t}^{(l)})$$

Equation (5-25) can be rewritten as,

$$C_{k0} = \sum_{l=1}^{\lambda_0} \phi_{0l} \left(C_{kl} + D_{0kl} \right) - \sum_{s=1}^{\lambda_0} \sum_{l=1}^{\lambda_0} \phi_{0s} \phi_{0l} D_{skl}$$
(5-26)
k=1,2,3,..., λ_0 ,

343

E.

		715		
	344			
	Equation (5-26) which contains $\lambda_0^{}$ equations is a simultaneous quadratic			The solutions
	equation.	Hand and		Then we set k=
	We define the k_0^{th} partial autocorrelation function set $S(k_0)$ as			equations to s
	the set of all the solutions of this equation with $\lambda_0 = k_0$. If			
	$k_1 > k_2$, then the set $S(k_1)$ shares a solution with the set $S(k_2)$ if	t das		
	the set $S(k_1)$ has a solution with $\phi_{01}, \phi_{02}, \dots, \phi_{0k2}$ equal to a solution			k = 2 /
	contained in the solution set of $S(k_2)$ and has $\phi_{0(k2+1)}, \dots, \phi_{0k1} = 0$	Constant of the second s		13.037427
	in the solution. Theoretically, if the true model is purely spatial	J.		-
	AR(λ_0), then we will have the situation that S(1),S(2),,S(λ_0) share			
• . •	no solution, while $S(\lambda_0), S(\lambda_{0+1}), \dots$ share a solution, i.e., (ϕ_{01}, ϕ_{01})			
	$\phi_{02}, \ldots, \phi_{0\lambda_0}, 0, 0, 0, \ldots$). In such situations, the partial autocorrela-			
	tion function sets cuts-off at $k = \lambda_0$. In order to estimate the spatial T	10-510		11.751560]
	partial autocorrelation substitute for $E(Z, Z_{t})$ with the $(\sum_{t=1}^{Z} Z_{t}^{2}/T)$,			
	the sample autocovariance matrix, and then need to solve the simul-	(7)7		
	taneous quadratic equations to obtain the sample partial autocorrela-			
	tion function sets, $\hat{s}(1), \hat{s}(2), \dots, \hat{s}(\lambda_0), \dots$ The following example			
	for a purely spatial AR(1) process in a 5×5 regular grid system is used			The above simul
	to illustrate the cut-off property of the partial autocorrelation		а П	In Figure 5-7,
	function sets.			quadratic equat
	Suppose we have an AR(1) model with $\phi_{01} = 0.9$, for a 5×5 regular			second quadrati
	grid system whose neighbor structure is given in Figure 5-6(d), we			are the solution
	want to compute the partial autocorrelation set. At first, we set			solution set S(
	k=1, and obtain the following quadratic equation to solve for the ϕ_{01} ;			Note that S(1),
				that the partia
	$13.0374277151\phi_{01}^{-} - 27.2580923337\phi_{01} + 13.971957651620 = 0$			space Lag for t

s are $\phi_{01} = 0.9$ or $\phi_{01} = 1.19076$ or s(1) ={(0.9,1.19076)}. k=2, and have the following two simultaneous quadratic solve for ϕ_{01} and ϕ_{02} ;

 $\begin{array}{r} 277151 \quad \phi_{01}^{2} + 23.2482853728 \quad \phi_{01}\phi_{02} + 10.9886205076 \quad \phi_{02}^{2} \\ - 27.2580823337 \quad \phi_{01} - 23.3810108136 \quad \phi_{02} \\ + 13.9719576516 = 0 \end{array}$

 $\begin{array}{l} 001773 \quad \phi_{01}^{2} + 22.301871282 \quad \phi_{01}\phi_{02} + 10.2628662299 \quad \phi_{02}^{2} \\ - 23.5812615590 \quad \phi_{01} - 23.4004319218 \quad \phi_{02} \end{array}$

+ 11.7043716595 = 0

multaneous quadratic equations can be solved graphically. T, the whole ellipse is plotted according to the first mation and the partial ellipse is plotted according to the according to the intersection of these two ellipses mins of the above simultaneous quadratic equations. The $S(2) = \{(0.9,0), (1.04,0.14)\}$ is read from Figure 5-7. A), S(2) share the solution $\phi_{01} = 0.9$, $\phi_{02} = 0$. We see minal autocorrelation function sets cut-off after the lst this purely spatial AR(1) model.

(Th)

Applying the power expansion on $(I - \sum_{k=0}^{n} \phi_{0k} W^{(k)})^{-1}$ of the purely spatial ARMA(λ_0, m_0) model, we can transform the purely spatial ARMA(λ_0, m_0) model into its equivalent infinite order purely spatial MA model with the amplitudes of the coefficients decay exponentially, so the purely spatial autocorrelation functions of the purely spatial ARMA(λ_0, m_0) model tail off. Applying the power expansion on

 $(I - \sum_{k=0}^{\lambda_0} \theta_{0k} W^{(k)})^{-1}$ of the purely spatial ARMA (λ_0, m_0) model, we can transform this model into its equivalent infinite order purely spatial AR model. So the purely spatial partial autocorrelation function sets tail off. For the purely spatial ARMA (λ_0, m_0) model, neither the autocorrelation function nore the partial autocorrelation function sets cut-off. The cut-off, tail-off properties of the autocorrelation function and partial autocorrelation function sets is summarized in

Table 5-2. Characteristics of the Autocorrelation Functions for Purely Spatial ARMA Models

> Autocorrelation Function ρ_k Tail-off Cut-off at k = k₀ K₀ is determined by m₀ and the neighbor structure

Partial Autocorrelation <u>Functions Sets S(k)</u> Cut-off at $k = \lambda_0$ Tail-off

Tail-off

Tail-off

From Table 5-2, we see that when the sample autocorrelation functions $\hat{\rho}_k$ tail-off while the sample autocorrelation function sets $\hat{S}(k)$ cutoff at $k = \lambda_0$, then the underlying process is an AR(λ_0) process. When $\hat{\rho}_k$ cut-off and $\hat{S}(k)$ tail-off, the candidate model is a MA model. Also when $\hat{\rho}_k$ and $\hat{S}(k)$ both tail-off the underlying process is an ARMA model. 5.2.4 The Pattern Recognition

Since all the informations are contained in the autocorrelation functions, equations for the partial autocorrelation is computationally difficult, the approach for identification will emphasize a pattern comparison approach based upon the sample to theoretical autocorrelation to identify the candidate model. To do this pattern comparison, it is necessary to develop the expectation values of the sample autocorrelation function for all the $ARMA(\lambda_0, m_0)$ models.

The expectation values of the sample autocorrelation function can be derived from the general purely spatial model,

$$Z_{\text{vt}} = B(0)Z_{\text{vt}} - A(0)\varepsilon_{\text{vt}} + \varepsilon_{\text{vt}}, \quad t=1,2,\ldots,T \quad (5-27)$$

where

~ NID(0,
$$\sigma^2$$
I).

Defining

$$M_{ks} = [(I - B(0))^{-1}(I - A(0))]^{-1}W^{-(k)}W^{(s)}[(I - B(0))^{-1}(I - A(0))]$$

348

D Street

I

I

[hand

T

Ĩ

The second

17

STREET,

Character of

Contractory of

Note th	at a
(5-17),	the
$E(\hat{\rho}_{ks})$,	sin
Also, a	ccor

E(p_{ks})

where

We have the following formula

$$= \frac{\gamma_{ks}}{(\gamma_{kk}\gamma_{ss})^{1/2}} \left\{ 1 - \frac{\cos(\hat{\gamma}_{ks},\hat{\gamma}_{kk})}{2\gamma_{ks}\gamma_{kk}} - \frac{\cos(\hat{\gamma}_{ks},\hat{\gamma}_{ss})}{2\gamma_{ks}\gamma_{ss}} + \frac{\cos(\hat{\gamma}_{kk},\hat{\gamma}_{ss})}{4\gamma_{kk}\gamma_{ss}} + \frac{3\operatorname{var}(\hat{\gamma}_{kk})}{8\gamma_{kk}^{2}} + \frac{3\operatorname{var}(\hat{\gamma}_{ss})}{8\gamma_{ss}^{2}} \right\}$$
(5-28)

$$\begin{split} \mathbf{\gamma}_{\mathbf{ks}} &= \mathbf{E}(\hat{\mathbf{\gamma}}_{\mathbf{ks}}) = \left(\frac{1}{\mathrm{LN}}\right) \mathbf{T}_{\mathbf{r}} (\mathbf{M}_{\mathbf{ks}}) \sigma^{2} \\ \mathbf{var}(\hat{\mathbf{\gamma}}_{\mathbf{ks}}) &= \left(\frac{\sigma^{4}}{\mathrm{TLN}^{2}}\right) \left(\mathbf{M}_{\mathbf{ks}} \odot \mathbf{M}_{\mathbf{ks}} + \mathbf{M}_{\mathbf{ks}} \odot \mathbf{M}_{\mathbf{ks}}\right) \\ \mathrm{cov}(\hat{\mathbf{\gamma}}_{\mathbf{ks}}, \hat{\mathbf{\gamma}}_{\underline{\ell}\mathbf{m}}) &= \left(\frac{\sigma^{4}}{\mathrm{TLN}^{2}}\right) (\mathbf{M}_{\mathbf{ks}} \odot \mathbf{M}_{\mathbf{m}} + \mathbf{M}_{\mathbf{ks}} \odot \mathbf{M}_{\underline{\ell}\mathbf{m}}) \end{split}$$

although $E(\hat{\rho}_{ks}) \neq \rho_{ks}$, where ρ_{ks} is defined in the Equation e cut-off property of the MA process is still held for ace the cut-off property of $E(\hat{\rho}_{ks})$ depends on γ_{ks} only. It could be customary procedure, we have

$$\operatorname{var}(\hat{\rho}_{ks}) \stackrel{*}{\approx} \frac{\operatorname{var}(\hat{\gamma}_{ks})}{\gamma_{kk}\gamma_{ss}} - \frac{\gamma_{ks}\gamma_{kk}\operatorname{cov}(\hat{\gamma}_{ks},\hat{\gamma}_{ss}) + \gamma_{ks}\gamma_{ss}\operatorname{cov}(\hat{\gamma}_{ks},\gamma_{kk})}{\gamma_{kk}^2\gamma_{ss}^2} + \frac{\gamma_{ks}^2[\gamma_{kk}^2\operatorname{var}(\hat{\gamma}_{ss}) + \gamma_{ss}^2\operatorname{var}(\hat{\gamma}_{kk}) + 2\gamma_{ss}\gamma_{kk}\operatorname{cov}(\hat{\gamma}_{ss},\hat{\gamma}_{kk})]}{4\gamma_{kk}^3\gamma_{ss}^3}$$
(5-29)

350

(5-30)

J

[]

Since $\hat{\rho}_{0S}$ are enough in identifying the potential model, so we define $\hat{\rho}_{S} = \hat{\rho}_{0S}$, and the pattern of $E(\hat{\rho}_{S})$ is used to help in the model identification. The sign of $E(\hat{\rho}_{S})$ depends on $\gamma_{k0} \equiv W^{-(k)} \odot E(Z_{\lambda t \wedge t})$, the $E(Z_{\lambda t \wedge t})$ depends on the neighbor structure as well as the true model parameters, i.e., $\phi_{01}, \dots, \phi_{0\lambda_0}$, and the magnitude of $E(\hat{\rho}_{k})$ depends on γ_{k0} and γ_{kk} , so we have come up with the general conclusion that the sign and magnitude of $E(\hat{\rho}_{k})$ depend heavily on the neighbor structure as well as the model parameters, i.e., $\lambda_{0}, \phi_{01}, \dots, \phi_{0\lambda_0}$.

In the purely white noise process, i.e., A(0) = 0, B(0) = 0, we have the simpler formula for $E(\hat{\rho}_S)$ that corresponds to the Equations (5-28) and (5-29),

purely spatial ARMA models. system. 5.2.2.

The expectation values of the sample autocorrelation functions $E(\hat{\rho}_k)$, k=1,2,...,10 of the purely spatial $ARMA(\lambda_0,m_0)$ models with $\lambda_0 + m_0 \leq 2$ for the 1×25 line system and the 5×5 regular grid system are plotted. These plots are useful in identifying the low order purely spatial ARMA models.

In Figures 5-8 (a) - (d), the expected sample autocorrelation functions $E(\hat{\rho}_k)$ for the 1×25 line system of the AR(1), MA(1), ARMA(1,1), AR(2) and MA(2) models are plotted, and the expected sample autocorrelation functions for the 5×5 regular grid system are plotted in Figures 5-9 (a) - (d). Comparing the plots of 1×25 line system with those of the 5×5 regular grid system, we see that most of the patterns are similar except those of the AR(1), ARMA(1,1) models with negative ϕ_{01} values and the AR(2) models with (ϕ_{01}, ϕ_{02}) negative. The similarity comes from the same nature of the model specification and the difference comes from the different natures of the neighbor structures between the 1-dimension line system and the 2-dimension regular grid

From the plots in Figures 5-8(a) and 5-8(d), we see that $MA(m_0)$ models do have cut-off correlations as we expect for the line system. From the plots in Figures 5-9(a) and 5-9(d), we see that the auto-correlations of the $MA(m_0)$ models for the 2-dimension regular grid system cut-off and follow exactly what have been derived in Section

Figure 5-8(b) The Expected Sample Autocorrelation Functions $E(\hat{p}_k)$, k=1,2,...,10 for the Purely Spatial ARMA(1,1) Models of the 1X25 Line System.

(F)

Figure 5-8(d). The Expected Sample Autocorrelation Functions $E(\hat{\rho}_k)$, k=1,2,...,10 for the Purely Spatial MA(2) Models of the 1X25 Line System.

.

(F)

.

متسبية فيستطلقه تستندل ورواح

ing a saya Siyasa A

T

T

T

Lake

Ţ

I

I

Ĩ

Ţ

I

I

T

I

T

0

356

Ĩ

Ĩ

T

Ŋ

Ø

 \mathbb{Z}

[]

in the second

[]

Π

11

T٦

A.

即

177

1

Figure 5-9(b) The Expected Sample Autocorrelation Functions $E(\hat{\rho}_k)$, k=1,2,...,10 for the Purely Spatial ARMA(1,1) Models of the 5X5 Square Regular Grid System.

(in)

GA

5.3 The Initial Estimates of the Low Order Purely Spatial Model Parameters

If the candidate model selected is nonlinear in the parameters, initial estimates of the model parameters are needed to initiate any estimation procedure. A set of good initial estimates will make their computational effort reasonably efficient.

5.3.1 The Initial Estimates of the MA(2) Model

Substituting B(0) and A(0) in Equation (5-27) with 0 and $2\sum_{k=1}^{2} \theta_{0k} W^{(k)}$, respectively, we get the M_{ks} matrix for the MA(2) model as,

$$M_{ks} = (I - \sum_{\ell=1}^{2} \theta_{0\ell} W^{(\ell)}) W^{(k)} W^{(s)} (I - \sum_{\ell=1}^{2} \theta_{0\ell} W^{(\ell)})$$

Equation (5-28) is then applied to compute the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the purely spatial MA(2) model. In the Figure 5-10(a), the contours of the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ are plotted in every 0.1 interval for the 5×5 regular grid system. The surfaces of $(E(\hat{\rho}_1), \phi_{01}, \phi_{02})$ and $(E(\hat{\rho}_2), \phi_{01}, \phi_{02})$ of the purely spatial MA(2) model are plotted in Figures 5-10 (b) and (c), respectively. The levels of the square boundary edges, that are served as the reference level, are set to zero for these three dimension plots. To obtain the initial estimates for the purely spatial MA(2) model autocorrelation functions $\hat{\rho}_2$, s=1,2,... first, identify the MA(2) model as the candidate model by the pattern comparison, and then read the initial estimates for the set in the set in the set in the set initial estimates for the set initial estimates for figure 5-10(a). For example, we have the process that has been

estimate for $(\theta_{01}, \theta_{02})$. as, Mks initial estimate.

I

T

360

identified to be MA(2) process with $\hat{\rho}_1 = 0.5$, $\hat{\rho}_2 = 0.4$, in Figure 5-10(a), the value $(\theta_{01}, \theta_{02}) = (0.5, -0.22)$ is read to be the initial estimate for $(\theta_{01}, \theta_{02})$.

5.3.2 The Initial Estimates of the ARMA(1,1) Model

Substituting B(0) and A(0) in Equation (5-27) with $\phi_{01}W^{(1)}$ and $\theta_{01}W^{(1)}$, respectively, we get the M_{ks} matrix for the ARMA(1,1) model

$$= [(\mathbf{I} - \phi_{01} \mathbf{W}^{(1)})^{-1} (\mathbf{I} - \theta_{01} \mathbf{W}^{(1)})] \mathbf{W}^{(k)} \mathbf{W}^{(s)}$$
$$[(\mathbf{I} - \phi_{01} \mathbf{W}^{(1)})^{-1} (\mathbf{I} - \theta_{01} \mathbf{W}^{(1)})].$$

Equation (5-28) is then applied to compute the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the purely spatial ARMA(1,1) model. In the Figure 5-11(a), the contours of the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the 5×5 regular grid system are plotted in every 0.1 interval. The surfaces of $(E(\hat{\rho}_1), \phi_{01}, \theta_{01})$, $(E(\hat{\rho}_2), \phi_{01}, \theta_{01})$ are plotted in Figure 5-11 (b) and (c) respectively. To obtain the initial estimates for the purely spatial ARMA(1,1) model, we locate $(\hat{\rho}_{01}, \hat{\rho}_{02})$ position in Figure 5-11(a) to read the initial estimate of (ϕ_{01}, θ_{01}) from the coordinates, where $\hat{\rho}_{01}$, $\hat{\rho}_{02}$ are computed in the identification stage. For example, we have a process that has been identified to be the ARMA(1,1) process with $\hat{\rho}_1 = -0.5$, $\hat{\rho}_2 = 0.4$, in Figure 5-11(a), the value $(\phi_{01}, \theta_{01}) = (-0.9, -0.7)$ is read to be the initial estimate.

5.3.3 The Initial Estimates of the AR(2) Models

Substituting B(0) and A(0) in Equation (5-27) with $\sum_{\ell=1}^{2} \phi_{0\ell} W^{(\ell)}$

and 0, respectively, we have the M_{ks} matrix for the AR(2) model as,

$$M_{ks} = (I - \sum_{l=1}^{2} \phi_{0l} W^{(l)})^{-1} W^{(k)} W^{(s)} (I - \sum_{l=1}^{2} \phi_{0l} W^{(l)}).$$

Equation (5-28) is then applied to compute the $E(\hat{\rho}_1)$ and $E(\hat{\rho}_2)$ for the purely spatial AR(2) model. In the Figure 5-12(a), the contours of the E($\hat{\rho}_1)$ and E($\hat{\rho}_2)$ for the 5×5 regular grid system are plotted in every 0.1 interval. The surfaces of $(E(\hat{\rho}_1), \phi_{01}, \phi_{02}), E(\hat{\rho}_2), \phi_{01}, \phi_{02})$ are plotted in Figure 5-12 (b) and (c), respectively. To obtain the initial estimates for the purely spatial AR(2) model, we locate $(\hat{\rho}_{01},\hat{\rho}_{02})$ position in Figure 5-12(a) to read the initial estimate of (ϕ_{01}, ϕ_{02}) from the coordinates. For example, given that $(\hat{\rho}_1, \hat{\rho}_2) =$ (-0.5, 0.4), in Figure 5-12(a), the value $(\phi_{01}, \phi_{02}) = (-0.35, 0.20)$ is read to be the initial estimate.

In previous sections the contour charts have been given with the three dimension plots of the $E(\hat{\rho}_1)$ surfaces and $E(\hat{\rho}_2)$ surfaces. Comparing the surfaces of $(E(\hat{\rho}_1), \theta_{01}, \theta_{02}), (E(\hat{\rho}_1), \phi_{01}, \theta_{01}),$ $(E(\hat{\rho}_1), \phi_{01}, \phi_{02})$, we see that these surfaces share the same property that values of $E(\hat{\rho}_1)$ go smoothly from very positive (+1) to very negative (-1). However, the surfaces of $E(\hat{\rho}_2)$ do not share this property. The surfaces of $(E(\hat{\rho}_2), \theta_{01}, \theta_{02})$ and $(E(\hat{\rho}_2), \phi_{01}, \phi_{02})$ have the $E(\hat{\rho}_2)$ values go smoothly from very positive to very negative, while the surface of $(E(\hat{\rho}_2), \phi_{01}, \theta_{01})$ is symmetric about $\phi_{01} = \theta_{01}$ axis, it goes down and up again along any axis that is perpendicular to the $\phi_{01} = \theta_{01}$ axis. The similarity of $E(\hat{\rho}_1)$, $E(\hat{\rho}_2)$ surfaces of

Same.

1

I

T

362

Figure 5-10(a). The Contours of the $E(\rho_1)$ and $E(\rho_2)$ for the Purely Spatial MA(2) Models of the 5X5 Square Regular Grid System.

the purely spatial AR(2) model to the corresponding surfaces of the purely spatial MA(2) model reveals the fact that it is difficult to tell the AR(2) candidate model from the MA(2) candidate model if we should select the candidate model base on $\hat{\rho}_1$ and $\hat{\rho}_2$ only. And it is not so difficult to tell the ARMA(1,1) candidate model from the AR(2) candidate model or the MA(2) candidate model base on the information contained in $\hat{\rho}_1$ and $\hat{\rho}_2$.

It should be noted that for practical purposes, the plots of the 5×5 regular grid system that are applied to help in the pattern recognition and initial estimation are capable of representing most of the neighbor structures. This is especially appropriate when the location number exceeds 24, since the boundary effect is negligible. See Deutsch and Pfeifer [1980e].

5.4 The Estimation Procedures of the Purely Spatial Models

In this section, we will develop the procedures to get M.L. and L.S. estimates for the parameters of the candidate spatial model. The likelihood function for the purely spatial process is developed in Section 5.4.1 and the estimation procedures for $AR(\lambda_0)$, $MA(m_0)$ and $ARMA(\lambda_0,m_0)$ under the assumption of $G = \sigma^2 I$ will be given in Sections 5.4.2, 5.4.3 and 5.4.4, respectively. In Section 5.4.5 joint confidence regions for the model parameters are developed. The estimation procedures under the general G assumption are covered in Section 5.4.6 and in Section 5.4.7 the estimation procedures when G is unknown are discussed.

A set of the set of th	
Contraction of the second	<u>5.4.1</u> M.I
	Giv
A monotone	7.
]	ភីt
	where
	are power c
	the distribut
	f(e ₁ ,e ₂
	and Z = ME

372

T

"

100

4

THE REAL

T

Ĩ

1

T

L. Estimation

ven the purely spatial $ARMA(\lambda_0, m_0)$ model,

$$= \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)} Z_{t} - \sum_{l=1}^{m_0} \theta_{0l} W^{(l)} \varepsilon_t + \varepsilon_t, \quad t=1,2,\ldots,T.$$

$$\sum_{\substack{k=1}}^{\lambda_{0}} \phi_{0k} W^{(k)} \text{ and } \sum_{\substack{k=1}}^{m_{0}} \theta_{0k} W^{(k)}$$

convergent and

$$\varepsilon \sim \text{NID}(0,G),$$

oution function for ε_{vt} , t=1,2,...,T is

$$\sum_{\tau=1}^{T} |G| = (2TL)^{-LN \cdot T/2} |G|^{-T/2} \exp\{-1/2 \sum_{\tau=1}^{T} \varepsilon_{\tau} G^{-1} \varepsilon_{\tau} \} (5-32)$$

with

$$M = (I - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)}). \qquad (5-33)$$

(5-31)
We have the distribution for $\underset{\nabla t}{Z}, \ t=1,2,\ldots,T$ as

$$f(Z_{1}, Z_{2}, \dots, Z_{T} | \phi, \theta, G)$$

= $(2\pi)^{-LN \cdot T/2} |G|^{-T/2} |M|^{-T} \exp\{-1/2 \sum_{t=1}^{T} Z_{t}(M^{-1}) \cdot G^{-1} M^{-1} Z_{t}\}.$

Then the likelihood function for given observations $\underset{\bigcirc 1}{Z},\ldots,\underset{\bigtriangledown T}{Z}$ is

$$L(\phi, \theta | Z_{1}, Z_{2}, \dots, Z_{n}, G) = (2\pi)^{-LN \cdot T/2} |G|^{-T/2} |M|^{-T} \exp\{-s(\phi, \theta)\}$$
(5-34)

where

$$\begin{split} \mathbf{S}(\phi, \theta) &= \frac{1}{2} \sum_{t=1}^{T} Z_{t}(\mathbf{M}^{-1}) \mathbf{G}^{-1} \mathbf{M}^{-1} Z_{t} \\ &= \frac{T}{2} \operatorname{Tr}(\mathbf{G}^{-1} \hat{\mathbf{G}}(\phi, \theta)), \\ \hat{\mathbf{G}}(\phi, \theta) &= \frac{1}{T} \sum_{t=1}^{T} [\mathbf{M}^{-1} Z_{t}] [\mathbf{M}^{-1} Z_{t}]^{-1} \\ \end{split}$$

Taking the natural log and dropping the constant term involving 2π gives the log likelihood to be

$$\ln L(\phi, \theta | Z_1, \dots, Z_T) \alpha - \frac{T}{2} \ln |G| - T \ln |M| - S(\phi, \theta). \qquad (5-35)$$

In Equation (5-35), the first term, $-\frac{T}{2}\ln|G|$, is not a function of

the L.S. estimates. where

D

T

Ţ

Ţ

T

T

1

T

374

model parameter, and is not important in the searching procedure if G is known. Thus to obtain M.L. estimates we need to maximize

- T
$$\ln |M|$$
 - S(ϕ, θ).

Given the true model parameters (ϕ, θ) and $(\sum_{1}^{2}, \dots, \sum_{n}^{2})^{2}$, $\ln |M|$ is constant. Since $|T\ln|M|| = T \cdot |\ln|M||$, so when T increases $|T\ln|M||$ will increase according to the same ratio. Also, the third term, \cdot $S(\phi, \theta) = LN \cdot T \cdot \sigma^{2}$, will increase according to the same ratio. For moderate size systems and moderate T, typically $LN \cdot \sigma^{2} > |\ln|M||$ and $T \cdot LN \cdot \sigma^{2} >> T \cdot |\ln|M||$, thus typically $S(\phi, \theta)$ will dominate the second term $T \cdot \ln|M|$, and the M.L. estimates will be approximately equal to the L.S. estimates.

5.4.2 The Estimation Procedures of the Purely Spatial $AR(\lambda_0)$ Processes

To obtain the log likelihood equation for the $AR(\lambda_0)$ model, we set $\theta_{0l} = 0$ for $l=1,2,\ldots,m_0$ in Equation (5-35). This yields,

$$\ln L(\phi | Z_1, \dots, Z_T) \alpha - (\frac{T}{2}) \ln |G| - T \ln |M| - S(\phi)$$

$$S(\phi) = \frac{1}{2} \sum_{t=1}^{T} Z_{t}(I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) Z_{t}, \text{ and}$$

$$M = (I - \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)})^{-1}$$
 (5-36)

376

T

T

TA

T.

軍

T

F

T

T

Ĩ

I

1

T

To get the M.L. estimator for ϕ 's in AR(λ_0) model, we take the derivative of this log likelihood, set it equal to zero and solve for ģ. Thus,

$$-T \frac{\partial}{\partial \phi} \ln |M| - \frac{\partial}{\partial \phi} S(\phi) = 0 \qquad (5-37)$$

where

$$-\frac{\partial}{\partial \phi} \ln |\mathbf{M}| = \left[\frac{\partial}{\partial \phi_{1}} \ln |\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} \mathbf{W}^{(\ell)}|\right] \quad \mathbf{i}=1,2,\ldots,\lambda_{0}$$

$$-\frac{\partial}{\partial \phi_{i}} \ln |\mathbf{M}| = |\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} \mathbf{W}^{(\ell)}|^{-1} \frac{\partial}{\partial \phi_{i}} |\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} \mathbf{W}^{(\ell)}|$$
(5-38)

$$= \left| \mathbf{I} - \sum_{\ell=1}^{n} \phi_{0\ell} \mathbf{W}^{(\ell)} \right|^{-1} \mathbf{t}_{\mathbf{r}} [\mathbf{M}^{\ell} \mathbf{W}^{(1)}], \text{ and}$$

$$\frac{\partial \phi}{\partial \phi} S(\phi) = \begin{bmatrix} \partial \phi_1 \end{bmatrix} \qquad 1=1,2,\ldots,\lambda_0$$

$$\frac{\partial S(\phi)}{\partial \phi_{i}} = -\frac{1}{2} \sum_{t=1}^{T} Z_{t}(t) [W^{(i)} + W^{(i)} - W^{(i)} \sum_{\substack{l \neq i}}^{n} \phi_{0l} W^{(l)} - \sum_{\substack{l \neq i}}^{n} \phi_{0l} W^$$

E Constantino de la constant 侧 I I

where

Μ.

In the above formulation M^C is the matrix of co-factors of the matrix

To solve these equations is not an easy task since the term $|I - \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)}|$ in Equation (5-38) contains the terms of ϕ 's up to approximately the LN power. If we drop the first term in Equation (5-38) and maximize - $S(\phi)$, we get the L.S. estimates, which can be easily solved and expressed in closed form,

$$\hat{\phi} = (\mathbf{X} \mathbf{X})^{-1} \mathbf{X} \mathbf{Y}$$

$$\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{\lambda 0}]$$

5.4.3 The Estimation Procedures for the Purely Spatial $MA(m_0)$ Processes To obtain the log likelihood for $MA(m_0)$ model, we set $\phi_{0l} = 0$,

 $l=1,2,\ldots,\lambda_0$ in Equation (5-35). Thus,

377

(5-39)

Cest.

 $\ln L(\theta | Z_1, Z_2, \dots, Z_T) = -(\frac{T}{2}) \ln |G| + T\ln |M| - S(\theta),$

where

$$\mathbf{S}(\boldsymbol{\theta}) = \frac{1}{2} \sum_{t=1}^{T} \sum_{\boldsymbol{\xi} \neq 1}^{T} [(\mathbf{I} - \sum_{\boldsymbol{\ell} \neq 1}^{\mathbf{m}_{0}} \boldsymbol{\theta}_{0\boldsymbol{\ell}} \mathbf{w}^{(\boldsymbol{\ell})})^{-1}]^{-1} [(\mathbf{I} - \sum_{\boldsymbol{\ell} \neq 1}^{\mathbf{m}_{0}} \boldsymbol{\theta}_{0\boldsymbol{\ell}} \mathbf{w}^{(\boldsymbol{\ell})})^{-1}]_{\boldsymbol{\xi} \neq 1}^{\mathbf{m}_{0}}$$

and

Because of the non-linearity in the parameters, we can't obtain a closed form for the M.L. estimators or L.S. estimators. Thus, search over the parameter space will be needed to get the M.L. estimates, which maximize the $\ln L(\frac{\theta}{\sqrt{1}}|_{1}^{Z_{1}}, \dots, \frac{Z_{T}}{\sqrt{T}})$, or the L.S. estimates, which maximize the $S(\frac{\theta}{\sqrt{1}})$.

$\frac{5.4.4 \text{ The Estimation Procedures for the Purely Spatial ARMA(}\lambda_0, m_0)}{Models}$

As in the case of the $MA(m_0)$ process because of the non-linear nature in the θ 's parameters, we can't obtain a closed form solution for the M.L. estimators or L.S. estimators for the $ARMA(\lambda_0, m_0)$ process. However, we can reduce the searching effort to get the L.S. estimators by exploiting the linear nature in the ϕ 's parameters. Given θ 's, we can transform the model into the linear model form,

11

$$X(t) = X(t)\phi + \varepsilon_t, \quad t=1,2,\ldots,T$$

m

$$\chi(t) = (I - \sum_{l=1}^{0} \theta_{0l})^{-1} \chi_{t}$$

$$X(t) = [X_{1}(t), X_{2}(t), \dots, X_{\lambda 0}(t)]$$

$$\frac{\chi_{1}(t)}{\sqrt{2}} = (I - \sum_{l=1}^{m_{0}} \theta_{0l})^{-1} W^{(1)} \chi_{t}$$

The L.S. estimator under the assumption of $\varepsilon_{\sqrt{t}} \sim \text{NID}(0, \sigma^2 I)$ is,

$$\hat{\mathfrak{g}} = (\mathbf{X}^{-1}\mathbf{X}^{-1$$

(5-41)

(5-40)

1

Supplier of

where

where

X =

圆

The off

Frent

1

THE REAL

T

T

T

D

前回

5.4.5 The Confidence Regions

In the previous sections the procedures to get the point estimates for the parameters of $AR(\lambda_0)$, $MA(m_0)$ and $ARMA(\lambda_0,m_0)$ models under the assumption of $G = \sigma^2 I$ have been detailed. In this section, we will find the variance-covariance matrix for the estimated parameters. This will be an approximate variance-covariance matrix and will be used to construct the approximate confidence region for both M.L. estimators and L.S. estimators.

According to the work done by Whittle [1953], the variancecovariance matrix of the parameter estimators $V(\hat{\beta})$, $\hat{\beta} = [\hat{\phi}^{\dagger}, \hat{\theta}^{\dagger}]$, is,

$$\nabla_{ij}(\hat{g}) = \left\{ -E \left[\left(\frac{\partial \ln L}{\partial \beta_i} \right) \cdot \left(\frac{\partial \ln L}{\partial \beta_j} \right) \right] \right\}^{-1}$$
(5-42)

or equivalently,

$$V_{ij}(\hat{\beta}) = \left\{ -E \left[\frac{\partial^2 \ln L}{\partial \beta_i \partial \beta_j} \right] \right\}^{-1}, \qquad (5-43)$$

where $\nabla_{ij}(\hat{\beta})$ denotes the (i,j) element of $\nabla(\hat{\beta})_{\lambda}$. By substituting the log likelihood expression in the Equation (5-42), we have

$$\nabla_{ij}(\hat{\beta}) = \left\{ -E \left[\frac{\partial (T \ln |M| + S(\beta))}{\partial \beta_{i}} \cdot \frac{\partial (T \ln |M| + S(\beta))}{\partial \beta_{j}} \right] \right\}^{-1}, \quad (5-44)$$

380

14

T

TI

THE

Sec.

でいる

1

で読み

雪

Ĩ

T

T

T

1

$$Y_{ij}(\hat{\beta}) = \left\{ E\left[\frac{\partial^2 (T \ln |M| + S(\beta))}{\partial \beta_i \partial \beta_j}\right] \right\}^{-1}$$
(5-45)

For moderate T and LN, $S(\beta)$ dominates $T \cdot ln |M|$ in most cases, the $V_{ij}(\beta)$ is relatively constant. Thus

$$\mathbf{v}_{ij}(\hat{\boldsymbol{\beta}}) \triangleq \left\{ E\left[\frac{\partial^2 S(\boldsymbol{\beta})}{\partial \boldsymbol{\beta}_i \partial \boldsymbol{\beta}_j}\right] \right\}^{-1}.$$

or equivalently

v_{ij}(β̂).

A further approximation can be made by using the actually observed sum of squares as $S(\beta)$ in place of the expectation operator. Thus

$$\mathbf{v}_{ij}(\hat{\boldsymbol{g}}) \neq \left\{ \frac{\partial^2 \mathbf{s}(\boldsymbol{g})}{\partial \boldsymbol{\beta}_i \partial \boldsymbol{\beta}_j} \right\}^{-1} \cdot (5-47)$$

For the $AR(\lambda_0)$ model, $S(\beta)$ is quadratic in β over the relevant region and thus the second order derivative of $S(\beta)$ will be constant over this region, and the confidence regions can be directly approximated by

For the MA(m₀) model and the ARMA(λ_0, m_0) model, S(β) is not strictly quadratic in β . Since for the MA(m₀) and ARMA(λ_0, m_0) models, S(β) will be approximately quadratic over the relevant region of the

381

(5-46)

En

parameter space, we will use the same approximation and assume that these derivations are best determined at or near the point $\hat{\beta}$.

To construct the joint confidence region, we use the results found in Drapper Smith [1966]. The $100(1-\alpha)\%$ confidence regions are bounded approximately by the value of $\beta' = (\phi', \theta')$ which solves

$$\beta - \hat{\beta} \left[\nabla(\hat{\beta}) \right]^{-1} \left(\beta - \hat{\beta} \right) = k_0 F_{1-\alpha, k_0} N - k_0$$

where

(5-48)

382

5.4.6 Estimation When G Is Known and $G \neq \sigma^2 I$

Z

In previous estimation sections, we have assumed $G = \sigma^2 I$ for simplicity. Now we look at estimation under the more general G assumption. Consider the Spatial $ARMA(\lambda_0, m_0)$ model,

$$t = \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)} Z_{\ell} - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)} z_{\ell} + z_{\ell}$$

 $\varepsilon_{t} \sim \text{NID}(0,G), \quad G \neq \sigma^2 I$

where

-Town of The second TA T アイン T T T

E sel

T

(5-49)

D

T

177 June 1

And and a second

Section 1

Constant of the second s

Constant of

G is known and

$$E(\varepsilon_t \varepsilon_{t+k}) = 0, k \neq 0.$$

Since G is a positive definite matrix of rank LN, so there exists a matrix B of rank LN such that $BB^{\prime} = G$ (Graybill [1976]). Let $C = B^{-1}$, and pre-multiply Equation (5-49) with C and defining $\varepsilon_{C}(t) = C\varepsilon_{t}$ to get

$$C_{\mathcal{L}t}^{Z} = \sum_{l=1}^{\lambda_{0}} \phi_{0l} CW^{(l)} Z_{t} - \sum_{l=1}^{m_{0}} \theta_{0l} CW^{(l)} Z_{t} + \varepsilon_{C}^{(t)}$$

 $\varepsilon_{\Lambda C}(t) \sim \text{NID}(0, I)$ and

(5-50)

 $E(\varepsilon_{AC}(t)\varepsilon_{C}(t+k)) = 0, \quad k \neq 0$

This form allows the application of the same estimation procedures that has been developed for the $G = \sigma^2 I$. Further, to check the assumption that $\varepsilon_{t} \sim \text{NID}(0,G)$, the components of $\varepsilon_{C}(t)$ are checked to be independent with variance 1. Therefore all the estimation and diagnostic checking techniques appropriate under the assumption of G = $\sigma^2 I$ can be applied to the transformed model. Therefore in case that G is known and G $\neq \sigma^2 I$, we will transform the original data, and model the transformed data with the same estimation techniques, diagnostic checking that are appropriate for the $G = \sigma^2 I$ case.

5.4.7 Estimation When G is Unknown

Usually G is unknown, and it is natural to assume that $G = \sigma^2 I$ first and then check this assumption at diagnostic checking stage. So the estimation procedure under the G = $\sigma^2 I$ assumption is applied directly to get the parameter estimates $(\hat{\phi}, \hat{\theta})$ and the G = $\sigma^2 I$ assumption is tested upon the estimated residuals $\hat{\varepsilon}_{t}$, t=1,2,...,T. Situations may arise when the assumption G = $\sigma^2 I$ is unacceptable, then the assumption G=D is tested, where D is diagonal matrix with all diagonal elements positive. The G=D assumption is equivalent to the assumption that the contemporaneous noise ε_{t} are independent. If G=D hypothesis is not rejected, D is estimated by \hat{D} , which is constructed as follows,

 $\hat{D} = [\hat{d}_{ij}]$

where $d_{ij} = \delta_{ij}\hat{G}_{ij}, \hat{G}_{ij}$ is the (i,j) element of \hat{G} , and

$$\delta_{ij} = \begin{cases} 0 & i \neq j \\ \\ 1 & i = j. \end{cases}$$

Then \hat{D} is treated as the true D to estimate the model parameters (ϕ, θ) .

If G=D hypothesis is rejected again, it then is appropriate to assume the general G covariance and estimate G with \hat{G} , treat \hat{G} as the true covariance to estimate the model parameters (ϕ, θ) .

The estimation procedure for the covariance matrix G unknown

Survey and

S11	nce	S(ઌ,					
Ĝ,	so	maxi					
mizing							

f	the	(φ	

1

Ĩ

The second

THE .

10<u>1</u>-1 *

1

T

(5-51)

situation is shown in Figure 5-13. This procedure assumes $G = \sigma^2 I$ in the very beginning and performs the estimation under the $G = \sigma^2 I$ assumption. If the residuals pass the $G = \sigma^2 I$ test, the procedure stops. The procedure enters the iterative subroutine if $G = \sigma^2 I$ can't pass. In the iterative subroutine, G=D assumption is tested in every iteration, the estimation procedure under G=D assumption is performed if G=D assumption is accepted, otherwise the estimation procedure under general G assumption is applied. This two-stage iterative procedure may be applied to get the L.S. estimates of (ϕ, θ) as well as the M.L. estimates of (ϕ, θ) .

An alternative method to get the M.L. estimates can be obtained directly from Equation (5-35). Since G is unknown, the log likelihood function without the term involving 2π is now expressed as,

 $\ln L(\phi, \theta, G | Z_1, \dots, Z_T)$

$$\alpha - \frac{T}{2} \ln |G| - T \ln |M| - S(\phi, \theta, G)$$
 (5-52)

 $(\Theta,G) = LN \cdot T$ is constant when G is set to its M.L. estimates mizing the log likelihood function is equivalent to mini-

$$\ln |G| + 2 \ln |M|$$

A search routine is then needed to search through the existence regions (ϕ, θ) space to get the M.L. estimates $(\hat{\phi}, \hat{\theta})$ such that

 $\ln |\widehat{G}(\widehat{\phi}, \widehat{\theta})| + 2 \ln |M(\widehat{\phi}, \widehat{\theta})| \leq \ln |\widehat{G}(\Phi, \theta)| + 2 \ln |M(\phi, \theta)|$

and $\hat{G}(\hat{\phi}, \hat{\theta})$ is the M.L. estimate of covariance G.

5.5 Diagnostic Checking

After a candidate model is selected and its parameters are estimated, two questions need to be addressed,

 Do the residuals from the fitted model adhere to the assumptions concerning the properties of the purely . spatial ARMA model? and

2. Is this model parsimonious? or equivalently, could the data be adequately represented by a simpler model? In Section 5.5.1 we will discuss the first question, i.e., procedures to check the white noise assumption and contemporaneous correlation assumption for the unobservable residuals. In Section 5.5.2, we will discuss the second question, which is equivalent to check the significance of model parameters in the purely spatial ARMA(λ_0, m_0) model.

5.5.1 Diagnostic Checking That Is Applied to the Residuals

In order to check the adequacy of the usual assumptions of the residuals is equivalent to testing the following two hypothesis: 1. G is consistent with the assumption under which the estimation is performed.

2. ε_{t} are white noise.

T

To test the constency of the assumption about G, the two assumptions stated below may arise:

n an			25+147/10 ⁻⁰ *~~1	and a second sec
•				
	388	Line .		
. 1	1. $G = \sigma^2 I$, and	T a start		3.
	2. G=D.			The
	To test the hypothesis $G = \sigma^2 I$, we first construct the matrix			Deutsch and
$\hat{G} = \frac{1}{T}$	$\sum_{i=1}^{r} \hat{e}_{i}$, where \hat{e}_{i} are estimated residuals, and then use the	1		Equations (
followin	ng procedure;			combination
1	1. Calculate	2		
	w =(Ĝ](5-53)	I	T	
	$\begin{bmatrix} \underline{tr}(\widehat{G}) \\ LN \end{bmatrix} LN$		0	
	2. Find Z such that the probabilities on the righ-hand-side			Since the P hand terms
	of the equation below is equal to $1-\alpha$.			value easil
	$Pr\{-(T-1)\rho \ ln \ W \le Z\} = Br\{\chi_f^2 \le Z\} + W_2[Pr\{\chi_{f+4}^2 \le Z\}]$			Deutsch and
	$-\Pr\{\chi_{f}^{2} \leq 2\} + 0 ((T-1))^{-3} (5-54)$			1.
	where			
	$f = \frac{1}{2} LN (LN+1) - 1$			
	$\rho = 1 - \frac{2(\ln)^2 + \ln + 2}{6\ln(T-1)}$			2.
	$W_{2} = \frac{(LN+2)(LN-1)(LN-2)(2LN^{3}+6LN^{2}+3LN+2)}{288(LN)^{2}(T-1)^{2}\rho^{2}}$			P
		· · · · · · ·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	and the second

Ø

J

. Reject the hypothesis $G = \sigma^2 I$ if $-(T-1)\rho \ln W \ge Z$. he table of Z values for chosen LN, T and α has been given by and Pfeifer [1980]. Here Z values are computed by applying s (5-53) and (5-54). The LN, T and α have been tabled for ions of the following values:

LN = 3, 5, 10, 20, 30, 50,
T = 10, 20, 30, 50, 75, 100, 200,
$$\alpha = 0.01, 0.05, 0.10.$$

e $\Pr\{\chi_f^2 \leq Z\}$ term of Equation (5-54) dominates the other rightms for large T, so the Z can be approximated by the z', a sily determined from χ^2 tables such that $\Pr\{x_f^2 \leq z'\} = 1-\alpha$. To test the hypothesis G=D, we apply the following procedure by and Pfeifer [1980e]:

. Compute

$$v = \frac{|\hat{G}|}{\ln \hat{G}}$$

$$\pi \hat{G}_{ii}$$

$$i=1$$

(5-55)

Find v such that

 $\Pr\{\chi_{f}^{2} \leq v\} + \frac{r}{m^{2}} \left[\Pr\{\chi_{f+4}^{2} \leq v\} - \Pr\{\chi_{f}^{2} \leq v\}\right] = 1 - \alpha \quad (5 - 56)$

where

f = LN(LN+1)/2 m = T - (2LN+11)/6 $r = LN \cdot (LN-1) \cdot (2LN^2 - 2LN - 13)/288$

3. Reject the G=D hypothesis if $-m \ln V \ge v$ at the significant level α .

The v values computed from Equation (5-56) have been tabled by Deutsch and Pfeifer [1980] for combinations of those LN, T and α values that have been tabled for the G = σ^2 I test.

In the context of the three stage iterative model building procedure, one of the best way for testing the statistical independence of random process is to check the calculated sample space-time autocorrelation function. If there is no structure detected in the calculated sample space-time autocorrelation functions, the residuals pass the white noise assumption and the fitted model is accepted as adequate. This has been developed by Deutsch and Pfeifer [1981d]. However, they didn't include the purely spatial autocorrelation functions within sample space-time autocorrelation functions, and this noise check didn't have the capability for checking the existence of contemporaneous dependence among residuals.

For the LN dimensional pure white noise process, the $var(\hat{\rho}_{s}(k))$ for k > 0 is approximately equal to $[LN(T-k)]^{-1}$. From Equation (5-29) of Section 5.2.4, we have trailing parameter. test the hypothesis, vs.

1.111

The second se

1 martin

đ

1

390

E----

E street

では水し

T

$$\operatorname{var}(\hat{\rho}_{s}(0)) = \frac{W^{(S)} \cdot (W^{(S)} + W^{(S)})}{(\operatorname{LN} \cdot \operatorname{T}) \cdot \operatorname{Tr}(W^{(S)} + W^{(S)})}$$

and this is of order of $(\frac{1}{LN \cdot T})$. So we compute the purely spatial autocorrelation functions $\hat{\rho}_{s}(0)$, s=1,2,..., to compare the corresponding $\sqrt{var(\hat{\rho}_{s}(0))}$ of the white noise to detect the existence of the unexhausted contemporaneous structure. Also we will compute the sample space-time autocorrelation function and compare the absolute value of these sample autocorrelation function with $(\frac{1}{LN \cdot (T-S)})$ to detect the unexhausted temporal structure among the estimated residuals. The fitted model will be accepted as adequate if no structures are detected. 5.5.2 Testing the Significance of STARMA Parameters

To test the significance of the model parameters, two approaches may be used. The first approach is through constructing the joint confidence interval and inferencing from the location of a zero element for the i parameter whether the ith parameter is significant. The second method is by overfitting and testing the significance a particular trailing parameter.

5.5.2.1 The Confidence Region Approach for Joint Inference. To ne hypothesis,

^k₀ H₀: II $\beta_{i} = 0$ (all the parameters are insignificant) i=1

 $\begin{array}{c} k_{0} \\ H_{1}: \quad \Pi \quad \beta_{i} \neq 0 \quad (all \ the \ parameters \ are \ significant) \\ i=1 \end{array}$

at the significance level of α , the $(1-\alpha)$ joint confidence region is constructed according to the formula given in the Equation (5-48). We accept the hypothesis that the k_0 parameters are insignificant when 0 is contained in the $(1-\alpha)$ confidence region. In addition, subsets of parameters can be evaluated. If there is not a plausibility of the ith element in 0 to be \neq 0 (the ith zero element is not contained in the $(1-\alpha)\%$ contour) the ith parameter can be individually accepted to be significant.

5.2.2.2 Testing the Significance of the Model Parameters by Overfitting. Based on the "extra sum of squares" principle, Draper and Smith [1966], we compute the sum of squares for both the original candidate model parameters and the model with added parameters. For linear estimation problems with normal errors.

$$\frac{\mathrm{SS}(\beta_{k_0}) - \mathrm{SS}(\beta_{k_0}+j)}{\mathrm{SS}(\beta_{k_0}+j)} \left[\frac{N - (k_0+j)}{j}\right] \sim F_{j,N-(k_0+j)}$$
(5-57)

where β_{k_0} is the parameter vector of the original candidate model and β_{k_0+j} is the parameter vector of the overfitted model which contains all the original parameters. We will reject the hypothesis that some of the added j parameters are significant at the α levels if the lefthand-side of Equation (5-57) is less than $F_{\alpha,j,N-(k_0+j)}$.

The direct extension of a test as above to the nonlinear purely spatial MA and ARMA is not necessarily valid. However, in practice, this test is used since these models are approximately linear over the

region of interest around the point estimates. 5.6 Examples To illustrate the modeling procedure for purely spatial ARMA(λ_0, m_0) models, two examples are presented, one from hydrology and the second from crimenology. The first example is the heights of the Mohawk River at 6 locations observed twice a year. These data have been modeled by Perry and Aroian [1979] with $G = \sigma^2 I$ assumption. These data also have been modeled using STARIMA models by Deutsch and Pfeifer [1980a] with the general G innovations addressed. The second example is the monthly total number of arrests for assault in 14 areas of Northeast Boston. This set of data now examined in Deutsch and Pfeifer using STARIMA models [1979] and again by Deutsch and Pfeifer [1980a] in which this modeling effort has been extended to include the possibility of a contemporaneously corrected innovation. All these models are not able to describe the contemporaneously correlated structure. In this section, the purely spatial modeling techniques, that have been developed in the previous sections of this chapter, are applied to model the residuals of these two data sets to exhaust the contemporaneous correlations. 5.6.1 The Mohawk River Heights The heights at six locations along the Mohawk River were observed every six months for the years 1967 to 1976 yielding 20 observations. These observations were recorded in feet above sea level. The series $Z_t = W_t - \overline{W}$, where W_t is the observations at time t and \overline{W} is the average, was modeled as a STMA(1,) process,

Contraction of the local data

C. Manual L

Contestants Contestants

Production of the second

100000

Construction of the local division of the lo

「大学」

T

THE A

392

393

GEA

394			
(1)			
$Z_{t} = -\theta_{10t-1} - \theta_{11} W^{-2} + a_{t-1} + a_{t} $ (5-58)			Applying the
	F	resi	duals \hat{a}_{t} , t=1,2
with	[the the	contemporaneous
$\theta_{10} = 0.140$	Ē] of t	computing tr
$\hat{\theta}_{11} = -0.066$			í
$ \hat{G} = 1.095, \hat{G} = \frac{1}{T} \sum_{t=1}^{L} \hat{a}_{t} \hat{a}_{t}.$			
	r l	Sinc	e we have only
0.56		spat	ial ARMA(1,1) n
1.82 12.42 Symmetric			^ _ +
$\hat{G} = -0.05$ 0.16 0.47	D> ₽	n	⊷ ^α t ^π φ(
1.25 11.42 0.03 14.81			First, the I
0.25 0.96 -0.07 0.68 0.40	H	form	ed to give the
0.96 6.52 0.07 8.30 0.72 6.22		с.) Л \	
			$\hat{\phi}_{01} = 1.285$
and $W^{(\perp)}$ is given as:			$\hat{\theta}_{10} = 1.100$
n se	a		$\hat{\sigma}^2 = 4.568$
			$ \hat{c} = \frac{1}{5}$
		1	T <u>1=1</u>
$W^{(1)} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$			
0 0 1 0			The procedu
	r i i	app1	ied to test the $c = a^2 T$ by
		- (1	'-1)o ln W are (
이 제 이는 것은 것은 것 같은 것이 있는 것 같은 것은 것이 같은 것이 같이 많이 많이 많이 많이 많이 했다.			

e purely spatial modeling procedure, we model the 2,...,20 as the purely spatial process to exhaust s correlations.

he sample purely spatial autocorrelation functions of the STMA(11) model, we get

$$\hat{\rho}_{01} = 0.0687$$
 and $Var(\hat{\rho}_{01}) = 0.00266$

the 1st order neighbors, so we construct the purely model for these residuals, i.e.,

$$\phi_{01} W^{(1)} \hat{a}_{t} - \theta_{10} W^{(1)} \varepsilon_{t} + \varepsilon_{t}, \quad t=1,2,\ldots,20$$

L.S. estimation under the $G = \sigma^2 I$ assumption was perfollowing parameter estimates,

 $(\hat{\hat{\epsilon}}, \hat{\hat{\epsilon}}) = 1.093, \hat{\hat{\epsilon}}$ are the estimated residuals, $\hat{\hat{\epsilon}}_{t \wedge t}$

res that have been described in Section 5.5.1 are he G = $\sigma^2 I$ assumption and the G=D assumption. To ypothesis, the W-statistics in Equation (5-53), ρ and computed,

* . .

(sel

	0.55			n grae - ^{ann} - Ann	an a	
	1.89	12.50		Symm	netric	
<u>^</u>	-0.51	-2.62	0.88			
G ≖	0.94	8.22	1.76	9.58		
•	-0.60	-4.58	0.79	-3.60	2.13	
	0.06	0.20	-3.41	1.62	0.16	1.85

Figure 5-14. The \hat{G} Matrix at $(\phi_{10}, \theta_{10}) = (1.285, 1.100)$.

The Z value in Equation (5-54) are computed at $\alpha = 0.01$ to give $Z_{\alpha=0.01} = 37.783$. Since $-(T-1)\rho \ln W > Z_{\alpha=0.01}$, so the $G = \sigma^2 I$ hypothesis is rejected and G=D hypothesis is tested. Applying Equations (5-55) and (5.56), we obtain,

> V = 0.0047373m = 16.167 -m ln V = 96.53 v = 32.747 at $\alpha = 0.01$.

