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9 A complete literature review leading to the STARMA models is
where i ? . 3; contained in Pfeifer [1979]. In addition to formulating the space-time
| 30 )
. . b A o moving average class, Deutsch and Pfeifer developed the methodological
7 is the LNX1 vector of observations at time t, n 5 @Q
2t . %é c considerations for a three stage iterative model building procedure for
LN is the number of locatioms in the system, . L 5 o
| ﬁﬁ the space-time model, parallel to that proposed by Box and Jenkins'’ for
. i{s the autoregressive order, 0 I
S T univariate series (see Pfeifer and Deutsch {1979, 1980a, 1980b, 198Qc,
q is the moving average order, ; vg
v - 7o 1980d, 1980e, 198la, 1981b}). The STARMA model class and associated
. ic the spatial order of the k™ autoregressive term, M L , ’ ; ]
k LW

i ‘ model buiidin was extended by Pfeifer and Deutsch [1981lc] to describe
™ is the spatial order of the kth moving average term, ‘ 8 Y t ]

sy
ok

is the autoregressive parameter at temporal lag k and

o=

0 | seasonal phenomena and-by Deutsch and Pfeifer [1981d] to incorporate
¢k2‘ = %,a.
spatial lag %, - §£ contemporaneocusly correlated innovations., All other appropriate liter-
v i
8 ig the moving average parameter at temporal lag k and FL ature citations are contained in context in each chapter.
k&

The purpose of this final report is to extend the currently

1

spatial lag %,

xS
Bt

3

W(z) is the LNXLN matrix of weights for spatial order %, and available methodological procedures/capability of the current state-

& Y

is the random normally distributed error vector at time

e

n
S
feemezyrd

of-the-art in intervention analysis and system description of the
t with

-

STARMA time series methods. Each of the modeling extensions is stimu=""

Peatts

lated by real world problems. Thus each of the modeling extensions in

i *

E(e,) = 0

V]

each chapter are substantively illustrated with case studies. These

ettt

example applications are in behavioral science, criminology, air

(]

7]

]

o
kgt

pollution and water resources settings.

E(€t€;+s) = ; ( {% ; gg In Chapter 1T, the multi-consequence intervention modeling pro-
0 s#0 E g% cedure is developed based on the univariate ARMA process. The multi-
) i -
1% sequence ARMA(p,d,q)MCI allows for the description of a change in mean
. =0 for s > 0 B
E(ZyE 4

level and covariance in a process due to an intervention initiated at

t < n, and takes the form,

By constraining the number of 1ocatibns to one (LN=1) the STARMA model

=

i i del class. o s
class collapse to the ARMA univariate mo - & {%

. — P, ’ e R SRR o4 e 1L L B AR D
=X . :

()
W

Sasat ity oA

T e
i i P AR St e




e R LI R

R

pre-intervention:

d = =
QP(B)V (2, -w) = eq(B)at, t=1,2,...,1

'

i

post~intervention:

d = =
WP(B)V (z~u=8(t)) = T (B)a,, t=n

i

l+l"'ffnl+n2

where §(t) is the realized intervention effect, and ¢p(B), Gq(B),
WP(B)’—]E(B) are functions of process parameters that contain the
information of the process covariance structure. Since WP(B) and
IA(B) can be distinguished from @p(B) and Oq(B), respectively, the
above model has the capability of describing the process covariance

change. &(t) can be expressed as,
S(t) = k()6

where k(t) are known numerical values that can be computed from the
model parameter values and the intervention model specification, and §
is the intrinsic program utility., The realized interQéntion effect
§(t) = G‘if k(t) = 1, which is the non-environment influenced situation
since the intrinsis program utility is realized fully. However, when
k(t) # 1, then the intrinsic program utility is not realized fully but
is masked by the ecclectic environmental process in place. Situations

b

arise Eyzt the intervention effect is not known to thé linfluenced by
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the environﬁent Q;—ngfl_and it is necessary to identify the nature of
environmept influence to build the intervention model., A dynamic
component identification procedure is developed in this chapter to
identify the interactive relationship between the process environment
and the intervention program utility. The biases caused by model mis-
specification are derived for the point estimate as’well as the interval
estimate of 6. The statistics needed for testing the Hypothesis of
multi-consequence are also developed, A behavioral science example is
given to illustrate the non-environmental modeling building situation

)i

and a criminology example is used to iilustrate the environmental in-
fluence situation.

The univariate multi-consequence intervention model in Chapter
IT is followed by the space-time intervention modeling chapter. 1In
Chapter III, the system contains more than one location and the inter-
vention program is assumed to be initiated at any chosen locations.

The single space-time intervention model, STARMA(pA,d,qm)Im, is formu-

~

lated as;g

d,, e d
¢p’é(B)V (z-w=[1 Im)ép’ﬁ(B)V + Iqu’m(B)lg(t)

+ 8,m e

b

g(t) = 8¢, ‘ @h
. ‘
§ is the intrinsic program utility vector, and
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Et is the indicator‘variable, it takes the value 0 for pre-
-~ Ve

intervention periods and 1 for the post-intervention periods. 1In the
f

above model, the Im parameter is embedded to distinguish Qhether the

intervention effect is the envirommentally influenced or non-environ-

) mentallxénfluenced..

An alternative representation is developed to decompose the
process into two mutually exclusive components, the random component
and the deterministic component., The diffusion behévior of the deter-
ministic component is physically interpreted and two diffusion process
types, the regenerating diffusion type and the relocation diffusion
type, are characterized by the stationary and non-stationary (px,dﬂqm)
Im model. Simulations are performed to illustrate the diffusio; )
phenomena characterized by the (STAR)Im, (STMA)Im, (STARMA)Im processes.
Situations arise fgg%gz;;/;ature of the intervention program is un-
known, so a procedure for the identification of the dynamic component
is developed. A transformation formula thét transform’the space-time
intervention model into linear model form is developed, and the results
of linear model are applied to obtain the point estimation and the
interval estimation., A substantive air pollution example that con~
tains two interventions is given to illustrate the model building pro-

1

cedures described in this chapter. ;
In previocus STARMA modeling procedures, the system relatiomships
were assumed to be spatially and temporally uniform. In Chapter IV,

non-equal diffusion preference systems are corisidered. The component

of STARMA model to be modified in order to describe diffusion prefe-
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Two approaches, the strip

region appr
pPproach and the angular region approach, are pro d
5 posed to con-
Struct the; non-e
! ; qually preferential i
neighbor structure
that reflects

J

rerformed for ope- i
ne-direction pPreference System and two-di t
—dlirection pre-
ference syst i p
em t S :
0 Lllustrate the relationship between the non 11
—~equally

Preferential dif i
ffusion Process and the corresponding weight
matrices,

b4

preferentia]l Structures are analyzed

This analysis is followed by

Simulation exam
ples to illustrat
e the analytical
conclusion. The

'y

the ¢
onstruction of non-equally Preferential models

b g e
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tion Structure,

For . L .
use in 1dent1f1cat10n, the purely spatial auto

p o=
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observation and noise initial value problem in estimation, however,

the injtial parameter values are still needed tohstart the required

iterative estimation procedures. Charts to obtain initial parameter B g{

7
values fur low order spatial models are developed. Two appliication

examples are given to illus

- T
g

trate the purely spatial model building

procedure., The first example is from hydrology and the other is

from criminology. In these examples, the purely spatial modeling

procedures zre applied to enhance the descriptive capability of the i{

system,

In Chapter VI, two topics are addressed: the corpling and

reparameterizing of the aggregate purely spatial model and the space~ !

time model and the coupling of purely spatial models; The coupled

models are capable of‘capturing the contemporaneocus purely spatial

S sas i,

correlative structure, as well as, the space-time correlative struc-

ture. Three potential space-time models are coupled with the purely :

spatial model, and the resulting models are then reparameterized.

Here 1
two modeling Sequences are possible: 1) buil@ing the purely spatial
observation model first and then the space-time residual model, or ’ }{
2) building the space-time observation model first gnd then the purely :
spatial residual model. The c;;pled and reparameterized models may if
be dependent on the modeling sequence or may be independent of the i}
modeling sequence.

The systems that give rise to each ure distinguished
and

the appropriate modeling procedures are described.  Two processes

s,
o
[

that were modeled in Chiapter V as separate but siﬁultaneous space=time

and purely spatial models, are presented to illustrated the coupling

and reparameterizing procedures,
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The purely spatial structures contained in each observation
period may be identical or may be different. If the purely spatial
structures in each observation period are identical, then the system
is said to be ergodic and the aggregate purely spatial model ‘captures
the same purely spatial structure witP better precision. However, if
the purely spatial structures in each’observation period are different,
then the purely spatial structures are mixed and the resulting aggre- . —
gated purely spatial modei deséribes an average correlative strucﬁurefk
The second topic in Chapter VI is the development of the modelﬁhg pro-
cedures for the ergodic process. Here statistics are developed to

7

test the process’ergodic property. Since these homogeneity assumptions
may not hold and may mask the ergodic property, therefpre a modeling
procedure that estimates and corrects the outliers to obtain homo-
geneit%:isfdévsloped to model the potential ergodic processesﬁthat
contai; outlie;;. An example is given to illustrate the modeling pro-
cedure of the ergodié process with outliers. The masking effect of
the outliers are illustrated in details., Forecas; functions are con-
structed for the ergodic model as well as the m?del which assumes but
doesn't verify the homoguneity assumption to compare the quecasting
and descriptive capabilities., Differences are explained in detail.
The STARMA model captures the Spatial—temﬁéral c¢orrelated
structures, the multivariate ARMA model captures the inter-category
correlated structures, A natural geheralization of the STARMA model

: i . v- mI‘A
and the multivariate ARMA model is the MULSTARMA(MULtivariate ST%{ )

model that captures all the spatial-temporal, inter-category correlated

o S
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;i N computational efficiency deserves attention. Therefore, efficient
structures, The MULSTARMA(E,p,q,A,m) model class takes the form; y ;ﬁ computation approaches are introduced and justified. Based on linear
iy
: d 3 i
{ﬁ t %g model theory, estimation procedures are developed. A criminology
i1 .
he \he . o example is used to illustrate the multivariate space-time modeling
K 1 . .
| Eh(t) - f z z ¢2€W(2)Zg(t—k) i, 5§ procedure. In this example, the employed model is used in con~
g=1 k=1 2=0 ¥ ) - . .
;K structing forecast functions, that rely on the spatial, temporal and
hg 9
h i inter- i s
f q g he (4) g, b B : ﬁé nter-category structure, and is augmented for use in intervention
- D) O e (ek) + (D). ?{ N model d
h=1.2 f éé The final report concludes in Ch i ; i
325000350 ,g : n Chapter VIIT with a discussion of
' { i gg the conclusions of this work.
A specification of the syst:m parameters &, the category number, and gz ]
L il
the model parameters p, q, A, m serves to define one MULSTARMA model ﬁg
- from the general familty of models. In this MULSTARMA model class, 35 ;?
the spatial~temporal, inter-category correlated Structures are cap- E} F ‘l
tured by the estimatable parameters ¢£g’ 628 and the weight matrix. g
To illustrate the model structuré, a series of flow charts are plotted, gi
These flow charts contain filters that correspond to identifiable terms g?
in the MULSTAR model formulation. The stationary regidns and the g% ot

RriayG
e
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e,
S

invertible regions are derived. Then the A~weight representation for i

e

the stationary process is derived. The A~weight representation

express the process observation as summation of past errers, which

sy
o
Evﬁ\w{‘ *:'g‘

allow derivation of statistical properties to be made easier. The

e
. %

multivariate spéce—time autocorrelation function and the multivariate fid
Y
: ai
space-=time partial autocorrelation function are defined, and the Y e
' ! .
statistical properties are derived to help identify the candidate ‘ f§ 7
N {‘ i /1’/

-t

B 7
model, Due to the high dimensionality of the model parameter space, [

Pt

JUS—




- | i 13
i -
i &f
12 {4 :

{% - B is a backward shift operator such that

il
g; = e =

i~

é% rg 4 1s the process mean,
z§

3 1 § is the magnitude of change induced by a modification of

CHAPTER 1I §§ -

b g’ the process, that 1s associate with a type of intervention

b2
MULTICONSEQUENCE INTERVENTION MODEL 31 B activity,
v . E: the ¢' d 8's are a i d -
"  related tine series dats for changes in level . 4 $'s an are autoregressive and moving average para
. O [ N~
The analysis ) < uis %% Y meters, respectively and the
orated moving average (ARIMA) processe ’ g
using autoreg,tessxve integra . ]
s by Bon and Tins (1965) using the ARDMA(0,1,1) form. - | 3, 's are innovations distributed normally and independent
first introduce

with meanqand variaace 02 .

g

Their work was extended by Glasé, Willson and Gottman (1975) to in-

clude other types of ARIMA processes while focusing the stgtistical These models assume (1) only a single consequence in that after inter-

e i |
A
pl . i

methods in a quasi-experimental design/interrupted time series frame- gﬁ | vention only the mean level not the covariance can change and (2) the
the observa- . { .
work. Here, an intervention is thought of as affectlji% e 4 change in the process after time T is instantaneous (e.g., having been
én v fully realized in the n *1 observation)
tion, Z ¢’ between ny and n +1 ﬁyvcbbm AN Qwﬁﬁo EQ@LVJ gﬁ g_ y 1
: This chapter focuses on the multiconsequence intervention model
ﬁgelnterVention. -
p% ?3 that allows for both a change in the mean level of the process as well as
, bt the possibility for a modification in the covariance structure. The
o )iz, - ) =06 (Bla  t=1,2,..000y 7 (-1 i a1 .
o £ q t W, g: model structures contain a mean shift function to allow for instantaneous
% ///:.»» e w\i
"y or transienmt mod#fication, depending u “the nature ot\the interrupted
. i} ' N\
gﬁmtinterventlon. : ’ time geries experiment and/or the ﬂnvironmental process in blace. In
X e
; i
) e (B) t=n,+1 -nl+n2 (2-2) %} ' g} Section 2.1 the multiconsequevceimodel structures are descrihednglong
d - + 8)) =0 a TRyt - , , oy
o (B)V-(Z, (u q c . with its mean shift fgnggigé that allows the estimation of an integrven-
1 . g p ‘:\\\
. o . %j tion program's intrinsic utility which is not identical to the progé%n's
ﬁﬁere‘ ;3 realized effect. The next section contains the maximum likelihood es<
43 ¥ L@ : ' '
S timation procedures for the multiconsequence intervention model of or-
¢ (B) = 1-¢.B-9¢ BZ“ -4 B° k . ‘ ‘ , i
p 1 2 P . f% - der (p,d,q) for the mean shift function known or unknown. Section 2.3
2.,.,-6 B ¥ -
GQ(B) = 1-elB~GzB I 4 . ‘ 42
- A Ay
= (l-B) §% ' f”
i

-
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develops the necessary covariance matrix specifications for low order

-,

PR
LI

multiconsequence models that are used in estimation and tests of signi-  vhich the Peting srvirommental
Process affects the realq
1zed modi-

ficance of the mean shift function and other model parameters. These i ficatipns.

hypothesis tests are contained in Section 2.4. 1In Section 2.5, the
2.1 Multiconsequence Model Structure

-effects on the ability o£¢§é§€£§¥i€§Ii%de:erminiqg the significance ‘ {i j

‘ The effect of an inte .
. i e . Qe . s inter ig .
of an intervention programfintrinsic value due to the misspecification 1 ervention is not typically expected to be
directly transmitted to the observationg

e ——

Depending upon the nature of

\ of the mean shift function form and/or the use of single comsequence
the intervention activities,

S,

. . , . th rd )
intervention model form when there is change in the covariance € transmittal of the lntervention effects
b

gy
PRPT——

] i :Dnsi derat] ons mena 1N l)la( e,

SRR L
4 éﬂ,,’.,_..‘:c"i R

l orm iR ',P

Similarly when the eigg;ctic environmental

2.7 for situatioms that arise in the analysis of interrupted correlated oo
PTrocess is random or weakly correlated
3

Spaumrstmid
Pl |

the transmittal of the interven-

E S

time series designs. The ability to statistically detect a given
A tion eff , .
ect would also be direct. These situations are termed the i
in-

magnitude of a mean level change in correlated interrupted time series g
' ; stantaneous case,

TR
sy

design is dependent upon the number of pre and post observations, and

for designing interrupted time series experiments from power consider-

. are not direct stimul j
‘ ? us to subjects
the magnitude of the change in the covariance structure after inter- %4 4% th m J - rjsponse AN o
» i er e sti
. ' | ulus is intended to alter the overall
vention, Section 2.8 analyses these effects and develops guidelines {3 4 tal ph ecclectic environmep-
‘ ai phenomena and in tyur
1 n modif
§§ Yy behavior of 3 segment of the population

ations. Tables for pre and post intervention sample sizes are given

P
&m:‘;-‘ﬂ

Eg vironmental Process causin k
for designing experiments in Section 2.9, Lastly, in Section 2,10, L g e e o
gg | ; attribute monitored.

The situation is labeled the transient case

B

two substantive examples are given to illustrate the modeling pro-

. 3 o In either situation, °
cedures described., One example corresponds to the analysis of a z% ’
b

direct stimulus-response interrupted time series experiment in which

the environmental process does not influence the intervention changes. the change in ¢}
, e postin-

Rt

tery i i
rvention covariance Structure cap occur

The second example illustrates the modeling procedures in experiments This may be thoy ht of
, : g of as

“.
2]

occurri i
ng due to behavior modification of th

S

€ subjects or treatment

f

o
o

e . . i 7 — . - .
4 ’
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Y yd - =T + =7. .o -
p(B) (Zt ) 1(B)€t6 I‘q(B)at t=n;+l,..n,n,4n, (2-5)

grspijlthe instantaneous case or due to the formation of a new ec-

prse—

Aletic environmental process immediately after intervention for the where ¢ is the intrinsic utility of the process intervention.

e

et Sy
s ] N : :
3

mean level transient case.

From the expectations of Equations (2-4) and (2-5), the mean shift func-

A comprehensive model that describes both instantaneous and tion can be expressed as;

- %%5
transient mean level changes and postintervention modification of the oy
covariance structure is the multiconsequence intervention model Eorm: E B 5(e) = T(B)gtd/WP(B)Vd t=nl+l,ni+2,...,nl+n2 (2-6)
preintervention; ,@ G
z? f %ﬁ Figure 2-1(a) and (b) are schematic representations of the coupling of
d, - - s :
¢P(B)V @, - M) = @q(B)at t~1,2,...,n1 (2-3) %% T— the pre and post intervention structures for the multiconsequence inter-
& 1
- “é vention model for systems in which the environment influences or does
¥
postintervention; §§ 5 ﬁé not influence the realizeVprogram utility, respectively. As seen from
i
?. : Figure 2-1(a), even when allowing for environmental influences, mathe-
LoE
‘i’p(B)Vd(Zc - u = 6(t)) = rq(B)at t=nl+l""’n1+n2 (2-4) N ; Eﬁ matically when T(B) = WP(B), the postintervention environmental pro-
ix ‘  g? cess does not affect the change in mean associated with the interven-
where S tion in that &(t) = gté as in TFigure 2-1(b). The more similar T(B) is
- :
: 2 p {; i % to ¥ (B) the smaller the influence of the environmental process. Also
¥ (B) = 1~y B-y,B°...-¥ B o4 P

mathematically, when T(B) = I' (B), the environmental process directly
2 q q
Pq(B) = 1-le—723,-...-YqB»

intluences the magnitude of the realized intervention §(t). It should
the §'s and y's are postintervention autoregressive and

=

be noted that this influvence or variation in the observed mean shift

moving average parameters respectively and

from the program utility, §, is dependent upon the full transfer func-
6(t) is the mean shift function.

f’“‘“”i
Lk

tion associated with the postintervention environment, namely T(B)/

VdWP(B). The choice of the mean shift function, §(t) in modeling in-

Alternatively the postinterventlion model can be expressed in terms of B
; ‘ . o terrupted time serices data is critical in estimating the intrinsic pro-
an intervention transfer function operator, T(B), and the 1nterv§ntion ,‘ o
' ' A ' d
, . gram utility €. As seen from Equation (2-6) vhen =
input variable, gt where gt=0 for t<nl and 1 for tipl; g e Y 4 ( ) wh Wp(B)V T(B), the

0
i

Ltmmnisoeied syl
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L4
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af} 8 g mean shift function contributes to the postintervention process level
b S in magnitude equal to the program utility. This is the instantaneous
change in covagiance 3 g
S model associated with direct stimulus-subject response experiments.
l—.— ——————— gg Otherwise, the intrinsic program utility is filtered ~- the transient
H
| l , case. Throughout this paper the mean shift function is employed in
-5/ | | | som | X ,
Fe % (8) % —lb vy (m) +a-g) ; o 2 Hute () . N I each of the different considerations presented with regard to the model-
P P ‘ Looh
l # l i ‘ ing of interrupted time series data with multiconsequence intervention
| ' |
I * | models.
!

1 1 12

' ”i
hange 1. : J ,
change in mem/-\.} 2,2 Maximum Likelihood Estimation Considerations
| [ — - - » . . . . .
= % | The procedures for developing maximum likelihood estimators
£
t * (M.L.E.) described in this section are for various combinations of
(a) g
) j-{[;riori information about the parameters for different modeling situa-
£ '
— (B
' -1 i - tions. We will first assume that the mean shift function, §(t) is
» ! | ; v K d differentiable and the model £ 0 k '
(15,0, (3 6108 I ' ; 4 nown and differentiable an e model parameters (?,~,lj‘/,1), are known
€ * £  —— + (1~ % -
t vdep(n) Tt vy (B8) a Et:) | f # l‘»ztﬂ”a(t) « for the ARIMA(p,d,q)MCI model class. Next the'situation in which the
I3 >,
: 5
l ' &s mean shift function is unknown is addressed and a sequential procedure
] l %‘ o for identifying the form of the mean shift function is described. We
1 ¥ s ) §f3 .
4 L
change™Ta covariance | | g'- ! : then relax the assumption that the model parameters -are all known.
Ghange in “an/\'l_ I el ‘ . f ?E In the following we will denote (}4
— J - i N “. E Wb >
(b) X S b ) . . . t W
(_g A AR P N S , Nen +n,

=

Figure 2-1. Transfer Function Representation of Multiconsequences
Intervention Model

=

(a) Realized change in mean level affected by environ- ‘
mental process L
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(b) Realized change in nean level not affected by
environmental process ‘
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where
p(e) = t <
{ M < n
M+ 8(t) n, +1<t< +
1 =EE2m T
with ny and n, being the number of pre and post intervention observa-

tions, respectively.

9.2.1 Case I: Mean Shift Function Form Known (Model Parameters Known)

1. d=0, ARIMA(p,U,q)MCI model

E e

Suppose that the mean shift function is known to be _eof some ar-

bitary function of m parameters, §(t) = f(t—n1,§ ) with 6t = [61,62,...
t

ém] being unknown mean-shift measurement parameters. The mean shift

function 6(t) is first order differentiable when (t~nl) > 1. The joint

distribution of Z is given by,

- 1/2 -
fg(giyzaﬁ,cg)=(2ﬂ0§) N/leéP,O,q)l (2~7)

gy e (P2 059D (o 2
Expi—(% Bz) MN (z Hz)/ZUa}

When B is

~

whe}e Mép,o,q) is the inverse of the covariance matrix of Z.
knowé, b(p,O,q) is determined. The maximization of the log likelihood

function is equivalent to maximizing the quadratic function,
| :
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2\ = (7= (p,0,q) - 2 -
Qu,»8,02) = =(Z-u,) My @G-y /0D . (2-8)
Since H, 61,...6m are independent mathematical variables and the mean
shift function is known and differentiable, the partial derivative of
Q with respect to u,Gi,i-l,..am, set equal to zero,
%%‘u-ﬁ,si-éi,i-l,z,...m = 0
' | . (2-9)
g%t umii 6,28, ,4%1,2,..m = 0 k=1,2,...m
yields the M.L.E. of 1,8 ,1=1,2,...,m.
The mean shift function ofiéhe form,
t-n ’
s(ey =5, ) Lsi7t (2-10)

in which [GZI <1 is differentiable with respect to 61, the scale factor,

and §, are

and 62, the shape factor. When m=2, the M.L.E. for u, 51 2

obtained by solving the following normal equations;

@ - i1 - BP0V o g

5 1 (P50 A s ‘
Dy My Vg -f1-5 = o (2-11) \

3
At ( 0 ~ -~ :
Ve -d1-B = o e
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where 1 is (nl+n2) x 1 vector with every elemensgbi.o
~ . <

-~

D=5 (0,0,...1,148,, 145 +(2)2, ... T 3 )I™)E, with the first n
=SS | 2770 g e L) , 1

elements zero,

n
A a2 2. -1t
14§,4(8,) ;.. ] (8 )7 7)7, with the first n,

D. = (0,0,...1,14
0 ’ 2’ 1=1
.elements zero, and
nz v
a ~ -~ I 1-2 T . A
D, = 6,(0,0,...1,1426 ... )} (1=1)(§ )7 °)", with the first (n +1)

elements zero.

The  solution of these simultaneous equations may not be unique and the
function value of Q is computed in order to determine the global opti-

mum solution that maximize?the quadratic form Q. Similarly,‘we may have

m=1, i.e.,
S(t) = f(t-nl,6 )

which results in the normal equatioms;

W

t . (p,0,q9) ~t  (p,0,q) t (p,0,9) &~
1 * Z - 1-11 ldN ’ l-1"M i D =
-~ }’N ~ - ~ ~ - (2_12)
At XY o ; . ~t s LA '
it u(Ps0,a) 2 - ai M-Igp.o,q) 1-3 Mép,o;q) b o= 0
where
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D = (0,0,...£(1,8 ),£(2,§ ),...£(n,,8 )%, with the firse n, ele-
ments zero and
a 9 2
B3 2 -
A useful mean shift function takés the form
0 t <
§(t) = =M (2-13)
SK(t) nl+l <t
where K(t) is a known numerical value. In this situation, the normal
equations result in a unique solution,
‘ IISth(,p’o’q)E][l (p,O,q)Z] - [ltMIgp,O.q)K”Kth(‘p,O,q)z]
o= — -
) (2-14)

s [ (p,O.q),é.][} (p,o,q)y _ [gtusp,O,q)l_”gtﬁ('p,O,q)l]
[gwp’o’q)g][}ﬁﬁgp’o’q)%] - [I,Stxl\(yp,o’q)l‘lz

where

| » ~,— .
K [o,o,...x<n1+1),x<n1+2)f-..K(nihzjl L

. 2
ments zen:).
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In the analysis of intervention program two specific forms of K(t) have
wide applicability. With d=0 and T(B) = ?p(B), Equation  (2-6) reduces
to 6(t) = EtG. However, from Equation (2-13) we see §(t) = SK(t) for
n Z_n1,1;4%:, depending upon the value of K(t), the realized modifica-

tion in the process, §(t) is not necessarily identical to the intrinsic

value or worth of intervention program's activities. When,
0 £ 2oy
R(t) = ' (2-15)
1 elsewhere
or
1 n.+l <t < n+T ,
~OR(e) = 1 — L (2-16)
- 0 elsewhere ,

the intrinsic value of the intervention program activities are directly
realized and thus are unaffected by the eﬁvironmental process.. Equation

(2-15) representing a step function for the interventi programs active

life (e.g., gt-O, t < 0y and gtal for t > n,3 R(t) = Stl) while Equation

(2-16) represents a pulse function for the intervention program activi-

tles thgt initiétg? at time n1+1 and term%nate;/;t n1+'l‘p whe:e '1‘p is

the number of active periods for the program (e.g., K(t) = ptl(Tp)).
The remaining case results from situations in which the environ-

mental process T(B) affects the realized value of modification in level,

when T(B) = qq(B),
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0 e <a
x (2-17)

K(t) = { -1
fp BT () &, t <o+l

The specific form of K(t) is obtained using the recursive equation

H(BIK(t) =I"q(B)£t with initial condition R(t)=Q for ¢ S n;. For example,

when p=q=l, (i.e., an ARIMA(1,0,1)MCI model) with g, = Py ) e B

: P ’
K(t) - ¥1R(-1) = 1 - v,
with

This results in

0 t<n
1-y Y-¥ o
R(t) = 1 + (_1._.];) ¥ t'nl"l
- - + -
t=T -n,-1
y : -
1 P 1 (‘¥1K(n1+1'p) e E2n+T +1

In Equation (2-18) by setting Tp = n,, and deleting the last equation,

we get the K(t) expression for the step function situation, i.e.,
o n

wal 1
Et .St » Since the Et = Pt ('1'p - nz).

e—
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) is1 g Since the parameter ‘]J drops out of the model when d>1, there is
e —— i . # ~the - g
For nonstationary processes, we initially assume that the mean §§ f ]E one less parameter to estimate and makes the simultaneousépéhations
shift function is known, but let d>l. 1In this situation, we difference : f (2-9) and (2-11) simpler by reducing each by the variable, U, and
the original observation vector, Z, to obtain Z* - de which is sta- yg \ deleting one normal equation, i.e., 3Q/3u|u=n = 0, Consider the situa-
-~ . * +
* t . :
tionary. For start up consideration we use, Z = [0, o""zd+l""znl+nl] , z% T tion Epat*G :t) is one iarameter function and can be expressed as
ien the firet d elijenks zero. Siuce there srw wow (n,=d) preinterven- T . © 8§ (t) = 8 *K (t) with K (t) a known numerical value, (similar to that
tion data, Equations (2-3) and (2-4) become, %% 4 ig of Equation (2-13). The resulting estimator for ¢ is
% I . .
%* +2 } I 'ﬂ‘ ) ‘;~“ '
a : QP(B) zt = §(B) at : t'd"*'l,d ""nz ~ ~ Z :MN(p, sq) *
. N A*
X ' , K
x Kk -7 (B) a t=n.+1,...0.+0 :
wp(B) 2z, = § () q Y 17 172

it santh 1)
R S
| sty 4

* * *
* where MN(p’O’Q) is the covariance matrix of Z , and K = [K*(d+l),

B
f ez

*
where § (t) = vis(e). K (@42),...K (n1+n2)] with R*(t) = 0 for t < m,.
2 2 2 Case II' Mean Shift Function and Influence of Environmental

‘Proceéss.Unknown (Model Parameters Known)

This form is different from the stationary case where d=0 in that

‘.Jmﬂ‘
e

the mean level u is eliminated and the interpretation of the mean shift |
In the previous section the form of the mean shift function, 6(t),

=3

e
St

. * R
function changes. We still]however, have E(Zt) =:§(t), E(Zt) = § (t)

was assumed and the time varying proportionality coefficient K(t) was

1

*
while 6(t) can be obtained once § (t) is obtained by applying the re-
- determined to bouple a program's intrinsic value § to the estimated mean

)
1§

*
ceagsive relation § (t) = Vdd(t),
shift function 8(;). This proportionality coefficient was developed for

the situations in which the'program environment did not influence or

5 (£) = iZo("l) (i)ﬁ(t-i) . . (2-21) 7 i I ’influenced the realized effects of the activities. It is not unusual,
% 'E however, to be unable to specify whether the affect of the program is
For example, when d=1 and 6 (e) = ’] :l(T =1) results in §(t) =9 S e ‘; ;i influenced by the environment process. In addition, the form of the mean
which 1s used in conjunction with Z for modeling. . ;f L shift function suggeste%lwhich couples 8(t) to S (e.g., Equation (2-135

g I ——— ety . ey m———— o [

may not be known. In these situations the sequential estimation of
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8(:), t=n.+l,¢e.,n,4n, for n,=1 is used to identify both whether the

1 172 2
program's affect is influenced by the environment and to determine an
appropriatjAgf the mean shift function.

In'estimating the mean shift functiom, §(t), the value of K(t)
must be spgéified which determine?whethe; the environmental process
influences or does not influence the mean shift function. However,
from Equation (2-18) the value of K(t) in the situation where the en-
vironmental process has an influence, the estimation of 8(t) is un-

affected when nz-l. Figure 2.2 delineates the sequential procedure for

estimating the mean shift function.

