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PROLOGUE 

When most consumers of seasonally adjusted series 
and that includes nearly every economically literate 
person -- are confronted by the question of why they 
prefer such a series to the original, the most common 
and natural reaction is that the answer is obvious. Yet 
on further reflection the basis for such a preference 
becomes less clear, and those who give the matter 
extensive thought often finish by becoming hopelessly 
confused. 

-- Grether and Nerlove (1970:685) 
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EXECUTIVE SUMMARY 

This report is an introduction to the fundamentals of 
seasonal analysis, with an emphasis on applications to applied 
social research, especially criminal justice. Administrators, 
policy makers, researchers, and others who make decisions based 
on social indicators now have time series data available that al­
low them to answer questions that could not be answered only a 
few years ago. But to answer these questions, it is necessary to 
use methods appropriate to the analysis of time series, including 
methods of detecting and analyzing seasonality. Other social 
sciences have long had a wealth of time series data available to 
them, and have developed methods to analyze seasonality in those 
data. This report guides the reader to the use of the most com­
mon of these methods. 

In the analysis of time series data, as in the analysis of 
cross-sectional data, description must precede explanation. We 
must describe the past before we can forecast the future. We 
must become familiar with patterns of change over time in the 
original data before we can develop complex causal mod~ls. If we 
do not, we risk misspecifying the model, and forecasts and policy 
decisions based on that model may be erroneous. 

An elementary part of describing patterns over time in 
monthly or quarterly data is the description of seasonal fluctua­
tion. Some monthly and quarterly series fluctuate with the 
seasons of the year; others do not. If we assume that a series 
is seasonal, when it is not, or that a series is not seasonal, 
when it is, we risk erroneous forecasts and explanatory models. 

It is impossible to give a brief, standard definition of 
seasonality. None exists. Although the major methods of detec­
ting and analyzing seasonal fluctuation. imply different underly­
ing concepts of seasonality, these conceptual definitions are 
seldom stated explicitly. As a result, researchers analyzing the 
same data may come to confusingly different conclusions. 
Therefore, the first section of this report introduces the reader 
to the concepts of seasonality that underlie seasonp.1 analysis 
and seasonal adjustment. It gives the reader the background in­
formation necessary to choose the appropriate method for a given 
situation and to interpret the results of analysis conducted by 
others. 

This report discusses the two major approaches to defining 
and detecting seasonality. Although the two approaches are math­
ematically similar, there are practical differences in emphasis. 
One approach, called "seasonal adjustment" or "Census X-11 ad­
justment,1I emphasizes a separate description of seasonal fluctua­
tion; the other approach, the most common example of which is 
known as "ARIMA," emphasizes forecasting the future with a model 
that incorporates seasonality. The first approach focuses on 
seasonality itself, while the second focuses on seasonality as it 
affects the accuracy of a forecast. 
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No single method of analysis is appropriate in every situa­
tion. The method of choice depends upon the objectives of the 
analysis. For example', a decision to build a new prison will 
depend upon a forecast of the total number of inmates, with sea­
sonal fluctuation included in the total. On the other hand, if 
there are wide seasonal fluctuations in the number of inmates, it 
might be necessary to open an additional wing during E;ome months 
of the year. The decision to do this would depend on an analysis 
of the seasonal component. 

Neither approach offers a simple, objective, yes-or-no cri­
terion for detecting the presence of seasonality in time series. 
Both depend heavily on the judgment of the analyst, although each 
approach gives the analyst a number of statistical tools upon 
which to base that judgment. This report discusses and compares 
these tools, and gives the analyst some basic rules of thumb for 
using them in various practical situations. 

In addition, for those who need more detail than this report 
provides, it includes an annotated bibliography (more than 130 
references) of literature about seasonal analysis and reports 
analyzing the seasonality of crime. 
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INTRODUCTION 

Administrators, policy makers, and researchers now have time 
series data available that allow them to answer questions that 
could not be aaswered only a few years ago. But to answer these 
questions, it is necessary to use methods appropriate to the 
analysis of time series, including methods of detecting and 
analyzing seasonality. Many fields outside of criminology have 
long had a wealth of time series data available to them, and have 
developed methods to analyze seasonality in those data. This 
report is an introduction to the most commonly used of these 
methods, with practical crime data ~xamples.1 

The question of seasonality is a paradox. The concept 
seems, at first glance, to be simple. Criminologists, for exam­
ple, have traditionally believed (see Wolfgang,1966:96-106) that 
more crimes occur during some months of the year than others.2 
However, this simplicity is deceptive: a prElcise definition of 
seasonality is elusive, and the detection and me~.surement of 
seasonality are subjective. 

The quote by Grether and Nerlove in thte prologue exactly 
describes the Statistical Analysis Center staff's experience when 
we first confronted the question of seasona,lity. We naively 
thought that it would be a simple problem, that all we had to do 
was discover the standard "cookbook" seasonal adjustment method 
and apply it. However, w'e soon found that there is no standard 
cookbook approach to seasonality. Our routine search for a 
standard program soon became a lengthy investigation of the 
philosophical approaches and related mathematical nlethods for the 
detection, measurement and adjustment of seasonal fluctuation. 

1A complete review of all seasonal analysis methods would 
fill at least one book. This report is limited to the two most 
cOlnmonly used methods. Readers who want to investigate alterna­
tive methods should see Kendall (1976), Zellner (1978), or Pierce 
(1980) for an overview; Lovell (1963) or Dutta (1975) for dummy 
regression; Shiskin (1957) for same-month-Iast-year; Land (1978, 
1980) and Land and Felson (1976) for econometric and time-:inhomo­
genous methods; Bliss (1958) or Warren, et al. (1981) for peri­
odic regression analysis (PRA) ; Cleveland, et al. (1978) , 
Levenbach and Cleary (1981), or Velleman and Hoaglin (1981) for 
resistant methods, Rosenblatt (1965) for spectral analysis; and 
Glass, et al. for regression of a seasonal covariate. For a 
technical guide to using the seasonality and other time series 
computer programs that are available at SAC, see Miller (1982). 