Since $-m \ln V > v$ at $\alpha = 0.01$, so the G=D hypothesis is rejected. Then the L.S. estimation under G = \hat{G} assumption is executed to give $\hat{\phi}_{01} = 1.285$, $\hat{\theta}_{01} = 1.100$ and SS = $\sum_{t=1}^{20} \hat{\varepsilon}_t \cdot \hat{G}^{-1} \hat{\varepsilon}_t = 120$. The model

Ţ	•	$parameter (\phi_0$
1		and the estim
		lation functi
T		noise assumpt
4		autocorrelati
		quacy and thi
76		To see
		we construct
and the second second		contour is co
a stranger		we have the f
Constanting of		Z _{\t}
Print and the second second		â ∿t
-		where
,		

Comparing the model, Equation (5-59), with the space-time STMA(1₁) model, Equation (5-58), we see that the space-time model has

396

T

T

1

*

Real Providence

 $(\phi_{01}, \theta_{01}, G)$ converges to $(\hat{\phi}_{01} = 1.285, \hat{\theta}_{01} = 1.100, G)$, imation procedure stops. The sample space-time autocorretions of the residuals are computed to check the white option. In Table 5-3, we see that the sample space-time ation functions of the residuals do not reveal any inadethis purely spatial ARMA(1,1) model is accepted as adequate. ee how significant the model parameters (ϕ_{01}, θ_{01}) are, it the 95% confidence interval, shown in Figure 5-15. The corresponding to the sum of squares SS = 126. Figure 5-15, we see that both ϕ_{01} , θ_{01} are significant, and final model as follows,

$$\hat{\theta}_{01}^{(1)} \hat{a}_{t} - \hat{\theta}_{11}^{(1)} \hat{a}_{t-1} + \hat{a}_{t}$$

$$\hat{\theta}_{01}^{(1)} \hat{a}_{t} - \hat{\theta}_{01}^{(1)} \hat{e}_{t} + \hat{e}_{t}, \quad t=1,2,3,\ldots,20, \quad (5-59)$$

 $\hat{\theta}_{10} = 0.140$ $\hat{\theta}_{11} = -0.066$ $\hat{\phi}_{01} = 1.285$ $\hat{\theta}_{01} = 1.100$

ε ∿ NID(0,Ĝ), Ĝ is given in Figure 5-14.

397

(sa

Table 5-3. The Sample Space-Time Autocorrelation Functions of the Residuals from the Purely Spatial ARMA(1,1) Model of the Mohawk River Heights Data

> The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations

Space Lag Fime Lag	0	1	0	l
0	1.00	0.02	1.00	0.28
1	0.04	0.04	0.42	0.41
2	0.01	0.00	0.14	0.03
3	-0.00	0.01	-0.03	0.09
4	0.01	-0.02	0.12	-0.23
5.	0.06	-0.03	0.59	-0.32
6	-0.19	-0.09	-1.68	-0.76
7	-0.06	-0.01	-0.54	-0.08
8	0.01	0.03	0.10	0.25
9	-0.14	-0.01	-1.04	-0.09
10	-0.04	-0.03	-0.31	-0.26
11	-0.03	0.00	-0.21	0.00
12	-0.27	0.02	-0,16	0.12

the capability to model the spatial-temporal correlations, but it cannot model the contemporaneously correlated structures, and the model, Equation (5-59), has the capability to describe the contemporaneously correlated structures as well as the spatial-temporal correlations. Also the $|\hat{G}| = 1.093$ of model, Equation (5-59), is smaller than the $|\hat{G}| = 1.095$ of the space-time STMA(1) model.

5.6.2 The Northeast Boston Assaults Data

As the second application example, we consider the T = 72monthly observations of the LN = 14 sites Northeast Boston Assault Data. The mean corrected first differences of these data, Z(t), $t=2,3,\ldots,72$, have been modeled via the STMA(1₁) process, i.e.,

$$Z_{t} = -\hat{\theta}_{10}\hat{G}_{1/2\tilde{t}t-1} - \hat{\theta}_{11}W^{(1)}\hat{G}_{1/2\tilde{t}t-1} + \hat{G}_{1/2\tilde{t}t}$$
(5-60)

where $\hat{G}_{1/2}\hat{G}_{1/2} = \hat{G}$, $\hat{G}_{1/2}$ is a lower triangular matrix, and $\hat{G} = \frac{1}{T-1} \sum_{t=2}^{T} \hat{a}_{t}\hat{a}_{t}$ is given in Figure 5-16. The M.L. estimates that have been obtained by Deutsch and Pfeifer [1980] are,

> $\hat{\theta}_{10} = 0.861$ $\hat{\theta}_{11} = -0.035$, and

> > Ĝ is limited in the Figure 5-16.

This space-time STMA(11) model have exhausted the spatial-temporal correlations, but it doesn't describe the contemporaneous correlations.

400

1

1

1

(····)

)

1	1.11			•									
2	-0.19	1.57				- 							
3	0.18	-0.09	1.81										
4	-0.07	0.37	0.34	6.64					Sym	etric			
5	-0.42	-0.06	0.61	0.21	3.87								
6	0.36	0.62	-0.11	1.19	0.10	7.17				1.1.1			
7	-0.22	1.14	0.02	1.00	0.10	0.83	14.80						
8	-0.32	0,53	-0.36	1.17	-0.43	0,60	-0.74	5.23					
9	-0.16	0.54	0.00	0.79	0,14	0.27	1.42	0.60	4.57				
10	-0.33	0.04	-0.16	-0.88	-0.22	-0.61	1.63	-0.53	0.59	6.06			
11	0.23	0.19	0.66	1.92	0.30	1.48	1.77	-0.10	-0.19	0.38	14.50		
12	-0.24	0.08	0.62	0.46	1.00	0,56	1.11	0.15	0.03	-0.05	1.49	5.57	
13	-0.31	-0.20	-1.65	-0.05	2.24	0.94	0.77	-0,40	-0.64	1.87	-1.81	1.63	14.9
14	-0.08	0.16	-0.32	1.20	-0.13	0.10	0.08	-0.37	0.14	·0,17	0.79	0.38	1.7
	1	2	3	4	5	6	7	8	9	10	11	12	13

Figure 5-16. The Sample Covariance Matrix of the Estimated Residuals from the STMA(1_1) Model, Equation (5-60).

U

۰,

To exhaust the contemporaneously correlated structures, the purely spatial modeling procedures are applied to build the purely spatial model. The sample purely spatial autocorrelations and the standardized sample purely spatial autocorrelations are computed to give the following results,

Sample Autocorrelation	Standardized Autocorrelation
p ₀₁ = 0.098	2.400
$\rho_{02} = -0.002$	-0.041
$\rho_{03} = 0.063$	1.621

The pattern of expected sample autocorrelation functions for the purely spatial AR(1) model in Figure 5-9 matches the pattern of these sample purely spatial autocorrelation functions best. Reading Figure 5-11(a), we obtain the initial estimate $\phi_{01} = 0.1$. The L.S. estimation under $G = \sigma^2 I$ assumption gives

$$\hat{a}_{t} = \hat{\phi}_{01} W^{(1)} \hat{a}_{t} + \varepsilon_{t}, \quad t=2,3,\ldots,72$$

where

$$\hat{\phi}_{01} = 0.221$$

 $\hat{\sigma}^2 = 0.98155$

To test the G = σ^2 I hypothesis, Equations (5-53) and (5-54) are used to compute the following statistics:

Terrer 1

Party and a second

402

1

T

4

1ª

T

T

Performing the F-test, we have

W = 0.23382 $\rho = 0.9306$ $-(T-1)\rho \ln W = 109.31$ $z_{\alpha=0.05} = 123.47$

Since $-(T-1)\rho \ln W < Z_{\alpha=0.05}$, so the G = $\sigma^2 I$ assumption for ε_{t} cannot be rejected. Also the diagnostic checking applied on the estimated residuals $\hat{\hat{\epsilon}}_{t}$ to check the white noise assumption doesn't reveal any model inadequacies. The sample space-time autocorrelation functions are shown in Table 5-4.

To check the model parsimony, the model parameter $\boldsymbol{\varphi}_{\textbf{O1}}$ is tested for significance in the following,

> $H_0: \phi_{01} = 0$ vs. H₁: ¢₀₁ ≠ 0

The extra sum of squares SS_E = 18.339 with $\hat{\sigma}_{\epsilon}^2$ = 0.952, and

F = 18.68

$$F > F_{0.05, 1.991} = 3.84,$$

so ϕ_{01} is significant and the following final model is obtained,

404 Table 5-4. The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Purely Spatial Law Street Model, Equation (5-61) The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations Space Lag 2 0 1 0 1 2 where Time Lag 31 0.08 0.95 1.00 0.03 0.03 x2h 1.00 0 0.25 0.76 0.90 0.02 0.02 0.00 1 1.23 -0.85 0.63 -0.02 0.02 0.04 2 11 -0.35 -0.33 -0.01 0.12 3 0.00 -0.01 1.12 -0.64 1.02 0.03 -0.02 0.03 4 -2.08 0.93 0.67 -0.06 0.02 0.03 5 1 1.99 -0,00 -0,04 -2.10 -0.05 -0.07 0.06 6 -1.89 0.88 0.03 -0.06 -1.37 7 0.68 -0.02 0.02 0.02 -0.74 0.65 8 -0.02] -0,00 -0.010.03 -0.53 1.03 9 -0.11 1.06 -0.03 -0.00 0.03 -1.07 10 0.44 11 12 1.81 0.65 0.02 -0.01 0.06 0.28 -0.60 0.01 -0.02 0.91 0.03 0.66 1.37 13 0.02 0.04 -0.74 -0.02 -0.72 0.16 14 0.00 -0.34 -0.01 -0.02 -0.32 -0.77 15 0.90 0.03 -0.03 -0.02 2015 ------T 圓 \square 5

$$Z_{t} = -\hat{\theta}_{10}\hat{G}_{1/2\sqrt{t-1}} - \hat{\theta}_{11} W^{(1)}\hat{G}_{1/2\sqrt{t-1}} + \hat{G}_{1/2\sqrt{t}}$$

 $\hat{a}_{t} = \hat{\phi}_{01} W^{(1)} \hat{a}_{t} + \varepsilon_{t}, \quad t=2,3,...,72,$

 $\hat{\theta}_{10} = 0.861$ $\hat{\theta}_{11} = -0.035$ $\hat{\phi}_{01} = 0.221$ $\hat{G}_{1/2}\hat{G}_{1/2} = \hat{G}, \hat{G}_{1/2}$ is a low triangular matrix and

 $\hat{G} = \frac{1}{(T-1)} \sum_{t=2}^{T} \hat{a}_{t} \hat{a}_{t}$ is given in Figure 5-16.

The second second

The space-time $STMA(i_1)$ model, Equation (5-60), models the spatial-temporal correlated structure of the observed process, but it can't model the contemporaneous spatial structures. By adding the purely spatial model, that has been built for the estimated residuals of the $STMA(i_1)$ model, Equation (5-60), we increase the model capability to be able to describe the purely spatial structures as well as the spatial-temporal correlated structures.

405

(5-61)

CHAPTER VI

COUPLING AND REPARAMETERIZING MODELS

In this chapter two topics concerning coupling and reparameterizing models are analyzed; coupling and reparameterizing an aggregate (for all t) purely spatial model and the space-time model and coupling the purely spatial models for subsets of t. The purely spatial model,

$$Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} \varepsilon_{t} + \varepsilon_{t}, \text{ tes} \qquad (6-1)$$

406

T

T

T

T.S.A

where S is a non-empty subset of $U_T = \{1, 2, \dots, T\}$, and observations are available from t=1 to t=T, is referred to as the individual purely spatial model when the temporal index set S contains only one element, and it is referred to as the aggregate purely spatial model when S contains more than one element. In Chapter V, the purely spatial model was the aggregate purely spatial model with $S = U_{T^*}$. In this chapter, the aggregate purely spatial model is distinguished from the individual purely spatial models. In Section 6.1 the procedures of coupling and reparameterizing the aggregated purely spatial model with the space-time model are developed. Three types of space-time processes and two modeling sequences are considered. Three space-time process types are: 1. every location has the same univariate ARIMA process, 2. the system follows a STARIMA process, and 3. each location are included.

has a different univariate ARIMA model. The two modeling sequences are: 1. Modeling the observations to be a purely spatial process, then modeling the residuals to be a space-time process. Comparisons of the STARIMA models and the resulting coupled and reparameterized model for each model type are made and the equivalence of these two modeling sequences is discussed. Two application examples

· After the coupling procedures for the space-time model and the aggregated purely spatial model, the procedures for coupling the purely spatial models are developed in Section 6.2. The ergodic process is introduced and the modeling procedures for the ergodic process are developed under the homogenity assumption. Since an ergodic process may behave like non-ergodic because of inhomogeneous inputs, in Section 6.3 a procedure is developed to detect the outliers under the ergodic assumption. An example application is included to illustrate these procedures.

6.1 Coupling and Reparameterizing Aggregate Purely Spatial Models and the Space-Time Model

The space-time model has the capability of describing spacetime diffusion mechanisms with the exception of the contemporaneously spatial diffusion mechanism. On the other hand, purely spatial models describe only contemporaneously spatial correlated structures without any temporal relations. Once a space-time model has been constructed and its residuals follow a purely spatial model, we may want to couple these models and reparameterize the coupled model to obtain the single system model. In this section, the coupling and reparameterization

of the aggregate purely spatial models and space-time models are discussed.

Two modeling sequences may arise: 1. The observations are modeled to be an aggregate purely spatial process and then the residuals are modeled to be a space-time process, or 2. The observations are modeled to be a space-time process and then the residuals are modeled by the aggregate purely spatial process. In the following, the first modeling sequence, i.e., the aggregate purely spatial modeling followed by the space-time modeling, is detailed and the equivalence of two modeling sequences is verified in Section 6.1.1. Comparison of the coupled reparameterized models and the STARIMA models is made in Section 6.1.2. Two application examples are presented in Section 6.1.3.

6.1.1 Space-Time Models with Contemporaneous Terms

In this section it is assumed that the purely spatial model,

$$I - \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)} \sum_{t=1}^{T} = (I - \sum_{l=1}^{m_0} \theta_{0l} W^{(l)})_{t}^{a}, t \in U_T$$
(6-2)

has been built and the LN streams of the estimated residuals has been computed. These residuals depending upon their structure, may follow one of three potential models;

- 1. All LN streams of residuals are described by the same univariate ARIMA model,
- 2. The LN streams of residuals follow a STARIMA process,

408

Street Street

Contraction of the second

Ë1

and

Since

at

3. The LN streams of residuals are described by different univariate ARIMA models.

6.1.1.1 All LN Streams of Residuals Are of the Same Univariate

<u>ARIMA Model</u>. Here the residuals are assumed to be generated from the same univariate ARIMA(p,d,q) model. Without loss of generality, we will assume d=0 and have the aggregate purely spatial model,

$$a_{t} = (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)})_{\tau t}^{Z}, t = 1, 2, ..., T, (6-3)$$

$$(I - \sum_{k=1}^{p} \phi_{k0} IB^{k})^{-1} (I - \sum_{k=1}^{q} \theta_{k0} IB^{k}) \varepsilon_{t}$$
, t=1,2,...,T, (6-4)

for the LN streams of residuals with $\varepsilon_{\nabla t} \sim \text{NID}(0, \sigma^2 \text{ I})$. By substituting for a we obtain the coupled model for the system.

$$(\mathbf{I} - \sum_{\ell=1}^{\mathbf{m}_{0}} \boldsymbol{\theta}_{0\ell} \boldsymbol{W}^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \boldsymbol{\phi}_{0\ell} \boldsymbol{W}^{(\ell)})_{\lambda_{t}}^{Z}$$

 $(I - \sum_{k=1}^{p} \phi_{k0} IB^{k})^{-1} (I - \sum_{k=1}^{q} \theta_{k0} IB^{k}) \varepsilon_{t}$

410

$$(I - \sum_{k=1}^{p} \phi_{k0} TB^{k}) = (I - \sum_{k=1}^{p} \phi_{k0} B^{k}) I,$$
so,

$$(I - \sum_{k=1}^{p} \phi_{k0} TB^{k}) (I - \sum_{k=1}^{m_{0}} \theta_{0k} W^{(k)})^{-1} =$$

$$(I - \sum_{k=1}^{m_{0}} \theta_{0k} W^{(k)})^{-1} (I - \sum_{k=1}^{p} \phi_{k0} TB^{k})$$
Multiplying both sides with $(I - \sum_{k=1}^{m_{0}} \theta_{0k} W^{(k)}),$ we get,

$$\chi_{k} = \sum_{k=1}^{\lambda_{0}} \phi_{0k} W^{(k)} \chi_{k} + \sum_{k=1}^{p} \phi_{k0} (I - \sum_{k=1}^{\lambda_{0}} \phi_{0k} W^{(k)}) \chi_{k-k}$$

$$- \sum_{k=1}^{m_{0}} \theta_{0k} W^{(k)} \xi_{k} - \frac{q}{k-1} \theta_{k0} (I - \sum_{k=1}^{\lambda_{0}} \theta_{0k} W^{(k)}) \xi_{k-k} + \xi_{k}.$$
(6-4)
This can be reparameterized to the modol,

so,

dual models are,

where

3

Contraction of

Particular Particular

T 1111

T

Contraction of

A Characteria

C. Contraction

and the second

and the second second

a = ∿t a ≕ ∿t

$$Z_{\nu t} = \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)} Z_{\nu t} + \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_0} \phi_{k\ell}^{*} W^{(\ell)} Z_{\ell-k}$$
$$- \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)} \varepsilon_{\tau} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_0} \theta_{k\ell}^{*} W^{(\ell)} \varepsilon_{\tau-k} + \varepsilon_{\tau}, \qquad (6-5)$$

$$W^{(0)} = I$$

$$\phi_{k0}^{*} = \phi_{k0}$$

$$\theta_{k0}^{*} = \theta_{k0}$$

$$\phi_{kl}^{*} = \phi_{k0} \cdot \phi_{0l} \quad k \ge 1, \ l \ge 1$$

$$\theta_{kl}^{*} = -\theta_{k0} \cdot \theta_{0l}, \text{ and}$$

$$\varepsilon_{t} \sim \text{NID}(0, \sigma^{2} I).$$

6.1.1.2 The LN Streams of Residuals Are from the STARIMA Process. In this section, the residual of the purely spatial model is assumed to be generated by the STARIMA($P_{\lambda}, 0, q_{\underline{m}}$) process. These resi-

$$(\mathbf{I} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=0}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} \sum_{\lambda t}, t=1,2,...,T$$

$$(\mathbf{I} - \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} B^{k})^{-1} (\mathbf{I} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} \theta_{0\ell} W^{(\ell)} B^{k}) \varepsilon_{t}$$

$$t=1,2,...,T \quad (6-6)$$

with $\epsilon_{\rm vt} \sim {\rm NID}(0,\sigma^2$ I). Equating the $a_{\rm vt}$ expressions results in the coupled system model. $(\mathbf{I} - \sum_{\ell=1}^{\mathbf{m}_{0}} \boldsymbol{\theta}_{0\ell} \mathbf{W}^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \boldsymbol{\phi}_{0\ell} \mathbf{W}^{(\ell)}) \mathbf{Z}_{t} =$ $(I - \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} B^{k})^{-1} (I - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} \theta_{k\ell} W^{(\ell)} B^{k}) \xi_{t}$ or T $(I - \sum_{k=1}^{p} \sum_{k=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} B^{k}) (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) Z_{t}$ $= (I - \sum_{k=1}^{q} \sum_{\ell=0}^{m_k} \theta_{k\ell} W^{(\ell)} B^k) \xi_t.$ This is equivalent to $[(I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)})$ $-\sum_{k=1}^{p}\sum_{\ell=0}^{\lambda_{k}}\phi_{k\ell} W^{(\ell)}B^{k} (I - \sum_{\ell=1}^{m_{0}}\theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}}\phi_{0\ell} W^{(\ell)})] Z_{t}$ $= (I - \sum_{k=1}^{q} \sum_{k=0}^{m_k} \theta_{k\ell} W^{(\ell)} B^k) \xi_t.$

412

Constanting of

10000

Craner 1

The second second

Z ≇ ∿t

where

Multiplying both sides with $(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})$ and rearranging the coefficients, we have

$$\begin{split} & \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} + \sum_{k=1}^{p} \left[\sum_{\ell=0}^{\lambda} \phi_{\ell} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) \right] \\ & W^{(\ell)} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) \right] Z_{t-k} \\ & \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} Z_{t} - \sum_{k=1}^{q} \left[\sum_{\ell=0}^{m_{k}} \theta_{k\ell} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) W^{(\ell)} \right] \\ & \mathcal{E}_{t-k} + \mathcal{E}_{t}. \end{split}$$

$$(6-7)$$

Equation (6-7) can be reparameterized as follows;

 $Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} + \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} W^{(\ell)} Z_{t-k}$ $-\sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)} \varepsilon_t - \sum_{k=1}^{q} \sum_{\ell=0}^{m_k} \theta_{k\ell} W^{(\ell)} \varepsilon_{t-k} + \varepsilon_t$ (6-8)

$$W_{\phi}^{(h)} = (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) W^{(h)} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)})$$
$$W_{\theta}^{(h)} = (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) W^{(h)}$$

414

In the isotropic preference STARIMA system since the weight matrices are symmetric, by applying the matrix multiplication, we see that $W^{(l)}W^{(h)} \approx \frac{1}{n^{(l)}+n^{(h)}} (W^{|l+h|} + W^{|l-h|})$, where $n^{(l)}$ and $n^{(h)}$ denote the average number of the l^{th} and the g^{th} order neighbors, respectively. It should be noted that in the regular grid system, the average number of the arbitrary l^{th} order neighbor is approximately 4, and $W^{(l)}W^{(h)}$ is negligible when compared to the identity matrix I, where $l\neq 0$, $h\neq 0$. By omitting all negligible terms in Equation (6-8), we obtain,

$$W_{\phi}^{(h)} \stackrel{*}{\approx} W^{(h)}$$

 $W_{\phi}^{(h)} \stackrel{*}{\approx} W^{(h)}$

This approximation holds closely for the low spatial order models, i.e., models with $\lambda_0, m_0 \leq 2$.

<u>6.1.1.3 The LN Streams of Residuals Are from Different ARIMA</u> <u>Processes</u>. The residuals of the aggregate purely spatial model are assumed to be generated from LN different $ARIMA(p_i,d_i,q_i)$ i=1,2,...,LN univariate models. The models that describe the whole system are,

åt ⁼ Åit ' where

written as

[]

F

T

R

$$(\mathbf{I} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) Z_{tt}$$

$$t=1,2,\ldots,T,$$

$$(\mathbf{I} - \sum_{k=1}^{p_{i}} \phi_{k0} B^{k})^{-1} (\mathbf{I} - \sum_{k=1}^{q_{i}} \theta_{k0} B^{k}) \varepsilon_{it}$$

$$t=1,2,\ldots,T$$

$$i=1,2,\ldots,LN, \qquad (6-9)$$

 i^{ϕ}_{k0} , $k=1,2,\ldots,p_{i}$ are AR parameters of the $i^{\underline{th}}$ residual stream. i^{θ}_{k0} , $k=1,2,\ldots,q_{i}$ are MA parameters of the $i^{\underline{th}}$ residual stream.

In order to simplify the expression of Equation (6-9), we define $D_k = [k_{i,l}], F_k = [k_{i,l}]$ below,

 $k^{d}_{i,\ell} = \begin{cases} i^{\phi}_{k0} & \text{when } i = \ell \text{ and } 1 \leq k \leq p_{i} \\ 0 & \text{otherwise} \end{cases}$ $k^{f}_{i,\ell} = \begin{cases} i^{\theta}_{k0} & \text{when } i = \ell \text{ and } 1 \leq k \leq q_{i} \\ 0 & \text{otherwise.} \end{cases}$ (6-10)

and $D_0 = I$, $F_0 = I$. The matrices D_j and F_k are diagonal which allows the LN different univariate ARIMA models in Equation (6-9) to be

415

φħ.

$$a_{t} = (I - \sum_{j=1}^{p} D_{j} B^{j})^{-1} (I - \sum_{k=1}^{q} F_{k} B^{k}) \varepsilon_{t}$$
(6-11)

where p = max{p_i, i=1,2,...,LN} and q = max{q_i, i=1,2,...,LN}. Coupling the aggregate spatial model in Equation (6-9) and

the residual model in Equation (6-11) yields,

$$(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{n_0} \phi_{0\ell} W^{(\ell)}) Z_t$$

 $(I - \sum_{k=1}^{p} D_{k} B^{k})^{-1} (I - \sum_{k=1}^{q} F_{k} B^{k}) \xi_{t}$.

This is equivalent to,

or

$$(I - \sum_{k=1}^{p} D_{k} B^{k}) (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_{0}} \phi_{0\ell} W^{(\ell)})_{\chi_{t}}^{Z} = (I - \sum_{k=1}^{q} F_{k} B^{k})_{\xi_{t}}^{Z}$$

416

新建

Ţ

P

I

J

T

Ţ

J

们

 \mathbb{P}

D

trement

I

and the second

$$[(\mathbf{I} - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})$$

- $(\sum_{k=1}^{p} D_k B^k) (\mathbf{I} - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})]_{\mathcal{V}_t}^{\mathbb{Z}}$
= $(\mathbf{I} - \sum_{k=1}^{q} F_k B^k)_{\mathcal{V}_t}$

Multiplying both sides by $(I - \sum_{l=1}^{m_0} \theta_{0l} W^{(l)})$, we have

$$Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} + \sum_{k=1}^{p} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) D_{k} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1}$$

$$\sum_{l=1}^{n} \phi_{0l} W^{(l)} Z^{(t-k)} - \sum_{l=1}^{m} \theta_{0l} W^{(l)} \xi_{t-l}$$

• (I -

 $-\sum_{k=1}^{q} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) F_{k} \xi_{t-k} + \xi_{t}$ (6-12)

Reparameterizing Equation (6-12) and we get,

$$Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)} Z_{t} + \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_{0}} \phi_{0\ell}^{*} W_{\phi}(k,\ell) Z_{t-k} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)} E_{t}$$

 $-\sum_{k=1}^{q}\sum_{\ell=0}^{m_{0}}\theta_{0\ell}^{*}W_{\theta}(k,\ell)\xi_{t-k}+\xi_{t}$

(6-13)

when *l=*0 $\phi_{0\ell}^{\star} = \begin{cases} 1 & \text{when } 1 \leq \ell \leq \lambda_{0\ell} \\ -\phi_{0\ell} & \text{when } 1 \leq \ell \leq \lambda_{0\ell} \end{cases}$

$$W_{\phi}(\mathbf{k},\mathbf{h}) = (\mathbf{I} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) D_{\mathbf{k}}(\mathbf{I} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} W^{(\mathbf{h})}, \ \mathbf{k} \ge 0$$

$$\mathbf{h} \ge 0$$

$$\theta_{0\ell}^{\star} = \begin{cases} 1 & \text{when } \ell = 0 \\ \\ -\theta_{0\ell} & \text{when } 1 \leq \ell \leq m_0 \end{cases}$$

$$_{\theta}(\mathbf{k},\mathbf{h}) = \mathbf{W}^{(\mathbf{h})}\mathbf{F}_{\mathbf{k}}, \quad \mathbf{k} \geq 0, \quad \mathbf{h} \geq 0$$

Note that $W_{\phi}(0,h) = W^{(h)}$ $W_{\theta}(0,h) = W^{(h)}$.

where

6.1.1.4 The Equivalence of Modeling Sequences. Two modeling sequences can be followed to model the same space-time observed process. The observations may be modeled to be an aggregate purely spatial process then the residuals are modeled to be a space-time model, or the observations can be modeled to be a space-time model and then the residuals are modeled to be an aggregate purely spatial model. Models obtained from either sequence are coupled and reparameterized. In

1 All and a second second

Constant of St

Comments of

· ······

I

Contraction of

418

9)

discussed.

In all the three coupled models discussed in Section 6.1.1.1 to 6.1.1.3 coupling sequence employed followed block diagram in Figure 6-1, where

ξt

T(B) =

this section, the equivalence of these two modeling sequences is

Figure 6-1. Coupling the Purely Spatial Observation Model and the Space-Time Residual Model

T(B) denotes a transfer function involving the temporal back shift operator B. In the coupled model 6-5, the case where the residuals are described by the same ARMA process, $T(B) = (I - \sum_{k=1}^{q} \theta_{k0} IB^k) (I - \sum_{k=1}^{p} \theta_{k0} IB^k)$ $\sum_{k=1}^{k} \phi_{k0}^{\text{IB}^{k}}$, in the coupled model 6-8, the case where the residuals k=1

are described by the STARMA process.

$$(\mathbf{I} - \sum_{k=1}^{\mathbf{q}} \sum_{\ell=0}^{\mathbf{m}_{k}} \theta_{k\ell} \mathbf{W}^{(\ell)} \mathbf{B}^{k})^{-1} \quad (\mathbf{I} - \sum_{k=1}^{\mathbf{p}} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} \mathbf{W}^{(\ell)} \mathbf{B}^{k}),$$

and in the coupled model 6-13, in which the residuals are from different ARMA processes, T(B) = $(I - \sum_{k=1}^{p} F_k B^k)^{-1} (I - \sum_{k=1}^{p} D_k B^k)$. Changing this modeling sequence to the alternative sequence, we have the modeling sequence shown in Figure 6-2.

GAL

For the sequence, let $T(B)=(I-\sum_{k=1}^{q}\theta_{k0}IB^{k})^{-1}(I-\sum_{k=1}^{p}\phi_{k0}IB^{k}),$ i.e., Z_{t} is modeled as LN same ARMA(p,q) processes and the residuals are modeled as a purely spatial model. In this case the two system models are;

$$u_{t} = (I - \sum_{k=1}^{q} \theta_{k0} IB^{k})^{-1} (I - \sum_{k=1}^{p} \phi_{k0} IB^{k})^{Z}_{t}$$
(6-14)

$$a_{t} = (I - \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)})^{-1} (I - \sum_{l=1}^{m_{0}} \theta_{0l} W^{(l)})_{\forall t}^{\varepsilon}$$
(6-15)
$$t=1, 2, ..., T.$$

Equating Equations (6-14) and (6-15), we obtain the coupled system model,

$$(\mathbf{I} - \sum_{k=1}^{q} \theta_{k0} \mathbf{I} \mathbf{B}^{k})^{-1} (\mathbf{I} - \sum_{k=1}^{p} \phi_{k0} \mathbf{I} \mathbf{B}^{k}) \zeta_{t}$$
$$= (\mathbf{I} - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} \mathbf{W}^{(\ell)})^{-1} (\mathbf{I} - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} \mathbf{W}^{(\ell)}) \zeta_{t}.$$

Contraction of This is equivalent to A Stranger $Z_{t} = \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell}$ - Σ θ₀₂ ¥1 $Z_{t} = \sum_{l=1}^{\lambda_{0}}$ where A survey of the second 時間に

1

E - H

THE

I

Ĩ

151

420

$$W^{(\ell)} \mathcal{Z}_{t} + \sum_{k=1}^{p} \left[\phi_{k0} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) \right]_{\mathbb{T}_{t-k}}^{\mathbb{Z}}$$

$$W^{(\ell)} \mathcal{Z}_{t} - \sum_{k=1}^{q} \left[\theta_{k0} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) \right]_{\mathbb{T}_{t-k}}^{\mathbb{Z}} + \sum_{\ell=1}^{m_{0}} (6-16)$$

Reparameterizing Equation (6-16), and we get,

$$\sum_{\ell=1}^{\lambda_{0}} \Phi_{0\ell} W^{(\ell)} \mathcal{Z}_{t} + \sum_{k=1}^{p} \left[\sum_{\ell=0}^{\lambda_{0}} \Phi_{k\ell}^{\star} W^{(\ell)} \right] \mathcal{Z}_{t-k}$$

$$\sum_{\ell=1}^{m_{0}} \Theta_{0\ell} W^{(\ell)} \mathcal{Z}_{t} - \sum_{k=1}^{q} \left[\sum_{\ell=0}^{m_{0}} \Theta_{k\ell}^{\star} W^{(\ell)} \right] \mathcal{Z}_{t-k} + \mathcal{Z}_{t} \qquad (6-17)$$

$$\phi_{k0}^{\star} = \phi_{k0} \qquad k \ge 1$$

$$\phi_{k\ell}^{\star} = -\phi_{k0} \cdot \phi_{0\ell} \qquad k \ge 1, \ \ell \ge 1$$

$$\theta_{k0}^{\star} = \theta_{k0} \qquad k \ge 1$$

$$\theta_{k\ell}^{\star} = -\theta_{k0} \cdot \theta_{0\ell} \qquad k \ge 1, \ \ell \ge 1$$

421

(Fal)

 $(I - \sum_{k=1}^{n} \phi_{l})$ (I - $(\mathbf{I} - \sum_{k=1}^{q} \sum_{\ell=0}^{\lambda_{k}} \phi_{k\ell} \mathbf{W}^{(\ell)} \mathbf{B}^{k})^{-1} (\mathbf{I} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_{k}} \theta_{k\ell} \mathbf{W}^{(\ell)} \mathbf{B}^{k}),$ IJ (l_i) where n is the average number of the l_i th neighbors in the system ϕ_{kl} , $k \ge 1$ are in the stationary region, ϕ_{kl} , $k \ge 1$ are in the invertible region, and ϕ_{0l} , θ_{0l} are in the existence region. The transfer functions of the STARIMA process and the purely spatial model are, T(B) and T(Purel respectively. Equation (6-20) shows the relationship 劉 $T(B) \cdot T(Purely Spatial) = T(Purely Spatial) \cdot T(B)$.

Comparing Equations (6-5) and (6-17), we see that they are exactly the same. This is because the transfer function of the same LN ARMA models T(B) is interchangeable with the transfer function of the purely spatial model,

T(B)T(purely spatial) = T(purely spatial)T(B).(6 - 18)

This property comes from the fact that identity matrix I is interchangeable with any matrix, and Equation (6-18) is true among the purely spatial transfer functions and the transfer function of STARIMA(p_{λ} ,d, q_{m}) with $\lambda = (0,0,0,\ldots,0)$ and $m = (0,0,\ldots,0)$, λ and m are p dimensions vector and q dimensions vector, respectively.

The STARIMA model is a more general case than LN streams of univariate ARIMA models. The STARMA system with isotropic preference has the property that if the location i is an lth order neighbor of the location j, then the location j is an lth order neighbor of the location i. In such isotropic systems, the following relationship holds,

$$W^{(\ell_{1})}W^{(\ell_{2})} \approx (n^{(\ell_{1})} + n^{(\ell_{2})})^{-1}(W^{|\ell_{1}+\ell_{2}|} + W^{|\ell_{2}-\ell_{2}|})$$

= $W^{(\ell_{2})}W^{(\ell_{1})}$, (6-19)

(l_1) (l_2) When the weight matrices W , W are symmetric. Thus,

422

2 12

1

TI

The second secon

$$\mathcal{L}_{k\ell} W^{(\ell)} B^k)^{-1} (I - \sum_{k=1}^{q} \sum_{\ell=0}^{m_k} \theta_{k\ell} W^{(\ell)} B^k) (I - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})^{-1}$$

$$\int_{1}^{h} \phi_{0\ell} W^{(\ell)} = (I - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})$$

(6-20)

$$= (I - \sum_{k=1}^{p} \phi_{k\ell} W^{(\ell)} B^{k})^{-1} (I - \sum_{k=1}^{q} \sum_{=0}^{m_{k}} \theta_{k\ell} W^{(\ell)} B^{k}),$$

ly Spatial) =
$$(I - \sum_{\ell=1}^{\lambda_0} \phi_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)}),$$

Therefore the exchange property, Equation (6-18), holds approximately for the system of equal preference.

424

1

T

F)

The second se

In the STARMA system of two parallel preferential directions the weight matrices are symmetric, too. So Equation (6-19) and Equation (6-20) hold, and the exchange property, Equation (6-18) also holds. Similarly, in the STARMA system of one-direction preference, we have,

$$W^{(l_1)}W^{(l_2)} = W^{(l_2)}W^{(l_1)} = 0$$

and Equations (6-20) and (6-18) hold.

For the case where the residuals follow LN different univariate ARIMA models, we have the following:

- 1. If the system is isotropic or preferential in two parallel directions and it is large enough to make the boundary effect negligible, i.e., $W^{(l)}$ is approximately symmetric, then the exchange property in Equation (6-18) holds because the relation $W^{(l)}D = DW^{(l)}$ holds when $W^{(l)}$ is symmetric and D is diagonal.
- If the system is preferential in one direction, the W^(l)'s are not symmetric, and the exchange property in Equation (6-18) doesn't hold.

In the situations that the interchange property in Equation (6-18) holds, these two modeling sequences are equivalent and the transfer functions, i.e., T(B) and T(Purely Spatial), are independent. poraneous terms. model,

Z =

In the situations that the interchange property does not hold, these two modeling sequences are not equivalent, transfer functions T(B) and T(Purely Spatial) are dependent. This means that the overall transfer function of this process is decomposed into two different modeling sequences. However, since they are decompositions of the same overall transfer function, so they have the same description ability even though the model interpretations of different modeling sequences are different. Since the overall transfer function can't be decomposed into sequence independent transfer functions when T(B) and T(Purely Spatial) are dependent, therefore sequential modeling is not recommended and the overall transfer function should be obtained from simultaneous estimation of the space-time model with contemporaneous terms.

6.1.2 Comparison of the Reparameterized Models and the STARIMA Models The reparameterized models are expressed in Equation (6-5), Equation (6-8) and Equation (6-13). Equation (6-5) is the reparameterized model of the purely spatial model and LN same univariate ARIMA models. Equation (6-8) is that of the purely spatial model and the

STARIMA model. Equation (6-13) is the reparameterized model of the purely spatial model and LN different univariate ARIMA models. Comparing Equations (6-5), (6-8) and (6-13) with the STARIMA(p_{λ} ,0, q_m)

$$\sum_{k=1}^{p} \sum_{\ell=0}^{k} \phi_{k\ell} W^{(\ell)} Z_{t-k} - \sum_{k=1}^{q} \sum_{\ell=0}^{m_k} \theta_{k\ell} W^{(\ell)} \varepsilon_{t-k} + \varepsilon_{t},$$

we see that all these coupled models still keep the purely spatial terms unchanged and the STARIMA model doesn't have any terms to present the 0th lag dependence between observations and unobservable errors. Looking at the temporal lag terms of the coupled models, we see that except the LN same univariate ARIMA case, all the weight matrix of non-zero time lags are transformed. In Equation (6-8), the weight matrix of the non-zero lag terms are transformed by the matrix that contain purely spatial model parameters only. The weight matrices $W_{A}^{(h)}$, $W_{A}^{(h)}$ in Equation (6-8) are independent of the temporal lag, while the transformed weight matrix $W_{\phi}(k,h)$, $W_{\theta}(k,h)$ in Equation (6-13) are temporal lag k dependent, i.e., $W_{\phi}(k_1,h) \neq W_{\phi}(k_2,h)$, $W_{\theta}(k_1,h) \neq W_{\phi}(k_1,h)$ $W_{\theta}(k_2,h)$ for different temporal lags k_1 and k_2 . Also, for practical purposes, $W_{\Phi}^{(h)} \stackrel{*}{\approx} W_{\Theta}^{(h)}$ in Equation (6-8) for the low order spatial system.

We have already seen that all the coupled models keep the same zeroth lag terms, while the STARIMA models do not contain any zeroth lag terms. There are situations in which the influence of one location on another is so quick that there is no lead time before this influence is reached. If we employ the STARIMA models to model such quick influence-spreading processes, we can't exhaust the whole structure and the resulting model will usually have the residuals distributed as NID(0,G). This can be seen more clearly in the coupled process represented in Equation (6-5) or (6-8). If the residuals from the observation model of Equation (6-6) are not modeled by the purely spatial model, the resulting STARIMA model will have the residuals a distributed as NID(0,G) with \mathcal{A}_{t}

A NAME THE 1

 $G = (I - \sum_{n=1}^{U}$ 6.1.3 Example Applications

426

$$\phi_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)}) (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{0\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1} [(I - \sum_{\ell=1}^{m_0} \theta_{\ell} W^{(\ell)})^{-1}] (I - \sum$$

 $\sum_{k=1}^{\lambda_{0}} \phi_{0k} W^{(k)})^{-1} \int \sigma^{2} even when the true residual (after being fitted)$

by a spatial model) $\varepsilon_{0,t}$ is distributed as NID(0, σ^2 I). So by coupling the purely spatial model with the space-time models, we add in the zeroth terms to generalize the capability of describing the instantaneous influence mechanism with the contemporaneous temrs. Thereby unconfounding the purely spatial structure from the noise covariance. Since the most obvious change by coupling and reparameterizing these models lies in the insertion of purely spatial terms, so the models presented in Equations (6-8) and (6-13) will be referred to as the STARIMA model with the contemporaneous terms and the LN different univariate ARIMA models with the contemporaneous terms. They will be classified as space, space-time models denoted by [ARMA(λ_0, m_0) + STARIMA(p_{λ}, d, q_{m})] and [ARMA(λ_{0}, m_{0}) + ARIMA(p, d, q)^{LN}], respectively. The coupled model in Equation (6-5) is a special case of Equation (6-8) and can be denoted by [ARMA(λ_0, m_0) + STARIMA($p_0, 0, q_0$)], here λ_0 and m are set to the null vector 0.

In this section, two examples, i.e., the Mohawk River Heights Data and the Northeast Boston Crime Data, are given to illustrate the coupling procedures. The STARIMA models have been built by Deutsch and Pfeiffer [1980] and the purely spatial models have been constructed in Chapter V. The forecasts, based on the STARIMA models and the coupled models, are also computed and compared to illustrate the

practical consequences of ignoring the contemporaneously correlated structure.

6.1.3.1 The Models of the Mohawk River Heights Data. In Chapter V we had the STARIMA model for the observations and the purely spatial model for the residuals as listed below,

The STARIMA model for the observations:

 $Z_{t} = -\hat{\theta}_{10}a_{t-1} - \hat{\theta}_{11}W^{(1)}a_{t-1} + a_{t}, \text{ and}$

the purely spatial model for the residuals:

$$a_{t} = \hat{\phi}_{01} W^{(1)} a_{t} - \hat{\theta}_{01} W^{(1)} \epsilon_{t} + \epsilon_{t}, \quad t=1,2,\ldots,20.$$

where

$$\hat{\theta}_{10} = 0.140$$

 $\hat{\theta}_{11} = -0.066$
 $\hat{\phi}_{01} = 1.285$
 $\hat{\theta}_{01} = 1.100$

$$\varepsilon_{\rm t} \sim {\rm NID}(0, \hat{G}), \hat{G}$$
 is given in Figure 5-13.

The observations are modeled to be STMA(1,) process and the residuals

are modeled as purely spatial ARMA(1,1) model. According to the equivalent discussion in Section 6.1.1.4, this modeling sequence is equivalent to the other alternatives. Coupling and reparameterizing the models, we have the space, space-time [ARMA(1,1) + STARIMA(0,0,1)]model as follows,

 $Z_t = c_{\phi_{01}}$

ытра

T

The second second

Ŷ

T

I

2.

X

J

1

cuil

the second

Ĩ

428

$$\mathbf{1}^{W^{(1)}} \mathbf{z}_{t} - \mathbf{e}_{01}^{W^{(1)}} \mathbf{x}_{t} - \mathbf{e}_{10}^{\psi} \mathbf{x}_{t-1} - \mathbf{e}_{11}^{W^{(1)}} \mathbf{x}_{t-1} + \mathbf{x}_{t}, \quad (6-21)$$

with the initial guess values of the coupled model parameters being,

$${}^{c}\phi_{01} = 1.285,$$

 ${}^{c}\theta_{01} = 1.100,$
 ${}^{c}\theta_{10} = 0.140,$
 ${}^{c}\theta_{11} = -0.22.$

The M.L. estimation, which minimize G, gives

$$95\% \text{ CI}$$

$$^{c}\widehat{\Phi}_{01} = 1.236 \qquad (1.228, 1.245)$$

$$^{c}\widehat{\theta}_{01} = 0.382 \qquad (0.366, 0.397)$$

$$^{c}\widehat{\theta}_{10} = 0.146 \qquad (0.102, 0.190)$$

$$^{c}\widehat{\theta}_{11} = -0.120 \qquad (-0.136, -0.103)$$

$$|^{c}\widehat{G}| = 1.063$$

(A)

and ^CĜ as

	0.554				1	
	1.513	10.160		Symme	etric	
°Ĝ =	-1.909	-10.140	10.880			
	0.750	6.138	-6.299	8.079		
	-1.252	-9.554	9.250	-8.831	11.880	
	0.247	1.123	-1.110	1.502	-1.926	1.585

The sample space-time autocorrelation functions and the sample spacetime partial autocorrelation functions are listed in Table 6-1. No additional patterns are seen, so the reparameterized space, spacetime [ARMA(1,1) + STARIMA(0,0,1)] model is succepted as adequate. To test the general G assumption, we test the hypothesis,

 $H_0: G = D$ vs. $H_1: G \neq D$

where D is arbitrary diagonal matrix with positive diagonal elements. Following the testing procedures described in Section 5.5.1, we have,

 $V = \frac{|\hat{G}|}{\text{LN}} = 0.0001141, \text{ where } \hat{G}_{ii} \text{ is the (i,i) element of } \hat{G},$ $\prod_{i=1}^{\Pi} \hat{G}_{ii}$

The second

A STATE OF

51

H

1. 1. A.

1

快事主

1

Ĩ

会社出

Certain Contraction

Ŧ

T

Q

430

Table 6-1. The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Reparameterized Model for the Mohawk River Heights

Space-Time	Autocorr	elations	1	Standard	lized S-T	Autocorre	lations
Space Lag Time Lag	0	1			0	1	
0	1.00	0.03			1.00	0.32	
1	-0.03	-0.05	•		-0.26	-0.58	
2	-0.05	0.01			-0.51	0.13	
3	-0.23	0.08			-2.18	0.79	
4	-0.10	0.15			0.94	1.37	
5	-0.10	-0.28			-0.84	-2.47	
6	-0.84	-0.09		·	-0.71	-0.72	
7	-0.19	-0.13			-1.59	-1.06	
8	0.21	0.13			-1.65	1.04	
9	0,13	0.06			0.97	0.43	
10	-0.09	0.01			-0.61	0.09	
11	-0.27	-0.08			-1.77	-0.54	
12	-0.09	0.12			-0.55	0.71	
13	-0.15	0.22			-0.81	1.19	

$$m = T - \frac{2LN+11}{6} = 16.17, T = 20, LN = 6,$$

-m ln V = 146.768

f = 21

Since -m ln V = 146.768 > $\chi^2_{0.01,f}$ = 38.93. So the null hypothesis H_0 : G=D is rejected. Since G ≠ D, so G can't be $\sigma^2 I$ and the contemporaneous white noise are correlated. It should be noted that in the Section 6.1.2, it has been pointed out that without the capability of modeling the purely spatial structure, the contemporaneous structure is confounded with the noise structure. Unconfounding doesn't guarancee the simplification of the covariance G to give $G = \sigma^2 I$ or G=D. However, if the process noises are distributed as $N(0,\sigma^2 I)$, then the unconfounding of the purely spatial structure and the noise structure gives $G = \sigma^2 I$.

Once the process is modeled, it will be employed to build the forecasting model for the purpose of process forecasting and/or process control. The forecast functions for both the coupled model and the STARMA model are constructed by taking conditional expectations at time T. The resulting forecast functions are,

where	
	T is
	to bu
•	$Z_{\rm T}(l)$
	pp ¹ =
	The f
on the	coup1
functi	on con

below.

 $(I - \hat{\phi}_{01})$

432

3 2

1

Î

Children of

$$\hat{Z}_{T}(1) = (-\hat{\theta}_{10}I - \hat{\theta}_{11}W^{(1)})(p')^{-1}\hat{\varepsilon}_{T}$$
$$\hat{Z}_{T}(\ell) = 0 \qquad \ell \ge 2$$

the last time index of the observations that were used ild the model,

is the *l*-step ahead forecast at time point T, \hat{G} and $c_p c_p^1 = c_{\hat{G}}$.

orecasting function contained in Equation (6-22), is based led [ARMA(0,1) + STARMA(0,1₁)] model and the forecasting tained in Equation (6-23), is based on the STARMA(0,1,) model. The primary difference in these forecasting functions is the contemporaneous spatial information that is contained in the $(I - \hat{\phi}_{01}^{c} W^{(1)})^{-1}$ matrix, which is numerically computed and listed

This matrix is lower triangular with all non-zero elements positive and

Ń

433

(6-23)

 $e(i_1,j) > e(i_2,j)$, $i_1 > i_2$, where e(i,j) is the (i,j) element of $(I - c\hat{\phi}_{01}W^{(1)})^{-1}$. The e(i,j) elements represent the instantaneous influence from location j to location i. It can be seen that location 1 has the strongest influence to the other locations, and that location 2 has the second strongest influence. The downstream locations have less influence to their downstream locations than their upstream locations. This corresponds to the fact that the stream flows down the river and the heights at downstream locations will have no influence on the heights at the upstream locations. Also since the influence accumulates along the downstream direction, the influence from some upstream location, say location j, is stronger than the influence from any downstream location of the location j.

Since the process is a space-time moving average process, the point forecasts $\hat{c}_{\nabla T}^2(\ell)$ and $\hat{c}_{\nabla T}(\ell)$ and of the same zero value for $l \ge 2$, i.e., $c_{T}^2(lL = \hat{Z}_T(l) = 0$ for $l \ge 2$. However, the 1-step ahead forecasts are different and the variances of these forecasts as well as the interval forecasts are different. The variance of $c_{T}^{2}(l)$ is the conditional expectation of $\begin{pmatrix} c_{Z} & c_{Z} \\ \nabla T + \ell & \nabla T + \ell \end{pmatrix}$ given that observations $Z_{\Delta,t}$ are realized for t \leq T, so,

$$\operatorname{Var}({}^{c}\hat{Z}_{T}(1)) = (I - {}^{c}\hat{\phi}_{01}W^{(1)})^{-1}(1 + {}^{c}\hat{\theta}_{10}^{2}){}^{c}\hat{G}(I - {}^{c}\phi_{01}W^{(1)})^{-1}, \ \ell = 1$$

$$(6-24)$$

$$\operatorname{Var}({}^{c}\hat{Z}_{T}(\ell)) = (I - {}^{c}\phi_{01}W^{(1)})^{-1}{}^{c}\hat{G}(I - {}^{c}\phi_{01}W^{(1)})^{-1}, \ \ell \geq 2.$$

models.

From these plots, we see that the point forecasts $\overset{c}{\sum}_{\Delta T}(l)$ and $\hat{Z}_{T}(\ell)$ do not differ too much for all these 6 locations since they are all unbiased forecasts. While theinterval forecasts differ the most at location 6, which is the last downstream location. Since the contemporaneous influence from the upstream locations to the downstream locations accumulates, so it is reasonable that the forecasts from the forecasting model with the contemporaneous spatial structure will differ most from the corresponding forecasts that are from the forecasting model without the contemporaneous spatial structure at the last downstream location. The interval forecasts of the model always, Equation (6-22), lie inside the interval forecasts of the model, Equation (6-23), reflecting the improved model structure due to the addition of the contemporaneous spatial information. Thus, the precision of the forecasts are significantly improved.

this model as.

434

Contraction of

Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen Angeweinen A

Similarly, the variance of $Z_m(\ell)$ is

$$\begin{aligned} & \operatorname{Var}(\widehat{Z}_{T}(1)) = \widehat{G} & \ell = 1, \\ & \operatorname{Var}(\widehat{Z}_{T}(\ell)) = (1 + \widehat{\theta}_{10}^{2}) \widehat{G}, \ \ell \geq 2. \end{aligned}$$

The point forecasts as well as the interval forecasts are computed and

plotted in Figures 6-3(a) - (f) for location 1 to location 6 for both

6.1.3.2 The Models of Northeast Boston Assault Arrests. In Chapter V we have the STARIMA model for the observations of assault arrests in Boston and the purely spatial model for the residuals of

435

(6-25)

the STARIMA model for the observations:

$$\begin{cases} Z_{t} = y_{t} - y_{t-1} \\ Z_{t} = -\hat{\theta}_{10}a_{t-1} - \hat{\theta}_{11}w^{(1)}a_{t-1} + a_{t}, \text{ and} \end{cases}$$
(6-26)

the purely spatial model for the residuals:

$$a_{t} = \hat{\phi}_{01} W^{(1)} a_{t} + \varepsilon_{t}$$

y_t is the monthly observations, Z_t is the differenced data, and $\hat{\theta}_{10} = 0.861$ $\hat{\theta}_{11} = -0.035$ $\hat{\phi}_{01} = 0.2213$

 $\varepsilon_{\mathcal{N}t} \sim \text{NID}(0, \hat{G})$ and \hat{G} is given in Figure 5-15.

Coupling and reparameterizing these models, we have the space, space-time [ARMA(1,0) + STARIMA(0,1,1)] model as follows,

$$Z_{t} = y_{t} - y_{t-1}$$

$$Z_{t} = {}^{c} \phi_{01} Z_{t} - {}^{c} \theta_{10} \xi_{t-1} - {}^{c} \theta_{11} W^{(1)} \xi_{t-1} + \xi_{t}, \qquad (6-27)$$

with the initial guesses of the model parameters, ${}^{c}\phi_{01} = 0.2213$, ${}^{c}\theta_{10} = 0.861$, ${}^{c}\theta_{11} = -0.035$. The M.L. estimation with $G = \sigma^{2}I$ assumption gives, ${}^{c}\hat{\phi}_{01} = 0.2394$, ${}^{c}\hat{\theta}_{10} = 0.8162$, ${}^{c}\hat{\theta}_{11} = -0.0748$. Then the following hypotheses concerning the sphericity of G are subjected to test. The testing procedures described in Section 5.5.1 are used to test the following hypotheses,

1. $H_0: G = D$

vs

 $H_1: G \neq D$

Applying the approximate χ^2 test, Equation (5-55), we have -m ln ∇ = 108.45, f=91 and -m ln $\nabla < \chi^2_{0.10,f}$ = 108.67, so the null hypothesis H₀: G=D can't be rejected at significant level α = 0.10.

- 2. H_0 : $G = \sigma^2 I$ vs.
 - $H_1: G \neq \sigma^2 I$

Applying the approximate χ^2 test, Equation (5-50), we have $-(T-1)\rho \ln W = 383.45$, f = 104 and $-(T-1)\rho \ln W >$ $\chi^2_{0.01,f} = 129.48$, so H₀: G = $\sigma^2 I$ is rejected at $\alpha = 0.01$.

So G=D assumption is appropriate and the G=D M.L. estimation is performed. The positive square roots of the diagonal elements of D are listed in Figure 6-4. The G=D M.L. estimation gives the model, ź.

The second se

Ĩ

-

T

 $\left[\right]$

()

4

E C

	ina
	1.070
	1.276
	1.365
[d,] =	2.540
, 	2.004
	2.653
	3.836
	2.342
	2.108
	2.389
	3.777
	2.261
an a	3.767
	1.705

Figure 6-4. The Positive Square Roots of the Diagonal Elements of the Diagonal Covariance Matrix for the Reparameterized Model of the Northeast Boston Assault Data

441

Ìπ.
$${}^{c}\phi_{01}{}^{Z}_{\chi t} - {}^{c}\theta_{10}{}^{D^{1/2}}_{\chi t} - {}^{c}\theta_{11}{}^{W^{(1)}}_{\chi}{}^{1/2}_{\chi t} + {}^{E}_{\chi t}, \qquad (6-28)$$

where $D^{1/2}$ is the diagonal matrix such that $D^{1/2}D^{1/2} = D$,

Z_t =

$${}^{c}\hat{\phi}_{01} = 0.1087$$

 ${}^{c}\hat{\theta}_{10} = 0.848$
 ${}^{c}\hat{\theta}_{11} = -0.029$
 $\hat{\sigma}^{2} = 0.9913$

The extra sum of squares and F-statistics associated with $c_{\theta_{11}}^{c}$ are,

$$ss_{E}(\hat{\theta}_{11}|\hat{\phi}_{01},\hat{\theta}_{10},\hat{D}) = 1.817$$

F-statistics = 1.648 = F_{0.17,1,1991}.

So the null hypothesis $H_0: \hat{\theta}_{11} = 0$ is rejected at significant level $\alpha = 0.17.$

To confirm the assumption that the covariance matrix G=D is equivalent to test the covariance of ε_{t} in Equation (6-28) that $E(\varepsilon_{0,\tau}\varepsilon_{\tau}) = \sigma^2 I$. Testing the hypothesis

$$H_{0}: E(\varepsilon_{t}\varepsilon_{t}) = \sigma^{2}I$$

$$H_{1}: E(\varepsilon_{t}\varepsilon_{t}) \neq \sigma^{2}I$$

T

I

()

Ę٦

1)

 \prod

M.