3. d=0

Initially, the M.L.E. of U using the o, preintervention observa-

tions are obtaining using,

1ty (P:0:); -
-~ n1 ~

= 1% zp,o,q)i_
oy

i (2-23)

where M(P »0,q)
|

If 1 is not equal to zero the n1+n2 observations are corrected by sub-

is the covariance matrix of the first ng observations.,

‘ traéting ﬁ. Then the M.L.E. of §(t) is obtained using Equation (2-22),

; * » ,
Qith K specified as s i.e., the (n1+n2) unit vector with n,=1, the

vector with 1 at the tth position,

2

2t M

S(r) = ~E=t (2=24)

Mtt

A R AR T TS S L a5 1
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where
gt is the vector ﬁzl,zz,..tzt_l,zt),
Mtt is the (t,t) element of MEF,O,q) and

gt is the tSE column of\ME?’o’q).

If §(nl+l) is significant, the (n1+1)§£L6bservation is corrected

by subtracting 3(nl+ﬂJ and entered into the set of o, observation. The
process is repeated with n1+l preintervention observations until all
n1+n2Aobservations are exhausted. |

4o a21

When the ARIMA(p,d,q)MCI process is nonstationary, e.g., d>1, U
is set equal to zero with (nl-d) preintervention data points. The re~
maining identification procedure is identical to the’staticnary situa=-
tion. yote that the mean shift function estimates obtained are for E*
not E,Jgi%f; they are 6*(t) not 8(t). In this case, we obtain &(t) fromgf
g*(t) by applying Equation (2-21) recursively.

Ffom the pattern exhibited by 8(t) vs. time for t=n1+l,nl+2,...,
n1+n2-1 and the form of gt which is known to be a pulse function of
length Tp or a step function (Tp+w) the appropriate multiconsequence
intervention representation is determined. If g(t) 1s constant for each
of the Tp period§, the environmment:al process does not exert any influence
on the realized mean level modification, é.@,& K(t)=1) for t=nl+l,n1+2,
...,n1+Tp and zero elsewhére. Thus the structural model exhibited in
Figure 2-1(b) is selected. In identifg;ng this config&fhtion the appro-

priated form of the mean shift fungtioh follows as G(t) = K(t)$§ with

K(t)=1l, However, if the environmental process influences the realized
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values of the mean modification, an appropriate form of K(t) must be
egstablished. The identification of the aépropriat represent of K(t)
may proceed in two ways: 1)'pattern matching to kﬁown theoretical
patterns of K(t) arising from specified formsvof §(t), or 2) use of
regression to fit an empirical form of 8(t) to data of g(t) versus t
and then computing’ﬁ(t).

2,2.3 Case III: Estimating Y, §(t) Given 8 Unknown (Model Parameters
Not All Known) u

So far we have assumed that all the model parameters are known.
Often, hqweéef, gsome or all of these ﬁodel par;m;ters 8 are unknown.
We will denote §u<as the unknown parameter of § and gu = (¢ ,0 Y Y )
with ?u’gu’wu’xu as the unknown parameters of $,8,¥,y respectively.
From the earlier estimation results cited, we know that the M:L.E. of
W and the mean shift parameters, 61, are not independent of the model
parameters (i.e., giving the model parameters, the M.L.E. are deter-

mined without searching through the (u,§) subspace). That is,

M'ax {L(§:u3§’°2)}
B>u,8,02 a

2
Max 2 {L(Bsu’§)qa)}

when § all knownm
Hy 8,0,

= Max [Max L(§,u,§,02)]
cg Hy & a

~

In the procedures for obtaining ﬁ, 8 and Sa when B is known the

~

least squares estimators (L.S.E.) are equivalent to M.L.E. due to the

o
.
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normal distribution aésumption of the residuals. However, when not all
the model parameters are known, the L.S.E. are not equivalent to the
M.L.E. From Equation (3-7), we see that the unknown model parameters
Eu would appear not only in the quadratic form but also“in the term

0,q),1/2 ; :
lMéP’ ’q)l / + Therefore, to maximize the likelihood function when

nct all model parameters are kmown' is equivalent to maximiz@“%?e whole

function, But MAX Q(u,§,c§) = -1, so it is equivalent to{ﬁ;ximizéﬂf\

A2, =N/2 1] 1/2
(Ua) 'lMé ’ ’q)l / « Consider the maximization of the likelihood

functionj

.

Max {L(8,u,8,02)}
8,u,8,02 -e

= Max {Max[Max L (§,u,§,c§)]}

2
B, 958

- (r,0,9) 1/2 -N/2
M‘;x Ty | eMax(o2)™ %)

~u

/2 .

~Q

i

This is equivalent to minimizing,

)2 (p,0,q)
! - niM
ln(oa) £1| N ‘
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Thus, to obtain the M.L.E. for (gu,u,§,c§), we search through the gu
subspace, apply previous results and minimize the value of

" 2
Nin(o2) - znluép’o’q2| where ci is the L.S.E. (or M.L.E.) of a_ for
a

given B.

2.3 Covariance Matrix for Low-Order Models

As just seen, the determination of the form of the covariance

matrix is central to the development of the M.L.E. In developing this
matrix we will focus on the four submatrices that emerge from partition~
ing realizations of the process into those asgociated with: the pre-
intervention period and the postintervention period (e.g., t g_nl and
o <t < no,im, respectively). These submatrices will be denoted cyy as

follows;

T 1,2,... ”nl’nl+1’ cae ,nl-l-nz —

2 €11 : °12
(®:0,0) _ _&}E ______ i
“1"";‘21__ €21 : €22 |

In the following the cij's of the covariance matrix for the ARIMA

(1,0,1)MCI model will be constructed. It should be noted that its eval-
uation for ¢ = Yy = 0, or 8§ = y = O results in the covariance for the .
ARIMA(D,0,1)MCI and ARIMA(l,O,O)MCIZmodels respectively. For nonstation-
ary processes, the corresponding covariance matrices are obtained using

% *
the following results with u=0 and zt where Zt = det.
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For the ARIMA(1,0,1)MCI model;

@p =) =8,y - W) + 3 =058, letsmy

- - “i:' = - -
(an + ~ H §(t5 tpl (an u) + anl +1 Ylan t-nl+l

(1) Submatrix i corresponds to the preintervention time series

model. The development of the covariance elements are found

in Box and Jenkins (1970). The pertinent results are;

for k=0;
wokns,
Var(Z ) = ——————xr—" ¢ (2-25)
t 1-4 2 a
1
for kzl
| (6,-6.) (1-¢.0.)
- s k177171 11 2 (2~26)
| (:L Cov(zt@Zt*k)’ ¢1 N 3 : Ga
-¢l

Al

(i1) Submatrix c,, and sy

12

li,t_<_nl, n.+l < t+k < n

1 1+

2

S B SN o S i

Py

o e 4

i restmn

P e

n,+2 <t <n

g W
i arens

-
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For t:-nl, k=1
= - 2
Cov(an,an +l) vaVar (an) Y 9,
l+°i'2°1¢ .
S -l
1
For 1 <t < nl-l, t:-l-k-n1+1
Cov(Z _,2Z ) = y._Cov(Z,,2 )
t nl+l 1 t n,
-y R (nl-t"l> (¢l-el) (1-4’;61) 5
171 2 a
1-¢l
Thus,
o1y ($,-6.)(1-¢.6.)
.4 (n,-t=1) 271 "1° L1 2 1<g<np-l
1'1 l-¢§ a - -3
Cc»v(Zt,Zn +l) - (2-27)
1
1+9,-26.¢
; 1 11 2 e
{{(ﬂbl ——— 'Yl) 9, t=n,

2
1-¢l

Simi]:arly, the covariance for k>2 can be shown to be,

\
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(111)

Var(Z

Since

then

-15_t§_nl-l

1-¢§
(2-28)
2
l 1_¢l l a 1
Suhmatrix Coo
For 1 ikinz, .+l < t+kinl+n2 and t 3n1+1’
»)'wZVar(Z )+(l+72-2wv)02
n1+k. n1+k-1 L 1 1'1 "a
. k -
2 2
1 14+85-0_6¢. 1=y
Pl iloze—L a+y?-auy) o2 (229
1-¢ 1-y
1 1
) a, k=1
E (Zt ’a t:+k—l O k> 2
N )
Cév(Zt,Z =y Cov(Z t:+k l) E(Zt bt ) “Y’?L (LC\G“ \
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- k“l - 2
v, Gy Var(Zq) 1{1) %
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Figure 2-3, ’l'he Covariance Matrix of the ARIMA(l 0,1)MCI

Model
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e 5,8+ o 19+ T O] - 20
2 :

(k) k) _
hyy * = V183 i

When evaluated with,

[ R 0, z(ltoll) - 2(0,0,1)

g =y =0, xf1’°'1) - 3(1:0,0
$~v$0

or

6=y ¥ 0

Figure 2-3.

n,4n,~1

n,=3. (1)
¥12 by

n,~4. - (1)
¥12 "hyy

ny-5 3)
¥;° "hya

(n,-1)
8y2 2

, ” multiconsequence covariiﬁcé = single consequence

covariance.

(Cont'd)
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Substituté/;quation (2-29) into fthe above/equation, we get

t

2 2%
’ . lk_ll 2 1+61-261¢1 1-y 2
Cov(ZysZp )™, (¥, by 14 +I-_wi 1+ =20, v,))-v, 1 0,2 (2-30)
1

where { = t-nl.

The results are summarized in.matrix Form i Figure 2-3 for ease

in evaluation of the covariance for other low order ARIMA(p,0,q)MCI pro-

cesses..

2.4 Hypothesis Testing and Cenfidence Intervals

In Section 2.2,  the M.L.E.Aérocedures for three diffefent cases of
unknown combinations of the model parameters (¢,8,y,y) or the mean shift
fupction, §(t), were detailed. Case I described the situation in which
the form of the mean shift function was known along with the model para-
meters and § and u were to be estimated. When the iﬁfluence of the en-
vironmnental process on the realized postintervention mean level is un-
known (and therefore the form of the mean shift functiou) but the pre-
intervention model parameters; (g,g), are known, the estimation procedures
for. the form of mean shift was described in Case II. Case III described

the M.L.E. procedures for e%timating 8§, pn and gu when the form of the

mean shift function is known and gu is a subset ofméhe model parameters.

In this section the corresponding hypothesis tests of significance for

YG, U, (g-g) and (Q'I) needed for modeling are presented. Also the cor-

responding confidence intervals for § and p and the pre and post inter-

vention model parameters are developed.
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Case 1:

whether &8 is gignificant,

From the M.L.E.

nERRy
o]

of & for d=0, our immediat

: §=0
Ho. 6

: 0
B 64

2 2
Since § ~ N(G,ds) with,

1’ (Pa°9Q)1_

i.e.,, we want to test;

6

2 = : ~ 40, Yay (P:O’q)l 2
O’A (E (P,O,Q)E) (}tuép ° q 1.) (ECMN -)

the statistic W where,

is ~

The corresponding (1-a) 100Z co

When 4>1, the

80,19

same procedure applies with th

For a sélected a level we reject

40

e interest is to test

2 -31
o5 . (2-31)

when Wg> tl—a/Z,N—Z'
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e exception that,

(2-32)
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Case II:
In the identification of the form of the mean shift function the
significance of the preintervention mean must be determined prior to es-

timation of 61 when nz-l for i-n1+l,...,n1fn2-l. Since T N(u,agj with,

u
a2
2 3 ,
0L ® —m——————— (2-33)
i 1_1:1‘11\(‘9,(3,:1)%
to test the hypot:héseé;
Ho: H =20
B: u#o,
we compute the statistic W where
lﬁl (l'tuép,o’q)l')
Wu- ]2. .
9a
We reject Ho when Wu tl—a/2,n1~l or accept HO when Wﬁ< tl—a/Z,nl—l'

Similarly, in testing the significance of each 8(1) in order to determine
correction of the 1th observed value before estimation of §(i+l), we test
the hypothesis,

H.: G(1) =0

Ho: S(1) #0
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3
1
L

2.5 Anticipated Causes of Bias in Estimation of the Shift
in Process Level

G

by computing W where, 5 .
o The misspecification of the mean shift function form and/or the

PO

¢
i@

use of a single consequence intervention model form when there is change

e |

= [6(;JlMtt in the covariance structure affects the ability to statistically deter-

5 K(t) are seen to weight the observation vector Z. For example, when we

null hypotheses in this sequential procedure.

* 3 iﬁ mine the significance of an intervention program's intrinsic value.
. . ~i From the estimator for §, the program's intrinsic utility,
The sl lopethasts e medcted wer ¥ >‘tl?a/2’t-l-N5 F aceeptad when ji % : Equation (2-14), the elements of K which are determined from the form of
W < tl-a/Z,t—l-N where N6 is the number of previous rejectioms of the e ; g{ ~
L d

it 1 have Et as a step function coupled with a direct stimulus response in-~

~.

=

Gase III:

P

tervention model each observation after t > n, is weighted equally since

e

RN

After estimation of the pre and post intervention mode; parameters

K(t) =1 for t > ng. However, when Et

the specification of K(t) each postintervention observation is not

is a pulse function regardless of

o

the question whether there has been a significant change in the covar-

L

iance structure should be tested before different postintervention para- ;
' equally weighted. Also when K(t) is of the form appropriate an in-

=

meter are retained in the model. To test the significance of the change .

P : direct stimulus response experiment regardless of the form of Et all
in covariance, we test the hypothesis,

=

postintervention observations are not in general equally weighted. The

consequences of having weights larger or smaller than appropriate is to

B

HO= -,ul = ~u2 | g
; ‘ | j underestimate or overestimate 6, respectively.
Hl: éul # EuZ i

pozm

Figure 2.4 portrays various configurations of K(t) that result
‘gégzi; step function for tﬁé (1,0,1)MCI model. Each exhibit in Figure

where §u1 € (9,9) and EuZ € (Y,I). The statistic,

I

2.4(&9, (b) and (c) represents Et as step functions with wl = 0.0, 0.6

+

W =(N2n(52) + gn(|MSPr O D[y - [Nen (32 +en( |y (P20
g a MN gul'§u2 1% T IMN l)]Bul?‘guz

and -0.%6 for a range of Yy values, respectively. The cases of wl = Yl

correspond to the direct stimulus response form of K(t), e.g., K(t) =1

s

?E t > 2, however, in comparisons between cases a, b and c, the observa~

taemmd
O

is computed (see Wilks (1938))., The null hypothesis is rejected when tions aFe welghted differentieg;y being dependent upon the postinterven-

2 tion autocorrelative structure,
Wé> X ,

=

or accepted when‘wsi;xz where n is the number of un-

a,n~m a,n-m

known model parameters and m is the dimension of 51’ i=1,2.

.t
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Within Figure 2.4, K(t) = 1-y for t > 2, and thus for a fixed

Yy postintervention observations Zc, t‘z.n1+2 are weighted equally in

estimation of §. However, postintervention observations Zt for t 2_n1+2

are wéighted (1-y) times the Zn +19t value weight in estimation of §.
1
Thus realizations zt, t 2_n1+2 exert greater influence than Zn +1 OO the

1
estimation of § whep Y < 0 and less influence when vy > 0. -In the latter

case as Y -+ 1 only the Zn+.lSt observation influences estimation of §.
Similar differenti‘ behavior for the relative contributions of Zt,

t Z;n1+1iin'estimatisn of § are seen for the step functions in Figures
2.4(a) and (b). When Et is a pulse function, the K(t) weights behave
the same as the step function values fér t f.n1+Tp.and eventually decay
to zero as t increases for t > n1+Tp+1. Thus as in the step function
case, a pulse function also behaves similarly in that the consequence
of not assigning an appropriate mean shift function form manifests it-
self in impropef specification of K(t) and consequent overestimation of
the magnitude of § if K(t) chosen is less than the appropriate K(t) or
underestimation of § if the K(t) chosen is larger than the appropriate
R(t).

Suppose the mean shift function form K(t) is correctly specified/
identified but a_single consequence model is used -inappropriately. Since
K(t) is correct the point estimates of § are not inflated or deflated.
However, the tests of its significance is still impaired due to the dif-
ference in magnitude of the Var(&) that occur. For example, when the
gystem should be treated as a.(l,O,l)MCI procesé and is not, the resulting

model parameters for the single consequence formulation arey

e
R

[P

R IR

Oydwnes

it

R(t)

R(t)

R(t)

9
6
2.0 -.3
c///////;l' 0.0
1.0 .‘él - .3
1" .6
0.0 > —¥; = .9
! t -t
1 5 10 14 15
(a)
A wl- 0.6
5.0¢
Yl = - 9
4.0%
Yl = -6
3.0 o . Yl - . 3
2.0 Yl = 0.0
vy .3
1.0+ 1
Y= .6
0.0 } R R - Yy = -9
1 5 10 15 >t
(b)
*1 « <0.6

~1.0

(e)

Figure 2.4. Variations in K(t) Weights
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where ¢S and es are approximate solution to the estimation problem
b4

min 2 .
¢S’OS cz(¢S’eSI¢l’el’wl’Yi’ca ‘1

: -
; with o defined as SS/(n1+n2) where

n.+¥n

lz 2., 2
SS = ( .
t=l @H?
2 , o
where GA’ ¢l’ Sl, *1’ Yi is{the true (1,0,1)MCI model parameters and

ths are‘the residuals computed from the single consequence model, e.g.,

the model with ¢1 = ¢l = ¢S’ el - Yl = eS'

Table 2,1 illustrates representative values of

- - -1
M= (//Qar(G)MCI/Var(6)SCI)
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Table 2.1. Values of (v Var(d)ucI/Var(8)scI) for Determining
Consequences of Over/Under Estimation of Significance
~
of § when K(t) is Correctly Specified
n =a " 10 4 = 0.60
n B .95 -.80 -.60 -.40 -.20 0.00 .20 .40 .60 .80 .35
-.95 |1.25 1.00 .80 .47 .67 .84 1.14 1.49 1.80 1.93 2.02
-.80 |1.15 .8 .72 .56 .66 .73 .85 1.00 1.15 1.246 1.34
-.60 |1.28 .8 .72 .67 .67 .71 .79 .89 1.00 1.04 1.11
-.40 |1.37 .8 .74 .69 .69 .71 .78 .87 .9 1.00 1.03
-.20 |1.42 .89 .75 ,70 .69 .72 .78 .86 .9 1.00 1.00
0.00 [1.45 .91 .77 .71 .0 .72 .77 .8 .97 1.03 1.0l
.20 | 1.46 .92 .77 .72 .70 .72 .77 .86 .99 1.08 1.05
.40 1.48 .9 .79 .72 «70 71 - .76 .85 1.00 1.15 1.14
.60 (1.55 .98 .82 .7 .70 .70 .74 .84 1.00 1.23 1.30
.80 1.73  1.10 .90 .79 .72 .69 .72 .82 1.01 1.32 1.63
.95 | 2.04 1.30 1.04 .88 .76 .70 .70 .80 1.06 1l.44 2.03

I3

e |

= o, =10 & = 0.60

- plcaouns
for

:r:_-’x'»‘:ﬁi;

o |
ylgﬁl; -.95 =.80 =.60 =.40 =-.20 0.00 .20 .40

.60 .80 .95

-y

fr

g‘m‘t%

-.95 .90 .83 .78 .81 .95 1.21 1.56 1.96
-.80 .83 <75 74 .77 .84 .95 1l.10 1.27
-.60 .93 <74 .72 74 .79 .86 .96 1.07
-.40 1.02 .76 .72 .72 .76 .82 .90 .99
-.20 1.08 77 71 .71 74 .79 .86 «95
0.00 1.12 97 71 .70 «72 .76 .83 .92

2,32 2.58 2.9
1.43_ 1.56 1.81
1.15° 1.20 1.36
1.06 1.06 1.16
1.01 1.00 1.05
1.00 .99 .98

55 cinia

.20 |1.13 .77 ,70 .69 .70 .74 .80 .89 98 1.00 .95
40 {113 .77 .69 .67 .68 .71 .77 .86 .97 1.04 .96
60 | 116 .78 .69 .66 .66 .68 .73 .82 .95 1.09 1.04
.80 |1.20 .82 .71 .66 .64 .65 .69 .77 .91 1.14 1.26
.95 |1.38 .92 .78 .70 .66 .63 . .65 .72 .87 1.16 1.59
o, =n, =10 & = 0.60
" :

R 1 ..95 -.80 =-.60 =.40 =.20 0.00 .20 .40 .60 .80 .95
-.95 .96 1.00 1.09 1.21 1.35 1.52 1.72 1,96 2.26 2.71  3.42
-.80 | .97 .9 1.00 1.08 1.15 1.23 1.31 1.38 1.48 1.67 2.09
-.60 | 1.06 94 .96 1.01 1.07 1.12 1.17 1.19 1.20 1.25 1.52
-.40 | 1.15 .93 .93 .96 1.00 1.06 1.10 1.11 1.09 1.06 1.24
-.20 |1.22 .93 .90 .93 .97 l.00 1.05 1.07 1.03 .96 1.07
0.00 | 1.24 .91 - .87 .£9 .92 .97 1.02 1.06 1.01 .91 .95

.20 {1.23 .88 .83 .84 .88 .92 .98 1.01 '1.00 .88 .86

.40 ] 1,17 7 .83 .78 .79 .82 .87 .93 .98
.60 | 1.09 .77 .72 .72 .75 .79 .86 .93
.80 | 1.00 .71 - .65 .63 .66 .70 .76 .84
.95 .96 .68 .62 .60 .61 .62 .66 .73

1.00 .89 .80
1.00 .93 W77
.95 1.02 .84
85 1l.02 1.05

for preintervention parameter values of
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i o Table 2.1.. (Cont'd)
Table 2.1. (Cont'd) %i ‘ ; E nl - n2 - 10 ¢1 b ‘0.60
g i 2 Wl
i NNC| =95 -.80 -.60 -.40 =-.20 0.00 .20 .40 .60 .80 .95
=, = 10 [ *
8, = 1n, 4y = 0.00 i , .98 1,00 1.05 1.11 1.19 1.30 1.41 1.56 1.78 2.20 3.44
o i . 1.00 .99 1.00 .02 1,04 1.06 1.07 1.09 1.13 1.30 2.04
Y ~.95 -.80 =.60 =-.40 =.20 0.00 .20 .40 .60 .80 .95 1 1.07 1,00 1.00 1.00 1.00 1.00 .98 .9 .91 .95 1.44
1 : o 1.12 1,02 1.00 . 1.00 .99 .98 .95 .90 .83 .80 1.14
; ,
-95 | .99 .95 .95 1.0 1.1 1.25 1.41 1.57 1.73 1.98 2.75 ! 8,= =0.60 i e rRorn Lo B N8 80 72
‘ ) . . . . . . . . .81 .68 .82
-.80 | 1.12 .96 .9  .9% .99 1.03 1.07 1.11 1.14 1.26 1.74 8 / 1,19 1.07 1.04 1.04 1.04 1.03 1.00 95 84 s 72
-.60 |1.31 1.00 .9 .% .98 1.00 1.01 1.00 .97 .98 1.31 1.19 1.07 1.05 1.05 1.05 1.06 1.05 1.00 .91 .71 6%
—40 | 1.43 1.05 .99 .98 .8 1.00 1.00 .98 .93 .88 1.10 : 1.20 1.07 1.06 1.06 '1.06 1.08 1.09' 1.08 1.01 .81 .62
-.20 | 1.50 1.08 1.00 .99 .99 1.00 1.01 .99 .93 .84 .97 ] 1.22 1.09. 1.07 1.07 1.07 1.09 1.11 1.13 1.14 1.0l .71
0.00 | 1.54 1.10 1.02 1.00 1.00 1.02 1.03 1.02 .96 .83 .88 . 1.29 1.15 1.11 1.09 1.08 1.09 1.10 1.14 1.18 1.19 1.02
.20 | 1.55 1.11- 1.02 1.00 1.0l 1.02 1.05 1.05 1.01 .86 .83 I N . . . . . .
40 | 1.5 1,11 1.02 1.00 1.01 1.03 1.06 1.08 1.07 .93 .80 = &
60 | 1.54 1.11 1.02 1.00 1.00 1.02 1.06 1.10 1.14 1.06 .84 g e e o
80 | 1.59 1.15 1.04 1.01 1.00 1.01 1.04 1.10 1.18 1.25 1.04 ] b ¢y = ~0.60
95 |1.73 1.264 1.11 1.05 1.01 1.00 1.02 1.08 .17 1.34 1.44 : I
7 g -.95 -.80 -.60 =-.40 ~-.20 0.00 .20 .40 .60 .80 .95
n, =a, = 10 ﬁt\ 0.00 g | _
: 3 }} 1.05 1.07 1.12 1,17 1.24 1.32 1.42 1.58 1.83 2.35 3.80
> ~.95 .80 =.60 =00 =.20 0.00 .20 .40 .60 .80 .95 1.03 1.03 1.05 1.09 1.09 1.11 1.11 1.13 1.18 1.39 2.21
A i g i.gﬁ i.gé ir"z 1.03 1.03 1,03 1.00 .97 .93 .99 1.52
\ . . (00 1.1 1. . . . .
-.95 .98 1.01 1.07 1.15 1.25 1.36 1.49 1.65, 1.88 2.30 3.45 ) 1.05 1.00 1.00 1.33 l.g; .gg 32 gg ?3 % 1;?
-.80 |1.00 .99 1.01 1.05 1.08 1.11 1.14 1.16; 1.21 1.39 2.06 g = 0.00 1.07 1.00 1.00 1.00 .99 .98 .9 .87 .77 .66 .82
-.60 |1.10 .98 .99 1.01 1.03 1.04 1.04 1.02/ .99 1.03 1.46 ,, 1.08 1.00 1.00 1.00 1.00 .98 .96 .89 .78 .63 .70
-.40 |1.19 1.00 .98 .99 1.00 1.01 1.00 .% .90 .87 1.17 ] 1.07 1.00 .99 1.00 1.01 1.0l 1.00 .9 .82 .63 .61
-.20 |1.26 100 .98 .98 .99 1.00 .99 .95 .87 .79 .98 J % 1.06 .98 .98 1.00 1.02 1.04 1.04 1.0 .91 .69 .55
0,00 {1.30 1.00 .97 .97 .99 1.00 .99 .95 .87 .74 .85 g 1.06 .96 . ) . .
| .96 .98 1,00 1.04 1.08 1.09 1.06 .86 .57
.20 {1.31 1.01 .9 .9 .98 .99 1.00 .97 .89 .73 .76 4 1.06 .9 .95 .96 .98 1.01 1.05 1.09 1.12 1.06 27
40 11,30 .99 .9 .95 .96 .99 1,01 1.00 .93 .76 .69 it : " . :
.60 | 1.28 .97 .92 .92  .9% .97 1.00 1.03 1.00 .84 .66 ;ﬁ
.80 |1.26 .95 .90 .89 .91  .9% .98 1,03 1.07 1.01 .74 S g i n, =n, =10
.95 |1.29 .97 .91 .8 .88 .90 .93 .99 1.06 1.13 1.02 4 b= -0.60
&
4
a =, 10 3= 0.00 gﬁ .95 -.80 =.60 <~.40 =-.20 0.00 .20 .40 .60 .80 .95
; b i :
v ) 1.08 1.08 1.09 1.11 1.14 1.19 1.26 1.39 1.64 2.18 3.73
A :95 ~.80 -.60 -.40 -.20 0.00 . .20 .40 .60 .80 .95 I 1.05 1.04 1.04 1.04 1.04 1.04 1,03 1.04 1.09 1.32 2.20
: : IR 1.03 1.02 1.0l 1.00 .99 .97 .9% . .90 .87 .9  1.52
-.95 | 1.11 1.13 1,15 1.18 1.22 1.27 1.35 1.48 1.73 2.24 3.6l 1.03 1.00 .98 .97 .96 .93 .89 .84 .77 .77 1.18
-.80 | 1.10 1.09 1.09 1.10 1.10 1.10 1.10 1.10 1.15 1.37 2.15 1.03 .99 .97 .9  .9% .91 .8 .80 .72 .67 .96
-.60 | 1.14 1.07 1.06 1.06 1.05 1.03 ©1.00 .96 .93 .99 1.51 3 &= 0.60 1.04 .99 .97 .95 .93 .90 .85 .78 .69 .60 .80
-.40 | 1.20 1.07 1.05 1.04 1.02 1.00 .96 .90 .84 .82 1.18 % 1.06 1.00 .97 .95 .93 .90 .85 .78 .67 .56 .68
-.20 }1.27 1.08 <1.04 1.02 1.00 .98  .9% .87 .79 .72 .98 1.07 1,00 .98 .97 .95 .92 .87 .80 .68 .54 .58
0.00 | 1.32 1.08 1.04 1.02 1.00 .98 .93 .86 .76 .66 .83 1.07 1.00 1,00 .99 .99 .97 .93 .85 .73 .55 .49
.20 | 1,36 1,08 1,03 1.02 1.00 .98 .94 .86 .75 62 .71 { 1.02 .96 .97 .99 1,01 1.03 1.02 .98 .86 .63 .44
.40 |1.36 1.07 1.02 1.01 1.00 .99 .96 .89 .77 .61 .61 i .92 .87 .88 .91 .9 .98 1.01 1.02 .98 .80 .50
.60 | 1.31 1,02 .98 .98 .99 1.00 .98 .9 .83 .63 .54 P :
.80 |1.20 .93 .90 .91 .93 .96 .39 1.00  .9% .74 .51 .
.95 {108 .8 .81 .82 .8 .87 .91 .95 .97 . .88 .60 [ .
P L}
H
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¢1 = ~-0,6, 0,0 or 0,6 and 8, = ~0,6, 0,0 or 0.6 tabulated for values of

1
wl and Yl’ where MCI and SCI.refer to multiconsequence and single con-
sequence., In compn;ing the tabiqd entities the wvalues of $S and §S are
used in determining Var(3)SCI. If the tabulated multiplier, M, is equal
to 1.0000 then the standardization of 3 in hypothesis testing is un~
affected by ignoring the multiconsequence phenomena. Although, only
when the assumption of a single consequence structure is appropriate
(eegey ¢l = wl’ el - YlB is the hypothesis test unaffected. There are,
however, many combinations of parameters that reasonably mimic correct
estimztion of significance of §. These combinations are typically

those with relatively smzall changes in cor¥esponding pre and post para-
meters from correct values., However, large variations frca correct
values can also mimic by chance due to the cancellation or offsetting
of individual parameter contributions. As noted, more typically a

severe overestimation of sigpnificance is obtained whem M >> 1 and severe

underestimation of significance occurs when M <<.1,

2,6 Bias of ﬁ and @

In Section 2.2, a flexible mean shift function,

: <
0 t<n

§(t) =
1<t

+4-

SK(t) n,

was described where § is the intrinsic utility of an intervention programs
activities and K(t) is the dynamic coefficient whose specification is

determined by whether the intervention effect 18 influenced or not influ-
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enced by the environmental process, the indirect or direct stimulus-
response model forms. The M.L.E. estimators of U and § were determined .

to be:

[IS:MISP’O’q)K] [ltuép’o’q)Z] - [;"Mrg"’o""m [Kth(,p’O’q)Z]
u =
[gtM}gp,o,q%S][}t}&gp,O,q)}] - [Istuép,o,q)y-’!

and
t !0! b } ] .
. (K Mlgp q)-Z-][l (p,0 q)l] - [gtbf.tgp’o’”;][gtuép’o’”;]
. where (paosQ) i X
MN s the inverse of the covariance matrix of E and K =

[0,0,.;.,K(nl+1),K(n1+2),...,K(nl-i-nz)]t with the first n, elements zero.

Since E(E) = u£+6§, the estimators for the mean, U, and program
utility, &8, are unblased when the K vector is correctly -assigned, since
E(n) = u and E(s) = §. However, when the K vector is incorrectly assigned,
the estimators are blased since, we have 6(t) = GKO(t) rather than

§(t) = 6K(t), eg.