2For a discussion of issues particularly relevant to the 
analysis of seasonal fluctuation in crime, a review of research 
on seasonality of crime, and the results of seasonal analysis of 
135 Index crime series, see Block (1984). 
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WHY DOES SEASONALITY MATTER? 

Time series containing time periods shorter than a year, 
such as monthly or quarterly series, may vary according to the 
season. That is, a phenomenon may occur more frequently at cer­
tain times of the year, and less frequently at other times, On 
the other hand, not every monthly or quarterly time seriGs is 
seasonal, For example, even if criminal victimizations occur 
without seasonal fluctuation, these victimizations may become 
known to the police more frequently during certain seasons of the 
year, The number of aggravated assault offenses known to the 
police in the United States (figure 1) is seasonal, but the num­
ber of aggravated assault victimizations (figure 2) is not 
seasonal, The comparison of these series tells us as much about 
police reporting ~ractices as it does about the seasonal nature 
of violent crime. 3 

If we ignore the question of seasonality, we may make the 
error of assuming that a series is not seasonal, when in fact it 
is. On the other hand, if we automatically adjust for seasonal­
ity without first analyzing the series to see if it is seasonal 
or not, we may make the error of adjusting for nonexistent sea­
sOm'llity, What difference would either sort of error make to 
research, administrative or policy decisions? 

If we make the first error, to ignore the question of sea­
sonality in a series that is seasonal, we ignore information that 
may be useful in making decisions. Descriptions of the pattern 
of change over time in a series, including the pattern of sea­
sonal fluctuation, provide a necessary foundation for explanatory 
models, forecasts, and tests of intervention hypotheses. With­
out a prior description, models may be misspeci.f'ied, forecasts 
inaccurate, and hypothesis tests erroneous. 

Policy makers and administrators often need to know the 
amount of seasonal fluctuation in order to allocate resources. 
For example, if more rapes occur in the summer, a police chief 
may want to allocate more resources to a rape crisis center or to 
a rape investigation unit in the summer months. If more people 
are sentenced to prison in the fall, a prison administrator may 
want to arrange for more beds in the fall months. Knowledge of 
the pattel'n of s~asonal fluctuation around the overall trend 
helps the administrator estimate the resources needed from month 
to month. 

3For details of the analysis of these two series, see Block 
(1984:9-13). 

3 



... 

Figure 1 

RSSRULT KNOHN TG THE POLICE, UNITED STATES. 1973-1979 

SOURCE. UNIFORH CRIME REPORTING PROGRRH. fBI THESE RAE RRW FIGURES. THEY RRE NOT 1I,!lGHTED TO 
RCCOUNT FOR JURISOICnOHS THRT 010 Hcr REPORT. THE 
POPUlAriON REPO~qNG INCRERSED 13X FROH 1973 TO 1979. 

~" 
~~ ._-- ..... 

1~~~r.n--~»H--~~--~~--~~--~n,,~-'s[PPnll--~rr70--~.",,~.---,m,~,.'-~",~ :C 51'73 "'11 JIf1'S 5~15 M,76 JIt 

... 
'" §~ 
II> 

W 
x 

5~ 
-' a: z 
~8 .•. ... ~ 
a: z 

HONTH. JRNURRY 1973 TO DECEMBER 1979 

Figure 2 

ASSAULT VICTIMIZATIONS, UNITED STATES. 1973-1979 
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Ignoring seasonality may also lead to erroneous conclusions 
in comparing one month and another. Suppose that a crime preven­
tion program were instituted in May, and that one of the goals of 
this program was to reduce larceny. If more larceny incidents 
ordinarily occur in the summer than in the spring, the effect of 
the program might be obscured by seasonal variation. The number 
of larcenies occurring in June might be as high or even higher 
than the number of larcenies occurring in April, even if the pro­
gram actually decreased larceny. In such a situation, the policy 
maker or administ:L'ator is not primarily interested in seasonal 
fluctuation, but is interested in the overall trend, with sea­
sonal fluctuation removed. Once seasonality has been taken into 
account, were there fewer larcenies after the crime prevention 
program? 

These two kinds of description -- description of the pattern 
of seasonal fluctuation and description of the pattern of the 
variable with the seasonal fluctuation removed can make 
analysis results easier to communicate to a general audience (see 
Granger 1978:38-39). Seasonal fluctuation may be so great that 
it obscures any other pattern. Removing variation due to a known 
cause, seasonality, makes these other patterns easier to see. 

Suppose that a reporter or a member of the City Council asks 
the crime analysis unit of the local police department whether 
larceny offenses are increasing or decreasing. The unit's answer 
will be more easily understood if it is accompanied by a graph of 
the seasonally adjusted data, than if it is accompanied by ~ 
graph of the original data. Compare figure 3 and figure 4. ij 
There is much less variation in the seasonally adjusted larceny 
series than in the original larceny series. With seasonal fluc­
tuation removed, the general pattern of larcenies over time ap­
pears much more clearly. The raw data seem to climb steadily to 
mid-1975, and then level off. With seasonal fluctuation removed, 
it becomes apparent that the climb began later and lasted longer. 
In addition, departures from the general p(;l.ttern become clear. 
The extremely low observation in May, 1979 is much more apparent 
in figure 4 than in figure 3. 

The second kind of error, to assume that a series is seasonal 
when, in fact, it is not, may also lead to an inaccurate descrip­
tion of the pattern of the series. Failure to recognize a lack 
of seasonality may lead to model misspecification and inaccurate 
forecasts in the same way as failure to recognize the presence of 
seasonality (see Fromm,1978:26). It results in the same descrip­
tive mistakes discussed above: an erroneous assumption that all 
Mays are higher than average, for example, might lead to a m:tsal­
location of May resources. 