Ĩ

「

we have $-(T-1)\rho \ln W = 103.65 = \chi^2_{0.49,104}$. The null assumption that $E(\varepsilon_{t}\varepsilon_{t}) = \sigma^{2}I$ is accepted and G=D assumption is justified. The sample space-time autocorrelation functions are listed in Table 6-2. This disgnostic check doesn't reveal any further inadequacy, so the model, Equation (6-28), is accepted as adequate.

In addition to the space-time structure, the coupled model, Equation (6-28), has the capability of modeling the purely spatial structure and unconfounding the purely spatial structure from the contemporaneous noise structure. The space-time model, Equation (6-26), can't model the purely spatial structure and the purely spatial structure is confounded with the contemporaneous noise structure. The physical interpretations are different, the coupled model distinguishes the purely spatial structure from the contemporaneous noise structure while the space-time model doesn't have the capability to extract the information of purely spatial structure and the estimated noise covariance represents the confounded white noise structure and the pure spatial structure. In this example, we have the purely spatial ARMA(1,0) process structure and independent noise structure with different variances for different locations, i.e., G=D. Without the inclusion of the purely spatial terms, in Equation (6-26), the noise structure is misunderstood as general G, since the purely spatial ARMA(1.0) process structure is confounded with the G=D noise structure to give the general G noise covariance. Because the purely spatial structure is embedded in the estimated noise structure, the interpretation of these two models are different, the descriptive capabilities of these two models are the same, however, since both models include

the purely spatial structure. The coupled model is employed to build the following point forecasting function by taking conditional expectations at time T to yield, $\hat{z}_{T}(\ell) =$ ((6-29) $\hat{y}_{T}(\ell) =$ Ly, The forecasting function developed from the STARIMA(0,1,1) model is, $\hat{Z}_{T}(l)$ $\hat{\chi}_{T}(l)$ Comparing these results, we see that only the forecast function, Equation (6-29), is influended by the contemporaneous spatial structure. The variances of the point forecasts for both models are given below in Equation (6-31) and for the coupled model and Equation (6-32) for the STARMA model,

Table 6-2. The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Model, Equation (6-28)

> The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations

Space Lag Time Lag	0	1	2	/ 0	1	2
0	0.02	0.01	-0.03	0.84	0.58	-1.21
1	0.01	0.03	0.02	0.42	1.23	0.87
2	0.04	-0.01	0.01	1.35	-0.37	0.53
3	0.00	-0.00	-0.01	0.10	-0.07	-0.35
4	-0.01	0.03	0.04	-0.37	1.05	1.20
5	-0.06	0.02	0.03	-1.86	0.62	1.04
6	-0.00	-0.07	0.06	-0.00	-2.09	2.07
7	-0.04	0.02	-0.06	-1.26	0.87	-1.84
8	-0.02	0.02	0.03	-0.74	0.63	0.88
9	-0.00	-0.01	0.03	-0.07	-0.45	1.02
10	-0.03	-0.00	0.04	-1.05	-0.02	1.17
11	0.06	0.03	0.01	1.81	0.85	0.31
12	0.03	0.00	-0.02	0.89	0.20	-0,65
13	-0.02	0.02	0.05	-0.67	0.64	1.44
14	-0.01	-0.03	0.00	-0.33	-0.93	0.20
15	0.02	-0.02	-0.02	0.79	-0.61	-0.80

444

ġ,

19

T

Ĩ

学また

Ĩ

M

1

()

 $\left(\right)$

1

ŧ.

D

ŋ

$$[1 - c_{\hat{\phi}_{01}} W^{(1)})^{-1} [-c_{\hat{\theta}_{10}} (D)^{1/2} \varepsilon_{T} - c_{\hat{\theta}_{11}} (D^{1/2}) \varepsilon_{T}], \ \ell = 1$$

$$T_{T} + Z_{T}(1)$$
, $l=1$
 $T_{T}(l-1) + Z_{T}(l)$, $l>2$.

$$= \begin{cases} -\hat{\theta}_{10}(G_{1/2})_{\nabla T} - \hat{\theta}_{11} W^{(1)}(G_{1/2})_{\nabla T} &, \ l=1 \\ 0 &, \ l\geq 2 \end{cases}$$

(6-30)

(FRA)

$$= \begin{cases} y_{T} - \hat{\theta}_{10} (G_{1/2}) \varepsilon_{T} - \hat{\theta}_{11} W^{(1)} (G_{1/2}) \varepsilon_{T}, \ \ell=1 \\ y_{T} (\ell-1) + Z_{T} (\ell) , \ \ell \geq 2. \end{cases}$$

$$\operatorname{Var}(Z_{\mathcal{T}}(\ell)) = \begin{cases} ((\mathbf{I} - {}^{c} \hat{\phi}_{01} W^{(1)})^{-1} D(\mathbf{I} - {}^{c} \hat{\phi}_{01} W^{(1)})^{-1} {}^{2} \sigma^{2}, \ \ell = 1 \\ W_{B} W_{B}^{2} \sigma^{2} + W_{c} W_{c}^{2} \sigma^{2}, \ \ell \geq 2 \end{cases}$$
(6-31)

$$Var(\chi_{T}(\ell)) = \begin{cases} Var(Z_{T}(1)) , \ell=1 \\ Var(\chi_{T}(\ell-1)) + Var(Z_{T}(\ell)) + cov_{T}(\ell) \\ + (cov_{T}(\ell))^{2}, , \ell \geq 2 \end{cases}$$

where

$$COV_{T}(l) = 0 , l \le 1$$

$$-W_{c}W_{B}^{*}\sigma^{2} , l \ge 2$$

$$W_{B} = (I - {}^{c}\widehat{\phi}_{01}W^{(1)})^{-1}(D^{1/2})({}^{c}\widehat{\theta}_{10}I + {}^{c}\widehat{\theta}_{11}W^{(1)})$$

$$W_{c} = (I - {}^{c}\widehat{\phi}_{01}W^{(1)})^{-1}(D^{1/2})$$

$$Var(Z_{T}(l)) = \widehat{G} + \sum_{k=1}^{l-1} \Lambda(K)G\Lambda(K)^{*} , l = 1$$
(6-32)

$$\Lambda(K) = 0.861I - 0.035W^{(1)} , l \ge 2$$

The point forecasts $y_T(\ell)$ as well as the interval forecasts are computed at T = 72 for $\ell=1,2,\ldots,12$ and are plotted in Figures 6-5(a) -(n) for location 1 to location 14, respectively. From these plots, we see that although the point forecasts of both models are close, because they are all unbiased, the 95% confidence intervals of the forecasts of the coupled model always lie inside the corresponding intervals of the STARMA model without contemporaneous terms. The inclusion of the

÷.

£

Tunteran's

F

Junit 1

ALCONTRACTOR OF

To the second

the second

Contraction of the second

Contraction I

Sugar Sugar

1

80

FORCAST VALUE

5.00

-10.00

-8

10.00

FORCAST VALUE

0.0

-10.00

446

3

T

1

律

contemporaneous spatial information refines the model and improves the forecasting precision.

6.2 Coupling Purely Spatial Models

454

T

Ĩ

1

The purely spatial model doesn't contain any information of temporal correlations among process observations but only contains information about contemporaneous spatial structure. Thus the initial value problem doesn't arise in the purely spatial model estimation procedures. The purely spatial model can be constructed period by period to extract the information of the contemporaneous spatial structures contained in each individual observation period. It also can be constructed for a set of observation periods, that are not necessarily consecutive, to extract the "averaged" information of the contemporaneous spatial correlations for the modeled periods. A system is said to be ergodic if every individual purely spatial model contains the information of the same contemporaneous spatial structures that are contained in the aggregate purely spatial model.

The ergodic process is defined in Section 6.2.1. Here the necessary and sufficient condition for a process to be ergodic are discussed under the assumption of noise homogeneity, and the behaviour of the coupled models are detailed for the ergodic processes as well as the mixed processes. In Section 6.2.2, the procedures of coupling purely spatial models are addressed. Two methods for testing ergodic property under the homogeneity assumption are proposed and these two testing methods are implemented in coupling procedures.

6.2.1 The Ergodic Process In this section it is assumed that the system contains LN locatins and the observations are available from time t=1 to t=T and the following aggregate and/or individual purely spatial models 1 1 describe the system, $\frac{Z}{\sqrt{t}}$ 他) Zt and 1 Π \mathcal{Z}_{t} where $s_a \cup s_b = v_T$, $s_a \cap s_b = \phi$, $\varepsilon_{\nabla t} \sim \text{NID}(0, \sigma^2 I)$, $\lambda_0, \lambda_0^a, \lambda_0^b, m_0, m_0^a, m_0^b, \phi_{0\ell}, \phi_{0\ell}^a, \phi_{0\ell}^b, \theta_{0\ell}, \theta_{0\ell}^a, \theta_{0\ell}^b$ are model parameters. If the observations $\{z_t, t \in S_a\}$ share the same contemporaneous spatial structure with the observations $\{\underline{z}_{t}, \ t\epsilon \underline{s}_{b}\},$ then the observations $\{Z_{\Lambda,t}, t \in U_{T}\}$ inherit the same structure, and the

$$E = \sum_{l=1}^{\lambda_0} \phi_{0l} W^{(l)} Z_t - \sum_{l=1}^{m_0} \theta_{0l} W^{(l)} \varepsilon_t + \varepsilon_t, \quad t \in U_T, \quad (6-33)$$

$$E = \sum_{l=1}^{\lambda_0^a} \phi_{0l}^a W^{(l)} Z_t - \sum_{l=1}^{m_0^a} \theta_{0l}^a W^{(l)} \varepsilon_t + \varepsilon_t, \quad t \in S_a, \quad (6-34)$$

$$= \sum_{l=1}^{\lambda_0^b} \phi_{0l}^{bW} \sum_{l=1}^{(l)} - \sum_{l=1}^{m_0^b} \theta_{0l}^{bW} \varepsilon_t + \varepsilon_t, \ t \in S_{b^3}$$
(6-35)

455

(A)

purely spatial models in Equations (6-33), (6-34) and (6-35) contain the same contemporaneous spatial relations. Therefore, this system is ergodic.

It should be noted that under the homogeneity assumption, the necessary and sufficient condition for the process $\{Z_{n,t}, t \in U_{T}\}$ to have ergodic property is that the process parameters do not change during the observation periods teU_T, i.e., $\lambda_0 = \lambda_0^a = \lambda_0^b$, $m_0 = m_0^a =$ m_0^b , $\phi_{0l} = \phi_{0l}^a = \phi_{0l}^b$, $\theta_{0l} = \theta_{0l}^a = \theta_{0l}^b$ for any non-empty subset S_a , S_b such that S_a . $S_b = \phi$, $S_a \cup S_b = U_T$. Given that the noises ε_{vt} are distributed the same for all t εU_{π} , if the process parameters do not change, then the distribution of $\{z_{t}, t\epsilon s_{a}\}$ and $\{z_{t}, t\epsilon s_{b}\}$ is the same as that of $\{Z_{n,\tau}, t \in U_{\tau}\}$, and the observed process is ergodic. Therefore, the unchanged purely spatial parameter condition is the sufficient condition. On the other thand, given that $\{ \underset{ \mbox{$\nabla t$}}{Z}, \ t \epsilon \textbf{U}_T \}$ is an ergodic process, then $\{Z_t, t \in S_a\}$ and $\{Z_t, t \in S_b\}$ are of the same distribution, i.e.,

 $E(Z_{\Delta t})_{t\in S} = E(Z_{\Delta t})_{t\in S},$

or

 $P_a \sum_{a} P_a = P_b \sum_{b} P_b$

where

 \sum_{a} , \sum_{b} are the covariance matrix of $\{\varepsilon_{t}, t\varepsilon s_{a}\}$ and $\{\varepsilon_{t}, t\varepsilon s_{b}\}$, respectively, and

Contraction of the second seco

Contraction of

Contraction of the local data

and the second se

- And

~

Since the noise is distributed homogeneously, so $\sum_{a} = \sum_{t}$ and we have $P_a = P_b$ or the process parameters unchanged because S_a and S_b are arbitrary non-empty set such that $S_a \cap S_b = \phi$ and $S_a \cup S_b = U_T$, and U_m may contain arbitrarily many elements, i.e., T may be arbitrarily large. If the observations $\{Z_{\lambda t}, t \in S_a\}$ and the observations $\{Z_{\lambda t}, t \in S_b\}$ do not share the same contemporaneous spatial structure, then the observations $\{ \underset{\sim t}{z}, \ t \epsilon \textbf{U}_T \}$ still inherit the individual structure but result in a mixed pattern or a compromise between the structure contained in $\{Z_t, t \in S_a\}$ and the structure contained in $\{Z_t, t \in S_b\}$. The overall purely spatial model, Equation (6-33), will thus contain the "averaged" information. When coupling a set of individual or aggregate purely spatial models, we always obtain an aggregate overall model no matter if the process is ergodic or not. But if the process is not ergodic, then there are infinite such processes that share the same aggregate overall model, since the aggregate overall model contains the "averaged" structures of the coupled models. However, if the ergodic property is imposed, then there is only a set instead of infinite sets of ergodic individual or aggregate processes to be coupled to give the aggregate overall model, since the overall model contains the "averaged" structures of the coupled models that are of the same spatial structure.

456

 P_a , P_b are the transfer matrix of the $\{Z_{a,t}, t\in S_a\}$ and $\{\mathbf{Z}_{h}, t \in \mathbf{S}_{h}\}$ process, respectively.

6.2.2 The Ergodic Modeling Procedures

It has been made clear in the last section that if the system is ergodic, then the coupled model, Equation (6-33), contains the more precisely estimated information of the purely spatial structure than that contained in the models, Equations (6-34) and (6-35), but the coupled model mixed the information of the purely spatial structures that are contained in the models in Equation (6-34) and (6-35), respectively when they are not ergodic. The quality of the estimated informations of the purely spatial process is not improved except that the ergodic property is held.

In the models, Equations (6-33), (6-34) and (6-35), if $\lambda_0^{a} = \lambda_0^{b} = \lambda_0, \ \mathbf{m}_0^{a} = \mathbf{m}_0^{b} = \mathbf{m}_0, \ \phi_{0\ell}^{a} = \phi_{0\ell}^{b} = \phi_{0\ell}, \ \theta_{0\ell}^{a} = \theta_{0\ell}^{b} = \theta_{0\ell},$ absolutely Equations (6-33), (6-34) and (6-35) contain the information of the same structures. However, due to the limited observations and the random nature of stochastic process, this can hardly happen even if the observations $\{Z_t, t \in S_a\}$ and $\{Z_t, t \in S_b\}$ are from the same process. The statistical testing procedures are then needed to test the homogeneity between the structures contained in any two arbitrary disjoint observation sets. Two methods, that are the confidence interval method and the χ^2 test method, are proposed for testing the equivalence of models in Equations (6-33), (6-34) and (6-35).

1. The confidence interval method: This method includes the following steps.

> (i) Construct the $100(1-\alpha)$ % confidence regions R^a and R^b of (ϕ^{a}, θ^{a}) and (ϕ^{b}, θ^{b}) , respectively.

Ĩ

458

(see Wilks [1938]), $W = LN \cdot T \cdot ([$ when $W \leq \sigma^2_{\alpha, (\lambda_0 + m_0)}$. process.

(ii) Reject the ergodic hypothesis at significant level α if $R^{a} \cap R^{b} = \phi$, and accept the ergodic hypothesis $if R^{a} \cap R^{b} \neq \phi$.

Here the confidence regions R^a and R^b can be constructed according to Equation (5-47). This method is especially useful when $\lambda_0 + m_0 \leq 2$, since it is easy to figure out $R^a \cap R^b = \phi$ or not once R^a and R^b are plotted in one or two dimensions. 2. The χ^2 test method: This method computes the W statistics

$$[\ln \hat{\sigma}^2] (\phi^a, \theta^a) = (\phi^b, \theta^b) - [\ln \hat{\sigma}^2] (\phi^a, \theta^a) \neq (\phi^b, \theta^b)$$
 (6-36)

The ergodic hypothesis is rejected when $W > \chi^2_{\alpha,(\lambda_0+m_0)}$ or accepted

Similar to the fact in set theory that A Π B = ϕ , B Π C = ϕ is true does not imply that A $\Pi \oplus = \phi$ is true, situations may arise that observations $\{Z_t, t \in S_a\}$ and $\{Z_t, t \in S_b\}$ are ergodic, $\{Z_t, t \in S_b\}$ and $\{Z_{c,t}, t \in S_{c}\}$ are ergodic, but $\{Z_{c,t}, t \in S_{a}\}$ and $\{Z_{c,t}, t \in S_{c}\}$ are not ergodic, where $S_a \cap S_b = \phi$, $S_a \cap S_c = \phi$, $S_b \cap S_c = \phi$ are assumed. Based on this consideration and the fact that the individual purely spatial process is the elementary process for testing the ergodic property over the observed periods, the following two alternative schemes are proposed for testing the ergodic property of the observed

- 1. Based on the confidence interval method, this scheme 1 builds T individual purely spatial models. If these T individual models share some common confidence interval, the observed process is accepted as ergodic. Otherwise, the observed process is not accepted as ergodic.
- 2. Based on the χ^2 test method, this scheme 2 tests the ergodic property for every combination of two individual purely spatial model. If any test fails the ergodic property, the observed processed is rejected to be ergodic. This scheme needs (T)(T-1) tests to accept the hypothesis that the observed process is ergodic.

These T individual purely spatial models are coupled to obtain the aggregate purely spatial model for the observed process if the system is accepted as ergodic. The procedures for building the aggregated purely spatial model have been developed in Chapter V.

The procedures for modeling the aggregated purely, spatial models for the observed process are summarized in Figure 6-6.

The construction of purely spatial models exhausts the contemporaneously correlated structures, but nothing has been done for the spatial-temporal correlations. The residuals from the purely spatial model may be modeled as the space-time process. Two situations may arise: 1. The system is not ergodic and invidividual purely spatial models are employed to compute the estimated residuals; 2. The system is ergodic and the aggregated ergodic purely spatial model is built and employed to compute the estimated residuals. For the first

460

1

-

T

損

 \square

461

(A)

situation, the residual models are constructed and the modeling procedures stop at the multiplicative form of individual purely spatial models and the space-time models. For the second situation, the coupling and reparameterizing procedures, that are detailed in Section 6.1, are applied to construct the space, space-time [ARMA $[ARMA(\lambda_0, m_0) + STARIMA(p_{\lambda}, d, q_m)]$ model or the space, space-time $[ARMA(\lambda_0, m_0) + ARMA(p, d, q)^{LN}] model.$

6.3 The Ergodic Systems with Outliers

In the models, Equations (6-33), (6-34) and (6-35), it has been assumed that ε_{t} , teu, are identically distributed. This assumption may not be always true, situations may arise that some locatable outliers, that comes from unrecognizable sources, are input to the system and follow the transfer process that the white noises follow. If such outliers exist and are not corrected, then the ergodic property cannot be detected even the true process parameters do not change. The informations of the contemporaneous purely spatial structures that are extracted from the aggregated model as well as from the individual models might be very misleading.

The process with the inputed outliers is formulated as,

$$Z_{t} = \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)} Z_{t} - \sum_{l=1}^{m_{0}} \theta_{0l} W^{(l)} (\varepsilon_{t} + \delta_{t}) + \varepsilon_{t} + \delta_{t} \qquad (6-37)$$

where $\delta_{a,t}$ is the outliers input at time t, teu_T. Given the model parameters ϕ_{0l} 's and θ_{0l} 's, the M.L. estimates of δ_{vt} is

(and The second second Constants (

で

C AL

462

It should be noted that the $\hat{\delta}_t$ is estimated every period, so all the degrees of freedom are used up, and no degrees of freedom will be estimating the noise variance, $\hat{\sigma}^2$. Since ϵ_{t} and δ_{t} are confounded, so if all the $\hat{\delta}_t$ are accepted as significant, we have $\hat{\sigma}^2 = 0$ situation. The process described in Equation (6-37) can be described

$$\hat{\delta}_{t} = (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0\ell} W^{(\ell)}) Z_{t}.$$
 (6-38)

alternatively in terms of outlier outputs $(\delta)_{t}$ as follows,

$$Z_{t} - (\xi)_{t} = \sum_{l=1}^{\lambda_{0}} \phi_{0l} W^{(l)} (Z_{t} - (\xi)_{t}) - \sum_{l=1}^{m_{0}} \theta_{0l} W^{(l)} \xi_{t} + \xi_{t}. \quad (6-39)$$

It should be noted that $(\delta_{\nabla t})$, the outlier output, can be expressed in terms of $\delta_{o,t}$, the outlier input, and vice versa.

$$(\delta)_{t} = (I - \sum_{\ell=1}^{\lambda_{0}} \phi_{0} W^{(\ell)})^{-1} (I - \sum_{\ell=1}^{m_{0}} \theta_{0\ell} W^{(\ell)}) \delta_{t}$$
 (6-40)

These two modeling alternatives, Equations (6-38) and (6-39), are equivalent but stand at different viewpoints. The formulation, Equation (6-38), finds the roots of process outliers in the input source, and the realized effect of the outlier inputs are influenced by the environments. The formulation, Equation (6-39), detects the process out-

liers as the realization of outliers themselves and these realizations are not influenced by the environments any more, they just appear as outliers that are realized and imposed on the output observations. In the following analysis, it is based on the formulation in Equation (6-38), however, it should be reminded that this analysis can be based on the formulation in Equation (6-39) as well.

464

1

T

In the following sections, the procedure for detecting the outliers based on the unchanged purely spatial structure assumption is developed in Section 6.3.1, here the modeling sequence for the ergodic process with outliers are discussed in detail. In Section 6.3.2, an example of building the ergodic process by correcting the outliers are given to illustrate the modeling procedures described in Section 6.3.1. The same set of observations are also modeled without the outlier corrections in Section 6.3.2 to serve as a comparison to the outlier corrected ergodic model.

6.3.1 Detecting the Outliers and Modeling the Ergodic Process

A procedure for detecting the outliers is developed and shown in Figure 6-7. Following this procedure, the significant level α for testing the significance of estimated outliers and $\delta_{t} = 0$, teu_T are set in the very beginning. Then the estimation of the aggregate ergodic purely spatial model are performed to obtain the model parameter estimates $\hat{\phi}_{0l}$, $l=1,2,\ldots,\lambda_0$, $\hat{\theta}_{0l}$, $l=1,2,\ldots,m_0$ and $\hat{\sigma}^2$. Three alternatives may be used here for estimating the aggregate ergodic purely spatial model parameters: 1. Build the overall aggregate purely spatial model and accept the model parameters as the aggregate ergodic purely spatial model parameters; 2. Build T individual purely

Figure 6-7. The Procedure of Detecting the Outlier Inputs of the Ergodic System.

spatial models and choose the aggregate ergodic purely spatial model parameter estimates from the common confidence region, that is shared by most of the confidence intervals of the individual purely spatial models: 3. Build T individual purely spatial models and then build the aggregated purely spatial models for those periods that share the most popular common confidence intervals, the aggregated model parameters are accepted as the parameters of the overall aggregate ergodic purely spatial models. In most of the cases, the third alternative is recommended, since the estimates obtained here comes from only those periods that are more justifiable to be from the no outliers ergodic processes, and the "averaged" parameter values are estimated to give the aggregate ergodic model parameters. The second alternative allows the property that the more unlike the individual model to the other models, the more contribution it will have in the aggregate ergodic model parameter values, this is contradictive to the intuition that similar individual periods should have more contribution in estimating the aggregate ergodic model parameters. The first alternative is not so attractive in the respect that the nonergodic individual periods still give contributions to the parameter estimates of the ergodic process. After the parameters are estimated, the estimated $\hat{\phi}_{0l}, \ \hat{\theta}_{0l}$ are then applied as the true model parameters in Equation (6-38) to estimate $\hat{\delta}_{t}$, t=1,2,...,T. Since the estimates of $\hat{\delta}_{t}$ have used up all the available degree of freedom so the residual mean square of the overall aggregated purely spatial model, i.e., $\hat{\sigma}^2$, is used as the initial estimate of residual mean square of the model, Equation (7-39). After setting NSIGO = LN.T, the procedure

6.3.2 An Example Application

466

enters an iterative routine that will exit when the solution converges. Here NSIGO is used to keep record of the number of significant $\hat{\delta}_{i,t}$ of last iteration, and (LN.T - NSIGO) is the degree of freedom that the sum of squares of residuals has. So if NSIGO = LN.T, (LN.T -NSIGO) = 0. no degree of freedom is available for $\hat{\sigma}^2$, thus CV, which is used as the critical value for testing significance of standardized $\hat{\delta}_{i,t}$, is set to $Z_{\alpha/2}$ of normal distribution when NSIGO = LN•T, and CV is set to $t_{\alpha/2}$, (LN•T-NSIGO) of the student-t distribution when NSIGO < LN³T. The iterative subroutine updates the $\hat{\sigma}^2$ every iteration. use the statistics $|\hat{\delta}_{i,t}^{2}/\sqrt{\hat{\sigma}^{2}}|$ to test the significance of $\hat{\delta}_{i,t}^{2}$, i.e., the significance of outliers at time t in location i. This procedure exits the subroutine when the number of significant outliers converges. Equation (6-40) is applied to compute the estimated outlier output, $(\hat{\delta})_t$, from the estimated outlier input, $\hat{\delta}_{t}$, and the observations are corrected. Then the procedures described in Figure 6-6 are applied to model the corrected data. If the corrected observations show ergodic property, the aggregate purely spatial model and the space-time residual model are constructed, and the coupling and reparameterizing procedures, that are described in Section 6.1, are applied to construct the space, space-time models. If the corrected observations

do not show ergodic property, the space-time model for the residuals is built and the modeling effort stops at the multiplicative form of individual purely spatial models and the space-time model.

In this section eleven periods, t=61 to 71, of the first differenced Northeast Boston Assault Arrests are modeled to illustrate the modeling procedure shown in Figure 6-7 and reveal the needs of correcting the outliers that may mask the purely spatial information. In Section 6.3.2.1, the individual purely spatial models are built to test the ergodic hypotheses, the outliers are then estimated and corrected. The aggregate purely spatial model as well as the spacetime model are built for the outlier corrected data to illustrate the ergodic modeling procedure described in Section 6.2. In Section 6.3.2.2, the same set of data are modeled without outlier correction to see the masking effect of the outliers and to serve as a contrast to the appropriate modeling procedures that includes the ergodic tests and the outlier detection, outlier correction steps.

<u>6.3.2.1</u> Outlier Detection and Ergodic Model Building. In this section, the eleven periods (t=61 to 71) of the Northeast Boston Assault Arrest Data are first modeled as eleven individual purely spatial models. The joint confidence intervals of these individual purely spatial models are plotted and the test of the ergodic property is performed for every consecutive two periods. Then procedures for detecting the noise outliers and building the ergodic models are applied.

Following the purely spatial model building procedure, i.e., the identification, estimation and diagnostic checking, we have the eleven individual purely spatial ARMA models listed in Table 6-3. The 95% C.I.'s and 40% C.I.'s of these 11 individual purely spatial models are plotted in Figure 6-8. In Figure 6-8(b), it is seen that there are two groups of individual models, i.e., $S_1 = \{t=63, 64, 65, 71\}$ and

468

Ĩ

Time

61

62

63

64

65

66

67

68

69

70

71

Model Class	φ ₀₁	^ф 02	^ф оз	ô ²
AR(2)	-1.06	-0.19		2.62
AR(2)	-0.70	-0.34	-	1.68
AR(2)	1.23	-0.54	-	1.27
AR(3)	0.05	0.10	-1.01	2.62
-		- -	-	3.44
AR(1)	-1.12	-	· · · ·	1.79
AR(2)	-0.28	-0.54	-	0.96
AR(2)	-0.92	-0.51	· · · ·	1.79
AR(2)	-0.81	-0.39	_	1.34
AR(1)	-0.72	-		1.68
AR(2)	0.31	-0.43		2.29

Table 6-3. The Individual Purely Spatial Model of the Differenced Northeast Boston Assault Arrests. Data

471

Figure 6-8(b). The 40% Confidence Intervals for the Model Parameters of the Individual Purely Spatial Models (Uncorrected Data).

B

×.

 $S_{2} = \{t=61, 62, 66, 67, 68, 69, 70\}, they may contain different$ purely spatial information. In Figure 6-8(a), we see that 10 out of these 11 models (except t=63) share the darkened region as their common 95% C.I.'s.

472

T

X

The second secon

Table 6-4 contains the results of ergodic property tests for the consecutive two observation periods. In this table α represents the significant level for these ergodic property tests, the ergodic assumption will be accepted for all the α values that are less than or equal to the values given in the table. It should be noted that the information contained in the confidence interval plots of Figure 6-8 are adequate to decide the ergodic property of the process at the given significant level α , but the information contained in Table 6-4 is not adequate to make the ergodic process conclusion, since it takes all 110 combinations of χ^2 tests to complete the test of ergodic property for eleven periods. However, it is seen that at $\alpha = 0.01$ all these tests pass and the ergodic assumption for the consecutive two observations are accepted. These tests are consistent with the information of the ergodic property that are contained in the 95% confidence interval plots in Figure 6-8.

In Figure 6-8 (a), we see that 10 individual purely spatial models out of 11 models, except t=63, share the common darkened region in their 95% confidence interval. In Figure 6-8 (b), we see two model groups, i.e., S1 and S2. These two groups may contain different purely spatial information. Since the input outliers may mask the purely spatial information, one of these two model groups may contain the ergodic purely spatial models, while the other model group con-

Time Index

61.62

62.63

63.64

64.65

65.66

66.67

67.68

68.69

69.70

70.71

1	Aggregated	Model Parameters ^{\$} 02	$\times \chi^2$ Statistics	α
	-0.89	-0.27	0.230	0.891
	1.25	-0.36	8,507	0.014
	0.33	0.06	5.464	0.065
:	0.21	0.07	0.967	0.616
	0.04	-0.12	2.210	0.331
	-0.45	-0.35	3.291	0.193
	-0.71	-0.47	1.609	0.447
	-0.85	-0.46	0.089	0.956
	-0.34	0.14	0.367	0.832
	-0,40	-0.13	3.428	0.180

Table 6-4. The Summarized Results of the Tests of Ergodic Property for Two Consecutive Observations

tains the masked purely spatial information. Comparing these two groups in Figures 6-8 (a) and (b), we may expect that models in the S_1 group contain the masked purely spatial information. In the following, the procedure shown in Figure 6-7 is applied to estimate the input outliers. The output outliers are computed by applying Equation (6-40) and the observations are corrected. Then the procedures of aggregate ergodic model building, that are shown in Figure 6-6, are applied to model the corrected observations.

Applying the procedures described in Figure 6-7, using the observations Z_{tt} , teS₂ to build the aggregate purely spatial model to obtain the estimated ergodic process parameters (the method 3 described in Section 6.3.1) we have $\hat{\phi}_{01} = -1.0432$, $\hat{\phi}_{02} = -0.2273$ and the estimates of the input outliers $\hat{\delta}_t$ that are listed in Table 6-5. The output outliers for the observation corrections are evaluated according to Equation (6-40), i.e.,

$$(\hat{\delta})_{t} = (I - \sum_{\ell=1}^{2} \hat{\phi}_{0\ell} W^{(\ell)})^{-1} \hat{\delta}_{t}$$
 (6-41)

where

 $\hat{\phi}_{01} = -1.043, \ \hat{\phi}_{02} = -0.227$ $\hat{\delta}_{t} \text{ is the estimated input outlier, and}$ $(\hat{\delta})_{t} \text{ is the output outliers that are used in data correction.}$ $\text{ The evaluated } (\hat{\delta})_{t} \text{ values are listed in Table 6-6. It}$ should be noted that in Table 6-5, we see that 14 out $\text{ of 17 detected noise outliers are found in } \{ Z_{t}, \ t \in S_{1} \}.$

474

1

1

Table 6-5.	The Estimated Input Outliers of Northeast	Boston
	Assault Arrests	

	1							Location	ns					
Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14
61	0	0	0	0	0	0	0	0	0	0	0	0	0	0
62	0	0	0	0	0	0	0	0	0	0	· 0	0	0	0
63	0	Ò	0	0	0	0	0	-4.0	0	0	. 0	3.2	0	• 0
64	-6.9	-5.2	-5.7	0	0	0	0	0	0	0	0	0	3.5	4.4
65	0	0	3.1	0	0	0	0	0	0	0	0	-3.6	-4.6	-5.1
66	0	0	0	0	3.2	0	0	0	0	0	.0	о С. О	0	0
67	0	0	. 0	0	0	0	0	0	0	0	0	0	0	0
68	-3.9	0	0.	· · · · · · ·	0	0	0	0	0	0	0	0	0	0
69	0	0	0	0	0	0	0	0	0	0	0	0	0	0
70	0	0	0	0	-3.2	0 0 0	0	0	0	о О	0	0	0	0
71	3.6	3.3	0	0	6 0	0	0	0	0	-3.3	0	0	0	0
	í .			1.1										

							. 1	Locatio	ns					
Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14
61	0	0	0	0	0	0	0	0	0	0	0	0	0	0
62	0	, O	• 0	0	0	0	0	0		0	0	0	0	0
63	0.4	-1.1	-0.3	1.7	-4.7	-0.6	5.8	-11.3	4.8	0.4	-7.8	14.2	-4.9	, 0
64	0.4	7.3	-8.6	4.2	-2.3	2.0	-0.8	3.2	-2.6	-6.1	9.1	-14.4	20.3	-0.4
,65	-3.9	1.6	6.2	-1.3	1.5	-1.6	-0.3	-2.5	3.2	5.2	-2.1	2.3	-20.2	-1.3
66	-1.3	1.7	1.6	-2.4	8.5	-1.8	-1.0	-3.2	1.3	0	0	-0.2	0.2	-0.8
67	0	0	0	0	0	0	0	0	0	0	° Ó	0	0	0
68	-6.9	3.3	2.0	0	0.2	-0.6	0.2	0	0	0	• 0	0	0	-0.]
69	0	0	0	0	0	0	0	0	0	Ģ	0	0	0	0
70	-2.4	-0.6	4.5	2.0	2.3	-12	3.4	-2.3	1.5	-1.5	0.7	-0.5	0.8	-1.0
71	2.9	3.4	-1.4	-1.0	-0.4	0.3	1.7	0.5	4.6	-13.7	9.8	-6.3	7.0	-3.6
	1													

-11

Table 6-6. The Observation Correction Values for the Northeast Boston Assault Arrests

1

After correction for outliers, the corrected data are modeled by applying the procedures described in Figure 6-6. Following the purely spatial ARMA model building procedure, we have the 11 individual purely spatial models that are listed in Table 6-7. Six of these eleven purely spatial models are purely spatial AR(2) models and the remaining five are purely spatial AR(1) models. Comparing the model classes listed in Table 6-7 with those listed in Table 6-3, we see that the model forms as well as the model parameters are more consistent in Table 6-7 than those listed in Table 6-3. The 95% and 40% confidence intervals of these individual purely spatial model parameters are plotted in Figure 6-9. In Figure 6-9(a), we see that all these models share the marked parameter region in their 95% C.I.'s. From Figure 6-9(b), it is even clearer that these purely spatial models are from the same purely spatial process, i.e., the corrected observations are from an ergodic process. Comparing the confidence intervals in Figure 6-9 with those in Figure 6-8, we see that the outlier corrected data are ergodic, while the uncorrected data are not, since in Figure 6-9 the 95% confidence intervals share the same marked region as their common confidence interval, while no such common confidence region exist in Figure 6-8.

These individual purely spatial models show ergodic property, the aggregated purely spatial model is expected to contain the same purely spatial structures as those contained in the individual models. To construct the aggregate purely spatial model, we compute the purely spatial autocorrelation functions,

Time	Model Class	^ф 01	[¢] 02	ô ²
61	AR(2)	-1.06	-0.19	1.082
62	AR(2)	-0.70	-0.34	1.628
63	AR(2)	-1.07	-0.39	1.377
64	AR(1)	-1.10		1.683
65	AR(2)	-0.92	0.14	1.864
66	AR(1)	-0.80	-	1.060
67	AR(2)	-0.28	-0.54	0.958
68	AR(1)	-0.92	-	1.375
69	AR(2)	-0.81	-0.39	1.338
70	AR(1)	-0.56	-	1.055
71	AR(1)	-0.88	-	1.457

Table 6-7. The Individual Purely Spatial Model of the Outliers Corrected Northeast Boston Assault Arrests 478

I

Π

Ī

I

 \square

(]]

.....

1

φ 02

Purely Individual the ы Figure 6-9(a). The 95% Confidence Intervals for the Model Par. Spatial Models (Outlier Corrected).

þà.

$$\hat{\rho}_{01} = -0.605, \ \hat{\rho}_{02} = 0.045, \ \hat{\rho}_{03} = 0.307,$$

and the standardized purely spatial autocorrelation functions,

$$(\hat{\rho}_{01}) = -7.501, (\hat{\rho}_{02}) = 0.558, (\hat{\rho}_{03}) = 3.812.$$

The pattern of purely spatial autocorrelation functions suggests the purely spatial AR(2) candidate model with $\phi_{01} = -.80$, $\phi_{02} = -1.5$. The M.L. estimation gives $\hat{\phi}_{01} = -1.08$, $\hat{\phi}_{02} = -0.02$. The extra sums of squares associated with $\hat{\phi}_{01}$ and $\hat{\phi}_{02}$ are 270.8 and 18.38, respectively, the F-statistics associated with $\hat{\phi}_{01}$ and $\hat{\phi}_{02}$ are 188.2 and 12.6, respectively, and ϕ_{01} , ϕ_{02} are significant at significant level $\alpha = 0.01$. The sample space-time autocorrelation functions and the sample space-time partial autocorrelation functions, that are listed in Table 6-8, suggest the STMA(10) model for the residuals. The M.L. estimation gives

 $\hat{\theta}_{10} = 0.254, 95\%$ C.I. (0.092,0.416)

The sample space-time autocorrelation functions of the residuals, that are listed in Table 6-9, do not show any model inadequacies and the model, Equation (6-42)

$$\begin{cases} Z_{\text{t}} = \hat{\phi}_{01} W^{(1)} Z_{\text{t}} + \hat{\phi}_{02} W^{(2)} Z_{\text{T}} + a_{\text{t}} \\ a_{\text{t}} = -\theta_{10\text{t}} \varepsilon_{\text{t}} + \varepsilon_{\text{t}} \end{cases}$$

(6-42)

									Ĩ				
				. ,									
							• .	482					
											•		
	•												
		mha C.		mt	A			· · · ·					
	Table 0-0(a).	of the	mpie Space Residua	ce-lime A ls of the	Autocorrel e Aggregat	ation fun ed Purelv	Spatial		H				
		Model	of the Ou	itlier Co	orrected I	ata	opeerer			the state of the s			
	mh e	C1 (に				
	The	Standard	lized Sam	ole S-T	Autocorrel	/ ations			154R				
			--						和				
	Space Lag	0	1	2	/ 0	1	2		對	and the second sec			
	lime Lag									nance constants		Table 6-0	The Com
	0	1.00	0.07	0.00	1.00	0.89	0.00		F	No her som er		lable 0-9.	the Rest
	1	-0.30	-0.08	-0.00	-3.25	-1.03	-0.08		8 No. 1				
	3	0.05	-0.00	0.06	1.21	-0.02	0.68					Th	e Sample
	4	0.11	0.19	-0.10	0.88	1.61	-0.88				*	1D	e Standar
:	5	-0.13	-0.02	0.20	-1.00	-0.15	1.52					Space Lag	۰ ۱
												Time Lag	U
												• 0	1.00
		•							8 -			1	-0.03
	$T_{2} = 10 - 8(b)$	The Sa	mole Space	a-Time	utocorrol	ation Fun	ationa					2	0.12
	10010 0 0(0).	of the	Residual	Ls of the	e Aggregat	ed Purely	Spatial		11 A			3	0.08
		Model	of the Ou	itlier Co	prrected D	ata			N			5	-0.06
									1995	1			
	The	Sample S	bace-Time	Autocor	rrelations	1							
	The The	Sample S Standard	Space-Time lized Samp	e Autocon ble S-T A	rrelations Autocorrel	/ ations					*A		
	The The	Sample S Standard	Space-Time lized Samp	e Autocom ble S-T A	rrelations Autocorrel	/ ations					4***		
	The The Space Lag Time Lag	Sample S Standard O	Space-Time lized Samp 1	e Autocom ble S-T A 2	rrelations Autocorrel / O	/ ations 1	2						
	The The Space Lag Time Lag	Sample S Standard O	Space-Time lized Samp 1	Autocon ble S-T A 2	rrelations Autocorrel / O	/ ations 1	2						
	The The Space Lag Time Lag 1 2	Sample S Standard 0 -0.30	Space-Time lized Samp 1 0.09 0.06	Autocon ole S-T A 2 0.01	rrelations Autocorrel / 0 -3.64	/ ations 1 1.08 0.71	2						
	The The Space Lag Time Lag 1 2 3	Sample S Standard 0 -0.30 0.02 0.10	Space-Time lized Samp 1 0.09 0.06 -0.05	Autocon ble S-T A 2 0.01 0.11 0.18	rrelations Autocorrel / 0 -3.64 0.32 1.09	/ ations 1 1.08 0.71 -0.57	2 0.17 1.28 1.93						
	The The Space Lag Time Lag 1 2 3 4	Sample S Standard 0 -0.30 0.02 0.10 0.17	Space-Time lized Samp 0.09 0.06 -0.05 0.22	2 0.01 0.11 0.18 -0.23	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75	/ ations 1 .08 0.71 -0.57 2.24	2 0.17 1.28 1.93 -2.35						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	-3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	5pace-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	relations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 .08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	-3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	relations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 0.01 0.11 0.18 -0.23 0.12	relations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 1 2 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 0.01 0.11 0.18 -0.23 0.12	relations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T 4 0.01 0.11 0.18 -0.23 0.12	relations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T / 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						
	The The Space Lag Time Lag 3 4 5	Sample S Standard 0 -0.30 0.02 0.10 0.17 -0.12	Space-Time lized Samp 0.09 0.06 -0.05 0.22 0.24	e Autocon ole S-T A 2 0.01 0.11 0.18 -0.23 0.12	rrelations Autocorrel / 0 -3.64 0.32 1.09 1.75 -1.10	/ ations 1 1.08 0.71 -0.57 2.24 2.27	2 0.17 1.28 1.93 -2.35 1.12						

ample Space-Time Autocorrelation Functions of esiduals of the Model, Equation (6-46)

le Space-Time Autocorrelations/ dardized Sample S-T Autocorrelations

0	1	2	/ 0	1	2
1.00	0.02	0.01	1.00	0.33	0.16
-0.03	0.03	0.04	-0.38	0.38	0.45
0.12	0.07	0.09	1.20	0.75	0.89
0.07	0.04	0.05	0.70	0.38	0.50
0.08	0.14	-0.03	0.76	1.18	-0.27
-0.06	0.01	0.10	-0.45	0.11	0.79

*

(A)

is accepted as adequate. Reparameterizing the models in Equation (6-42) and performing the M.L. estimation, we obtain the model, Equation (6-43),

$$Z_{t} = \hat{\phi}_{01} W^{(1)} Z_{t} + \hat{\phi}_{02} W^{(2)} Z_{t} - \hat{\theta}_{10} \varepsilon_{t} + \varepsilon_{t}$$
(6-43)

where

 $\hat{\phi}_{01} = -1.086$ $\hat{\phi}_{02} = -0.206$ $\hat{\theta}_{10} = 0.255$ $\hat{\sigma}^2 = 1.352$

The sample space-time autocorrelation functions of the residuals, that are listed in Table 6-10, show adequacy and the model, Equation (6-43), is accepted as adequate. The model described by Equation (6-43) contains purely spatial structures that are contained in the aggregate purely spatial model as well as the individual purely spatial models.

<u>6.3.2.2</u> Consequences of Ignoring the Homogeneity Assumption. In the last section we have the Northeast Boston Assault Arrests model by applying the procedures in Figure 6-7. It has been concluded that the process is an ergodic process with the estimated input outliers listed in Table 6-5. An interesting problem may arise that what will happen in the modeling if the input outliers are not corrected. In this section, we will ignore the presence of outliers which negate 1

Fight State

17

and the second

E -----

The second s

L'anna a

ET.

1

Statistics of

Space Lag

Time Lag

0

1

2

3

5

Table 6-10. The Sample Space-Time Autocorrelation Functions of the Residuals of the Coupled Model for the Outlier Corrected Data

> The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelation

0	1	2	j o	1	2
1.00	0.03	0.01	1.00	0,38	0.14
-0.03	0.04	0.04	-0.39	0.46	0.52
0.14	0.09	0.10	1.47	0.94	1.07
0.10	0.05	0.07	0.96	0.54	0.69
0.14	0.22	-0.05	1.22	1.88	-0.42
-0.11	0.02	0.19	-0.82	0.20	1.46

GA.

the homogeneity assumption, build the models for the uncorrected observations and compare the resulting model to the outlier corrected model.

486

Ū 1

D

別

Π

n

7

T

1

Ignoring that the ergodic property doesn't hold in Figure 6-8, we build the aggregate purely spatial model for the eleven observation periods. The purely spatial autocorrelation functions and the standardized purely spatial autocorrelation functions were computed. Since for the purely spatial autocorrelation functions, $\hat{\rho}_{01}$ = -0.2463, $\hat{\rho}_{02}$ = -0.2069, $\hat{\rho}_{03}$ = 0.1418 with corresponding standardized values of $(\hat{\rho}_{01}) = -2.19, (\hat{\rho}_{02}) = -1.90, (\hat{\rho}_{03}) = 1.346, purely a spatial AR(2)$ model with negative ϕ_{01} , ϕ_{02} values is suggested. The initial guesses $(\phi_{01}, \phi_{02}) = (-.25, -.20)$ are read from the contours of Figure 5-10(a) in Section 5.3. The M.L. estimation gives

	95% C.I.	SSE	F-Stat.	α
$\hat{\phi}_{01} = -0.165$	(-0.381, 0.051)	5.537	2.267	0.134
$\hat{\phi}_{02} = -0.126$	(-0.291, 0.039)	7.721	3.161	0.077
$\hat{\sigma}^2 = 2.4924$				

where

 SS_{F} is the extra sum of squares given that the other parameters are in the fitted model, and

 α is the significant level.

It should be noted that $(\hat{\phi}_{01}, \hat{\phi}_{02}) = (-0.165, -0.126)$ fall in the rectangular region {(ϕ_{01}, ϕ_{02}) $|-0.4 \le \phi_{01} \le -0.1, -0.3 \le \phi_{02} \le -0.05$ }

date. M.L. estimation gives,

this model

where

that contains the darkened region in Figure 6-8, as might be expected. The information of the purely spatial structure contained in this aggregate purely spatial model reflects the averaged structure that is contained in the individual purely spatial models.

The sample space-time autocorrelation functions and the sample space-time partial autocorrelation functions of the residuals from this aggregated purely spatial model were computed and are listed in Table 6-11. The cut-off behavior in the sample space-time autocorrelations and the tail-off behavior in the sample space-time partial autocorrelations suggest the $STMA(1_0)$ model to be the potential candi-

> $\hat{\theta}_{10} = 0.807$ 95% C.I. = (0.702, 0.911) $\hat{\sigma}^2 = 1.521$

The sample space-time autocorrelation function of these residuals, listed in Table 6-12, does not reveal any unexhausted structure and

$$Z_{t} = \hat{\phi}_{01} W^{(1)} Z_{t} + \phi_{02} W^{(2)} Z_{t} + a_{t}$$
$$a_{t} = -\hat{\theta}_{10} \varepsilon_{t} + \varepsilon_{t}, \qquad t=1,2,...,11$$

(6-44)

I 488 Contraction of THE REAL . 1 Table 6-11(a). The Sample Space-Time Autocorrelation Functions (Cased) and the Standardized Sample Space-Time Auto-1 correlation Functions of the Residuals of the Aggregated Purely Spatial Model THE STATE 1 The Sample Space-Time Autocorrelations/ Table 6-12. The Sample Space-Time Autocorrelation Functions The Standardized Sample S-T Autocorrelations Pur provincial Space Lag 0 2 / 1 0 2 1 Time Lag Model, Equation (6-44) 0 1.00 0.03 0.00 1.00 0.39 0.05 The Sample Space-Time Autocorrelation/ The Standardized Sample S-T Autocorrelations 1 -0.53 0.05 0.00 -5.68 0.63 0.05 2 0.04 -0.10 -0.01 0.49 -1.04 -0.14 Constraint 1 3 -0.07 -0.04 -0.10 -0.72 -0.41 -0.93 Space Lag 4 Time Lug 0.21 0.11 0.09 1.81 0.98 0.75 5 -0.24 -0.00 -0.01 -1.83 -0.00 -0.07 0 TE 1 2 3 4 5 Table 6-11(b). The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Concernant of Aggregated Purely Spatial Model The Sample Space-Time Partial Autocorrelations/ The Standardized Sample S-T Partials Space Lag 0 2 / 0 2 1 1 Time Lag **1.90** -0.53 0.57 1 0.16 0.04 -6.35 0.59 2 -0.35 0.05 0.04 -3.99 0.48 Provent and (included) 3 -0.09 -3.81 -0.80 -0.96 -0.36 -0.07 4 0.02 0.15 -0.11 0.24 1.48 -1.10 5 -0.20 0.19 -0.10 -1.91 1.79 -0.94 The second second La A

TE

T

and the second
1

4

and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the

0	1	2	/ 0	1	2
1.00	-0.05	0.00	1.00	0.64	0.10
-0.04	0.05	0.02	-0.45	0.59	0.22
0.02	-0.08	-0.05	0.21	-0.87	-0.49
-0.01	-0.06	-0.09	-0.10	-0.57	-0.84
0.11	0.05	0.03	0.99	0.44	0.27
-0.07	-0.00	0.00	-0.53	-0.03	0.06

489

EFA.

$$\hat{\phi}_{01} = -0.165, \ \hat{\phi}_{02} = -0.126,$$

 $\hat{\phi}_{02} = -0.126,$
 $\hat{\phi}_{02} = 1.521,$

is accepted as adequate. The purely spatial AR(2) model and the space-time $STMA(1_0)$ model is then coupled and reparameterized to give,

$$Z_{t} = \hat{\phi}_{01} W^{(1)} Z_{t} + \hat{\phi}_{02} W^{(2)} Z_{t} - \hat{\theta}_{10} \xi_{t-1} + \xi_{t},$$

$$t = 61, 62, \dots, 71 \qquad (6-45)$$

where

$$\hat{\sigma}_{01} = -0.083$$

 $\hat{\sigma}_{02} = -0.105$
 $\hat{\sigma}_{10} = 0.802$
 $\hat{\sigma}^{2} = 1.475$

The extra sum of squares associated with ϕ_{01} is 0.838 and the hypothesis H_0 : $\phi_{01} = 0$ is accepted for $\alpha = 0.45$. The extra sum of squares associated with ϕ_{02} is 3.074 and the hypothesis H_0 : $\phi_{02} = 0$ is accepted for $\alpha = 0.65$. The extra sum of squares associated with θ_{10} is 156.86 and the hypothesis H_0 : $\theta_{10} = 0$ is rejected. The sample space-time autocorrelation functions, that have been computed and listed in Table 6-13, show adequacy of this model.

.

Table 6-13. The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelation Functions of the Residuals of the Coupled Model, Equation (6-42)

9

ų.,

₫.

a

T

> المحمد المراجعة المحمد والمحمد والمحمد المحمد المحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد و المحمد المحمد والمحمد المحمد والمحمد وا

The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations

Space Lag Time Lag	0	1	2	/ 0	1	2
0	1.00	-0.07	0.00	1.00	0.98	0.03
1	-0.06	0.06	0.02	-0.63	0.71	0.22
2	0.03	-0.09	-0.04	0.37	-0.96	-0.47
3	-0.01	-0.07	-0.13	-0.09	-0.72	-1.21
4	0.17	0.05	0.05	1.50	0.48	0.44
5	-0.13	-0.00	-0.00	-1.00	-0.02	-0.02

Since ϕ_{01} and ϕ_{02} are non-significant at significant level $\alpha = 0.45$ and $\alpha = 0.15$, respectively, so the STMA model, that is obtained by dropping the ϕ_{01} , ϕ_{02} terms in the model, Equation (7-42), is constructed. The M.L. estimation gives

$$Z_{t} = -\hat{\theta}_{10\lambda t-1} + \varepsilon_{\lambda t}$$
 (6-46)

where

 $\hat{\theta}_{10} = 0.7863, \ \hat{\sigma}^2 = 1.501$

The sample space-time autocorrelation functions, that are listed in Table 6-14, do not reveal any significant structure and this model is adequate.

Comparing the model in Equation (6-43), which is built for the outlier corrected observations, with the model in Equation (6-46), which is built for the uncorrected data, we see that the purely spatial structures are not masked and are significant in the model of the outlier connected observations. On the other hand, the purely spatial structure is masked by the outliers, and ϕ_{01} , ϕ_{02} are nonsignificant in the model of the unconnected data. It should be noted that the estimated residual variance of the outlier corrected model is 1.352 which is smaller than that of the uncorrected model 1.501.

An alternative way to see the inadequacy of the model which ignores the homogeneity assumption which causes a masking of the spatial structure is to build the $STMA(1_0)$ model for the outlier

2

 \square

Space Lag

Time Lag

0

1

3

-5

I

Canal Party

n

492

Table 6-14. The Sample Space-Time Autocorrelation Functions and the Standardized Sample Space-Time Autocorrelations of the Residuals of the STMA Model, Equation (6-43)

> The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations

0		2	/ 0	1	2
1.00	-0.14	-0.13	1.00	-1.79	-1.62
0.05	-0.03	-0.05	-0.64	0.99 -0.30	0.55
0.01	-0.02	-0.06	0.11	-0.23	-0.63
-0.07	-0.00	0.02	-0.58	-0.04	0.20

En.

۾*y*

corrected data. This results in,

$$Z_{t} = -\hat{\theta}_{10} \varepsilon_{t-1} + \varepsilon_{t}$$

(6-47)

8

R

Ø

The second second

n in the second s

496

where

$$\hat{\theta}_{10} = 0.265$$
 95% C.I. (0.093, 0.438)

The sample space-time autocorrelation functions of these residuals, that are listed in Table 6-15 and clearly shows the needs of purely spatial AR terms. Comparing the sample space-time autocorrelations listed in Table 6-15 with those listed in Table 6-14, we see that by removing the masking effect of the outliers, makes the purely spatial structure significant, and the purely spatial terms are needed to build the adequate model.

Since the outliers are confounded with the noise, so it is expected that the normality assumption for the residuals will be satisfied better for those that are from the outlier correct model. The five-block histogram for the residuals from the model, Equation (6-46), which is for the uncorrected data, is plotted in Figure 6-10(a). The histogram for the residuals of the model, Equation (6-43), which is built for the outlier corrected data, is plotted in Figure 6-10(b). Comparing these two plots, we may make the judgement that the normal assumption is satisfied better in Figure 6-10(a), which is built for the outlier corrected data. Performing the χ^2 goodness-of-fit test confirms this visual judgement since we have $\chi^2 = 4.49$, $\alpha = 0.2129$, Table 6-1 Space Lag Time Lag 0 1 2 3 4

5

Table 6-15. The Sample Space-Time Autocorrelation Functions of the Residuals of the STMA(10) Model, Equation (6-47)

The Sample Space-Time Autocorrelations/ The Standardized Sample S-T Autocorrelations

5	` 0	1	2	/ 0	1	2
	1.00	-0.60	0.06	1.00	-7.47	0.77
	-0.03	0.01	0.08	-0.34	0.15	0.72
	0.08	-0.04	0.05	0.82	-0.48	0,51
	0.15	-0.11	0.03	1.42	-1.05	0.36
	-0.08	0.10	-0.11	-0.52	0.90	-0.95
	-0.03	0.02	0.02	-0.27	0.19	-0.22

for the residuals of uncorrected data and $\chi^2 = 0.53$, $\alpha = 0.9103$ for the residuals of outlier corrected data, where α is the significant level. The residuals of the outlier corrected model satisfies the normality assumption better.