R

R —

52

‘ g ‘% i A B|[u :
t , 0 »0, : ok Ell= | (2-36)
(x° Mép’o’q)gollltMép’Q’q)K] - [ltMép’o’q)gol[E (t)Mép D 5 ;3 | 2 ¢ ollsl
E(H) = u + ; t - g ”
0°,(p,0,q)0 (P+0,9) 57 _ 10 (P»0,q9),:2 (2-34) I
[K° me? P VT 11 1] - [ Mg 1 , T R
o ﬁ éF where A=l and C=(Q regardless of the form of K(t) or the correct speci-
t Ot 0 i .g B+ ‘ ‘
) [50 MéP,O,Q)g][ltuép,O,Q?l] _ [gtnép,O,Q);][g Mép, ’q)l] 6 235) 5% ! fication of the parameters of the noise process. Both B and D are
E(6) = = - {1 -
t . t 0 2 o functions of the Pre and post intervention noise process parameters.
[go M}SP: O’Q)ISO] [ltuép’O:Q)l] - [go M‘[‘gp, ’q)l-] [ e

SR
ot

Thus given that the form of K(t) is not correct, the specification of
\ i a particular ombination of noise process parameter values determines
It should be noted that only when the correct specification of model

)«‘»*#"._:;_‘-1
g AT A

ot

the magnitude of the bias in the estimates ﬁ and 8. Combinations of
structure, either direct stimulus response or indirect stimulus response ‘

parameters giving rise to values of B close to zero and D close to 1

FERRg
s
b

is made, in which case 'does Ko + K, are the estimates of u and § unbiased.

RO
e ]

result in small biases.

1 1 parameter vector of the noise process, g@ %
T Thn miarion sTEa e Semelst» hg f N The practical consequences of incorrectly specifying a multicon-
: ) tly assigned, i.e., the matrix ! W
composel of & & LR 8 ok cerEactly e ’ - ge § | il Sequence or single consequence model or the misspecification of the
MéP,O,Q) is not aPproPriate for the data, the estimates {i and § are still @E E 4

i Q"},ﬁ

£1 1 noise parameter values for the correct specification for the indirect
the correct model specification
unbiased. 1In addition, regardless whether )

stimulus respomse form is illustrated in Example 1 in terms of the bias

i |
pesens

: " 3 unb d wvhen n, = 1. 3
- 1s or is not made, the estimates of U and § are iase 2 in ﬁ and 8.
: timulus or indirect stimulus response T !
(Effectively K(1) for the direct s il Example 1

model 1is identical.) This fact is exploited in the identification of the

el

Woertranl ot

Table 2.2 gives computed values of B and D for the true parame-
appropriate model structure which determines the specific form of K(t) in

’

the mean shift function in the following sectiom. Lastly, if the direct

i ters representing a multiconsequence process (e.g., ¢T = 0.6, wT = 0.3

pEmy
RipaT

BT = 0.3 and Yp = 0.6) and a single consequence process (e.g.,
stimulus response structure is appropriate and identified correctly, the

¢ = ¥y = 0.6 and 8y = Yp = 0.3). Entries a, b and ¢ in Table 2.2 are
estimates of y and § are unbiased even when the noise process parameters

for the multiple consequence case where the preintervention parameters
are misspecified (eg. K(t) #¥ 5(23932339 = 1 all ¢t > nl).

used are both set equal to the true parameters, equal to the true para-

[O——

FEST———_

to misspecification of the K vector
S p ' | meters plus 0.3 or minus 0.3, respectively. For comparison entries d

L

: - 2-35) may be expressed as
obtained from Equations (2-34) and ( ) may 1 o e ok s oo st o e -

)
)
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DTy
B Wt ]
ey S |

& asymptotically stabilizes to a fixed bias. The comparison of entry e
tervention parameters are set equal to the true parameters and equal to i $
and f which corresponds to an increase from n, = n, =10 t = =
the true parameters plus 0.3, respectively, Entries a through e are fv 1 2 °on T,
) : 20 illustrates a rapid convergence for most combinations of paramet
for n, =1, = 10 while entry f corresponds to the parameter value of “ g > eters

B except severe:"de artures of the postintervention aut
entry e only differing in that n; =1, = 20. P P autoregressive

From Equation (2-36) the bias in ﬁ and 8 1s seen to be bropor- §§ ‘ parameter from its true value. Thus increasing s’ample size does not
tional to §8; the bias in ﬁ being BS and the bias in ) being (D-1)8. offset the biases induced by parameter misspecification.
From Table 2.2 the estimate of ﬁ is seen to be unbiased when YF = 0,0 “% % | :i, i From‘Table 2.2, the relative robustness of the estimators i and
regardless of the other misspecifications of model parameters. Typically, "1 % © are observable. The estimator U is more robust than the estimator

¢ for departures of g from §T. Departures toward the iaoun.daries of the

however, depending upon the combinations of the misspecified parameters,

stationary or invertibility region are more severe. The estimator u is
mild to severe bias are noted, being in some cases several times the ‘ é; H
‘ ) ] e more robust to departures from true value of the preintervention para-
magnitude of §, with U either overestimated (B and § opposite signs), i3 booon
? 5 o E meters ch and GT than the corresponding postintervention parameters.

or underestimated (both B and § of the same sign). Similar observations

. Departures in the autoregressive parameters exert a greater effect than
both with regard to the magnitude of the bias and direction of the bias »

RSN,
Yoot

. v equivalent magnitude departures in the moving average parameters.
(overestimation of underestimation) are noted for §. 1 ,

Regardless whether the misspecification of noise pérameters cause

ot
o

The ramification of ignoring the need of a multiconsequence model

. ] a bias in the estimates of |y and §, it does affect the detection of the
and using a single consequence model allowing oniy for a shift in the . :

=

ot
Ve, A

A
true significance since the Var({}) and Var(8) are not correct for im-
process label is illustrated in Table 2.2(a) - (c¢). Although a small : ) -

properl}; specified noise parameters., For the indirect stimulus response

nonconsequential bias in the mean is expected the intervention iﬁipact is

e

model, which may result in small biases in the estimate of 8 due to

0

overestimated by approximately 407, Similarly severe biases both
i noise parameter misspecification resulting in K

= X, the statistical

~

prae

— e
fonengi

positive and negative are illustrated in Table 1(d) in situatioms in

A
significance of § may be severely distorted.
which a single consequence model is appropriate while the multiconse- v

Example 2

quence form is fit., The potential magnitudes and signs of the biases . L
Table 2.3 gives entries of h where

clearly indicate the need to consider the multiconsequence formulation Ig'

in real world evaluations of intervention experiments.
| /EVax (8/3 ) oo 1™

h = [E(Var(é/aa) hcoxl (2-37)

MISS

1
As ny and n2~increase, the bias in the estimates of W and 4. {

=g
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Table

Value of B and D for Misspecifications of E
Parameters (Entries are B above, D below)

n =, =10 #p = 0.6, 8y = 0.3, ¥y = 0.3, v, = 0.6
$p= 0.6, 85 = 0.3
Ye b -0.3 0.0 03 0.6 0.9
~0-9 060 | o33 | oz | o2 | Tolce
o-e 002 | omc | oas | oz | Tom
~0-3 Sez | o4s | o3 | Toza | To0e
- o8 | o6 | o | o3 | oy
-3 10 | ods | e e | o2
0.6 b2 | vl e | e | o
0.9 S | Sl o Se | oo
(a)
bp = 0.6, 87 = 0.3, ¥ = 0.3, v, = 0.6
¢?- 0.9, GF- 0.6
Y. *F =-0.3 0.0 0.3 0.6 0.9
F .
-3 027 | oz | o 8.3 | o-os
-6 oeel ose | a2 52 | oo
~0-3 e | o | o% 022 | o0
o P A A I
o3 105 | oo | To6r | Tous | o
o Tos| 130 | 100 | oes | o
>’ 07| o | o6 | o | Tolke
(b)
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Table 2.2, (Cont'd)
ny =1, =10 ¢r = 0.6, 8, = 0.3, Yp = 0.3, Yp = 0.6
9p = 0.3, 8p = 0.0
#F 0
a =0.9 -0,6 -0.3 0.0 0.3 0.6 0.9
-0.9 0.01 0.03 -0,01 -0.08 -0.19 -0.31 ~0.44
0.62 0.51 0. 44 0.38 0.30 0.0 0.05
-0.6 0.00 0.01 0.01 -0.01 -0.03 (=007 -0.11
0.74 0.62 0.51 0.41 0.31 - 0.20 0.08
-0.3 0.00 0.00 0.01 0.00 -0.01 =0.02 ~0.04
0.91 0.76 0.63 0.50 0.36 0,23 0.09
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
. 1.15 0.98 | 0.81 | 0.63 0.46 0.29 0.11
0.3 0.05 0.02 0.00 | -0.01 -0.01 ~0.00 0.02
1.45 ~1.29 | 1.10 | o.88 0.64 0.39 0.16
0.6 0.33 0.24 0.15° 0.06 0.00 -0.01 0.04
LAl | 1.26 | 1.31 | 1.23 | 100 0.64 0. 25
0.9 0.58 0.56 0.53 0.47 0.37 0.16 -0.0
0.11 | 0.25 0.42 0.61 0.83 1.00 0.6
(<)
3, *n, =10 ¢T = 0.6, er = 0.3, bp = 0.6, Yp = 0.3
$p= 0.6, 6, = 0.3
Vp
Yo -0.9 -0.6 ~0.3 0.0 0.3 0.6 0.9
~0.9 -0.03 0.13 0.02 -0.02 -0.10 -0.20 -0.32
1.60 1.32 1.09 0.87 |- 0.66 0.43 0.17
=0.6 ~0.05 =0.03 0.00 -0.00 -0.01 ~0.04 -0.08
1,91 1.59 1,29 1,02 0.75 0.48 0.20
-0.3 -0.07 ~0.04 =0.02 0.00 0.00 -0.01 -0.03
2.33 1.94 1.58 1.24 0.90 0.58 0.25
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.81 2.40 1.98 1.56 1.15 0.73 0.31
0.3 0.46 0.30 0.17 0.09 0.02 0.00 0.00
2, 2.58 2.38 2:02 1.54 1.00 0.43
0.6 1.71 1.42 1.07 0.68 0.30 0.04 . 0.02
=1.23 0. 00 1.06 1.77 1.:95 1.52 0.70
0.9 1.77 1.75 i.n 1.62 1.42 0.91 0.04
=3.80 | -2.9¢ =2,07 ~1.10 0.02 1,29 1.54
(d
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Table 2.25" (Cont'd) j where MISS and COR denotes misspecified and correct, respectively, for
| 1
By ea, =10 ¢, = 0.6, 8 = 0.3, ¥ = 0.6, v, = 0.3 gu L the same combinations of the noise parameters used in Table 2.2. When
$p = 0.9, 8, = 0.6 M h > 1, the misspecification of these parameters result in an overesti-
<8 - o ALA
Y! il 0.9 | -0.6 -0.3 0.0 0.3 0.6 0.9 ;: mation of Var(G/ca) and consequently, and underestimation of the sig-
T ¢ ™ A
-0.9 -;J.gg 0.03 0.11 0.14 0.09 -0.05 -0.25 Ef‘, = i nificance of 8., Similarly, when h < 1, we effectively underestimate
. 1.30 1.02 0.78 0.59 0.40 0.17 b S
H NN A
-0.6 | =0.15 | =0.07 | =-0.01 0.02 0.02 0.00 -0.06 » SR Var(8d/0_ ) and overestimate the significance of 6. As seen from the
2.01 | 1.64 | 1.30 1.01 0.73 0.47 0.20 i ) a
-0.3 -g.tg -(2).09 -0.04 | =0.01 0.01 0.00 -0.02 i‘.f ! sl range exhibited for h in Table 2.3, severe overestimation or under-—
o .01 1.61 1.24 0.90 0.57 0.25 ;
= & = 0 . A A
0.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 ; o LT estimation of Var(8/c ) can occur as values of h from 0.1 to 2.4 are
2.81 2.40 1.98 1.56 1.15 0.73 0.31 . %g’g i {5;3 a
0.3 'g;gg 0.57 | 0.35 | o0.18 0.06 | 0.00 0.0 ‘ - P seen.
. 2.00 2.06 1.88 1.51 1.00 Q.44 .
0.6 | 200 1.76 | 1.45| 1.0 0.55 0.12 0.00 1 E 081 i i
232 | -I'10 o, 06 1 09 158 1,46 o i,f E‘ The composite consequence of the bias in the point estimates and
0.9 _gz; -%'23 _i-;g _i-gg (1)-33 i%’; g.;l) . - the over or under estimation of h is evaluable using the results of
- : = - s ¢
1 {
(e) »‘i} ;}dﬁ both Table 2.2 and Table 2.3. The scale factor to measure departire
{7{} of the test statistics in testing whether HO: § = 0 versus Hl: §#0
- a, =8, =20 4 = 0.6, 8 0.3, v 0.3 0.6 is D/h. When this ratio is one, the test statistic adequately portrays
y) ? +08y Op = 0.3, b - 0.7, T-r. . . )
i E ‘ . P
$p = 0.6, 8, = 0.3 ' %‘}j , g} the time significance or non significance. When this scale factor is
YJ:!' -0.9 -0.6 -0.3 0.0 0.3 0.6 0;9 ~ g close to one, this might be due to the compensation of severe departures
T ﬁ
£l !
~0.9 g.gz 0.04 0.03 | -0.01 -0.10 -0.20 -0.33 U B in B and h or due to minor departures in B and h from one. 1In the
.59 0.48 0.39 0.33 0.26 0.18 0.06
-0.6 g,;)g . 0.01 0.01 0. ~0.01 «0.04 ~0.07 2}; tﬂ former situation although adequate portrayal of the significance of-the
. 0.59 0.48 0.38 0.28 0.17 0.06 R
= e LS UF
-0.3 8-270 0.00 0.01 0.00 0.00 -0.01 ~0.02 : intervention effect § is obtained severe error in the magnitude of the
. 0.73 0.60 0.46 0.33 0.20 0.07 vy ER S
0.0 g.gg 0.00 0.00 0.00 0.00 0.00 0.00 g: : %}E intervention program utility for subsequent policy inferences such as
.1 0.95 0.77 0.60 0.43 __0.26 0.09 ‘ 1 - )
0.3 22; g.% g.gg -g.gl -0.01 0.00 0.01 ‘ . g , the value of a certain program type is present.
1. . . .85 0.61 0.36 0.12 ié‘* ] &
o | am | e | Toes y q |
0.6 g.gg cl).gg g.;..‘; g.g: o.go -0.01 0.02 8 i More typically values of the scale factor result in severe mis-
.29 | 1. 1. 1.2 1.00 0.62 0.20 :
0.9 g:;g gzgz g.zz ggg g.;.g g.gg -g.gg i('g g @ estimation of the test statistics. For example, from entry a of Table
6 ) ¢ 2.2 and Table 2.3 for wF = 0.6 and Yp = -0.6, the scale factor is .27
{3 while when Yp = 0.0 and Yp = 0.6 the scale factor is 1.25. When testing
b
AT
(I
- } \
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c0 g Table 2.3. (Cont'q)
ﬁ < m =n, =10 4y = 0.6, 6, = 0.3, ¥p = 0.6, y.= 0.3
N . _ #p = 0.6, 0, = 0.3
H v 0.9  -0.6 __ -0.3 0.0 0.3 0.6 0.9
. : -0.9 0.86 0.92 0.78 0.58 0.44 0.36 0.32
Table 2.3. Computed Values of h for Misspecified Parameters 8 [ : -0.6 0.80 0.92 0.97 0:96 0.91 0.87 0.84
0.6 i} | -0.3 0.70 0.82 0.92 0.98 1.01 1.07 1.15
= 0.6, 8, = 0.3, Yy = 0.3, v, = 0. . j !
a, =1, =10 bp = 0.8 Oy T | 0.0 0.58 0.70 0.82 0.92 0.99 1.08 1.28
¢p = 0.6, 8, = .3 f? r 7 0.3 0.45 0.56 0.68 0.80 0.90 1.00 1.24
o5 i T 0.6 0.39 0.38 0.49 0.62 0.75 0.87 1.03
¥r 4.9 0.6  =0.3 0.0 0.3 0.6 . .‘ . 0.9 0.12 0.16 0.22 0.30 0.43 0.60 0.74
Y . * . N : v' ‘\F‘ X -
z 0.98 0.93 0.69 0.48 0.35 0.28 0.24 fgi . ; } .- . (d) )
-0.9 . 1.05 1.02 6.92 0.81 0.75 0.70 L ; .7: . nl = n, =10 ¢ = 0.6, 9, = 0.3, y_ = 0.6, v = 0.3
-0.6 0.95 . 1.03 0.98 0.98 1.02 i g 2 T T - T MRS ¢
-0.3 0.89 1.00 1.05 . 1.05 1.19 i ¥ %p = 0.9, 8 = 0.6 ’
93 1.02 1.05 1.03 ® - !% 4 i q ¥
0.0 0.81 0. 03 .1.04 1.22 i o "
0.3 0.71 0.84 0.95 1.02 1. : 108 : T =0.9 =0.6 =0.3 9.0 0.3 0.6 0.9
0'6 0.57 0.70 0.84 0.95 1.00 °'9§ 0'85 P [ =0.9 0.98 1.42 1.73 1.13 0.59 0.36 0.31
0.9 0.33 0.43 0.57 0.73 0.88 0.9 . T ii " -0.6 1.20 1.66 2.07 1.95 1.43 1.01 0.83
- (a) ; :} =0.3 1.14 1.56 1.99 2.10 1.79 1.37 1.15
- 10 $p = 0.6, 8= 0.3, ¥ = 0.3, Yy, = 0.6 iy ‘ } 0.0 0.98 1.35 1.79 2.06 1.92 1.56 1.30
nl - nz T 0.6 {g é i ‘ Df ;?‘ 0.3 0075 1006 1-48 1086 1(91 1.63 1‘31
4 = 0.9, 6= 0. ’ | § 0.6 0.47 0.69 1.04 1.48 1.7 1.57 1.22
- 0.9 0.17 0.26 0.43 ____ 0.72 1.02 1.15 1.06
0.6 0.9 (t H i ——-\ 2 . -
G -0.3 - 0.0 - 0.3 : | | ~
¥ 0 ek 0.28 0.24 (! P )
-0.9 1.12 1.43 1.54 .93~ 0.47 'ae 0.69 | gl
-0.6 1.44 1.90 2.17 1.87 1.28 2'26 1.02 53 | I T b = 0.6 0 = 0.3, g a0, Tp = 0.6
* ° 1.74 . * P ! ‘
-0.3 1.45 1.90 2.27 2.2 1.52 1.20 ' i ¥ $.=0.6, 6 =03
0.0 . 150 2.07 2.37 2.18 1.69 1'27 g;\ * 0.9 =0.6 =0.3 0.0 0.3 0.6 0.9
O'Z 0'91 1.27 1.78 2.27 2.27 1.79 1-21 § =0.9 1.02 0.94 0.72 0.54 0.43 0.36 0.31
0. . . . .76 L.
0.9 0.49 0.72 1.13 1.73 2.07 1.7 ; =0.6 0.99 1.06 1.04 0.97 0.92 0.9 0.99
) 0 { i ~0.3 0.92 i.02 1.06 1,06 1.06 1.16 1.44
- 10 ¢p = 0.6, 8, = 0.3, Y, = 0.3, y, = 0.6 . 0.0 0.85 0.95 1.02 1.06 1.08 1.20 1.66
b Bl 1 T 0.0 , . 0.3 0.76 0.87 0.96 1.02 1.05 1.13 1.64
g = 0.3, G = 0. , ﬁ : 0.6/ 0.62 0.74 0.85 0,95 .00 1.03 1.36
E L 0.9 0.34 0.44 0.56 0.71 0.86 .
Yr -0.9 -0.6 -0.3 0.0 0.3 0.6 0.9 63) 0.93 0,92
Y : i : , .24 i
. 9 0.86 0.78 0.59 0.44 0.34 0.29 g - é i
:g.s 0.81 0.88 0.87 0.81 0.76 O'ZZ 1.oz ‘i
. ’ 0.89 0. . ¢
-0.3 0.75 0.84 0.88 0.89 0.99 ~  1.19 S :
0.3 0.59 0.69 0.77 0.83 0.87 0.3 1'05 T
‘ 0.6 0.49 0.58 0.68 0.76 0.81 0.85 LS T
' 0.46 058 0.70 0.7 ) b
0.9 0.28 0.36 o, i
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at the a = 0.05 level of significance for walues of éhe true parameter
8 between the critical value of the test and approximately four times
the eritical value would result in the incorrect inference of accepting
Ho when H1 should be preferred. In the latter case, values of the true
parameter less than the critical value of the test but greater than

approximately 0.80 of the critical value results in the incorrect

inference of rejecting Ho and HO 1s true.

2.7 Modeling Procedurgs

.

For the modeling of multiconsequence interventior time series ex-
periments the time occurrence of an intervention program is known which
determines the preintervention and postintervention series size o, and

n, respectively. Also from the experiment it is known whether the in-

2
tervention activities are directed specifically to subjects whose re-~

sponse forms the time series monitored or is in fact directed to the

general enviromment from which the time series responses are monitored.
In the former case we start with the instantaneous mean shift multi-
consequence model structure with known mean shift function §(t) = SK(t)
where K(t) is zero for t =m and one for t > n;, while for the latter
we start with the transient mean level change model structure to allow
for the realized change in mean level to be influenced by the environ-
mental process. As discussed in Sectiom 2.2.2, when this distinction
cannot be easily made, the analysis should be initiated with the more
general indirect stimulusFresponse case or transient mean level shift
structure with unknown mean shift function form to identify the appro-

priate model form.
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The steps for modﬁiing the indirect-stimulus response case arsz;
1) Estimate Y, 9 and 9 from the ny preintervention observations,
2) Identifigztienqef the form of the mean shift function by
sequential estimation of §(t).
Recall that when n, = 1, R(t) is the same for both the
transient or instantaneous mean level cases. Therefore,
incorrect values of postintervention parameters do not bias
the estimation of §(t). Thus ? and Y may be set equal to
$ and 8 (e.g., the single consequence model).

3) From the sequential estimates of the mean shift funetion with
n, = 1 determine the form of K(t).

4) Estimate §, w and Y from the n, postintervention observations.

5) Estimate U, §, 9, 9, Q and Y simultaneously from the nl+n2

observations.

Figure 2.5 pictoriallyfdescribes the modeling procedures. The
estimation procedures called for in each step here are those delineated
in Section 2.2. As seen from this figure, the primary difference in the
modeling of direct stimulus—response time series experiments from the
indirect-stimulus response experiments is that in the lattér, the mean

shift function form is not known and has to be identified. The estima-

tion procedures for the mean shift is described in Section 2.2.2.

2.8 Considerations in Designing Inierrupted Time Series

Experiments

The design of interrupted time series experiments consists of
specifying the appropriate number of pre and post intérvention observa-

tions. By appropriate, we refer to the individual size of ny and n, and
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}5 3 » o - ! 3 also their relative size to be able to; JV@ \\ \;\})‘
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‘ ?21 VI 1) statistically detect a given magnitudegcovariance, as
- S
’ . ’§ | - measured by the change in the corresponding pre and post
by N
, Ei intervention autoregressive and moving average parameters,
Z. .0 . ‘
%107y Glven g Lo with Type I error o, and,
i P
- 2) statistically detect a standardized magnitude of an inter-
TES Direct NO I vention program's utility &/¢ with Type I error o
timulus-Respouse o (S i ’ 2°
' “ o ~In this section we describe each of these considerations in turn and
'y it ; :
Estinate u, 4, 8 o ‘gfi; : then focus the results derived for interrupted time series designs.
 baseto bs. Eszimate u, g, @ i '
se’on ny obs. base 2’?5 ; : 7 S oti
. ! on n, obs. i ,) § . 2.8.1 Sample Sizes for Detecting a Change in Covariance
' ; 3 !‘
{ B Intuitively, the smaller difference between R, and B,, the more
Estimste (4,u,v[4,8,u) Estimate 8(c) i RS - =
s 8L te t 5 i 7
Baselon (n_+4n ba. Pt : : - .
e& n,4n,) obs | Sequent a1y b o § difficult it is to reject the hypotheses H, §1 §2 Further the
3 more observations we have, the better chance that we will be able to
Estimate (y,G,y,7) ' : T 2 detect any real difference that exists. In developing specific sample
5 taneously Identify'vile mean-shift & ’
pattern _ i ' sizes, we will assume that both the multiconsequence model or the single
consaquence model forms have been correctly identified and estimated.
{% i s ) A A
That ig, we assume K(t) is assigned correctly awdg U = U, ¢ = § with

. Constmc; the form of R(t)

probability 1. We will denote Z: = Zt - H, t < ny and ZE - U = §eK(t),

, c (r,0,9)y =
Figure 2,5, Hulticonsequence Intervention Model N £ n1+1, Leses 20~ N(O’ZN Y+ whers "L
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g Procedure Thus, when the correct model is a multiconsequence intervention
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the incorrect single consequence model will be,

20,00.C o (20 11 t. (2-39)
522 = (DB, a

g £ th
For known parameter values of QP(B), wp(B), q(B), I‘q(B) of the
correct model, the parameters Boof the incorrect single consequence

n 80 N2 () < d s to minimize
form .contained in @p (B) and q(B) can be estimated so a

n,+n,
172
Z Ai.h/Since the multiconsequence form is correct, the resulting
t=1 ' . :

model of the residuals of the single consequence model is,

-1 R =1 ; '
20 0 ny2
¢ ® D A, = o, OIONOL N

(2-40)
60-1 - 0 - -l
3, ®@ BA =y, ®r®a  t>n4
ar
o AO -1 A O-l
A, =0 (B0 ®®, ®@,®a, 7
(2-41)
A = 3%y -1(3)(f>°-1(3xr (B)a £ > n+l
€t p P q g%, =M
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The test statistic W for the null hypothesis that a single consequence

model is appropriate (e.g.: HO: @l = gz) is
By,
_ min 22, 2 (p,0,9) 30
(ngnl,nz,g) §0 (nl+n2)£n( cgl At/ce)+ Zn(MN Ch0))
_Rn(b&gP:O:Q)cg))

-

where El aud §2 are the pre-invention and the post intervention model

parameter vectors, respectively, gt = (Qz,gg), and Eo is the correspond-

ing single consequence model parameter vector, and Mé ’O’Q)(é) and
(

MNP’O’q)(g) are the inverses of the covariance matrix of §c constructed

with §° and g, respectively. Taking the expectation of (Wslnl,nz,B)

results in,

i i n+n, . o
=vylnonp &) = ety sar 1] 22GD1 + an (0P @)

where E(Kﬁ) is approximately computed from Equation (2-40) and Equation

(2-41) by applying the covariance generating function and EO is obtained
by searching through the (Qlﬁl-ﬁz) subspace. If the E(Wsiﬁl,nz,g) >

2 L)
Xg

then the sample size (nl,nz) is large enough to statistically

detect the differences between §1 and §2 at the (1-a) level.

R R
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For example, for the ARIMA(1,0,1)MCI model with 61,¢1,Y1,wl

given,

c c ‘
2 = 0%y 0%t A txm
c c
Z = -
R R CL RN t2nHl

and the alternmative single consequencé model,

z° = 392 - 304

c 1%¢-1 i + At all t

t-1

0
1

residuals of the single consequence set aie;

where 52 and §

A = ( da, + (¢ ¢.)B ( —)a t<n
t 20 7% 1° % . nt =1
1-,B 1-$.B
. 1-v.B . 1-vy.B A
A = —=poa + Gy - 898 —Loa, € > 0+l
1-53 1-y,B

68

(2=43)

are the parameters the minimize EE(Egrnl,nz,E)a The

(2-44)

To compute‘z E(Ki|nl,n2,§) we apply the covariance generating function

which results in,

Lt | ‘fm~$
LN Y | L —
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- e

yackigoesy g e
R R E I [EREEN

S

Wm P
[P

R

i

20 2 ~0 ~0 ~
~ (e -9 ) 2 a —e - . - 0
EA2) w1 + —2 1 . (8.-8,) (¢, ¢1)(1-876.)
‘ 40° 1~¢_ 89
1-6y 1%
p 5202 2_
_ . ($1-0 )7 (1487 zelqsl)]02 e
1-¢ 2 a =1
1
20 .2 20 20, ,. 20
8.- 6 -~ - -
t R A0
1-87 19,91

~0.2 2
W, - D Ay im2y, b))
pa?¥ TN 0
1~y 2 a -1
1

Thus,

in
E(Wélnl,nz,é) e§f¢g. (n1+n2) fn £; +&n £, - zn’f

where

nzy
L)

£, = nl
1 n1+n2

02 "2
EGAl[t <o)+ ’E(Atlt > ny*l),

(lsosl) a a -1
£, = | I 43,89  and

(1,0,1)

-1
f3 - IZN (¢1,91,¢1sY1)| .

-t

3

(2=45)

(2~46)
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For a fixed preintervention sample size 0y, the general behavior
of the sample size n, to detect the covariance change for the ARIMA
(1,0,1)MCI model is indicated by the sign of the third term for each
equation labeled (4~8), which is the only term that can be negative.
When ¢l > wl and 61 > Yl or ¢1 < wl and 61 < Yl each of the third
terms are negative otherwise they are positive. In the former cases,

n, increase when ]¢l-w1| is smgll and decrease when ]¢1-wl| is large.
From Equation (2-46), sample size requirements for the (1,0,0)MCI or

(0,0,1)MCI model can be obtained by setting the.apﬁropfiate subset of
the noise parameters to zero. For example, when ¢1 = wl = 32 = (0 we

obtain the E(Wslnlgnz,el,yl) for the (0,0,1) process.

Example 3 )

In the following numerical example, the magnitude of the post
intervention sample size required to determine a given size covariance
change is addressed. Tables 2.4(a) - (¢) illustrate the computed sample
size requirements for the (0,0,1) process for nl-i‘an wigh the tabléd
values being n, for values of K = 1.0, 0.5 and 2.0. Thus, equivalent
time histories of the pre and post intervention segments are available
when K = 1.0 while more preintervention history is available when
K > 1.0 and more postinterv;ﬁtion history than preintervention history.