4The lines superimposed on the raw data in figures 3 and 4 
are "line segment fits, II which use lineFl.r spline regression to 
describe the gen~ral pattern of change over time in a variable. 
For more information, see Block (1983). 
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Figure 3 
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Figure 4 
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In addition, if we seasonally adjust a nonseasonal series, 
or build a complex model under the incorrect assumption that a 
series is seasonal, we will add error to the analysis. Such a 
misspecified model II overadjusts II for seasonality; it removes or 
otherwise controls for seasonal fluctuation that never existed.5 
This transformed series is negatively seasonal -- observations 
twelve months apart are negatively associated with each other. 
Not realizing that the negative seasonal pattern is the result 
of, not the reason for, statistical manipulation, the analyst may 
then correct the model for this imaginary seasonality. If the 
model becomes complex, it may be very difficult to detect this 
error. 

Thus, if we knew a priori that some variable fluctuated with 
the seasons, it would be a good idea to take seasonality into 
conside~ation when we analyzed, or based any decision upon, the 
series. b Conversely, if we had reliable evidence that a variable 
did not fluctuate with the seasons, we would know that a model of 
that variable would be misspecified if it incorporated a seasonal 
assumption. In practical situations, however, we usually do not 
know whether a series is seasonal or not. Therefore, in order to 
avoid both of these errors -- assuming a series is seasonal when 
it is not and assuming a series is not seasonal when it is -- an 
analysis of monthly or quarterly data should begin with the 
question: Is this series seasonal? 

5For discussions of the problem of overadjustment, see page 
47 below, Nettheim (1965), Rosenblatt (1965), Grether and Ne~love 
(1970:682-683), Kalleck (1978), or Dagum (1981:135). In their 
forecasting competition, Makridakis, et al. (1982: 127) conclude 
that one reason that simple methods do well in comparison to sta­
tistically sophisticated methods is that the sophisticated 
methods lIextrapolate too much trend which can. cause overestima­
tion. II For a discussion of other errors that may result from 
erroneous assumptions about seasonality in a regression model, 
see W~llis (1974). 

°Even if we know a particular series is seasonal, some deci­
sions would require the actual raw data, not the seasonally ad­
justed data. As Fromm (1978:26) argues, lilt does not help workers 
seeking jobs to tell them that seasonally adjusted they are em­
ployed.

1I 

Consumers have to pay the actual price, not a seasonal­
ly adjusted price, for out-of-season fruits and vegetables. The 
prison administrator must find a bed for each new prisoner, with­
out regard to whether the prisoner is part of a seasonal fluctua­
tion or not. 
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WHAT IS SEASONALITY? 

To answer the question, Ills this series seasonal? II we must 
first define seasonality. As Granger (1978:35) notes, lilt is re­
markable how many papers discuss [seasonality] without consider­
ation of definition. II It is not surprising that two 
investigators would come to conflicting conclusions about the 
presence of sea- sonal fluctuation in a series, if neither began 
the analysis with a definition of seasonality. 

Such a definition needs to be more than a mathematical for­
mula. The method used to calculate the presence of seasonality 
should have some basis in the analyst's concept of what season­
ality is. For example, if we conceive of seasonal fluctuation as 
being relatively constant from year to year, consistency should 
be included in the measure of seasonality. By not explicitly 
stating our definition of seasonality, we risk using a measure 
that conflicts with that definition, and the analysis will yield 
confusing if not erroneous conclusions. To avoid this, we need a 
clear conceptual definition of seasonality. 

Two Traditional Approaches 

There are two major empirical approaches to defining and de­
tecting the presence of seasonality. Although these two tradi­
tions are historically distinct, with adherents, literature and 
jargon that seldom overlap, there is a close mathematical simi­
larity. Each approach can be expressed in terms of the other, 
and it is possible to combine the two to reap the benefits of 
both. However, there are practical differences in emphasis. One 
approach emphasizes a separate description of seasonal fluctua­
tion. The other emphasizes forecasting the future with a model 
that incorporates seasonal fluctuation. The first approach is 
primarily interested in seasonality itself. The second is inter­
ested in seasonality as it affects the accuracy of a forecast. 

Both approaches model seasonal fluctuation. 7 They are both 
descriptive, in the sense that any statistical model is a de­
scription of reality. However, the first model emphasizes sepa­
rate descriptions of the seasonal component and the rest of the 
series; the second does not. There are two schools of thought 
concerning the separation of seasonal fluctuation from the rest 
of the series. One school (see Kendall,1976: 66) argues that, 
since seasonality is variation due to a known cause, it should be 
removed prior to building an explanatory model, forecasting, or 

7 A model is "a set of assumptions concerning the origin or 
generating mechanism of a series" (Pierce,1980:125). 

Preceding page blank 
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any other complex analysis. The other school (see Plosser,1978) 
holds that it is more logical to include seasonal fluctuation as 
an integral part of the final analysis. 

rrhe approach that emphasizes the separation of the series 
into seasonal and nonseasonal components is commonly referred to 
as "seasonal adjustment II or "Census X-11 adjustment. II Since 
1954, when the U. S. Bureau of the Census introduced an early 
version of the X-11 seasonal adjustment program, it has become 
one of the standards against which seasonal adjustment methods 
are measured. 8 It is widely used by both governmental agencies 
and academic scholars in the United States, Canada, and else­
where. When you see economic data labeled IIseasonally adjusted,1I 
with no other qualifying statement, you can usually assume that 
the data were seasonally adjusted by the X-11 program, or some 
version of it. 