498

2

(Income)

P-1

(6-48)

1

Ċ

Ţ

1 ----- A

Constanting of the

(Second Second

A straightfurther

and the second

1

where

Based on the model in Equation (6-46), which has been built for the differenced observations without corrections, the forecast function and the variance of these forecasts are obtained as the conditional expectation values of mean and variance for the differenced observations $Z_{\rm Vt}$ as well as the original observations $\chi_{\rm t}$. They are,

$$\begin{split} \hat{\hat{z}}_{\nabla T}(\ell) &= \begin{cases} -\hat{\theta}_{10}\hat{\xi}_{T} & , \ \ell=1 \\ 0 & , \ \ell \geq 2 \end{cases} \\ \hat{y}_{T}(\ell) &= \begin{cases} y_{T} + \hat{\hat{z}}_{\nabla T}(1) & , \ \ell=1 \\ \hat{y}_{T}(\ell-1) + \hat{\hat{z}}_{\nabla T}(\ell) & , \ \ell \geq 2 \end{cases} \\ \hat{y}_{T}(\ell-1) + \hat{\hat{z}}_{\nabla T}(\ell) & , \ \ell \geq 2 \end{cases} \\ \\ \text{Var}(\hat{\hat{z}}_{T}(\ell)) &= \begin{cases} I\sigma^{2} & , \ \ell=1 \\ (1+\hat{\sigma}_{10}^{2})\hat{\sigma}^{2} & , \ \ell \geq 2 \end{cases} \\ \text{Var}(\hat{y}_{T}(\ell)) &= \begin{cases} \hat{\sigma}^{2} & , \ \ell \geq 1 \\ (1+\hat{\sigma}_{10}^{2})\hat{\sigma}^{2} & , \ \ell \geq 2 \end{cases} \end{cases} \end{split}$$

where

$$\hat{\theta}_{10} = 0.7863, \ \hat{o}^2 = 1.501.$$

Based on the model in Equation (6-43), which has been built for the differenced observations with outlier corrections, the forecast function and the variance of these forecasts are,

$$\begin{split} & Z_{\nabla T}(\ell) = \begin{cases} -\hat{\theta}_{10}(1 - \hat{\phi}_{01}W^{(1)} - \hat{\phi}_{02}W^{(2)})^{-1}\hat{\xi}_{\nabla T} & \ell = 1 \\ & & \\ 0 & & \\ 0 & & \\ \frac{\ell \geq 2}{(6-49)} \\ \ell = 1 & \\ \end{pmatrix} \\ & y_{T}(\ell) = \begin{cases} y_{T} + Z_{\nabla T}(1) & & \ell = 1 \\ & & \\ y_{T}(\ell-1) + Z_{\nabla T}(\ell) & & \\ \frac{\ell \geq 2}{(6-49)} & & \\ \frac{\ell \geq 2}{(6-49)} \\ \ell = 1 & \\ \frac{\ell \geq 2}{\ell} \\ \end{pmatrix} \\ & \forall ar(Z_{\nabla T}(\ell)) = \begin{cases} \left[(1 - \hat{\phi}_{01}W^{(1)} - \hat{\phi}_{02}W^{(2)})(1 - \hat{\phi}_{01}W^{(1)} - \phi_{01}W^{(2)})^{-1} \right]\hat{\sigma}^{2}, \ \ell = 1 \\ & \\ W_{B}W_{B}^{*}\hat{\sigma}^{2} + W_{C}W_{C}^{*}\hat{\sigma}^{2} & , \ \ell \geq 2 \\ & & \\ & & \\ \forall ar(y_{T}(\ell)) = \begin{cases} \forall ar(Z_{T}(1)), \\ \forall ar(y_{T}(\ell-1) + \forall ar(Z_{T}(\ell)) + cov_{T}(\ell) + cov_{T}(\ell)^{*}, \ \ell \geq 2 \end{cases} \end{split}$$

$$\operatorname{cov}_{\mathrm{T}}(\ell) = \begin{cases} 0 & \ell \leq 1 \\ \\ -W_{\mathrm{c}}W_{\mathrm{B}}^{*}\hat{\sigma}^{2}, & \ell \geq 2 \end{cases}$$

499

(AL

$$W_{\rm B} = \hat{\theta}_{10} (I - \hat{\phi}_{01} W^{(1)} - \hat{\phi}_{02} W^{(2)})^{-1}$$
$$W_{\rm c} = (I - \hat{\phi}_{01} W^{(1)} - \hat{\phi}_{02} W^{(2)})^{-1}$$
$$\hat{\phi}_{01} = -1.086$$
$$\hat{\phi}_{02} = -0.206$$
$$\hat{\theta}_{10} = 0.255$$
$$\hat{\sigma}^2 = 1.352$$

The point forecasts as well as the 95% confidence interval forecasts of y_{T} at T=71 are computed for the -step ahead forecasts, =1,2,...,12, by applying the forecasting function in Equations (6-49) and (6-50). These forecasts are plotted in Figure 6-11 for each of the 14 locations for both the outlier corrected and uncorrected model. The point forecasts for these two models are different in all 14 locations. The interval forecasts of the outlier corrected model always contains the interval forecasts of the uncorrected model. The 95% confidence interval of the outlier corrected model is larger than that of the uncorrected model because the correctly described purely spatial structure in Equation (6-49) inflates the forecasting variance.

Given the general space-time model with contemporaneous structure in Equation (6-51)

8

ລູ່.

12.00

FORCAST VALUE

-12.00

-20.00

8.87

VALUE

FORCAST 0.00

0.00

20.00

500

Ø

IJ

Ø

D

Ø

Ŋ

Ø

Ø

1

 \mathcal{O}

Figure 6-11. The Point Forecasts and the 95% Confidence Interval Forecasts Computed from Equations 6-49 and 6-50.

\$2

507

÷.

 $\mathcal{O}_{\mathcal{D}\mathcal{T}}$

$$Z_{t} = B(0)Z_{t} - A(0)\varepsilon_{t} + \sum_{k=1}^{p} B(k)Z_{t-k} - \sum_{k=1}^{q} A(k)\varepsilon_{t-k} + \varepsilon_{t}, \quad (6-51)$$

the space-time components describe the spatial-temporal correlations are contained in the forecasting functioning, but the contemporaneous terms, $B(0)Z_t$ and $A(0)\varepsilon_t$, which describe the purely spatial correlations are not realized in the forecasting function. On the other hand, the general space-time process

$$E_{t} = \sum_{k=1}^{p} B(k) Z_{t-k} - \sum_{k=1}^{q} A(k) \varepsilon_{t-k} + \varepsilon_{t}$$
(6-52)

has the same terms contribute to the forecasting function. Thus, the general space-time model with contemporaneous structure has two more terms that have descriptive capability but do not enter the forecasting function and these two added terms inflates the forecasting confidence interval. As a simple example, let us consider the following two models,

 $Z_t = \varepsilon_t$

and

$$Z_{zt} = B(0) \varepsilon_{t} + \varepsilon_{t}$$

(6-54)

T

Ĩ

M

1

 $\left(\right)$

5

FT I

U

508

where $\alpha * > \alpha$.

In Equation (6-54), B(0) is assumed to satisfy the existence conditions therefore Z_t can be expressed alternatively as,

$$Z_{t}^{2} = (I+B(0)+B^{2}(0)+\dots) \varepsilon_{t}^{2}.$$
 (6-55)

Here we see that Z_{t} is an infinite sum of all errors ε_{t} over space for each location at a given t which is contributed through B(0). Thus the variance of Z_{t} is inflated accordingly.

It should be noted that the outlier corrected model is a spacetime model with contemporaneous spatial structure, while the uncorrelated model is only a space-time model in which the purely spatial structure was masked causing an inflation in σ^2 . They are of different descriptive capability. The outlier corrected model describes the process correctly. The larger forecast confidence interval of the outlier corrected model reflects the additional terms needed in the model past the space-time terms. Thus, the smaller confidence interval for the non-outlier corrected model reflects an over estimation of the true α level. The desired $(1-\alpha)$ % confidence interval for the uncorrected model actually represents the correct $(1-\alpha*)$ % confidence interval

CHAPTER VII

MULTIVARIATE STARMA MODELING

In the STARMA model only one type of observations is considered (eg. one attribute). Occasionally more than one category of observations is available for each observation period on every location and there can be some space-time neighboring structure between different categories. If the structure among different categories of observations is significant in the data generating process, then the descriptive ability of models that also characterize the between-category structure will be better than those that don't have this capability.

In this chapter we generalize the STARMA model, to the Multivariate STARMA model (MULSTARMA). In Section 7.1, the model formulation is given. The stationary and invertibility conditions are developed in Section 7.2. Alternative MULSTARMA forms are described in Section 7.3. In Section 7.4, the multivariate space-time autocorrelation function is defined and its statistical properties are derived. The multivariate space-time partial autocorrelation function is derived in Section 7.5, and the computationally efficient schemes are addressed. The model identification techniques that are based on the results obtained in Section 7.4 and 7.5 are contained in Section 7.6. The encoded multivariate space-time autocorrelation functions and the encoded multivariate space-time partial autocorrelation functions are also introduced here to assist in identification. The following

analysis.

1

T

ł

7.1.1 Model Formulation

Model,

section contains the parameter estimation procedures. This includes conditional M.L. estimation procedures for both situations when G is known or unknown, where G is the covariance matrix of the noise. Also the situations under which the computation effort needed in estimation can be reduced are discussed. In Section 7.8, the model diagnostic checking procedures are described. Then in Section 7.9, Cleveland Crime Data is used to illustrate the MULSTARMA model building procedure and the resulting model's use in forecasting and intervention

7.1 The Multivariate STARMA Model Class

The multivariate STARMA model is an extension of univariate STARMA model into the multi-category observation domain. It is also considered to be an extension of multivariate ARMA model into the spatial domain. The multivariate STARMA model has the capability to describe the spatially, temporally as well as the inter-category correlated structures. The multivariate STARMA model formulation is introduced in Section 7.1.1. This formulation is related to other special subsets of the multivariate STARMA model class in Section 7.1.2. In Section 7.1.3, its physical interpretation is illustrated in block diagrams for simple systems.

Consider the general multivariate Autoregressive Moving Average

$$\underline{z}^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{p^{hg}} \underline{B}^{hg}(k) \underline{z}^{g}(t-k) - \sum_{g=1}^{\zeta} \sum_{k=1}^{q^{hg}} \underline{A}^{hg}(k) \underline{\varepsilon}^{g}(t-k) + \underline{\varepsilon}^{h}(t) \quad (7-1)$$

and $\epsilon^{h}(t)$ is normally distributed with

$$E(\varepsilon^{h}(t)\varepsilon^{g}(t+k)') = \begin{cases} G^{hg} & \text{when } k=0 \\ 0 & \text{otherwise} \end{cases}$$

h=1,2,...,ζ; t=1,2,...,T.

where $Z^{h}(t)$ and $\varepsilon^{h}(t)$ are the h-category observation vector and hcategory noise vector at time t, respectively. $B^{hg}(k)$ and $A^{hg}(k)$, that are category dependent as well as temporal lag dependent, are LNXLN coefficient matrix for time lag k.

It should be noted that in the previous chapters, the temporal index t is represented as a subscript. Since the subscripts and superscripts are much more complicated in this chapter than those in previous chapters, the temporal index t is placed in the parenthesis in the rest of this chapter.

Let,

at the (h,g) block. in Equation (7-2) as

们

T)

512

Two models that are related to the General Multivariate ARMA model are the General Multivariate AR model and the General Multivariate MA model.

$$Z(t)' = (Z^{1}(t)', Z^{2}(t)', ..., Z^{\zeta}(t)')$$

$$\varepsilon(t)' = (\varepsilon^{1}(t)', \varepsilon^{2}(t)', ..., \varepsilon^{\zeta}(t)')$$

$$Z' = (Z(1)', Z(2)', ..., Z(T)')$$

$$\varepsilon' = (\varepsilon(1)', \varepsilon(2)', ..., \varepsilon(T)')$$

$$P_{max} = \max\{p^{hg}|h, g=1, 2, ..., \zeta\}$$

$$q_{max} = \max\{g^{hg}|h, g=1, 2, ..., \zeta\}$$

Define $A(k) = (A^{hg}(k)], B(k) = [B^{hg}(k)], G = [G^{hg}], i.e., A(k)$ is the [($\zeta \cdot LN$)×($\zeta \cdot LN$)] coefficient matrix which has $A^{hg}(k)$ submatrix at its (h,g) block of size ($\zeta \cdot \zeta$). B(k) is the [($\zeta \cdot LN$)×($\zeta \cdot LN$)] coefficient matrix which has B^{hg}(k) submatrix at its (h,g) block, and G has G^{hg}

Model, Equation (7-1), which will be referred to as the General Multivariate ARMA model, can be rewritten in terms of the definitions

514

T

I

T

I

T

I

0

I among the

Township of

A second s

3

Same and

調

By setting A(k) = 0 in Model, Equation (7-1), we have the

General Multivariate AR model.

$$Z(t) = \sum_{k=1}^{p_{max}} B(k)Z(t-k) + \varepsilon(t)$$
(7-4)
t=1,2,...,T

By setting B(K) = 0 in Model, Equation (7-1), we have the General Multivariate MA model as

$$Z(t) = -\sum_{k=1}^{q_{max}} A(k)\varepsilon(t-k) + \varepsilon(t)$$
(7-5)

t=1,2,...,T

When the coefficient matrix $B^{hg}(k)$ and $A^{hg}(k)$ in Model, Equation (7-1), can be decomposed and expressed in terms of the weight matrix w^(l), l=0,1,..., as

27

$$B^{hg}(k) = \sum_{\ell=0}^{\lambda_{k}^{hg}} \phi_{k\ell}^{hg} w^{(\ell)}, A^{hg}(k) = \sum_{\ell=0}^{m_{k}^{hg}} \theta_{k\ell}^{hg} w^{(\ell)}$$

 $Z^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{ph}$

We get the Multivariate STARMA model

$$\sum_{k=1}^{\log \lambda_{k}^{hg}} \varphi_{k\ell}^{hg} \frac{\varphi_{k\ell}^{hg}}{z^{g}(t-k)} - \sum_{g=1}^{\zeta} \sum_{k=1}^{qhg} \varphi_{k\ell}^{hg} \frac{\varphi_{k\ell}^{hg}}{z^{g}(t-k)}$$
(7-6)
+ $\varepsilon^{h}(t)$

where $\varepsilon^{h}(t)$ is normally distributed and

$$E(\varepsilon^{h}(t)\varepsilon^{g}(t+k)) = \begin{cases} G^{hg}, k=0\\ 0, otherwise \end{cases}$$

h=1,2,...,ζ; t=1,2,...,T

This model will be referred to as the MULSTARMA $(\zeta, p, q, \lambda, m)$ model with p, q, λ , m vectors defined in the following

 $\underline{p} = (p^{11}, p^{12}, \dots, p^{1\zeta}, p^{21}, \dots, p^{2\zeta}, \dots, p^{\zeta 1}, \dots, p^{\zeta \zeta})$ $\underline{\mathbf{g}} = (\mathbf{q}^{11}, \mathbf{q}^{12}, \dots, \mathbf{q}^{1\zeta}, \mathbf{q}^{21}, \dots, \mathbf{q}^{2\zeta}, \dots, \mathbf{q}^{\zeta 1}, \dots, \mathbf{q}^{\zeta \zeta})$ $\underline{\lambda} = (\underline{\lambda}^{11}, \underline{\lambda}^{12}, \dots, \underline{\lambda}^{1\zeta}, \underline{\lambda}^{21}, \dots, \underline{\lambda}^{2\zeta}, \dots, \underline{\lambda}^{\zeta 1}, \dots, \underline{\lambda}^{\zeta \zeta})$ $\underline{\lambda}^{\mathbf{ij}} = (\lambda_{1}^{\mathbf{ij}}, \lambda_{2}^{\mathbf{ij}}, \dots, \lambda_{p^{\mathbf{ij}}}^{\mathbf{ij}})$ (7-7) $\mathbf{m} = (\mathbf{m}^{11}, \mathbf{m}^{12}, \dots, \mathbf{m}^{1\zeta}, \mathbf{m}^{21}, \dots, \mathbf{m}^{2\zeta}, \dots, \mathbf{m}^{\zeta 1}, \dots, \mathbf{m}^{\zeta \zeta})$ $\mathbf{m}^{\underline{i}} = (\mathbf{m}^{\underline{i}}_{1}, \mathbf{m}^{\underline{i}}_{2}, \dots, \mathbf{m}^{\underline{i}}_{d})$

The elementary elements in the above definition are $p^{\mbox{ij}}$, $q^{\mbox{ij}}$, $\lambda_k^{\mbox{ij}}$ and m_{L}^{ij} , the superscript ij indicates that the parameter is associated with the influence of the category j observations on the category i observation, and the subscript k indicates the temporal lag. Referencing to Equation (7-6), we see that p^{ij} is the maximum temporal lag of influence that the category j observations have on the category i observations, q^{ij} is the maximum temporal lag influence that the category j noise have on the category i observations, λ_k^{ij} is the maximum spatial lag influence that the category j observations have on the category i observations at temporal lag k and m_k^{ij} is the maximum spatial lag influence that the category j noise has on the category i observations at temporal lag k. For example, in Equation (7-6), ϕ_{i}^{j} is the autoregressive parameter that measures the strength of influence that the category j observations at some location have on the category i observations of the lth order neighbors at temporal lag k.

p and q are $(1\times\zeta^2)$ row vectors. λ^{ij} are $(1\timesp^{ij})$ row vectors, λ is $(1 \times \sum_{j=1}^{\zeta} \sum_{p=1}^{j})$ row vector. \underline{m}^{ij} is $(1 \times q^{ij})$ row vector and \underline{m} is

 $(1 \times \sum_{i=1}^{\zeta} \sum_{j=1}^{\zeta} q^{ij})$ row vector.

In the rest of this chapter, we will always define the parameter vectors $\boldsymbol{\varphi}, \; \boldsymbol{\theta}$ in such order as following

where ϕ is column vect $\sum_{\substack{i=1\\k=1}}^{q^2} (m_k^{ij}+1) \text{ column vector.}$

TEAS

$$\begin{split} & \oint_{i} = (\oint_{11}^{11}, \oint_{12}^{12}, \dots, \oint_{12}^{1\zeta'}, \oint_{21}^{21'}, \dots, \oint_{q}^{\zeta\zeta'}) \text{ with } \\ & i_{j} = (\oint_{10}^{i_{j}}, \oint_{11}^{i_{j}}, \dots, \oint_{12}^{i_{j}}, \dots, \oint_{p}^{i_{j}}, \dots, \oint_{p}^{i_{j}}, \int_{p}^{i_{j}}, \int_{p}^{i_{j}} \\ & \oint_{i} = (\oint_{11}^{i_{1}'}, \oint_{21}^{i_{2'}'}, \dots, \oint_{21}^{i_{\zeta'}'}, \int_{q}^{21'}, \dots, \oint_{q}^{\zeta\zeta'}) \text{ with } \\ & i_{j} = (\oint_{10}^{i_{1}'}, \int_{11}^{i_{j}}, \dots, \int_{11}^{i_{j}}, \int_{20}^{i_{j}}, \dots, \int_{q}^{i_{j}}, \int_{q}^{$$

7.1.2 Other Special Subsets of the MULSTARMA

In the MULSTARMA(ζ , p, q, λ , m) model formulation, Equation (7-6), two kinds of specifications can be distinguished: the model parameter specifications and the system specifications. The model parameter specifications include p, q, λ and m, that specify the model subclass of the MULSTARMA models. By setting these parameters to some specified values, we obtain a model subclass. The system specifications include the number of observation categories and the location number LN. The system specifications are specified by the available observations themself, not by the model builder. To model the observed

process, the system specifications should match the observed system from which the observations are obtained. In the following, subsets of special interests are introduced. The model subsets, that can be obtained by specifying the model parameter specifications, are presented in Section 7.1.2.1, and the model subsets, that can be obtained by changing the system specifications, are presented in Section 7.1.2.2.

7.1.2.1 Parameter Simplification. In the univariate spacetime models, the STAR model formulation can be obtained from the STARMA model by setting the moving average order to zero, and the STMA model formulation can be obtained by setting the autoregressive order to zero. Special subsets of the MULSTARMA(ζ , p, q, λ , m) can be similarly obtained. In this section those models that can be obtained from the MULSTARMA model by setting elements in the autoregressive order vector p and the moving average order vector q to zero are presented.

Setting q = 0 in the MULSTARMA(ζ , p, q, λ , m) model, Equation (7-6), we have

$$\underline{z}^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{phg} \lambda_{k}^{hg} \phi_{kl}^{hgw}(\ell) \underline{z}^{g}(t-k) + \varepsilon^{h}(t)$$

where $\varepsilon^{h}(t)$ is normally distributed with

برجيسي.

 $E(\varepsilon^{h}(t)\varepsilon^{g}(t+k)') = \begin{cases} G^{hg} & k=0\\ 0 & \text{otherwise} \end{cases}$

h=1,2,...,ζ; t=1,2,...,T

518

1

B

1

1) (1) (1)

*

-

the second

間世

印

R

(7-9)

Type I

1

1

defined in Equation (7-7).

This model will be referred to as MULSTAR(ζ , p, λ) model with p, λ defined in Equation (7-7).

Setting $\underline{p} = 0$ in the MULSTARMA(ζ, p, q, λ, m) model, we have,

$$z^{h}(t) = \sum_{\substack{j=1 \\ g=1}}^{\zeta} \sum_{\substack{k=1 \\ k=0}}^{hg} \theta^{hg}_{kl} \varepsilon^{g}(t-k) + \varepsilon^{h}(t)$$
(7-10)

 $\varepsilon^{n}(t)$ is normally distributed with

$$E(\varepsilon^{h}(t)\varepsilon^{g}(t+k)') = \begin{cases} G^{hg} & k=0\\ 0 & otherwise \end{cases}$$

This model is referred to as the MULSTMA(ζ, q, m) model, with q, m

In the MULSTARMA, MULSTAR and MULSTMA models, the current hcategory observations are expressed as weighted sum of previous observations, previous errors of all categories and the current errors of h-category. These models are inter-category dependent. Such intercategory dependence can be removed by setting $p^{hg} = 0$, $q^{hg} = 0$ where $h \neq g$. For example, setting $p^{hg} = 0$, $q^{hg} = 0$, $h \neq g$ in the MULSTARMA(ζ , p, q, λ , m) model, we have

 $z^{h}(t) = \sum_{k=1}^{phh} \sum_{k=0}^{\lambda_{k}^{hh}} \phi_{k\ell}^{hh} (\ell) z^{h}(t-k) - \sum_{k=1}^{qhh} \sum_{\ell=0}^{mhh} \theta_{k\ell}^{hh} (\ell) z^{h}(t-k) + z^{h}(t),$

where $\varepsilon^{h}(t)$ is normally distributed, $\varepsilon^{h} \sim \text{NID}(0, G^{hh})$,

h=1,2,..., ; t=1,2,...,T.

In the above formulation, it is seen that $Z^{h}(t)$ doesn't receive any contributions from observations or errors of the other categories. The above formulation contains & independent STARMA models. Similarly, by setting $p^{hg} = 0$, $h \neq g$, in the MULSTAR model formulation, we obtain the MULSTAR model without inter-category dependence, which contains ζ independent STAR models. By setting $q^{hg} = 0$, $h \neq g$, in the MULSTMA model formulation, we have the MULSTMA model without inter-category dependence, which contains independent STMA models.

7.1.2.2 System Simplification. In the univariate STARMA model, if the location number is reduced to one, i.e., LN=1, the formulation of univariate ARMA model is obtained. In this section the models that are obtained by reducing the system specifications are presented. The system specifications include the number of observation categories ζ and the number of locations LN.

By setting the category number $\zeta=1$ and canceling the dummy superscript, we collapse the MULSTARMA(ζ ,p,q, λ ,m) model into the univariate STARMA model, i.e.,

3

 $\varepsilon(t)$ is normally distributed with

 $Z(t) = \sum_{n=1}^{\infty}$

 $Z_i(t)$

t=1,2,...,T.

The above model formulation contains LN univeriate ARMA(p,q) processes. Thus the univariate STARMA model class, that describes only

520

1

T

T

TI

T

T

by partition of

Karal Same

Contraction of the local division of the loc

$$\sum_{l=0}^{\lambda_{k}} \phi_{kl} w^{(l)} Z(t-k) - \sum_{k=1}^{q} \sum_{l=0}^{m_{k}} \theta_{kl} w^{(l)} \varepsilon(t-k) + \varepsilon(t)$$

t=1,2,...,T

(7-11)

$$E(\varepsilon(t)\varepsilon(t+k)') = \begin{cases} G & k=0\\ 0 & \text{otherwise} \end{cases}$$

One step further, by setting $\lambda_k = 0$, all k, and imposing $W^{(0)} = I$ by definition, we have

$$Z(t) = \sum_{k=1}^{p} \phi_{k0} Z(t-k) - \sum_{k=1}^{q} \theta_{k0} \varepsilon(t-k) + \varepsilon(t).$$

This can be expressed alternatively as,

$$P = \sum_{k=1}^{p} \phi_{k0} Z_{i}(t-k) - \sum_{k=1}^{q} \theta_{k0} \varepsilon_{i}(t-k) + \varepsilon_{i}(t) \qquad (7-12)$$

where the subscript i denotes the location index, and i=1,2,...,LN;

one category, is a subclass of the MULSTARMA model class, and the univariate ARMA model class, that describes only one location, is a subclass of the STARMA model class.

Setting the location number LN=1 in the MULSTARMA model and cancelling the dummy neighbor structure subscripts, we obtain the multivariate ARMA model, i.e.,

$$Z^{h}(t) = \sum_{k=1}^{p} \sum_{q=1}^{\zeta} \phi_{k}^{hg} Z^{q}(t-k) - \sum_{k=1}^{g} \sum_{g=1}^{\zeta} \theta_{k}^{hg} \varepsilon^{g}(t-k) + \varepsilon^{h}(t). \quad (7-13)$$

This multivariate ARMA model has been proposed by Box and Tiao [1981].

In summary, the multivariate ARMA model describes the intercategory correlations, but not the space-time correlations. The univariate STARMA model describes the space-time correlations, but not the inter-category correlations. Only the MULSTARMA model has the capability of describing the inter-category, space-time correlations. 7.1.3 Physical Interpretation of the MULSTARMA Model

The MULSTARMA model can be decomposed into elementary compponents, that transform the noise input or the feedback from previous observations to give contributions to the current output observations. These components are identifiable and the MULSTARMA model can be represented by a diagram that contains each identifiable filter component. Figure 7-1 shows the configuration of the elementary components of which the outputs are added to give the observation of Category C at location i for the ζ -category, LN-location MULSTARMA

522

T

T

T

T

The second second

Chinese and

The second second

process. The filters in Figure 7-1 represent the model components in a one-to-one corresponding relationship as follows;

$$T(i,j; g,c|\theta) = \sum_{k=1}^{q} \sum_{\ell=0}^{m_k} \theta_{k\ell}^{cg} W_{ij}^{(\ell)} B^k,$$
$$T(i,j; g,c|\phi) = \sum_{k=1}^{p} \sum_{\ell=0}^{\lambda_k} \phi_{k\ell}^{cg} W_{ij}^{(\ell)} B^k.$$

The T(j,i; g,c $|\theta$) and T(j,i; g,c $|\phi$) filters describe the influences from the noise and observations of location j, category g to the observation of category c at location i. The "add" operator, that sums up the inputs to give the observation output, performs the addition operation. The MULSTARMA process of ζ-category and LN-location system consists of LN. C. such elementary construction units. Each elementary construction unit describes this transformation-then-summation mechanism for some category observation at some location. All these LN• ζ elementary construction units are connected together to form an ζ·LN input-ports, LN output-ports of an open loop system for the STARMA model. The system inputs are current white noise and the system outputs are current observations. Cancelling the $T(j,i; g,c | \theta)$ filters, we obtain the construction unit for the MULSTAR process that is a simplified model of the MULSTARMA model. Connecting all the construction units of the LN-locations, ζ-categories, we obtain the open loop system for the MULSTAR model. Similarly, cancelling the $T(j,i; g,c|\phi)$ filters, we obtain the construction unit for the MULSTMA

process that is another simplified model of the MULSTARMA model. Connecting all the construction units of the LN-locations, ζ -categories, we obtain the open loop system for the MULSTMA model.

Figures 7-2 to 7-7 are drawn to illustrate the MULSTARMA model and its collapsed models. Figure 7-2 shows the components diagram for the multivariate MA process of two observation categories systems, i.e., LN = 1, ζ = 2. In the diagram, it is seen that $\varepsilon_1^1(t)$ contributes to $Z_1^1(t)$ as well as $Z_1^2(t)$, and $\varepsilon_1^2(t)$ contributes both to $Z_1^1(t)$. Therefore the inter-category dependence of moving average characteristics is implied. In Figure 7-3, the LN = 1, ζ = 2 multivariate STAR system is illustrated. Here $\varepsilon_1^1(t)$ doesn't have any contribution to $\varepsilon_1^2(t)$, and the $\varepsilon_1^2(t)$ doesn't have any contribution to $Z_1^1(t)$. However, both previous $Z_1^1(t)$ and $Z_1^2(t)$ have contributions to $Z_1^1(t)$ and $Z_1^2(t)$. This diagram doesn't show any direct contribution from $\varepsilon_1^1(t)$ to $Z_1^2(t)$ and from $\varepsilon_1^2(t)$ to $Z_1^2(t)$, but following the AR feedback loops, we see that the past noise of one category, say $\varepsilon_1^1(t)$, does contribute to the observation of the same category at the same time, say past $Z_1^1(t)$, and the contribution of $\varepsilon_1^1(t)$ in $Z_1^1(t)$ is feedback to contribute to both the current $Z_1^1(t)$ and $Z_1^2(t)$. Therefore, implicitly past $\varepsilon_1^1(t)$ have contributions to current $Z_1^2(t)$ through the AR feedback loops. The mechanism discussed above is closely related to the well-known fact that AR models can be expressed alternatively as an infinite order MA process. Imposing Figure 7-2 on Figure 7-3, we obtain Figure 7-4, that contains the diagram for the multivariate ARMA process for LN = 1, $\zeta = 2$.

524

The second se

T

• 6

1

.

525

QA.

. k Stationerstow And and a second A CONTRACTOR Contraction of the second 0.01 Contraction of the second 1

and the second

Constant of

原

ALL PARTY

100

526

 $\epsilon_1^2(t)$ -

Figure 7-4. The Component Diagram of the Multivariate ARMA Process with $\zeta=2$.

Figure 7-5 shows the MULSTMA process of LN = 2, ζ = 2 system. This diagram contains four MULSTMA construction units. The observations do not feedback. The past noise of each category at each location has contributions to all the current observations. Disconnecting the inter-category filters, or breaking the inter-category dependence, i.e., separating the 2nd floor from the 1st floor, we have two independent STMA process diagrams. Disconnecting the spatial filters, i.e., separating the front wall from the rear wall, we obtain two independent multivariate MA process diagrams. Figure 7-6 contains the diagram for MULSTAR model of LN = 2, ζ = 2 system. This diagram has four MULSTAR construction units. The past observations is feedback to the current process outputs. Similar to that of multivariate AR process in Figure 7-3, the past noise has contributions to all the current observations implicitly. The past noise of either category at either location are input to the addition operator through the AR feedback loops to give contributions to all the current observations. Imposing Figure 7-5 and 7-6 gives Figure 7-7, which is the diagram of the MULSTARMA process of LN = 2, ζ = 2 system. The diagram 7-7 consists of four MULSTARMA construction units, the past noise of either category at each location has explicitly contributions to all the current observations. The past observations are feedback to all con-

7.2 Stationary and Invertible Conditions

An important consideration for the MULSTARMA model are the conditions under which the vector process Z(t) is strictly stationary.

For a strictly stationary process Z(t), the distributions of $Z(t_1), \ldots, Z(t_n)$ and $Z(t_1+s), \ldots, Z(t_n+s)$ are the same, this guarantees the property that the covariance of $Z(t_1)$ and $Z(t_1+T)$, i.e., $E(Z(t_1)Z'(t_1+T))$, depends only on T regardless of the t_1 value, i.e., $E(Z(t_1)Z'(t_1+T)) = E(Z(t_2)Z'(t_2+T))$ for arbitrary t_1, t_2 . The invertibility is the dual of the stationarity. The invertibility property assures that theprocess Z(t) depends on the latest observations most heavily. In the following, the stationarity regions for the MULSTARMA process are derived in Section 8.2.1. The derivation is followed by the similar derivation of the invertibility regions in Section 8.2.2. 7.2.1 Stationarity Regions

Stationarity implies that for any s and t, the joint density distribution of $Z(t), Z(t+1), \ldots, Z(t)$ and $Z(t+s), Z(t+1+s), \ldots, Z(T+S)$ are the same. In modeling we are particularly concerned with second order stationarity. Under the assumptions of normal distribution and E(Z(t)) = 0, this stationarity means that

E(Z(t)Z(t+s)') = E(Z(0)Z(s)')

for all t. This is equivalent to say that the variance-covariance of Z(t) and Z(t+s) depends only upon the time difference s, it doesn't depend on time t. Without this stationarity property, the statistical property of the process change with time and the system becomes explosive. The parameter constraints to insure stationarity, form the stationary region.

「「「

532

翻

the MULSTAR(ζ, p, λ).

the region that

By applying the result from Hannan [1970] (Equation (7-14)) the stationary conditions for the General Multivariate ARMA Model can be derived. If every u that solves.

$$det[\mu^{p_{max}} I - \sum_{k=1}^{p_{max}} B(k)\mu^{p_{max}}] = 0$$
 (7-14)

lies inside the unit circle, i.e., |u| < 1, then the vector process Z(t) for the general multivariate ARMA process will be stationary. Hence these stationary conditions put restrictions on the autoregressive parameter matrices only, and all the General Multivariate MA models are always stationary. Thus the stationary conditions of the MULSTARMA(ζ , p,q, λ ,m) model will be exactly the same as that of

Consider the MULSTAR(ζ, p, λ) model with $p \leq 1$, we have $p_{max} = 1$, and the stationary conditions so that every that solves

$$det[\mu I - B(1)] = 0$$
 (7-15)

(7 - 16)

lies inside the unit circle, i.e., $|\mu|$ < 1. Note that the solution μ for $p_{max} = 1$ models is the eigenvalue of coefficient matrix B(1). It is known that the eigenvalue μ of the matrix $B = [b_{ij}]$ is bound within

 $|\mu - b_{ii}| \leq \sum_{j=1}^{b} b_{ij}$, all i

Since B(1) = [B^{hg}(1)], B^{hg}(1) = $\sum_{n=0}^{\lambda_1^{ng}} \phi_1^{hg} w^{(\ell)}$, where $w^{(\ell)}$ is the scaled weight matrix and $\sum_{i} w_{ij}^{(l)} = 1$ all i, the bounds for the eigenvalue of B(1) are

$$|\mu - \phi_{10}^{hh}| \leq |\sum_{g \neq h}^{\zeta} \phi_{10}^{hg}| + \sum_{\ell=1}^{\chi} |\sum_{g=1}^{\zeta} \phi_{1\ell}^{hg}|, h=1,2,...,\zeta$$
(7-17)

where $\lambda_1^{h^*} = \max\{\lambda_1^{hg} | g=1, 2, ..., \zeta\}.$

and

Equation (8-17) is equivalent to

$$\phi_{10}^{hh} - |\sum_{g \neq h}^{\zeta} \phi_{10}^{hg}| - \sum_{\ell=1}^{\lambda_{1}^{h^{*}}} |\sum_{g=1}^{\zeta} \phi_{1\ell}^{hg}| \le \mu \le \phi_{10}^{hh} + |\sum_{g \neq h}^{\zeta} \phi_{10}^{hg}| + \sum_{\ell=1}^{\lambda_{1}^{h^{*}}} |\sum_{g=1}^{\zeta} \phi_{1\ell}^{hg}|$$

$$h=1,2,\ldots,5 \qquad (7-18)$$

So the necessary condition for $|\mu| < 1$ becomes that

$$b_{10}^{hh} = |\sum_{g \neq h}^{\zeta} \phi_{10}^{hg}| = \sum_{\ell=1}^{\lambda_1^{h^*}} |\sum_{g=1}^{\zeta} \phi_{1\ell}^{hg}| > -1$$

(7-19)

Figure 7-8(a).

Contract of

and the second

A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

$$\phi_{10}^{hh} + |\sum_{g\neq h}^{\zeta} \phi_{10}^{hg}| + \sum_{\ell=1}^{\lambda_1^n} |\sum_{g=1}^{\zeta} \phi_{1\ell}^{hg}| < 1$$

h=1,2,...,ζ.

It should be noted that the region restricted by Equation (7-19) is the necessary stationary region, which is not necessarily the best stationary region for this MULSTAR(ζ , p, λ) process. The best stationary region is the region that every parameter that fall in this region makes the process stationary and any parameters not contained in this region makes the process nonstationary.

For illustration, let us consider the stationary region for the MULSTAR(2,p, λ) model with p = (1,1,1,1), λ = (0,0,0,0). Directly applying Equation (7-19) and setting $\lambda_1^{h*} = 0$ for h=1,2, we get the necessary stationary region in the ϕ parameter space to be,

> $\phi_{10}^{11} - |\phi_{10}^{12}| > -1$ $\phi_{10}^{11} + |\phi_{10}^{12}| < 1$ $\phi_{10}^{22} - |\phi_{10}^{21}| > -1$ $\phi_{10}^{22} + |\phi_{10}^{21}| < 1$

Thus the necessary stationary region for this MULSTAR process is restricted to the interior region of the configurations shown in

(7-20)

As another example, we consider the MULSTAR(2,p, λ) model with p = (1,1,1,1) and $\lambda = (1,0,0,1)$. Applying Equation (7-19) directly and setting $\lambda_1^{h^*} = 1$ for h=1,2, we get the necessary stationary region in the ϕ space as,

Thus the necessary stationary region for the MULSTAR(2, p=1, λ) process with $\lambda = (1,0,0,1)$ is the interior region of the diamond configuration for a ϕ_{11}^{11} and ϕ_{11}^{22} value: These regions are illustrated in Figure 7-8(b). 7.2.2 Invertibility Regions

Invertibility is the dual of stationarity. Stationarity puts restrictions on the autoregressive parameters, while invertibility puts restrictions on the moving average parameters. A non-invertible process implies that the current observation cumulates heavier influence from the earlier observations and errors. This can be seen clearly in the univariate time series. Consider the univariate MA(1) process

$$Z(t) = -\theta_1 B\varepsilon(t) + \varepsilon(t) \qquad (7-22)$$

t=1,2,...,T

Contraction of

Contraction of the second seco

-1.0

-1.0

Figure 7-8(a). The Necessary Stationary Region for the MULSTAR(2, p, λ) Process with p=1 and $\lambda = (1,0,0,1)$

Figure 7-8(b). The Necessary Stationary Region for the MULSTAR(2,p, λ) Process with p=1 and $\lambda=0$.

nade The	
angre .	conditions for
	derived. If e
J	
	lies inside the
	ble. Hence, the
	same for both N
	Consider
T	and the inverti
T	lies inside the
	Following the s
I	for the MULSTAR
	tions for inver
(I) (A)	

where B is the back shift operator defined as $B\varepsilon(t) = \varepsilon(t-1)$. Obviously, when $|\theta| > 1$, the process is not invertible, and Z(t)will be influenced heavier by the $\theta_{1}\varepsilon(t-1)$ term than the current error. Also without invertibility we cannot express $\varepsilon(t)$ in terms of past observations, i.e., Z(t-k), $k \ge 1$,

 $\varepsilon(t) = \lim_{T_0 \to \infty} \sum_{n=0}^{T_0} (\theta_1 B)^n Z(t), \text{ because we can expand } (I-\theta_1 B)^{-1} = T_0^{-\infty} n=0$

 $\sum_{n=0}^{\infty} (\theta_1 B)^n \text{ only when } |\theta_1| < 1.$ Furthermore, even we put on these conditions that Z(t) = 0 for $t \le 0$ are imposed to make it possible to express $\varepsilon(t)$ in terms of past observations, we have

$$\varepsilon(t) = \sum_{k=0}^{t-1} \theta_{1}^{k} Z(t-k)$$
(7-23)

 $Z(t) = \varepsilon(t) - \sum_{k=1}^{t-1} \theta_{1}^{k} Z(t-k) \quad t \ge 2$

OT

Without imposing invertibility constraints, $|\theta_1|$ can be > 1 and thus $\underline{\varepsilon}(t)$ and $\underline{Z}(t)$ will cumulate more influence from historically distant observations. Intuitively, more recent observations should have more similarity and influence on the current observations than the distant observations.

Apply the result from Hannan [1970] again, we get the invertible

538

or the General Multivariate Space-Time Model can be every μ that solves

$$det[\mu^{q_{max}} I - \sum_{k=0}^{q_{max}} A(k)\mu^{max}] = 0$$
 (7-24)

the unit circle, then the vector process will be invertithe MULSTAR models are always invertible, and the invertia the moving average parameter space will be exactly the MULSTMA(ζ, q, m) model and MULSTARMA(ζ, p, q, λ, m) model. Her the MULSTMA(ζ, q, m) model with $q \leq 1$. We have $q_{mqx} = 1$ stible conditions is such that every μ that solves

 $det[\mu I - A(1)] = 0$ (7-25)

the unit circle. This is equivalent to say that every coefficient matrix A(1) lies inside the unit circle. same procedure that we derive the stationary conditions $AR(\zeta,p,\lambda)$ model with $p \leq 1$, we get the necessary condiertibility as,

539

$$\theta_{10}^{hh} = |\sum_{g \neq h}^{\zeta} \theta_{10}^{hg}| - \sum_{\ell=1}^{m_{1}^{h^{*}}} |\sum_{g=1}^{\zeta} \theta_{1\ell}^{hg}| > -1$$

$$\theta_{10}^{hh} + |\sum_{g \neq h}^{\zeta} \theta_{10}^{hg}| + \sum_{\ell=1}^{m_{1}^{l}} |\sum_{g=1}^{\zeta} \theta_{1\ell}^{hg}| < 1$$

$$(7-26)$$

540

4

1

U.M

Constant of

Contraction of the second

And the second s

Carlow Control

il.

F. Salar

1

- Landsteiner

h=1,2,...,ζ

Note that this is the necessary invertible regions, and not necessarily is the best invertible regions.

For illustration, the invertible region for the MULSTMA(2,q,m) model with q = (1,1,1,1), m = (0,0,0,0) is considered. Applying Equation (7-25), we have the necessary invertible region in the parameter space to be,

$$\theta_{10}^{11} - |\theta_{10}^{12}| > -1$$

$$\theta_{10}^{11} + |\theta_{10}^{12}| < 1$$

$$\theta_{10}^{11} + |\theta_{10}^{21}| > -1$$

$$\theta_{10}^{22} + |\theta_{10}^{21}| < 1.$$

Thus the necessary stationary region for this MULSTMA process is the interior region of the configurations shown in Figure 7-9(a).

As another example, lets consider the invertible region of the MULSTMA(2,q,m) with q = (1,1,1,1) and m = (1,0,0,1). Applying Equation

Figure 7-9(b). The Necessary Invertible Region of the MULSTMA(2,q,m) \neg \neg Process with q=1 and m=(1,0,0,1). \neg \neg

(7-25) and setting $m_{11}^{h*} = 1$ for h = 1, 2, we obtain the necessary invertible region in the $\frac{9}{2}$ parameter space to be,

$$\begin{aligned} \theta_{10}^{11} &= |\theta_{10}^{12}| = |\theta_{11}^{11}| > -1 \\ \theta_{10}^{11} &+ |\theta_{10}^{12}| + |\theta_{11}^{11}| < 1 \\ \theta_{10}^{22} &= |\theta_{10}^{21}| - |\theta_{11}^{22}| > -1 \\ \theta_{10}^{22} &+ |\theta_{10}^{21}| + |\theta_{11}^{22}| < 1. \end{aligned}$$

Thus the necessary invertible region is restricted to the interior region of the diamond configuration for a given θ_{11}^{11} and θ_{11}^{22} value. These regions are illustrated in Figure 7-9(b).

7.3 A-Weight Representation for the Stationary General Multivariate Space-Time Models

Any model that meets the requirement of stationarity can be expressed alternatively as weighted sum of past and current errors,

$$z^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{\infty} \Lambda^{hg}(k) \varepsilon^{g}(t-k) + \varepsilon^{h}(t) \qquad (7-27)$$

t=1,2,...,Τ; h=1,2,...,ζ

This will be referred to as the A-weight representation.

In the following, we will derive the relations between the

coefficient matrices of the Λ -weight representation and the coefficient

General Mu]
sentation	t
representa	t
This yield:	9
. ž	
•	
Note that Λ	ł
Тор	ł
sentation is	3
MA model.	
For t	-
	•

-

1

1

(· · · 3

T. T.

f.

1

542

the $Z^{g}(t-k)$ terms are first substituted for by these equivalent A-weight representation. Then the coefficients of the resulting equations are equated with the corresponding coefficients of the A-weight representation. The results are as follows,

matrices of the General Multivariate representation. To put the General Multivariate MA model in the Λ -Weight representation representation the coefficients of the same $\varepsilon^{q}(t-k)$ terms in the Λ -weight representation and the General Multivariate MA model are equated. This yields the relationship,

$$\Lambda^{hg}(k) = \begin{cases} -A^{hg}(k), \ k \leq q^{hg} \\ 0 & \text{otherwise} \end{cases}$$

hg(k) is null matrix when $k > q^{hg}$.

ut this General Multivariate AR model into the Λ -weight represonance of the straightforward as that of the General Multivariate

the General Multivariate AR process,

$$Z^{h}(t) = \sum_{\substack{g=1 \ k=1}}^{\zeta} \sum_{\substack{b=1 \ k=1}}^{phg} B^{hg}(k) Z^{g}(t-k) + \varepsilon^{h}(t)$$

h=1,2,...,ζ; t=1,2,...,T

543

(7-28)

 (\mathbb{T})

$$\Lambda^{hg}(1) = B^{hg}(1)$$

$$\Lambda^{hg}(2) = B^{hg}(2) + \sum_{g_2=1}^{\zeta} B^{hg_2}(1) \Lambda^{g_2g}(1)$$

$$\vdots$$

$$\Lambda^{hg}(k) = B^{hg}(k) + \sum_{g_2=1}^{\zeta} \sum_{k=1}^{k-1} B^{hg_2}(k_2) \Lambda^{g_2g}(k-k_2) , k \le p^{hg}$$

$$\Lambda^{hg}(k) = \sum_{g_2=1}^{\zeta} \sum_{k_2=1}^{k-1} B^{hg_2}(k_2) \Lambda^{g_2g}(k-k_2) , k > p^{hg}$$

$$h^{hg}(k) = \sum_{g_2=1}^{\zeta} \sum_{k_2=1}^{k-1} B^{hg_2}(k_2) \Lambda^{g_2g}(k-k_2) , k > p^{hg}$$

$$h^{hg}(k) = 1, 2, \dots, \zeta; g^{=1}, 2, \dots, \zeta$$
(7-29)

It should be noted that the elements of $\Lambda^{hg}(k)$ will exponentially decay to zero for $k > p^{hg}$ because of the matrix multiplication operation in the recursive formula.

Following the same procedure, the Λ -weight representation for the General Multivariate STARMA Model with the Λ -weights matrix expressed in terms of A's, B's is,

$$\Lambda^{hg}(1) = -A^{hg}(1) + B^{hg}(1)$$

$$\Lambda^{hg}(2) = -A^{hg}(2) + B^{hg}(2) + \sum_{g_2=1}^{\zeta} B^{hg_2}(1) \Lambda^{g_2g}(1)$$

For $k \leq \min\{p^{hg}, q^{hg}\}$

$$\Lambda^{hg}(k) = -\Lambda^{hg}(k) + B^{hg}(k) + \sum_{g_2=1}^{\zeta} \sum_{j=1}^{k-1} B^{hg_2}(j) \Lambda^{g_2g}(k-j)$$

I

T

T

I

I

and for min{ p^{hg} , q^{hg} } < k $\leq \max\{p^{hg}, q^{hg}\}$, we have two situations: 1. If $p^{hg} > q^{hg}$ $\Lambda^{hg}(k) = B^{hg}(k) + \sum_{\substack{j \in I \\ g_2=1, j=1}}^{\zeta} \sum_{j=1}^{k-1} B^{hg}_2(j)\Lambda^{g_2g}(k-j)$, or 2. If $p^{hg} < q^{hg}$ $\Lambda^{hg}(k) = -A^{hg}(k) + \sum_{\substack{j \in I \\ g_2=1, j=1}}^{\zeta} \sum_{\substack{j=1 \\ j=1}}^{p^{hg}} B^{hg}_2(j)\Lambda^{g_2g}(k-j)$ For $k > \max\{p^{hg}, q^{hg}\}$

$$\Lambda^{hg}(\mathbf{k}) = \sum_{g_2=1}^{\zeta} \sum_{j=1}^{phg} B_2^{g_2g}(\mathbf{k}-\mathbf{j}) \qquad (7-30)$$

Similar to the MULSTAR case, the elements of $\Lambda^{hg}(k)$ will exponentially decay to zero when $k > \max\{p^{hg}, q^{hg}; h, g=1, 2, \dots, \zeta\}$.

7.4 Multivariate Space-Time Autocorrelation Function Considerations In this section, some statistics that will be very useful in identifying the potential candidate models in the model building are

addressed. First the covariance matrix $\Gamma^{ij}(u)$ of the observations $Z^{i}(t)$ and $Z^{j}(t+u)$ is defined as,

$$\Gamma^{ij}(u) = E(Z^{j}(t+u)Z^{i}(t))$$
 (7-31)

i,j=1,2,...,ζ; u=...,-2,-1,0,1,...

The multivariate space-time autocovariance function
$$\gamma_{g\xi}^{gh}(u)$$
 is defined
as

$$\gamma_{g\xi}^{gh}(u) = \frac{E[(w^{(s)}Z^{g}(t))'(w^{(\xi)}Z^{h}(t+u))]}{LN} \quad (7-32)$$
Since

$$\gamma_{g\xi}^{gh}(u) = \frac{E(Tr[(w^{(s)}Z^{g}(t))'(w^{(\xi)}Z^{h}(t+u))])}{LN} \quad (7-32)$$

$$= \frac{E(Tr[w^{(s)}'w^{(\xi)}Z^{h}(t+u)Z^{g}(t)'])}{LN}$$

$$= \frac{Tr[w^{(s)}'w^{(\xi)}E[Z^{h}(t+u)Z^{g}(t)'])}{LN}$$

$$= \frac{Tr[w^{(s)}'w^{(\xi)}E[Z^{h}(t+u)Z^{g}(t)'])}{LN} \quad (7-33)$$

Since

as

 $\gamma_{sl}^{sh}(u)$ can be expressed alternatively as

$$\gamma_{sl}^{gh}(u) = \frac{(w^{(s)'}w^{(l)}) \odot \Gamma^{gh}(u)}{LN}$$
(7-34)

A property for the multivariate space-time autocovariance function $\Gamma_{sl}^{gh}(u)$ such defined is that $\Gamma_{sl}^{gh}(-u) = \Gamma_{sl}^{hg}(u)$. According to the definition of $\Gamma^{ij}(u)$ in Equation (7-31), it can be shown that

546

I

I

I

I

I

$$\Gamma^{ij}(u) = \Gamma^{ji}(-u)^{\dagger}.$$

So from expression, Equation (7-33), we have

$$\gamma_{s\ell}^{gh}(-u) = \frac{1}{LN} \operatorname{Tr}(w^{(s)} w^{(\ell)} \Gamma^{gh}(-u))$$
$$= \frac{1}{LN} \operatorname{Tr}(w^{(s)} w^{(\ell)} \Gamma^{hg}(u)')$$
$$= \frac{1}{LN} \operatorname{Tr}(\Gamma^{hg}(u) w^{(\ell)} w^{(s)}) \quad \because \operatorname{Tr}(A) = \operatorname{Tr}(A')$$
$$= \frac{1}{LN} \operatorname{Tr}(w^{(\ell)} w^{(s)} \Gamma^{hg}(u))$$

and we get the relation

$$\gamma_{sl}^{gh}(-u) = \gamma_{ls}^{hg}(u).$$

7.4.1 The Multivariate Space-Time Autocorrelation Function

In univariate STARMA models, the space-time autocorrelation function $\rho_{kl}(u)$ was defined as (Pfeifer and Deutsch [1980b]).

$$\rho_{kl}(u) = \frac{\gamma_{kl}(u)}{(\gamma_{kk}(0)\gamma_{ll}(0))^{1/2}}$$

(7-37)

(7-36)

(7-35)

For the multivariate STARMA models, there are two alternatives in defining the multivariate space-time autocorrelation function.

OT

$$\rho_{kl}^{\text{gh}}(u) = \frac{\gamma_{kl}^{\text{gh}}(u)}{(\gamma_{kk}^{\text{gg}}(0)\gamma_{kl}^{\text{gg}}(0)\gamma_{kk}^{\text{hh}}(0)\gamma_{ll}^{\text{hh}}(0))^{1/4}}$$
(7-38)
g,h=1,2,...,5

548

the second second

$$p_{kl}^{gh}(u) = \frac{\gamma_{kl}^{gh}(u)}{(\gamma_{kk}^{gh}(0)\gamma_{ll}^{gh}(0))^{1/2}}$$
(7-39)

g,h=1,2,...,ζ

Both definitions collapse to the definition of the univariate spacetime autocorrelation function when we set $\zeta = 1$, cancel the dummy superscripts. However, from the physical interpretation of these alternatives of $\rho_{kk}^{gh}(0)$, the first definition (Equation (7-38)) is the appropriate choice. According to the second definition, Equation (7-39), by setting u=0, we have

$$p_{kk}^{gh}(0) = 1, g, h=1, 2, \dots, \zeta; k=0, 1, \dots$$
 (7-40)

This means that $\underline{Z}^{g}(t)$ and $\underline{Z}^{h}(t)$ are perfectly correlated, even the observations are not of the same category which is not reasonable.

Thus

and

63

Whereas for the first definition,

$$\rho_{kk}^{gh}(0) = \frac{\gamma_{kk}^{gh}(0)}{(\gamma_{kk}^{gg}(0)\gamma_{kk}^{hh}(0))^{1/2}}$$
(7-41)

 $\rho_{kk}^{gh}(0) = 1$ only when g=h. This observation of any two different categories are perfectly correlated.

The sample multivariate space-time autocovariance function $\hat{\gamma}^{gh}_{s\!\ell}(u)$ and the sample multivariate space-time autocorrelation function $\hat{\rho}_{s\ell}^{gh}(u)$ are defined analogously to their theoretical corresponding forms.

$$\hat{\gamma}_{sl}^{gh}(u,T) = \frac{\sum_{t=1}^{T-u} [(w^{(s)} z^{g}(t))'(w^{(l)} z^{h}(t+u))]}{LN \cdot (T-u)}$$
(7-42)

g,h=1,2,...,ζ; s,l,u=0,1,2,...

$$\hat{\rho}_{sl}^{gh}(u,T) = \frac{\hat{\gamma}_{sl}^{gh}(u)}{\left[\hat{\gamma}_{ss}^{gg}(0) \cdot \hat{\gamma}_{ll}^{gg}(0) \cdot \hat{\gamma}_{ss}^{hh}(0) \cdot \hat{\gamma}_{ll}^{hh}(0)\right]^{1/4}}$$
(7-43)

g,h=1,2,..., ; s,L,u=0,1,2,...