In each table, e.g., the required size of the n, sample is seen to be
sensitive to the combination of parametér values (el,Wi) for situations in
which lel-yi]-is relatively small (e.g., values around the diagonal where
6‘=yl). As expected the larger the magnitude of Iel-yll the smaller the

1

requirements for the postintervention sample size. In fact, for larger

values contained in the top right or bottom left the sample size becomes
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-0.95
-0.80
—=0,60
—0.40
-0.20
0.00
0. 20
C.40
0.60
0.80
0.S5
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Table 2-4. Sample Sizes of n, for detecting Covariance
Change of STMA(1) “Process Given n, = k ny .
(a) K=1.0
Significant Level = 0.15
—0.95 0.8 -0.6 ~0.4 -0.2 0.0 0.2 0.4 0.5 0.5 0.5
- 28 10 6 4 4 3 3 .2 -
72 - 42 13 7 5 g 3 '3 3 g
5 7! - 71 18 1 6 5 a4 3 3
14 2492 - 92 24 12 7 5 4 2
5 13 27 105 - 105 27 13 § § &
6 € 13 28 109 - 109 28 13 & g
5 6 8 13 27 105 - 105 27 13 ¢©
4 4 5 7 12 24 92 - 92 21 1a
3 3 4 5 6 10 19 71 - 71 2%
2 3 3 3 4 5 7 13 4 < 5
2 2 2 3 3 4 4 6 10 2 -
Significant Level = 0.05
79-95 -0.8 -0.6 0.4 ~0.2 0.0 0.2 0.4 0.6 0.8 0.95
- 77 23 14 1o g& 7 6 6 5 =
242 - 139 3% 20 13 10 8§ 7 g =
62 241 - 241 64 31 15 14 11 o5
45 82 314 - 314 82 39 24 16 13 11
29 43 93 358 - 358 Y3 43 26 1g 1%
€ 27 45 56 373 -~ 373 95 45 27 20
15 18 26 43 93 358  — 358 93 43 o
1113 16 26 3y 82 314 - 31¢ 52 a5
5 S 1l 14 1y 31 64 241 - 241 2
6 6 7 8 10 13 20 3% 139 - 24z
c 5 6 6 7 8 10 14 23 977 -
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Table 2-4. (Cont'c) L Table 2-4, (Cont'd)
(b) K = 0.5 o : (¢) K = 2.0
Iy
Significant Level = 0.15 H : Significant Level = 0.15
—0095 —‘0.8 —O.6 -0.4 _‘0.2 0.0 OO2 5 j%% :E _0095 —008 "006 "'3-4 —0.2 0.0 0.2 0.4 O.G O-S O' 95
-0.95 - % 10 6 4 40 33 2 ~0.95 - 28 10 6 4 4 3 3 2 2 -
080 | 7 - 42 13 7 5 4 ; il L ©.80 4 72 - 42 13 7 5 4 3 3 3 3
—0.60 25 71 - 71 20 11 7 5 > 1 ~0.60 24 70 - 7 18 9 6 4 3 3 3
-0.40 14 25 92 - 92 25 12 & : y -0.40 1324 92 - 9 24 11 7 5 1 3
~0.20 9 13 28 105 - 105 28 5 I '{ ~0.20 9 13 27 104 - 104 27 13 g 5 &
0.00 7 9 14 26 109 - 109 7 %g 0.00 6 8§ 13 28 109 - 109 28 13 8§ g
0.20 5 6 & 13 28 105 — 10 . 0.20 4 5 8 13 27 104 - 104 27 13 g
0. 40 4 4 6 § 12 25 92 P . 0.40 3 4 5 7 11 24 92 - 92 2¢ 13
0.60 3 3 4 5 7 10 20 noa > %‘z 0.60 3 3 .3 4 6 9 19 70 - 0 2
0.80 3 333457f1-028_ W , 0.80 2 2 3 3 4 5 7 13 42 - 7
0.95 2 2 3 3 3 4 4 & y o 0.5 2 2 2 3 3 4 4 6 10 2 -
‘k“% = =
' e Sﬁ
. ; i s o
Significant Level = 0.05 h VIS Significant Level = 0,05
~0.S5 =0.8 ~0.5 —0.4 0.2 0.0 0.2 0.4 0.6 0.8 C.5 o oo —0.95 0.8 -0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.t 0.5
< .n K IS
~0.65 - 7¢ 23 1a 1 9 7 7 6 - L 3 —0.95 - 76 22 13 9 8 6 § 5 5 9o
-2.80 | 243 - 140 40 22 14 1 ¢ 8 o | E ‘ ~0.80 | 241 ~ 137 38 19 13 9 8 § § 5
~0.60 83 242 - 242 65 32 20 15 12 o2 n B —0.60 8l 239 - 23 62 30 1 13 10 8§ 7
-0.40 46 83 315 - 315 83 40 25 17 o 1s i o ~0.40 44 8l 313 - 313 8l 37 22 15 12 19
~0.20 30 45 94 359 - 359 94 LS /2{2 c : —0.20 28 42 91 357 -~ 357 91 42 25 17 14
C.00 21 28 46 97 375 - 374 97 oon oz o 1 0.00 1926 44 95 372~ 372 95 44 25 ¢
0.20 16 19 27 45 94 359 - 389 ¢4 4 30 H 0.20 1417 25 42 91 357 - 357 91 22 o
0.40 | " 12 .14. 17°°25° 40 . &3 315 - 315 834 - | 0.40 | 10 12 15 22 37 8l 313 — 313 &1 ¢
0.60 5 16 12 15 20 32 65 242 - 262 &) I o= . C.60 7 € 10 13 18 30 52 238 - 239 gl
0.80 7 7 8 5 11 14 2r 4 140 o §}§ I 0.80 5 & & 8 9 13 19 3¢ 137 — 241
0.95 5 6 6 7 7 9 11 14 23 i 0.95 4 5> 5 6 6 g 9 13 22 757 <=
A i /B )
iy
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fixed without variation for different parameter ccmbinations. Further,
in comparison to the case exhibited in which nl = nz, incre;sing the
relative length of the preintervention history to the postintervention
history results in smaller magnitudes of n,, for comparable size changes
in covariance for a given a level while decreasing the relative size of
the preintervention history to the postintervention history dictates a
larger post;ntervention history n, for equivalent magnitude changes in
covariance for a given a level. This tradeoff is exploited, in Section
2.9, in the genération of optimal desigﬁs for interrupted.time series
experiments.

2.8.2 Sample Sizes for Detecting a Chanégﬁin Mean Level

The test of significance of § involves the evaluation of the

hypothesis,
Hy: 8=0
H,: §#0,

in which the test statistic W6 is,

T.'Zs ’-—_:ﬂi-:—' or H—S/o,._._f‘——_-.':'. (2-47)
NVar(s) wVar(§/a;)

For a preselected type I level, %y we‘accept~ﬂo when IW6| <
tazl2,n1+n2' In Equation (2-47), we see the ability to detect a
standardized magnitude of the program utility is dependent upon the

behavior of Var(glda) with variations in the pre and post intervention
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sample sizes ny and 0.

For stationary processes,

. Lim .E!["Var(S/U-'a)] =1/M,
n,*e ‘

2

where M is a constant that is determined by the‘model parameters as well

as n,. For example in the case of the (1,0,1)MCI model,
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1-¢ (1-6‘*1> 201-6. 1y 1-p. . w2yl
1,2 8,(1~8, 9, (1-6, 1,2,7°"1
M’[(—)( - + : ] + ) ¢
T 1-8, 1-917: rv® 712 )
1
1-¢ ! M Y1 (1-9.) Y. 1=y,
1
+ 2G50 -0 ) = - L 4 L )Yl)]
(1"Y1) (1-71) (1-71)
-2 —L +<16)<1e>( ,_)-
(1-v)) (1-v)) 1 1-v]
(L-¢,) (b =y, )Y 1y v3-1
+2—id 3% Ly 29, - 2(1_\(1)2 Ut 5
(1'Y1) 1 (lfvl) (erl)
2
P 'Y Yl
G, (2-48)
1 l-yi
Note that, <2
© Lim E[Var(8/o,)] = Lim E[Var(a/o,)] > 0
n,*e o P oo ] ’
2 2
when u1.< = and \S
. \%‘5; i\\
Lim [Lim E[Var(d/c 3]] = Lim [ Lim [Var(u/c 1] = 0.
nl*” nz-*@ nl-)on nz-)m
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Since for a given value of nq, E(Var(&/ca))doesn't go to zero as n,

increases there is a lower bound of |§], ‘below which a given magnitude
"4"‘/7/

of § cannot be statistically detected even as n2 goes to infinity. That

is when IG/G I falls in the region [0, t, /2 ‘/Lim E(Var(S/c ))] we

cannot detect the significance of the mean-shift. Alternatively from

the width of the (l-uz)lOO% confidence interval for u/ca which is

2t /2 Q'Viiﬁ E Var(glca), |(u+6)/ca| falls in the (l—az)lOO% confidence

n 2""”

interval for u, theréfore the magnitude of mean shift cannot be detected

at the a, significance level.

For nonstatiomary processes, d > 1, ¢ = 0 and Var(ﬁ) = 0, In this

case where only S8 is estimated Lim E[Var(G/a )] = 0. Therefore any

nz")‘”

mean shift magnitude, § # 0, can be detected to be statistically éignificant

by increasing the postintervention observations n,.

Example 4
In the following numerical example, the effect of the preintervention

correlative structure on the ability to detect a minimum threshold shift
in the process mean for stationary processes éﬁd the magnitude of the

postintervention sample size n, required to determine a given change in

pfocess level is illustrated. Table 2.5 displays numerical values of the

Lim E[Var(é/c )] for d=0, n, = 10 and ~1.0 < wl’yl < 1.0, For a basis

n e
2

of coﬁparison of the effect of varying the preintervention parameters

¢1, 61 on the tim E[Var(g/da)], entry a contains the case where"¢l =
2 ,
61 = 0,0, Entries b-e are for ¢1 = 0.4, -0.4 and 91 = 0,4, respectively

for all other conditions in entry a. Within each entry a-e, the closer
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Table 2.5, Computed Values of Limit E[Var(é‘/o‘a)] Given n, = 10 H ' Table 2.5. (Cont'd)
nz—m 1{ ;
i S
4 = 0.0, 8, = 0.0 (n, = 10) . { ; : © ¢y = =0.4, 8, = 0.0 (a, = 10)
Y1 | : . ¢
v -0.95 =0.8 =0.6 =0.4 =0.2 0.0 0.2 0.4 0.6 0.8 0.95 25 T -0.95 -0.8 =0.6 -0.4 =0.2 0.0 0.2 0.4 0.6 0.8 0.95
—0.95| 0.022 0.023 0.025 0.026 0.026 0.027 0.026 0.025 0.024 0.022 0.021 . - ~0.95| 0.018 0.018 0.018 0.018 0.018 0.018 0.017 0.016 0.015 0.014 0.014
-0.8 | 0.059 0.061 0.063 0.065 0.066 0.065 0.064 0.062 0.059 0.056 0.054 ) i ok -0.8 | 0.038 0.038 0.038 0.038 0.038 0,037 0.037 0.036 0.034 0.033 0.032
.0.6 | 0.081 0.083 0.085 0.086 0.086 0.086 0.084 -0.082 0.079 0.076 0.072 3{1 - -0.6 | 0.046 0.046 0.047 0.047 0.046 . 0.046 G6.045 0.044 0.043 0,042 0.041
-0.4 | 0.090 0.092 0.094 0.095 0.095 0.095 0.093 0.091 0.088 0.085 0.082 ) L e -0.4 | 0.049 0.049 0.050 0.050 0.050 0.04% 0.049 0.048 0.047 0.046 0.045
-0.2 { ©0.093 0.095 0.097 0.098 0.099 0.099 0.098 0.096 0.094 0.090 0.088 - ‘ ;ﬁ -0.2 | 0.049 0.050 ©0.050 0.051 0.051 0.051 0.050 0.050 0.049 ©.048 0.047
0.0 | 0.092 0.09 0.097 0.098 0.100 0.100 0.100 0.098 0.097 0.094 0.092 { ‘ 0.0 | 0.049 0.049 0.050 0.051 0.051 0.051 0.051 0.051 0.050 0.049 0.049
0.2 | 0.087 0.089 0.093 0.095 0.097 0.099 0.099 0.099 0.098 0.096  0.094 i 0.2 | 0.047 0.048 0.049 0.050 0.050 0.051 0.051 0.051 0.05L 0.050 0.050
0.4 | 0.077 0.081L 0.085 0.089 0.092 0.095 0.097 0.098 0.098 0.097 ' 0.096 3 ¥ lg 0.4 | 0.043 0.045 0.046 0.047 9.0648 0.049 0.050 0.050 0.051 0.051 0.051
0.6 | 0.063 0.066 0.071 0.076 0.08L 0.086 0.090 .0.093 0.096 0.097 0.098 § : 0.6 | 0.037 0.039 0.041 0.042 0.044 0.046 0.047 0.049 0,050 0.050 0.051
0.8 | 0.039 0.043 0.047 0.053 0.059 0.065 0.072 0.080 0.087 0.093 0.098 ‘gf" 0.8 | 0.026 0.028 0.030 0.032 0.035 0.038 0.040 0.043 0.050 0.049 0.050
0.95 0.012 0.013 0.016 0.018 0.022 0.027 0.033 0.041 0.054 0.072 0.092 3 1 0.95| 0.009 0.010 0.011 0.013 0.015 0.018 0.021 0.025 0.031 0.038 0.045
A ;
(a) : 0o (e)
K
- - . % ‘ f’\ .
¢l 0-4, el 0.0 (nl-10) ) ¥ g ¢, = 0.0, 8 = 0.4 (n, = 10)
, ) , 1 1 1
wl~ 6.8  =0.6 =0.4 =-0.2 0.0 0.2 0.4 0.6 0.8  0.95 o ai
Yy =0.95 . =0. . . . O . . : : 3 j v\ -0-95 -0.8 -0.6 -0.4  ~0.2 0.0 0.2 . 0.4 0.6 0.8 0.95

-0.95; 0.024 0.027 0.030 0.03% 0,037 0.039 0.04l 0.041 0.060 0.038 0.935 o -0.95| 0.015 0.016 0.016 0.015 0.015 0.015 0.014 0.013 9.012 0,012 0.011
-0.8 | 0.090 0.097 0.107 0.116 0.124 0.128 0.129 0.127 0.121 0.113 0.106 o031 0.032  0.032. 0.031 0.091 ©6.030 0.025 0029 0.08 0.026 0026
-0.6 | 0.158 0.169 0.182 0.193 0.200 0.203 0.200 0.193 0.182 0.169 0.158

‘ 0,037 0.038 0.038 0.037 0.037 0.037 0.036 0.035 0.034 0.034 0.033
=0.4 0.202 0.215 0.229 0.240 0.246 0.247 0.242 0.232 0.218 0.202 0.189 ts 0.4 0.039 0.040 0.040 0.040 0.040 0.040 0.039 0.038 0.038 0.037 0.036

=k
e
1
o
.
o«

T
=
]
o
o

-0.2 | 0.223 0.236 0.252 0.263 0.270 0.270 0.265 0.254 0.240 0.222  0.209 ) Al "‘;;F 0.2 | 0.040 0.03 0.060 0.040 0.040 0.060 0.060 0.040 0.03 0.039 0.038
0.0 | 0.222 0.236 0.253 0.266 0.275 0.278 0.275 0.266 0.253 0.236 0.222 & 0.0 | 0.039 0.040 0.040 0.040 0.041 0.041 0.041 0.040 0.040 0,040 0.039
0.2 | 0.202 0.216 0.234 0.250 0.263 0.270 0.272 0.268 0.258 0.2464 0.231 : oz |0 ose 0.038 0.040 - 0.000 0.060 D.060 0.0AL " 0.0AL " 0.0AL . 0.040  0.040
0.4 | 0.166 0.179 0.198 0.216 0.233 0.247 0.256 0.259 0.256 0.247 0.237 ] ?Q 06 | 0.035 0.035 0.057 0038 0039 0.039 0040 0.040 0.060 0.04 0061
0.6 | 0.118 0.129 0.146 0.165 0.18% 0.203 0.220 0.23 0.242 0.242 0.238 % g L oc | oosi 0.08 .03 003 - 0.036 5037 0038 ©.039 -0.0i0 0000 0041
0.8 | 0.062 0.069 0.080 0.093 0.109 0.128 0.150 0.174 0.198 0.218 0.228 " - 0.8 | 0.022 0.023 0.025 0.026 0.028 0.030 0.032 0.03 0.035 0,038 0.040
0.95| 0.016 0.028 ©0.021 0.026 0.031 0.039 0.051 0.067 0.091 0.128 0.167 Lo 9.5 | 0.008  0.009 0.010 0.011 0.013 0.015 0.017 0.020 0.024 _0.029 _0.03
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Table 2.5. (Cont'd)
¢1 - 0.0, el - "0.4. (nl = 10)
¥ ;

Yi -0.95 -0.8 -0.6 -0.4 0,2 0.0 0.2 0.4 0.6 0.8‘ 0.95
-0.95 0.024 b.026 0.028 0.031 0.033 0.G35 0,035 0.035 = 0.034 0.032 0.030
-0.8 0.078 0.083 0.089 0.095 0.099 0,101 0.100 0,098 0.093 0.088 0.083
0.6 0.123 0.129 0.136 0.142 0.145 0.145 0.143 0.138 0.132 0.124 0.117
-0.4 0.1438 0.154 0.161 0.166 0.168 0.168 0.165 0.159 0.152 0.144 0.137
-0.2 0.158 0.164 0.171 0.176 0.179 0.179; 0.176 0.171 0.164 0.155 0.148

0.0 0.156 0.163 0.171 0.177 0,181 0.182 0.181 -0.177 0.1721 0.163 0.156
0.2 0.145 0.152 0.161 0.169 0.175 0.179 0.180 0.178 0.174 0.168 0.162

0.4 0.124 0,132 0.142 0.152 0.161 0.168 0.172 0.174 0.174 0.170 0.168
0.6 0.094% 0.101 0.112 0.123 0.134% 0,145 0.155 0.162 0.167 0.169 0.16qﬂk

0.8 0.053 0.058 0.067 0.076 0.088 0.101 0.115 0.130 0.145 0.158 0.165.

0.95 0.015 0.016 0.019 0.023 0.028 0.035 0.044 0.058 0.077 0.107 0.l39
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the parameters to zero the larger the Lim E[Var(g/oa)]. Also as 61

n, >
2
decreases from zero or ¢1 increases from zero the Lim E[Var(G/ca)]
n,.ro
2

increases. Conversely as 81 increases from zero and ¢l decreases from

zero the Lim E[Var(@/ca)] decreases. The smaller this value is, the

n >
2

greater the ability to detect a small magnitude of the mean shift para-
meter. Thus, if the time series is smooth (e.g., described by moderate

to long length runs above and below the mean, ¢1 >0, 8, < 0) small

1
magnitude changes in the mean shift parameter are harder to detect
than when the series is oscillatory (e.g., described by a high frequency
component such as runs above or below.the mean of short duration).

-~ Table 2-6(a) illustrates the sample size of n; or m, need to
detect a given standardized shift in process level, 6/03, for the sta-
tionary (1,0,1)MCI models for o = 0.03, 61 = 0,975 and Y, < 0.816. For
a given column entry, n, and row entry S/Qa, the tabled entry is the

. , 5 ) . .
minimum value of n, such that |W| taz/z’n1+n2-2 Some entries contain

© which denotes the inability to détect the correspbnding 6/0a for the
combination of (nl,nz). Table 2-6(b) illustrates the sample size re-
quirement for the nonstationary model (1,1,1)MCI under the same para- N

meter values and hypothesis test specification of Table 2-6(a). Since

when d=1 the Lim E[Var(G/ca)] converges to zero, all non zero magnitudes
0o

of (S/O’a will be detectable for large enough n,, as shown for the para-

métér set illustfated. In Table 2.6 for a fixed preintervention history

n, the larger the ﬁagnitude of 6/0a ghe smaller the postintervention

sample size n,. Similarly for a fixed 6/0a as ny increases n, decreases
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, except when (5/0‘a is large and n, remains constant. For nonstationary
processes the postintervention sample size is seen to be independent
) E E of the size of the preintervention sample size. Lastly, under the
‘3 1]
[ same conditions (comparing corresponding tabled values for d=0 or d=1)
}; a nonstationary process is seen to be more sensitive in detecting
8 ‘
T S/Ua since fewer postintervention observations n, are required.
a~i
I H
A
Table 2.6. Sample Sizes for Detecting 6/03 ! . 2.9 Optimal Design of Interrupted Time Series
- ' 5{"{ Experiments
i P
fi ) ‘ " In evaluating experimental programs in field settings, the cost
1
d=0 {;‘}g ‘ ‘EE of experiments is a paramount importance. Further, the ability to
n dh ; |
|6/0a] L 5 10 20 30 40 S50 75 100 200 1000 ‘ ; o evaluate whether the program exhibited its intended impact is lost if
9 7 : ‘%P
0.05 = = 163 82 70 66 62 61 60 3 Qg f 4 the appropriate sample sizes in the pre and post period are not
0.10 @« 106 26 - 23 22 21 21 21 20 20 gl , |
0.20 s 13 10 10 10 9 9 °9 9 9 ) i ‘ﬁ;j‘ selected, Many field experiments are often evaluated tc have had no
0.30 15 8 7 T 7 6 6 6 6 6 g’, ; (if . ’ |
0.40 9 6 5 5 5 5 5 5 5 5 7 impact or nom-reproducible impact when geographical locations are
) & 4 4 4 4 1 | . .
0.50 7 5 4 4 4 4 4 T kji changed. These outcomes are not necessarily program related but are
0.60 5 4 4 4 4 4 4 4 &-{{ ) ’ o , :
0.70 4 4 3 3 3 3 3 3 3 3 \ } ( design related in that sufficient data is not recorded. Similarly, the
0.80 4 3 3 3 3 3 3 3 3 3 - ; &Q ,
0.90 3 3 3 3 3 3 3 3 3 3 cost of field experiments can be reduced by specification of required
1.00 3 3 3 2 2 2 2 2 2 2 1 Lo _ ' | : .
150 ) 2 2 2 2 2 2 2 2 2 . dg sample sizes required to draw the desired level of inference, with
- J N . .
: 2 1 1 1 1 S , ‘ '
2,00 2 2 2 2 2 1 3 ) , , regard to potential changes in covariance and the magnitude of shift
2.50 1 1 1 1 1 1 1 1 | gﬁ c. e ’
' ) i ‘ : in the process level, as related to an intervention programs goal.
. (a) (0,0,1)MCT with 91 = 0,98, ‘Yl = 0.82 ? ; P 8 ’ prog g
' ' : ﬁ-g ) The optimal design for the multiconsequence intervention model is
d>1 g% | ‘ the solution to the nonlinear pregramming problem:
. 0 .
|6/0a] lo.os 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.50 2.00 h i | |
e ‘ » o , T
n l 59 20 9 6 5 4 4 3 3 3 2 2 1 £ ' . ' " ‘ : ;,
2 ' . %, ' »
1'3 i | _-f
B 8
() (0,1,1)MCI with 8, = 0.98, v, = 0.82 | ,EP
i '
f .
{ i S igs’ A O 6 . } : " i . ‘%\/( \\R\ »

RO ST
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Min: cln1 + czn2

1°8

2
S.t.: E(w3|nl’n2’22&> xl—d

EMg) > t1-0,/2,0,+n,- (p+q)

where ¢y and c, are the costs for obtaining pre and post intervention

observations respectively and (WBInl,nz,g) and Ws are the test statis=—
tics needed to detect a given magnitude change in covariance and pro-

cess level, respectively. The constraints are nonlinear and convex.

Example 5

Suppose the interrupted time series model is known to be a

(0,9,1)MCI form with 61 = 0,975 gad Yy = 0.816, for which the sample

sizes L and n, aré desired to be“able to determine this magnitude chahge
in covariance and simultaneously detect shifts in mean level as small as
S/Ga = 0,05, Figure 2.6 graphically illustrated the optimal design sub-
ject to (a) the mean-shift constraint only,.(b) the cévariance-chaﬁge

congtraints., When cq = tz and only the mean-shift constraint is con=-

sidered, the minimal cost feasible design (n1 = 37, n, = 74) is read

from the tangential point of the cp =y cost curve (a) and the mean-

shift constraint. If ¢; = 0.25c2 and only the covariance-change con-

. straint is considered, “he minimal cost feasible design (nl = 128,

n, = 343 is tead from the tangential point of the ¢y = 0.25¢ cost curve

(b) and the covariance-change constraint. In most situations both

mean-shift and covariance-change constraints are considered. In such

situations, the active constraint consists of two portions: (1) n1:389
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Figure 2.6, Optimal Design of Experimenté, (0,0,1)MCI with

61=0.98, Y1=0.82, a.=0.05, o
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portion of the covariance-change constraint and (2) n, 2 90 portion of ’1 B é:r\ , !3
the mean-shift constraint. Since the Min|Slope|= 3 for the upper- ? i ]% Zé/' (1+0-1§5B)3t, t < 20. (/f )
left portion and MaxlSlopel = 1/45 for the lower-right portiom, the '% - Q\\,/”
minimal cost design will occur at (nl =90, n, = 63) when 1/45 < | ; . The direct stimulus response structure was postulated apriori
c1/c2 < 3 it will occur at the tangential point of the cost curve and &‘ ;g since éhe intervention consisted of applying the stimulus (praise)

\the covariance-change constraint (the upper-left portion of the active . | :1 directly to the subjects (students) whose response ("talk outs") was
‘constraint) when c1/c2 > 3, or the optimal design will occur at the j i the attribute of interest to evaluate the worth of the program. Figure
tangential point of the cost curve and the mean-shift conmstraint (the § j 2.7(b) contains the results of the identificatioa procedure for the form
lower-right of the active conmstraint) when O 5-°1/°2 < 1/45. ; - of the mean shift function §(t) using n, = n. and n, = 1 sequentially

2.10 Modeling Examples gf A | gl for 20 < t < 39, Confirmation of the initially postuiated direct stimulus

response structure is seen here since 6(t) after an initial transiék
Two data case studies are developed here to illustrate the

fres ]
froseen o
ey

due to the "learning curve" associated with the intervention has little
different model structures, their associated model building and design

5

variation about the steady state gain level. Therefore the mean shift

ferasss
& o

considerations discussed in this chapter.
function §(t) = R(t)S§ 1is specified by,

2.,10.1 A Direct Stimulus Respomse Structure: Talk Qut Data r

,
cemieod

—

The data reported by Hall et al. [1971] records the daily number

of "talk outs" of twenty-seven pupils in the second grade of an all- % % ; 7/15 t=21
i

black urban poverty area school for a total time period of forty days. R(t) = { 11/15 = t=22

1 £>23.

s

The first twenty days were denoted as the preintervention history before

the commencement of the intervention. Beginning on the twenty first

£y

day, the teacher initiated a program of systematic praise for not The (0,0,1)MCI model was fit with parameters y = 19.35, ¢ = -15.18,
51‘- -0,175 and ?l = ~0,601. Diagnostic checking of the residuals proved
adequate. However, testing the hypothesis that 61 il 0] resulted in favoring

talking out, Figure 2.7(a) contains the time series data. “ s

==

From the preintervention history t < 20 or n1~= 20, applying the

the alternate hypothesis for all values of o < 0.2869. The test of the

,m
Exl

usual univariate time series modeling of identification, estimation and { v

: AN
diagnostic checking of Box and Jenkins {1970], resulted in an }1 ) ‘ ‘ intrinsic utility of ‘h¢ intervention program, ﬁ}g“HO: Gfo’ was not’pre-
ARTMA(0,0,1) model with gl = -0.195, i i QE y ferred for all values of a,> 07001. Thus the final model is the single

consequence model,

x|

—

S22

sewsengr

e e
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Figure 2 ° 7 . Ta.lk Out
i (a) Time Series Data

(b) Mean Shift Function
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Z, = 19.35 + 0.23a, ) +a,

z, = 19.35 -K(t)(15.13) + 0.23a,_; +a, t = 21,22

, Zt = 4,22 + 0.23at_l + a,
which results in the conclusion that the intervention program reduces
"talk outs" by 15.13 per day in steady state.

For the sample sizes used in the '"talkout" data, n, = o, = 20, there
was not sufficient power to detect the estimated change in covariance.
For the estimated covariance change with n = 20, 23 and 58 postinterven-
tion observations for o -‘0.15 and 0.05 respectively are needed to
assess significance. For the mean shift detection, however with
= n

n = 20 and o = 0.05 magnitudes of 6/0a = 0.78 can be detected.

1 2
Since S/Ga = 9,10 the sample size is sufficient. If the change in
covariance is real and was not detected because sufficient data was
not available using the single consequence model form for thé talk

out data would represent a médel misspecification in the parameters.
For the estimated parameter values, the corresponding h value (Equation
(2-37)) is 0.,7789 which would represent an overestimation of the
significénce ofIS/Ua by 28.4% or alternatively, using the single con~-
sequence model with o = 0,05 would effectively be ¢ = 0,126 if the
multiconsequence form was needed. Since the estimated magnitude of 8
was very large in this data set these facts do not alter the policy
inference in the final model described.

=

2,10.2 An Indirect Stimulus Response Structurz; Gun Control

The data reported by Deutsch and Alt [1977] records the number of
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90
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=0

n, = o, and n, = 1 sequentially for 106 < t < 141, From the mean

shift function plot, the impact of the intervention program is seen

reported assaults with a gun in Boston by month. Figure 2-8(a)

illustrates this data for the period from January 1966 to October

1976. 1In April 1975, the State of Massachusetts formally put into to start in February (perhaps due to the planned massive publicity

operation a gun control law that mandates a one-year minimum sentence campaign in early 1975) .and to continue through to post intervention

period. The configuration of the mean shift function prior to reach-

e S

I3
[

on conviction of carrying a firearm without a special license, thereby

" i € ' bout this form confirms the
eliminating judicial descretion in sanctions. In order to assess policy | 4 ing a steady state aand the variation abou

=

4

implications of gun control legislation, the impact of the enactment environmen;al influence.

The mean shift function for the indirect stimulus response

of the legislative intervention in reducing gun related assaults were ﬁz 12
desired. = structure is &(t) = £(K(t)) where R(t) = (1'913)(%'9123 ). As seen
Although the gun control law was formally jimplemented iﬁ April g{ g« from Figure 2.8(b), a plot of &(t) vs. K(t) wogld indicate a slope and
1975, there were several séociated ctivitie th this intervention - = intercept term are needed to describe this relationship. Thus,
strategy for several montﬁs prior to this date. Thus, the exact time }J é g’
point where the impact‘might first be measured was uncertain. There=- i gf §(t) = 60 + GlK(t) At Z.llof
fore,'the pre%jgsqu?tion data for the period from January 1966 to ‘ % P
September 1974 wég_uged to construct the preintervention model. AP?1th~ﬂ % | : g; : and
the usual Box and Jenkins model building procedure (Box and Jenkins. § -
[1970]) resulted in an ARTMA(0,1,1) x (0,1,1);, model, @ i §(t) =[5, + &;R(D)IE,
3 ]
12 § | i where
(1-B) (1-8"%)z, = (1- 1B) (1- ?ZBlz)at Y i
i 0] 0 t < 110
with 8, = 0.83 and élz = 0.78. | . | % Evg ' g = L e
The indirect=-stimulus response structure was chosen siace the = ’ .
intervention program was intended to modify the ecieet:iészvironmental { §§
process from which the behavior modification of a subgét of the popula- . " ¥

tion is monitored., Figure 2.8(b) contains the results of the identifi-

cation procedure for the form of the mean shift function &(t) usinglﬁ
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1
. ' &
% The intrinsic program utility § occurs when K(t) = l,(gng since,

»,«
e

8(t) = R(t)S = 60 + GlK(t), S = 60 + 61. For all other values of K(t)

the environmental influence will mask the intrinsic program value

w
o
[
o
e

h Py f ((8(t) - &) is the masking effect of the environment).
it
e ; :E The maximum likelihood estimates for the parameters of the
25 3 . o " a
> %E ey (0,1,1) x (0,1,1)12MCI model are 60 = -14.79, 61 = -3,89, 61 = 0.98 and
I o . '
1+ E Y= 0.8? Diagnostic checking of the residuals proved adequate. In
I ~
0 lll II il o ; ?E testing the hypothesis of no change in covariance, .the null hypothesis
¢ L T v " y y L
1966 - ; st
1568 1970 1972 1974 1976 , : Hy: 8 ™ M is not preferred for all o > 0.06. Similarly the hypothesis
) (2) ' i Lo
. ' ) : gg HO: Gi = 0, 1 = 0,1l is not preferred for all a > 0.001. Thus the final
; A
1/1975 1/1976 1/1977 ii w} model is,
0.0 — ?
I ) : -
| (1-8) (1-3"D)z, = (1-0.98B) (1-0.788%)a, &< 110
-6.3
g 12 12
(1-B)(1-B"7)Z_= -14.79 + (=3.89K(t)) + (1-.82B) (1-.78B )at
~12.6 o ;'ir t ' .
& = £ > 110
3 - 3 ,a
s 7 b
-19.0 - § -
‘ ’% 8 Thus the result of the legislative interveantion of gun control was to
(b) ! i
‘ reduce the observed number of reported gun assaults between 19 to 15 per
) }% month. Further this impact is seen to manifest itself in steadystate
Figure 2.8, Assault with a Gun ’
_ . through the postintervention period. The steady state decrease is
(a) Time Series Data L
[t approximately 15 per month and the intrinsic utilicty of the program being
(b) Mean Shift Function .
{% . approximately 19 per month.
! : i .
o ] The sample size used in this analysis was nl=110 and n2=31 which
i B . .,
;E f% is denoted by the circled X in Figure 2.6. This point is seen to be just

ps
i
o
e S R : .
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below the & = 0.05 constraint for E(WB). (The hypothesis test for change

in covariance was significant for values of a > 0.06). The program goal CHAPTER TII

»mm

was to reduce the number of assaults with a gun by 5%. At the time of

m.

program the number of reported assaults per month was 52, therefore § ; THE SPACE-TIME INTERVENTION MODELING

= 0.29. = 110 only 4 postintervention observations are . . . .
<S/“a 0.29 For n only P . In Chapter II multiconsequence intervention modeling was studied

1

d. Since 31 were used to statistically detect the change in covari- ’ : ] . . . . .
neede y g : in detail. The multiconsequence intervention modeling is apropriate

[
s

ce a feasible design was employed. However, if fewer postintervention ) . . .
an gn emp Loy ’ P for observations at oame location. In this chapter, space-time inter-

it
e

data points were used and the existing change in covariance could not be . . . . . . . .
vention modeling, which is appropriate for modeling an intervention

[Ee

ally detected (resulting in the reduced single consequence . . . .
statistically c (res 8 g 1 process at multiple locations, will be studied. The space-time inter-

mpdél), the estimate of § would have been biased. The bias in ¢ would . . . )
vention modeling procedure shares the same modeling strategies as the

be 0.30 (Dﬂl.30,‘Equation 2-36)), thus there would have been an over- ' 4 . . . . . \
! multiconsequence intervention mode11ng, i.es, the dynamic components

@ff{% i;:" b '3 2 T

estimation of 30Z. Also,the ratio of the variance of the standardized L . . . . . . s
7], [ : identification procedure and the three-stage iterative model building

1 0
mo Equa 2-37)-woul . 1ti = 0, . . . .
del (Zquation 2-37)-wo “d be 1.46, resulting in D/h 83 or an scheme. The space-time interveation model class is an adaptation of

fud

im £ £ 8. th i i . .
underestimation of the level of significance o if e change in the model formulation of the space~time model class that has been

covariance was not statistically detected because of too short a post-

3
bosd

developed by Deutsch and Pfeifer [1980a, 1980b, 1981].
t ti iod (n,) th ponding singl ' del . :
intervention perio (“2) e corresponding single consequence mode a v In the next section the space-time intervention model class

would have resulted in a 307 overestimation of the monthly reductions

[

(STARMA)Im that allows for both enviroanmental and non-enviroamental

1t th o imil £ t 110, 59 tinter- . . . . . . . .
in assaults with a gun. Similarly, for 24 fixed a ’ postinter influence on the intervention is described for the single intervention

sy

vention data points would be needed to statistically detect values of . . . .
processs as well as the multiple intervention process. The physical

.§/0_ = 0,05, In this case §/0_ = 1.79., However, if the program in- - ) ] . ] ) ) 0
a a properties of the space—~time intervention model are discussed in sec- \),
interventi lted i f 0,05 < §/0_ < 0,10, which should . . . . v
intervention resulted in values o / a » Wilch shou B & tion 3.2. Here four elementary diffusion mechanisms; translation, ¥
result in favorable policy implications, the sample size would not have i :E . . . T ?J
, ) . domain-change, growth, and contraction are described and conxggggndgéfig;

been large enocugh and therefore incorrect policy inferences.would be
g g P 4 to the (STARMA)Im model class. Simulations of the diffusion processes

drawn. .
described by low order (STARIMA)Im models are presented to illustrate

the physical characteristics of diffusion speed, amplitude and

influenced area in section 3.3, The intervention model buildiag pro-

e R e 2, .

e

I
N

(S

T L et = & X c e e



@—vrz‘fz"!‘*"fv IR S TP

e

96

cedure, that includes pre-intervention model building, dynamic compo-
nent identification, the coupling of these components and diagnostic
checking is given in section 3.4. In section 3.5, the M.L. estimators
of the mean-shift function are developed first for the pre-intervention
noise model parameters known situation, and then is extended to the
case where all parametrs are unknown. A case study of the air pollu-
tion quality as measured by ambient carboa monoxide levels in Los

Angeles is contained in sectioa 3.6.