The most commonly used example of the second approach, in­
corporating seasonal fluctuation in a unified model, is ARIMA, a 
mnemonic for AutoRegressive Integrated Moving Average.9 ARIMA is 
also known as the IIBox/ Jenkins II method, in reference to George 
Box and Gwilym Jenkins who, with George Tiao, developed it into a 
comprehensive theory. 10 The method has become so popular that 
authors sometimes use "ARIMAII and "time series analysis ll as if 
they were synonymous (for example, see McCleary and Hay, 1980 ; 
Nelson,1973; Glass, et al. 1975). 

The division of the world of seasonal analysis into component 
and ARIMA approaches is somewhat arbitrary. The two actually 
have close mathematical similarities (Pierce,1980:126-128). The 
components of a series can be estimated with ARIMA methods, and 
an ARIMA model may contain seasonal and nonseasonal terms that 
can be thought of as components. 11 The difference "between the two 
approaches to seasonal analysis exists more in the way they are 

8For more information on the Census X-11 and other seasonal 
component methods, see Shiskin (1957), Shiskin, et al. (1967), 
Plewes (1977), Grether and Nerlove (1970), Hannon (1960,1963), 
Lovell. (1963), Levenbach and Cleary (1981), Willson (1973), 
Netthe1m (1965), and Rosenblatt (1965). In addition, more than 
20 papers on aspects of seasonal adjustment and analysis are con­
tained in Zellner (1978). 

9These terms are explained in the II ARIMA Methods II section, 
below. 

10The present discussion is only a brief guide to ARIMA, 
especially as it pertains to seasonal analysis. For a more 
complete, but still elementary, treatment, see Nelson (1973) or 
McCleary and Hay (1981). Also see the bibliography, below, for 
brief reviews of more advanced texts. 

l1In fact, the X-11/ARIMA computer package uses ARIMA models 
to produce better estimates of the components of a series. See 
page 19, below. 
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used and interpreted by analysts, rather than in their mathe­
~atical properties .. Think of them as photographs of the same ob­
Ject, taken from d1fferent angles. They describe the same phe­
nomenon, but from different perspectives. 

. Despite their technical similarity, social researchers and 
pol1cy analysts, especially in fie~ds other than economics, tend 
to use one method to the exclus10n of the other. Actually 
m~dels of separate components are necessary to answer some ques~ 
t1ons, and one model incorporating seasonality is necessary to 
answer other questions. For example, a decision to build a new 
prison w~ll depend upon a forecast of the total number of in­
mates, w1th seasonal fluctuation included in the total. On the 
other hand, if there are wide seasonal fluctuations in the number 
of .inmates, it might be necessary to open an additional wing 
dur1ng some months of the year. The decision to do this would 
depend upon an analysis of the seasonal component. 

There have been several experimental comparisons of various 
approaches to detecting the presence of seasonality (Grether and 
N7rlove,1970; Kuiper,1978; Armstrong, 1978; Granger,1978; Makrida­
k:-s, et al., 1982) '. How~ver, Kendall and Stuart (1966) probably 
g1ve the best adv1ce: Try several methods and choose the one 
which .app~ars to g~ve t.he best r~sults." No single method of 
analys1s 1S appropr1ate 1n every s1tuation. The method of choice 
depends upon the objectives of the analysis. Therefore instead 
of .b~ing ~ied to a single approach, analysts should become 
fam111ar w1th all the alternatives, and choose the particular 
method that suits the question at hand. 

. In the rest of this report, we provide information and prac­
t1cal examples to assist analysts in making a rational choice 
amo~g.s7asonal analysis ~ethods. First. we review the conceptual 
def1n1t10ns of seasonal1ty that underlie the two most commonly 
used approaches. Then, we discuss and compare the tools for 
detecting ~nd analyzing seasonality that the two approaches of­
fer, and g1ve the analyst some basic rules of thumb for using 
these tools in various practical situations. 

The Component Definition of Seasonality 

The component concept of seasonality is expressed in 
Kallek's simple and straightforward definition: 

Seasonality refers to regular periodic fluctuations which 
recur. every. year with. about the same timing and with the 
same 1ntens1ty and wh1ch, most importantly, can be mea­
sured and removed from the time series under review. 

11 
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Figure 5 

CHICRGO LONG GUN REGISTRRTIONS. JRNURRY 1969-JULY 1980 
SOURCE, GUN REGISTRRTlON SECT ION OF THE. 

CHICRGO COMPTROLLER'S OFFICE 

Figure 6 
CHICRGO HANDGUN REGISTRRTIONS. JRNURRY 1969-JULY 1980 
SOURCE: GUN REGISTRATION SECTION OF THE 

C~ I CilGO COMPTROLLER'S OFfiCE 
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Although this concept seems simple, the measurement ("oper_ 
ationalization") of the concept is not. A series with strong 
seasonal fluctuation, such as long gun registrations, (figure 5) 
easily quali.fies as seasonal under Kallek' s definition. How­
ever, the seasonality present in other series, such as handgun 
registrations (figure 6) is less obvious, and categorizing the 
series as II seasonal II or "not seasonal II becomes a subjective 
question. To reduce the subjectivity. or at least to make it 
explicit, we need measures for aspects of the conceptual 
definition, such as II regular periodic fluctuations,1I II same 
timing," and "same intensity.1I For example, what if all sununers 
were high except one, and that sununer were abnormally low? What 
if the degree to which the summer months were high were less than 
the degree to which the summer months varied among themselves? 