7.4.2 Expectation and Variance of the Multivariate Autocorrelation Function

The statistical property of the sample multivariate space-time autocorrelation function for the white noise process is needed for the diagnostic checking stage. In this section the expectation value and variance $\hat{\gamma}_{sl}^{gh}(u)$ and $\hat{\rho}_{sl}^{gh}(u)$ for the white noise process is derived. The white noise process is equivalent to a MULSTAR($\zeta, 0, 0$) model

with the assumption that Z(t) are white noise. Thus,

 $Z^{h}(t) = \varepsilon^{h}(t)$

h=1,2,...,ζ

where

 $E(\varepsilon^{h}(t)\varepsilon^{g}(t+k)) = \begin{cases} \sigma_{h}^{2} I & h=g \text{ and } k=0\\ 0 & \text{otherwise} \end{cases}$

Applying the result from matrix algebra $T_r(AB) = T_r(BA)$, we have

$$E[(w^{(s)}Z_{2}^{g}(t))'w^{(l)}Z_{2}^{h}(t+u)] = \begin{cases} \sigma_{h}^{2} \operatorname{Tr}(w^{(s)}'w^{(l)}, u=0, h=g) \\ 0 & , \text{ otherwise} \end{cases}$$
(7-45)

Also for h≠g, applying the fact that $\varepsilon^{h}(t)$ and $\varepsilon^{g}(t)$ are statistically independent, we have

 $= E{Tr[w]}$ = $Tr\{w^{(s)}$ $= \sigma_h^2 \sigma_g^2 \text{ Tr}$ $= .\sigma_h^2 \sigma_g^2 \text{ Tr}$ are derived as follows,

= E[(w^{(s}

 $\operatorname{Var}(\hat{\gamma}_{s\ell}^{gh}(u)) = \mathbb{E}[(\hat{\gamma}_{s\ell}^{gh}(u,T))^2]$

550

(7-44)

T

T

I

T

I

I

T

1

C. P. Street Street

$$E[((w^{(s)} Z^{g}(t)'w^{(\ell)} Z^{h}(t+u))^{2}]$$

$$= E[(w^{(s)} Z^{g}(t))'w^{(\ell)} Z^{h}(t+u) \cdot (w^{(\ell)} Z^{h}(t+u))'w^{(s)} Z^{g}(t)]$$

$$= E\{Tr[w^{(s)'}w^{(\hat{\ell})} Z^{h}(t+u) Z^{h}(t+u)'w^{(\ell)'}w^{(s)} Z^{g}(t) Z^{g}(t)']\}$$

$$= Tr\{w^{(s)'}w^{(\ell)} E[Z^{h}(t+u) Z^{h}(t+u)']w^{(\ell)'}w^{(s)} E[Z^{g}(t) Z^{g}(t)']\}$$

$$= \sigma_{h}^{2} \sigma_{g}^{2} Tr\{w^{(s)'}w^{(\ell)}w^{(\ell)'}w^{(s)}\}$$

$$= \sigma_{h}^{2} \sigma_{g}^{2} Tr\{w^{(\ell)}w^{(\ell)'}w^{(s)}w^{(s)'}\}$$
(7-46)

Using Equations (7-45) and (7-46), $E(\hat{\gamma}_{sl}^{gh}(u))$ and $Var(\gamma_{sl}^{gh}(u))$ for $g\neq h$

$$E(\hat{\gamma}_{s\ell}^{gh}(u)) = \begin{cases} \frac{\sigma_h^2 \operatorname{Tr}(w^{(s)'}w^{(\ell)})}{LN} & u=0, g=h \\ 0 & \text{otherwise} \end{cases}$$
(7-47)

$$= \frac{\sum_{\substack{t_1=1 \\ t_1=1 \\ t_1$$

 $\operatorname{Var}(\hat{\gamma}_{sl}^{gh}(u)) = \frac{\sigma_{g}^{2}\sigma_{h}^{2} \cdot \operatorname{Tr}(w^{(l)}w^{(l)}w^{(s)}w^{(s)})}{\operatorname{LN}^{2} \cdot (\mathrm{T-}u)}$ (7-48)

T

I

I

I

T

I

T

Ĩ

I

Ĩ

I

I

T

Ι

I

552

where

So

g≠h

To derive the variance of the sample multivariate space-time autocorrelation $\operatorname{Var}(\hat{\rho}_{sl}^{\mathrm{gh}}(u))$, we follow the customary procedure to get the approximate $\operatorname{Var}(\hat{\rho}_{sl}^{\mathrm{gh}}(u))$ as expressed in Equation (7-49).

$$\begin{aligned} &\operatorname{Par}(\hat{\rho}_{s\ell}^{gh}(u)) = \frac{\operatorname{Var}(\gamma_{s\ell}^{gh}(u))}{(\gamma_{ss}^{gg}(0)\gamma_{\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell}^{hh}(0))^{1/2}} - \frac{1}{2}(\gamma_{s\ell}^{gh}(u)) \cdot \\ &(\gamma_{ss}^{gg}(0)\gamma_{\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell}^{hh}(0))^{-3/2} \cdot [\gamma_{\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell}^{hh}(0) \cdot \operatorname{Cov}(\gamma_{ss}^{gg}(0),\gamma_{s\ell}^{gh}(u)) \\ &+ \gamma_{ss}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell}^{hh}(0) \cdot \operatorname{Cov}(\gamma_{\ell\ell}^{gg}(0),\gamma_{s\ell}^{gh}(u)) \\ &+ \gamma_{ss}^{gg}(0)\gamma_{\ell\ell}^{gg}(0)\gamma_{\ell\ell}^{hh}(0) \cdot \operatorname{Cov}(\gamma_{ss}^{gg}(0),\gamma_{s\ell}^{gh}(u)) \\ &+ \gamma_{ss}^{gg}(0)\gamma_{\ell\ell\ell}^{gg}(0)\gamma_{\ell\ell\ell}^{hh}(0) \cdot \operatorname{Cov}(\gamma_{ss}^{hh}(0),\gamma_{s\ell}^{gh}(u)) + \gamma_{ss}^{gg}(0)\gamma_{\ell\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0) \cdot \\ &\quad \operatorname{Cov}(\gamma_{\ell\ell}^{hh}(0)\gamma_{s\ell}^{gh}(u))] + \frac{1}{16}(\gamma_{s\ell}^{gh}(u))^{2} \cdot (\gamma_{ss}^{gg}(0)\gamma_{\ell\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell\ell}^{hh}(0))^{-5/2} \\ &\quad \left[\operatorname{Var}(\gamma_{ss}^{gg}(0))(\gamma_{\ell\ell\ell}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{\ell\ell\ell}^{hh}(0))^{2} + \operatorname{Var}(\gamma_{\ells}^{gg}(0) \cdot (\gamma_{ss}^{gg}(0)\gamma_{ss}^{hh}(0) \cdot \\ &\gamma_{\ell\ell\ell}^{hh}(0))^{2} + \operatorname{Var}(\gamma_{ss}^{hh}(0))(\gamma_{ss}^{gg}(0)\gamma_{\ell\ell\ell}^{gg}(0)\gamma_{\ell\ell\ell}^{hh}(0)^{2}) \end{aligned}$$

+ $Var(\gamma$ + $2\gamma_{ll}^{gg}$ (+ $2\gamma_{ll}^{gg}$ + $2\gamma_{ll}^{gg}$ (+ $2\gamma_{ss}^{gg}($ + $2\gamma_{ss}^{gg}(0)$ $+ 2\gamma_{ss}^{gg}(0)$

$$\gamma_{ll}^{hh}(0)) (\gamma_{ss}^{gg}(0)\gamma_{ll}^{gg}(0)\gamma_{ss}^{hh}(0))^{2}$$

$$(0)\gamma_{ss}^{gg}(0)\gamma_{ss}^{hh}(0)^{2}\gamma_{ll}^{hh}(0)^{2}Cov(\gamma_{ll}^{gg}(0),\gamma_{ss}^{gg}(0))$$

$$(0)^{2}\gamma_{ss}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{ll}^{hh}(0)^{2}Cov(\gamma_{ss}^{gg}(0),\gamma_{ss}^{hh}(0))$$

$$(0)^{2}\gamma_{ss}^{gg}(0)\gamma_{ss}^{hh}(0)^{2}\gamma_{ll}^{hh}(0)Cov(\gamma_{ss}^{gg}(0),\gamma_{ll}^{hh}(0))$$

$$(0)^{2}\gamma_{ll}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{ll}^{hh}(0)^{2}Cov(\gamma_{ll}^{gg}(0),\gamma_{ss}^{hh}(0))$$

$$(0)^{2}\gamma_{ll}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{ll}^{hh}(0)Cov(\gamma_{ll}^{gg}(0),\gamma_{ll}^{hh}(0))$$

$$(0)^{2}\gamma_{ll}^{gg}(0)\gamma_{ss}^{hh}(0)^{2}\gamma_{ll}^{hh}(0)Cov(\gamma_{ll}^{gg}(0),\gamma_{ll}^{hh}(0))$$

$$(0)^{2}\gamma_{ll}^{gg}(0)^{2}\gamma_{ss}^{hh}(0)\gamma_{ll}^{hh}(0)Cov(\gamma_{ss}^{hh}(0),\gamma_{ll}^{hh}(0))$$

The expression in Equation (7-49) is tedious to apply, but by using the result in Equation (7-47), i.e., $E(\hat{\gamma}_{sl}^{gh}(u)) = 0$, we have,

$$\operatorname{Var}(\widehat{p}_{sl}^{gh}(u)) = \frac{\operatorname{Var}(\gamma_{sl}^{gh}(u))}{(\gamma_{ss}^{gg}(0)\gamma_{ll}^{gg}(0)\gamma_{ss}^{hh}(0)\gamma_{ll}^{hh}(0))^{1/2}}$$
(7-50)

By substituting Equations (7-47) and (7-48) into Equation (7-50), we have the approximate variance of $\hat{\rho}_{s}^{gh}(u)$ as,

$$\operatorname{Var}(\hat{\rho}_{sl}^{gh}(u)) \simeq \frac{\operatorname{Tr}(w^{(l)}w^{(l)'}w^{(s)}w^{(s)'})/(T-u)}{\operatorname{Tr}(w^{(l)}w^{(l)'}) \cdot \operatorname{Tr}(w^{(s)}w^{(s)'})}$$
(7-51)

(7-49)

-554			al an
Setting s=l=0 in the above equation, we have			Table 7-1.
$Var(\hat{\rho}_{00}^{gh}(u)) = \frac{1}{TVr(T-v)}$ (7-52)			Estimator
00 LN (1-4)			$\hat{\gamma}^{gh}_{00}(u)$
Setting $l=0$ in Equation (7-51), we have			$\hat{\gamma}_{n0}^{gh}(u)$
$Var(\hat{\rho}_{s0}^{gh}(u)) = \frac{Tr(w^{(s)}w^{(s)'})}{IN_{s}(T-u) * Tr(w^{(s)}(s)')}$			50
- 1 (7.52)			$\hat{\gamma}_{sl}^{gn}(u)$
$-\frac{1}{\mathrm{LN}\cdot(\mathrm{T-u})}$			$\hat{\rho}_{00}^{gn}(u)$
Therefore when $g\neq h$, we have the variance of $\hat{\rho}_{s0}^{gh}(u)$ to be approximately $(LN \cdot (T-u))^{-1}$.			$\rho_{s0}^{o-}(u)$
By setting g=h, the multivariate definition of $\hat{\gamma}_{sl}^{gh}(u)$, $\hat{\rho}_{sl}^{gh}(u)$			ρ <mark>s"</mark> (u)
reduces to the univariate definition (see Pfeifer and Deutsch [1981]). Table 7-1 summarizes these results and those developed here.			^ch
7.4.3 Theoretical Properties of the Autocorrelation Function for MULSTARMA Processes			Υ ^δ (0)
The theoretical characteristics of the multivariate autocorrela- tion function for the MULSTAR, MULSTARMA and MULSTMA models are a primary			$\hat{\gamma}_{s0}^{gh}(0)$
tool in the identification of a potential candidate model in model building. Since the MULSTAR, MULSTARMA and MULSTMA models are speci-			$\hat{\gamma}_{ss}^{gh}(0) = \frac{\sigma_{ss}}{L}$
fied models of the General Multivariate STAR, STARMA, STMA model,	•		$\hat{Y}_{a}^{gh}(u) = u > 0$
Multivariate models and apply the results directly to the MULSTAR,			≏sh.
MULSTARMA and MULSTMA models.		Contraction of the second seco	ρ ₅₀ (u)

E{Estimator} Variance{Estimator} <u>h</u>≠g $\frac{\sigma_h^2 \sigma_h^2}{\text{ln} \cdot (\text{t-u})}$ 0 $\frac{\sigma_{g}^{2}\sigma_{h}^{2}\cdot\operatorname{Tr}(w^{(s)}w^{(s)'})}{LN^{2}\cdot(t-u)}$ 0 $\frac{\sigma_{gh}^2 \sigma_h^2 \cdot \operatorname{Tr}(w^{(\ell)} w^{(\ell)} w^{(s)} w^{(s)})}{LN^2 \cdot (t-u)}$ • 0 0 $\frac{1}{LN \cdot (t-u)}$ 0 $\frac{1}{LN \cdot (t-u)}$ $\frac{\operatorname{Tr}(w^{(\ell)}w^{(\ell)}w^{(s)}w^{(s)})}{(\operatorname{T-u})\cdot\operatorname{Tr}(w^{(\ell)}w^{(\ell)}\cdot\operatorname{Tr}(w^{(s)}w^{(s)})}$ 0 <u>h=g</u> $\frac{2\sigma_h^4}{\text{ln}\cdot\text{T}}$ σ_h^2 $\frac{\sigma_{h}^{4}\{\mathrm{Tr}(\mathbf{w}^{(s)}\mathbf{w}^{(s)'})+\mathrm{Tr}(\mathbf{w}^{(s)}\mathbf{s}^{(s)'})\}}{\mathrm{LN}^{2}\cdot\mathrm{T}}$ 0 $\frac{\sigma_{h}^{4} \operatorname{Tr}(w^{(s)}w^{(s)'}w^{(s)}w^{(s)'})}{\operatorname{LN}^{2} \cdot \mathrm{T}}$ $\frac{h}{N} \operatorname{Tr}(w^{(s)}w^{(s)'})$ $\frac{\sigma_{h}^{4} \operatorname{Tr}(w^{(s)}w^{(s)'})}{\operatorname{LN}^{2} \cdot (\mathrm{T-u})}$ 0 0 $\frac{1}{LN(T-u)}$

Variance of Sample Multivariate Space-Time Autocovariance and Autocorrelation Function of the White Noise Process With Equation (7-34),

$$g_{sl}^{gh}(u) = \frac{w^{(s)'}w^{(l)} \cdot \Gamma^{gh}(u)}{LN},$$

we need to compute the covariance matrix $\Gamma^{gh}(u)$ of the observations $Z_{s\ell}^{g}(t)$, $Z^{h}(t+u)$ before computing the multivariate space-time autocovariance function $\gamma_{s\ell}^{gh}(u)$ and the multivariate space-time autocorrelation function $\rho_{s\ell}^{gh}(u)$. The covariance matrix of $Z^{i}(t)$ and $Z^{j}(t+u)$ for the General Multivariate models in the Λ -weight representation is derived below.

$$\Gamma^{ij}(u) = E(\underline{z}^{j}(t+u)\underline{z}^{i}(t)^{*})$$

$$= E[(\sum_{g_{1}=1}^{\zeta} \sum_{k_{1}=1}^{\infty} \Lambda^{jg_{1}}(k_{1})\underline{\varepsilon}^{g_{1}}(t+u-k_{1}) + \underline{\varepsilon}^{j}(t+u))$$

$$(\sum_{g_{2}=1}^{\zeta} \sum_{k_{2}=1}^{\infty} \Lambda^{ig_{2}}(k_{2})\underline{\varepsilon}^{g_{2}}(t-k_{2}) + \underline{\varepsilon}^{i}(t))^{*}]$$

i,j=1,2,3,...,ζ; u=0,1,2,...,∞

556

-

T

1

T

I

1.

2.11

T

T

The second second

に

Contraction of the second second

These above results can be summarized as following,

$$\Gamma^{ij}(u) = \begin{cases} G^{ji} + \sum_{s_1=1}^{\zeta} \sum_{g_2=1}^{\infty} \Lambda^{jg_1}_{(k)G} g_1 g_2 \Lambda^{ig_2}_{\Lambda} g_2^{(k)}, u=0 \\ g_1=1 & (7-54) \\ g_1=1 & g_1=1 \\ g_1=1 & g_2=1 \\ g_1=1 & g_2=1 \\ g_1=1 & g_2=1 \\ g_2=1 \\ g_1=1 \\ g_$$

i,j=1,2,...,ζ.

Analogous to the univariate MA models and STMA models, we expect that $\Gamma^{ij}(u)$ will be a null covariance matrix for the General Multivariate STMA model when u is large enough. By substituting Equation (7-28) into Equation (7-54). We get the covariance matrix $\Gamma^{ij}(u)$ of the General Multivariate STMA model,

557

ENA.

 $\Gamma^{ij}(u) = \begin{cases} G^{ji} + \sum_{g_1=1}^{\zeta} \sum_{g_2=1}^{q_1^{*}} A^{jg_1}(k) G^{g_1g_2} A^{ig_2}(k)^{*}, u=0 \\ g_1=1 g_2=1 k=1 \end{cases}$ $\Gamma^{ij}(u) = \begin{cases} \zeta & jg_1 \\ \vdots & jg_1=1 \end{cases} = \begin{cases} \zeta & \zeta & q^{j^*} - u & jg_1 \\ \vdots & \vdots & jg_1=1 \end{cases} = \begin{cases} \zeta & \zeta & q^{j^*} - u & jg_1 \\ \vdots & \vdots & jg_1=1 \end{cases} = \begin{cases} g_1=1 g_2=1 k=1 \end{cases}$ u>q^{ĵ*}. (7-55)

558

i,j=1,2,...,ζ

where $q^{j*} = \max\{q^{j8} | g=1, 2, \dots, \zeta\}$. To compute the autocovariance function $\gamma_{q,\ell}^{ij}(u)$, we substitute Equation (7-55) into Equation (7-34) to get the conclusion that the autocovariance function $\gamma_{s,\ell}^{ij}(u)$ cuts off after $u > q^{j*}$, where $q^{j*} = \max\{q^{jg}|g=1,2,...,\zeta\}$.

For the General Multivariate STAR model since the elements of $\Lambda^{hg}(k)$ in the Λ -weight representation exponentially decay to zero when $k > p^{hg}$, will cause the elements of $\Gamma^{ij}(u)$ to also exponentially decay to zero when $u > \max\{p^{j \varepsilon} | g=1, 2, \dots, \zeta\}$, which in turn causes the autocovariance function $\gamma_{a0}^{ij}(u)$ to exponentially decay. Similar consideration gives similar conclusions for the General Multivariate STARMA model. That is, the autocovariance function $\gamma_{q0}^{ij}(u)$ will exponentially decay to zero when $u > \max\{p^{jg}, q^{jg} | g=1, 2, ..., \zeta\}$. Since the MULSTAR, MULSTMA, MULSTARMA models are specific models of the General Multivariate models, the results that we have gotten hold for the MULSTAR, MULSTMA and MULSTARMA models.

 $[w^{(s)}Z^{\vee}(t-u)$

7.5 Multivariate Partial Space-Time Autocorrelation Considerations

Another important statistical property that is very helpful in identifying the candidate model is the partial autocorrelation function. The multivariate space-time partial autocorrelation is derived in Section 7.5.1. This analysis is followed by the computation considerations section. Here efficient approaches for computing the multivariate space-time partial autocorrelation functions are proposed which eliminate the need of computing the inverse of large dimensional matrices. This affords computational efficiency since the effort needed to obtain the inverse of a full rank matrix increases exponentially when the dimension of the matrices increases linearly. 7.5.1 The Multivariate Partial Space-Time Autocorrelation Function Pre-multiplying both sides of the MULSTAR(ζ , p, λ) model,

$$Z^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{phg} \lambda_{k}^{hg} \phi_{k\ell}^{hg} Z^{g}(t-k) + \varepsilon^{h}(t)$$

h=1,2,...,ζ.

by $[w^{(s)}Z^{\nu}(t-u)]'$ gives

$$]'\underline{Z}^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{phg} \sum_{\ell=0}^{\lambda_{k}^{hg}} [w^{(s)}\underline{Z}^{\nu}(t-u))]'\phi_{k\ell}^{hg}w^{(\ell)}\underline{Z}_{\ell}^{g}(t-k)$$
$$+ [w^{(s)}\underline{Z}^{\nu}(t-u)]'\underline{\varepsilon}^{h}(t)$$

560 Taking the expectation value and dividing both sides by LN gives $\gamma_{s0}^{\vee h}(u) = \sum_{\alpha=1}^{\zeta} \sum_{k=1}^{hg} \sum_{\ell=0}^{\lambda_{R}^{ng}} \phi_{k\ell}^{hg} \gamma_{s\ell}^{\vee g}(u-k)$ 0 (7-56) Letting $v=1,2,\ldots,\zeta$, h=1,2,\ldots,\zeta, u=1,2,\ldots,p^{hv} and s=0,1,\ldots,\lambda_u^{hv}, results in the partial autocovariance function, $\gamma_{s0}^{\vee h}(u) = \sum_{g=1}^{\zeta} \sum_{k=1}^{hg \lambda_k^{ng}} \phi_{k\ell}^{hg} \gamma_{s\ell}^{\vee g}(u-k)$ (7-57) ν,h=1,2,...,ζ u=1,2,...,p^{∨h} s=0,1,2,...,λ^{νh} Ø $\begin{array}{ccc} \zeta & p^{\vee h} \\ \text{This equation consists of } & \sum & \sum & (\lambda_u^{\vee h} + 1) \text{ linearly independent} \\ & \nu = 1 \ h = 1 \ u = 1 \end{array}$ equations from which we can solve for the $\sum_{g=1}^{\zeta} \sum_{h=1}^{p^{ng}} (\lambda_k^{hg}+1)$ auto-regressive parameters. This system of equations is the multivariate space-time analog of the Yule-Walker equations for univariate time series. As we will state in more detail later, although the system of equations defined by the multivariate autocorrelation function does not have a symmetric coefficient matrix for all the ϕ parameters, for every specified h-

series.

王は行き

T

iii ii

φ(ζ,p

φ(ζ,p

category, the coefficient matrix for ϕ^h parameters is symmetric. This is similar to the Yule-Walker equations for the univariate time

Since we have $\gamma_{sl}^{gh}(-u) = \gamma_{ls}^{hg}(u)$ in Equation (7-36), so in Equation (7-57) we can replace $\gamma_{sl}^{\vee g}(u-k)$ with $\gamma_{ls}^{g\vee}(k-u)$ when u-k<0. Based on the solution set of the system of Equation (7-57), we will define the Multivariate Space-Time Partial Autocorrelation Function $\phi(\zeta, p, \lambda)$ as follows,

$$\lambda = (\phi^{\vee h}, \forall = 1, 2, \dots, \zeta, h = 1, 2, \dots, \zeta, k = 1, 2, \dots, p^{\vee h}),$$

$$k \lambda_k^{\vee h}$$

$$\lambda_k^{\lambda} = \sum_{\nu h} (p^{\vee h}) \text{ column vector.}$$

Theoretically, we can construct the sequence of Equation (7-57) and compute the associated Multivariate Space-Time Partial Autocorrelation Function $\phi(\zeta, p, \lambda)$. Assume we have the MULSTAR (ζ, p_T, λ_T) as the true model, then the sequence of Multivariate Space-Time Partial Autocorrelation Function vectors will have the following property,

$$\phi(\zeta, \mathbf{p}, \lambda) \begin{cases} = 0 & \mathbf{p} > \mathbf{p}_{\mathbf{T}} \text{ and } \lambda > \lambda_{\mathbf{T}} \\ \neq 0 & \text{otherwise} \end{cases}$$
(7-58)

Thus the Multivariate Space-Time Partial Autocorrelation Function $\phi(\zeta, p, \lambda)$ cuts off after p_T and λ_T when the true model is MULSTAR(ζ, p_T, λ_T). Any invertible MULSTMA(ζ ,q,m) and MULSTARMA(ζ ,p,q, λ ,m) model can be

expressed as infinite MULSTAR(ζ, p, λ) model with the coefficients decaying exponentially to zero after certain tim lag and spatial lag. Therefore, the Multivariate Space-Time Autocorrelation Function vector will not have the cut-off property of the MULSTAR model but instead it

will be tail-off.

where

7.5.2 Computation Considerations

The multivariate partial autocorrelation function, Equation (7-57), consists of ζ independent equation sets. Thus, it can be written as,

h=1, v=1, u=1, s=0 $\gamma_{00}^{11}(1) = \sum_{g=1}^{\zeta} \sum_{k=1}^{p \lg \lambda_k^{1g}} \phi_{k\ell}^{1g} \gamma_{0\ell}^{1g}(1-k)$ • • • • • • • • • h=1, $\nu=\zeta$, u=1, s=0 $\gamma_{00}^{\zeta 1}(1) = \sum_{g=1}^{\zeta} \sum_{k=1}^{1g} \gamma_{k\ell}^{\zeta g}(1-k)$ h=1 (7-59) h=1, $\nu=\zeta$, u=1, s= $\lambda_{1}^{1\zeta}$ $\gamma_{\lambda_{1}\zeta_{0}}^{\zeta_{1}}(1) = \sum_{g=1}^{\zeta} \sum_{k=1}^{p^{1g}} \lambda_{k}^{1g} \phi_{k\ell}^{1g\gamma\zeta g}(1-k)$ $h=1, v=v^{0}, u=p^{0}; s=\lambda^{0}$ $\gamma_{v}^{0,1}(p^{0}) = \sum_{\alpha=1}^{\zeta} \sum_{k=1}^{1g} \phi_{k\ell}^{1g} \gamma_{0}^{0g} (1-p^{0})$ g=1 k=1 l=0

equations.

and

562

T

A second second

 \square

$$p^{0} = p^{1v^{0}}$$
$$\lambda^{0} = \lambda \frac{1v^{0}}{p1v^{0}}$$

 p^{1v^0} is the maximum time lag for h=1

 λ_{p1v}^{1v0} is the maximum spatial lag for h=1 with time lag p^{1v0} v^0 is the maximum category index number for h=1 with p^{1v^0} time lag, $\lambda_{p1\nu}^{0}$ spatial lag.

This equation also holds for $h=2,3,\ldots,\zeta$, to get the other

(ζ-1) equations sets. Each equation set contains $\sum_{\sigma=1}^{\zeta} \sum_{k=1}^{phg} (1+\lambda_k^{hg})$ equations to solve for that number parameters. These parameters appear only in that equation set. Therefore the solution of the multivariate partial autocorrelation function can be computed by seqparating the ζ sets and solving within each. This will reduce the task of matrix inverse, which is necessary for computing the solution for the linear

As an example, consider the following example of MULSTAR(2,p, λ) with p = (2,1,1,1), $\lambda = (1,0,0,0,1)$, i.e.,

$$z^{1}(t) = + \phi_{10z}^{11}(t-1) + \phi_{11}^{11}w^{(1)}z^{1}(t-1) + \phi_{10z}^{12}z^{(2)}(t-1) + \phi_{20z}^{11}z^{1}(t-2) + \varepsilon^{1}(t)$$

$$(7-60)$$

564

P

Ø

Π

$$z^{2}(t) = + \phi_{10z}^{21}(t-1) + \phi_{10z}^{22}(t-1) + \phi_{11}^{22}w^{(1)}z^{2}(t-1) + \varepsilon^{(2)}(t)$$
(7-61)

Premultiplying Equation (7-60) with $Z^{(1)}(t-1)'$, $(w^{(1)}Z^{(1)}(t-1))'$, $Z^{(2)}(t-1)$ ' and $Z^{(1)}(t-2)$ ', taking the expectation value and dividing both sides by LN we get

$$\begin{split} \gamma_{00}^{11}(1) &= \phi_{10}^{11}\gamma_{00}^{11}(0) + \phi_{11}^{11}\gamma_{01}^{11}(0) + \phi_{10}^{12}\gamma_{00}^{12}(0) + \phi_{20}^{11}\gamma_{00}^{11}(-1) \\ \gamma_{10}^{11}(1) &= \phi_{10}^{11}\gamma_{10}^{11}(0) + \phi_{11}^{11}\gamma_{11}^{11}(0) + \phi_{10}^{12}\gamma_{10}^{12}(0) + \phi_{20}^{11}\gamma_{10}^{11}(-1) \\ \gamma_{00}^{21}(1) &= \phi_{10}^{11}\gamma_{00}^{21}(0) + \phi_{11}^{11}\gamma_{01}^{21}(0) + \phi_{10}^{12}\gamma_{00}^{22}(0) + \phi_{20}^{11}\gamma_{00}^{21}(-1) \\ \gamma_{00}^{11}(2) &= \phi_{10}^{11}\gamma_{00}^{11}(1) + \phi_{11}^{11}\gamma_{01}^{11}(1) + \phi_{10}^{12}\gamma_{00}^{12}(1) + \phi_{20}^{11}\gamma_{00}^{21}(0) \end{split}$$
(7-62)

Premultiplying Equation (7-61) with $z^1(t-1)^{\prime}$, $z^2(t-1)^{\prime}$, $(w^{(1)}z^2(t-1))^{\prime}$ and taking the expectation value and dividing both sides by LN, we get,

$$\begin{split} \gamma_{00}^{12}(1) &= \phi_{10}^{21}\gamma_{00}^{11}(0) + \phi_{10}^{22}\gamma_{00}^{12}(0) + \phi_{11}^{22}\gamma_{01}^{12}(0) \\ \gamma_{00}^{22}(1) &= \phi_{10}^{21}\gamma_{00}^{21}(0) + \phi_{10}^{22}\gamma_{00}^{22}(0) + \phi_{11}^{22}\gamma_{01}^{22}(0) \\ \gamma_{10}^{22}(1) &= \phi_{10}^{21}\gamma_{10}^{21}(0) + \phi_{10}^{22}\gamma_{10}^{22}(0) + \phi_{11}^{22}\gamma_{11}^{22}(0) \end{split}$$
(7-63)

Equation Set (7-62) contains 4 equations and will be used to solve for ϕ_{10}^{11} , ϕ_{11}^{11} , ϕ_{10}^{12} and ϕ_{20}^{11} that are not contained in Equation Set (7-63). Also Equation Set (7-63) contains 3 equations and will be used to solve for ϕ_{10}^{21} , ϕ_{10}^{22} and ϕ_{10}^{22} that similarly are not contained in Equation (7-62). We could solve for all the seven ϕ 's simultaneously instead of solving for the four ϕ 's in Equation (7-62) and the three ϕ 's in Equation (7-63) separately. For computation efficiency however we do prefer to solve them separately than simultaneously. By applying the property $\gamma_{sl}^{gh}(-u) = \gamma_{ls}^{hg}(u)$ of Equation (7-36), we can see that the coefficient matrix of Equation Sets (7-62) and (7-63) are symmetric. To illustrate that this is not a special case for this specified model, let us add an arbitrary term $\phi_{k\ell}^{lh} w^{(l)} Z^{h}(t-k)$ to model (7-60) with k, $l \in \{0, 1, 2, ...,\}$, $h \in \{1, 2\}$ and derive the equation set that is similar to Equation Set (7-62).

 $\gamma_{00}^{11}(1) = \phi_{10}^{11}\gamma_{00}^{11}(0) + \phi_{10}^{11}\gamma_{01}^{11}(0) + \phi_{10}^{11}\gamma_{00}^{12}(0) + \phi_{20}^{11}\gamma_{00}^{11}(-1) + \int \phi_{k\ell}^{1h}\gamma_{0\ell}^{1h}(1-k)$ $\gamma_{10}^{11}(1) = \phi_{10}^{11}\gamma_{10}^{11}(0) + \phi_{11}^{11}\gamma_{11}^{11}(0) + \phi_{10}^{12}\gamma_{10}^{12}(0) + \phi_{20}^{11}\gamma_{10}^{11}(-1) + \phi_{k\ell}^{1h}\gamma_{1\ell}^{1h}(1-k)$ $\gamma_{10}^{21}(1) = \phi_{10}^{11}\gamma_{00}^{21}(0) + \phi_{11}^{11}\gamma_{01}^{2_{1}}(0) + \phi_{10}^{12}\gamma_{00}^{22}(0) + \phi_{20}^{11}\gamma_{00}^{21}(-1) + \phi_{k\ell}^{2h}\gamma_{0\ell}^{2h}(1-k)$ $\gamma_{00}^{11}(2) = \phi_{10}^{11}\gamma_{00}^{11}(1) + \phi_{11}^{11}\gamma_{01}^{11}(1) + \phi_{10}^{12}\gamma_{00}^{12}(1) + \phi_{20}^{11}\gamma_{00}^{11}(0) + \int_{k_{\pi}^{10}}^{1h} \phi_{k_{\pi}^{10}}^{1h}\gamma_{0l}^{1h}(2-k)$ $\gamma_{\ell_0}^{h1}(k) = \phi_{10}^{11}\gamma_{\ell_0}^{h1}(k-1) + \phi_{11}^{11}\gamma_{\ell_1}^{h1}(k-1) + \phi_{10}^{12}\gamma_{\ell_0}^{h2}(k-1) + \phi_{20}^{11}\gamma_{\ell_0}^{21}(k-2) + \phi_{k\ell}^{hh}\gamma_{0\ell}^{hh}(0)$

We see that, with the property $\gamma_{sl}^{gh}(-u) = \gamma_{ls}^{hg}(u)$ in mind, the coefficient matrix of Equation Set (7-64) is symmetric. By mathematical induction, we can show that the coefficient matrix for each of these sets of equations are symmetric.

In computing the solution for a sequence value of $\mathtt{p}\,,\lambda$ for Equation Set (7-57), we do hope that a strictly recursive method similar to that due to Durbin [1960] for univariate time series partial autocorrelation calculation exists. But unfortunately there is no such method available for the multivariate space-time partial autocorrelation function calculation. However, some improvement over the successive solution for Equation (7-57) can be made by using the following result from linear algebra to reduce the matrix inversion

task.

Let $R = \begin{bmatrix} R & | & R12 \\ 11 & | & --- \end{bmatrix}$ be a symmetric matrix, and r a scalar. Then $R_{21} \mid r$

Given a set of observations from some process, the identification of a candidate model is the first step in building the MULSTARMA model for this process. The cut-off, tail-off properties of the multivariate space-time autocorrelation function have been verified in Section 7.4.3, and the cut-off, tail-off properties of the multivariate space-time partial autocorrelation function have been examined

566

T

大部門

DIL.

開設に

T

Contraction of T

$$\mathbf{R}^{-1} = \begin{bmatrix} \mathbf{R}_{11}^{-1} + \frac{\mathbf{R}_{11}^{-1}\mathbf{R}_{12}\mathbf{R}_{21}\mathbf{R}_{11}^{-1}}{\gamma - \mathbf{R}_{21}\mathbf{R}_{11}\mathbf{R}_{12}} & \frac{-\mathbf{R}_{11}^{-1}\mathbf{R}_{12}}{\gamma - \mathbf{R}_{21}\mathbf{R}_{11}\mathbf{R}_{12}} \\ \frac{-\mathbf{R}_{12}\mathbf{R}_{11}^{-1}}{\gamma - \mathbf{R}_{21}\mathbf{R}_{11}\mathbf{R}_{12}} & \frac{1}{\gamma - \mathbf{R}_{21}\mathbf{R}_{11}\mathbf{R}_{12}} \end{bmatrix}$$

It should be noted that the symmetric matrix R is obtained by adding the row vector (R_{21},γ) and the column vector (R_{21},γ) ' onto the symmetric matrix R₁₁, of which the inverse is available. In the procedure of multivariate space-time partial autocorrelation function computation, the coefficient matrix, that contains multivariate spacetime autocorrelations, is increased by adding one row and one column at a time to compute the next partial, and the inverse of the coefficient matrix of last partial is available. Applying the formula in Equation (7-65), that uses the last inverse which is available, we avoid the task of computing the inverse from the very beginning and save computational effort.

7.6 Identification

567

(7-65)

in Section 7.5.1. In this section, these statistical characteristics of the multivariate space-time autocorrelations and the multivariate space-time partial autocorrelations are applied for identification purposes.

The magnitude of the multivariate space-time autocovariance function depends partially on the magnitude of the variances of the errors, while the multivariate space-time autocorrelation function is scaled to get rid of such dependence on the variances of erros, and the multivariate space-time autocorrelation function still retains the cut-off property for the General Multivariate STMA models, the tail-off property for the General Multivariate STARMA, STAR models. So instead of using the multivariate space-time autocovariance function, we will use the multivariate space-time autocorrelation function to identify the candidate model.

Since the theoretical autocovariance and autocorrelation function cannot be available, the sample multivariate space-time autocovariance function defined in Equation (7-42), and the sample multivariate spacetime autocorrelation function in Equation (7-43),

$$\hat{\gamma}_{s\ell}^{gh}(u) = \frac{\sum_{t=1}^{T-u} (w^{(s)} Z^{g}(t))'(w^{(\ell)} Z^{h}(t+u))}{LN \cdot (T-u)}$$

$$\hat{\rho}_{sl}^{gh}(u) = \frac{\hat{\gamma}_{sl}^{gh}(u)}{(\hat{\gamma}_{ss}^{gg}(0)\hat{\gamma}_{ll}^{gg}(0)\hat{\gamma}_{ss}^{hh}(0)\hat{\gamma}_{ll}^{hh}(0))^{1/4}}$$

$$g_{sh}=1,2,\ldots,\zeta; \ s_{sl},u=0,1,2,\ldots$$

vector.

568

で見た

FA.

they want

日間

THE REAL

are used. Therefore, in identification the sample autocovariance function is used to construct the equation sets to solve for the sample Multivariate Space-Time Partial Autocorrelation Function

For convenience, the theoretical properties of the multivariate space-time autocorrelations and the multivariate space-time partial autocorrelations for the statistical properties of the Multivariate STAR, Multivariate STMA, Multivariate STARMA models are summarized in Table 7-2. These cut-off and tail-off properties are used in Pattern matching to the sample estimates in order to choose the potential candidate in the identification stage. It should be noted that for MULSTMA models, we can get the information q^{j^*} = $\max\{q^{jg}|_{j=1,2,\ldots,\zeta}\}$; j=1,2,3,..., ζ , from the autocovariance function. But for the individual q^{jg}, we cannot tell anything until estimation is done and the parameter significance test is performed. In univariate STARMA model building, assuming that up to $\lambda_{\Omega}^{\ th}$ order neighbors are considered to be potentially significant, (λ_0+1) streams of the sample space-time autocorrelation are computed for candidate model identification. For practical purposes, parsemoneous models are sought so λ_0 should not be too large. Therefor, the examination of (λ_0+1) streams of space-time autocorrelation functions to find the pattern for identification should not be too cumbersome a task. However, in building a MULSTARMA process that contains ζ observation categories, ζ^2 such (λ_0 +1) streams of multivariate space-time autocorrelations are computed and examined.