3.1 The Space-Time Intervention Model

A linear stationary time series data-generating process can be

,expressed in transfer function form as:

= U + TQ(B) t=1,2,3,---,n

€

where Zt is the observation or output vector, u is the mean vector, e,

"~ ~ ~

is the residual or input vector assumed to be NID(O, o‘I), all of which

~

is of dimension (LN x 1) where LN is the number of locations and Te(B)
is the transfer functiun for environment e which couples the system
input and output (Figure 3-1(a)).

The intervention at time T, t < T < t+l is thought of as

"gwitching on", Et = 0,1 causing an additional potential contributioa §

~

associated with the utility of the intervention program. When a system
intervention occurs this potential shift can cause a modification in

the data generation process in two ways. The program utility modifica-
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tion to the output is either @ffected by the environmsntal process
(Figure 3-1(b)) or undffected by the environmeat (Figure 3-1(c)).

For a single region, univariate time series, Box and Tiao [1975]
have proposed intervention models of the characteristics exhibited in
Figure 3-1(c), in which the intervention component is independeant of
the envigohmental data-generating process. For the single location
intervention model of Box and Tiao [1975] the observation vector is
decomposed into two components:

Zt = Dt + Nt

where Dt’ the dynamic componensjmonitors the mean level changes of the
pre-intervention enviroanmental noise model Nt. When this eclectic
noise model influences the measurable changes in process levél, as in
Figure 3-1(b), this estimated changef in process level coufounéethe
intrinsic utility of the intervention and the environmental noise pro-
cesss The more general framework to allow separation of these compo-
nents and thus unbiased estimation of an intervention's intrinsic
impact is that described in Figure 3-1(d). The transfer function TE(B)
will not be a function of the enviroamental noise process parametars
when there is no environmental influence on the intervention. The
general structure of Figure 3-1(d) is used throughout the balance of
this chapter in regard to LN site systems.

We denote the variable for a single interveation, &(t), as the =

~

product of the program utility 6 and the switch variable Et, which

~
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€ e e Te(B) e Zt

Figure 3-1(a). Non-intervention Data Generating Process.
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it Te( ) nF

Figure 3-1(b). Intervention Data Generating Process qﬁgéected
by the Environment).
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Figure 3-1(c). Intervention Data Generating Process (Ungffected
by the Environment).

g, ——————3 T_(B) z

Figure 3-1(d). Intervention Data Generating Process with

Tg(B) as the Intervention Transfer Function.
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either takes the form of a pulse or step functions The pulse function

is defined as:
, I

n

. 1 n1+1 <t < n1+Tp
Pt (Tp) =

0 elsewhere

Thus, the pulse function corresponds to the situation in which an
intervention "switches on" for a period of length TP, after the n1+13£'
observation. The step function is defined as an infinite period inter-
vention occurring between t = oy and t = n1+1;

1 t>an+l
n 1
1 ,{

0 <

t nl

The space-time siugle intervention model formulatioa for LN

regions is;

d | d
¢p,k(n)v (z,~w) =fukl-1m)¢p’k(B)V + Imeq,m(B)IE(t) (3-1)

~ e
~ "~ ~

+ Oq,m(B)it

~

where

0 realized intervention not effected by eanvironmental
process,

{1 realized intétvention(@ffected by environmental process
I =
n
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Zt is an LN x 1 vector of observations at time t,

~

A

P K
¢ (B)=I-% I ¢ w(z)BK’
P, Ra] 2=0 K2

1 d
v¢ = (1-B)9,

o () 1 X
B)=I~ % % o.W
9m R=]l 2=0 &

(2) 5K

B is an LN x LN backward shift operator such that

¢Kﬂ is the autoregressive parameter at temporal lag K and
spatial lag £,
eKL is the moving average parametér at temporal lag K and
spatial lag £,
w(j") & 3 »
18 an LN x LN matrix of weights for spatial lag £,

E(t) = E, 8, f is the intrinsic utility of the interveation

~ ~
program,

€, is the random normally distributed inaovation v é::::/at time

~

t with

Ele ] =0

| J G K=0
Eie,_ e! =

~E EK 0 K£0

AT F R N e
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J =
E[zt fc+K] 0 for K>0

~

Parameter p is the autoregressive order of the model and A is a vector-

with components XK specifying the spatial order of the Kth autoregres-

~

sive term. Likewise, q is the moving average order of the model; and m

is the vector of moving average spatial orders. FParameter d is speci-

fying the number of differences needed to induce stationarity in the

original series.

3.1.1 An Alternative Representation

The single intervention space-time model, equation (3-1), assum-

ing d=0 without lcss of generality, can be expressed as,
!.

~

Z, = u + Ay(B) E(t) + Ay(B) €, (3-2)

where

=1 :
Ap(B) =8, (B) l(l'lm)°p,k(3} + Impq,m(B)l

~ ~

-1 Y
AN(B) = Qp,l(B) Gq,m(B)

~ ~

Thus Zt is the summation of two components: the deterministic compo-

~

nent and the random component, D(t) and N(t) respectivaly, i.e.,

o ~
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Et = B(t) + N(t) (3-3)
D(t) = 3
~(t) E + AD(B) E(t) (3-4)
N(t) =
~( ) AW(B) Et (3-5)
Taking expectation éf equation 3-3 yields,
E[Z,] = D(c) (3-6)

Since
E[N(t)] = AN(B) E[Et] =0

Therefore the expectation value of the process observatioa Z_is the
t

~

d . . .
eterministic component, D(t). It should be noted that the interven-

~

ti i 1
on variable £(t) only appears ia the deterministic component as does

~

the effect of the intervention.

Equation 3-4 can be expressed in recursive form,

é | - = .
p,A(B(D(t) u) |-t e (B + I8q,u® | E(E). (3-7)

~
~

The realized mean shift function at time t, 8(t), is

~

~
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8(t) = D(t) - u, thus,
*&p,k(n) E(t) = [(l-Im)Qp’l(B) + Idaq’m(B)J E(t)- (3-8)

~

In equation 3-8 if we set Im = 1, the realized intervention is effected

by the environment, we have the deterministic component of the inter-

i
[

vention model,

°p,x(3)(2(t)'ﬂ) - eq,ﬁ(p) E(t),

~ k ~

with the realized mean shift function, §(t) of the form

~

’m(B) E(t)

~ ~

-1
§(t) B(:) 2 °p,x(3) eq

A~

or

0, A(BIS(E) = 8, (B E(t) (3-9)

"~ . ~

Since 8(t) for the mixed process is a function of the intervention

~

variable E(t) as well as the eanvironmental noise model pafémete:s,‘the

~

realized shift-mean doesn't reach its steady state level instantaneous-
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ly but rather coaverges to the steady state level. For the
STARHA(qm)Imerocess (p=0 and ¢p’x(B) = I) equation 3-9 reduces to

m
s , K L@
- () =E(t) - & T Oy W E(t-K). (3-10)
~ ~ R=]1 =0 ~
Thus, the steady state level for §(t), i.e. (I- T L e W(z)BK)E(t),
~ K=l 2=0 & J

is reached in q periods. However, for the STAR(P)‘)Im model in which

~

q=0 and‘eq maI equation 3-9 reduces to
3

~

°p,x(3) E(t) = E(t) (3-11)

Thus, as with the mixed model, the STAR(P)‘)Im model's mean shift will

o

only as t + = approach the steady state level.
For the case where there is no eavironmental influence, Im=0, in
equation 3-8, we have the deterministic component of the interveation

model given as,

OP’X(B)(i(t)—E(t)) =0

~

or

“ 5(t) = E(t). (3-12)
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Thus when there is no eavironmental influence, the total effect of the
intervention is fully realized instantaneously with traansition to the
steady state level at t+l for an intervention having occurred in the
interval t, t+l.

3.1,2 Multiple Interventions

In the previous section only a single interveation was introduc-
ed, .Often several interventions can occur. In this section we will
generalize the (STARMA)I model to allow for multiple interventions and
discuss the interpretation of the resulting mean-shift function.

The STARMA(PA,O,qm)Im model is generalized for n different

interveations by
& ,(B)(Z -u) = g [(1-1_ )& .(B) +1 e (B)I'E(r)(t) (3-13)
PsA ~t =1 m,T Ps) m,r (,m -

+ Gq m(B) Epr

’ ~
~

where

1 realized effect of the r-th interveation effect by
the environmental process.

realized effect of the r-th intervention not effected
by the environmental process.
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E(r)(t) is the indicator variable for the r-th intervention and is the

(r)

N and the program utility of the r-th

product of the switch variable &

intervention, G(r)- This model will be referred to as the

STARMA(P)‘,O,qm)Im’n model.

~ ~

The random component of the STARMA(PX,O,qm)Im n model is, exact-
1]

~ ~

ly the same as that of the corresponding single interveation

STARMA(P,,0,q )I_model. The deterministic component of the
A m m

STARMA(PX’O’Qm)Im,n model is,
D) =u+ £ 6 (®Llar ye @ +1 o @@
~ ~ r=1 Psx ) m,r P,X m,r q,m . ’

~ ~ ~

and the realized mean shift functioa &§(t) is

~

§(t) = D(t) - u ’ (3-14)
-1 e ® a1 e (B +I_ _0 (ﬁ)] £(F) ey
=y P2 m,r’ p,A ‘m,r _q,m N )

Equation 3-14 reveals that the/féalized mean-shift functionycan be

R

decomposed into n componqp%ﬁ, each corresponding to the n intergntion

i \\
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n
sty = & 8 (3-15)

- r=] ~

and

(r) -
¢p,xcn)i(r)(t) a [(I'Im,r)]°p,x(3) + 1 roq,m(n)]s (t).  (3-16)

~ -~

As in the single intervention model, when Im,r = 1, the environ-

mental influence situation, the realized mean shift fuanction of the

. .. (T).
r-th iantervention, G(t)(t), is a- function of ¢, © as well as § When

- -

. r) . _
I = 0, the environment is not involved and 6( (t) is not a func
m,¥r -~

tion of the environmental noise parameters. From equations 3-14 and
(3-15), we see that the interventions have a superposition property.
This means that they will add up to give the realized mean shift func-

tion 8(t). When the situation arises that sequential interventions

-~

interact with each other, e.gs, rlth interveation occurs before rzth

intervention and have interactions (e.g. a synergy) equation (3-15) and

(r,) (ry)
(3-16) are still the apprepriate model, however, 8 (), & (t) and
(ry) . . ig
8 will be interpreted differently. In this case, the mean shift

function of rzth intervention is confounded Qith the (rl,rz) interac-

(r,)

tion, i.e. the § 2 (t) is the sdmmation of the mean shift function of

g

rzth interveantion and the (rl,rz) jateraction effect. Thus the proper

=

e

oo

R

109

(r,)
interpretation of § 2 (t) is the mean shift function of the rzth

-~

intervention given that the rlth intervention has been introduced.

(r,)) (ry)
Also £ (t) as well as 8 should be interpreted in this way.

~ -

3.2 Physical Representations of the Model

When an intervention program is introduced in oune or more loca-
tions, the effect may also be realized at other locations via a diffu-
sion process. In this section, we will discuss the capabilities of the

STARIMA(pk,d,qm)Im models in describing diffusion phenomena.

- -~

3.2.1 Diffusion Mechanism

zhebtivi R oy
A B i

Spatial-temporal diffusion is the spread of a phenomena within a
given space through time, so as to alter the distributional pattern of
the phenomena over time. Four distinct types of the diffusion mecha-
nisms are useful in classifying the spatial-temporal diffusion pro-
cess.,

1) Translation: occurs when members of the population and their
relative positions do not change, while the posi-
tions of the members are translated from time t to
t + At.

2) Domain-change: occurs when members of the population do not change
but their relative positions as well as the non-
zero pqpulation location number change from t to t
+ At..

3) Growth: occurs when new members are created and into the
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population between time t and t + At, increasing

the population in size.

4) Contraction: occurs when some members of the population die out

between time t and t + At, decreasing the popula-

tion size.

These four diffusion mechanisms are illustrated in figure 3-2. A more

detailed discussion of these mechanisms is contained in Brown [1968].

cess.

nisms

L.

II.

There are two Jistinet types of spatial-temporal diffusion pro-

Each are described by combinations of the four diffusion mecha-
» The types of séatial—temporal diffusion processes are;
Regenerating type diffusion: occurs when new members are
generated, added into the population and/or some old members die
out, and the population size changes while individual locations
may/may not change. (A combination of type 1, type 2, type 3 and
4 mechanisms with growth rate # contraction rate.) We will say
that it is a regenerating (+) type process when the net gain in
the size of total population is positive, is a regenerating (-)
type process when the net gain is negative.
Relocation type diffusion: occurs when members of the population
change their relative positions and/or locations while the popula-
tion size stays coastant (a combination of the type 1, type 2
mechanism and/or type 3 and type 4 mechanisms with growth rate =

contraction rate).

3.2.2 Characterization of the Diffusion Processes Types by the

STARIMA(P, ,d,q )I Models.
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3-2. Diffusion Mechanisms )
Flgare (a) Population Distribution at Time

(b) Population Distribution at Time
Translation

(c) Population Distribution at Time
Domain-Change

{d) Population Distribution at T%me

(e) Population Distribution at Time
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In the previous section two types of general diffusion processes

were described. Here we focus on the STARIMA(PX,d,qm)Im models to

asgess whether and which subgroups of models in this class describe
these two types of diffusion and if so which model subgroups correspoand

to what type of diffusion process. To assess this issue, we use the

equation of mean shift fuaction of the STARIMA(P)‘,d,qm)Im model,

~ ~

d .
e \(®) 8(6) = | (-1T%, () + To, (B)] ECE)

~ ~
~

This equation can be expressed alternatively as,

5(t) = A(B) F(t) (3-17)
with
Ay = [P )| La-Tpvie (@) +1e (D] (3-18)
A = 1 ApE (3-19)
k=0

Where A(K) is obtained recursively from equatioa (3-2), and

(0 21 ang A®) =0 ¢
non-environmental influence case, we have, A I gnd A 0 for
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311 K> 0, ]..ue-’

§(t) = E(t).

The more interesting and broader characterization of the differ-
ent diffusion type occurs in the environmental influence structure with
Im = 1. The balance of this section will address this situation.

For the Im = 1 case we will assume for descriptive purposes that

an intervention program is introduced at location i between time t = n

1
and t = n1+1 for one period oaly, i.e.,
"
E(t) = Pt (Tp=1) 8 (3~20)
0 . 0 . .

where § = (0,0,...,8,0,...) with &  at location i,
Then we have,

§5(t) =0 t < n, (pre~interveation)

8(t) = A(K)S, t =, +K+1, k> 0 (post=-interveation)

1

From the previous discussion, we know that the major difference between
the regenerating processes and the relocation processes is the conser-

vation of population. For the intervention described in equation (3-

R i R
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20), the conservation of population can be stated as

LN
T §.(t) =0 t < ny (pre~intervention)
j=1
LN 0
L ﬁj(t) = § t>n +1 (post-intervention)
j=1 :

where Gj(t) is the jth element of §(t).

The first equation can always be satisfied, since &§(t) = 0 for

~ ~

t < 2, and the second one is equivalent to;

b A..(K) =] all K> 20, 1 = 1,2,...,LNs (3-21)
j=u I
where Aji(K) is the (j,1) element of A(K) matrix.

3.2.2.1 Processes and Pulse Inputs

For the stationary STARMA(PA,O,qm)J;m model equation (3-21) can't

~ ~

be satisfied forkall k » 0 no matter if it is a STAR, STMA or STARMA

model. Therefore the stationary STA_RMA(PA,O,qm)Im models are always

~ ~

kind of the regenerating (~) or regeneratiang (+) type diffusion pro-

cesses. Only a non-stationaryrSTARIMA(PA,O,qm)Im model can satisfy

7 . s
equation (3-21). For example, the STARIMA(O,I,qm)Im model will satisfy
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equation (3-21) with the model parameters constrainted as follows

N "k
LT (e
j=1 £=0

(3-22)

(2) - -
klw )lj,i 0 for K 1,2,---,q-

mK mx

(2) . . (£)
where | T (&, W /)|, . =0 1is the (j,i) element of | T (O, W 7)]
g=0 1,1 gm0 &

matrix.

A special case of the STARIMA(O,I,qm)Im model class is the

~

STARIMA(O,I,O)Im model i.e., p=0, d=1, q=0. Since the necessary and
sufficient conditions of the relocation type diffusion requires the
conservation of population as well as the capability to move to its
(R)

neighbors, to have the moving capability, it is required that A

+1I, A(K) # 0 for at least one K. Even though the STARIMA(O,I,qm)I
m

has the moving capability, the STARIMA(O,I,O)Im model does not. For

example, for a ring system with 5 locations the first and second order

weight structure is

- 1
o 1 0 o0 1 o o 1 1 O
1 0 1 o0 0 o o o0 1 1

v e lo 1 0 1 o w2 11 0 0o o 1

o 0 1 0 1 11 0 0 O
1 0 0 1 0 0o 1 1 0 O
L. - — —

e
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A
i

We have a STARmA(O,l,qm)Im model with ml-z, mz"z, sewy manU

~

When eKo + 29K1 + 29K2 = 0 for all k=1,2,...,9, We can see that the

requirements imposed by equation (3-22):une satisfied, since

gN ! 3k (e w(”))l =6 4+ 20 + 20
se1 20 K2 's4 KO K1 K2

However, if one of the eKl’ GKZ’ K=1,2,..+,9 i8 not equal to
ZeT0, 1€ 9k1$0, then at least A(K) # I and A(K) # 0, so the moving

capability requiremeat is satisfied and this is a relocation diffusion

process.,

3.2.2.2 Homogeneously Nonstationary Processes

The homogeneously nconstativnary 8?33(?1) process can be of relo-

~

cation diffusion type if and only if

LN ¢ AK LN (13 |
T |z EOL gy Wooie. =1 (3-23)
i=l K=l 20 j=1 "3 Fd )

for t ‘1,2,---,P‘and :'1,2,.-.,LNu
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where L is the j<th element of vector e s which is the unit vector

’ P~

with 1 at location r. Equation (3-23) guarantees that aay input to any
location in this system will stay in the system forever. This condi-
tion is very restrictive in that it requires conservation of population
for all time t.

A less restrictive coanstraint to ensure rélocation diffusion
is to not require absolute conservation of population for all time t
but rather to consider asymptotic population conservation as t + =,
That is a set of conditions that will guarantee that any input will
change the steady state of the s&stem and the system will stay at the
new steady state forever or until there is ‘another input. Such a set
of conditione allows a transient period for the system to adjust itself
to a new éteady state and the difference between the -new state and the
original‘state is the conserved part of the input and stays in the
system forever.” This kind of restrictions will be .referred to as the
relaxed conditions for the relocation processes.

The stationarity conditions discussed in Hannan [1970] applied

to the STAR process are as follows: 1if every Zu that solves,

P A
P : K (2), P-K, _
Detlzu I- % (% épW )z | =0

k=l %=0

Y
Wy
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lies inside the unit circle, then the STAR(PA) process will be station=-

~

ary. This implies that any linear combinations of these inputs will

ke,

o=

-y
@ ot
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allowed solution set of equation (3-25) is a subset of the allowed
solution set of equation (3-24) and the equation set (3-24) is a subset

of the equation set (3-25). Thus when equation (3-25) is satisfied,

“equation (3-24) is also satisfied. The reverse is however not true.

damp out when t + ®. However, if all the Zu's lie on the unit circle,

then no linear combinations of these inputs will damp out. Thus, all
these linear combinations will be conservative. So the relaxed condi-

tions for relocation in the STAR(PX) process is; if everykZu that

¢ s

3.2.2.3 Steady State Gain For the Step Function Input

In previus sections the intervention program input variable E(t)

~

has been assumed to be the pulse function, in this section the step

~ edoon.
&
solves, §% QE input situation will be discussed. It is assumed that
s
P - i g 2,
Det[ZP I- 5% ¢ gK ¢sz(z))zup KJ = (3-24) = E(t) = St §
“ K=l 2=0 . T ~ ~
i 5
. . . h h sly nonstationary st where § = (0,0,... 60,0,.-.) with 60 at location 1i.
lies on the uait circle, then these homogeneously : %ﬁ § N sevvy
i
. ) . e The step input function can be viewed as superposition of a
STAR(PX) process will be of relocation diffusion type. -
- s B i a sequence of pulse functions with the output of this system being the
yari 1R
) . . . Wi b
To compare these constraiats for a relocatlon‘type diffusion . superpogsition of the outputs of the sequence of pulse function inputs.
: C g i Ji
process, equation (3-23) can be restated as follows; if every Zu that A ) This can be seen in equation (3-7) by letting
1 s o
solves, §§ g
FAY] 8]
iy E(e) = £,() + E,(F)
DetIZt I - z ( z ¢sz(z))zut Kl = 0, t = 1,2,-:-,P (3‘25) g{g I;g
e R=]l 2=0 i (il

has the same solution Zu'= 1, then the homogeneously nonstationary

STAR(PX) process is of the relocatioa diffusion type. Note that equa-

tion (3-24) is a relaxation of equation '(3-25) in the sense that the

*

ENpeIeR

M oty ﬂ"‘"\
[em——") PR | ST

il(t) = A(B) El(t). fz(t) = A(B) Ez(t)

Therefore; &(t) = sl(t) + Gz(t) = A(B)(gl(:)+52(t)) = A(B)E(E).

~

b T

et e s
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So at an& time point, the necessary and sufficieat conditions
for the system population to be conserved is that the system input rate
equals the dying-out rate. In the following we will consider the
strictly conservative sttem in which the system reaches the steady
state gain instantaneously, maintaining its population, and the asymp=-
totically conservative system, in which the system reaches the steady
state gain by passing through transient states. Thus the latter\qu-
fers from the first in that the strictly conservative system has con-
stant population for all t > n,.

The have the instantaneous and strictly conservative system, the

system has the followng property:

8(t) =0 (pre~intervention)
8(t) = &S » ' (post-intervention)

S . .
where 6~ denotes the steady state gain of the system and is a constant

~

vector.

@ a
Since 8(t) = A(B) £(t) = 5 ACK) g
~ ~ =0

the followng coanditions should be satisfied;

1
e s

G(t) = 6(t+u) u = 1,2,:--,”,’t > n

~
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fee A gL r ARl g
p Y- - = - : =K *
E=0 t-K _ K=0 t+u=X
This gives the following equations;
t-n, t+u-n;
% A(K) = L A(K) u * 1,2,s00,®; t 2 o, (3-26)
K=(Q K=0 '

To satisfy these equations for u = 1,2,+v.,2, the only solution is
A(O) = I, A(K) = 0 all K> 1. As we have pointed out in section 3.2.2,
this is the non-environment iavolved interyention process.

The asymptotically coaservative system reaches the steady state

after the transient periods. This means that the condition in equation

3=26 can be relaxed as follows;

t—nl t+u—n1
: AR o AR e 2,0ee; e n, + T, (3-27)
K=0 K=0

where To is the transgsient periods.

The aumber of transient periods '1‘0 for the STMA(qm}Im process is

~

q, since
t=-n . ’
1 Min{(t+u-n),q}
n A(K) = T A(K)
K=0 K =0
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S0

t-n t+u-~-
u nl

1
p AR Ly a®

' K=0 K=0 K=0

when t » nl + TO

The number of transient periods TO of the STAR(PX)Im and the

~

STARMA(PX,qm)Im processes are much longer than those of the (STMA)I
. m

~ A

process. In fact, they will reach the steady state only when TO‘; ®,

A (R)"

Si
ince ¢

1 . .
8 represents the contribution of the intervention input,

~

in order to satisfy the asymptotically conservative conditions when

To + ® it is necessary and sufficieat to have

Limit

n
RO
Koo t

§ =0 or equivalently

1imie AK) = o, (3-28)
Koo

!

Solutions o satisfy equation (3-28) are discussed in Deutsch
and Pfeifer [1979] and are those systems who's parameters lie inside
the stationary boundary, i.e. every Zu that solves equation (3-25)
should lie inside the stationary boundary.

The diffusion type of the iestantaneous steady state gain pro-

cess can be interpreted as the space-time regenerating diffusion pro-
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cess or the space-time relocation diffusion process. This depends on

how we define the system and the system input.

o |

n n
Pl (T =1)6 s s
t VP S t S sce)
1 2 t
——————— = = TARMA (~———
pulse input Step Step Function § ~
| Qutput.

L _

Figure 3-3. Permanent Impact System Diffusion Type Interpretation.

In figure 3-3, the step transformation block traansforms the
pulse input into a step function and the step function output of S1 is

input into the STARMA diffusion process. System U contains S1 and 82

a .
as its subsystem, and the pulse input Ptl(TP-I) 8 is input into U to

o~

give 8(t) as the output. From the viewpoiant of the S2 system, the

~

diffusion type for the instantaneously steady state gain is of the

n
regenerating type, since the total input St1 § isn't conserved. While

~

from the viewpoint of the system U, which has the pulse input, the

diffusion type for the steady state gain is of the relocation type,

n
Msince the pulse input Ptl(TP=1) § has been coaserved.

~

Similarly, the diffusion type of this asymptotically steady

state gain process can be interpreted as the space time regenerating
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3

process or the relaxed space~-time relocation diffusion process. Frouw
the viewpoint of the whole system U, which includes the permanent im-=
pact transformation block, the asymptotically steady state process can

be interpreted as the relaxed space~time relocation diffusion process.

3.2.3 Properties of the Diffusion Process

Having described the types of diffusion processes, we now turn
our attention to the properties of a given type of diffusion process.
Three characteristics of a diffusion process are addressed; the sphere
of influence of the process, the speed of the process and the amplitude
of the process. In describing these characteristics it is helpful to

forma}ly state the following;

1. 1If location j is one of the £th order neighbors of location i, then
location j is connected to location i by the 2th-order neighbor-
chain,

2. The set of locations in the space coasidered that are connected by
the 2th-order neighbor-chain and contains location i is called the
fth-order connected regions of location i.

3. The connected regions of location i for STARMA(P,,0,q )I models is
A m’ m

~ ~

the union of all lst-order coanected regions, 2nd-order connected

regions, +.., up to max{lm

sm___}th-order connected regins of
ax’ max

location i, where Xmax = Max{ll,lz,-.-,lp} andm =

l

Max{Ml,Mz, vae ’Mq} . ‘ G-

4. The influenced regions of location i for STARMA(P, ,0,q )I_models
A m’ m

~ ~

is all regions that cam, in the long run, be influenced by the
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intervention program introduced at location i.

5. If an intervention prbgram is intréduced at location 1, all-the lst
order neighbors, 2nd order neighbors, ..., and 2*th order neigh-
bors, but not (L*+1)th order neighbors of location i are influenced
at the very next moment, we will say that the diffusion speed of

this STARMA(PA,O,qm)Im process v equals £%,

~ ~

Since the characteristics of the diffusion process of the

STAR(PA)Im, STMA(qm)Im and STARMA(P)\,O,qm)Im process in the environment

~ ~ ~ A~

involved situation are quite different, the following section discusses

each in turn. We will keep the same assumption on E(t) as that in

~

equation (3-20), i.e.

R
E(t) =P, (Tp=1) i

where § = [090,0,:.:,60,0"-u]

~

with 60 at location i.

3.2.3'1 AR Type

The diffusion process of STAR(P)‘)Im model is described in the

~

recursive equation that is obtained by setting Oq m(B) = T in eqution
’ .