The component approach operationalizes seasonali ty by 
separating seasonal fluctuation from the rest of the series. The 
final clause of Kallek's de.finition, that seasonal fluctuation 
IIcan be measured and removed from the time series under review, II 

is the foundation of the component approach. The analyst im­
agines that each seasonal series has three components. The 
trend/cycle component consists of long-term trend and any non­
seasonal but regular fluctuations. The seasonal component is 
lithe intrayear pattern of varia.tion which is repeated constantly 
or in an evolving .fashion from year to yeaI'" (Shiskin et al. 
1967: 1) . The irregular componEmt consists of everything else, 
including error, the IIresidual variation.1! Thus, the total ~tun­
bel" of occurrences in a given month equals the number due to the 
trend/cycle, the number due to seasonality, and the number due to 
irregular fluctuation .12 A II seasonally adjusted I! series is a 
series from which the seasonal component has been removed. It 
has all the characteristics of the original, except seasonal 
fluctuation. 

Thus, the problem of detecting seasonality, using the com­
ponent approach, becomes a problem of dividing a series into its 
three components. The usual method for doing this is to smooth 
the series by some variation of a moving average, isolate the 
seasonal component, and then remove it ,1.3 (For details, see 
IIComponent Methods,1I below.) Once the seasonal fluctuation has 
been separated .from the rest of the series, the component method 
uses a variety of statistical tests, which compare the removed 
seasonal component to the trend/cycle and irregular components, 
as criteria for the presence of seasonality. If the seasonal 
component is large enough relative to the irregular component, 
then the series is seasonal, according to the component 
approach. 

12The relation hetween components may be additive or multi­
plicative. See "Comp,onent Methods," below. 

13A moving average replaces each observation with the aver .. 
age of that observation and the observatj.ons that occur just 
prior to it and just after it. See pages 20-21, below. 
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For example, the three components of the larceny/theft se­
ries discussed above (figures 3 and 4) are shown in figures 7, 8, 
and 9. Figure 7 shows the seasonal fluctuation, figure 8 shows 
the irregular, and figure 9 shows the trend/cycle. 14 

o 

g 
'0 

Figure 7 

ILLINOIS INDEX LARCENY-THEFT. FINAL SEASONAL FACTORS 
S~U'ln:s: ~~t~!'.:ll S::R~ES. ':~c fn:T! ~~ :Ll!~IHS 
..;\!.:::nt !:~:"'E .. ::.~!!qr5 :Jj!'~~"f3E ~;':"'p~ '3EQ~':'~QL 
~~c~~~s. :~: £:;~:.::.,. J."':;. 9 .. RE';~ ct. ""ME ::-',S\JS 
Xl t ::-R~G~;"". 

Each horizontal line equals 4.000 offenses 

I4These components were calculated py the X-II program under 
the additive assumption. The F value for the amount of variation 
in the seasonal relative to the variation in the irregular is 96. 
For details, definitions, and other seasonal component analysis 
examples, see the section, "Component Methods," below. 

14 

8 

8 

Figure 8 

ILLINOIS INDEX LARCENY-THEFT. FINAL IRREGULAR SERIES 

Each hor; zonta IIi ne equ~l" 4 .000 offenses 

Figure 9 

ILLINOIS INDEX LARCENY-THEFT. FINAL TRENO CYCLE 

SOt.RCES, :!q:CiP-lRl S:P:ES. s=c ~~:l't'!·: !l.L!"iOlS 
~N!"J'\'" t~71to1:~ ':IE-OfPS JFF!:~SE J~"'~, ~flit.~C 
:"C ... E. 3~': ;:l!'lJ~ .... 5. j .. ~EQu:JF r"'E :::-,SJS 
_11 ~ROC;:l~"'~ 

Each horizontal line equals 4.000 offenses 
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The ARIMA Definition of Seasonality 

In the ARIMA literature, as in the component literature, it 
is unusual to find an explicit conceptual definition of season­
ality. The closest thing to such a definition in Box and Jenkins 
(1976:301) is the following: 

In general, we say that a series exhibits periodic 
behavior with period ~, when similarities in the 
series occur after ~ basic time intervals. 

Nelson (1973:168) paraphrases this in less mathematical language: 

Seasonality means a tendency to repeat a pattern of 
behavior over a seasonal period, generally one year. 

Like Kallek' s component def ini t ion (page 11, above), the ARIMA 
definition of seasonality emphasizes the existence of regular 
periodic fluctuation. However, unlike the component definition, 
the ARIMA definition does not emphasize separating this fluctua­
tion from the rest of the series. 

The ARIMA approach is not so much concerned about describing 
the past as it is about forecasting the futur~. Of course, any 
forecast of the future must begin with a description of the past. 
However, Box and Jenkins (1976:301) emphasize that descriptions 
of each of the components of a series, even though each separate 
description may be good, will not necessar:Uy produce a good 
forecast of the whole. Therefore, the ARIMA approach does not de­
scribe the series by describing each separate component. In­
stead, it describes the It stochastic processes /I of the entire 
series. 

In a stochastic process, one observation follows the next 
with a certain probability. In a monthly series with seasonal 
fluctuation, observations 12 months apart are correlated, which 
means that they follow each other with a certain probability.15 
Thus, seasonality may be part of a stochastic process. 

ARIMA assumes that a time series has followed some unknown 
but identifiable pattern in the past. If we can determine the 
probability, or set of probabilities, under which observations 
followed one another in the past (the stochastic processes), and 
if the same processes continue unchanged, then we can forecast 
the future accurately. The analyst's problem is to identify, or 
model, the processes of a series. One of the processes in a se­
ries could be a seasonal process. If the analyst's model 
includes such a seasonal process, the ARIMA approach concludes 
that the series is seasonal. 