			570	1		
						Examining these 5
				17		autocorrelation fur
						some task and needs
				3	6	size.
	Table 7.2. The	Statistical Properties of t	he Multivariate Space-	Ð		To simplify
	Time Spac	e Autocorrelation Functions ce-Time Partial Autocorrelat	and the Multivariate ion Functions			followed. The first
		Malhimutata Guara Mira	Multiple of the Course Thing			space-time autocorn
	Model Form	Autocorrelation Function	Partial Autocorrelation	Å.		classes; the signif
		Tail-off	Cuts off after p time lag	D		the insignificant.
			and λ spatial lag	M		patterns of these of
	MULSTMA(ζ, q, λ)	Cuts off after q ^{j*} time	Tail-off			functions are match
	~~~	lag		1		The third step, the
	MULSTARMA( $\zeta, p, q, \lambda, m$ )	Tail-off	Tail-off			numerical values be
						of the candidate mo
						An encoding
						A significantly pos
			•			negative by a "-" a
				Ĩ		multivariate space-
				35		standardized by the
						according to the fo
					La construction de la constructi	multivariate space-
					and a second	the white noise pro
•					An and a second se	time autocorrelatio
						value is greater th
•						in between. It sho
						the information for
						5

sey  $(\lambda_0^{+1})$  streams sample multivariate space-time on functions in numerical values does become a cumberneeds to be simplified even when is only of moderate

plify this process, a three step procedure should be e first step, the encoding step, the sample multivariate tocorrelation functions are encoded into three coded significantly positive, the significantly negative and cant. The second step, the pattern matching step, the hese coded sample multivariate space-time autocorrelation matched to the theoretical patterns of know processes. p, the decision step we come back to examine the ues before making the final judgement on the viability ate model.

oding approach has been proposed by Box and Tiao [1981]. ly positive is denoted by a "+" symbol, a significantly "-" and insignificant by a ".". To encode the computed space-time autocorrelations, these autocorrelations are by the estimated standard deviations that are computed the formulae listed in Table 7-1. Since the standardized space-time autocorrelations are N(0,1) distributed for se process for an = 0.05 level, the multivariate spaceelation function is encoded as "+" if its standardized ter than 1.96, "-" if less than -1.96 and "." if it is It should be noted that these encoding values simplify on for model identification but loses all the necessary

GAL

information for the initial estimates of the parameters. However, since the MULSTARMA model contains too many parameters to make the effort for initial estimates practical, and the numerical values of the multivariate space-time autocorrelations are still accessible, this loss is not significant.

To illustrate how the encoded symbols will be used for model identification, we examine the encoded multivariate space-time auto-correlation functions and the encoded multivariate space-time partial autocorrelation functions of a  $\zeta=2$  system shown in Figure 7-10. The encoded  $\hat{\rho}_{s}^{\mathrm{gh}}(\mathbf{k})$  cuts off while the encoded  $\hat{\phi}_{s}^{\mathrm{gh}}(\mathbf{k})$  tails off, so this pattern is from the MULSTMA processes. A further step, since  $\hat{\rho}_{s}^{\mathrm{1h}}$  cuts off at k=2, and  $\hat{\rho}_{s}^{\mathrm{2h}}$  cuts off at k=1, so we can tell from this pattern that  $q^{1*} = \max\{q^{11}, q^{12}\} = 2$  and  $q^{2*} = \max\{q^{21}, q^{22}\} = 1$ .

#### 7.7 Estimation

After selecting the candidate model in the identification stage, we need to estimate the parameters of the candidate model. In this section, we will give the procedure that leads to the conditional maximum likelihood estimates for MULSTAR( $\zeta, p, \lambda$ ), MULSTMA( $\zeta, q, m$ ) and MULSTARMA( $\zeta, p, q, \lambda, m$ ) models. We will first assume that the variancecovariance matrix of the noise G is known, develop the procedure to estimate the model parameters and then we turn to the G unknown situation where we employ the two-stage estimation procedure. We will restrict ourself to the conditional maximum likelihood estimators and conditional least square estimators because of the computation efficiency of these conditional estimators.

572

The second

H

D

Ð

B

**B** 

調測

The state

11

S	1	2	3	4	5	6	7	8	9	10
0	-	-	•	•	•	•	• •	•	•	•
1	-	-	•	•	•		•	•	•	• 
2	+		•	•	•	•	•	•	•	•
3	+	•	•	•	•	•	•	. •.	é	•
0	-	· + ·	•	•	•	•	•	•	÷	•
1	-	•	•	•	•	•	•	•	•	•
2	+	+	•	•	•	•	¢	•	. •	•
3	-	т. Т. С.	•	•	•	• •	•	•	•	•
0	÷	● 1	•	•	•	•	•	•	•	•
1	-	•	•	,•	•		•	•	•	•
2	-	•	•	•	•	•	•	•	•	•
3	-	•	•	•		•	•	•	•	•
0	+	•	•		•	•	•	•	•	•
1	+	•	•	•		•	•	•	•	•
2		•	•	•	•	•	•	•	<b>h</b>	•
3	+	•	•	•		•	•	•		•
			<del></del>				••••••••••••••••••••••••••••••••••••••	·		·····

1 - TO(G) .	7-	1	0	(	a	)	•	
-------------	----	---	---	---	---	---	---	--

g h

1. 1

1 1

1 1

1 1

1 2

1 2

1 2

1 2

2 1

2 1

2 1

2 1

2 2

2 2

2 2

2 2

Figure

The Encoded Theoretical Multivariate Space-Time Autocorrelation Functions of MULSTMA(2,q,m) Process with q =  $(q^{11} \le 2, q^{12} \le 2, q^{21} \le 1, q^{22} \le 1)$ 

																	No.		
									•						1		and the second		
													57	a A	بتكنع		Real Respective	••••••••	
									•						-				7.7.1 (
			•															1	
															T				Section
		· 1							_						4				variate
	h	S	1	2	3	4	5	<u> </u>		8	9				Ţ				and nonl
	1	0	+	+		. <b>.+</b>	-	+	•. • .	•	•	-			Animala Animala		distant a filiant		inherit
1	1	1	-	+	+		+	+	. •	•	•	•			-			<u></u> [])	and non-
1	1	2	•	-	<b>1</b>		•••••	· +	•	T,	н <b>ө</b> К	•			T			Π.	apply th
1		3		+	•	+	•	-	•	•	•	•			4				in estin
L	2	1	<b>T</b>	-	Ŧ	-	<b>.</b>		•	•	•	•			Ţ		ø		conditio
1	2	2		· . <del></del>	•		_ _	- <b>- -</b>		•	•	•			r de la companya de l			1	estimate
- L	2	2	. T.					•		•	•		•		1				MULSTAR
. <u> </u>	1		т. -	 		•	•	-		•	•				T			T	
· ~	1	1	•	-	•	-	· •	_	•						1				MULSTAR
2	1	2	•	· · · · ·	•	+	-								T			<b>M</b>	
-	1	3		_		+		+	•	•	•	•					reg Theorem		
2	- 	0	+	+	-	-	+	•	•	•	•	•					to the second		
2	2	1	+		+	•	-	-	•	•	+	н ц. н <b>п</b>			(F				
2	2	2		+		_	+		•	. · ·	•	•			1				
2	2	3	÷	+	• • •	÷	+	• •	•	•	-	•			1		D. S		-
-		<b>ا</b> ــــــــــــــــــــــــــــــــــــ				· · · ·						· · · · ·	<b>-</b> 1		2				where $\varepsilon^{t}$
Figure	7-1	0(Ъ).	The	Enco	oded '	Theor	etica	1 Mul	tivar:	late	Space	Time			T				
			Par	tial	Auto	corre a =	latio (a ¹¹ <	n Fun (2. a	ction: 12 < 2	s of 1 21	MULST	MA(2,q a ²² < 1	, <u>m</u> ) ,						
			P			7¥ .	` <b>`</b>	, ,			- 1	•			E	3			
											1 <b>* 3</b> -					an an Anna An Anna San Anna Anna Anna San Anna Anna Anna Anna	þ		
													1.1			میں معرف ایک ایک ایک ا		- 3 <b>4</b> - 5	
															1			0	

# tional Maximum Likelihood Estimation with G Known

is section, the covariance, G, that has been defined in is assumed to be known. It is well known that the uni-MA models are linear in the autoregressive parameters r in the moving average parameters. The MULSTARMA models same characteristics, i.e., linear in the AR components ar in the MA components. Due to their linearity, we can sults of linear model theory to reduce the search efforts g the autoregressive parameters. In the following, the maximum likelihood estimation procedures are developed to model parameters in the order of MULSTAR, MULSTMA and dels.

1 MULSTAR( $\zeta$ , p,  $\lambda$ ) Model Estimation. Consider the ) model

$$z^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{hg} \lambda_{k}^{hg} \phi_{kl}^{hg} (l) z^{g}(t-k) + \varepsilon^{h}(t)$$
(7-66)  
h=1,2,...,ζ; t=1,2,...,T

s normally distributed with

$$E(\underline{\varepsilon}^{h}(t)(\underline{\varepsilon}^{g}(t+k))') = \begin{cases} G^{hg} & k=0\\ 0 & k\neq 0 \end{cases}$$

. 575
576 THE  $p = (2,1,1,1), \lambda = (1,0,0,0,0).$ I  $z^{1}(t) = \phi_{10z}^{11} z^{1}$ Ø ')  $z^2(t) = \phi_{10z}^{21} z^1$ J n Ø which can be rewritten as 0 (7-67)100000000 Ø Distantion of the  $+ \phi_{10\pi6}^{22}(t) + \varepsilon(t)$ =  $X(t)\phi + \varepsilon(t)$ where the column that corresponds to  $\phi_{11}^{11}$  is  $\begin{bmatrix} w^{(1)} & 0 \\ 0 & 0 \end{bmatrix} Z(t-1)$ . (7-68)  $\ell$  where N(h,g) is the  $\zeta$ -LN null matrix with the (h,g) block of (LN×LN) size replaced by  $w^{(l)}$ , and  $G = [G^{hg}]$  as defined previously.

Denoting

$$\begin{split} & \varepsilon(t)' = (\varepsilon^{1}(t)', \varepsilon^{2}(t)', \dots, \varepsilon^{\zeta}(t)'); \ \varepsilon' = (\varepsilon(1)', \dots, \varepsilon(T)') \\ & Z(t)' = (Z^{1}(t)', Z^{2}(t)', \dots, Z(T)'); \ Z' = (Z(1)', Z(2)', \dots, Z(T)) \\ & \varphi' = (\varphi^{1'}, \varphi^{2'}, \dots, \varphi^{\zeta'}) \\ & \varphi^{1'} = (\varphi^{1j}, \varphi^{2'}, \dots, \varphi^{\zeta'}) \\ & \varphi^{1'} = (\varphi^{1j}_{k\ell}), \ j=1, 2, \dots, \zeta, \ k=1, 2, \dots, p^{1j}, \ \ell=0, 1, 2, \dots, \lambda_{k}^{1j} \end{split}$$

as stated previously in Equations (7-2) and (7-8) of Section 7.1.1,00

rewrite the MULSTAR model to,

 $Z(t) = X(t)\phi + \varepsilon(t), t=1,2,...,T$ 

where  $\underline{\varepsilon}$  (t) is normally distributed with

$$E(\varepsilon(t)\varepsilon(t+k)') = \begin{cases} G & k=0 \\ 0 & \text{otherwise} \end{cases}$$

The matrix X(t) is a matrix where the columns that correspond to  $\varphi^{hg}_{k\ell}$ defined as

 $l \\ N(h,g)Z(t-k)$ 

As an example, consider the MULSTAR(2,p, $\lambda$ ) model with

$$f_{1}(t-1) + \phi_{11}^{11}w^{(1)}z^{1}(t-1) + \phi_{10}^{12}z^{2}(t-1) + \phi_{20z}^{11}z^{1}(t-2) + \varepsilon^{1}(t)$$

$$f_{10z}^{1}(t-1) + \phi_{10z}^{22}z^{2}(t-1) + \varepsilon^{2}(t)$$

$$t=1,2,\ldots,T \qquad (7-69)$$

 $Z(t) = \phi_{10}^{11} \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} Z(t-1) + \phi_{11}^{11} \begin{bmatrix} w^{(1)} & 0 \\ 0 & 0 \end{bmatrix} Z(t-1) + \phi_{10}^{12} \begin{bmatrix} 0 & | I \\ 0 & 0 \end{bmatrix} Z(t-1)$  $+ \phi_{20}^{11} \left[ \frac{1}{0} \frac{0}{0} \right] \frac{z(t-2)}{z(t-2)} + \phi_{10}^{21} \left[ \frac{0}{1} \frac{0}{0} \right] \frac{z(t-1)}{z(t-1)} + \phi_{10}^{22} \left[ \frac{0}{0} \frac{1}{1} \frac{0}{0} \right] \frac{z(t-1) + \varepsilon(t)}{\varepsilon(t)}$  $= \phi_{10\sim1}^{11}(t) + \phi_{11\sim2}^{11}(t) + \phi_{10\sim3}^{12}(t) + \phi_{20\sim4}^{11}(t) + \phi_{10\sim5}^{21}(t)$ 

(7-70)

where SS(¢, To maximize the likelihood function is exactly the same as to minimize the sum of squares  $SS(\phi,G,Z^*)$  for given  $G,Z^*$ . So the conditional maximum likelihood estimator is the same as the least sum square when G is given. Since G is positive definite and symmetric, G=L'L, and where L'L = G is positive definite. So set  $\frac{\partial SS}{\partial \phi}$  ( $\phi$ ,G,Z*) = 0 gives the least square estimator as well as the conditional maximum likelihood estimator ĝ Equation (7-76) is simple in form, but computationally we prefer the matrix  $\sum X'(t)G X(t)$ , which will be inversed, to be of smaller t=1 dimension if possible. When G has the property

We have assumed that  $\varepsilon(t)$  is normally distributed, and the joint density distribution function of  $\varepsilon$  is

$$f(\varepsilon|\phi,G) = (2\pi)^{-T \cdot \zeta \cdot LN/2} |G|^{-T/2} \exp\{-1/2 \sum_{t=1}^{T} \varepsilon(t)'G^{-1}\varepsilon(t)$$
(7-71)

Since the transformation of the Z's

$$\varepsilon(t) = Z(t) - X(t)\phi$$
 (7-72)  
t=1,2,...,T

has unit Jacobian, we have the joint density distribution function of Z conditional on  $\phi$ , G and  $Z^h$  (t), h = 1,2,..., $\zeta$ , 1-p^{h*} <t<0, as,

$$f(\underline{z}|\phi,G,\underline{z}^{h}(t); h = 1,2,...,\zeta, 1-p^{h} \leq t \leq 0)$$
  
=  $(2\pi)^{-T \cdot \zeta \cdot LN/2} |G|^{-\frac{r}{2}} \exp\{-1/2 \sum_{t=1}^{T} [Z(t)-X(t)\phi)^{t} G(Z(t)-X(t)\phi)]$ (7-73)

Denoting  $\underline{Z}^{\star \prime} = (\underline{Z}^{h}(t); h = 1, 2, \dots, \zeta \text{ and } 1-p^{h} \leq t \leq 0)$ , and taking the logarithm of the joint density, we get the log likelihood to be

$$\ln f(Z|\phi,G,Z^*) = -\frac{T}{2}\ln|G| - \frac{1}{2}SS(\phi,G,Z^*)$$
(7-74)

578

T

1

T

N.

17

Contraction of the

$$G, Z^*) = \sum_{t=1}^{T} [(Z(t) - X(t)\phi)'G(Z(t) - X(t)\phi)]$$

$$\frac{\partial^2 SS}{\partial \phi^2} (\phi, G, Z^*) = X'(t)G X(t)$$
$$= LX(t)'(LX(t)) \qquad (7-75)$$

$$= \left[\sum_{t=1}^{T} X'(t)G X(t)\right]^{-1} \left[\sum_{t=1}^{T} X'(t)G Z(t)\right]$$
(7-76)

 $G^{hg} = \begin{cases} G^{hh} & \text{when } h=g \\ 0 & \text{otherwise} \end{cases}$ 

i.e.,  $\varepsilon^{h}(t)$  and  $\varepsilon^{g}(t)$  are uncorrelated when  $h\neq g$ , we can decompose Equation (7-76) and compute  $\phi^{i}$ ,  $i=1,2,\ldots,\zeta$  separately. This will give better computation efficiency.

Denote  $X(t) = (X^{1}(t), X^{2}(t), \dots, X^{\zeta}(t))$ , where  $X^{i}(t)$  is the matrix that contains all the columns that corresponds to  $\phi^{i}$  in corresponding order. We note that  $X^{i}(t)$  contains null row vectors except those from  $((i-1)LN+1)^{th}$  to  $(i \cdot LN)^{th}$  rows. When G contains null off-diagonal blocks, we have

 $\sum_{t=1}^{T} X'(t)G X(t) = \sum_{t=1}^{T} [(X'(t)G X(t))_{gh}]$ (7-77)

where  $(X'(t)G X(t))_{gh}$  is the (g,h) block of X'(t)G X(t) matrix, then we have  $(X'(t)G X(t))_{ii} = X^{i'}(t)G_{ii}X^{i}(t)$ , and  $(X'(t)G X(t))_{gh}$ . Let  $[\sum_{t=1}^{T} X'(t)G X(t)]^{-1} = [(X G X)^{gh}]$  g,h=1,2,..., $\zeta$  where  $XGX^{gh}$ is the (g,h) block of the inverse of  $\sum_{t=1}^{T} X'(t)GX(t)$ . Then we have

$$(XGX)^{gh} = \begin{cases} \left[ \sum_{t=1}^{T} (X^{g}(t)'GX^{g}(t)) \right]^{-1} & \text{when } g=h \\ 0 & \text{otherwise} \end{cases}$$
(7-78)

580

T

T

T

T

Also the vector  $\sum_{t=1}^{\infty} X'(t)GZ(t)$  is resulted in the form

$$\sum_{t=1}^{T} X'(t) G_{Z}(t) = \begin{bmatrix} \sum_{t=1}^{T} X^{1}(t) G_{11}^{2}(t) \\ \vdots \\ \sum_{t=1}^{T} X^{1}(t) G_{11}^{2}(t) \\ \vdots \\ \vdots \\ \sum_{t=1}^{T} X^{\zeta}(t) G_{11}^{\zeta}(t) \end{bmatrix}$$
(7-79)

So the resulting estimator  $\hat{\phi}' = (\hat{\phi}^{1}, \dots, \hat{\phi}^{1}, \dots, \hat{\phi}^{\zeta'})$ 

$$\hat{\phi}^{i} = \left[\sum_{t=1}^{T} x^{i}(t) G_{ii} x^{i}(t)\right]^{-1} \left[\sum_{t=1}^{T} x^{i}(t) G_{ii} z^{i}(t)\right]$$
(7-80)

This is exactly the same results as those that we estimate all the  $\zeta$ -variate separately under the condition that G contains no nonnull off-diagonal matrix.

As an example, consider the MULSTAR(2,p, $\lambda$ ) model with p=(2,1,1,1) and  $\lambda$ =(1,0,0,0,0) as we mentioned before, we have

$$\begin{aligned} \mathbf{x}(t) &= (\mathbf{x}^{1}(t), \mathbf{x}^{2}(t)) \\ \mathbf{x}^{1}(t) &= (\mathbf{x}_{10}^{11}(t), \mathbf{x}_{11}^{11}(t), \mathbf{x}_{10}^{12}(t), \mathbf{x}_{20}^{11}(t)) \\ \mathbf{x}^{2}(t) &= (\mathbf{x}_{10}^{21}(t), \mathbf{x}_{10}^{22}(t)) \end{aligned}$$
(7-81)

where

$$\begin{aligned} x_{10}^{11}(t) &= \begin{bmatrix} I & 0 \\ -I & 0 \\ 0 & 0 \end{bmatrix} Z(t-1), \ x_{11}^{11}(t) &= \begin{bmatrix} w^{(1)} & 0 \\ -I & 0 \end{bmatrix} Z(t-1) \\ x_{10}^{12}(t) &= \begin{bmatrix} 0 & I \\ -I & 0 \\ 0 & 0 \end{bmatrix} Z(t-1), \ x_{20}^{11}(t) &= \begin{bmatrix} I & 0 \\ -I & 0 \\ 0 & 0 \end{bmatrix} Z(t-2) \\ x_{10}^{21}(t) &= \begin{bmatrix} 0 & 0 \\ -I & 0 \\ 1 & 0 \end{bmatrix} Z(t-1), \ x_{10}^{22}(t) &= \begin{bmatrix} 0 & 0 \\ -I & 0 \\ 0 & 1 \end{bmatrix} Z(t-1) \end{aligned}$$

when  $\varepsilon^{1}(t)$  and  $\varepsilon^{2}(t)$  are uncorrelated, i.e.,

$$G = [G_{hg}]; h,g=1,2, and G_{12} = G_{21} = 0.$$

We have

$$\sum_{t=1}^{T} X'(t)GX(t) = \sum_{t=1}^{T} \left[ \frac{(X'(t)GX(t))_{1}}{(X'(t)GX(t))_{2}} + \frac{(X'(t)GX(t))_{12}}{(X'(t)GX(t))_{22}} \right]$$
(7-82)

I

1

T

I

I

T

1

J

I

Ĩ

I

1

I

I

T

I

J.

T





$$(X'(t)GX(t))_{22} = [g_{1j}^{2}(t)] \quad i, j=1, 2$$

$$g_{11}^{1}(t) = \underline{z}^{1}(t-1)'G_{11}\underline{z}^{1}(t-1)$$

$$g_{12}^{1}(t) = \underline{z}^{1}(t-1)'G_{11}\underline{z}^{1}(t-1)$$

$$g_{13}^{1}(t) = \underline{z}^{1}(t-1)'G_{11}\underline{z}^{2}(t-1)$$

$$g_{14}^{1}(t) = \underline{z}^{1}(t-1)'G_{11}\underline{z}^{1}(t-2)$$

$$g_{22}^{1}(t) = (w^{(1)}\underline{z}^{1}(t-1)'G_{11}(w^{(1)}\underline{z}^{1}(t-2))$$

$$g_{23}^{1}(t) = \underline{z}^{1}(t-1)'w^{(1)'}G_{11}\underline{z}^{2}(t-1)$$

$$g_{13}^{1}(t) = \underline{z}^{1}(t-1)'w^{(1)'}G_{11}\underline{z}^{1}(t-2)$$

$$g_{33}^{1}(t) = \underline{z}^{2}(t-1)'w^{(1)'}G_{11}\underline{z}^{1}(t-2)$$

$$g_{34}^{1}(t) = \underline{z}^{2}(t-1)'G_{11}\underline{z}^{1}(t-2)$$

$$g_{44}^{1}(t) = \underline{z}^{1}(t-2)'G_{11}\underline{z}^{1}(t-2)$$

$$g_{1j}^{1}(t) = g_{j1}^{1}(t)$$

(X'(t)GX(t))₁₂, (X'(t)GX(t))₂₁ are null submatrices,

 $(X'(t)GX(t))_{11} = [g_{ij}^{1}(t)] \quad i,j=1,2,3,4$ 

where



586 7.7.1.2 MULSTMA(5,q,m) Model Estimation. Consider the MULSTMA(ζ,q,m) model  $Z^{h}(t) = \sum_{\alpha=1}^{\zeta} \sum_{k=1}^{qhg} \sigma_{k\ell}^{hg} \sigma_{k\ell}^{(\ell)} \varepsilon^{g}(t-k) + \varepsilon^{h}(t), h=1,2,...,\zeta$ 45  $\varepsilon(t)$  is normally distributed with  $E(\varepsilon^{h}(t), \varepsilon^{g}(t+k)') = \begin{cases} G^{hg} & k=0\\ 0 & \text{otherwise} \end{cases}$ (7-85) Denote  $\varepsilon^* = (\varepsilon^h(t), 1-q^h \le t \le 0; h = 1, 2, \dots, \zeta)$  vector, we have the joint density distribution function of  $\boldsymbol{\epsilon}$  $f(\varepsilon | \sigma, Z^*) = (2\pi)^{-\zeta \cdot LN \cdot T/2} |G|^{-T/2} \exp\{-\frac{1}{2} \sum_{t=1}^{T} \varepsilon(t)^{t} G^{-1} \varepsilon(t)\}$ (7-86) The transformation

T

 $\varepsilon^{h}(t) = Z^{h}(t) + \sum_{g=1}^{\zeta} \sum_{k=1}^{q^{hg}} \theta_{k\ell}^{hg} \varepsilon^{(\ell)} \varepsilon^{g}(t-1), h=1,2,...,\zeta$ (7-87)

has unit Jacobian, so the joint density distribution function of Z  $\sim$  conditional on  $\sigma,\epsilon\star$  is

$$f(Z|\theta,\varepsilon^*) = (2\pi)^{-\zeta \cdot LN \cdot T/2} |G|^{-T/2} \exp\left\{-\frac{1}{2} SS(\theta,\varepsilon^*)\right\}$$

where

with

$$SS(\vartheta,\varepsilon^*) = \sum_{t=1}^{T} Z_c(t)'G^{-1}Z_c(t)$$
$$Z_c(t)' = (Z_c^1(t)', Z_c^2(t), \dots, Z_c^{\zeta}(t)')$$

$$Z_{c}^{i} = Z^{i}(t) + \sum_{g=1}^{\zeta} \sum_{k=1}^{q^{ig}} \theta_{kl_{c}}^{ig} (t-k)$$

Take the logarithm of Equation (7-87), with Z available and we have the logarithm likelihood function conditional on  $\varepsilon^*$ , Z as

$$\ln f(\phi | \varepsilon^*, Z) = -\zeta \cdot LN \cdot T/2 \cdot \ln^2 \pi - \frac{T}{2} \ln|G| - \frac{7}{2} SS(\sigma, \varepsilon^*)$$
(7-89)

When the variance-covariance matrix G is given, we see that to maximize the conditional logarithm likelihood function is equivalent to minimize the weighted conditional sum of squares  $SS(\sigma, \varepsilon^*)$ , which is weighted by  $G^{-1}$ .

(7-88)

Because of the nonlinear nature of the MULSTMA model in its moving average parameters, we cannot have closed form expression for the conditional maximum likelihood estimator. To get the conditional maximum likelihood estimate, we search through the  $\theta$ 's space and we compute the  $\varepsilon(t)$ , t=1,2,...,T by recursively applying Equation and setting  $\varepsilon$ * to its unconditional mean zero.

<u>7.7.1.3 MULSTARMA( $\zeta$ , p,q, $\lambda$ ,m) Model Estimation</u>. Consider the following MULSTARMA( $\zeta$ , p,q, $\lambda$ ,m) model.

$$z^{h}(t) = \sum_{g=1}^{\zeta} \sum_{k=1}^{hg} \varphi_{k\ell}^{hg} \varphi_{k\ell}^{(\ell)} z(t-k) - \sum_{g=1}^{\zeta} \sum_{k=1}^{\etag} \varphi_{k\ell}^{hg} \varphi_{k\ell}^{(\ell)} z(t-k) + \varepsilon^{h}(t) (7-90)$$

where  $\varepsilon(t)$  is normally distributed with

$$E(\varepsilon(t)\varepsilon(t+k)') = \begin{cases} G & k=0 \\ 0 & \text{otherwise} \end{cases}$$

The joint density distribution function for  $\boldsymbol{\varepsilon}$  is

$$f(\varepsilon|G) = (2\pi)^{-\zeta \cdot LN \cdot T/2} |G|^{-T/2} \exp\{-\frac{1}{2} \sum_{t=1}^{T} \varepsilon(t)' G^{-1} \varepsilon(t)\}$$

Since the transformation

588

T

頂

I

B

R

TAN D

X

1

11 A

71

There

where

×.

$$\varepsilon^{h}(t) = Z^{h}(t) - \sum_{g=1}^{\zeta} \sum_{k=1}^{phg} \lambda_{k}^{hg} \phi_{k\ell}^{hgw(\ell)} Z(t-k)$$
  
+ 
$$\frac{\zeta}{\sum_{g=1}^{qhg}} \sum_{k=1}^{hg} \theta_{k\ell}^{hgw(\ell)} \varepsilon(t-k)$$

has unity Jacobian, so given  $Z^*$ ,  $\varepsilon^*$ ,  $\phi$ ,  $\sigma$ , G, we have the joint density distribution function of Z conditional on  $Z^*$ ,  $\varepsilon^*$ ,  $\phi$ ,  $\sigma$ , G as follows, where  $Z^*$  and  $\varepsilon^*$  are the values of Z(t) and  $\varepsilon(t)$  that are needed to start computing  $\varepsilon^h(1)$ ,  $h=1,2,\ldots,\zeta$ , in Equation (7-91)

$$f(Z|\phi,\theta,Z^{*},\varepsilon^{*},G) = (2\pi)^{-\zeta \cdot LN \cdot T/2} |G|^{-T/2} \exp\{-\frac{1}{2} \sum_{t=1}^{T} Z_{c}(t)^{t} |G^{-1}Z_{c}(t)\}$$

$$Z_{c}(t)' = (Z_{c}^{1}(t)', Z_{c}^{2}(t)', \dots, Z_{c}^{\zeta}(t)')$$

$$Z_{c}^{1}(t) = Z^{1}(t) - \sum_{g=1}^{\zeta} \sum_{k=1}^{phg} \sum_{\ell=0}^{hg} \phi_{k\ell}^{hg} (\ell) Z(t-k)$$

$$+ \sum_{g=1}^{\zeta} \sum_{k=1}^{qhg} \sum_{\ell=0}^{mkg} \sigma_{k\ell}^{hg} (\ell) \varepsilon(t-k)$$

(7-92)

589

(7-91)

The logarithm likelihood function of  $\phi, \sigma$  for a given G, Z, Z*, E* can be gotten directly from Equation (7-92)

$$\ln f(\phi, \sigma | Z, Z^*, \varepsilon^*, G) = -\zeta \cdot LN \cdot T/2 \cdot ln(2\pi) - \frac{T}{2} ln |G|$$
$$- \frac{1}{2} SS(\phi, \sigma, G, \varepsilon^*, Z^*)$$
(7-93)

where  $SS(\phi, \sigma, G, \varepsilon^*, Z^*) = \sum_{t=1}^{T} Z_c(t)' G^{-1} Z_c(t)$  is the weighted sum square for given  $\phi$ ,  $\sigma$ ,  $Z^*$ ,  $\varepsilon^*$ , G.

From Equation (7-93) we see that the conditional maximum likelihood estimates will be equal to the minimum weighted sum square estimates because to maximize the logarithm likelihood function is exactly the same as to minimize the weighted sum square.

Since the MULSTARMA( $\zeta, p, q, \lambda, m$ ) model are of linear nature in autoregressive parameters and of nonlinear nature in moving average parameters. So no closed form expression estimators can be available, and at least we have to search through the  $\theta$  parameter space. Because all the  $\varepsilon(t-k)$ 's can be expressed in terms of Z(t-k),  $Z(t-k-1), \ldots, Z^*$ , and this expression is the linear function of  $\phi$ , so with  $\theta$  given we can transform the MULSTARMA model into MULSTAR model, which we have closed form expression for the conditional maximum likelihood estimator. Obviously the transformed MULSTAR model will not have the original weight matrix w^(k) as its weight matrix and will not necessarily retain the original model parameter  $p, \lambda$ . By such transformation, we can only search through the  $\theta$  parameters space rather than the whole  $(\phi, \theta)$  space to get the conditional maximum likelihood estimates. **7.7.2** Conditional Maximum Likelihood Estimation When G is Unknown So far in this chapter, we have assumed that G is known, and the conditional maximum likelihood estimators are exactly the same as the weighted conditional minimum least square estimators, but it is not unusual that G is not known. In such case, we will employ the two stage estimation procedure. At the first stage, we will assume the  $G = \sigma^2 I$  and get the first stage estimates, say  $(\phi^*, \theta^*)$  for MULSTARMA,  $(\phi^*)$  for MULSTAR and  $(\theta^*)$  for MULSTMA. Then we compute the estimated residuals recursively and test the hypothesis  $H_0$ ;  $G=\sigma^2 I$ . If the null hypothesis is accepted, the first stage estimates will be accepted as the final estimates. If the null hypothesis is rejected, we will use the estimated covariance matrix  $G = \sum_{i=1}^{T} \varepsilon(t)\varepsilon(t)^i$  as the true one and t=1.

subjected to i.e., are exa and to see if eliminated. To tes cance of the model. Two a has been give

590

E

### 7.8 Diagnostic Checking

After the model parameters are estimated, the candidate model is subjected to the test of model adequacy as well as model parsimony, i.e., are examined to see if all the significant structures are included and to see if all the structures included are significant or should be

To test the model parsomony is equivalent to test the significance of the individual model parameters that appear in the candidate model. Two approaches for testing the significance of model parameters has been given in Section 4.4.2, the confidence region approach and the overfitting approach. The confidence region approach is model independent once the point estimates of the model parameters and the computed sum of squares surface are available. Similarly the overfitting approach tests the significance of the model parameter only based on the extra sum of squares and is also model independent. Therefore since these two approaches are model independent, they can be applied to test the significance of the parameters of the MULSTARMA model as well.

To test the model adequacy, the model residuals are examined to see if any structure is left. The sample multivaraite space-time autocorrelation functions of the model residuals are computed and encoded into the ".", "+" and "-" symbols according to the procedure proposed in identification section. The sample multivariate spacetime autocorrelations by itself can be applied to check if any unexhausted structures exist. However, the encoded sample multivariate space-time autocorrelation functions can be used by itself and is more practical to be applied to solely examine the possibility unexhausted structure.

## 7.9 Example

The monthly crime data of murder, rape, robbery and burglary at Cleveland are available from February 1970 to October 1974. The Concentrated Crime Patrol (CCP) was implemented as part of the deterrence, detection and apprehension operating program in May 1973. The Concentrated Crime Patrol involved the addition of 120 rearrangement of patrolmen to the Cleveland police force to be deployed to htgh crime areas during high crime hours; members of the CCP

Te Laures 1 

592

1

Ŋ

I

M

Ŋ

NU

patrolled the streets in specially marked impact cars responding to all crime-related requests for service. The CCP was deployed only in the three eastside districts (IV, V and VII) as shown on the Map in Figure 7-11. Districts IV, V and VI are thus referred to as the target area, while district III is denoted as the adjacent area and district I and II are the rest or remaining area. For greater detail of this intervention program see J. S. Dahmann (1975). The data set is used to illustrate the modeling procedure described in this chapter, the scaled crime data is modeled from February 1970 to December 1972. This model is employed to construct the forecasting function as well as to evaluate the effect of CCP on the monthly basis. The data is listed in Table 7-3 and the mean values and variance by location and crime type are contained in Table 7-4, where

> Location 1: the target area, Location 2: the adjacent area, Location 3: the rest area.

and the following category index have been assigned for the crimes,

Category 1: Murder, Category 2: Rape, Category 3: Robbery, Category 4: Burglary.





.

<u>e</u>

C. . . . . .

Table 7-3. The Concentrated Crime Patrol (CCP) Data

	Category 1	Category 2	Category 3	Category 4
t	Location 1 2 3	Location 1 2 3	Location 1 2 3	Location 1 2 3
$\begin{array}{c}1\\2\\3\\4\\5\\6\\7\\8\\9\\10\\11\\12\\13\\14\\15\\16\\17\\18\\9\\20\\21\\22\\3\\24\\25\\26\\27\\28\\9\\30\\132\\33\\4\\35\\36\\37\\8\\39\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$



Table 7-3. (Cont'd)

	Category 1	Category 2	Category 3	Category 4
t	Location 1 2 3	Location 1 2 3	Location 1 2 3	Location 1 2 3
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

596

(internel)

T

673

T

1

「日本に

Table 7-4(a). Mean Levels of the CCP Data (t=1 to 35)

Crime Category	1	Location 2	3
1	20.1	2.3	3.7
2	74.3	5.3	4.0
3	355.0	71.8	47.7
4	643.5	90.0	184.4

Table 7-4(b). Variances of the CCP Data (t=1 to 35)

Crime Category	1	Location 2	3
1	2.7	1.8	6.6
2	36.6	7.0	11.1
3	3746.0	133.0	206.2
4	14770.0	315.6	1147.0

The standard deviations are used to scale the crime data. The distances between centroids of these three areas were measured from the map in Figure 7-11 and are,

598

1

and the second

According to the relative positions and the inverse centroid distances, the weight matrix  $w^{(1)}$  and  $w^{(2)}$  are assigned. The resulting weight matrices are,

$$\begin{array}{c} 1 \\ w^{(1)} = 2 \\ 3 \\ \end{array} \begin{bmatrix} 0 & 1 & 0 \\ 7/16 & 0 & 9/16 \\ 0 & 1 & 0 \end{bmatrix} \qquad \begin{array}{c} 1 \\ w^{(2)} = 2 \\ 3 \\ \end{array} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

## 7.9.1 MULSTARMA Model Building

To build the MULSTARMA model for the Cleveland Crime Data, the sample multivariate space-time autocorrelation function and the sample multivariate space-time partial autocorrelation function are computed and encoded into dot, plus, minus symbols. The numerical values are listed on Table 7-5 and the encoded symbols are contained in Figure 7-12. In Figure 7-12 and Table 7-5, we see that,  $\hat{\rho}_{00}^{24}(k)$ ,  $\hat{\rho}_{10}^{44}(k)$  cuts off at k=2,  $\hat{\rho}_{00}^{22}(k)$ ,  $\hat{\rho}_{20}^{22}(k)$ ,  $\hat{\rho}_{00}^{33}(k)$ ,  $\hat{\rho}_{00}^{23}(k)$ ,  $\hat{\rho}_{00}^{44}(k)$ ,  $\hat{\rho}_{00}^{34}$  tails off,

Time Lag

10

11 12

17 18 19

20

## Table 7-5(a). The Sample Multivariate Space-Time Autocorrelations for the Cleveland Crime Data

.11	
-011	(2)
^{-P} 50	(~)
50	

					11	
	Space Lag		Standay	(k)		
0	1	2				
-0.14	0.03	0.07	1	-1.41	0.36	0.72
-0.11	0.03	0.10	1	-1.12	0.32	1.00
-0.04	0.17	0.09	1	-0.42	1.67	0.88
-0.09	0.08	-0.37	1	-0.93	0.80	-3.57
0.08	-0.12	0.16	1	0.75	-1.19	1.55
0.09	-0.01	0.05	1	0.87	-0.11	0.50
-0.13	-0.02	-0.06		-1.22	-0.20	-0.57
0.03	0.16	-0.00	1	0.35	1.52	-0.02
-0.10	0.16	0.00	1	-0.94	1.44	0.00
-0.08	-0.19	-0.11	./	-0.70	-1.67	-1.01
0.17	-0.17	0.25	. /	1.47	-1.49	2.12
0.05	0.01	-0.16	1	0.44	0.15	-1.38
-0.12	0.14	-0.03	1	-1.05	1.15	-0.31
-0.06	0.24	0.16	1	-0.47	1.90	1.31
-0.13	0.14	-0.15	1	-1.01	1.11	-1.20
0.21	-0.19	0.18	1	1.64	-1.48	1.37
0.13	-0.19	0.04	1	1.02	-1.42	0.34
-0.35	-0.18	-0.01	1	-2.55	-1.32	-0.10
0.05	-0.12	-0.14	1	0.39	-0.88	-1.00
-0.11	0.00	-0.31	1	-0.73	0.05	-2.11

	$-\hat{\rho}_{50}^{12}(k)$	) ¹				• a. • a.			
		Space Lag	5		Standar	dized $\hat{\rho}_{50}^{12}$	(k)		
'ime Lag	0	1	2						
1	0.12	-0.02	0.11	1	1.23	-0.20	1.17		
2	0.16	-0.05	-0.08	1	1.67	-0.49	-0.86		
3	-0.03	-0.00	0.02	1	-0.35	-0.01	0.19		
4	-0.12	0.08	0.12	1	-1.21	0.77	1.20		
5	-0.05	0.08	-0.02	1	-0.49	0.75	-0.27		
6	-0.03	-0.05	-0.17	1	-0.35	-0.52	-1.58		
7	-0.06	-0.11	· 0.00	1	-0.61	-1.02	0.00		
8	-0.15	-0.10	-0.01	1	-1.38	-0.94	-0.12		
9	-0.08	0.07	-0.06	1.	-0.71	0.65	-0.59		
10	0,37	0.08	-0.10	1	0.31	0.71	-0.91		
11	-0.12	-0.13	0.06	1	-1.02	-1.16	0.54		
12	0.10	-0.25	-0.04	1	0.86	-2.13	-0.37		
13	-0.01	-o.23	-0.08	1	-0.11	-1.87	-0.68	4 · · · ·	
14	-0.15	-0.08	-0.15	1	-1.25	-0.64	-1.22		
15	0.03	0.03	-0.17	1	0.24	0.26	-1.32		
16	-0.26	0.06	0.02	1	-2.00	0.65	0.19		
17	-0.04	-0.06	0.09	1	-0.32	-0.46	0.66		
18	0.20	-0.05	0.01	1	1.43	-0.39	0.05		
19	0.00	-0.17	-0.15	1	0.04	-1.18	-1.03		
20	-0.29	-0.03	0.14	/	-1.94	-0.24	0.96		
					All shares and shares a				

T

I

 $\square$ 

a T

T

Table 7-5(a). (Cont'd)

$\hat{\rho}_{50}^{13}$	(	k)

Time Lag

	Space Lag			Standar	andardized $\hat{\rho}_{ro}^{13}(k)$		
0	1	2			50	•	
-0.10	0.08	-0.00	1	-1.07	0.84	-0.01	
0,13	0.00	0.15	1	1.38	0.06	1.50	
0.12	0.12	0.05	1	1.19	1.21	0.57	
0.09	0.13	0.12	1	0.87	1.25	1.16	
-0.00	0.07	0.10	1	-0.04	0.66	1.01	
-0.21	0.03	0.01	1	-2.01	0.28	0.12	
-0.08	0.07	0.02	1	-0.79	0.72	0.20	
-0.08	-0.01	-0.21	11	-0.73	-0.12	-1.93	
-0.12	-0.22	-0.03	1	-1.12	-1.97	-0.33	
-0.18	-0.12	0.02	1	-1,58	-1.08	0.24	
0.01	-0.11	-0.08	1	0.14	-0.97	-0.70	
0.08	0.02	-0.06	1	0.70	0.17	-0.57	
0.11	0.06	-0.11	1	0.94	0.53	-0.92	
0.07	0.01	0.02	1	0.61	0.09	0.17	
0.10	0.07	-0.13	1	0.82	0.60	-1.06	
0.00	0.04	0.03	1	0.04	0.36	0.22	
-0.08	0.03	-0.03	1	-0.61	0.28	-0.24	
-0.05	0.08	0.06	1	-0.37	0.58	0.47	
0.06	0.01	0.01	1	0.46	0.12	0.09	
0.05	-0.15	-0.04	1	0.35	-1.00	-0.32	

.

Tanana and

Contraction of the

Antipation of the second

All and a second second

Π

- Andrewski

Time Lag

	I	able 7-5	(a). (C	ont	'd)		
	$\hat{\rho}_{50}^{14}(k)$						
		Space L	ag		Standar	dized $\hat{\rho}_{50}^{14}$	(k)
Time Lag	0	1	2			. 50	
1	-0.04	0.02	-0.00	1	-0.47	0.28	-0.06
2	-0.00	0.02	0.09	1	-0.05	0.25	0.91
3	0.11	0.05	0.13	1	1.13	0.48	1.28
4	0.14	0.10	0.12	1	1.42	0.98	1.22
5	0.06	0.03	-0.04	1	0.65	0.33	-0.43
6	-0.19	0.03	0.04	1	-1.84	0.30	0.45
7	-0.11	0.19	0.07	1	-1.01	1.75	0.68
8	-0.06	-0.04	-0.17	1	-0.61	-0.42	-0.53
9	-0.01	-0.29	0.00	1	-0.82	-2.60	0.03
10	-0.01	-0.21	-0.04	1	-0.13	-1.85	-0.35
11	0.02	-0.08	-0.07	1	0.18	-0.67	-0.60
12	-0.03	0.03	-0.06	1	-0,25	0.71	-0.52
13	-0.09	0.00	-0.14	1	-0.76	0.02	-1.19
14	-0.02	-0.08	0.02	1	-0.21	-0.64	0.18
15	0.08	-0.06	-0.05	1	0.66	-0.51	-0.40
16	0.00	0.05	-0.06	1	0.03	0.40	-0.49
17	0.06	0.17	-0.14	1	0.45	1.26	-1.02
18	0.09	0.13	0.10	1	0.67	0.95	0.73
19	0.15	0.10	0.08	1	1.04	0.72	0.61
20	0.18	-0.05	0.07	:/	1.23	-0.37	0.47

Table 7-5(a). (Cont'd)

$\hat{\rho}_{50}^{21}(k)$				•••		
	Space Lag			Standar	dized $\hat{\rho}_{50}^{21}$	(k)
0	1	2				
-0.11	0.11	-0.05	1	-1.16	1.12	-0.55
0.07	0.13	-0.06	1	0.72	1.30	-0.60
0.00	0.00	0.09	1	0.08	0.08	0.91
0.21	0.04	0.05	1	2.06	0.43	0.56
0.09	0.08	0.12	1	0.87	0.81	1.19
0.04	0.03	0.19	1	0.40	0.34	1.78
0.08	0.19	-0.02	1	0.73	1.82	-0,22
0.18	0.22	0.02	F	1.70	2.01	0.21
0.05	-0.16	0.13	1	0.48	-1.48	1.23
0.21	0.16	0.08	1	1.84	1.42	0.69
0.14	0.13	0.09	1	1.21	1.17	0.82
0.07	0.08	0.07	1	0.58	0.68	0.58
0.02	-0.03	-0.00	1	0.20	-0.28	-0.01
0.23	-0.10	0.03	1	1.89	-0.84	0.26
-0.10	-0.20	0.07	1	-0.82	-1.61	0.55
0.18	0.20	0.08	1	1.39	1.55	0.62
-0.08	0.47	-0.05	1	-0.59	0.34	-0.43
-0.01	0.01	-0.08	1	-0.08	0.11	-1.14
0 16	0 00	0 27	1	1 14	0.63	1.90

	$\hat{\rho}_{50}^{23}(k)$								
	S	pace Lag		Standardized $\hat{\rho}_{50}^{23}(k)$					
Time Lag	0	1	2						
1 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18	$\begin{array}{c} 0.28 \\ 0.24 \\ 0.08 \\ 0.16 \\ 0.12 \\ -0.00 \\ 0.07 \\ 0.01 \\ 0.13 \\ 0.12 \\ -0.00 \\ -0.11 \\ -0.21 \\ -0.16 \\ -0.18 \\ -0.21 \\ -0.15 \\ 0.5 \\ \end{array}$	-0.03 0.02 0.11 0.04 0.01 0.12 -0.06 0.03 0.09 0.06 0.02 0.04 -0.02 0.11 -0.15 -0.16	0.12 0.15 0.14 0.20 0.06 0.06 0.11 0.23 0.39 0.27 0.22 0.03 0.13 0.14 0.09 -0.14 -0.08		2.86 2.47 0.80 1.63 1.17 -0.05 0.71 1.04 1.15 1.08 -0.01 -0.97 -1.73 -1.27 -1.39 -2.18 -1.08 -0.34	$\begin{array}{c} -0.31 \\ 0.22 \\ 1.11 \\ 0.44 \\ 0.15 \\ 0.12 \\ 1.17 \\ -0.59 \\ 0.26 \\ 0.84 \\ 0.57 \\ 0.20 \\ 0.33 \\ -0.16 \\ 0.85 \\ -1.10 \\ -1.17 \\ 0.15 \end{array}$	1.23 1.53 1.44 2.01 0.58 0.58 1.07 2.12 3.44 2.35 1.93 0.28 1.06 1.16 0.75 -1.07 -0.61 -0.58		
19 20	-0.05	0.02	-0.04	1	-1.42	1.01	-0.29		

604

122

¥.

Ĩ

I

T

21

61

h

Cardination of the

And a state of the 
# Table 7-5(a). (Cont'd)

 $\hat{\rho}_{50}^{24}(k)$ 

Time Lag

9

.

S	pace Lag		Standardized $\hat{\rho}_{ro}^{24}(k)$						
0	1	2		. 2	,				
0.07 0.21 0.10 -0.07 -0.06 0.09 0.11 -0.03 -0.00 -0.06 -0.10 -0.08 -0.20 -0.14 -0.31 -0.31 -0.31 -0.10 -0.31 -0.10 -0.31 -0.31 -0.10 -0.31 -0.31 -0.31 -0.31 -0.31 -0.30 -0.10 -0.31 -0.31 -0.30 -0.10 -0.31 -0.30 -0.31 -0.30 -0.10 -0.31 -0.30 -0.10 -0.31 -0.30 -0.30 -0.10 -0.31 -0.30 -0.30 -0.30 -0.31 -0.30 -0.30 -0.10 -0.31 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.31 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30 -0.30	0.04 0.11 0.09 -0.00 0.15 0.09 -0.01 0.18 0.12 0.07 -0.02 -0.01 0.17 -0.02 -0.01 0.17 -0.06 -0.33 -0.22 -0.03 -0.12	$\begin{array}{c} 0.17\\ 0.15\\ 0.16\\ 0.07\\ -0.02\\ 0.04\\ 0.01\\ 0.09\\ 0.20\\ 0.15\\ 0.10\\ 0.03\\ 0.06\\ 0.05\\ -0.03\\ -0.13\\ -0.12\\ -0.09\\ -0.09\\ -0.01\end{array}$	$\begin{array}{c} 0.73\\ 2.14\\ 0.99\\ -0.72\\ -0.57\\ 0.88\\ 1.09\\ -0.34\\ -0.59\\ -0.88\\ -0.73\\ -1.65\\ -1.11\\ -1.09\\ -2.35\\ -2.32\\ -0.77\\ -1.12\\ -2.02 \end{array}$	0.50 1.18 0.96 -0.03 0.67 1.40 0.83 -0.16 1.58 1.06 0.61 -0.16 -0.09 1.33 -0.50 -2.49 -1.58 -0.23 -0.85	1.80 $1.50$ $1.62$ $0.75$ $-0.22$ $0.38$ $0.17$ $0.86$ $1.81$ $1.38$ $0.84$ $0.28$ $0.56$ $0.42$ $-0.26$ $-1.02$ $-0.94$ $-0.68$ $-0.67$ $-0.11$				

605

(FA

606  $\hat{\rho}_{50}^{32}(k)$ Table 7-5(a). (Cont'd) Space Lag  $\binom{l}{k}$ Time Lag N 1 2 B 0.95 0.05 0.20 -1.00 0.47 0.53 1.72 0.28 1.48 0.38 0.64 0.29 0.06 -0.48 -1.00 -0.07 0.25 0.66 -0.227 8 9 10 11 12 13 14 15 16 17 18 19 20 0.26 -0.03 / 0.93 0.04 

	$\hat{\rho}_{50}^{31}(k)$					
	Sp	Space Lag			Standa	rdized $\hat{\rho}_{50}^{31}$
Time Lag	0	1	2			
1	-0.01	0.10	0.09	1	-0.10	1.08
2	-0.16	-0.00	0.00	1	-1.59	-0.05
3	-0.01	-0.05	0.02	1	-0.11	-0.48
4	-0.11	-0.00	-0.10	1	1.10	-0.06
5	-0.10	-0.09	0.05	1	-1.00	-0.85
6	-0.03	-0.03	0.05	1	-0.31	-0.28
7	0.06	0.12	0.18	1	0.58	1.18
8	0.21	-0.07	0.03	1	1.89	-0.63
9	0.31	0.00	0.16	1	2.74	0.04
10	0.16	0.02	0.04	1	1.39	0.24
11	0.02	-0.06	0.07	1	0.17	-0.55
12	0.22	0.32	0.03	1	1.86	2.68
13	-0.10	0.08	0.00	1	-0.86	0.72
14	0.03	-0.07	-0.06	1	0.30	-0.61
15	0.01	0.09	-0.19	1	0.10	0.75
16	-0.12	-0.02	-0.13	1	-0.90	-0.20
17	-0.13	0.08	-0.10	1	-0.98	0.64
18	-0.05	0.09	0.03	1	-0.40	0.65
19	0.00	-0.11	0.09	1	0.01	-0.80

20

0.14

Table 7-5(a). (Cont'd)

Standardized  $\hat{\rho}_{50}^{32}(k)$ 

0	1	2				
0.19	0.16	0.20	1	1.95	1.66	2.02
0.31	0.20	0.09	1	3.15	2.06	0.93
0.02	0.11	0.11	1	0.21	1.11	1.09
0.13	0.07	0.03	1	1.30	0.67	0.32
0.18	0.13	0.09	1	1.70	1.28	0.91
0.13	0.07	-0.04	1.	1.22	0.73	-0.40
-0.04	0.14	-0.05	1	-0.39	1.31	-0.51
0.07	0.12	0.02	1.	0.65	1.15	0.25
0.05	-0.03	0.02	1	0.46	-0.31	0.23
0.14	-0.08	-0.06	1:	1.26	-0.72	-0.54
-0.04	0.05	-0.09	1	-0.38	0.44	-0.78
-0.09	-0.03	0.00	1	-0.75	-0.27	0.04
-0.04	-0.02	-0.04	1	-0.39	-0.20	-0.36
-0.16	0.05	-0.17	1	-1.31	0.40	-1.36
-0.33	-0.13	-0.14	1	-2.57	-1.05	-1.14
-0.24	-0.14	-0.23	1	-1.84	-1.10	-1.77
-0.33	-0.09	-0.21	1	-2.42	-0.66	-1.61
-0.15	0.08	-0.20	1	-1.13	0.57	-1.46
-0.23	-0.09	-0.11	1	-1.64	-0.67	-0.76
-0 23	-0.21	_0 13	1	-1 56	_1 41	-0 91

607

 $\hat{\rho}_{50}^{33}(k)$ 

	50							
	Sp	ace Lag			Stand	lardized $\hat{\rho}_{50}^{33}(k)$		
Time Lag	0	1	2					
1	0.47	0.15	0.14	1	4.83	1.54	1.45	
2	0.27	0.05	0.02	1	2.71	0.52	0.23	
3	0.15	0.11	-0.06	1	1.51	1.16	-0.61	
4	0.06	0.06	-0.13	1	0.60	0.62	-1.27	
5	-0.08	0.)5	-0.15	1	-0.78	0.51	-1.48	
6	-0.21	-0.07	-0.17	1	-1.98	-0.70	-1.59	
7	-0.20	-0.70	-0.06	1	-1.91	-0.64	-0.57	
8	-0.13	-0.14	-0.01	1	-1,19	-1.33	-0.08	
9	-0.03	-0.12	0.11	1	-0.26	-1.05	1.01	
10	0.14	-0.04	0.19	1	1.29	-0.38	1.64	
11	0.25	0.15	0.23	1	2.13	1.30	1.96	
12	0.22	0.08	0.27	1	1.90	0.67	2.27	
13	-0.01	-0.07	0.17	1	-0.09	-0.58	1.43	
14	-0.05	-0.00	0.13	1	-0.45	-0.04	1.06	
15	-0.20	0.11	-0.06	1	-1.57	0.90	-0.53	
16	-0.29	0.13	-0.16	1	-2.24	0.99	-1.22	
17	-0.41	0.06	-0.19	1	-3.05	0.47	-1.43	
18	-0.39	-0.09	-0.16	1	-2.82	-0.64	-1.19	
19	-0.41	0.03	0.02	1	-2.86	0.24	0.17	
20	-0.15	-0.10	0.03	1	-1.01	-0.07	0.21	

608

T

1

Setting 1

Ĩ

ľ

I

Ĩ

 $\Pi$ 

[]

 $\Pi$ 

 $\Pi$ 

**M** 

# Table 7-5(a). (Cont'd)

$\hat{\rho}_{50}^{34}(k)$	
50	

Time Lag

12

9

Sp	ace Lag		Standardized $\hat{\rho}_{50}^{34}$ (k							
0	1	2								
0.37	0.03	0.06	1	3.80	0.35	0.69				
0.33	0.12	-0.00	1	3.30	1.23	0.04				
0.30	0.31	-0.08	1	2.97	3.06	-0.8				
0.15	0.27	-0.17	1	1.49	2.63	-1.70				
-0.02	0.17	-0.27	1	-0.22	1.69	-2.58				
-0.13	-0.03	-0.27	1	-1.29	-0.32	-2.58				
-0.13	0.07	-0.08	1.	-0.12	0.71	-0.76				
-0.00	-0.00	-0.03	1	-0.04	-0.02	-0.31				
-0.09	-0.18	-0.01	1	-0.80	-1.63	-0.09				
-0.02	-0.09	0.09	1	-0.24	-0.78	0.77				
0.04	0.05	0.21	1	0.41	0.42	1.83				
0.03	-0.07	0.25	1	0.26	-0.66	2.13				
-0.05	-0.14	0.10	1	-0.43	-1.19	0.85				
-0.03	0.09	0.09	1	-0.24	0.76	0.72				
-0.20	0.14	-0.00	1	-1.57	1.10	-0.00				
-0.29	0.05	-0.07	1	-2.19	0.42	-0.54				
-0.39	0.03	-0.25	10	-2.91	0.26	-1.87				
-0.48	-0.12	-0.16	1	-3.42	-0.86	-1.15				
-0.40	-0.05	0.06	1	-2.83	-0.34	0.46				
-0.22	-0.04	0.04	1	-1.50	-0.32	0.32				

							610										j, trati, triang		ta an
				n an Maria Maria												an an an Arian An Arian	•		
•											ů. V								
	, , , , , , , , , , , , , , , , , , ,	Table 7	-5(a). (Cont	'd)	-				8			3							
		$\hat{0}_{-2}^{41}(k)$	y and a second second					Ĩ											
		°50`**	36	Standa	rdized 0	$1_{(k)}$		l							Table 7-	5(a), (c)	om#1.33		
		Space I	ag	Deanda	1012eu ^p 5	0		(	2					^22 <i>(</i>			שב.ק)		
	Time Lag	0 1	2											ρ ₅₀ (1	<b>;)</b> 				
	1 2	0.01 -0. -0.10 -0.	03 -0.02 05 0.01	/ 0.17 / -1.02	-0.36 -0.55	-0.28 0.19		Ī					Time La		Space Lag	<b>;</b>	Stand:	irdized ô	$\frac{22}{k}$
	3	-0.12 -0.	07 -0.06 19 -0.03	/ -1.24	-0.77 1.89	-0.58 -0.30		Ĩ						~5 U	1	2			50
•	5	0.04 0.	12 0.03	/ 0.45	1.17	0.30		1					2	0.22 0.08	0.07 0.22	0.31	/ 2.24	0.73	3.1
	6 7	0.07 -0.	01 0.13	/ 0.70	-0.11	1.27							3	0.24	0.17	0.15	/ 0.83	2.24	2.84
	8	$\begin{array}{ccc} 0.11 & -0. \\ 0.12 & -0. \end{array}$	14 0.07 00 0.13	/ 0.98	-1.31 -0.01	1.20						an a	5	0.06	0.13	0.15 0.26	/ 2.99	1.24	1.46
	10 11	-0.00 0.	12 0.19 05 -0.00	/ -0.04	1.07 -0.47	1.65 -0.02							7	0.19	0.24	0.20	/ 2.47	2.28	2.51 1.91
	12	0.13 0.	11 -0.03	/ 1.12	0.94	-0.28						•	9	-0.00	0.03	0.20	/ _0.02	-0.02 0.31	0.72
	13 14	-0.02 0. -0.10 -0.	19 0.13 09 0.01	/ -0.82	-0.71	0.15							10. 11	0.04	-0.09	0.06	/ 0.17	0.99	0.54
	15	-0.13 -0.	15 -0.15	/ -1.04	-1.19 -0.48	-1.16 -0.05							12	-0.17	-0.00 0.24	-0.01	/ -0.71	-0.83	0.23
	17	-0.13 -0.	13 -0.06	/ -1.00	-1.16	-0.45							13	-0.21 -0.11	0.12	-0.08	-1.48	2.01	-0.83
	18 19	0.01 -0.01 -0.01	.01 -0.03 .15 0.10	/ -0.08	-1.05	0.69	· · · · · ·	7	<b>M</b>				15 16	-0.31	-0.15	-0.09 /	-0.89	-1.59	-0.72
•	20	0.18 -0	.18 -0.04	/ 1.21	-1.25	-0.30							17	-0.22	-0.10 -0.06	-0.35 /	-1.54	-0.80	-0.45 -2.67
					•				<b>S1</b>				18 19	-0.29 -0.52	-0.17	-0.28 /	-2.13	-0.49 -1.22	-1.49
											n Ale and a second s		20	-0.22	-0.52	-0.37 /	-3.63 -1.53	-0.72	-2.59
									<b>SD</b>									-0.33	-2.08
			and the second sec																
									<b>E</b> 7										
·																			
								<b>5</b>				ana ang sang sang sang sang sang sang sa		an the first Second Second					
e de la companya de l																			
											T							· .	
				•		and and the second s Second second		Å											
														n an					
					· · · · · · · · · · · · · · · · · · ·		₩								· ·				
											π					an an the second Second Second			
								C			<b>1</b> 2			an an tha an Tha an tha an			•		
																	•	* *	
	and a second sec							1			<b>U</b>								
				$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i$															en e
for page to the second state of the product of the	En som Hilling and States and Stat		ut de mar La Callant, des sintes activités autors autors autors autors activités de la callantes autors activit	tana pananan manan da takan manan manan				مى يې دى يې د مېرى تەرىپىيى بىلى يې											
1.11							an An an an		V	Ĺ.,									

Ţ

T

9

C.

the start

ų,

Constant of

Contraction of the second

612

 $\hat{\rho}_{50}^{42}(k)$ 

	Sp	ace Lag		Standardized $\hat{\rho}_{50}^{42}(k)$						
Time Lag	0	1	2							
1	0.16	-0.05	0.10	Ĩ	1.71	-0.55	1.09			
2	0.31	-0.08	0.12	1	3.08	-0.88	1.26			
3	0.11	-0.23	0.22	1	1.07	-2.32	2.15			
4	0.12	-0.15	0.07	1	1.20	-1.53	0.67			
5	0.11	0.02	0.08	1	1.12	0.24	0.75			
6	-0.01	-0.09	0.09	1	-0.16	-0.83	0.88			
7	0.00	-0.24	-0.00	1	0.07	-2.23	-0.06			
. 8	0.10	-0.22	0.08	1	0.92	-2.01	0.74			
· 9	0.08	-0.26	0.02	1	0.78	-2.36	0.19			
10	0.16	-0.20	0.02	1	1.42	-1.81	0.17			
11	0.19	-0.19	0.02	1	1.64	-1.63	0.23			
12	-0.04	-0.42	-0.05	1	-0.36	-3.56	-0.42			
13	-0.03	-0.21	-0.12	1	-0.29	-1.72	-1.04			
14	-0.05	0.07	-0.16	1	-0.40	0.55	-1.29			
15	-0.13	0.05	-0.07	1	-1.01	0.45	-0.54			
16	-0.21	-0.18	-0.12	1	-1.60	-1.39	-0.94			
17	-0.03	0.00	-0.14	1	-0.22	0.06	-1.04			
18	-0.00	0.11	-0.28	1	-0.02	0.81	-2.05			
19	-0.14	0.15	-0.22	1	-1.02	1.10	-1.55			
20	-0.20	0.14	-0.16	1	-1.35	0.97	-1.07			

Table 7-5(a). (Cont'd)

 $\hat{\rho}_{50}^{43}(k)$ 

Time Lag

8

S	pace Lag			3 (k)		
0	1	2			-	
0.32	0.03	0.10	1	3.29	0.32	1.03
0.12	-0.18	0.01	1	1.25	-1.82	0.12
0.07	-0.18	-0.13	1	0.68	-1.79	-1.34
-0.04	-0.15	-0.12	1	-0.42	-1.53	-1.24
-0.17	-0.18	-0.19	1	-1.65	-1.72	-1.84
-0.23	-0.21	-0.17	1	-2.19	-1.96	-1.60
-0.10	-0.15	-0.10	1	-1.00	-1.43	-0.93
0.07	0.00	-0.03	1	0.65	0.02	-0.30
0.21	0.04	0.07	1	1.93	0.42	0.6
0.17	-0.16	0.11	1	1.48	-1.38	1.03
0.27	-0.26	0.26	1	2.35	-2.25	2.2
0.40	-0.14	0.34	1	3.34	-1.20	2.8
0.21	-0.09	0.27	1	1.71	-0.70	2.2
0.02	-0.09	0.09	1	0.18	-0.76	0.7
-0.17	-0.01	-0.03	1	-1.36	-0.09	-0.2
-0.13	-0.06	-0.09	1	-0.99	-0.46	-0.70
-0.02	-0.04	-0.13	1	-0.15	-0.30	-1.00
-0.16	-0.02	-0.12	1	-1.20	-0.19	-0.9
-0.24	0.04	-0.06	1	-1.69	0.33	-0.42
-0.07	0.19	0.06	1	-0.50	1.28	0.42

	$\hat{\rho}_{50}^{44}(k)$								
	Sp	ace Lag		Standa	Standardized $\hat{\rho}_{50}^{44}(k)$				
Time Lag	0	1	2						
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	$\begin{array}{c} 0.56\\ 0.22\\ 0.21\\ 0.12\\ -0.03\\ -0.16\\ -0.04\\ 0.80\\ 0.04\\ -0.03\\ 0.03\\ 0.05\\ -0.03\\ 0.05\\ -0.15\\ -0.23\\ -0.14\\ -0.10\\ -0.35\\ -0.28\end{array}$	$\begin{array}{c} -0.05 \\ -0.14 \\ -0.10 \\ -0.03 \\ -0.18 \\ -0.24 \\ -0.03 \\ 0.04 \\ -0.15 \\ -0.29 \\ -0.15 \\ -0.29 \\ -0.15 \\ -0.04 \\ -0.06 \\ -0.02 \\ 0.08 \\ 0.27 \\ 0.27 \\ -0.04 \\ 0.06 \end{array}$	0.01 / -0.10 / -0.12 / -0.12 / -0.20 / -0.21 / -0.13 / -0.10 / -0.07 / -0.03 / 0.15 / 0.29 / 0.20 / 0.09 / -0.03 / -0.08 / -0.10 / -0.10 / -0.03 /	5.72 2.22 2.10 1.22 -0.30 -1.49 -0.41 0.72 0.38 -0.30 0.30 0.41 -0.55 -1.18 -1.10 -0.78 -2.52 -1.96	$\begin{array}{c} -0.52 \\ -1.40 \\ -0.10 \\ -0.34 \\ -1.79 \\ -2.30 \\ -0.28 \\ 0.44 \\ -1.32 \\ -2.53 \\ -1.31 \\ -0.41 \\ -0.53 \\ -0.19 \\ 0.66 \\ 2.09 \\ 2.00 \\ -0.30 \\ 0.41 \end{array}$	$\begin{array}{c} 0.15 \\ -1.00 \\ -1.24 \\ -1.18 \\ -1.90 \\ -1.97 \\ -1.97 \\ -0.94 \\ -0.69 \\ -0.33 \\ 1.28 \\ 2.41 \\ 1.65 \\ 0.72 \\ -0.24 \\ -0.63 \\ -0.75 \\ -0.71 \\ -0.26 \end{array}$			