~

(3-9),
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A . f{ : and thus the diffusion speed of the STAR process is Al.
P K = i 3@
L2 .
§(¢) = & ¢ ¢K£W( ) §(t-K) + &£(t), . i The amplitude of diffusion for the stationary STAR(PA)Im process
~ K=1 2=0 ~ ~ | -l
‘g %E can be computed recursively using equation (3-26). The STAR process is
i b written as - il 1 . . . . .
This can be rewri ass @ i £ a relocation type diffusion when the parameters lie on the stationmary
. ‘1; ]E boundary. The farther away the autoregressive parameter vector falls
§Ct) = 0 t<a 3-29 S 3 . , . .
~<t) : 1 ( ) . g from this boundary the more rapid the loss of population. Thus, given
i i v ¢K0’ K=1, 2, ...P are fixed, the stronger the conservation of popu-
LI { ]
§(t) =6 t=n; +1 T i TF lation tendency is, the larger the diffusion amplitude will be.
~ ~ ) . i t.-«;’
”% | a
A . : ;E 3.2.3.2 MA Type
§(t) = ; 2K ¢ w(z) 8(t=K) t > n, + 2 .
' RL 1 ' b% | i By setting & ,(B) = I in equation (3-9), we have the recursive
~ K=l £=0 ~ / % if p,A
ﬁﬂ § equation for the realized mean-gshift fuaction 8(t) of the STMA(qm)I
From equation (3~29), we can see that for the STAR process that the L4 | : ™ ' o m m
influenced regions of any location i will be equal to the coanected ig | model,
14 ey
regions of that location, since the influeace will be transmitted from - g 5@
location i to its neighbors and then retransmitted to all its connected Kg i q mp @)
, &d B §(e) = E(t) - T T @ WUE(t).
regions before the effect of this intervention completely dies out as t SN ~ ~ K=l 2=0 ~
S B
+ o, In physical/engineering systems this is intuitively appealing in tﬂ 5
- ]
. 3 23
that a given location in the system will receive a stronger and quicker ?ﬁ ~ with the intervention variable E(t) = Ptl (Tp=1) §, and
i ~ ~
s - 2 " - &jﬁ
influence from those closer-connected locations. The term "closer - }f 6=[0,0,O,...,GO,O,G..,O], this equation can be rewrittea as,

~

connected locations" does not necessary mean close in the sense of

s |
i

Euclidean distance. This implies that,

‘;E%

§(t) =0 t < n ort > ny +q+ 2 (3-30)

b

T

Aeer T2k € Ak T Ak

§(t) = § t = n, +1
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cof i
§(t) = T QW 'SP L ta= m, +K+1, K<gq 1l §(B)=2 T 6 W 8(t-K) - £ 1 o wEle(e). (3-31)
~ =0 ~ _ i | ~ R=1 2=0 ~ K=l =0 K¢ ~
y
- ‘ ‘f
. I
From equation (3-30), it is seen that the influenced regions of gj [ Thus the STARMA type diffusion is a combination of STAR and STMA type.
locations i will include only the 1lst order neighbors, 2nd order neigh- I o For the £ (t) as described ia equation (3-20), we can rewrite equation
Lovd
i 13 RN ~
- i
bors, +.., up to the W ax th order neighbors, where é (3-31) as follows,
! e
= sse . 1 1 = iy ; %\\
W oax Max{ml,mz, ,mq} Also the diffusion speed between t n1+1 ﬁé ; ég
g, P
- + 93 b . . , . I
and t nl 2 isg ml, ut the diffusion process will completely die out 5 i §(t) = 0 e < a (3-32)
at t = n, +q+ 2. Note that the STMA type diffusion is quite differ- g% % ﬁ& ~ ~
V2 ¢
ent from the STAR type in its ability to transmit the influence. In 1 .
‘ it { §(t) = § E=a, +1
the STAR type diffusion processes, any coanected location that has i ;o ~ ~ 1
received influence has the ability to retransmit the influence to its e ; %E
il { A o
. ) ] . . Y ¥ ‘ P K u
neighbors. thus, whereas the STAR process has the received }nfluence ¥ ) §Ct) = T 5 ¢K£W(z)6(t-K) -3 9‘£W(z) t=n +u+l, u<gq
. . . . . e &7 ~ K=] 2=0 ~ L= U 1 .
at time t behave as an intervention transmitted to (t+l) for all con- . L1y g
e -
nected regions for all t, in the STMA type diffusion, the influenced 1 A
e ] P K
region has no such ability to retransmit the influence to its neigh- ;L% j sgg §(e) = = 3 ¢K2W(2)5(t-K) E>n, +q+2
= ' ~ K=l 2=0 ~
bors. The only influence transmitted comes directly from the location - v“
L
that the intervention program is introduced at time t. Thus the influ- iy hﬁ . ; .
The diffusion speed of this Process may depend on the elapsed
. - . 0 . .
enced region of the STMA(qm)Im process may not cover the whole connect ﬁ% Ne time since the intervention was iantroduced. At t = n,+1, the diffusion
~ o e =
ed region of location i in which the intervention was implemented. C“ i ?ﬁ speed 1s Max{ll’ml}’ vhile at t = n1+q*2, the diffusion speed will be
1 IS . . . .
From equation (3-30) the amplitude of the STMA process can be ﬁj Xl- Thus the moving average influence will cause a change in the speed
recursively computed. This amplitude is seen to depend on the magni- g§ iE of diffusion if m; 1s larger than Al for q periods until the effect of
3 d the moviag average term dissipates. The influenced regions of this

tude of the moving average model parameters as well as that of the

faput amplitude S g% mixed process is the same as the STAR process, i.e. all connected
> regions of location i where interveantion is introduced.
3.2.3.3 ARMA Type e X
i§ The amplitude of the diffusion process for the mixed
For the STARMA(PA,O.q )Im model, the recursive formula for 6(t)
is, fg

» v
r——
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STARMA(PA,O,qm)Im process can be recursively computed using equation

~ o~

(3-32). Here we see that it is composed of two parts, due to the AR
the MA componeants. From equation (3-31), we see that the input to the

MA component comes ounly from E(t) which, ia part, forms subsequent 8(t)

~
~

where as the input for the AR component comes from the lagged values of

the mean shift functiom; 6§(t-K). Thus the MA component shapes/-

~

influences tﬁe Aﬁ component but the MA coméonent is independent of the

AR component. Thus, the total amplitude of the mixed process depends

on two factors;

1) the individual and relative amplitudes of the AR and MA compo-
nm@ﬁs and ‘

2) the nature of the iateraction of the MA component that can be

constructive, reinforcing, or destructive.

3.3 Simulation of the Diffusion Process of the Low Order

STARMA(Pl,O,q )I  Models

~ ~

In the following, we will illustrate the diffusion pracesses’for

low order STARMA(P,,0,q )I model with Max{P,q} < 1 and Max{xl,ml} < 2,

~ ~

Since there is no diffusion phenomena in the non—-environmental influ-
enced case, Im = 0, we will only illustrate the environment involved
case with I =1, E
m
All simulated illustrations are from (11 x 11} square regioas.
Thus there are 121 locations identified as (i,j)th location, i =
152502511, j =1,2,¢..,11. The neighbor structure used is; The lst

order neighbors of the (i,ji;location are locations (i+l,j), (i~1,j),

(i,j=1) and (i,j+1). The 2nd order neighbors of the (i,j) location are
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(i-1,j-1), (i-1,j+1), (i+l,j-1) and (i+1,j+1). Thus all the (11 x 11)

locatioans form the connected region. The intervention is .introduced at

the (6,6) location between time t = To-l and t = To. The amplitude of

this intervention 60 is set to 10 in all simulations. The intervention

inﬁ;t is;shown in Figura 3-4.

Figure 3-5 illustrates the AR type diffusion, figure 3-6 illus-
trates the MA type diffusion process and figure 3-7 the ARMA type
diffusion process for model parameters selected to ensure stationarity.

Thus these figures all illustrate regeneration type diffusion

processes.

In figure 3;5(a-c), it is seen that the effect of the interven-
tion épreads over all locations. Figure 3-5(a) and figure 3-5(b) are
both STAR(ll)Im ﬁodéls, thus the speed of diffusion is the same (i.e. v
= lj; ﬁowever due to the different model parameter values, the ampli-
tudes realized are different. The amplitudes in the figure 4-5(a), in
which the process parameters are closer to the stationary bundary , are
1.00, 0.90, 0.56, 0.36 in the (5,6) location, which is one of the lst
order neighbors of the '6,6) location, at time T = 1,2,3,4, respective—
1y, where T denctes the elapsed time since the intervention was intro-
duced. The corresponding amplitudes in the figure 3-5(b), in which the
process parameters are farther from the stationary boundary, are 1.00,
0.40, 0.21, 0.10, respectively. As expected, the diffusion amplitudes
are bigger for the prscésses in wﬂich the process parameters are closer

to the stationary boundary«

From the STAR(IZ)Im model illustrated in figure 3~5(c), we can
see that the velocity of spreading is twice those in figure 3-5(a) and

(b) since‘)\1 = 2, This is clearly illustrated by the number of regions
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influenced at a given time after the intervention is introduced between
Comparing figure 3-7(a),(b) with those of the STAR and STMA

t = To-l and t = TO' From these plots, we see that at t = T0+2, i.e.,

f‘us
e
o x

models, we can see that due to the interference of AR and MA pyrngess,

T = 2, figure 3-5(c) has 8 influenced locations while figure 3-5(a) and
the amplitude of the STARMA models is not equal to the superposition of

(b) have only 4 influenced locations.

,M
]
o aRiees

. . i itud f th di STAR and STMA models. F th
For the MA type processes in figure 3-6, we can see that the ‘; amplitudes o @ correaponding an mocets or example the

4

amplitudes in figure 3-7(b), in which the parameter values are set to

frer

effect of the pulse intervention disappear abruptly after t = To+2. It Ly
¢10. 0!4’ ¢11 = 0'4’ e].o = -0'2’ 611 = —014’ 612 = "'0'2’ are 2-00’..

e

is also quite different from the STAR(IH.)Im process in that the influ- - j

Pt

1.50, 1.06, 0.75 at the (5,6) location at T = 1,2,3,4 respectively.

enced regions are limited. In figure 3-6(a) and (b) the influenced L B
: 1 : The corresponding amplitudes in figure 3-6(a), which is a STAR model in

3
ke

g
s

region contains the lst order neighbors of the (8,6) location and in

| Zabuve

i : ’ which the parameter values are set .to ¢10-0.4, ¢11=0.4, are 1.00, 0.80,

figure 3-7(c), it contains the 1lst order and 2nd order neighbors since
0.56, 0.36 and the corresponding amplitudes in figure 3-6(c), which is

d_.m,
P
PRI
W“

the latter has a larger spatial influence. The speed of spreading for
a STMA mcdel in which the parameter values are set to 910=-0.2, 911=-

3

the STMA(IZ)Im model is 2 at t = To+1, as seen in figure 3-6(c), while _

i

v e
A

£
*

0.4, © 2=—0.2, are 1.00, 0.00, 0,00, 0.00. It is obvious that from T=2

1
on, the amplitudes in figure 3-7(b) are not equal to the superposition

the speed of spreading for the STMA(II)Im models is 1., After t = T0+2, b

the effect disappears at all locations and the velocity of spreadiag

. 2

!ﬁ:‘“""”: X
g 1S

Bosromapc gl

i
. . !4 of those corresponding amplitudes in figure 3-5(a) and figure 3-4(c).
for STMA(lml)Iln model becomes 0 for t > T0+m1. Comparlqg figure 3-6(a) o | P g amp /g ) 8 (e)
and (b), we see that differeat ®-parameter values give different ampli~- g% g% this phenquena is due to the interference of STMA process on the STAR
~ “ b7 4 process, which has been discused in previous section.
tudes. In figure 3-6(a), where the model parameters are, 910=-.4, . iTom
g BN A STAR(ll)Im process that satisfies equation 3-23, i.e. the
»911=-.4, the amplitudes at the (5,6) and (6,6) locations at T=l are vy {
: strictly conservative conditions, is simulated and plotted in figure

1.00 and 4.00 respectively, while the corresponding amplitudes in the
3-8, In this simulated relocaiton process, the process parameters are

s
it
e 4
iy
dgermivenad

figure 4~-6(b), where the model parameters are ©,.,==.2, A _==,4, are ’ |
10 11 . 121 (1) .
3 ‘ , & set to ¢10=0.4, ¢11=0.6, and I wij =1 for j = 1,2,+4+,121, so that
§ | i=1

1.00 and 2.00.

St

In figure 3-7(a-b), the infuenced regions contain all these (11 the strictly conservative conditions, equation (3-23) are satisfied.

ey

ey

Comparing the figures of (3-8) with their corresponding figures of

x 11) locations. In figure 3-7(a), the speed of spreading is constant

all the time, i.e. v=2. But in figure 3-7(b), the speed is 2 at T = 1 . 3-3(a), we see that the diffusion speed of the relocation process,
5;

and 1 after T =2, N S R which is a homogeneously nonstationary STAR(ll)Im process, is the same

as that of the stationary STAR(ll)Im process in figure 3=5(a), i.e. 1

order neighbor per observation period. But the diffusion amplitudes of
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3

STAR(ll) Model

with ¢10=0.2, ¢11=0.4

Figure 3-5(b), Diffusion Process of AR Type,
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.2,

STARIMA(lZ,O,ll)
0

4’ ¢12=

$11=0

’

2

Diffusion Process of ARMA Type,
0
610=—0,4, 611=-0.4

Model with ¢10

=7(a).

Figure 3
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Figure 3-7(b). (Cont'd)

Figure 3-7(b). Diffusion Process of ARMA Type, STARIMA{ll,O,lz)

Process with ¢10=0.4, ¢11=0.4,
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the relocation process are always higher than those of the stationary
STAR diffusion process, which is a regemerating (-) diffusion process.
From T=3 on it becomes even more obvious that the populatioas at every

influenced locations of the relocation process are much higher than

those in the correspoding regenerating (=) process. Since the total

population at T=0, which is the intervention input, almost damps out in
figure 3-5(a) at T=3, while the total population of the relocation
process in figure 3-8 is conserved for all time, the longer the time

elapsed,; the greater the differences in the diffusion amplitude will
be.

3.4 Modeling Space~Time Intervention Processes

In previous sections, we investigate the properties of the
space-time interventioan models. In this section, we describe how to
We still assume

build the space-time intervention model for a process.
that there are a; pre-iatervention observatioas and a, post-interven~
tion observations.

We will build the space-time intervention model following the

three steps listed below:

Build the model for the pre-intervention space-time process.

1.

2. Build the dynamic model for the effect of the intervention., An
important component of this step is to identify whether the inter-
vention process is influenced by the environmeat or not and to
ideatify the form of the impact from the dats structure.

3. Estimation of the parameters of the total model and diagnostic

checking of its adequacy.
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To build the STARIMA model, first the space-time sample autocor-
relation functions and the partial autocorrelation functioas are com-
puted and are used in accordance with the cut-off tail-off properties
to select a candidate mode], Then the model Parameters are estimated
and diagnostic checking is applied to check the adequacy of the
proposed model. If the diagnostic checking doesn't show any
inadequacy, the model is ready to be employed, otherwise the candidate
model will be updated according to the remaining structure, then the
Parameters of the updated model are estimated. This iterative
Procedure is employed until an adequate model is found. These
Procedures and inferential statistics for building the pre~iaterveation
model are completely described in Deutsch and Pfeifer (1980).

In building the dynamic Component we employ the preintervention

model to sequentially estimate 8(t) for each observations t > n
1

~

and correct these original observations by subtracting §(t) when it is

~

significant. We will d ' i
enote zi,t as the observation of location i at

time t and 2€ - 1 igni
it = zi,t Gi(t) when Gi(t) 1s significant, Z; e = Zi N
’ £}

whe 6 . . L. . .

n 1(t) 1s nontiignificant, where Si(t) is the estimated mean shift
at ti . 5 . .

time t, location i. Thus, in this dynamic scheme, we start with

usi . .
sing the a, observations to estimate ¢, @, U gad correct all the

~ A aw

ob . - . .
servations (pre~ and post-intervention) by subtracting p. Setting

~

n,=1 i
2™l we use the t<n1+1 to estimate G(n1+1) aad correct Zi

N ,n1+1 if
§.(n,+1) is signifi

i(y significant, and set n1+1 * n,, repeating this procedure
until alil postintervention observations are exhausted., A detailed flow

chart of this procedure is given in figure 3-9,
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As shown on the flow chart, we use the ny observations, i.e.,

i

S = Z, ,t<n,,1i=1,2,,..,ILN, to determine the model class, i.e.,
Estimate Y { o 1,t 1 .
Set Z(t)+Z(t)-u . : H : . .
all e | ig STARMA, STAR or STMA, and to estimate ¢, ©. For each estimate of §(t),
‘j % we perform the hypothesis test HO : §(t) = 0 vs. Hl : §(e) # 0, If H,
gc(:)-z(:) e t<n;
then ten;+l / is rejected, we perform all the LN hypothesis-testing Hoi : Gi(t) =0
’ ) J} %E vs. Hli : Si(t) # 0, i =1,2,...,LN, for each individual location and
Escinate §(0) it 3 s 5 ¢ - s, i is rejected. 5
ﬁ. ¥ set i(t) = i(t), z1,t = zi,t 1(t)’ if HOi is rejected. Set i(t)
j = 0 thus 2§ _ = 2, if H ., is not rejected. While if H, is not
%% 3 i,t i,t oL 0
EJ‘” E . i . N
Set tvetl Yo i - S rejected, tien 8(t) = 0 and Zi =Z.
apen+ ~ ~ o~
ﬁ} _f L From this sequential procedure, the plot of 8(t) vs. t allows
1 § ~
= ff for the determination of whether there is environmental influence in
Set a1 Set §(t)=0 {i by e
C. B - . s s .
L Hi % the intervention process. If the plot reveals no transieant behavior
P I and is deterministic, no eavironmental influence to the mean shift
Sec , (t)=d, (t) - 1s » 5’% o
i { : ‘ . . . . -
% =2z, -5, () & "8;‘“1““ e B :E function is present. Alternatively, when these characteristics are
éz  § : present the parameter estimators for the interveation process are those
{ 30 ¥
Set &, ()0 & B correspoding to I = 1 structure for model fitting using all a,
25 -z, Ser 1+1+1 pot § m
. %i ; postintervention data. Recall from Chapter II that if n2>1 estimates
ﬁ-v(.xﬂ" E ‘ .
- E of §(t) and therefore, the intrinsic¢ utility of a program § will be
L fg biased if the incorrect structure I‘n = 0 or Im =1 is employed.
} P
NO Are all § \ ’
Observations ‘ 3.5 Estimation for Space=Time Intervention Models.

Exhausted
?

Once the pre-intervention space-time model is built in step one

of the modeling procedures, the modelqﬁarameters. i.e. ($,0) which have

~ e~

e i
M
w

already been estimated may be treated as known in determing estimates

e ety —
 apeia : M
&
SN

! 1 i




R SRRt e

S

ik

TR ——
ppix

'w::‘..'«‘f'—‘-;f;

150 ¥ 151
H
of the other parameters. However, sometimes we do not have complete Y=Xp+e (3-33)
P -~ ~ A~
confidence in the correctness of these estimates perhaps due to the ‘%
smallness of the length of the preintervention history, . In this = iE where

o

Z is [LN x (n1+n2)] by 1 vector with each element as a function

+

case it is desirable to refine the whole intervention model by

estimating all the model parameters simultaneously, eg. treating all »; i
h of the observations and model parameters.

parameters as unknown. In this section, we first will develop the .
X is [LN x (n1+n2)] by 2 LN matrix with each elpment as a

TN,

formula for estimating (u,d8) given that (4,0) known. Then we move to

~ ~ ~ : g
8

function of model parameters only.

the situatioa in which (¢,0) are treated as uncknown. Here the L.S.

~ o~

e

t t .t
estimates of (u,8§,¢,0) are gotten by searching through the (4,0) - pro=[u,87] = [ul’uZ""’uLN’sl’GZ""’GLN]

~

~ ~ e

~ R A e

=,
i
o

rom®

subspace, and the approximate hypotheses testing statistics, the

=

Uep 1 =1,2,,..,LN i8 the preintervention mean value at location

approximate confidence intervals are developed based on linearization.

ke

Lastly, the estimation for the multiconsequence space-time interveantion ¢ ,§ i
(. .
. . P . . s . P : . . . . .
process is treated. Here in addition to the intervention potentially ,g Ll Gi: 1=1,2444.,LN ig the intrinsic mean shift at location i
causing a change in the mean level of the process at any of the LN ' vy and
. 1
T e
locations a simultaneous change in the covariance can occur causing the 5%
. . . ’ - . 2
preintervention parameters $,0 to change to ¥,y after the interveation. B e ~ N(0,Ic))
i - [ . . [ - N “‘
For this situation, the conditional estimation of (¥,Y,u,5]/4,9) are - i
: % {;i In the linear model form,

" e

discussed. In the rest of this section, we will assume that Et’ i.e.

the intervention variable, is well identified and is known.

g i ot

e b AL S bt oo

3.5.1 Transformation to Linear Model Form

In this section we assume that the preintervention model

parameters, ¢ and ©, are koown. A recursive formula is developed to

~ ~

transform the original STARIMA(?XI,...,AP'O’qml,--.,m )Im model into

LLSENa—

linear model form, i.e.
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pr— — I UI praman —
Yl(l) " el(l)
Y2(1) . e2(1)

. uLN v

y=| YV o= |8 e = | Ey(l)
Y,(2) 5, e (2)

| Yn(eytay)) s SLn(np*eg)]

LN

The closed form transformation formula for the STARMA(IXL’O’lml)Im
model which will be derived is also applicable to either the
STAR(lx,O,O)Im model or the STMA(O,O,lml)Im model by deletiang certain
terms by setting the appropriate model parameters to zero. Once we
have the transformed linear form, we will apply the results of linear
model theory, e.g. F. A. Graybill [1976], to get the L.S. estimator for

u, 8, and coastruct the hypotheses testing statistics and confidence

~ o~

intervals.

The STARMA(PXI,.-.,Xp’o’qml,...,mq)lm model form is,

t

A
2 =S u+ES + g zK ¢sz(z)BK(zt-s:° W=(1-1 )& §)  (3-34)
m .
q K
-% T o W(z)BK(et+Im £, 8) +¢

KL

~

K=1 2=0

##
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- i i i i iable.
where St is step function and Et is the intervention varia

Equation 3=34 can also be expressed as,

- s~ (3-35)
d,p,l(B)Et ¢p’)‘(3) ¢ 1~n

~ ~

~ ~

+ ((1—Im)¢p,,\(n)+1m eq’m(B)) E, f + "’q,m(B) gy

=1 .
By multiplying every term by Gq m(B) we get the lienar model form
’

~

of,
- 0 B
op’l(n) QP,X(B) (1 Im)q,p,X(B)'H:m q,m( )
~ ~ S ~ -~ 5§ + e . (3-36)
@ & "o e L7 5__(B) .
q,m ~ q,m ~ q,m

~

Qp X(B)
¥(t) = 55y . (3-37)
~ q,m ~
QP’X(B)
(3-38)
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q,m

~

(-1 e, (B + IO, (B)
X,(t) = S £, - (3-39)

q,m

~

where Y(t) is a vector and Xl(t);-xz(t) are LN by LN matrix, the model

~

is reparameterized to the standard linear model form;

E(t) = xl(t) 52 + Xz(t) 8 +i v (3-40)

~

t

where Y(t), Xl(t), Xz(t) of given STARMA(PA,O,qm)Im.model can be

~ ~

derived by using equations 3-37, 3-38, 3-39 recursively.

. n
In the following, we will use Et as a pulse function, Ptl(Tp),

without the loss of generality since, if we let Tp = o, the pulse
function becomes a step fufiction. Also implicitly, we assume that

oy > Max(p,q). To obtain the initial values for Y(t) and Xl(t), we

will replace the unrealized values of Zt by their expected values, e.g.

~

zt|c<o = 5. Thus, X,(t) =0 for t < n;.

~

Based on thes initial conditions, we will develop a general
transformation formula by using equations 3-37, 3-38, 3-39.

Define

K = 1,2,-.-,?

”?




DI S

B =)

From equation 3-37,

’

~

or

q
pA

¥(e) = WGKBK Y(e) +

8 q,a(® HE) =2 () Z,

Imposing the initial conditions, we gel;

1x- % %ed(l-g W) ¥
K=1 =1
Y(t) =
\ % ‘W Y(t-K) + Z_ -~ ; W
K=l °K ~ S k=

" From equation 3-38

¢k “e—x
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K= 1,2"'.’q
K = 1’2’UII’P
K = 1,2,-v1,q

P .

Z2, - T W BZ. (3~41)
t<0

(3-42)
t>0
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Qq’m(n) Xl(t) = QP’X(B) 5,

~ ~

or

q K P
X, (¢) = £ W, B X(t)+I- L W. .
1 ga1 oK 1 gap O

Again imposing the initial condition, we have,

q - P
(- % W)t (1-1 W

t < 0.
K=1 K=1 :

¢K)
Xl(t) =
q . P
T Wao X, (£=K) + I - T W . t > 0.
gy OF 1T ge1 K

From eqﬁation 3-33

a
1
0, m(® Tt = ((L-T) & (B + I, ARG P (T).

~ ~ ~

or

1 K
X (t) = & W,, B" X,(t)
) & Kﬂl N : -

Pk q
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(3-43)

(3-44)

n
. Ky 51
+ (1 - (i=I) T Wy B =TI T Wy B ) P, (Tp). (3=45)

k=1 K ® gl
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Using the stated conditions, we have
0 t < ny
Xz(t) = (3-46)
q
I Wog x (t-K) + B.L(T) - (1-) P w2 l(te)
K=1 2 t p L 4K "t
q 2,
- Im Kil Wog Pt-K {Tp) t > o,

The estimator p from linear model theory is unbiased if the Xl

and X2 matrix are constructed correctly. However if we choose the
wrong model structure, i.e., the wrong Im,parameter value; the
estimates will not only be biased, but simply incorrect.

This transformation to lienar model form can be made more

compact and computationally simpler to give the transformation formula

of STARMA (lu,O,lml)im model by defining the iterative functions,

- (K)
Li,Z(t’ and Uij .
0 for t <1
t )= P
Li( ) (3-47)
A m,

i 8 1 . :
z g . . - o . -, ad <
j=1l2:0¢1z"13 2, . gioelzle (ZJ,: LJ’Z(t 1))| for 2<t<n +n,

i- = 1’2’.“’1‘“
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N
(2) (2) K=0
z .. X R 2 el
‘ g=0 ¢1£W1J LITAH (3-48)
ij 0 <1
m, LN
: K-1)
A I <] U(. K>1
2=0 g=1 127ig gi
Using theseé definitions, the transformation formula becomes
For i,j = 1,2,-.-,LN-
Yi(t) = xi,t - Li,B(t) 1<¢t< n,+a, (3-49)
t=-2 :
Xii(t) = 1- kEouii(k) 1< ¢t¢< ny+n, (3-50)
t-2
X..(t) = & U,. i#j -
lJ(t) kaoulJ(k) 1 <t < ng+n,, itj (3-51)
0 <
t nl
t—h1-2
X, . t) = -I . % . .
1,1+LN( ) 1 B g Ul,l(k) n1+1<tn1+Tp (3-52)
t-n,-2
I,z ° U, (k) <a,T +1
mk=t-n1-Tp-1 i,1 ¢ | p+1
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Note that equatioas (3-54), (3-55) ar

e obtained by eliminating the last %
‘ 3

e —————

*
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i
0 t < n1+1 %g )
?5
t-n,~2 . B
' 3-53) ‘
(t (K) n,+2 € t < n,+T ( -
.+LN -1 T U, 1 1 p
X s M g=0 13 Eg‘
t—n1-2 % x
I ’ o¢® Q. 4T 41 < t t) |
o ij 1p 4
K=t-n,-n_=1 -~
1 T
% gq
. ' i i hat E_ is -
To obtain the transformation formula.for the situation that &, ?% .
. s = ivalently ;
presumed to be a step function. We just set Tp n, or equ ’ - ’g
. : 3-52), (3-53), so only %
T, == Not that Tp appears only in equatioas ( ' . " gﬁ‘ 1
these equations will be changed. For the step function situation .
i .
therefore, yy {
oy
tsmy il ]
0 i
(3-54) g@ )
xi,i+LN(t) = s i f
t-n,- | }
1 bl €<t <n L
1-1 T Ugg) 1 172 )
m g i
iy
m
F i |
and i {
Bl
0 t < g+l gg ? ?%
Lo
} ] (3-55) a1 l
Xj, o't d &
t-nl-Z :
1 . USI.O t > n1+2 ﬁ
m ogeg i
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part, i.e. t » n1+Tp+l, of equations (3-52), (3-53). To obtain the

transformation formula for the S'I.'AR(lA )Im intervention model and the
1

STMA(lm )Im intervention model, we only set @ = 0 and ¢ = O,

1 ~ ~~ ~ -~

respectively in the derived pulse or step formulation.

3.5.2 Least Squares Estimates and Hypothesis Tests for ¢, 9 Known

~ o~

In order to apply the result of linear model theory to get the
M.L. estimators, it is important to be sure that the X-matrix of the
transformed form of all these models are of full rank (of rank 2LN).
This can be seen by noting that xi,i(l) =1, xi,j(l) = 0, i#j,

Xi,i+LN(°<“1) = 0, xi,i+LN(n1+1) =1, Xi’j+LN(t<n1+1) = 0, i*j. The X-

matrix is of the form

LN x 1N
xl(z)
x,3) 0
X.(n,)
x: ..-1—.1._..-—’—---.-._—-..
X o) T LNxLr
0
Xl(n1+2) Xz(n1+‘)
£om o= N
X, (nyny) Xptmy¥ay)

where ILNxLN is LN hy LN identity matrix, 0 is (LNle) by LN null

matrix and Xl(t>2)’ Xz(t>nl+2) are LN by LN matrices as stated in

s it ooy ST
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equation (3-40). Therefore the transformed X-matrix always consists of

2 LN iandependent columns and is of 2 LN rank.

]

Assume that all the ¢'s and ©'s are known, then all the Xi j's
in the transformed model would be known. Applying the results from the

linear model, we can immediately get the least square estimation for p

~

as

o =X ¥ (3-56)

~ ~

That is, when X, the

[LNx(n1+n2)] x (2LN) matrix, is of rank 2 LN then XT = (xlx)'lxl and

where XT is the generalized inverse of matrix X.

the L.S. estimator becomes p = (X'X)-1X'Y. Also, the sampling

~

distribution of the quantity,

pi - pi. M= (u1+02)(LN)
(v-v)' (x-y)cit 1/2 ¢'' = the ith diagonal (3-57)
= ~H—2;ﬁ~ element of (X'X)"1

is student t-distribution. Therefore, the one-at—a-time 100(1-a)Z

confidence iaterval is,

. (3—58)

p. * ¢t -
i a/2, (M-2LN) M=2LN
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Also the simultaneous confidence interval is coatained in the region
(p=p) " (X'X) L (p-p)
= < Fa,2LN, (M~2LN) 3-5
P~ s 2LN, (3-59)
2
where o" = SSE/(M-ZLN).
To test the hypothes{s Ho : Hp = 0, where H is a q x 2LN matrix of
rank q, with q € 2LN, the testing statistics is:
p H'[H(X'D)™IH'] Hp
W= —= 7 (3"60)
qo

Hy is rejected if W > Fa,q,[(LN)(n1+n2-2)]. For example, if we would
like to test the hypothesis that the shift is insignificant in all

regions, we test,

: § =0,

Ho :

with H matrix of the form [O EILN].

3.5.3 L.S. Egtimators and Hunathagio Toatas far . O Halmace-
e e W el aany ABO Wy AVA Wy VY VILNNIKUWLL

The problem described previously of estimating u, & when ¢, O

~ -~ o~

are kaown was a linear estimation problem. When ¢, @ are also unknowa

~ ~

and we would like to estimate (4,0,u,8) simultaneously, the problem

~NOr A o

becomes one of noanlinear estimation. Since there are (ml+X1+2LN + 2)
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paramters seaching over the sum of squares function is tedious. For a

more efficient solution the model form is linearized and an interative

linear least squares appraoch is used. To linearize the transformation
. 0, 0, 0O
form Y = x p + € an initial guess value is selected (T, 9, u, 8)s In

~ ~ ~

the following we will restrict ourself to the p<l, q<1 models for

simplicity. The discussion can be naturally extended to other models
Recall that elements of X-matrix are fuanctions of © and

o~

{p>2 or ¢>2).
. . , 0 o
¢ only, so to get the linearized approximation at B="08,p="p, we

will have the linearized models of the following form:

) (bp=20yy) (3-61)

%,,) % + X, 0 + €.

~ ~

0, 0, O O o,t o,t o.t
where X, is the X-matrix evaluated at (°¢,©,°u, 8), 8 = (¢ ,8")

~ A A~ ~ ~ ~

~ A~

and % = (°u,%8), which is the M.L. estimates of (4,8) givea that

~ ~ o~

(8%, 0F) = (%%,%").

~

X o]
Let °% = (wgz‘ ‘a=°n)op) (— ‘ga°a) Ps
0710 ‘: : A~ 11 I~ : ~
X o aX )O ( X )O )
- m—— Py weey (70 P
, 13¢1x 8208 360 |p=08 - la, 808
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where OXA matrix is an [LNe(
: n1+n2)] by (11+ m1+2) matrix,
BA is an (X1+m1+2) vector, and we have the linearized model at

~

(B,0) = (°8,%) as

~ A~ ~ o~

+ e (3-62)

- . * \ o
Since the linearized approxiuate modele are linear in (¢,0,u,8),

~ o~ o~ e

80 we could apply the results of lienar model theory to get the L.S.