15The opposite is not always true. If observations 12 months 
apart are correlated, the seri~s is not necessarily seasonal. 
See figures 15 and 16 and accompanying discussion, below. 
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Figure 10 

JLLIN5IS INDEX LARCENY-THEFT, ST5CHASTIC PR5CESS HODEL OAIGIHRl SEAlES. Cl 
"OIIELED ~EAIE~ • ~ 

"ODEL IS RAIHA (Q.I.lI IO.I.1l 
SOURCE. SAC EOITICIN ILLINOIS UNIFOM CA[~ AEPOATS 

OFFENSE DRTA. 1ge1 PAELI"INRAr 

n "1'1 " I" N ~ 13 ,,, '71 71 S ,. "1'1 • • 
"DNTH 11 II: ,,, • 

For example, the best ARIMA model for Illinois larceny/theft 
suggests.tha~ the series follows a seasonal process: the current 
observat~o~ ~s r:l~ted to the error of the observation 12 months 
ago, and, ~n add~t~on! the current. obse~vation is related to the 
er:o: of the preced~ng observat~on.lb Figure 10 shows the 
or~g~na~ larceny/the~t.series ~light line) and the modeled series 
(dark ~~ne). The or~g~nal ser~es ends in December, 1981, but the 
model ~ncludes a forecast through 1982. 

How was this forecast calculated? The model states that 
:ach ?bservation i~ related to, and can be calculated from, the 
~mmed~ately preced~ng observation and the observation one year 
ago. Therefore, the actual number of larceny/thefts in the years 
1972 through 1980 are used to calculate the modeled values for 
~973 through 1981. For example, the December, 1981 modeled value 
~s calculated from the actual November, 1981 and December, 1980 
values. The January, 1982 modeled value is calculated from the 
actual December, 1981 and January, 1981 values. To forecast for 
F:bruary, 1982, the model uses the actual February, 1981 observa­
t~on and the modeled value for January, 1982. By continUing this 
process, the model forecasts all 1982 values. 

16Thf= m?d~l realized ~n figure 10 is a (0,1,1)( 0,1,1) ARIMA 
p:ocess (a f~rst-order ser~al and seasonal moving average process 
w~th. ser:Lal and seasonal differencing). For definitions and 
deta~ls, ,see IIARIMA Methods, 1/ page 35 below. 
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TOOLS FOR DETECTING AND ANALYZING SEASONALITY 

Neither the component nor the ARIMA approach to seasonality 
offers a simple, objective, yes-or-no criterion for detecting the 
presence of seasonality in a time series. Both approaches depend 
heavily on the judgment of the analys~G, although each approach 
gives the analyst a number of statistical tools upon which to 
base that judgment. In the following sections, we introduce the 
reader to some of these tools for detecting, measuring, and 
adjusting for seasonality. 

Component Methods 

This section is a guide to using and interpreting component 
seasonal analysis, with particular emphasis on the Census X-ll 
seasonal adjustment program. 17 Although there are other computer 
packages that partition a series into components, most of these 
have options and results that are similar to the X-II. Thus, 
someone who is able to use the X-l1 should have little difficulty 
using the other packages. 

There are, in general, three kinds of component packages' 
other than the X-II. The X-11/ARIMA pro13ram identifies an ARIMA 
model for the series (if possible), forecasts one year, and then " 
uses the forecasted values to calculate the component part of the 
program. Therefore, to interpret X-11/ARIMA results, you must be 
familiar with the interpretation of standard X-ll results. Most 
econometric packages contain some sort of moving average routine. 
If you understand X-II moving average options, you will also be 
able to us~ these packages. The SABL program (Seasonal Adjust­
ment-Bell Laboratories; see Cleveland, et al.1978) differs from 
traditional component programs in several ways, such a~ its use 
of "resistant II smoothers instead of a moving average .1ts If you 
understand the general concept of component analysis, you will 
find it easier to understand SABL. 

17See page 10, above. The Census X-II is available from the 
U. S. Bureau of the Census and from the Bureau of Labor Statis­
tics, U.S. Department of Labor. It is also a part of the SAS/ETS 
(Econometric and Time Series) package. The X-11/ARIMA package is 
available from Statistics Canada. It is now the official method 
of the Bureau of Labor Statistics for the seasonal adjustment of 
household and establishment survey data on labor force, unemploy­
ment, employment, and hours (Mclntire,1983). A quick, ab­
breviated component program, developed by Statistics Canada, is a 
useful screener for the presence of, seasonal fluctuation in a 
series (see Block,1984). 

18A resistant smoother resists the effect of extreme values. 
A moving ~edian is resistant, in contrast to a moving mean. See 
Velleman and Hoaglin (1981) and Velleman (1980,1982). 
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'I.. Definitions 

Moving Average19 

A moving average II smooths II a time series. 20 It separates 
the series into two parts -- a sequence of values that follow 
each other smoothly, with relatively little variation from one to 
the next, and another sequence of values that vary relativel v 
more from one to the next. - There are many kinds of -smoothers; --~ 
moving average is just one of them. There are also many kinds of 
moving averages, each with a different effect on the data. 

A moving average replaces each observation with a weighted 
average of that observation and observations occurring before it 
and after it in the sequence. For example, to calculate a moving 
average with a five-month span, you would calculate the average 
of observations 1 through 5, then the average of observations 2 
through 6, the average of observations 3 through 7, and so on to 
the end of the series. The result would be a transformed series 
in which random and periodic fluctuation occurring within a five­
month frequency is II averaged out. II The new series would be 
shorter than the original series, by two observations at the 
beginning and two observations at the end. This is called the 
"end effect," and may be important if we are particularly inter­
ested in the most recent past of the series.21 

The goal of a moving average is to produce a smoothed series 
that does not contain random variation or periodicity, but still 
contains the other patterns in the series. These other patterns 
will be more clearly discernible in the smoothed series than in 
the original series. However, not every kind of moving average 

19The concept and calculation of moving average in the con­
text of compo?ent methods is very different from the moving aver­
age proc~ss ~n ARIMA (see page 35, below). The moving average 
(MA) process received its name because it is similar to a conven­
tional moving average in one way: it assumes that each observa­
tion is affected by a finite number of other observations (Nelson 
1973:33). In the context of spectral analysis, a moving average 
is called a "filter," specifically, a IIlinear filterll (Hamming 
198~) '. ~or example, a IIlow-pass fil terll removes high frequency 
per~od~c~ty (see Kendall 1976: 44 and "Cumulative Per'iodogram of 
Residuals," page 50, below). 