20	-0.07	0.32	0.10 /	-0.46	2.LS	0.72			

Time Lag

1

2 3

-4 5

Time Lag

1 2

3

.4 5

Time Lag

1 2 3

> - 4 5

 $\hat{\phi}_{k\ell}^{11}$ 

 $\hat{\phi}_{k}^{12}$ 

 $\hat{\phi}_{kl}^{13}$ 

10 

Ø

Ω

[]

D

0

8

Ô

Î

1990

1 

T . I

-

3

Ĩ

Ó

A Change of the

614

Table 7-5(b). The Sample Multivariate Space-Time Partial Autocorrelation Functions for the Cleveland Crime Data

	Space Lag	3	Star	ndardized	$\hat{\phi}_{1-0}^{11}$
0	1	2	•		KX.
-0.17 -0.06 -0.13 -0.06 0.02	0.06 0.03 0.26 0.02 -0.02	0.05 0.25 0.19 -0.08 -0.21	/ -1.73 / -0.63 / -1.36 / -0.66 / 0.22	0.66 0.34 2.62 0.23 -0.23	0.50 2.52 1.86 -0.79 -2.04

	Space Lag		Standardized $\hat{\phi}_{10}^{12}$				
0	1	2				ĸ	
-0.15 0.14 0.00 0.14 -0.00	0.11 0.12 0.16 0.01 0.15	-0.03 -0.07 0.16 0.02 -0.07		-1.54 1.40 0.01 1.37 -0.00	1.18 1.20 1.57 0.10 1.48	-0.32 -0.77 1.65 0.24 -0.74	

: ¹	Space Lag		Star	dardized	$\hat{\phi}_{\mu 0}^{13}$
0	1	2			ĸ
0.01 -0.21 0.12 -0.00 -0.14	0.12 -0.00 -0.01 0.06 -0.12	0.31 / -0.06 / 0.10 / -0.16 / 0.57 /	0.19 -2.15 1.22 -0.02 -1.40	1.30 -0.01 -0.09 0.60 -1.18	3.21 -0.66 0.98 -1.55 5.47

615

est).

1 (Territory) 24 0 616 記録も Table 7-5(b). (Cont'd)  $\hat{\phi}_{kl}^{23}$  $\hat{\phi}_{kl}^{14}$ Standardized  $\hat{\phi}_{kl}^{14}$ Time Lag Space Lag 1 B 2 2 0 1 Time Lag .3 -0.99 -0.32 -2.44 0.68 0.26 -2.55 -0.25 0.21 0.29 -0.79 -1.77 L. ..... -0.09 0.02 1 2 3 4 2.10 -0.03 -0.08 5 -1.16 -0.18 0.00 0.20 -0.11 -0.24 • 1.93 0.20 / 0.07 0.07 Turner of -3.69 1.89 0.02 5  $\hat{\phi}_{kl}^{24}$  $\hat{\phi}^{21}_{kl}$ Standardized  $\hat{\phi}_{kl}^{21}$ Time Lag Space Lag 1 2 2 1 0 Time Lag 3 0.23 0.16 -0.54 1.09 1.52 1.11 the second 0.02 0.10 0.15 4 1 -0.64 -0.06 0.11 2 -0.21 1.63 0.45 -0.02 0.86 0.08 -0.05 3 0.30 -0.70 -0.07 -0.06 0.16 0.03 4 5 -0.64 -0.45 0.04 -0.04  $\hat{\phi}^{31}_{k\ell}$  $\hat{\phi}_{kl}^{22}$ Standardized  $\hat{\phi}_{kl}^{22}$ Time Lag Internet in Space Lag 1 2 2 1 0 Time Lag 3 3.12 2.10 2.29 0.04 2.00 0.74 0.32 0.03 0.30 Constant of 0.22 4 5 1 2 3 4 5 2.01 0.21 0.00 -0.23 0.13 -0.96 0.51 0.05 -0.02 0.20 1.58 0.16 0.07 0.01 -2.71 -0.28 -1.27 -0.13 -0.10 PER S

	Space Lag			Stan	dardized	$\hat{\phi}_{kl}^{23}$
0	1	2				
0.08	0.17	0.20	1	0.81	1.74	2.06
0.10	0.01	-0.26	1	1.06	0.18	-2.59
-0.25	0.08	-0.10	1	-2.51	0.79	-0.98
0.01	-0.11	-0.13	1	0.18	-1.10	-1.27
0.00	0.03	-0.26	1	0.04	0.34	-2.50

1

Space Lag

Standardized  $\hat{\phi}_{kl}^{24}$ 

0	1	2				
0.09	-0.11	-0.16	1	0.99	-1.11	-1.64
0.20	-0.14	0.26	1	2.04	-1.45	2.65
-0.08	-0.10	0.22	1	-0.81	-1.07	2.15
0.10	-0.05	-0.12	1	0.98	-0.57	-1.24
0.02	0.10	0.25	1	0.21	1.03	2.44

	Space Lag			Stan	dardized	φ ³¹ k
0	1	2				
-0.11	0.06	0.00	1	-1.16	0.70	0.03
0.19	0.01	0.21	1	1.94	0.13	2.08
-0.00	0.17	0.05	1	-0.40	1.75	0.54
0.03	0.10	0.26	1	0.36	0.97	2.58
0.00	-0.07	-0.16	1	0.00	-0.72	-1.59

(in)

[man] 618 Table 7-5(b). (Cont'd)  $\hat{\phi}_{kl}^{41}$  $\hat{\phi}^{32}_{k\ell}$ Standardized  $\hat{\phi}_{kl}^{32}$ 0 Space Lag Time Lag 1 2 0 Time Lag 1 2 0.21 0.02 / 1.76 -0.46 1 2 3 4 0.17 -0.04 3 -0.02 0.11 -0.26 0.05 1.55 0.15 4 -0.90 1.21 0.10 0.87 1.14 0.08 -0.09 .5 0.42 / -0.40 / -0.58 4.09 0.12 -0.06 -2.56 -3.80 -0.27 5 0.01  $\hat{\phi}_{kl}^{42}$ 8  $\hat{\phi}_{kl}^{33}$ Standardized  $\hat{\phi}_{kl}^{33}$ Space Lag Time Lag A Street and 1 2 3 4 5 2 Time Lag 0 1 0.16 -2.38 -0.55 0.01 1.20 4.03 0.39 0.11 1 0.02 0.03 0.01 0.07 -0.24 0.72 0.24 2 -0.05 -0.04 0.06 -1.18 0.35 3 0.61 -0.46 0.17 4 0.06 Construction of the 2.49 0.65 0.26 -0.13 1 5  $\hat{\phi}_{kl}^{43}$  $\hat{\phi}_{kl}^{34}$ Standardized  $\hat{\phi}_{kl}^{34}$ A CONTRACTOR OF A CONTRACTOR A Space Lag Time Lag 1 2 Time Lag 0 1 2 And Andrews -0.01 / 0.97 -0.85 -0.14 -0.08 0.09 3 1 0.09 -0.12 -0.17 0.91 -2.17 -1.96 -0.21 -0.19 2 4 -0.12 / 0.68 -0.17 / -1.77 -0.33 / -0.30 -0.64 -1.20 0.07 -0.06 3. 5 -1.04 -1.69 -0.18 -0.10 4 -0.98 -3.18 -0.03 -0.10 5

Table 7-5(b). (Cont'd)

	Space Lag			Star	ndardized	$\hat{\phi}_{kl}^{41}$
0	1	2				
-0.08 0.05 0.05 0.00 0.00	0.08 0.00 0.09 0.08 -0.04	0.04 0.13 0.07 0.25 -0.17	11111	-0.90 0.58 0.50 0.06 0.05	0.90 0.00 0.94 0.83 -0.39	0.42 1.34 0.70 2.48 -1.67

	Space Lag			Stan	dardized	$\hat{\phi}_{1-0}^{42}$
0	1	2				ĸ
0.00 0.16 -0,10 -0.07 -0.04	0.09 0.05 0.07 -0.12 -0.19	0.12 0.04 0.13 0.24 -0.40	1111	0.00 1.59 -1.05 -0.71 -0.42	0.93 0.58 0.74 -1.18 -1.84	1.26 0.48 1.33 2.37 -3.88

	Space Lag			Stan	dardized	$\hat{\phi}_{\mu 0}^{43}$
0	1	2				ĸ
0.09 0.21 -0.01 -0.04 -0.05	-0.25 0.21 0.21 0.06 0.25	0.01 0.04 -0.18 -0.16 -0.07	1111	0.92 2.08 -0.18 -0.44 -0.51	-0.25 2.18 2.05 0.66 2.40	0.17 0.45 -1.78 -1.59 -0.68

(A)

620 Table 7-5(b). (Cont'd) 

 8
 h
 S

 1
 1
 1

 1
 1
 1

 1
 1
 1

 1
 1
 2

 g
 h
 S

 1
 2
 0

 1
 2
 1

 1
 2
 2

 g
 h
 S

 1
 3
 0

 1
 3
 0

 1
 3
 0

 1
 3
 0

 1
 3
 0

 1
 3
 0

 1
 3
 0

 1
 3
 2

 g
 h
 S

 2
 1
 0

 2
 1
 1

 2
 2
 0

 2
 1
 2

 g
 h
 S

 2
 3
 0

 2
 3
 0

 2
 3
 0

 2
 3
 0

 2
 4
 0

 A STATE  $\hat{\phi}_{kl}^{44}$ Standardized  $\hat{\phi}_{kl}$ Space Lag 2 1 0 Time Lag -0.76 5.26 -3.15 2.29 -1.59 -0.07 0.52 -0.15 -3.10 1 2 3 4 -0.98 -0.31 The second se -0.99 -0.31 0.82 -0.34 0.08 -0.03 -0.10 -0,14 0.38 -1.58 0.23 -1.00 -0.33 0.04 -0.03 -1.38 0.49 1 5 1 1 1 () () 41 Constant of the second Construction of T 100 

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
•	• *	•	•	•	•	•	•	•	•	•	•	•	•	•	• ,	•		•	•
:	•	:	-	:	:	:	:	:	:	÷	:	•	:	•	:	•		•	-
	•	•			•		•				•	•	•	-	•	••••	•	•	
•	•	:	:	:	:	•	:	:	:	:	-	:	•		•	:	•	•	:
									سبنيه										
	·····														<u> </u>				
•	:	•	:	•		•	•	:	`.	:	•	:	•••	:	:	•	:	•	
-				•		·	·	÷.	····			·	•	•		· · ·			•
<u> </u>															<del></del>				
•	:	• '	•	•		:	• '	:	•	:	•	•	•	•			:	•••	•
•	•	•	•	•		•	•	•	•	•		•	•	•	•	•	•	•	<u>.</u>
_	:										-								
•	•	•	+	•	•	•	:	•	•	•	•	•	•	•	•	•	•	•	•
:		•	•	:	•	•	•	•	•	•	•	•	:	•	:	•	• •		:
		:			· .							•	-						
+	•	+	+	•	+		•		•		•	•	•	-	•	٠	-		•
÷	+	•		<b>;</b>	+	:	+	•	:	:	+	:	:	•	-	•	· •	-	-
+	+		·			•	•	 •	•••••								 •	•	
•	•	•	+	•	•	•	+	+	+	•	•	•	•	•	•	•	•	•	•
-							•		· · ·						<u></u>				
													<del></del>						
:	• •	•	•.	•	:	· •	•	:	•	•		•	•	:	•	-	•	:	,
		•	•	•	•	•	•	•		•	•	•	•	· •		•		•	•

Figure 7-12(a). The Encoded Sample Multivaraite Space-Time Autocorrelation Function of the Scaled Cleveland Crime Data

								•														
g	ħ	s	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
3 3 3	1 1 1	0 1 2	•	•	•	•	•	•	•	•	+	•••	•	• • •			*		•	•	•	
8	h	s																				
3 3 3	2 2 2	0 1 2	•	++++•	•	•	•	•	:		:	•••		•			-	· •	•	•	•	:
8	h	s				·······				1		•										
333	3 3 3	0 1 2	+	.+	•	• *	•	•	•	•	•		+	•	• *	•	•	-	-	-	-	:
8	h	S			1																	
3 3 3	444	0 1 2	+	+	+ • •	•	• •	•	•	•	•	•	•	•••	•	•	:	s <del>-</del> •	۰ <u>ــ</u> ۰	-	-	
8	h	S	<b></b>																			
4 4 4	1 1 1	0 1 2		•	•	•	•	•	•	•	•	•		:	•		•	•	•		•	•
8	h	S													· · ·	J.					1	
444	2 2 2	0 1 2	:	+	÷	•	* • •	•	-	•	-	•	•	•	•		•	•	7 • •	•		•
8	h	s									 4											
444	3 3 3	0 1 2	+ .	•	:	•	•	-	•	•	•	•	÷ -+	2 4. . • .	•	•	•	• • •	•		•	
8	h	S			. '																	
444	4	0 1 2	+	+ .	+	e 	•	-	•	•	•	-	•	•		•	•	+	+	-	•	· :
						7										1.2		:	1			

Figure 7-12(a). (Cont'd)

T

B

E C

Ì

**G** 

G

Ċ:

Ŋ

 $\square$ 

i i 

 $\mathbb{D}$ 

San and

7 1

	_	g	h	S	1	2		3 4	5
		1 1 1	1 1 1	0 1 2	•	•	ء + •		•
		g	h	S		· · · · ·			
		L L L	2 2 2	0 1 2	•	•	•	•	•
• '	٤	g 1	1 i	5					·
	1		3 ( 3 ] 3 2	2 L 2	•	-	•	•	•
	g	h	S	5		······		:	
	1 1 1	4 4 4	0 1 2		•	• • +		•	•
	g	h	S	<u>. 4</u>					
• •	2 2 2	1 1 1	0 1 2		•	•	•	•	•
	g	h	S						
	2 2 2	2 2 2	0 1 2		+	• + +	+	•	•
	g	h	S						
	2 2 2	3 3 3	0 1 2	-	•	•	•	•	•
	g	h	S						
<u>ي</u>	2 2 2	4 4 4	0 1 2			• + +	•	•	•

Figure 7-12(b). The Encoded Sample Multivariate Space-Time Partial Autocorrelation Function of the Scaled Cleveland Crime Data

623

		Salet biogeneration			
		2			
			$\hat{\phi}_{\mathbf{k}}^{22}$	$\phi_{k2}^{2}, \phi_{k2}^{22}, \phi_{k2}^{2}, \phi_{$	$\hat{\phi}_{k0}^{33}$ cuts
			$\hat{\phi}_{k2}^{32}$	$\hat{\phi}_{k0}^{42}$ ,	$\hat{\phi}_{k2}^{44}$ tail
			MUL	STARMA (	+,p,q,λ,
	A LEAD OF A				p =
					ų = λ =
					m = ~
Ø		5 		1	1 1
8				Z	z = a + z
				$\begin{cases} z_t \\ z_{\tau} \end{cases}$	$= \phi_{10}^2$
		•		° ~t ~t	$= \phi^{44} 10^{2}$
	Ø			( [≈] t	^Ψ 10 ² τ
			The c	onditio	nal M.L.
					•
					•

	•	-	_	~			_
g	h	S	1	2	3	4	5
3 3 3	1 1 1	0 1 2	•	•	•	•	•
g	 h	S					
3 3 3	2 2 2	0 1 2	•	•	•	• • +	•
g	h	S	<b>.</b>	:		1	
3 3 3	3 3 3	0 1 2	+ .	•	•	•	•
g	h	S					
3 3 3	4 4 4	0 1 2	•	-	•	•	•
g	h	S			·.		
4 4 4	1 1 1	0 1 2	•	•	•	•	-
ġ	h	S					
4 4 4	2 2 2	0 1 2		•	•	• •	•
g	h	S					
4 4 4	3 3 3	0 1 2	•	++	• +	•	• +
g	h	S					
4	4 4 4	0 1 2	+	-	+	•	•

624

s off at k=1,  $\hat{\phi}_{k0}^{43}$  cuts off at k=2, and  $\hat{\phi}_{k0}^{32}$ ,  $\hat{\phi}_{k0}^{44}$ , ls off. This pattern suggests the m) where

.(0,0,0,0,0,1,0,0,0,1,1,0,0,0,2,1), (0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,2), (2,0,0,0,0,0), and (0,0,0,0,0,1) or in difference equation form,

 $\sum_{t=1}^{2} + \phi_{12}^{22} (2) z_{t-1}^{2} - \phi_{20}^{23} z_{t-2}^{3} - \phi_{20}^{24} z_{t-2}^{4} + z_{t}^{2}$  $z_{t-1}^{2} + \phi_{10 \sim t-1}^{33} + \varepsilon_{t}^{3}$  $\begin{array}{l} 4\\ t-1 \end{array} + \phi_{20}^{43}z_{t-1}^{3} - \phi_{20}^{44}z_{t-1}^{4} - \phi_{21}^{44}z_{t-2}^{4} + \varepsilon_{t}^{4} \\ \end{array}$ (7-94)

estimation gives the following results,

625

Gar

Estimate	Variance	t-Statistics
$\phi_{10}^{22} = 0.157$	0.0895	1.7542
$\phi_{12}^{22} = 0.329$	0.1101	2.9882
$\phi_{10}^{32} = 0.184$	0.0887	2.0744
$\phi_{10}^{33} = 0.442$	0.093	4.8948
$\phi_{10}^{44} = 0.507$	0.1060	4.7830
$\phi_{20}^{43} = 0.170$	0.1044	1.6284
$\phi_{20}^{23} = 0.200$	0.1175	1.7021
$\phi_{20}^{24} = 0.229$	0.1263	1.8131
$\phi_{20}^{44} = -0.205$	0.1241	1.6543
$\phi_{21}^{44} = -0.213$	0.1169	1.8212

where  $\hat{\sigma}^2 = 0.7868$ .

After the parameter estimates were obtained, the sample multivariate space-time autocorrelation functions and the sample multivariate spacetime partial autocorrelation functions of the residuals were computed and encoded. The numerical values are listed in Table 7-6, and the encoded symbols are contained in Figure 7-13. No patterns are detected and this model is accepted as adequate.

## 7.9.2 Using the Model

Once the time series model of the historical data is accepted as adequate, it is ready to be employed. It can be used for forecasting or intervention analysis. New data entering the system may not

626

Ĭ

T

.

- A

1

1

損損

Survey and

Table 7-6(a). The Sample Multivariate Space-Time Autocorrelation Functions for the Residuals of Cleveland Crime Data

ρ ¹¹ 50	(k)
-----------------------	-----

Time Lag

23

8

20

Space Lag		Sta	ndardized	$\hat{\rho}_{50}^{11}(k)$
1	2			50
$\begin{array}{c} 0.03\\ 0.03\\ 0.17\\ 0.08\\ -0.12\\ -0.01\\ -0.02\\ 0.16\\ 0.16\\ 0.16\\ -0.19\\ -0.17\\ 0.01\\ 0.14\\ 0.24\\ 0.14\\ -0.19\\ -0.19\\ -0.19\\ -0.19\\ -0.18\\ -0.12\\ 0.00\\ \end{array}$	0.07 0.10 0.09 -0.37 0.16 0.05 -0.06 -0.00 0.00 -0.11 0.25 -0.16 -0.03 0.16 -0.03 0.16 -0.03 0.16 -0.03 0.16 -0.03 0.16 -0.03 0.10 -0.01 -0.15 / 0.16 -0.03 0.16 -0.03 0.16 -0.01 -0.01 -0.01 -0.01 -0.00 / -0.01 -0.00 / -0.01 -0.00 / -0.01 / -0.00 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.15 / -0.01 / -0.01 / -0.15 / -0.01 / -0.01 / -0.15 / -0.01 / -0.01 / -0.01 / -0.15 / -0.01 / -0.01 / -0.01 / -0.15 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.01 / -0.14 / -0.14 / -0.14 / -0.14	/ -1.41 / -1.12 / -0.42 / -0.93 / 0.75 / 0.87 / -1.22 0.35 -0.94 -0.70 1.47 0.45 -1.05 -0.47 -1.01 1.64 1.02 -2.55 0.39	$\begin{array}{c} 0.36\\ 0.31\\ 1.67\\ 0.80\\ -1.19\\ -0.11\\ -0.20\\ 1.52\\ 1.44\\ -1.67\\ -1.49\\ 0.15\\ 1.15\\ 1.90\\ 1.11\\ -1.48\\ -1.42\\ -1.32\\ -0.88\end{array}$	0.72 1.00 0.88 -3.57 1.55 0.50 -0.57 -0.02 0.00 -1.01 2.12 -1.38 -0.31 1.31 -1.20 1.37 0.34 -0.10 -1.01 -1.00
0.00	-0.31 /	-0.73	0.05	-2.11
	Space Lag 1 0.03 0.03 0.17 0.08 -0.12 -0.01 -0.02 0.16 0.16 -0.19 -0.17 0.01 0.14 0.24 0.14 -0.19 -0.19 -0.19 -0.19 -0.17 0.01 0.14 0.24 0.14 -0.19 -0.19 -0.12 0.00	1       2         0.03       0.07         0.03       0.10         0.17       0.09         0.08       -0.37         -0.12       0.16         -0.01       0.05         -0.02       -0.06         0.16       -0.00         0.16       0.00         -0.19       -0.11         -0.17       0.25         0.01       -0.16         0.14       -0.03         0.24       0.16         0.14       -0.15         -0.19       0.18         -0.19       0.14         -0.19       0.14         0.14       -0.15         -0.19       0.14         -0.19       0.14         -0.19       0.14         -0.19       0.14         -0.19       0.14	Space Lag       Star         1       2         0.03       0.07       / -1.41         0.03       0.10       / -1.12         0.17       0.09       / -0.42         0.08       -0.37       / -0.93         -0.12       0.16       0.75         -0.01       0.05       0.87         -0.02       -0.06       / -1.22         0.16       -0.00       0.35         0.16       0.00       / -0.94         -0.19       -0.11       / -0.70         -0.19       -0.11       / -0.70         -0.17       0.25       1.47         0.01       -0.16       0.45         0.14       -0.03       -1.05         0.14       -0.03       -1.05         0.14       -0.15       -1.01         -0.19       0.18       1.64         -0.19       0.18       1.02         -0.18       -0.01       -2.55         -0.12       -0.14       0.39         0.00       -0.31       -0.73	Space LagStandardized12 $0.03$ $0.07$ $-1.41$ $0.36$ $0.03$ $0.10$ $-1.12$ $0.31$ $0.17$ $0.09$ $-0.42$ $1.67$ $0.08$ $-0.37$ $-0.93$ $0.80$ $-0.12$ $0.16$ $0.75$ $-1.19$ $-0.01$ $0.05$ $0.87$ $-0.11$ $-0.02$ $-0.06$ $-1.22$ $-0.20$ $0.16$ $-0.00$ $0.35$ $1.52$ $0.16$ $0.00$ $-2.94$ $1.44$ $-0.19$ $-0.11$ $-0.70$ $-1.67$ $-0.17$ $0.25$ $1.47$ $-1.49$ $0.01$ $-0.16$ $0.45$ $0.15$ $0.14$ $-0.03$ $-1.05$ $1.15$ $0.24$ $0.16$ $-0.47$ $1.90$ $0.14$ $-0.15$ $-1.01$ $1.11$ $-0.19$ $0.18$ $1.64$ $-1.48$ $-0.19$ $0.04$ $1.02$ $-1.42$ $-0.18$ $-0.01$ $-2.55$ $-1.32$ $-0.12$ $-0.14$ $0.39$ $-0.88$ $0.00$ $-0.31$ $-0.73$ $0.05$

628

7

「王」

1

1

T

ł

0

Ĩ

وارد عليه

Annual and a

Contraction of the second

Satural I

Transfer and

L'instanting

The second second

A CONTRACT

Bollin and the

Time Lag 1

> 2 3

Table 7-6(a). (Cont'd)

 $\hat{\rho}_{50}^{12}(k)$ 

50 *								
		Space Lag			Stan	dardized	$\hat{\rho}_{50}^{12}(k)$	
Time Lag	0	1	2					
1	0.13	-0.04	0.47	1	1.38	-0.44	1.48	
2	0.08	-0.04	-0.12	1	0.79	-0.46	-1.26	
3	-0.01	-0.02	-0.05	1	-0.12	-0.19	-0.49	
4	-0.17	0.07	0.10	1	-1.67	0.68	0.97	
5	-0.11	-0.08	-0.00	1	-1.11	-0.07	-0.03	
6	-0.42	-0.15	-0.18	1	-0.39	-1.39	-1.68	
7	0.00	-0.06	0.02	1	0.06	-0.57	0.18	
8	-0.06	-0.05	-0.03	1	-0.55	-0.46	-0.29	
9	-0.08	0.09	-0.05	1	-0.74	0.85	-0.47	
10	0.06	0.14	0.03	1	0.52	1.26	0.25	
11	-0.07	-0.12	0.03	1	-0.64	-1.08	0.30	
12	0.15	-0.21	-0.03	1	1.31	-1.81	-0.32	
13	-0.07	-0.08	-0.07	1	-0.56	-0.72	-0.57	
14	-0.16	-0.03	-0.10	1	-1.32	-0.29	-0.81	
15	0,12	0.07	-0.04	1	0.98	0.60	-0.34	
16	-0.27	0.08	-0.03	1	-2.07	0.66	-0.27	
17	-0.03	-0.17	0.24	1	-0.27	-1.25	1.80	
18	0.24	-0.02	-0.05	1	1.71	-0.19	-0.38	¢
19	-0.06	-0.19	-0.25	1	-0.43	-1.37	-1.73	
20	-0.27	0.01	0.13	1	-1.87	0.09	0.86	

Table 7-6(a). (Cont'd)

)	•					
	Space Lag			Star	ndardized	ρ ¹³ 50 ^(k)
0	1	2				
-0.10	0.04	0.03	1	-1.07	0.50	0.32
0.18	-0.01	0.14	1	1.81	-0.13	1.45
0.02	0.14	0.00	1	0.25	1.41	0.05
0.06	0.09	0.13	1	0.59	0.92	1.29
-0.02	-0.00	0.03	1	-0.25	-0.08	0.33
-0.21	-0.01	0.00	1	-1.97	-0.16	0.02
0.02	0.08	0.05	1.	0.25	0.75	0.49
-0.04	-0.02	-0.28	1	-0.41	-0.18	-2.58
-0.08	-0.18	0.07	1	-0.75	-1.64	0.66
-0.14	-0.01	0.05	1	-1.28	-0.12	0.45
0.10	-0.10	-0.10	1	0.89	-0.91	-0.91
0.13	0.10	-0.03	1	1.08	0.88	-0.29
0.05	0.13	-0.07	1	0.44	1.05	-0.63
0.04	0.02	0.10	1	0.31	0.20	0.81
0.11	0.12	-0.13	1	0.87	0.98	-1.00
-0.06	-0.01	0.14	1	-0.49	-0.07	1.05
-0.01	-0.02	-0.03	1	-0.10	-0.19	-0.25
-0.00	0.10	0.07	1	-0.06	0.72	0.51
0.03	-0.00	-0.05	1	0.25	-0.05	-0.35
0.04	-0.12	-0.02	1	0.26	-0.84	-0.13
	$\begin{array}{c} 0\\ -0.10\\ 0.18\\ 0.02\\ 0.06\\ -0.02\\ -0.21\\ 0.02\\ -0.04\\ -0.08\\ -0.14\\ 0.10\\ 0.13\\ 0.05\\ 0.04\\ 0.11\\ -0.06\\ -0.01\\ -0.00\\ 0.03\\ 0.04\\ \end{array}$	Space Lag         0       1         -0.10       0.04         0.18       -0.01         0.02       0.14         0.06       0.09         -0.02       -0.00         -0.21       -0.01         0.02       0.08         -0.04       -0.02         -0.08       -0.18         -0.14       -0.01         0.10       0.13         0.11       0.12         -0.06       -0.01         -0.01       -0.02         0.11       0.12         -0.06       -0.01         0.03       -0.00         0.04       -0.12	Space Lag           0         1         2           -0.10         0.04         0.03           0.18         -0.01         0.14           0.02         0.14         0.00           0.02         -0.00         0.03           -0.21         -0.01         0.00           0.02         0.08         0.05           -0.04         -0.02         -0.28           -0.08         -0.18         0.07           -0.14         -0.01         0.05           0.10         -0.10         -0.10           0.13         0.10         -0.13           -0.06         -0.01         0.05           0.10         -0.13         -0.07           0.04         0.02         -0.10           0.11         0.12         -0.13           -0.06         -0.01         0.14           -0.01         -0.12         -0.03           -0.00         0.10         0.07	Space Lag           0         1         2           -0.10         0.04         0.03         /           0.18         -0.01         0.14         /           0.02         0.14         0.00         /           0.06         0.09         0.13         /           -0.02         -0.00         0.03         /           -0.21         -0.01         0.00         /           -0.02         0.08         0.05         /           -0.04         -0.02         -0.28         /           -0.08         -0.18         0.07         /           -0.14         -0.01         0.05         /           0.13         0.10         -0.03         /           0.05         0.13         -0.07         /           0.04         0.02         0.10         /           0.11         0.12         -0.13         /           -0.06         -0.01         0.14         /           -0.06         -0.01         0.14         /           -0.00         0.10         0.07         /           0.03         -0.00         -0.05         /           0.04<	Space Lag         Star           0         1         2           -0.10         0.04         0.03         / -1.07           0.18         -0.01         0.14         1.81           0.02         0.14         0.00         0.25           0.06         0.09         0.13         0.59           -0.02         -0.00         0.03         -0.25           -0.21         -0.01         0.00         / -1.97           0.02         0.08         0.05         0.25           -0.04         -0.02         -0.28         -0.41           -0.08         -0.18         0.07         -0.75           -0.14         -0.01         0.05         -1.28           0.10         -0.10         / 0.89         0.13           0.10         -0.10         / 0.89         0.13           0.13         0.10         -0.13         / 0.87           -0.06         -0.01         0.14         -0.49           -0.01         0.14         -0.49           -0.02         -0.03         -0.10           0.11         0.12         -0.03         -0.10           0.04         -0.02         -0.05	Space Lag         Standardized           0         1         2           -0.10         0.04         0.03         / -1.07         0.50           0.18         -0.01         0.14         1.81         -0.13           0.02         0.14         0.00         / 0.25         1.41           0.06         0.09         0.13         / 0.59         0.92           -0.02         -0.00         0.03         / -0.25         -0.08           -0.21         -0.01         0.00         / -1.97         -0.16           0.02         0.08         0.05         / 0.25         0.75           -0.04         -0.02         -0.28         -0.41         -0.18           -0.08         -0.18         0.07         -0.75         -1.64           -0.14         -0.01         0.05         -1.28         -0.12           0.10         -0.10         / 0.89         -0.91         0.13         0.10           0.13         0.10         -0.03         1.08         0.88           0.05         0.13         -0.07         0.44         1.05           0.04         0.02         0.10         0.31         0.20

629

*

														•
n v sinist et i en service services	and reaction to remote more than to be a single of the result of the second	a s a sing and a single second	• • •											
					-		•							
				1. <b>1</b> . <b>1</b>		1								
			630										4	
				\ <b>U</b>		1								
		•												
				<b>D</b>		T			•	Table	7-6(a). (	Cont'd)		
Table 7-	6(a). (Cont'd)							$\hat{\rho}_{50}^{21}$ (1	<b>;)</b>					
				ψ.						Space La	2 - 1 - ²¹	Star	udardized	21 (k)
Space Lag	Star	ndardized 0- (k	)					Time Lag	0	- ,	- -		CGT GT SEU	^D 50 ^(K)
phace reg		50	<b>.</b>						-0.08	0.13	-0-04	/ _0.80	1 25	0.44
0.00	0.00 / -0.69	0.83 -0 (	11					2	0.03	0.08	-0.02	/ 0.33	0.83	-0.44
0.08	0.10 / -0.00	0.16 0.9	99	迅		-	•	4	0.22	0.01	0.02	/ -0.31 / 2.12	-0.15 0.46	0.24
0.02	$0.12 / 1.64 \\ 0.09 / 0.94$	0.25 1. 1.22 0.	20 95	5				5	0.05	0.01	0.02	/ 0.56	0.16	0.18
-0.00	-0.10 / 0.11	-0.00 -1.	03					7	-0.02	0.17	-0.09	/ -0.19	1.59	-0.83
0.03	-0.00 / 0.01	1.78 -0.0	08	Ċ,	server me			9	0.13	0.27 -0.16	-0.05	/ 1.22	2.44	-0.45
-0.24	-0.25 / -0.19	-2.18 $-2.$	30 35					10	0.09	0.09	0.00	/ 0.85	0.77	0.03
-0.06	-0.14 / -0.35	-0.59 -1.	22		An of the second se			12	0.06	0.10	0.03	0.57	0.50	0.31
0.02 0.19	-0.05 / 0.16 -0.06 / -0.03	0.20 -0. 1.62 -0.	45 50					13 14	-0.00	-0.00 -0.02	0.01	/ -0.04	-0.01	0.08
-0.01	-0.08 / -0.77	-0.14 -0.	71	~				15	-0.11	-0.25	0.03	-0.91	-1.98	0.29
-0.06	-0.08 / 0.44	-0.34 -0.	61					17	0.23	0.20	0.12	/ 1.92 / 0.01	1.53 0.72	0.92
0.06	-0.03 / -0.60 -0.11 / 0.56	0.47 -0. 0.79 -0.	25 81					18 19	-0.14 0.03	0.07	-0.20	-1.01	0.51	-1.47
0.06	0.21 / 0.51	0.44 1.	55	1	and an and a second			20	0.14	-0.03	0.06	0.94	-0.25	0.43
-0.09	0.00 / 1.07	-0.60 0.	56	¥الح ا										
				1										
					1. La contra de									
									· · · ·					
					and transformer									•
						1								
					10 south and a south and a south and a south and a south a									
				<b>A</b>										
				1			•							
							•							

 $\hat{\rho}_{50}^{14}(k)$ 

Time Lag 1 2  $\begin{array}{c} -0.06\\ -0.00\\ 0.16\\ 0.09\\ 0.01\\ -0.22\\ 0.00\\ -0.02\\ -0.03\\ -0.04\\ 0.01\\ -0.00\\ -0.09\\ 0.06\\ 0.05\\ -0.08\\ 0.07\\ 0.07\\ 0.15\\ 0.20\\ \end{array}$ 3 4

631

•

SEV.

 $\hat{\rho}_{50}^{22}(k)$ 

		Space Lag			Star	ndardized	$\hat{\rho}_{50}^{22}(k)$
Time Lag	• 0	1	2				
1	-0.01	0.04	-0.07	1	-0.12	0.40	-0.78
2	-0.10	0.24	0.10	1	-1.08	2.45	1.00
3	0.12	0.03	0.01	1	1.19	0.33	0.13
4	0.17	0.03	-0.04	1	1.72	. 0.35	-0.41
5	-0.03	0.08	0.09	- /-	-0.31	0.78	0.85
6	0.17	0.25	-0.02	1	1.64	2.40	-0.20
7	0.11	-0.12	0.01	-1-	1.02	-1.17	0.13
8	-0.14	0.05	0.10	1.	-1.33	0.51	0.93
9	-0.11	0.11	0.04	1.	-1.02	1.04	0.35
10	0.13	-0.08	0.02	1.	· 1.20	-0.70	0.20
11	-0.07	-0.08	-0.00	1	-0.65	-0.71	-0.30
12	-0.13	0.24	-0.06	1	-1.12	2.01	-0.54
13	-0.12	0.05	0.00	1	-0.98	0.42	0.04
14	0.04	-0.25	0.14	1	0.38	-2.03	1.14
15	-0.17	-0.05	0.05	1	-1.34	-0.42	0.41
16	-0.14	-0.70	-0.21	1	-1.10	-0.52	-1.63
17	-0.00	-0.08	0.05	1	-0.06	-0.62	-0.38
18	-0.09	-0.11	-0,04	1	-0.63	-0.80	-0.34
19	-0.29	0.09	-0.12	1	-2.06	0.66	-0.86
20	-0.18	0.04	-0.08	1	-1.24	0.30	-0.56

632

T

T

T

1

I

T

Ę

2

Distance of

J

Prove of

ALL NOT

and the second

Table 7-6(a). (Cont'd)

	Space Lag			Star	ndardized	$\hat{\rho}_{50}^{23}(k)$
0	1	2		•.		3
$\begin{array}{c} -0.03 \\ 0.09 \\ -0.07 \\ 0.21 \\ 0.07 \\ -0.10 \\ -0.04 \\ -0.07 \\ 0.01 \\ -0.02 \\ -0.04 \\ -0.13 \\ -0.02 \\ -0.10 \\ 0.11 \\ -0.13 \\ -0.01 \\ 0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07 \\ -0.07$	-0.06 -0.01 0.05 0.04 -0.01 -0.04 0.12 -0.09 0.04 0.08 0.06 0.02 -0.02 -0.02 -0.02 -0.10 0.17 -0.04 -0.12 -0.11 0.06	-0.01 0.04 0.09 0.22 -0.01 -0.02 0.03 0.11 0.22 0.08 0.14 -0.14 0.15 0.21 0.13 -0.04 -0.08 0.04 0.03		-0.35 0.91 -0.73 2.04 0.70 -0.94 -0.36 -0.63 0.08 -0.22 -0.40 -1.20 -1.08 -0.20 -0.78 0.85 -1.01 -0.09 0.49	$\begin{array}{c} -0.67 \\ -0.10 \\ 0.52 \\ 0.45 \\ -0.11 \\ -0.42 \\ 1.11 \\ -0.81 \\ 0.43 \\ 0.75 \\ 0.58 \\ 0.20 \\ -0.16 \\ -0.82 \\ 1.34 \\ -0.30 \\ -0.90 \\ -0.82 \\ 0.47 \end{array}$	-0.17 0.47 0.89 2.20 -0.13 -0.20 0.30 1.03 1.98 0.69 1.23 -1.18 1.21 1.69 1.01 -0.02 -0.61 0.31 0.24
-0.07	0.17	0.04	1	-0.51	1.18	0.31

633

27

Time Lag

1 2

6

ô ²⁴ 50 ^(k)	

50								
		Space Lag	5		Stan	dardized	$\hat{\rho}_{50}^{24}(k)$	
Time Lag	. 0	1	2					
1	-0.11	-0.04	0.02	1	-1.16	-0.40	0.27	
2	0.16	0.01	0.05	1	1.66	0.18	0.57	
3	-0.01	0.02	0.26	1	-0.14	0.24	2.61	
4	-0.07	0.04	0.09	1	-0.71	0.39	0.87	
5	-0.07	-0.05	-0.11	1	-0.67	-0.49	-1.10	
6	0.08	0.07	Ö.06	1	0.81	0.65	0.59	
7	0.02	0.08	0.01	1	0.24	0.75	0.12	
8	-0.15	-0.00	0.10	1	-1.37	-0.01	0.93	
9	-0.00	0.24	0.15	1	-0.07	2.12	1.32	
10	-0.15	0.05	0.05	1	-1.31	0.43	0.49	
11	-0.00	0.10	0.10	1	-0.00	0.91	0.92	
12	-0.01	0.02	-0.02	1	-0.14	0.18	-0.18	
13 .	-0.13	-0.07	0.09	/	-1.12	0.60	0.79	
14	-0.00	-0.04	0.10	1	-0.02	-0,38	0.79	
15	-0.01	0.10	0.07	1	-0.12	0.81	0.58	
16	-0.10	-0.05	-0.07	1	-0.77	-0.43	-0.56	
17	-0.09	-0.35	-0.03	1	-0.67	-2.62	-0.28	
18	0.05	0.12	0.03	1	0.38	-0.87	0.21	
19	-0.09	0.00	-0.07	1	-0.63	0.00	-0.48	
20	-0.14	-0.04	0.16	1	-0.95	-0.29	1.10	
		. · · ·					-	

634

1

I

1

I

(J)

T

1

Constant of the second

营

日本

 Table 7-6(a). (Cont'd)

 $\hat{\rho}_{50}^{31}(k)$ 

	Space Lag	Standardized $\hat{\rho}_{50}^{31}(k)$
Time Lag 0	1 2	50
1 $0.0$ 2 $-0.1$ 3 $-0.1$ 4 $0.10$ 5 $-0.1$ 6 $-0.00$ 7 $-0.00$ 8 $0.02$ 10 $0.12$ 11 $-0.10$ 12 $0.30$ 13 $-0.19$ 14 $0.06$ 15 $0.03$ 16 $-0.05$ 17 $-0.12$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
18       -0.10         19       -0.08         20       0.14	$\begin{array}{cccc} 0.13 & -0.06 \\ -0.12 & 0.12 \\ 0.02 & -0.15 \end{array}$	/ -0.72   0.99   -0.45 / -0.62   -0.87   0.83 / 0.94   0.16   1.05

 $\hat{\rho}_{50}^{32}(k)$ 

1

50							
		Space Lag			Star	ndardized	$\hat{\rho}_{50}^{32}(k)$
Time Lag	0	1	2				
1	0.01	0.07	0.07	1	0.14	0.75	0.70
2	0.00	0.04	-0.05	/	0.00	0.44	-0.56
3	-0.15	0.01	0.02	1	-1.53	0.10	0.20
4	0.04	-0.02	-0.10	1	0.41	-0.21	-0.97
5	0.07	-0.01	0.07	1	0.72	-0:16	0.68
6	0.09	-0.02	-0.03	1	0.87	-0.23	-0.33
7	-0.05	0.05	-0.11	1	-0.53	0.54	-1.04
8	0.21	0.20	0.10	1	1.89	1.84	0.89
9	-0.02	-0.12	0.04	1	-0.21	-1.11	0.42
10	0.21	-0.10	-0.01	1	1.87	-0.94	-0.14
11	0.05	0.15	-0.14	1	0.44	1.34	-1.18
12	-0.04	-0.08	-0.02	1	-0.37	-0.66	-0.16
13	-0.01	-0.06	0.04	1	-0.14	-0.54	0.39
14	-0.06	0.21	-0.24	1	-0.50	1.71	-1.94
15	-0.17	-0.13	0.06	1	-1.34	-1.01	0.49
16	-0.07	-0.12	-0.22	1	-0.53	-0.97	-1.71
17	-0.18	-0.11	-0.00	1	-1.35	-0.80	-0.06
18	0.13	0.25	-0.00	1	0.94	1.83	-0.06
19	-0.03	-0.10	0.06	1	-0.23	-0.70	0.41
20	0.06	-0.06	0.09	1	0.41	-0.44	0.61

636

(manual)

The second secon

I

1

****

T

7 -----

According to

Contraction of the second s

Station of

A subscription of

Land and the second

(control)

応期し

な相応

-

23

.

σ. C

1

2

3

5

6

-7

Table 7-6(a). (Cont'd)

 $\hat{\rho}_{50}^{33}(k)$ Standardized  $\hat{\rho}_{50}^{33}(k)$ Space Lag Time Lag 1 2 0 1.14 0.08 -0.45 0.80 -0.04 0.11 0.07 -0.10 -0.03 0.76 -1.08 -0.38 -0.60 -1.06 -0.64 -1.88 -0.24 -0.91 0.39 0.57 0.96 1.60 0.31 1.15 -0.25 -0.67 -0.56 -0.88 0.83 -0.08 -0.03 0.05 0.09 -0.06 -0.36 0.56 0.90 -0.01 -0.11 -0.15 -0.04 0.08 -0.06 -0.42 0.75 -0.21 -0.14 -0.20 -1.96 -1.31 -0.16 0.03 -0.02 -1.55 ·0.34 -0.14 -0.12 -0.09 0.20 0.03 -0.11 -0.03 -0.07 -0.08 0.13 0.17 0.25 -0.09 -0.68 -0.70 1.12 1.49 2.09 -0.74 -0.10 -1.31 -1.13 -0.83 1.71 0.30 -0.89 0.06 0.11 0.19 0.03 0.04 0.14 0.34 -0.25 -0.09 0.05 -0.03 -0.74 0.43 0.16 0.12 -0.12 -0.01 -0.09 -0.10 1,23 -0.24 -0.09 -0.33 -1.77 -0.70 -2.29 -0.07 0.91 -0.88 0.47 -0.12 0.12 0.06 1 0.04 -0.16 -0.01 / 0.31 -1.12

$\hat{\rho}_{50}^{34}(k)$							
50		Space Lag			Star	dardized	$\hat{\rho}_{50}^{34}(k)$
Time Lag	0	1	2				
1	0.03	-0.11	0.03	1	0.39	-1.12	0.34
2	0.10	0.05	0.01	1	1.00	0.57	0.18
3	0.15	0.23	-0.05	1	1.47	2.25	-0.57
4	0.03	0.09	-0.07	1	0.33	0.94	-0.76
5	-0.08	0.17	-0.22	1	-0.81	1.63	-2.13
6	-0.22	-0.22	-0.23	1	-2.10	-2.12	-2.15
7	0.13	0.15	0,05	1	1.22	1.40	0.51
8	-0.02	-0.05	-0.10	1	-0.21	-0.53	-0.93
9	-0.00	-0.18	-0.01	1	-0.04	-1.60	-0.08
10	0.03	-0.00	0.04	1	0,29	-0.07	0.42
11	0.13	0.08	0.15	1	1.14	0.73	1.33
12	0,08	-0.07	0.19	1	0.72	-0.64	1.63
13	-0.08	-0.21	-0.03	1	-0.67	-1.78	-0.29
14	0.07	0.13	0.13	1	0.62	1.04	1.10
15	-0.16	0.06	-0.02	1	-1.27	0.47	-0.19
16	-0.03	0.15	0.05	1	-0.29	1.15	0.40
17	-0.22	0.06	-0.29	1	-1.63	0.50	-2.15
18	-0.24	-0.11	-0.07	1	-1.76	-0.83	-0.49
19	-0.17	0.10	0.16	1	-1.23	0.71	1.11
20	-0.00	-0.12	-0.08	1	-0.02	-0.80	-0.58

638

1

P ....

T

9

Ĩ

T

Ĩ

T

I

I

ĵ.

- M

Table 7-6(a). (Cont'd)

Space Lag				Standardized $\hat{\rho}_{50}^{41}(k)$			
0	1	2					
0.03	-0.05	-0.08	1	0.36	-0.52	-0.81	
-0.06	-0.00	0.09	1	-0.60	-0.00	0.91	
-0.08	-0.16	-0.04	1	-0.85	-1.59	-0.43	
-0.07	0.14	-0.10	1	-0.72	1.43	-1.00	
0.06	0.14	0.01	1	0.58	0.37	0.14	
-0.11	-0.00	-0.13	1	-1.05	-0.02	-1.23	
-0.02	0.06	0.08	1	-0.26	0.61	0.79	
0.06	-0.14	0.07	1	0.59	-1.30	0.65	
0.10	-0.11	0.02	1	0,92	-0.97	0.23	
0.04	0.14	0.24	1	0.34	1.27	2.12	
-0.13	-0.11	0.08	1	-1.12	-0.93	0.75	
0.17	0.04	-0.09	1	1.45	0.35	-0.75	
-0.04	0.19	0.13	1	-0.36	1.54	1.08	
-0.02	-0.01	0.13	1	-0.15	-0.09	1.05	
-0.19	-0.23	-0.22	1	-1.50	-1.81	-1.75	
0.04	-0.01	-0.02	1	0.35	-0.11	-0.16	
-0.19	-0.17	-0.05	1	-1.41	-1.25	-0.40	
-0.04	-0.02	-0.19	1	-0.32	-0.15	-1.36	
-0.01	0.05	0.22	1	-0.12	0.36	1.58	
-0,02	-0.29	-0.22	1	-0.15	-1.97	-1.53	

639

Time Lag

12

8

640 T  $\hat{\rho}_{50}^{43}(k)$ Table 7-6(a). (Cont'd) Time Lag  $\hat{\rho}_{50}^{42}(k)$ Standardized  $\hat{\rho}_{50}^{42}(k)$ Space Lag 2 1 1 1 2 Time Lag 0 -0.04 -0.07 -0.46 -0.75 -0.09 1 -0.06 -0.00 -0.63 1 0.01 -0.95 0.00 -0.09 2 1 1.62 -0.02 -0.17 0.16 / -0.21 -1.69 3 0.04 0.08 -0.08 -0.06 0.16 0.06 -0.03 -0.01 / 0.40 -0.31 -0.15 -0.01 / 0.40 -0.03 / 0.79 0.10 / -0.74 -0.09 / -0.62 0.12 / 1.51 9 0.09 0.00 -0.14 0.94 0.07 -1.33 0.12 -0.36 0.98 -0.88 1.08 0.27 5 10 11 12 13 14 15 16 17 18 6 0.01 8 -0.16 0.03 / 0.60 -1.46 9 -0.15 0.11 -0.44 10 11 12 13 14 15 16 17 18 19 20 -0.02 0.24 -0.03 0.06 -0.10 0.07 -0.23 0.14 0.17 -0.05 -0.06 -0.05 -0.20 -1.36 -0.49 1 0.99 -3.66 -0.45 0.81 0.06 / -0.07 / 2.09 0.56 -0.32 0.52 -0.60 -0.40 -2.12 -0.18 -0.05 -0.05 1 -0.83 0.10 -0.26 1 19 0.19 -0.02 / 0.59 1.53 20 -1.07 -0.34 -0.14 / -1.76 -2.63 0.05 / 1.03 -0.15 / 1.21 -0.12 / -0.35 0.09 0.66 0.36 I -1.07 -0.84 0.80 0.11 -0.00 1.50 -0.00 0.22 0.10 / -0.44 0.67 I I T T

	Space Lag			Stan	ρ̂ ⁴³ 50 ^(k)			
0	1	2						
0.11	0.07	0.04	1	1.12	0.70	0.48		
0.03	-0.21	0.07	1	-0.35	-2.17	0.73		
0.01	-0.13	-0.15	1	0.17	-1.30	-1.53		
0.03	-0.03	-0.09	1	-0.36	-0.36	-0.89		
0.13	-0.04	-0.22	1	-1.29	-0.44	<u>~2,09</u>		
0 23	-0.11	-0.14	1	-0.20	-1.06	-1.31		
0 02	-0.07	-0.08	1	-0.19	-0.67	-0.80		
0.00	0.08	-0.10	1	0.05	0.76	-0.93		
0 17	0.14	0.01	1	1.52	1.31	0.08		
_0_01	-0.00	-0.03		-0.13	-0.04	-0.30		
0.13	-0.11	0.20	1	1.14	-1.01	1.73		
0.10	-0.05	0.19	j.	2.62	-0.47	1.63		
0.14	0 04	0.28	·/	1.14	0.39	2.27		
0.06	_0 10	0.08	<i>'</i> /	0.47	-0.80	0.63		
0.00	0.08	-0.00	1	-1.12	0.63	-0.05		
0 00		_0.04	1	-0.60	-0.67	-0.34		
0.20	-0.02	-0.13	1	1.48	-0.20	-1.03		
0.20	0.02	-0.06	1	-0.69	-0.25	-0.4		
-0.09	-0.10	-0.07	1	-2.22	-0.70	-0.5		
0.01	0 18	0.01	<i>'</i> 1	0.13	1.22	0.0		
		Table 7-	6(a).	(Co	nt'd)			
---------------------------	-------	-----------	-------	------	-------	-----------	---------------------------	---
$\hat{\rho}_{50}^{44}(k)$	)							
		Space Lag			Sta	ndardized	$\hat{\rho}_{50}^{44}(k)$	
Time Lag	0	1	2					
1	0.11	-0.14	0.01	1	1.18	-1.45	0.15	
2	0.00	0.01	-0.02	1	0.06	0.13	-0.23	
3	0.10	0.02	-0.09	1	1.01	0.23	-0.94	
4	-0.00	-0.03	-0.11	1	-0.02	-0.31	-1.11	
5	-0.03	-0.11	-0.16	1	-0.36	-1.08	-1.51	
6	-0.20	-0.20	-0.15	1	-1.92	-1.91	-1.41	
7	-0.01	0.10	-0.11	1	-0.14	0.99	-1.01	
8	0.05	0.08	-0.14	-7	0.51	0.77	-1.28	
9	0.11	-0.07	-0.04	1	1.03	-0.69	-0.40	
10	-0.06	-0.16	-0.11	- 7-	-0.58	-1.45	-0.94	
11	0.06	0.00	0.14	1	0.52	0.06	1.24	•
12	0.04	-0.03	0.23	1	0.34	-0.29	1.95	
13	-0.04	-0.11	0.13	1.	-0.33	-0.95	1.12	
14	-0.01	-0.03	0.14	1	-0.11	-0.30	1.17	
15	-0.16	0.01	-0.00	1.	-1.28	0.11	-0.03	
16	-0.08	0.22	-0.10	1	-0.66	1.67	-0.77	
17	0.15	0.29	-0.10	1	1.12	2.15	-0.79	
18	-0.26	-0.10	0.02	- 1	-1.86	-0.77	0.17	
19	-0.16	0.02	-0.05	1	-1.14	0.14	0.40	
20	0.13	0.29	0.02	1	0.88	1.98	0.15	

642

.

1

R

E C

T

I

Sec. 1

J

]

1

10.00

4

 $\hat{\phi}_{k\ell}^{11}$ 

Time Lag

1

2

3

5

 $\hat{\phi}^{12}_{kl}$ 

Time Lag

1

2

3 4 5

 $\hat{\phi}_{kl}^{13}$ 

Time Lag

Table 7-6(b). The Sample Multivariate Space-Time Partial Autocorrelation Function for the Residuals of Cleveland Crime Data

	Space Lag		• .	Stan	dardized	$\hat{\phi}_{kl}^{11}$
Q	1	2				
-0.16 -0.08 -0.14 -0.05 0.01	0.03 0.02 0.23 0.01 0.01	0.09 0.27 0.15 -0.12 -0.27		-1.66 -0.82 -1.39 -0.50 0.09	0.33 0.24 2.34 0.17 0.10	0.92 2.70 1.55 -1.18 -2.38

	Space Lag	5		Stan	dardized	$\hat{\phi}_{kl}^{12}$
0	1	2	•			
-0.12 0.08 -0.10 0.16 -0.00	0.13 0.11 0.11 -0.01 0.11	-0.05 -0.00 0.03 -0.01 -0.18	         	-1.21 0.85 -1.03 1.63 -0.04	1.40 1.17 1.12 -0.17 1.07	-0.54 -0.04 0.34 -0.15 -1.78

	Space Lag	•		Sta	ndardized	$\hat{\phi}_{kl}^{13}$
0	1	2				
0.09 -0.26 -0.14 0.04 0.01	0.10 0.00 -0.04 0.11 -0.17	0.35 -0.13 0.08 -0.18 0.59	11111	0.95 -2.65 -1.43 0.39 0.10	1.09 0.00 -0.46 1.08 -1.62	3.58 -1.34 0.84 -1.81 5.60

an An								644											an a		
													an a								
			Table 7-	-6(b)- (	Cont ¹ d)							VIA					н. 1				. · · · ·
	$\hat{\phi}_{1,2}^{14}$	•		- <b>.</b> - <i>,</i> - <b>. .</b>																	
	KX.		Space Lag		Star	ndardized	$\hat{\phi}_{k\ell}^{14}$								<u></u> 23		Table	7 <b>-</b> 6(b).	(Cont'd)		
	Time Lag	. <b>0</b>	1	2											^{\$\$} kl		Speed To	I.	· ·		~23
	1 2	0.00	-0.11 0.01	-0.38 0.18	/ 0.06 / 0.35	-1.19 0.15	-3.91 1.86							Time	Lag	0	space Lag	5 2	Sta	ndardized	φ ²⁻³ kl
	3 4 5	-0.03 -0.08 0.10	-0.14 0.03 0.12	-0.09 0.11 -0.35	/ -0.32 / -0.82 / 0.99	-1.39 0.29 1.15	-0.93 1.14 -3.34								1 2 3	0.04	0.07 -0.02	0.23 -0.07	/ 0.43	0.80 -0.27	2.33 -0.76
	^21	an An Anna Anna An Anna Anna Anna Anna A												2	4 5	-0.00 -0.03	-0.08 -0.03	-0.10 -0.17 -0.15	/ -2.23 / -0.00 / -0.36	1.20 -0.79 -0.28	-1.01 -1.68 -1.47
	$\phi_{kl}^{21}$		Space Lag		Star	ndardized	$\hat{\phi}_{kl}^{21}$			an a					<u></u> 24		• • • •			•	
	Time Lag	0	1	2	· ·				ā	and the second se					Ψ <b>k</b> l		Spend Ter				<u>~</u> 24
	1 2 3	0.12 0.09 0.06	-0.04 -0.00 -0.06	0.13 -0.05 -0.06	/ 1.25 / 0.90 / 0.63	-0.41 -0.07 -0.67	1.38 -0.54 -0.67		U					Time	Lag	0	1	2	Sta	dardized	φ ²⁻ kl
	4 5	-0.06 -0.04	0.01 -0.01	0.12 0.26	/ -0.64 / -0.42	0.16 -0.10	1.15 2.50							1 2 3		-0.10 -0.00 0.07	0.00 -0.06 -0.16	-0.24 0.03 0.25	/ -1.09 / -0.05 / 0.74	0.08 -0.65	-2.46 0.30
									B	and the second				4 5		0.10 0.11	-0.03 -0.00	0.04 0.14	/ 0.99 / 1.07	-0.33 -0.04	0.44 1.33
	\$22 €					•			ß						<u>-</u> 31						
			Space Lag		Star	ndardized	$\hat{\phi}_{kl}^{22}$		ធា						ĸ		Space Lag		Stan	dandiaal	<b>☆</b> 31
	Time Lag	0	1	2	1 0 06	0 37	- 1 24							Time 1	Lag	а О	1	2	Stall	Jarutzed	⁴ kl
	1 2 3 4 5	-0.00 -0.06 0.23 0.07 -0.05	0.03 0.29 -0.04 0.03 -0.01	-0.12 0.15 0.02 0.08 0.24	/ -0.67 / 2.34 / 0.73 / -0.53	2.94 -0.47 0.31 -0.10	1.53 0.25 0.82 2.29							1 2 3 4		-0.09 0.16 0.02 0.02	0.03 0.02 0.13 0.09	0.01 0.17 0.04 0.22	/ -0,97 / 1.64 / 0.28 / 0.19	0.37 0.24 1.34 0.92	0.17 1.76 0.39 2.17
																0.00	-0.08	0.12 /	0.01	-0.58	1.19
												1									
											t and a second										
	a San San San San San San San San San San																				
Turner of the second	egete (more) for a construction of the state of the state of the	n na se an	angen konnen anne at in one anne an e	an a an	9499 <b></b>		an a	ny tau ang gangana na panganan Nan ang ganganan	مېر د د د د د د د د د ورو ورو ورو ورو ورو	. 1 0									•		

Table 7-6(b). (Cont'd)

 $\hat{\phi}_{kl}^{32}$ 

		Space Lag	3	Star	$\hat{\phi}_{kl}^{32}$		
Time Lag	<b>0 0</b>	1	2				
1 2 3 4 5	-0.02 0.11 -0.08 0.16 0.07	-0.07 -0.01 0.04 0.01 -0.18	-0.01 0.04 0.08 0.22 0.33	       	-0.26 1.11 -0.81 1.56 0.72	-0.79 -0.11 0.42 0.10 -1.73	-0.15 0.47 0.84 2.12 3.21

∲33 ¢k¢

		Space Lag			Standardized $\hat{\phi}_{kl}^{33}$					
Time Lag	0	1	2							
1 2	-0.10	0.12	0.11	1	-1.07	1.24 -0.25	1.13 -1.17			
5 5	-0.00 -0.04	-0.03 0.14	-0.22 -0.20 -0.07	///	-1.22 -0.07 -0.45	1.03 -0.35 1.32	-2.21 -1.95 -0.71			

 $\hat{\phi}_{kl}^{34}$ 

		Space Lag		Standardized $\hat{\phi}_{kl}^{34}$						
Time Lag	0	1	2							
1.	0.18	-0.00	-0.06	/ 1.88	-0.08	-0.62				
2	-0.13	-0.24	0.18	/ -1.28	-2.40	1.86				
3	0.07	-0.20	0.08	/ 0.71	-2.02	0.83				
- 4	-0.03	-0.14	0.00	/ -0.33	-1.38	0.08				
5	-0.02	-0.12	-0.05	/ -0.22	-1.21	-0.55				

646

( see

J

T

1

T

I

1

J

. [

Ľ

. ___

**1** 

 $\square$ 

 $\square$ 

(II) (1)

N

4

	Table 7-6(b). (Cont'd)												
$\hat{\phi}_{kl}^{41}$	•			•									
		Space Lag			Stan	dardized	€41 •						
Time Lag	0	1	2				KC,						
1 2 3 4 5	-0.07 0.02 0.08 0.02 0.00	0.07 -0.00 0.06 0.08 -0.04	0.00 0.15 0.06 0.20 0.07	1111	-0.74 0.27 0.84 0.20 0.01	0.79 -0.09 0.65 0.81 -0.42	0.0 1.5 0.6 2.00 0.66						
€ 42 kl	·		· ·										

		Space Lag			Sta	ndardized	ê ⁴²
Time Lag	0	1	2		•		' KL
1 2 3 4 5	-0.10 0.12 -0.04 0.02 -0.03	-0.03 0.00 0.10 -0.05 -0.18	0.05 -0.02 0.19 0.10 0.19	/////	-1.06 1.19 -0.41 0.22 -0.29	-0.37 0.02 1.01 -0.53 -1.77	0.58 -0.19 1.91 1.01 1.82

 $\hat{\phi}_{kl}^{43}$ 

		Space Lag	<b>3</b>		Standardized $\hat{\phi}_{1,2}^{43}$				
Time Lag	0	1	2		•		KL		
1 2 3 4 5	0.00 0.08 0.09 -0.04 -0.04	-0.08 0.06 0.24 0.07 0.20	0.03 0.07 -0.13 -0.27 -0.12	1111	0.09 0.81 0.90 -0.39 -0.45	-0.90 0.60 2.43 0.68 1.94	0.31 0.72 -1.28 -2.67 -1.22		

648 T I Table 7-6(b). (Cont'd)  $\hat{\phi}_{kl}^{44}$ 1 Standardized  $\hat{\phi}_{kl}^{44}$ Space Lag Time Lag 0 2 1 I gh S 1 0.11 0.03 1 -0.17 1.13 -1.77 0.32 

 1
 1
 0

 1
 1
 1

 1
 1
 2

 g
 h
 S

 1
 2
 0

 1
 2
 0

 1
 2
 2

 g
 h
 S

 1
 3
 0

 1
 3
 2

 2 -0.06 0.01 -0.20 -0.67 0.10 -2.00 3 0.04 -0.10 0.01 0.44 -1.04 0.12 0.13 / -0.02 0.02 / 0.61 -0.84 -0.98 1.26 0.21 4 -0.00 -0.08 5 0.06 -0.10 J I g h S T g h S 2 1 0 2 1 1 2 1 2 1 - 4 g h S T 2 2 0 2 2 1 2 2 2 g h S 2 3 0 2 3 1 2 3 2 g h S 2 4 0 2 4 1 2 4 2 3 Ø Ŋ and the second  $\square$ 

2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	•	•	•		•	•	:	•		•			:.		•	-		
•	•		•	•		•	٠	•	+	•	•	•	•	•	•	•	•	-
										:								1
•	•	•	•	•	•	•	•	•	•	•	•	•	•	. –	•	•	•	•
•	•	•	•	•	•	:	•	:	•	•	•	:	•	:	:	•.	•	•
											:			1				
•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•
:	•	•	•	•	•	•.	•	:	•	· •	:	:	:	•	:	•	•	:
•	•	•	•	-	•	•	•	•	•	•		•	•		•	•	•	•
•	• • •	•	•	•	•	-	-	:	•	· .•	•	•	•	:	•	:	:	•
	<u></u>					1			;									·
•	•	+	•	•		•	•	•	•	•	۰.	+	•	•	•	۰.		•
•	*	•	•	•	•	+	:		:	•	•	:	:	:	:	s •	:	•
			<u> </u>				:								•			<u> </u>
•	•		•	•	•	•	•	•	•	•		•	•			•		•
+	•	•		+ -	• :*	•	•	•	:	+	•	•	•	• ¹	•	•	:	•
																	1	
		+			•	•	•			•	•	÷						
	•	:	•	•	•.	•	•		•	•	•	•	•	•	•	•	•	•
						<u> </u>					,			<u></u>	· · ·			<del></del>
•	•	•	•	•.	•	•	÷	•	•	•	•	•	•	•	-	•	:	•
•	+	•	•	•	•	` •	•	•	•	•	•		. •	÷.•	5. •		٠	•

Figure 7-13(a). The Encoded Sample Multivariate Space-Time Autocorrelation Function of the Residuals from the MULSTARIMA Model of the Cleveland Crime Data

	Ъ	S	1	2	3	4	5	6	7 .	8	9	10	11	12	13	14	15	16	17	18	19	20
3	1	0	÷	•	•	•	• .		•	•	+	•	.•	+	•	•	•	٠	•	•	•	
3	1	1		•	•	:			• :	:	•	:	-	+	•	. •	:	•	:	•	•	•
-	<b>b</b>								<u></u>										•			
-									<u> </u>								· .					
3	2	0		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
3	2	2		•	•	:			•	•	:		:	•	:	•	•		•			•
8	h	S	1	1														.,				
~	7	0		·			·····							+				<u> </u>				
3	3	1			•	•	:		<u>_</u> `	-	•	•	•		:	•	· •	•	:		•	
3	3	2	•	•	•	•	•	•		•.	•	••	•.	•	•	•	•	•	•	•		•
8	h	S.	·																			
3	4	0	•	•	•	•	•	-	•		•	•		.•	•	•	•	•	•	•	•	•
3	· 4 · 4	1 2	•	• •	+	:	:	-	•	•	•	•	•	•	:	:	:	•		•	:	•
		~								<u> </u>	<u> </u>		<u>.</u>			· · · · ·						
4	1	0	•	•	•	:	•	•••	. •	•	•	•	•	•	•	1 <b>•</b> :	:	•	•	•	•	:
4	1	2	•	•	•	•	•	•	•	•	•	+	•	÷	•	•	•	•	•		•	•
8	h	S													·.						-	
4	2	0			- شبیمت -								+									
4	2	1		•	•	•	•	•	•	•	•	•	•	-	•	•	•	-	•	. •	•	
	4	1	• ;			<u> </u>			•	•	•	•	•						<b>.</b>	•	•	
8	h	<u>s</u>																	·			<u>-</u>
4	3	0	. •.	• .	•	•		-	•, '	•	• '	•	٠	+	•	•	•		•	•	-	•
4	3	2	:	•	:	•	-	•	•	:	:	•		•	· +		:	•	•	÷	:	:
*	h	s																				
-										·										<u>.</u>		
4	4	1	•	•	•	•	•	:	•	:	•	•	•	•	:	•	•	•	;	•	•	•
4	4	2	•	•	•	•	•	•	<u> </u>	•	•	•	•	• .	•	•		٠	•	٠	. •	•

Figure 7-13(a). (Cont'd)

× ')

El a constant de la constant

650

T

(internet)

1

**'** 1

1

T

Ĩ

劉

IJ

.77

1

 $\overline{}$ 

 $\mathbf{]}$ 

]

No.

5

 $\sim$ 

g	h	S	1	2	3	4	5
1 1 1	1 1 1	0 1 2	•	•	•	• •	•
g	h	S		•			
1 1 1	2 2 2	0 1 2	•	•	•	•	•
g	h	S			· .		· ·
1 1 1	3 3 3	0 1 2	•	•	•	•	+
g	h	S					
1 1 1	4 4 4	0 1 2	•	•	•	•	•
g	h	S					
2 2 2	1 1 1	0 1 2	•	•	•	•	• +
g	h	S					
2 2 2	2 2 2	0 1 2	•	+	•	•	•
g	h	S					
2 2 2	3 3 3	0 1 2	• • +	•	•	•	•
8	; h	S					
2	2 4 2 4 2 4	0 1 2	•	•	•	•	•

Figure 7-13(b). The Encoded Sample Multivariate Space-Time Partial Autocorrelation Function of the Residuals from the MULSTARMA Model of the Cleveland Crime Data

where .

652

Pa a

1

1

Particular 1

評

付任

Figure 7-13(b). (Cont'd)

compare favorably to forecasted values by chance itself or because the process has been changed after the forecast model has been developed (e.g. by some intervention program). In the former situation, the process is not changed and still can be adequately described by the employed model, while in the latter situation, the process has been changed and the forecasting or historically based model has to be modified to accomodate the change in the process. In the following, from the model, Equation (7-94), the forecasting function is derived in Section 7.9.2.1. The L-step ahead forecasts at T=35 for l=1,2,...,22, the 1-step ahead forecasts at T=35,36,...,56 and their associated 95% confidence intervals are computed and plotted with the corresponding new observed values for each crime and each location. In Section 7.9.2.2, the model, Equation (7-94) is augmented to allow formal intervention analysis in order to evaluate the effect of CCP which was initiated at T=40.

7.9.2.1 Forecasting. Given the general multivariate ARMA model

$$\sum_{i=1}^{k} z^{h}(t) = \sum_{g=1}^{k} \sum_{k=1}^{hg} z^{g}(t-k) - \sum_{g=1}^{k} \sum_{k=1}^{hg} z^{hg}(k) z^{g}(t-k) + z^{h}(t)$$

h=1,2,...,ζ.

1

ŧ,

The L-step ahead point forecast of category h at time T is the conditional expectation taken at time T.

$$\hat{z}_{T}^{h}(\ell) = E(\underline{z}^{h}(T+\ell) | \underline{z}(T), \underline{z}(T-1), \dots; \underline{\varepsilon}(T), \underline{\varepsilon}(T-1), \dots).$$

So

$$\hat{Z}_{T}^{h}(\ell) = \sum_{g=1}^{\zeta} \sum_{k=1}^{p^{hg}} B^{hg}(k) \hat{Z}_{T}^{g}(T+\ell-k) - \sum_{g=1}^{\zeta} \sum_{k=1}^{q^{hg}} A^{hg}(k) \hat{\varepsilon}_{-}^{g}(T+-k)$$
(7-95)

where

$$Z_T^h(T+l-k) = Z^h(T+l-k)$$
 is the realized observation if  $l \le Z_T^g(T+l-k)$  is the estimated noise if  $l \le k$ , and  
 $Z_T^g(T+l-k) = 0$  if  $l > k$ .

To obtain the -step ahead interval forecast, we need to compute  $Var(\hat{Z}_{T}^{h}(\ell))$ . The general multivariate ARMA model can be expressed in  $\Lambda$ -weight representation,

$$\hat{Z}_{T}^{h}(\ell) = \sum_{g=1}^{\zeta} \sum_{k=1}^{\infty} \Lambda^{hg}(k) \varepsilon^{g}(T+\ell-k) + \varepsilon^{h}(T+\ell), \qquad (7-96)$$

where

Since the variance of the realized values are zeros,

Var

Using the point forecasts and the variance estimate the *l*-step ahead  $100(1-\alpha)\%$  forecast interval for a category h observation is,

where  $Z_{\alpha/2}$  is the  $\alpha/2$  percentage point of a unit normal distribution (e.g., 1.96 for  $\alpha = 0.05$ ).

By setting

10400

 $\Lambda^{hg}(k)$  can be expressed in terms of  $B^{hg}(k)$ ,  $A^{hg}(t)$ matrices, the equations that describe this relationship are given in Section 7-3.

$$r(\widehat{Z}_{T}^{h}(\ell)) = G^{hh} + \sum_{k=1}^{\ell-1} (\sum_{g=1}^{\zeta} \Lambda^{hg}(k)) G(\sum_{g=1}^{\zeta} \Lambda^{hg}(k))'$$
(7-97)

$$\hat{z}_{\mathrm{T}}^{\mathrm{h}}(\ell) + z_{\alpha/2} \sqrt{\operatorname{Var}(z_{\mathrm{T}}^{\mathrm{h}}(\ell))} , \qquad (7-98)$$

$$B^{hg}(k) = \sum_{\substack{\ell=0\\ k=0}}^{\lambda_k^{hg}} \phi_k^{hg} \psi_w^{(\ell)},$$
$$A^{hg}(k) = \sum_{\substack{\ell=0\\ k=0}}^{m_k^{hg}} \theta_k^{hg} \psi_w^{(\ell)},$$

in Equation (7-95) and (7-98), we obtain the specific forecast functions for the MULSTARMA model. For example, employing the model of the Cleveland CCP Data to build the forecast function, we set,

$$g^{22}(1) = \hat{\phi}_{10}^{22}I + \hat{\phi}_{12}^{22}w^{(2)},$$

$$g^{32}(1) = \hat{\phi}_{10}^{32}I,$$

$$g^{33}(1) = \hat{\phi}_{10}^{33}I,$$

$$g^{44}(1) = \hat{\phi}_{10}^{44}I,$$