. o,A <] . A
estimates of "B and p, i.e., °8" and 1p. Once the L.S. estimates

~ ~ ~ ~

0,A 1 . .
ﬁ s P are obtained, the linearized model is then established at (B,p)
-~ -~ ’

~

o la 1 1,1 0y 0A
( g, p), where ("B, p) = (98,%8 ,lp). and the linear model theory is

~
~ A ~ e ~

thea applied again to get the L.S. estimates 1BA and ep. This

~ ~

Precedure is repeated until both of the foliowing two stopping rules

are satisfied.

1. iSA <E h i
g» Where EB 18 a vector of arbitrarily small

~ ~ ~

positive number, and lﬂA is the L.S. estimate of

~
4

i A . .
B™ at i-th iteration.

~

2. SSi-SSi_1<e, where € is an arbitrarily small positive

number, and SSi, SSi_1 are the sum of squares at
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i=-th iteratioan and (i--l)th iteration
respectively.

Once the iterative procedure stops, the L.S. estimates of 8 and

~

p are obtained. To construct the confidence intervals and to perform

~

the hypothesis tests, the linearized model is coanstructed at (B,p) =

~ o~

(8,p) and then the results of the linear model, which are discussed in

~ r~

3.5.2, are applied directly to obtain the confidence intervals as well

as the test statistics.

To illustrate the linearization ic more detail, let us linearize
the Et pulse function situation for STARMA(lll’O’Iml)Im intervention

model. The results are given below of the linear expression form in

equation 3-62,

Y= OXA OBA + xop + €
where

ogd o | (4-8)F, (0-%9)F|F, and

~ o~

t-n, =2
LN £-2 LN 1
ogh NOREEI n.gi) °, - T T - D§¥i %,
1 j=1 R=0 *J J ™ jal Rat-a,-T -1 37 J
1<2 <A +1, i=1,2,...,L8
t-n, =2

LN t=2 1

0 L (K)o, _ . LN (K) o
xé,z+x (t) II Ejn %u, -1 E 5 E¢is O5,

I1m = 1] ] m., p gy =T
1 j=1 K=0 j=1 K=t ny Tpl
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g" I
~ witthSF) and Egg) defined recursively as follows. ?
_ ij2 ijs ‘ .
{9 = w(*) '
- ij2 ij
m
[ (K) 1 LN, (r) (K-1)
Di'l = I I elY Wi D y
- J r=] gsl g g] ]
=
qu) = -Wg%)
ijk ij
LN ' ™1 LN -
- Ei‘.‘i = 3 wgz) o &D s o Oy E(l.(;]')
[ LA € I & =0 g=1 8]
Note that all the D..,'s and E..,'s are fuactions of @, not 4, and are . '
- ij2 ij2 ~ ~ \
n evaluated at 6 = %9, This is intuitively true because the moviﬂé }
i average parameters are nonlinear whilé the autoregressive parameters ‘ .
™ <
) are linear in their own nature. .
-
} 3.5.4 L.S. Estimators for the Multi-Consequence Space-Time Model
” When the intervention is believed to change the process ‘ : :
covariance structure, we perform conditional L.S. estimation, i.e. j i |
estimate (¥,Y,814,9,u), where ¢,0,u are the L.S. estimates of pre- ‘ g

intervention model parameters and the pre-interveantion process mean

i 4

respectively. To get the L.S. estimates of (V,Y,814,9,u), we need to

~ A A e A

i

search through the (¥,Y) space. The transfdrmaeion needed to express

~ o~ .
" i

i

this model in lienar model form can be obtained by modifying equation

i ' :
,
E ¥ ‘ | ' 8
. ~.
\\ - : . v . . . . - L3

kN

T
s
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(3-42), (3-46)., To get the Y(t) vector ahd Xz(t) matrix,
P
Y(e) = L Wa,, Y(t=K) + 2, = u - %
min{q,t-nl-I} min{P,t-nl-l}
+ z Y(t-K) + z W Z _
K=l YK K=] YK _t-K
. q oy P 2y
X, ()= ¢ (e-K) + P, (T ) -(1-1) = P (T )
2 K=t-n eK 2 T R=t-n ¢K
1 1
q n mln{q,t~nl-1}
-1 b3 W (T )t L X(t-K)
" Ret-n dl o Foox R=l &
min{P,t-nl—l} oy min{q,t-nl-l} oy
-(1-1) E P (T ) =1 z W . P (T),
m K=l "yk =1 YK “t=K'p

which results in the liear model form,

E(t) = Xz(t) E + Et

7

Note that Y(t), Xz(t), t<n1 are known when the pre-intervention

model has been buﬁt:.

Once the L.S. eatlmates (b,vy,8]4,0,u) are obtained, the

M, ~ AN AN A e A
~

lienarized model, which has been discussed in the previous section, is

constructed and the results of the linear model are applied to

construct the confidence interval as well as the hypothesis testing stat,
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3.6 An Example: Los Angeles Carbon Monoxide (CO) Data

In this section the;Los Angeles CO Data is reanalyzed to illus~
trate the space~time intervention modeling procedures. This data was
previously analyzed by Box, Tiao and Hamming [1975] using single site
interventioa models. The data are the moathly averages of hourly
measurements of carbon monoxide, thatfﬁgs’fecordéd from March 65 to
December 71 st six geographically distributed locations in the Los
Angeles Basin, i.e., Azusa, Burbank, Leanox, Long Beach, Downtown LA
and LA County. Two events (or interventions) occurred, which were
expected to reduce the measurement level of carbon monoxide at these
locations. The first intervention was the air quality legislation that
required an engine design change. This law, enacted in January 1966,
required the engine to be designed more efficiently so as to produce
less air pollutants. The second intervention introduced in April 1968
was the change in the method of calibration of the measuring instru-
ments. We will denote I1 as the first intervention, i.e. the engine
design change, and 12 as the second interveantion, i.e. the change of
calibration method.

In the following sections, the geological environment of these
six locations in the Los Angeles Basian will be described and followed
by the construction of weight matrix. Then these two interventioas are
analyzed to determine the appropriate dynamic component model. In the
nekt section, the space-time intervention modeling procedures are fol-
lowed step by step to build the pre-I1 space=time noise model, to iden-~
tify the model form of the dynamic components, to build the post-Il,

pre-12 space~time intervention model and then the whole space-~time

M

T N R
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multipie interventions model for the whole process. The implications ! 0
revealed in the built model are discussed to draw the conclusions of gg I
the physical interpretation. Also comparisons are made between the -
: ] .
i
space-time multiple intervention model and those univariate time series §§
intervention models in Box, Tiao and Hamming [1975]. Ti o
. P >
i |

3+6.1 The System, Structure and Data
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The relative position of these six locations are illustrated in

]

ey
>

Ut: .

S—

the actual map and computer drawn facsimile in figures 3~10(a) and (b) ¥ ;
o ? Z P /atzra;‘%?\
respectively. The distances in miles as measured from this map are ° o s ii” & fﬁg;?
yg ; Pl N )
given in table 3.1. In each case these measurements represent not s 2 <:€§f/ ; w;/,gﬁ}.¢~
- .{/ & /-'; g ¥
centroidal distances but distances between measurement sites. §§ J— g 4 /f
. (a)
Table 3.1 Distances between Gauge Sites g% - T -
. m F ~
‘ Long Downtown LA i , ;
Azusga Burbank | Lennox Beach LA County -
Azusa 22.1 29.5 | 26.8 19.5 35.4 jé %}
i
Burbank 22.1 19.0 26.8 11.3 13.3 .
- :
i 1
Lennox 29.5 19.0 12.8 10.7 21.2 i E (i :
: ik
Long 26.8 26,8 12.8 15.6 33.3 Com ) i
Beach §§ : ‘ g}
Ul ‘ |
Downtown { 19.5 11.3 10.7 § 15.6 20.2 -~ i
LA 4 ’g - , g',z
LA County| 35.4 13.3 21.2 | 33.3 20.2 g |
- - : (b)

Figure 3-10. The Map and the Relative Positions of Lennox, Long Beach,

Any two locations are assigned the same order neighbor to each 1A County, Burbank, Downtown LA and Azusa.

other according to the distances listed below:
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The resulting neighbor structur

Location -
ocaron
Azusa
Burbank
Lennox

Long Beach
Downtown LA

LA County

The scaled weight matrix is constructed ac

Distance Range
0 - 16 miles

17 - 25 miles

26 - 34 miles

1st Order
Index Neighbor

distance and is 1isted below.

1
1 o
w(l) =2 0
3 o

s o

5 0

6 LP

Order Assigned

1
2 /

3

e for this assignment is:

5,6
4,5

3,5

2,3,4

0.29

2and Order

Neighbor

1,3
2,6
1,6

3,5

3 4

0 V 0

0 0

0 0.54
0.45 0
0.29 0.42
0 0

0.44
0.46

0.55

3rd Ogder
Neighbor

3,4,6
4
1

1,2,6

1,4

cording to the inverie
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0.32

0.52

0.53

0.48

0.51

0.32

0.29

0.48
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The data of each location are plotted in the figures 3-11(a) to 3-

11(£f). Table 3-2 contains the sample space-time autocorrelatioa func-

tion and the standardized sample space~time autocorrelation functioas

for the 82 time points and 6 locations.

In the following sections the

modeling of this éubstantial, statistically significant spatially and

temporally correlated information;will be conducted.

3.6,2 Initial Considerations of the Forms of the Interventions

. The first intervention, enacted in January 1966, required an

improvement in engine design to reduce the air pollutaats coutained in
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il , ,
, the exhausted gas. Since the old cars will be replaced by the newly
I -
M . designed car with improved engine design gradually, the effect of this
iy impact would be expected to increase perhaps linearly until the steady
Table 3-2 The Sample Space~Time Autocorrelation Functions and the gﬁ
Standardized Smaple S-T Autocorrelation Functions for the i gtate is reached, i.e. all the cars on the roads are designed under the
Observations from March 1965 to December 1971. o
ﬁg impact of this air quality legislation. Thus from a modeling stand-
4y
point, the indicator variable Eil)ie not 0,1 since there is not
_ Space-Time Autocorrelations/Standardized S-T Autocorrelatioas ﬁg . 1)
Spuce Lag 0 1 2 0 1 2 b 1 instantaneous total resource implementation. Rather £ ™7, the
Time Lag e X :
. o indicator variable for the first intervention should be of the form
1 0.94 0.79 0.75 20.52 17.25 16.39 i -
2 0.89 0.71 0.70 18.36  15.47 15.14 Ui éR Y(I)E , where Y(l) reflects the resource implementation. Also this
3 0.74  0.62  0.63 15.94 13.35  13.60 : [ £t t
4 0.63 0.52 0.56 13,52 11.20 11.98 n ? , legislative intervention dida't involve any action that will reduce the
5 0.53  0.44  0.49 11.43  9.49  10.59 i 8
6 0.47 0.39 0.45 9,92 8.35 9.49 = b quantity of air pollutants directly. Instead it put constraints on the
7 0.44 0.39 0.43 9.29 8.24 9.02 ) -
8 0.45 0.42 0.43 9.40 8.76 9.08 fﬁ ™ air pollutaat generators (the engine) that produce the source input,
9 0-48 0.46 0:45 9-97 9‘69 9038 “*ﬁ : ¢ '23} i
10 0.52 0.51 0.47 10.68 10.62 9.71 o ise. the noise input of the STARMA process, of the whole system.
11 0.55 0.56 0.49 11.29 11.43 10.00 o o
12 0.56 0.57 0.49 11.47 11.71 10.06 Qg j 1 5% Recall, that this noise input is the only source of input of the STARMA
13 0.53 0.54  0.47 10.69 11.02 9.54 : Lol - o
14 0.46 0.47 0.42 9,17 9.41 8.52 an B i *  process, so the effect of this engine design change legislation will
15 0.35 0.36  0.35 6.96  7.11 7.00 i L om _ .
16 0.25 0.25 0.28 5.02 4.99 5.58 i ﬂ} enter the environment process that the noise follows. That is, this
17 0.17 0.16  0.22 3.38  3.22 4.35 a ' ' . .
18 0.12 0.10 0.18 2,35 2.07 3.52 i — intervention takes the form of the eanvironmental influence situation,
19 0.10 0.09  0.16 2,03 1,80 3.23 ! <
20 0.12 0.1  0.17 2.32 2,21 3.37 & jvee I . =1,
21 0.16  0.16  0.20 3.19  3.16  3.88 . L m, 1
22 0.22 0.22 0.23 4,18 4.14 4.40 @g ﬁn Assuming a constant change over rate and an eight year useful
23 0.25 0.25 0.24 4.7 4.76 4.54 e .
24 0.25 0.25 = 0.23 4.73  4.76 4.28 i life of an automobile, we have the intervention STARMA (P,,0,q ) I
25 0.22 0.22  0.20 4.09 4,15 3.68 I I o .
26 0.15 0.16 0.15 2.78 2,93 2.70 ;% ] '
27 0.04 0.05 0.07 0.80 1.03 1.32 b process takes the following general form:
29 -0.18  -0.17 =-0.11 -3,25 -3.08  -2.03 i % 53
30 ~0.26  -0,25 -0.19 4,64  -b.46  -3.31 nd S (1)
P &, (B)(Z ~u) = 0,(B) e+ "’ (t)) (3-63)
. i 2 t 2
ﬂ"% i . ~ "~ "~ A
i ’
g@ [ F o jg where ¢2(B), GZ(B) are process parameters and
i3 1
ik
]
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E(l)(t) = Eél)&(l)

~ ~

6(1) = ‘_Ggl):‘sgl)o""sgl).]t with

~

Ggl) as the intrinsic program utility at the location i, and
i

0 t<10
E(1) -
t t-10

0.065 + 0.125 —5— t>11

a = the largest integer contained ia (==,a), 2~ds3 real-number-

The second intervention, the change of instrument calibration

method, will not have any impact on the existent air pollutaats, but
only potentially changes in the measurement readings. Suppose that for

two instruments, one is calibrated by the old method and the other by
the new method, were available at the same time and they were used to

measure the pollutioa level at the same location simultaneously.

t

~

Agsume that Zg and ZN will have a one-to-one corresponding relationship

of the form,

20 = (Y N oL a1z® 3-64
Zt H(Et) or Et H (Et) ( )

~

. . -1 . . . N

where H is an arbitrary function with H = exists as 1ts lnverse fune-
tion. H function may be linear may be nonlinear. Here we will
assume in general that H function is nonlinear and well behaved,

i.e. H(u+€) can be approximated by H(u) + H'(u)e when € is a
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small quantity.

. 0 0 0
Since Z° = u  + At and ZS = uN + Ag, where uo, uN are mean
0 N . 0 N
values of Zt and Zt measurements respectively, At and At are the random
portions.
N
20 = n(z)) = 5™ + B' @) 4}, and
0 N N . 7.
20 = (ae) - B e e rie® 2, (3-65)
or
0 0 N N
z) - 10 = |RED-' aH@NO] e T (3-66)

Since the I, intervention doesn't have any impact on the
exigtent air pollutioan level, in that it only changes the level
readings, the post I1 process will not be changed by 12. What will

change is the units that was used to describe this process. Thus, 12

is an non-environment involved intervention with I 2 = 0.
m,

0. . . .
The Zt in the equation 3-66, which is of the same descriptive

~

unit as that of the Zt in the equation 3-63, is not available after L,

~

but can be obtained through the transformation equation 3-66., The

process that is described by equation 3-63 in terms of Z0

t.for the post

~

I1 pre-12 periods then can be expressed in terms of ZE} that is

~

available for the post:--I2 periods, by the following equation.
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2M-n0y) = QZ(B)(Et+E(1)(t)) (3-67)

~ A~

@2(3)(23+n'(EN)(
where

63 = H(uN)‘q H'(MN)(MN-HO) is function of uo,

~ ~ ~

because uN is function of uo too. Since this unit transformation will

~ ~

be independent among locations, H‘(uN) should be a diagonal matrix,i.e.

~

E'(uN) = D, of which the diagonal elements dii are functions of LFY) the

T s

mean level of location i. To simplify the notation we will denote ZE

~

as Zt for the post-12 periods because it is availasble for analysis in

~

those post Iﬁ periods. The model, equation 3-67, is rewritten as

0,(®)(8;30Zw)) = 8, (e 22 D)) (3-68)

~ ~ o~

To summarize the previous discussion, we have the following

general multiple intervention STARMA model form;

Pre-1,: &1(3)(Et—2) = 91(3)5t (3-69)
Post-I.: &.(B)(Z.-u) = 0,(8)(e +€12(r))

1" "2 ot AR -
Pre--I2

p‘ogt-'.[z: QZ(B)(E3+D(,Z_,‘:-}:)) s GZ(B)(th-E(l)(t))
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where E(l)(t) is described in equaticn (3-63), and

~

63 is the measure level shift,

~

Ql(b), el(b) are the pre-I1 model parameters, aad

02(b), 92(b) are the post-I1 model parameters.

From equation (3-69), we have

Var(Zi) = Va:.'(‘ﬁz(}})-1 Gz(b)et), t e pre-Iz, post-I1 periods,

and

Var(DZi) = Var(@z(B-l) Gz(b) et), t € post-l, periods.

So .
D2 = Var(Zi) t € post-I2 / Var(Z:) t € pre—Iz, post-Il, (3-70)

where 2% is the mean corrected observations ian the dynamic componeats
t

~

jdeatification procedure. Since the D-matrix is a diagonal matrix with

i i i .. iaterpreted as the gscaled factor between
its ith diagonal element d11 interp

readings from the old jnstrument and the new instrument measured at

location i, the element d,. can be estimated by

1/2
dii = Lvar(zi,t)t € post-I2

/ Var(ii,t)t € pre-IZ, post-Ill

&
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In the following the results of each step of the model building

procedures are presented. This includes;
(a) Modeling the p.re—I1 space—time process.
(b) Modeling the pq:t-Il dynamic componeatse.
(c¢) Modeling the post:-I1 space-time intervention process.

(d) Overall diagnostic checking and model update.

4.6.3.1 Modeling the pre-I1 space—time process

The observations from March, 1965 to December, 1965 comprise the

pre-'--I1 periods. The sample space-time autocorrelation functions in the

table 3-3(a) and the sample space-time partial autocorrelation

functions in the table 3-3(b) suggest the candidate model STAR(2X)

~

model with A = (1,1): i.e.

. 2 1
Z -u= I I QKLW(Z) (ZC_K-u) +e, 1 <t<o0 (3-72)

The M.L. point estimaters and their agsociated 957 confidence

intervals are;

95% CI
8, = 0.668 ( 0.359, 0.976)
L 0.336 '(-0.044, 0.715)
&, = =0.130 (-0.459, 0.201)
@, = -0.056 (-0.482, 0.370)
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Table 3-3(a).

The Space-Time Autocorrelation Functions and The Standardized S-

T Autocorrelation Functions of the Pre-Il Observations.

Space~Time Autocorrelations/Standardized S-T Autocorrelations

Space Lag 0 1 2 0 1 2
Time Lag
1 0.68 0.57 0.50 4.438 3.716 3,298
2 0.38 0.38 0.35 2.321 2.329 2.148
3 0.01 0.06 0.12 0.106 0.329 0.704
4 -0-26 -0'24 -0-11 -1-274 "1-196 -00578
5 -0'52 —0059 "0-43 * -2- 222 -2-541 -1'834

Table 3-3(b).
The Space-Time Partial Autocorrelation Functions and The
Standardized S-T Partials of The Pre-~I; Observations.

Space-Time Autocorrelations/Standardized S-T Autocorrelations

Space Lag - 0 1 2 0 1 2
Yime Lag
1 0.686 0.252 0.089 5,033 1.849 0.655
2 -0.214 -0.144 -0.025 -1.481 -0.999 -0.175
3 -0.381 -0.319 -0.001 -2.471 -2.065 ~0.008
4 -0.149 -0.126 -0.100 -0.896 -0.757 - -0.603
5 -0.263 -0.570 =-0.370 -1.449 -3.124 -2.026
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0% = 1.4377

| i i insignificant. Since
The extra sum of squares associated with @21 wds insigni »

¢21 is insignificant, it was deleted which results in the STAR(ZI,O)

model. The M.L. point estimates and their associated 95% confidence

intervals are:

952 CI
¢11 = 0,319 (~0.007, 0.624)
® = -0-146 (‘0.%9’ 0-158)
20
o = 1.438

The sample space-=time autocorrelation functions and the sample
partial autocorrelation functions of the residuals of this model are
listed in tables 3-4(a) and 3-4(b) respectively. No addit jonal
structure is seen here and thus these résiduals approximate to be

i the pre-I
uncorrelated. Thus the STAR(ZI’O) model is adequate for the p 1

process.

3.6.3.2 Modeling the Post-I, Dynamic Components

Following the dynamic component modeling procedures as shown 1n

i i i= <t<82
the figure 3-9, the mean shift function Gi(t) i=1,2,..+,6 for 1l<t

(e.g+ for the post-I1 period) are estimated. These estimated values,

§.(t), are plotted in figure 3-12(a)-(f) for locations 1 through 6
i
i i ari ffect
respectively. The Gi(t) in the pre-12 period characterizes the e

. . _ . ib
of I. intervention, while the Sl(t) in the post 12 periods shogl e
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Table 3-4(a) The Sample Space-Time Autocorrelation Functions and The
Standardized Sample S~T Autocorrelation Functions of the Pre-I;

Residuals.

Space-Time

Autocorrelations/Standardized S=T Autocorrelations

Space Lag 0 1 2 0 h3 2
Time Lag

1 -0,019 -0.001 -0.004 -0.125 -=0.005 -0.024

2 0.113 * 0.091 0.102 0.679 0.543 0.612

3 0.100 0.140 0.081 0.546 0.766 0.441

4 -0.107 --0.067 =~0.060 -0.525 -0.326 -0.294

5 ~0.105 ~-0.187 =0.144 -0.445 ~0.792 -0.611

6 -0.022 =0.041 -0.060 -0.077 -0.144 -0.207

7 -0,278 -0.146 -0.261 -0.682 -0.357 -0.639

(b). The Sample Space~Time Partial Autocorrelation Functions and The

Standardized Sample S~T Partials of The Pre-I; Residuals.

¥

Space~Time Autocorrelations/Standardized S-T Autocorrelations.

Space Lag 0 1 2 0 1 2

Time Lag :
1 -0.019 0.011 0.010 -0.141 0.078 0.072
2 0.112 0.069  0.049 0.781 0.481 0.342
3 0.106. 0.156 =-0.019 0.680 1.009 -0.122
4 -0.121 -0.050 ~-0.006 -0.728 -0.300 -0.034
5 -0.150  -0.286 -0.090 -0.823 -1.568 -0.491
6 -0.031 0.057 0.181 -0.149 0.278 0.885
7 -0.212 0.059 -0.173 -0.899 - 0.251 ~0.732
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interpreted as the effect of I2 given that 11 has been initiated ia

this system.

From figure 3.12 the 12 intervention is seen to ghift the mean

ghift function instantaneously for each location suggesting its effect

to be additive not interactive with I,. Thus, although in general, the

effect of multiple interventions that overlaps should be viewed as

coanditional depending on the physical nature of the interveation they

may be additive. Thus the I, intervention which is solely a

measurement change does not appear to iateract with the engine design

change as expected apriori. In addition, from the data plots in figure

3-11(a)-(f), we see that at April, 1978 the air pollution levels of

these six locations were about the same. Thus even under a nonlicear

transformation assumption, i.e. the transformation between readings of

different calibration methods are nonlienar nature and state dependent,

the 12 interveation had the same level change effect and the same scale

factor at these six locations would be appropriate. That is, the mean

ghift vector 63 = 53 1 and the scale factor matrix between

~ ~

measurements, D = dI.

"From the initiation point of the engine design modification the

_pattern of Si(t) which is not a constant shift but rather exhibits

geasonal fluctuations about a change in mean level indicates that the

1. intervention is environmentally influenced. Figures 3-13{a),(b)

"1

exhibit the K(t) values for the six locations and figures 3-14(a)—-(£)

contains the §(t) versus K(t) plots for each location. From the latter

plots the appropriate form of the dynamics of the intervention can be

identified. From these plots we see an apparant change in slop between

the post-Il, pre-l2 segment and the post—-I2 gegment. Regression fits
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' . . 1 ; to each of these segments for all six locations were developed for

*

acods
[

first and second order polynomials of the form;

o

T- g E
;‘ i ) P
X O ) i o = = =2
XX X " & g Xx h P §(t) = By + Bl(x(t) Kt) + BZ(K(t) Kt) .
7 X X x;‘ * w
' x r oo
X X x X X X ﬁ o i
Q; X X x X X o o Table 3-5 contains the estimated parameters. For the post-I,, pre-I,
X % X % 1
i - X f ¥ g% ! & segment only in locatioms 3, 4 and 5 (Lennox, Long Beach and Dowatown
¥ X % X ;&% : b
X X ) i | LA) is there a significant shift in carbon monoxide tentatively
™ P ‘ :
7] ‘3; : : identified. Further only in Lennox is there any indication that there
R y , ‘
N § is a 2nd order transient effect. For the post I2 period, all sites are
mo
v 0.0 05 1.0 ‘ .8 20 25 50 &E i ”é seen to have an iastantaneous measurement effect (e.g. the slope 8,
Ce) g% ! ag being statistically significant). Basing on the above considerations,
= mo
T ﬁ( xX x xx b 2 i the following tentative model for post-I1 periods is identified.
4 X X i .
« -
)“x X X X XX ) x’e( }.‘?{' ' E
~od x % ¢ X vﬁ{éf E
! X e « x X { Post-1,, pre-I,: ‘ (3-73)
x X ’
i el TBe (1p. 2y(9 -1 = D)
s ) x X iﬂ (I-y g I8-b), W 'B-yyq B2, E) A+ E (t),
5 -
X X
. x X WX i
x  Xx ﬁ“
- Post-I1,:
) Cx ost-I, o @
X _ - 1)o_ 2 - = 2
X’ g (I-9 o IB=¥,, W' b,y IB )(a3 Fd(ft 2)) fc + EM9(E)
X e L .
® 0.0 0s 1.0 1.5 2.0 2.5 3.0 i )
) éﬂ where E(l)(t) = Et 5(1) as defined in equation 3-63,
o | (2) (1) §(2) 5(2) . 15(2) §(D (2) ¢
. i ) = ; = v 6
Figure 3-14. (Cont'd) L«é 5 (t) it: i ’E l'81 ’62 rerirte 15

(e) Downtown LA
(£f) LA County

53 and d are the mean change and the scale faactor between

readings of different calibration methods.

i saae
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Y
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P e
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3.6.3.3 Modeling the Post-I, Space-Time Intervention Model

3

i
e
4]

gﬁ - Keeping the pre~l; model, equation (3-72) unchanged, the M.L.
b} .
n o - estimation has been performed to give the conditional M.L. estimates of
‘ 3% :f: 8 b, 5(1), 5(2). 53- This resulted in non-significance of wll = 0.004,
Table 3-5 Mean Shift Function Forms. A2 7;; ’ ~ o~ ~
B - o iz The associated extra sum of square SSE = 0.432 being less than the
‘fk E -2
(Post I, Pre I,) L s ‘;3 : corresponding critical F for reasonable a levels. Therefore the wll
location By (Var) By (Var) By (Var) Py o? ;ﬁ term was dropped from the model, and thé M.L. estimation for the
i
137 =~ following reduced model was obtained.
- 1.
1 0.748(0.152) 2.435(2.249) 7 o
2 -0.174(0.169) - =2.425(1.168) ~ 4-392 T ;
4 -1.437(0.082) -0.079(0.568) - 2.138 | S Pre-Il, Post—IZ: ~ (3-74)
5 ~2.916(0.768) 0.826(0.530) - g-gg; ﬁﬁ L \ o |
6 -0.637(0.136)  2.483(0.935) - . b é (1=byg b, BH (20 = &+ £De,
- Y
ol P
Sy :
T s Post-I,: y
b Lro (410 Bobye D85 1+ azw) = 4+ £Pe)
L e :
p f 7 .
— o ol e
’ (Post 12) }‘i'% f kg . ,. ] R
' 2 o B 4 The conditional M.L. estimation results are;
location Bo (Var) By (Var) By (Var) ° ?? :5 ég
1 902 - E 5’*} Mode]. Parameter CnM-L- Estimate 952 CII:_
1 -5.335(0.041) 0.181(0.506) - . - i ;é
2 -7.279¢0.119)  =0.292(0.145) - = 5,495 = 14 - 0.900 C 0.821, 0.979)
3 -13.810(0.132) 0.264(0.195) - 6.072 S, 7€ | '
4 -7.683(1.09) -0.094(0.161; - 2-338 b gg Y50 0.247 ( -0.324, -0.170)
-7.115(0.059) -0.147(0.087 - . I v i
2 =7.513(0.081)  0.449(0.119) - 3.711 oL i 7 6§1) 1.647 , (-1.119, 4.414)
A S i ,
?f bt ' i? , sgl) =2.574 ) (+=5.350, 0.193)
o T ~
R, o 83V -14.895 (-17.660,-12.130)
il = ?,"j.
?ﬁ ; .
45 i
b 7
| o
0 T
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196 3% ' I .
, b 1 (1 -oY 18- oY wim)( - oY 11 _ 4N (1),11
65 -50677 ( -8-443, -2-910) " . ;;% ~
. i o=
i T N (1)
H - ¥ = I - 9 IB -
51 2,105 ( -1.148, 0.727) n o : ég (-9 ¥R e
: 19 i
52 -1.503 ( -2.441, -0.566) L ,« gi
GgZ) = -5.410 ( -6.347, ~4.472) '5% i é The M.L. point estimates and their associated 95% confidence intervals
5D -1.687 ©( -2.628, -0.750) : gj are;
38 -1.300 ( -2.237, =0.362) . _
I -1.53 ( =2.471, =0.596) e | s fg 952 C.I.
8, -5.123 ( -6.128, =4.117) (5 . 10 = 0-698 »( 0.311, 1.085)
g - {7 N |
and ﬁé { &j 011 = ~0.145 (-0.614, 0.325)
. il N
o »1.517 , d = 1.048 a E? ®11,0 = 0-060 (~0.057, 0.178)
‘ = T N
Ex{ - ¢11’1 = 0,389 ( 0.244, 0,.535)
‘ b i oV
3.6.4 Refining the Noise Model and Diagnostic Checking ? 10 ™ 0.575 ( 0.137, 1.014)
From the estimated residuals At of the post-I1 model (equation %ﬁ 911 -0.211 - (=0.746, 0.324)
~ g
. {1 o = 1.236.
3-76), the sample space-time autocorrelation functions and the sample %} R _
i
space~time partial autocorrelation functions were estimated. Table 3- - '}
The residuals of this fitted model € :
6(a) and 3-6(b) contain these autocorrelation functions and their - : mode t? were computed and their
standardized forms. The autocorrelations are seen to repeat in blocks g I{ sample space-time autocorrelation functions were estimated. Table 3-7
bl 3
s R el o . .
of size 11 indicating the need of seeeasonal components in the noise %é i contains these autocorrelations and their standardized forms. From
model. Furthr, within each block, the autocorrelation and partial - {l this table no additional identifiable structure is seen. Aan overall
{,‘21 ) C i i . . .
autocorrelation fuactions appar to tail off for spatial log 6 and 1. L I test of the adequacy of this model in that there is no additional
Thus a tentative noise model for the post:--I1 period is the seasonal N é é{ structure {the residuals are uncorrelated) can be made using x2 and F
STARHA(11,0,11)~x (11-0s0)11 model. It's form is, ﬁ? tests. The standard portmanteau X test used in univriate modeling is
¢
m T 3 : E M
yﬁ not appropriate since the zeroth, first and second spatial lags are not
R . X

Bt

. B
st Ay amit - 5wt - 5 Bl
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il
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independent. However since the current model doesn't have any seecond y ,ié
. ] g
order spatial terms the sample autocorrelations for the secoad order k}  §
i ' be checked £ deq (being uncorrelated or : SE Table 3-7
spatial terms can be checked for adequacy, eing uacorr ‘2 ; The Space-Time Autocorrelation Functions and the Standardized S-T
informationless using the x2 statistic). If the computed x2 statistic > E - Au?ocorrelatlon Functions of the Rersiduals, €, of the Post-I
X ¢ Noise Model.
is insignificant, the magnitude of the statistic could have come about ! L
by chance alone and thus can be used to check the adequacy of the " § 1 Space~Time Autocorrelations/Standardized S-T Autocorrelations
e 55 Space Lag 0 1 2 0 1 2
proceeding spatial lags usig an F test. ' §¥ - Time Lag
From Table 3-7 we have o 3 %“ 1 -0.03 0.00 -0.02 -0.78 0.19 -0.49
;}}? \7 s -’.ﬁ 2 0'03 -0-01 0-00 Du78 -0026 0-12
- : }?" 4 0!01 "0'04 —0-04 0-28 -0-88 -0l85
30 , , P % 5 -0.09  -0.03 -0.01 -1.95 =0.70  -0.21
T = 77.71 13 BN :
PRo . i S 6 -0.04  =0.07  0.04 -0.87  -1.49 0.82
k=1 b § S 7 -0.13  ~0.08 =0.11 . =2.59 -1.64  -2.19
. 1 § 8 =0.02 0,01 0.06 -0.54 0.19 1.29
T ¢ 9 0.06 0.12  0.09 1.30  2.38 1.88
30 , £ | 10 0.00  ~0.03 -0.08 0.12  -0.62  -1.54
I Ppy ™ 3827 | 1 11 -0.03  =0.04 ~0.02 -0.61 =0.90 0.41
K=1 o : 12 0.09 0.07  0.00 1.73  1.47 0.14
8@ 1 1S 13 0.04 0,09  0.00 0.85  1.83 0.00
: o ﬁ - - : 14 0.10 0.06 0.06 1.94 1.17 1.21
3, ' o g 15 -0.13  =0.11 =0.03 -2.46 -2.00  ~0.64
L Pgy = 4213 o T A 16 -0.04  -0.02 -0.05 -0.88  -0.44  =0,92
k=1 S A | 17 -0.08  -0.05 =-0.02 -1.51 =1.05  =0.50
i : L(‘ £ 18 ‘0’14 -0-12 -0l03 -2-58 —2-19 —007.0
2 * "‘?i "’ A’ ‘? 19 "0-09 "0-06 -0-08 -1158 -1-18 -1-44
For a = 0.05’ the theotetical x30 05 = 43.77 and g{g {f: - 20 ‘0'11 -0015 -0-09 -2.00 -2-63 -1059
) LD * : 21 ~-0.06 -0.00 -0.03 -1.15 -0.16 -0.67
| i g} 22 0,11 0.07  0.09 1.99  1.20 1.61
X2 = 42,15 < X30. .05 B : 24 0,06  =0.00 =0.02 0.69 =0.02  =0.40
e g 25 0.09 0.07 0.05 1.61 1.19 0.96
g W 27 -0.00 0.05  0.07 -0.03  0.81 1.20
Thus the second spatial lag is uncorrelated and the magnitude 42.15 is = . 28 0.00 -0.00 0.00 0.04 -0.03 0.14
| i} 29 -0.06 -0.06 -0.09 -1.01 -1.04 ~-1.48
associated with chance error. For theifirst spatial lag, Q% : % 30 -0.05 -0.01 -0.01 - -0.90  -0.20 -0,28
F1 = .58,27/42,15 = 1.3 d §§ i
i

¥
2

.
S

B
]




e

202

Py = 1.38 < Fyg 50 o5 = 1.84

Also since the first spatial lag is uncorrelated,

42.15 + 58,27, _ =1,
Py = 77.71/( 5 ) = 1.44 < Fag 6o, .05 = 163

Thus the space-time residuals are uncorrelated in both space and time.