20Moving averages are also called II running means. II For an 
elementary review, see Macaulay (1931). For a more advanced dis­
cussion, see Kendall (1976:53) or Dagum (1983c). For a review 
that emphasizes nonlinear smoothing, see Velleman (1982). 

21There are various statistical techniques to handle the end 
effect. See Kendall (1976) for a review. The X-11/ARIMA method 
uses an ARIMA forecast to estimate end values. See Dagum (1983a). 
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meets this goal for every series. 22 The extent (span) of the 
average, and the amount each observation is weighted in the 
average, affect the kind of variation that the transformation 
removes. For exa.-nple, a moving average with a five-month span 
would smooth random variation from month to month and periodic 
fluctuation occurring every four or five months, but not periodic 
fluctuation occurring at a 12-month frequency. According to 
Kendall (1976:53), 

Trend-fitting and trend-estimation are very far from 
being a purely mechanical process which can be handed 
over regardless to an electronic computer. In the 
choice of the extent of the average, the nature of 
the weights, and the order of the polynomial on which 
these weights are based, there is great scope -- even 
a necessity -- for personal judgment. To a scientist 
it is always felt as a departure from correctness to 
incorporate subjective elements into his work. The 
student of time series cannot be a purist in that 
sense. 

The X-II program conducts iterative approximations of the 
best moving average. The program also offers the user a choice 
of types of moving average, as well as a choice of treatments for 
extreme values. Before attempting to use these options, become 
familiar with the effects of various moving averages (Kendall, 
1976). Then, consult Shiskin, et al. (1967) for specific moving 
average options offered by the package. 

Additive/Multiplicative Assumption23 

The three components--seasonal, trend/cycle, and irregular-­
may be related to each other in two ways. They may be indepen­
dent or dependent. If we consider them to be independent of each 
other, then we add them together to equal the total number of oc­
currences. If we consider them to be dependent on each other, 
then we multiply them together to equal the total number of oc­
currences. For example, if the relationship for larceny were ad­
ditive, then the number of larcenies due to seasonal fluctuation 
would remain the same whether the total number of larcenies were 

22Por a clear discussion of the effects that various moving 
averages have on a series, see Kendall (1976:29-54). For ratio­
to-moving average, see Hickman and Hilton (1971). For the 
IIGibbs ll phenomenon, in which linear filters treat some frequen­
cies inconsistently, see Velleman (1983:143) and Hamming (1983: 
93-101). 

23For a discussion of additive versus multiplicative rela­
tionships in ARIMA models, see Box and Jenkins (1976: 322-324) . 
ARIMA models, like component models, usually assume that the 
relationship is multiplicative. 
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50 or 500. If the relationship were multiplicative, the number 
of larcenies due to seasonal fluctuation would be greater if the 
total number of larcenies were higher. The additive/multiplica­
tive assumption is the analyst's choice. Most economic series 
are assumed to be multiplicative. However, we know of no 
theoretical argument for assuming the components of a crime 
series to be either dependent or independent. In our experience, 
the additive assumption has produced the better adjustment in the 
majority of crime series analyzed (Block,1984). 

A good general procedure is to make no prior judgment about 
whether seasonal fluctuation is additive or multiplicative, but 
to adjust the series under both assumptions, and choose the best 
adjustment of the two according to diagnostic tests discussed be­
low.24 The two assumptions usually produce very similar results, 
but, when they do not, assume that the better adjustment, 
additive or multiplicative, reflects the true undeI'lying rela­
tionship among the three components. 25 

Rules of Thumb 

The output of the X-II program is voluminous, and its inter­
pretation is an art as much as it is a science. The user must 
weigh the results of various diagnostic tests against each other, 
and make a number of subjective judgments. The final decision as 
to whether or not a given series fluctuates with the seasons is a 
function of the analyst's interpretation of these diagnostics. 
Two artalysts may disagree. Thus, published results should men­
tion the diagnostic tests that were used to arrive at the deci­
sion, and the results of each test. 

Pierce (1980: 130) argues that, II seasonal adjustment models 
are never more than approximations. II However, the objectivity of 
these approximations can be improved if analysts use the same 
diagnostic tests, interpret these tests.using general guidelines 
or II rul es of thumb,1I and explicitly state any deviations from the 
use of these guidelines. At the Statistical Analysis Center, we 
have found the following guidelines to be helpful. 

240f course, it is not possible to adjust under a multipli­
cative assumption if the series contains an observation that is 
zero. 

25For an important series in which the multiplicative or ad-
ditive relationship is not clear, it may be necessary to use more 
complex analytical methods. The literature on seasonal adjust­
ment contains may discussions of the problem. For an introduc­
tion, see several of the papers in Zellner (1978). For some 
practical hints, see Plewes (1977). 
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F of Stable Seasonality, and 
Relative Contribution of the Irregular 

The F of stable seasonality is a ratio between the season I 
c:,m~onent and the irregular component. 2b The F value's si

a
_ 

n~fll~can~e i~ based on the assumption that the irregular is nor
g

-
rna . v d1!=:t.T'1hllb:"d hnmnC:("Ion", t:' ,-'I • (Sh ..... --------..:- • .. _." ______ s ... ~c, an ... var~es randomly over time 

~sk~n! et al., 1967: 59) . With time series data, we cannot 
(~c~ssar~IY assume that successive observations are independent 

n ers:,n, 1950) . ,Therefore, there is some question as to th 
proper ~nterpretat~on of this F value. 27 e 

bl Seasona~ serie~ typically have very high F values. The sta­
th e f:easo~al~ty F ;-s ,96, for example, for the Illinois larceny/ 

e ser~es! and ~t ~~ not unusual to find an F value of 100 or 
more. In l~ght of th~s, how should we interpret an F that . 
much smal17r! but not small enough to be statistically insi nif~~ 
~ant, prov~d.lng, w,e could assume independence? If we cannot g appl 
,he,usual s~gn~f~cance tables, what does an F value of 5 or Ib 
~nd~cate about the presence of seasonality? 