$$g^{43}(2) = \hat{\phi}_{20}^{43}I,$$

$$g^{23}(2) = \hat{\phi}_{20}^{23}I,$$

$$A^{24}(2) = \hat{\phi}_{20}^{24}I,$$

$$A^{44}(2) = \hat{\phi}_{20}^{44}I + \hat{\phi}_{21}^{44}w^{(1)}$$

wne have the following recursive L-step ahead point forecast function,

$$\begin{aligned} \hat{Z}_{T}^{1}(\ell) &= 0 \\ \hat{Z}_{T}^{2}(\ell) &= (\hat{\phi}_{10}^{22} + \hat{\phi}_{12}^{22} e^{(2)}) \hat{Z}_{T}^{2}(\ell-1) - \hat{\theta}_{20}^{23} \hat{\varepsilon}_{T}^{3}(\ell-2) - \hat{\theta}_{20}^{24} \hat{\varepsilon}_{T}^{4}(\ell-2) \\ \hat{Z}_{T}^{3}(\ell) &= \hat{\phi}_{10}^{32} z^{2}(\ell-1) + \hat{\phi}_{10}^{33} z^{3}(\ell-1) \\ \hat{Z}_{T}^{3}(\ell) &= \hat{\phi}_{10}^{44} \hat{z}_{T}^{4}(\ell-1) + \hat{\phi}_{20}^{43} \hat{z}_{T}^{3}(\ell-2) - \hat{\theta}_{20}^{44} \hat{\varepsilon}_{T}^{4}(\ell-2) - \hat{\theta}_{21}^{44} \hat{\varepsilon}_{T}^{4}(\ell-2) \quad (7-99) \\ \hat{Z}_{T}^{4}(\ell) &= \hat{\phi}_{10}^{44} \hat{z}_{T}^{4}(\ell-1) + \hat{\phi}_{20}^{43} \hat{z}_{T}^{3}(\ell-2) - \hat{\theta}_{20}^{44} \hat{\varepsilon}_{T}^{4}(\ell-2) \quad (7-99) \end{aligned}$$

In the forecast function, Equation (7-99), it is seen that: the category 1 crime, murder, doesn't have any correlated relationship

with the other crimes; the category 2 crime, rape, is influenced by the previous rape occurrences in the same location and the neighboring regions and the category 3 crime, robber, and category 4 crime. burglary in the same location; the category 3 crime, robbery, is correlated to the previous occurrences of robbery and rape in the same location; the category 4 crime, burglary is influenced heavily by the previous occurrences in the same location and neighboring locations burglary and by robbery in the same location.

It should be noted that the forecast function is dependent on the inter-category as well as inter-location correlations. Dropping the inter-category correlated structure, i.e., dropping the  $\hat{\phi}_{20}^{23}$ ,  $\hat{\phi}_{20}^{24}$ ,  $\hat{\phi}_{10}^{32}$ ,  $\hat{\phi}_{20}^{43}$  terms, we obtain 4 sets of independent forecast functions that still contain the inter-location structure. Dropping the interlocation structure, that are contained in the  $\hat{\phi}_{12}^{22}$ ,  $\hat{\phi}_{21}^{44}$  terms, we get 3 sets of independent forecast functions that still keep the intercategory structure. Dropping all the inter-category and interlocation structure, we obtain  $4\times3 = 12$  independent forecast functions that contain no inter-category structure nor inter-location structure. In the appropriate MULSTARMA model, to describe the data, Equation (7-99), murder is independent from the other crimes. Therefore, the forecast function for the category of murder would be the same if the categories were originally treated indpendently or jointly. However, the other three categories if treated independently would not give as refined a forecast function as the simultaneous model approach. Based on Equations (7-99), (7-97) and (7-98), the standardized N(0,1) point forecasts and the 95% confidence interval forecasts at

T=35 were computed and listed in Table 7-7. Since the standardized expectation value of  $Z_{t}$  is 0, so the point forecasts converge to zero for each category and each location. Conversion to actual units can be accomplished using data from Table 7-4. Also, the process is stationary, so the variance of the point forecast converges and thus the lower bound and upper bound of  $100(1-\alpha)\%$  confidence interval forecast for given  $\alpha$  converge. In Figure 7-14, the point forecasts, newly realized observations and these 95% confidence interval forecasts are plotted. Here it is seen that the point forecasts and the bounds of the interval forecasts converge quickly. The forecasts do not contain any variations from the zero expectation when the converging rate is negligible, therefore in Table 7-7, these forecasts are omitted except the 22-step ahead forecasts to illustrate the convergent limits.

658

F

Instead of computing the *l*-step ahead forecasts for *l*=1,2,...,22, the forecast function can be applied alternatively to compute 1-step ahead forecasts for T=35,36,...,56. It should be noted that the employed model isn't changed but the forecast values are modified by adopting the newly realized values. With shorter forecast horizons and using the newly adopted observations, the forecasts are expected to more closely mimic the new data than for longer forecast horizons which do not adapt the forecasts with new data. The 1-step ahead forecasts at T=35,36,...,56 are computed and plotted in Figure 7-15 with their corresponding realized observations. Comparing Figure 7-14, which is plotted for the l-step ahead forecasts, and Figure 7-15, we see that the shorter length forecast horizons are more adap-

h i

1 1

1 2

1 3

2 1

2 2

2 3

L	$\hat{z}_{i,T}^{h}(\ell)$	LB	UB
1	0.00	-1.74	1.74
22	0.00	-1.74	1.74
1	0.00	-1.74	1.74
22	0.00	-1.74	1.74
1	0.00	-1.74	1.74
22	0.00	-1.74	1.74
1	-0.20	-1.94	1.54
2	-0.07	-1.92	1.78
3	-0.04	-2.66	2.59
4	-0.02	-2.73	2.70
5	-0.01	-2.75	2.73
6	-0.00	-2.75	2.74
22	-0.00	-2.75	2.75
1	-0.14	-1.88	1.60
2	-0.02	-1.78	1.74
3	-0.00	-2.55	2.54
22	-0.00	-2.56	2.56
1 2 3 4 5 6 22	-0.11 -0.08 -0.04 -0.02 -0.01 -0.00 -0.00	-1.85 -1.93 -2.66 -2.73 -2.75 -2.75 -2.75 -2.75	1.63 1.77 2.59 2.70 2.73 2.74 2.75

Table 7-7. The Forecasts at T=35 for the CCP Data

hi	<b>L</b>	$\hat{z}_{i,T}^{h}(l)$	LB	UB	
3 1	1 2 3 4 5 22	0.36 0.12 0.04 0.01 0.00 0.00	-1.38 -1.81 -1.93 -1.97 -1.98 -1.99	2.10 2.05 2.01 1.99 1.99 1.99	
32	1 2 3 4 5 6 7 22	-0.23 -0.03 -0.06 -0.03 -0.01 -0.01 -0.00 -0.00	-1.97 -2.06 -2.03 -2.01 -1.99 -1.99 -1.98 -1.98	1.51 1.80 1.91 1.95 1.97 1.98 1.98 1.98	
33	1 2 3 4 5 6 22	0.67 0.28 0.11 0.04 0.01 0.00 0.00	-1.07 -1.65 -1.87 -1.94 -1.97 -1.98 -1.99	2.41 2.20 2.08 2.02 2.C0 1.99 1.99	
4 1	1 2 3 4 5 6 7 22	0.03 0.01 0.01 0.01 0.01 0.01 0.00 0.00	-1.70 -1.93 -2.67 -2.84 -2.90 -2.92 -2.93 -2.93	1.77 1.96 2.70 2.86 2.91 2.93 2.93 2.93	

Table 7-7. (Cont'd)

660

Ø Ċ 

Table	7-7.	(Con	tt'd)
		(004	

h i

4 2

4 3

Charles and a second

A succession

T

ll.

T

(ł ]

m

T

1

Contraction of the local division of the loc

L	$\hat{z}_{i,T}^{h}(\ell)$	LB	UB
1 2 3 4 5 6 7 8 9 10 11 12 13 22	-0.17 -0.13 -0.10 -0.07 -0.05 -0.04 -0.03 -0.02 -0.02 -0.01 -0.01 -0.01 -0.00 -0.00	-1.91 -2.08 -2.64 -2.76 -2.79 -2.79 -2.78 -2.78 -2.78 -2.77 -2.77 -2.76 -2.76 -2.76 -2.76 -2.76	1.57 1.81 2.45 2.61 2.68 2.71 2.72 2.73 2.74 2.74 2.74 2.75 2.75 2.75 2.75 2.75
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 22	1.18 0.86 0.64 0.47 0.35 0.26 0.19 0.14 0.10 0.08 0.06 0.04 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.00	-0.56 -1.09 -2.05 -2.38 -2.56 -2.67 -2.74 -2.79 -2.83 -2.86 -2.88 -2.89 -2.90 -2.91 -2.92 -2.92 -2.92 -2.93 -2.93 -2.93	2.92 2.81 3.32 3.25 3.18 3.12 3.07 3.04 3.01 2.99 2.98 2.96 2.95 2.95 2.95 2.94 2.94 2.94 2.94

661



(SSA



Target Areas ð 🖞 🖱 🖞 Ċ Ū Adjacent Areas Rest Areas Ē 

(d) Crime Category 4 : Burglary

Est

5 .





tive. For example, for the category 1 crime, murder, the 1-step ahead forecasts are identical to the 1-step ahead forecasts, since the historical process of murder occurrences is a white noise process, which has no structure and therefore newly adapted observations do not have any further information than what was already historically known. However, comparing the *l*-step ahead forecasts of crime category 4, burglary, in Figure 7-14(d), we see that the 1-step ahead forecasts track the realized observations more closely, because of the adaptation of the new data and its associated information. This is most clearly seen at the rest area. Whereas the observations of burglary crime at the rest area for  $t \ge 52$  are clearly out of control with regard to the *l*-step ahead forecast function while the corresponding 1-step ahead forecast function is still tracking the realized observations within the 95% forecast confidence interval.

7.9.2.2 Preliminary Intervention Analysis. The CCP program initiated at T=40 is considered as an intervention program that was expected to lower the crime occurrences at the target areas and perhaps also reduce the crime occurrences in the adjacent areas. If the underlying process causing crime occurrences is changed by the intervention program then the *l*-step ahead forecasts the in reveal this fact in that the new realized observations should de Mare from the forecasts. However, if the process is not changed, the L-step ahead forecasts should have good forecasting capability for the newly realized observations. In Figure 7-14, it is seen that at the target areas, except category 2 crime, rape, the newly realized observations are consistently lower than the point forecasts, i.e., lower than what

and i=3, h=4 are set for the adjacent areas and burglary crime, respectively. Since the forecast function assumes the historical process does not change, the forecast function can be applied to evaluate probabilistically whether the data points entering after t=T represent the process or they are out of control, so the computed probability represents the probability that any new observation would be worse than the new value observed. If this probability is high, the new realization is still consistent with the structure of the historical model. If this probability is low, the new data points do not come from the historical process but rather a different process. The computed probabilities for burglary are,

-----

670

L. AR

行き

ろ

is expected according to the model that describes T  $\leq$  35 observations well. Also it is seen that at the rest area, the realized observations are consistently higher than what is expected by the forecast function, Equation (7-99), and the forecast function at T=35 has the best forecast capability for the adjacent areas. Here the largest discrepancy situation is detected at the rest areas for the burglary. To probabilistically assess see how bad this discrepancy is, the probability is, the probability  $2 \cdot p_r(D_i^h > |D_i^h|)$  can be computed, where

$$\hat{D}_{i}^{h} = (\hat{z}_{i,T}^{h}(\ell) z_{i,T+\ell}^{h}) / \sqrt{\operatorname{Var}(\hat{z}_{i,T}^{h}(\ell))} \sim N(0,1), \qquad (7-100)$$

&=1-11: 0.26, 0.17, 0.19, 0.96, 0.09, 0.10, 0.14, 0.00, 0.01, 0.17, 0.05 12-22: 0.00, 0.06, 0.18, 0.17, 0.03, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00

671 .

Clearly the new observations are not consistent with the historical process. Another indication of this can be found by comparing the -step ahead forecasts contained in Figure 7-14 with the 1-step ahead forecasts contained in Figure 7-15. Again the largest descreponess following a nonrandom pattern occurs in the burglary crime of the rest areas. As seen in Figure 7-15(d), the forecasts for the rest areas, these descreponess goes up rather than fluctuating about a zero level.

To formally model process changes in level and to estimate the amplitude of the intervention effect, the historically based intervention model is augmented to form the intervention model. The intervention model is then applied to evaluate the effects of the CCP on the crime rate dynamically. The intervention model takes the form,

 $Z^{h}(t) = \sum_{g} \sum_{k,\ell} \hat{\phi}^{hg}_{k\ell} w^{(\ell)} Z^{g}(t-k) - \sum_{g} \sum_{k,\ell} \hat{\theta}^{hg}_{k\ell} w^{(\ell)} \hat{\varepsilon}(t-k) + \delta^{h}(t) + \epsilon^{h}(t)$ (7-101)

where

h = 1,2,3,4,  $\hat{\phi}$ 's,  $\hat{\theta}$ 's are parameters of the employed model,  $\hat{\epsilon}$ (t-k) is the estimated residual, and  $\delta^{h}(t)$  is the estimated effect at time t category h. 672

(TAPES

Π

T

17







[]

ی استان بیانیده بیند از میبان میباند. از این میبان بیان کار کار این ٠

42

Landaharan L

17

 $\Pi$ 

11

ĥ

[]

M

Lange and

Figure 7-16(b) The Effects of CCP on Rape.



00

27

Figure 7-16(c). The Effects of CCP on Robbery.







<u>_i_</u>

Figure 7-17(a). The Effects of CCP at the Target Area.







Letting,

Y

$$f(t) = \sum_{k=1}^{h} (t) - \sum_{k=k} \sum_{k=k} \hat{\phi}_{k\ell}^{hg} w^{(\ell)} \sum_{k=1}^{2^{g}} (t-k) - \sum_{k=k} \sum_{k=k} \hat{\theta}_{k\ell}^{hg} w^{(\ell)} \hat{\varepsilon}(t-k) \quad (7-102)$$

we have,

$$r_{t}^{h}(t) = \delta_{t}^{h}(t) + \varepsilon_{t}^{h}(t),$$
 (7-103)

680

and by applying the linear model results, we have

$$\hat{\delta}^{h} = \chi^{h}(t), \operatorname{Var}(\hat{\delta}^{h}) = \hat{\sigma}^{2}I$$
 (7-104)

where  $\hat{\sigma}^2$  is the estimated variance of the residuals.

The observations are added to the intervention model, Equation (7-101), one by one chronologically to evaluate the dynamic intervention effect  $\delta_{t}^{h}$ , h=1,2,3,4 and t=36,37,...,57. The estimated standardized effects are plotted in Figures 7-16 and 7-17. The evaluated effects of all locations are plotted category by category in Figure 7-16 and the evaluated effects of all crimes are plotted location by location in Figure 7-17. For the crime category of murder, the estimated mean shift in the target area are below zero most of the time while the mean shift parameter for the other areas are positive most of the time. This observation suggests that the CCP was effective in lower-ing the occurrence of murder in the target areas but displacing its occurrence to other areas. For the crime of rape the CCP appears to

have no significant impact since the mean shift estimates for all locations are generally insignificant and randomly vary about a zero value with no overall pattern. The effect of the CCP on the crime of robbery is seen to be consistently negative in the target area and consistently positive in the rest area while little discernable change occurs in the buffer or adjacent area. This suggests a strong tendency to displace robber occurrences rather than deter them. The effect on burglary is even more pronounced than robbery. Figures 7-17(a-c) summarize these dynamic mean shift effects of CCP by locations. The results of this preliminary intervention analysis consistently indicate that the CCP intervention was effective in lowering the crime occurrences in the target area. However, the additional patrol resources in the target area caused an increase in the occurrence of crimes in other areas, particularly those far removed (rest areas) from the target area. Thus, as implemented, these were not general deterrence but more typically displacement. However, since the CCP was primarily based upon differential deployment of existing police resources, the results of this analysis give credence to the favorable input on crime rate of additional police resources.

# CHAPTER VIII

682

n

0

Ô

Sec. 1

### SUMMARY CONCLUSION

In this final report, the univariate ARIMA and the STARIMA models were first used to formulate intervention models. These intervention models are developed to have the capability of modeling an environment influenced situation on the non-environment influenced situation, for situations in which, in addition to a change in process level there would also be a covariance change, there are multiple interventions or there is a space-time process. The STARMA model was generalized to include the non-equally preferential structures. The modeling procedures for purely spatial models were developed. Also, the STARMA model was extended to the space, space-time model, that has the capability of capturing the space-time structure and the contemporaneous purely spatial structure. The most generalized MULSTARMA model was constructed to capture the inter-category information as well as the inter-location information.

The specific results and conclusions of this report follows. These results have been grouped into five areas: intervention models, the non-equally preferential model, the purely spatial model, the space, space-time model and the multivariate STARMA model. The section in which the results were first presented is given in parenthesis.

(2.1)

# 8.1 The Intervention Analysis

1. Based on the univariate ARIMA model class, the multiconsequence intervention was given with two modeling considerations: environment influenced situation and non-environment influenced situation.

2. A useful mean shift function takes the form

$$\delta k(t) = n_1 + 1 < t$$

 $t \leq n_1$ 

where k(t) is a known numerical value that depends on the model specification and mode parameters. The M.L. estimators of the preintervention mean  $\mu$  and the intrinsic program utility  $\delta$  were obtained in close form. (2.2.1)

3. The dynamic component identification procedure that gives the unbiased estimates of mean shift function  $\delta(t)$  was developed to identify the intervention model specification. (2.2.2) 4. The covariance matrix of the multiconsequence intervention model that is central to the development of the M.L.E. was derived for low-order models. (2.3)

5. The statistics for testing the significance of intrinsic program utility  $\delta,$  pre-intervention mean value  $\mu,$  the mean shift function  $\delta(t)$  and the change of covariance structure were given and used in estimations and model parsimony considerations. (2.4)

	684		
6.	The bias in the ability of statistically determining the signi- ficance of an intervention program's intrinsic utility due to the		متر معمولية والمعالية والمعالية والمعارية والمعارية والمعارية والمعارية والمعارية والمعارية والمعارية والمعارية
	misspecification of the mean shift function form and/or the use of a single consequence intervention model from there is changed	ß	باليسامية المحالية والمحالية و
	in the covariance structure was discussed fully. Tables that illustrate representative values of $M = (\sqrt{Var(\hat{\delta})SCI/Var(\hat{\delta})MCI})$		
	were constructed to illustrate how the standarization of $\hat{\delta}$ in hypo- thesis testing is affected by ignoring the multiconsequence phe-		والمستعدية والمحالية
	nomena. (2.5)		المستحسب
7.	The bias of the pre-intervention mean estimator and the program intrinsic utility estimator $\widehat{\delta}$ due to misspecification of the model		
	parameters was shown by deriving the formula for $E(\widehat{\mu})$ and $E(\widehat{\delta})$ . Tables of B and D where		Survey and
		ra (	

 $E \begin{bmatrix} \mu \\ \hat{\delta} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix}$ 

were computed to illustrate bias tendency. It is concluded that the bias stablizes as  $n_1$  and  $n_2$  increase, where  $n_1$  and  $n_2$  are the pre-intervention and post-intervention sample size. However, increasing sample sizes does not offset the biases induced by parameter misspecification. (2.6)

8. Tables of h, where

 $h = \left[ E(\hat{v}_{ar}(\hat{\delta}/\hat{\sigma}_{a})_{MISS}) / E(\hat{v}_{ar}(\hat{\delta}/\hat{\sigma}_{a})_{COR}) \right]^{1/2}$ 

	were gi
	the sig
	model p
	correct
	(2.6)
9.	The pro
	were de
	the non
10.	Formula
	in cova
	level w
	and/or
	a large
	changes
	change
11.	Princip
	experim
	the cap
	covaria
	robust
	per pre
	interve
12.	Two sub
	ARIMA(c
	newlv i

ven to show the underestimation and overestimation of mificance of  $\delta$  occur because of the misspecification of parameters, where MISS and COR denotes misspecified and , respectively. Values of h can occur from 0.1 to 2.4.

ocedures of multiconsequence intervention model building eveloped for environment influenced situations as well as -environment influenced situations. (2.7).

ae for computing sample sizes needed for detecting a change ariance and sample sizes needed for detecing a change in mean vere derived. For a given magnitude change in covariance mean level, a small pre-intervention sample size n, requires er post-intervention sample size  $n_2$  in order to detect the s. Also for given  $n_1$ , a detection limit for the covariance as well as mean level change are imposed. (2.8)

ples of optimal economic design for interrupted time series ments were developed to minimize the total cost while keeping pability of detecting the specified mean level change and ance structure change. Typically, the optimal design is to the cost coefficient  $c_1$  and  $c_2$ , where  $c_1$  denotes the cost e-intervention observation and c₂ denotes the cost per postvention observation. (2.9)

bstantive examples were presented to illustrate the p,d,q)MCI modeling procedures. In the first example, the initiated school poling rewarded students directing in a

desire to modify their inclass behavior in regard to "talkouts". By applying the dynamic component identification procedure, the effect of this education program was determined to be not influenced by the environment and the form of the dynamics were determined to mimic a learning curve type of behavior. It was concluded that the program was effective in reducing "talkouts" by approximately 79%. In the second example, a Gun Control Law was initiated whose purpose was to reduce the murder of gun related crimes. The intrinsic utility of the Gun Control Law was identified by the dynamic identification procedure. From the resulting multi-consequence model the law was determined to be effective in reducing all gun related crimes significantly.

(2.10).

- 13. The space-time single intervention model, (STARIMA)I_m model, for 2N regions was introduced in a general form that has the capability of describing the direct-stimulus-response situation and the indirect-stimulus-response situation for both pulse intervention and step intervention programs. An alternative representation that decomposes the intervention model into two components: the deterministic component and the random component, was obtained. The deterministic component contains no random variables. (3.1, 3.1.1)
- 14. The space-time multiple intervention model,  $(STARIMA)I_m$ , model was introduced as a generalization of  $(STARIMA)I_m$  model. When the sequential interventions occur, from the initial realization of the effect of the later intervention, the latter effect is con-

			•
- Partie			founded
Princes.		15.	Two dis
No.	•		regener
11 25			introdu
			transla
D			charact
IJ			enviror
			(STARMA
			fusion
The state			homoger
3			type we
			has the
1			3.2.2)
		16.	Three o
J			ence of
			process
			(STMA)1
		17.	A syste
			diffusi
and the second			the reg
			process
a subsection			chronol
		18.	Procedu
No.			clude t
ANALAS MAN			vention
1 1			

57

[]

Ω

0

Carlos and

686

d with the former interaction effect. (3.1.2) stinct types of spatial-temporal diffusion processes: rating type diffusion and relocation type diffusion were uced as combinations of four distinct diffusion mechanisms: ation, domain-change, growth and contraction. The terization of the different diffusion types occurring in the nment influence structure was detailed. The stationary A)I_m model was shown to be always of the regenerating difprocess. The necessary and sufficient conditions for a neously nonstationary process to be of relocation diffusion ere derived to show that the nonstationary (STARMA)I_m model e capability of describing the relocation diffusion. (3.2.1,

characteristics of a diffusion process: the sphere of influf the process, the speed of the process and amplitude of the s, were described for the diffusion processes of  $(STAR)I_m$ ,  $I_m$  and (STARMA) models. (3.2.3)

em of (11 11) square regions were used to simulate the ion processes of  $(STAR)I_m$ ,  $(STMA)I_m$  and  $(STARMA)I_m$  model for generating diffusion process and for the relocation diffusion s. The simulated results were plotted in 3-Dimension plots logically to illustrate the diffusion phenomena. (3.4) ures of modeling space-time intervention processes that inthe procedures for building the dynamic model of the intern effect were given. (3.5)

			·. ·		
		a an			•
		lign gold generative in the back	Â		effect
		Gundaria e Santa de S	đ		polluti
		Solar Barray	Frenchard		the pro
and the second design of the s		and a second			
- the second second			Ł	23.	The phy
		innin ,	footest and		which d
		anin destruction (	-		scaled
		oʻli humoni e shqirta 19			every 1
		an the public downers in the bills	1		of the
		a na ang ata na ata	B		mined t
A a a contraction of the second s					weighte
A A A A A A A A A A A A A A A A A A A		t to the second	IJ		neighbo
And a state of the second s		Second		24.	Non-equ
a subscription of the second se		e organization de la composi	12		linear
- Statement Statement		a ny pa in the right ar			approac
and a second		on- ar a state of the second	Contract of		matrix
		La recent Construction			the ang
and the second sec		1. Street and 1.	Constraint,		equally
The second s			49 15	•	approac
Contraction of the second of t		and a second			resolve
-	-		1		4.1.3)
			þ	25.	A syste
	-				were us
			- <b>2</b>		Cesses
	٢	a survey of the	All and		illustr

19. The recursive transformation formula that transforms the (STARMA)  $I_m$  model into a linear model was derived for the model parameter known situation. Results from linear model theory was then applied to estimate the pre-intervention mean  $\mu$  and the mean shift vector  $\delta$ . A closed form transformation formula for STARIMA( $1_{\lambda_1}, 0, 1_m$ ) $I_m$  model was derived for convenient use. (3.5.1, 3.5.2)

688

「川市

- 20. To avoid searching the least sum of squares function over a highdimension parameter space when model parameters are unknown, an efficient approach based on linearlization was developed to search for the least sum of squares iteratively. (3.5.3)
- 21. The conditional least square estimators  $(\psi, \hat{\chi}, \hat{\delta} | \hat{\phi}, \hat{\sigma}, \hat{\mu})$  for the multi-consequence space-time intervention model were derived in the linear model form. (3.5.4)
- 22. A substantive example of air pollution quality control was presented to illustrate the (STARIMA)I_m, of modeling procedures. In this example, two interventions occurred in sequence, an engine design change followed by the change in the method of instrument calibration. The effect of engine design change legislation was identified to be influenced by the environment process and the effect of the calibration method change was identified to be non-environment involved. Based on eight year car change over assumption, this analysis concluded that the engine design change legislation significantly reduced the air pollution levels preferentially in the most highly polluted areas while changing the process covariance structure. However, the calibration method change, of which the

was independent of environment, significantly reduced the on readings uniformly at all locations and didn't change ocess covariance structure. (3.6)

## 8.2 The Non-Equally Preferential Model

vsical meaning of the relative weights in the weight matrix determines preferential diffusion were examined. The column weight matrix was determined to have the property that location gives equally weighted influence to its neighbors same order, while the row scaled weight matrix was deterto have the property that every location receives equally ed influence from those locations that share it as the common or of the same order. (4.1.1)

ally preferential weight matrices can't be obtained from combinations of equally preferential weight matrices and thes for the construction of non-equal preference weighted are needed. Two approaches, the strip region approach and gular region approach, were proposed to construct the nonr preferential neighbor structures. The angular region ch results in complementary neighbor structures that together a to the equally preferential neighbor structure. (4.1.2,

em of (11×11) locations on the two-dimension regular grids sed to simulate one-direction preferential space-time proand two-dimension preferential space-time processes for cating the relationship between the non-equally preferential

CAL.

		N	
	690		
		6	
	diffusion process and the corresponding weight matrices. The dif-		The $\  \phi_1 \phi_1^{-1} \ $ matric
	fusion speed, the influenced regions and the diffusion amplitude		models to compare
	were described for low order STAR, STMA and STARMA processes.		tive diagnostic ch
	(4.2)		the equally prefer
26.	Theoretical diagnostic checking procedures were developed to deter-		model indicated th
	mine model inadequacies when assuming equal preference structure.		the directions of
	These inadequacies are detected from the residual sample space-cime		lates in the air.
	autocorrelation functions only when ${}^{N} \Phi_{k} \Phi_{k}^{-1}$ and/or ${}^{N} \theta_{j} \theta_{j}^{-1}$ are far	9	
	away from the identity matrix I for some k, j, $1 \le k \le p$ , $1 \le j \le q$ .		no The evictoria con
	Simulation examples were used to illustrate the theory. (4.3)		30. The existence com
27.	A procedure that performs the isotropic property test was developed		parameters to gua
	by decomposing the equally preferential neighbor structure into		existence conditi
	neighbor structures in the preferential directions and in the other		ARTA(x_0, m_0) model
	directions and then constructing the non-equally preferential model		regular grid syst
	accordingly. A test of model parameter equivalence was then applied		The purely spatia
	to test the isotropic property. (4.4.1)		JI. The putery space
28.	Two procedures for testing the significance of these non-equally		
	were developed to update equal preference models to accomodate	Me.	
	non-preferential dependies by exploiting intervention from joint		
	confidence intervals or over fitting. (4.4.2)		
29.	An extended analysis of the pre-I1, LA CO Data was presented to		, and the autocorr
	illustrate the non-equally preferential diffusion modeling proce-		covariance funct
	dures. The preferential neighbor structures were constructed by		
	applying the strip region approach and the angular region approach,		
	and the non-equally preferential models were constructed accordingly.	•	

1.

ces were computed for both non-equal preference with the identity matrix to justify the insensinecking that had been applied on the residuals of rential models. This resulting preferential hat the coast line perpendicular directions were preference for the diffusion of the CO particu-(4.6)

# 8.3 The Purely Spatial Model

nditions were derived for the purely spatial model arantee the process existence. The necessary ions of the purely spatial  $AR(\lambda_0)$ ,  $MA(m_0)$ , ls were illustrated. These necessary existence shown to be also the sufficient existence for tems with  $\lambda_0, m_0 \leq 2$ . (5.1)

al autocovariance function was defined as

$$\gamma_{ks} = E(\hat{\gamma}_{ks}) = \frac{[W^{(k)}Z_t]^{[W^{(s)}Z_t]}}{LN}$$

relation function was defined in terms of the autotion as,

$$\rho_{ks} = \frac{\gamma_{ks}}{\left[\gamma_{kk}\gamma_{ss}\right]^{1/2}}$$

The cut-off property of  $\rho_{\rm ks}$  was shown for the purely spatial STMA(m₀) model. The tail-off property of  $\rho_{\rm ks}$  was shown for the purely spatial STAR( $\lambda_0$ ) model and the STARMA( $\lambda_0, m_0$ ) model. The cut-off, tail-off property was shown to be useful in distinguishing the purely spatial STMA(m₀) models from the other models. (5.2.1, 5.2.2)

- 32. The partial autocorrelation function set was defined as the set of all the solutions of the appropriate set of the.Yule-Walker type equations. The cut-off property of the purely spatial partial autocorrelation functions for the purely spatial  $STAR(\lambda_0)$ . model at  $\dot{\lambda}_0$  spatial lag, and the tail-off property for the purely spatial  $STMA(m_0)$  model and  $STARMA(\lambda_0,m_0)$  model were shown. A numerical example was given to illustrate the cut-off property of the purely spatial partial autocorrelation function for the STAR(1)model, and the computational difficulty in solving the simultaneous quadratic equations was discussed. (5.2.3)
- 33. Pattern recognition was introduced to help in candidate model identification because of the difficulty in computing the purely spatial partial autocorrelation function sets. The expectated sample autocorrelation function  $E(\hat{\rho}_k)$  of the purely spatial AR(1), MA(1), ARMA(1,1), AR(2) and MA(2) models were computed for the 1×25 line systems and 5×5 regular grid systems. Charts were developed to serve as prototypes for comparison in identifying a candidate model. (5.2.4)
- 34. Charts were constructed to obtain initial estimates of the purely spatial ARMA(1,1), AR(2), MA(2) models to reduce subsequent compu-

(5,6)

692

jij

The second s

tation effort in estimation. (5.3.2)

35. The estimation procedures for the purely spatial models were developed for G = σ²I, general G and G unknown situations. (5.4)
36. The residuals computed from a space-time process describing a hydrology process of river flow and from a space-time process describing a criminology process of crime commission were modeled to illustrate the purely spatial modeling procedures. These two examples resulted in models of significant contemporaneously correlated structures past the space-time autocorrelative information.

# 8.4 Space, Space-Time Models

37. The aggregated purely spatial model was coupled with the space-time model and reparameterized to form the space, space-time models. The coupling mechanisms were detailed for three potential space-time models: all LN streams of residuals are of the same univariate ARIMA model, the LN streams of residuals are from the STARIMA process and the LN streams of residuals are from different ARIMA processes. It was shown that the modeling results are independent or approximately independent of modeling sequence for the equally preferential system. (6.1.1)

38. A space, space-time process with  $G = \sigma^2 I$  can be mistaken as a space-time process with general G noise structure, which in fact confounds the purely spatial structure described by the contemporaneous terms in the space, space-time model with the process noise covariance. The capability of describing the observed pro-

cess as well as forecasting is the same but the physical interpretations are different. The space, space-time process distinguishes the purely spatial structure from the noise structure while the purely spatial structure and the noise structure stay confounded in the space-time model. (6.1.2)

- 39. The multiplicative models, that were represented by the spacetime observation model and purely spatial residual model, of the Mohawk River Heights and Northeast Boston Assault Arrests were coupled to give the space, space-time models. For the Mohawk River Height Data, the purely spatial structure was confounded with the general G noise structure. However, in the Northeast Boston Assault Arrests example, the coupling and reparameterizing procedure unconfounded the general G noise structure, which resulted from spacetime modeling, to give the significant purely spatial correlated structure and a diagonal G=D noise structure. Forecast functions were built and numerically computed for both space, space-time model and general G space-time model and analyzed. Similar point forecast were observed but the space, space-time model had smaller variance of the forecasts than the space-time mode. (6.1.3)
- 40. The ergodic process was defined as the purely spatial process with the property that any collection of observations shares the same contemporaneous spatial structure contained in the overall observations,  $\{Z_{t}, t \in U_{T}\}$ . (6.2.1)
- 41. The ergodic modeling procedures were developed. These modeling procedures include the test of the ergodic property. Two methods,

10.15

the confidence interval method and the  $\chi^2$  test method, were proposed for testing the process ergodic property. For low order purely spatial models,  $\lambda_0 + m_0 \leq 2$ , the confidence interval method is preferred because it is more efficient in application. (6.2.2) 42. The existence of outliers can mask the ergodic property of a purely spatial ergodic process. These outliers were expressed as environmentally influenced input outliers confounded with the process noise on expressed equivalently as non-environmentally influenced outliers that are confounded with the process observations. (6.3) 43. Sequential estimation of outliers was shown to result in no remaining degrees of freedom in order to estimate the residual noise variance. An iterative procedure was developed to identify the potential outlier or simultaneously estimate the residual noise variance. Outlier correlation may or may not result in an ergodic process. (6.3.1)

44. An example that applied the modeling procedures of the ergodic systems with outliers on the Northeast Boston Assault Arrests for the last eleven observation periods was presented. The outlier corrected aggregate purely spatial model was built to describe the unmasked purely spatial ergodic process. The purely spatial model, that was built without outlier correction, was compared with the ergodic process to see the masking effect due to the presence of outliers. This example illustrated the importance of including the outlier identification procedure in the procedures of the purely spatial model coupling. Forecast models were built based on the

0

ß

2

8

outlier corrected model and uncorrected model. The comparison of these forecasts revealed that the ergodic property modified the point forecasts slightly but the exclusive of the purely spatial components gave rise to larger  $\alpha$  value in the  $(1-\alpha)$  confidence interval than desired. (6.3.2)

### 8.5 The Multivariate STARMA Model

- 45. The multivariate STARMA model was proposed and denoted as the MULSTARMA model. It was shown to collapse to the multivariate ARMA model, STARMA model by system simplification and collapse to the MULSTAR, MULSTMA models by parameter simplification. (7.1.1, 7.1.2)
- 46. Charts were constructed to illustrate the relationship between the MULSTARMA process and its collapsed subset of models. (7.1.3)
- 47. Stationary and invertible regions for the low order MULSTARMA models were derived. (7.2)
- 48. A  $\Lambda$ -weight representation were derived for the stationary general multivariate space-time models, the A-weight matrices were computed recursively from the derived recursive formula. The A-weight representation expressed the observation of MULSTARMA process as the weighted sum of past process noises of all categories and all locations. (7.3)
- 49. The multivariate space-time autocovariance function was defined as

 $\gamma_{z0}^{gh}(u) = \frac{E[(W^{(s)}Z^{g}(t)) (W^{(l)}Z^{h}(t+u)]}{T_{N}},$ 

and the multivariate space-time autocovariance function was shown to cut off after q^{j*} temporal lag for MULSTMA process, and tail off for MULSTAR and MULSTARMA processes. The multivariate autocorrelation function was defined as

# (7.4.1, 7.4.3)

$$\rho_{k\ell}^{\text{gh}}(u) = \frac{\gamma_{k\ell}^{\text{gh}}(u)}{(\gamma_{kk}^{\text{gg}}(0)\gamma_{\ell\ell}^{\text{gg}}(0)\gamma_{kk}^{\text{hh}}(0)\gamma_{\ell\ell}^{\text{hh}}(0))^{1/4}}$$

50. The expectation and variance of the sample multivariate space-time autocorrelation function were derived. The expectation and variance of the sample multivariate space-time autocorrelation function of white noise were tabled for easy use in identifying significant sample multivariate space-time autocorrelations. (7.4.2) 51. The multivariate space-time partial autocorrelation function was defined as the last coefficient in the solution of the appropriate Yule-Walker type equations. This function was shown to cut-off when after p lags in time and  $\lambda$  lags in space for the MULSTAR( $\zeta$ , p,  $\lambda$ ) model and to tail-off for the MULSTMA model. (7.5.1) 52. The Yule-Walker type equations were shown to consists of  $\zeta$  independent linear equation sets, and the coefficient matrix of each linear equation set was shown to be symmetric. Based on these facts, a more efficient computation approach was developed to compute the partial autocorrelations. (7.5.2)

53. The cut-off and tail-off statistical properties were summarized

	898		×1	
	and applied to help identify the candidate MULSTARMA models.	1		
	(7.6)			
54.	The linear nature of the autoregressive model parameters was	T		Box, G. E. P. a Forecasting and
	applied to reduce the searching dimension. It was shown that,	E		Box. G. E. P. a
	when inter-category process noises are independent, the estimation	R		Non-Stationary
	of one categories' parameters are independent of the estimation	-		Box, G. E. P. an Applications to
•	of the parameters of the other categories, and the computation	<u>B</u>		American Statist
	task of autoregressive parameter estimation can be reduced by			Brown, Lawrence Philadelphia : F
	separately estimating them category by category. (7.7)			Dahman . J. S. (
55.	A substantive example of Cleveland Crime Data, that contained four			High Impact Anti
	crime categories and three differently treated regions, was pre-			Deutsch, S. J. a Control Law on C
	sented to illustrate the MULSTARMA modeling procedures. Based on			Quarterly, 1977,
	the pre-intervention MULSTARMA model, the forecast function was	63		Deutsch, S. J. a
	built. The L-step ahead forecasts were illustrated. Also based on			Vol. 22, No. 4.
	the pre-intervention MULSTARMA model, a preliminary intervention			Draper, N. R. and John Wiley & Son
	analysis was performed and determined that the CCP intervention was			Durbin I (1960)
	effective in lowering the crime occurrences in the target areas, but			Statistical Revue
	the crime occurrences in the adjacent areas and the rest areas was			Glass, G. V., Wil
	increased. Since the CCP was primarily based upon differential			University Press.
	deployment of existing police resources therefore the crime reduction	.@		Graybill, F. A. (
	was not due general deterrence but rather displacement. (7.9)			MOLLE SCIEVALE :
				Hall, R. V., R. F F. Davis, and E. Experimenter in t

1

فالهوس الأورار المرار أنوار أوجوافعوا أما الهافلة

17

# BIBLIOGRAPHY

P. and Jenkins, G. M. (1970), <u>Time-Series Analysis :</u> g and <u>Control</u>, San Francisco : Hloden Day.

P. and Tiao, G. C. A. (1965), "A Change in Level of a nary Time-Series", Bionmetrika, 52, p 181.

P. and Tiao, G. C. A. (1975), "Intervention Analysis with as to Economic and Environmental Problems", <u>Journal of the</u> <u>atistical Association</u>, 70, p 70.

ence A. (1967), <u>Diffusion Processes and Location</u>, a : Regional Science Research Institute.

S. (1975), Examination of Police Patrol Effectiveness Anti-Crime Program, The Mitre Corporation.

J. and F. B. Alt, "The Effect of Massachusett's Gun on Gun Related Crimes in the city of Beston", <u>Evaluation</u> 1977, 1, p 543.

J. and Pfeifer, P. E. (1981d), "Space-Time ARMA Modeling poraneously Correlated Innovations", <u>Technometrics</u>, 4.

R. and Smith, H. (1966), <u>Applied Regression Analysis</u>, Sons.

(1960), "The Fitting of Time Series Models", <u>International</u> <u>Revue</u>, 28, p 233.

, Wilson, V. L. and Gottman, J. M. (1975), <u>Design and</u> <u>Time-Series Experiments, Boulder</u> : Colorado Associated ress.

A. (1976), Theory and Application of the Linear Model, te : Ouxburg Press.

Hall, R. V., R. Fox D. Willard, L. Goldsmith, M. Emerson, H. Owen, F. Davis, and E. Porcia (1971), "The Teacher as Observer and Experimenter in the Modification of Disputing and Talking-out Behaviors", Journal of Applied Behavior Analysis, 4, p 141.

.

Hannan, E. J. (1970), <u>Multiple Time Series</u>, New York : John Wiley and Sons.

Kendall, M. G., <u>The Advanced Theory of Statistics</u>, Vol. I, II, III, New York : Hanfner.

Pfeifer, P. E. (1979), <u>Spatial-Dynamic Modeling</u>, Ph. D Dissertation, School of Industrial and Systems Engineering, Georgia Institute of Technology.

Pfeifer, P. E. and Deutsch, S. J. (1979), "Comparison of Estimation Procedures for the Parameters of the STAR Model", <u>Communications</u> <u>in Statistics</u>, Vol. B8, No. 2.

Pfeifer, P. E. and Deutsch, S. J. (1980b), "A STARIMA Model Building Procedure with Application to Description and Regional Forecasting", Transactions of the Institute of British Geographers, Vol. 5, No. 3.

Pfeifer, P. E. and Deutsch, S. J. (1980c), "Identification and Interpretation of First-Order Space-Time ARMA Models", <u>Technometrics</u>, Vol. 22, No. 3, p 397.

Pfeifer, P. E. and Deutsch, S. J. (1980e), "Stationary and Invertibility Regions for Low-Order STARMA Models", <u>Communications</u> <u>in Statistics</u>, Vol. B9, No. 5.

Pfeifer, P. E. and Deutsch, S. J. (1981a), "The Variance of the Space-Time Autocorrelation Function", <u>Journal of the Royal</u> <u>Statistical Society</u>, Vol. 43, No. 1.

Pfeifer, P. E. and Deutsch, S. J. (1981c), "Seasonal Space-Time ARMA Modeling", <u>Geographical Analysis</u>, Vol. 13, No. 2.

Tiao, G. C., Box, G. E. P. and Hamming, W. J. (1975), "A Statistical Analysis of the Los Angeles Ambient Carbon Monoxide Date 1955-1972", Journal of the Air Control Association, 25, p 1129.

Tiao, G. C. and Box, G. E. P. (1981), "Modeling Multiple Time Series with Applications", <u>Journal of the American Statistical Association</u>, 76, p 802.

Wilks, S. S. (1938), "The Large Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses", <u>Annual Mathematical Statistics</u>, Statistics, 9, p 60.

Whittle, P. (1953), "Estimation and Information in Time Series", <u>Arkiv</u> fur Mathematik, 2, p 423.

700