Therefore the model is accepted as g;atistically adequate.

Therefore we have the overall iantervention model as follows;

Pre-I, process: (3-76)

1) 2 -) =
(1 - (alo I+ °11w( )B-¢o, IB )(Et 2) it » t<10

Post—Il, Pre-12 process:

- g (1) <t < 37
Z,n) = A+ ét s 11

~ o~ -~

2
(L - WIO IB - W20 IB7)(

Post-I, process:

2

2 ~ —u)) = e(1s(2) 38 ¢ ¢ < 82
(I-V,, 1B =V, I3 (8, i +d(z, u)) 5t +Ey )

~ e ~

The noise process of At:

~

N .N (1)45l1
(I - (qu I+ @?1 wysy(r - (oY) g I#9); 1 ¥ Bth A,

NN (1),
= (I - (9 T40y) WOB) &
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Where the model parameter values 010, Qll’ ¢20 have been listed in

equation 3-72, wlo’ wzo, 5(1), 6(2}, 63 and d have been listed in
equation 3-74, @?0, ¢?1, &N GN ON have been listed in equation

11,0 10’ 11
3~75, and Et has been listed in equation 3-63.

Note that the autoregressive operator,

(1-(0.6981-0.145W 1) )B) (1 - (0.0601+0.389w(1)yplly
= I - (0.6981-0.1445W 1))B = (0.0601+0.389w 1) )pll

- (-0.041-0.2630 1) +0.056w(2))p12

reveals that the noise process contains both seasonal terms of an 11
months lag and a 12 months lag. Also, the space-time autocorrelation

seasonal pattern of 11 months lag of At in the table 3-6(a) is similar

~

to the seasonal pattern of 12 months lag. This indicates that the
noise process doesn't repeat the seasonal mechanism exactly every 12
months, instead the seasonal mechanism repeats itself somewhere between
11 months and 12 months. That is, for this data a non-integer seasonal
lag between S=11 and S=12 would be appropriate. If this were done‘a
model with even fewer parameters would be obtained, since the
correlative’structure associated with S=11 and S=12 in the current

model form are similar.

3.6.5 ‘Checking Alternative Forms: The No Feedback Structure

e B B

S A

The curreat model which is statistically adequate, suggests

another modeling alternative. This alternative is:
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Pre-1, process: (3=77) S
1 ( ﬁ? o 5
- Dy -0, 189 (2, - i |
(L= (gl + 6y 0 0B = 8,080 (Zp =) = 2, )
Post = I, pre-I, process: Ez : gg
ik b
I- IB - IB Z ~ ) . )
(I-¥;oIB = ¥poIB I(Z,W) N o Ee8 Tg(B) = T,(B)
(1 - (0, I+40,.W )B)
- . 107 11 ( (e +E 6(1)) “
+ + (1) + + 1)\gll t 't LT i
- + - (® + ~
(1 - (8] oW DBNT = By T ¥ )B) i L
T € : \
Post-1;, Pre-I, process: e Y
(L - ¢, IB =V 182) (8 ,1+d(Z 1)) o : {E "
I - of 1ot w1 an -
- 10 11 t (e, +E 6(2)) ’3§€ L,
¥ + .(1): + N 1)\oll t t e
- (3] I+d - (2 ~t e
(1 ( 1OI+ 11W, )B)(T ( 11’01+¢11.1W YB™T) .
e y Eeb > T (B)
This model differs from the model, equation 4-76, in one respecte. Here } fz
the interveantion effect follows the exactly environmental process that (L ;
? Feedback
the noise input follows, whereas the interventional effect of the gﬁ : FI Connection
, T L -
model, equation 3-76, follows a process that is similar to the = ; I :
' . . : = i <t > T (B) : > Z
environment process. These two modeling alternatives' structures are ﬁ? | 1 ot
L H R i
i1lustrated in the Figure 3-15(a) and (b)s % £ I )
Figure 3-15(a) illustrate the situation that there is no g% % f N
feedback from the environment process, thus the interveation effect m l f‘ g"
il (|
directly enters the evironmental process and is influenced by it 1y : ] -
) . ) s s ! ] m .
golely. In the figure 3-15(b), the siZuation where there is feedback g ! g Figure 3-15 (a). ;ﬂtervention Process Follows Exactly the Ehvironmenc
£ . 2hy . - T .l L] iy
of some degree and the intervention effect that eaters the environmet 3 ocess, i.e., No Envirogment Feedback.
’ ‘ 2 m (b)- Int i 3 .
process will follow a modified cavironmental process TF(B)' The ﬁg ?F Pn ervention Process Gets Fgedback from the Enviroament
1 i 1 rocess and Follows the Environment Process Partially.
o i
lad
y oo
%ij 1 i 2o
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existeace of the feedback loop can be interpreted as the interveantion
effect behaves non-linearly, €8 the magnitude of the realized effect

is dependeat upon the»level the system is operating. Thus when there
o feedback the intervention exerts the same influence regardless of

{sn
the operating level of the system.

The post-I1 aiodel of the non~feedback model caa be rewritten

equivaletly as;

Post-Ili Pre-1, process: (3-78)
1 2 1
ax- % aPstha - 1o E or w85 (z )
’ K-l !,:0 ~ ~

=0

- (1.- (0 + (1) @)
(1 (910+Gliw )B)(it+5ti )

Post-12 process:

2
x- & &, Lw(“)nll)(x - r o;xw(”)n“)(s3 1+4(Z,-W))
gup L1t Ral 220 o L

= - (of + (1) (2)
(1 59101+911w )B)(it+ﬁti )

The conditional M.L. estimates of the model parameters and the

associated 95% confidence intervals are;

/ 20—
. of, = 1514 ( 1.249, 1.779)
“ L
\ of, = 0.0 (-0.268, 0.375)
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-0.636

0.093

0.092

0.243
= 0.923
= ~0.400
= 5,349
= ~1.985
= -11.040
= -3.370
- ~4.182
= -0.739
= -0.863
= -1.183
= -3.577
= -1,287
= -0.954
= -1.075
= ~4.906
= 1.202

- 1.259

(-0.904,
(-0.434,
( 0.037,
( 0.177,
( 0.646,
(-0.739,
( 7.869,
( 0.535,

~0.368)
0.248)
0.146)
0.308)
1.201)
-0.069)
2.830)

~4.504)

(-8.521,-13.56 )

(-0-850,
(-1-663,

( 1.781,

( 1.136,
(-0.469,
(-2.856,
(-0.506,
(-0.228,
(-0.344,

(-4! 057,

~5.889)
-6.701)
-3.258)
-2.861)
~1.898)
-4.297)
-2.007)
-1.680)
-1.805)
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The residuals of the non-feedback model were computed and their
sample space-time autocorrelation function estimated. Table 3.8
contains these estimates and their standardized form. Since the zero-~
th spatial lag, lst spatial lag and the 2nd spatial lag autocorrelation
fuaction, i.e. Pxo? pKl’ Pgro? K=1,2,...;3Q, are not independent, so it
is not appropriate to perform the x2 test on 21l these 90
autocorrelations. Instead, the xz test‘iskperformed on the 2nd lag

autocorrelation functions first, and thea followed by the F test to

test the significance of differences of the population of PR. 0° pKi.and
]

Pra"
From table 3-8, we have
f 30 2
; I Pro ™ 92.68,
K=]
30 2
z Pgp = 82.84,
K=1
30 2
T Pgro™ 78.12,
K=]1

. Even with a = 0,01,
2 2
X 78.12 > x30"0l 50.89,

this test can't be past to conclude that the Pgo? K=1,2,...,30 are

uacorrelated.,
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Based on these diagnostic checks the non-feedback model

alternative is seen to be statistically inadequate.
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Table 3-8
The Sample Space-Time Autocorrelation Functions and the

Standardized Sample S-T Autocorrelation Functions of the
Residuals of the Post-Il Model without Any Feedback from the
Environment Process.

Space-Time Autocorrelations/Standardized S-T Autocorrelations

Space Lag 0 1 2 0 1 2
Time Lag

1 -0.01 0.01 -0.01 ~0.38 0.32 -0.38
2 -0.05 ~-0.03 0.00 -1.02 -=0.83 0.18
3 0.08 - 0.05 0.05 1.62  1.17 1.10
4 0.06 0.00 -0.04 1.23 0.11 -0.91
5 -0.00 0.07 0.03 =0.17 1.46 0.78
6 0.02 -0.01 0.06 0.39 -0.19 1.25
7 -0.09 ~0.03 =-0.10 -1.84  =0.72 -2.10
8 0.02 0.07 0.06 0.47 1.45 1.30
9 0.11 0.15 0.10 2,12 3.03 2,07
10 -0.02 -0.10 -0.1l1 -0.47 -1.89 -2.10
11 -0.06 -0.03 0.03 -1.13 - =0.71 0.61
12 0.07 0:05 -0'00 1-45 1.09 -0008
13 0-04 0-10 -0.00 0-82 1-97 -0-13
14 0.10 0.06 0.09 1.85 1.14 1.81
15 -0.24 -0.22 -0.04 -4.4]1 -4.13 -0.86
16 -0.08 -0.06 =0.09 -1.47 -1.23 -1.63
17 "0-07 -O'OO -0-02 -1'37 -0-16 '0-37
18 ~-0.13 -0.07 -0.03 -2,37 ~-1.41 -0.58
19 -0.08 -0.04 -0.09 -1.47 =0.77 -1.67
20 -0.11 -0.14 =0.10 -1.96 =2.44 -1.85
21 -0.09 -0.00 -0.03 -1.51 -0.01 -0.53
22 -0.14  -0.11 -0.15 2.47  1.93 2.68
23 0-01 '-0-00 _0-04 0025 -0.02 -0-71
24 0.00 "0-07 -0-04 0-10 -1-26 "0u82
25 0.10 0.05 0.09 1.73 0.84 1.48
26 0.02 -0.01 -0.03 0.36 ~0.17 -0.51
27 ~-0.00 0.09 0.13 -0.03 1.44 2.23
28 0.01 0.01 0.01 0.31 0.19 0.26
29 —OIOG —0107 -0016 -1-03 -1.17 “2-56
30 ~-0.02 ~0.07 0.00 -0,32 1.17. 0.10
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3.6.6, Model Interpretation

In the model, equation (3~76), the intrinsic utility of Il’
which is represented by the terms that contain Egl), followed the noise

component At’ and it is interpereted as the situation that the realized

effect of I1 was influenced by the eanvironment. While the intrinsic

utility of Iz, which includes the mean shift 631 and the scale factor

d, dida't follow the noise process and the effect was realized
instantaneously, this is interpreted as the situation that the realized
effect of 12 wasa't influenced by the enviroaument process. In the
model, equation (3~76), the intrimgic utility of I1 didn't follow
exactly the process that the white noise followed, i.e. the
interventional input followed a modified environmental process, this
modified environment process has been found its interpretation in the
existence of environmental feedback.

A non-lienear investment-return system has the property that the
¢ st;te is from the system equilibrium state, the bigger the
ain will be, and the state of the non-lineér system converges to the
equilibrium state at a reducing rate. When the system is far away from
the equilibrium, the coavergeace rate is high. The convergence rate,
at the very beginning, is dramatically, non-linearly reduced, and this
period is usually referred to as the transient'period. After the
tran;ient period, the system state con§erges to the equilibrium state

at a steady state convergeace rate, and it is referred to as the

steady state. The mean values of each location at pre-I1 and pre—12

are listed below. G
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Pre-1; Pre-I,
1. Azusa 9.3 10.7
2. Burbank 13.5 11.2
3. Lennox 20.0 9.6
4. Long Beach 13.3 10.4
5. Downtown LA  13.0 9.0
6. LA County 12.9 12.2

The tendency, that the mean levels moved to about the same level
at all locations, is seen in the above mean level ;iﬁfT\\gn the model,
equaiton (3—74)"it is seen that between I1 anﬂ<§;~§§izﬁfggn/'ocations,
i.e. Lennox, Long Beach, Downtown LA and Burbank, receive significant
impact. Here we see that Lennox has the highest pre-Il, mean, Long
Beach and Dowatown LA, that are the first order neighbors of Lennox,
and Burbank have high pre-Il, mean, too: The absolute values of Sgl),
i = 2,3,4,4 are larger than the corréspbnding absolute values of ng),
i =2,3,4,5. This means that the system state converged to the
equilibrium state, which may be somewhere between 9.0 and 12.2, at
reducing convergence rate, since the scaled factor d = 1.048 can't have
such a slope-reduction power. These observations confirm that this is
a nonlinear investment-return system.  Since the pre-ii mean is highest
at Leanox, so the gain of the engine design change is the biggest. The
pre-12 period, when 63(t) is appropriately fitted into the second order

form is interpreted as the transient period, and the steady state was

reached when 12 was initiated.
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The effect of I1 and 12 on these six locations are plotted in
figure 3-15(a)=(b) to compare the relative effects at the same time.
The height of these three dimeasion plots reflect the magnitude of the
effect at that location, at that plotted time.

The figures 3-16(a) and 3-16(b) show the effect of I1 at t=22
and t=34, i.e. 1 yeap after I1 and 2 years after 11 respectively. The
figures 3-15(¢) and 3-15(d) show the effect at t=37 and t=38, i,e.
immediately before and after the int;oduction of 12 respectively. Here

Wwe see a gignificant reading shift at all these six locations by the

C::EE&E;;%;;EEZZ:;RE figures 3-16(e)~(h) show the effoct of I1 and I,

after the initiation of 12. The figures 3-16(e), (£), (g), (h) show
the effect at t=46, 58, 70, 82, i.e. 3 years, 4 years, S5 years and 6
years after the introducing of Il’ respectively. From these plots, all
the time we see that Lennox has the shortest effect, Downtowa LA the
second and Long Beach the third. Note that Downtown LA and Long Beach
are the lst order neighbofs df Lennox.

From the model 3-76, we read that there was no diffusion
phenomena in the intervention effeét, and the magnitude of the
diffusion mechanism of the noise pﬁocess among l-st order neighbors was

N

reduced, since |¢11l = 0,319 while |¢11l = 0.145, it is interpreted

that the diffusion mechanism among the 1-st order neighbors has been

- reduced by more than one half in streagth due to the I1 interveantion.

This phenomena is consistent with the fact that the I1 intervention
reduced the difference of the carbon monoxide levels among these six

locations, i.e. I1 forced the CO levels of these six locations to




Figure 3-16. The Mean Shift é(t).
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approach the same equilibrium level under the effectiveness of the L,
legislation, so the driving force of the diffusion mechanism was
weakened, this resulted in the reduced diffusion rate of the noise
process and no diffusion phenomena of the interveation effect, i.e.
(L (2)
i e

'y

&nd
All the models, i.e. the pre-11 model, post-I1 model and noise
model in the model equation (3-76) are either (STAR) model or (STARMA)
model. Recall that it has besen discussed in section 3.2.3.,1. that the

inputs, i.e. €ps of the (STAR) model or the (STARMA) model of noan-zero

spatial order vector will diffuse through space and the influenced
regions will be the whole connected regions. The diffused process of
the (STAR) model and the (STARMA) model are of the AR type and the
diffused particles will not die out immediately in the very next period
like those of the MA type diffusion process. This long lasting
property of the diffused ﬁarticles of the AR diffusion type is quite
matched to the fact that the carbon monoxide is essentially inert and

will last long in the air.

3.6.7. Comparison to A Univariate Intervention Analysis Approach

Box, Tiao and Hamming [1975] have analyzed the Los Angeles CO
data at seven locations. these locations are: Downtowa LA, Lennox,
Long Beach, Burbank, Azusa, Pasadena and West LA. They built the

univariate intivention model for each individual location. .The model

for each location was;
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£, 3 (1-0.8)(1-8,38'2)
Z, =wE, +8 252 + B eiz + 1774 %2 e (3-79)
~ 1-B 1-B (1-6B)(1-B"") ~
0 t < April, 1968
where Elt = ‘
1 t » April, 1968
0 t < January, 1966
o ™
1 t » January, 1966
f3e "1 - Ey

The estimates of the model parameters are listed in table 3-9.

Comparing the model form, we see that they are different in

three major respects:

1.

The univariate intervention model, equation (3-79), doesn't
imply any geological information, i.e. this model doesa't
have the capability to model the pollutant's diffusion
through the neighbors (space). The space-time iaterveation

model, equation (3-76), has the capability to explain the

space correlated structures.

The space=-time intervention model considers the transient

5(1)

period effect. in the pre-12 period, and the steady

state effect,

2) . . . .
6( ) in the post-12 period. The univariate

-t
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F f locations, The univariate models have different mean shift

intervention models consider only the steady state efffect, af ¢ effects for each location, and the space-time intervention
: : . T del has onl ; :
this is not true as was revealed in the dynamic componeat & L& model has only an overall mean shift and a transformation
identification step. i B scale factor for all the locations.
€ i opy
‘ ;E 2, The univariate interveation models concluded that I1 has the

3. The univariate models have different mean shift effects of

ppsy
e
1

szor each location. This means that different locatioas significant impact at Azusa, Downtown LA, Lennox, Long Beach

P

and West LA. The space-time intervention model concluded

was operatinmg at significantly different pollution levels at

ot )
Rl

that I1 has the significant impact at Downtown LA, Lennox

e ﬁ

pre-12 has been assumed. As is seen from the data itself,

it is seen that‘at pre-12 the pollution level at all the j% (. and Long Beach. Both models agree that the impacts of I1 at
locations are about the same. The space~time interveation - ; ?g Downtown LA, Lennox and Long Beach were significant and
e fo4
incorporates the non-linear transformation conditions and é% | . decreasing the pollution levels. But they don't agree in
has only one mean-shift mean effects aand a transformation ?ﬁ ! di . the impact of I, at Azusa. The space-time interveation
scaled factor. iﬁ g r model concluded that the impact of I1 at Azusa was non-
Comparing the modeling procedures, we see that the space-time fé g significant, where the univariate interventiocn model

>y

interventional modeling procedures contain the dynamic components concluded that the impact of I, at Azusa was significant and .

positive, i.e. the pollution level was raised. The results

gy

identification procedure, which is a necessary procedure to determine
the interveation effect formulation, i.e. environment iavolved or non- ‘ : ] of the space-time intervention model is thea justifiable to
be closer to what was happeniug, since thé the impact of I1

Ry
| S oy 3
y

eavironment ianvolved. A mistaken model formulation will result in a

misleading model, from which the incorrect conclusions will be drawn. is expected to reduced the pollution levels at all locations

g
7
)

4 . [ . ) .
The univariate intervention modeling procedures do not contain the and the conclusfon of the univariate interventiou model

disagree this expectation at Azusa.
1

dynamic components identification procedure and do not have the
Comparing the model parsq@ony, we see that the space-time

1”‘”‘- i

=

capability to model the environment involved intervention process.
intervention, equation (3-76), contains 25 model parameters, while the

Comparing the analysis results of the univariate iantervention
univariate intervention models, equation (3-79), needs 36 model

§

models, equation (3-79), with the space-~time interveation model,

parameters for 6 locations, so the space-time intervention model is
i .

more parséﬁonious.

gt
-

equation (3-76), we have the following:

1. Both models aggre that I,, the change of calibration method,

3

has significant negative effect on the measurements at all
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Table 3-9. Estimates of Parameters in the Univariate Intervention Model.
Measuresent Trend Trend Trend
Location effect April 1968 before 1966 since 1966 nffecence . Notse Model Parsmeters R
@ L3 L) Ro-fy ¢ LY 8, [
Anusa -6.50 -0.05 0.29% 0.34 0.84 0.42 0.97 0.89
(0.70) (0.13) (0.15) (0.23) (0.07) {0.12) (0.04)
Pasadena -5, 44 -0.29 -0.04 0.25 - 0460 0.0% 0.65 1.37
(0.93) (0.20) (0.23) (0.33) {0.12) (0.15 (0.07)
Burbank =5.72 0.40 -0.33 -0.73 0.78 0.22 0.79 1.37
{1.10) (0.25) (0.26) (0.40) (0.08) (0.12) (0.05)
LA County -5.17 0.11 -0.43 -0.54 0.79 0.28 0.82 o 1.10
(0.87) (0.19) (0.20) (0.31) {0.07) (0.11) (0.05) _
Downtown LA =4.32 0.09 -0.28% -0.37 0.71 0.20 0.83 T 0.97
{0,73) (0.12) (0.16) €0.23) (0.10) (0.12) -~ {0.05)
Lennox -5.08 0.51 ~0.36% -0.87 0.79 0.19 G.59 1.05
: (0.85) (0.55) (0.25) (0.61) (0.08) - (0.13) (0.08)
Long Beach -5.29 0.40 ~0,45% -0.85 0.77 0.27 0.81 1.06
(0.84) (0.17) (0.19) (0.29) {0.09) (0.13) (0.06)
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CHAPTER IV
NON-EQUAL DIFFUSION PREFERENCE MODELS

In previous chapters, we have considered STARIMA models in
which, every location has an equally weighted influence from those
locatiéns that share it as a common neighbor of the same spatial
order. Situations arise that this equal diffusion preference .
mechanism is noﬁ appropriate énd a non-equal diffusion éreference
phenomenon is needed. For example, point pollution in the air
and/or in the sea diffuse from one region to its neighbors with
near neighbor regions exert égionger and quicker influence than the
distant neighbor regions. Without the wind and/or marine currents,
the pollution diffusion meéhanism will exhibit equal preference for
all directions. However, when there is wind and/or current, the
pollution of one location will be effected most strongly by the
downward regions and most weékly by the leeward regions. Thus the
diffusion mechanism will not be isotropic. The nature extention of
these STARIMA modelé is thus the extension to accomodate tﬁé modeling
of non-equal diffusion preferences.

The interpretation of the diffusion in the weight matrix is
discussed for the unscaled weight matrix as well as’the scaled weight
matrix in the first section. A discussion of the need for comn-
structing the non-equally preferential weight matrices and the methods

for their construction are then described. In Section 4.2, one-

¥
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Ej(t-k) to Zi(t). Since all elements of W(z) are premultiplied by

BRIy
. :

direction preferential space-time processes and two-direction pre-

ferential spaée—time processes are simulated to iilustrate the ¢k2 or ekz to express the strength of influence, then amplitude of

o ]

o

PR—
: 1

diffusion processes of the non-equally preferential process. W§§) is a measure of how strong the state of location i depends on

Model inadequacies due to the ignored non-equally preferential the state of location j as an 2B order neighbor. The larger

| S

.|
Fi

g

structure are studied in Section 4.3. In Section 4.4, two methods i ; é Wi%) igs, the stronger the dependence. Let Egz) denote the ith Tow
: 18 i
of model updating to account for detected nonisotropic behavior are g% ? ? 1? of weight matrix W(z) and C§2) the jth column. Then RSZ) contains
6y 4 vl

proposed. The first method is based on the decomposition of the ; the information of the influence on location i from those locations

equaliy preferential weight matrix into the non-equally preferential §§ : é g“ that share location i as their common zth order neighbor and £§£)
weight gatrices. The second method adds the potential non-equally - i %g - contains the information of the influence that location j has on all
preferengial terms into the equally preferential models. The ig % | %} its Zth order neighbor.
maximum likelihood estimation procedure that is based on the §~ % g‘ 4.1.1 The Boundary Effect on the Scaled Weight Matrices
results of the linear model theory is briefly discussed in Section L ; f ~ We have defined the unscaled weight matrix W(E) as
4,5 for the STAR, STMA and STARIMA models. In Section 4.6, the ﬁ? '

: i 3

1 4if location i is an lth order neighbor’of
) location j
W =

ij

H

Ambient Carbon Monoxide observations at Los Angeles during the
(4~1)

pre-I;, that have been modeled in Chapter III without isotropic

characterization is used to illustrate the non-equal diffusion : gT : I s 0 otherwise .

modeling methods developed in this chapter. 2 G ‘ =
: In the unscaled weight matrix of kth spatial ovder, all the non-

4,1 The Interpretation of the Diffusion Preference Weight Matrix :
p 3:4 : . zero elements are equal to l. This means that every location i is

Here we are going to examine the physical ing of the oo
V" going to ex e (2: physical meaning equally influenced by all the locations that share the location i as
weights in the weight matrix. Let W.,’ be the (i element of the e th
hg g - (gij (1,3) their common £ order meighbor, and every location j has equal influ-
t ‘ L & T .
27" order weight matrix W and wij # 0 only when location i is an ;ﬁ ‘ | r ff ence on all its lth order neighbors.
! ' o
Zth order neighbor of location j. ¢ 'W(z) indicates the strength of ; i
k&71ij . In previous chapters, we have used the scaled weight matrix
influence that the observation at l?cation j has on the k time period g% ;} é w(2,) which is defined as
laged observation of its ch order neighbor of locatiomn i, i.e., e ;;
b Lo
15|
Zj(tfk) on Zi(t). Similarly 6k£Wi§) indicates the influence from 3
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lﬁméz) if location j has location i as its Zth

order neighbor

w® o (4=2)

ij
0 otherwise

where nil) 1s the number of lth order neighbors of location i. From

this definition, every non-zero element in each row are equal. This

means that the scaled weight matrix still keeps the property that all

locaticns that share the location i as their common lth order neigh-

bor have equal -influence on the location i. However, not all the

nci-~zero elements of the same column are equal, since the n§2> of
those locations for boundary sites is smaller than that of those
lccations in the central area. This implies that every location will

have larger (or equal) influence on those locations on (or near) the
boundary. When this boundary is extended to infinity, all the niz)

will be equal and the scaled weight matrix will have exactly the same

physical interpretation as that of the unscaled weight matrix.

Alternatively, if we define the scaled weight matrix as

1/n§2) if location j has location i as its gt

order neighbor,

c w2 (4=3)

ij
0 otherwise

where n§£) is the number of locations that have the location i as their

common Zth order neighbors, then the scaled weight matrix is scaled in

columns., In this case we have the property that every location i has

|
[:

IR

sy

Lty
T ¥

=

[ B enenets
boeer

Emmﬁ

e i Gt b i ]

SERME N o

s e e S v g

fromasn

]

i

£
vy

-1

e

e

fony ey

£ wwj

o
i

[%

e |

b
I
L

227

equal influence to each of its lth order neighbors, but, for any
location which is a common lth order neighbor to some boundary
locations and some non~boundary locations, the influence from those
boundary locatioms will be stronger than that from the non-boundary

?

w) o

e

Figure 4-1. The Unscaled Weight Matrix W(l) of the
3 X 3 Regular Grid System
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are listed in Tables 4-6 (e) and (f) for simulation 3 and simulation

et

'
B
f sersomatnd

4, respectively. These sample space-time autocorrelations shown in

Tables 4=6 (e) and (f) clearly indicate the unéxhausted structures.

N
Pt

In previous discussion for STAR models, it has been shown that -
- L ;
if the NQKQKI matrix in Equation 4-24 is close to identity matrix ﬁ ,
N f:!’ 5
I, then the residuals will behave closely to the white noise. How- - K JE Tabl .
_— I i O e samie SpaceTine sucocoresiasions oz
ever, if the ¢, ¢ =~ matrix are far away from the identity matrix I “u ; uals from the
? KK ¥ £y ’ fi gg Simulation 1. Histaken Model for

The Sample S-T Autocorrel
tions/
The Standar@ized S=T Autocorrelations

Yool

then the residuals will show model inadequacy and repeatedly modeling -

the residuals from the previous mistaken equal preference space-time
Space Lag

2
¢ ]

Py o

tmzag.ﬂ'

model can't exhaust the process structure even when enough observation gﬁ Time Lag 0 1 0 1
for appropriate power are available. In these simulations, we have §} 1 0.03 0.04 097 .

N¢1®;1 of the first two simulations listed in Figure 4-19(a) and § :g.gg :3.8? _0:13 ‘Q:§Z
NQlézl of the last two simulations listed in Figure 4-19(b). The gg g :gsgg -8:85 :8:§g -g:gg
matrix in Figure 4-19(a) is very closed to identity matrix, because j: ; :g:g; _g:g; :§:Zi -é:gi
in the first two simulations, the strength of the equally preferen- :E g :g:gg -g:g% :gzgg :é:gg
tial components, that is represented by‘¢10’ is relatively stronger - ig g:gg -8:88 -1115 -8:32
than the strength of the non-equally preferential components, that IE ig :g:g% g:gg '_3:%3 g:ié
is represented by N¢11. The matrix in Figure 4-19(b) is far away from ig :g:gg -853; Eg:zg .§:§§

Yoiad

the identity matrix, because in the last two simulations, the strength

i p e e i

of the non-equally preferential component is relatively stronger than

et

}

the strength of the equally preferential components., ' Comparing the

-
matrix shown in Figure 4-19(a) with that in Figure 4~19(b) and looking i
back to the statement NQKéil matrix is related to the sample space-
; oy
time autocorrelations of the estimated residuals, we see that the ‘é
diagnostic checking passes the mistaken models of simulation 1 and - ? N
: $i !
T
simulation 2, while the inadequacies for the mistaken models of £ i
i
.
I
I
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