As a guide to interpreting such X-II results Plewes (1977) 
prepared a .set, of II rul es of thumb" for the staff of the Bureau of 
Labor Stat~st~cs. We have found these guidelines to be ver 
l;elpful, an? describe some of them here. Plewes suggests thar 
~nt~rpretat~on of the stable seasonality F value should be guided 

y ~~format~on about the irregular. This makes sense when we 
r7al~ze that tl;e assumptions upon which the F is based have to d 
w~th the behav~or of the irregular. 0 

The Ifrelative contribution of the irregular ll varies from 0 
~ercent to 100 percent, and indicates the contribution of the 
~rregular compone?t to total month-to-month variation, relative 
to the ~~ntr~but~o?s of the seasonal and the trend/cycle com­
ponents. It ~nd~cat:s the absolute importance of each com 0-
nent to the var~at~on ~n the total series. Plewes (1977:4) s~ _ 
ge~ts that ~he ~ value should be interpreted. in light of the re!­
at~ve contr~but~on of the irregular according to the f 11 ' 
rule of thumb: ' 0 ow~ng 

26Stable seasonality assumes that seasonal fluctuation i 
~~~~~an~ei~~~ year to year. for IImoving seasonality," see page: 

27If we could assume independence of observations and use 
the F table, a value of 2.41 would be significant. This is the 1 
percent level f?r a 10-year series. Differences in significance 
levels for ser~es of other lengths are neglig;ble (Sh' k' t 
al., 1967 :59). ... ~s ~n ~ 
b t' 2 In X-II printed results, we also find the relative contri-

u ~~ns of each of the three components to variation over a two­
mon span, three-month span, etc., up to a 12-month span. 
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Stable Percent 
Seasonality Contribution 

F Value of Irregular Decision 

0.00-2.40 any percent no stable seasonality 
2.41-15.00 greater than 14% no stable seasonality 
15.01-50.00 greater than 25% no stable seasonality r:;o 01 "' ..... A up ---_ ..... _- than 30% no stable seasonality ;_._- _"4U. e..L'.;:-a..",,;.L' 

To this rule of thumb, we would add a qualification.29 The 
percent contribution of the irregular reflects the relative con­
tributions of both the seasonal and the trend/cycle. In crime 
series, in contrast to many economic series, the contribution of 
the trend/cycle may be very low. As a result, both the irregular 
and the seasonal relative contributions may be high. Therefore, 
with a stable seasonality F value greater than 15 and a percent 
contribution of the irregular about 30, before rejecting the 
stable seasonality hypothesis, consider the percent contribution 
of the seasonal. According to Plewes (1977:7) lIa seasonal com­
ponent with a [relative contribution] value of less than 50.0 
percent in a one-month span signals a weak seasonal. II If the 
seasonal contribution is 50 percent or more, use additional diag­
nostics (see below) to make the final decision about the presence 
of seasonality in the series. 

Thus, even if it cannot be interpreted as an exact statis­
tic, the F of stable seasonality can be used in an exploratory 
way as one indicator of the amount of seasonality in a series. 
For example, as we mentioned above (page 14), the stable season­
ality F value for Illinois larceny/theft is 95.82. The contribu­
tion of the irregular over a one-month span is 18 percent. 
According to Plewes' s rule of thumb, we should not reject the 
hypothesis of stable seasonality. In contrast, for Illinois 
Index homicide (figure 2) the stable seasonality F value is 2.78, 
and the contribution of the irregular is 70 percent. This indi­
cates that the series does not contain stable seasonality. On 
the other hand, for Index aggravated assault (figu:t'e 1) the 
stable seasonality F value is 45.70, and the contribution of the 
irregular is 38 percent. According to Plewes's rule of thumb, we 
should reject the hypothesis of stable seasonality. However, the 
contribution of the seasonal component over a one-month span is 

29Kathryn Beale (Bureau of Labor Statistics) pointed this 
out. There is an additional complication in the case of a series 
that has a very weak trend/cycle component and a strong seasonal 
component (McIntire,1983). The seasonally adjusted series (the 
original series with seasonal fluctuation removed) may contain 
little else than random error. With such series, calculation and 
analysis of a seasonally adjusted series is fairly useless. 
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60 percent. Therefore, other diagnostics should be consulted 
before making the final decision.30 

Average Duration of Run of the Irregular 

The average duration of ~un (ADR) is.a. s~mple tes: of the 
smoothness of variation over tlme. By deflTIltlOTI, the lrregular 
component varies randomly over time. If it does. not, then the 
quality of the seasonal adjustment should be quest~oned. 

The ADR is the mean length of runs of values consecutively 
higher (or lower) than the preceding value. The higher the ADR 
of a series the fewer the total number of runs. If the irregu­
lar ADR is lower than would be expected in a random series, the 
adjustment may have assigned some seasona~ or trend/cyc~e v~ria­
tion to the irregular component. If the ~rregular ADR ~s h~gher 
than would be expected in a random series, the adjustment may 
have assigned variation that should be considered irregular to 
the seasonal or trend/cycle component. An ADR from 1.36 to 1.75 
is considered random. 

Again, Plewes (1977:8) provides a rule of thumb to interpret 
the irregular ADR: 

The ADR of the irregular (I) should fall between 1.36 
and 1.15. When values fall outside of this range, the 
F-statistic and relative contribution of the irregular 
should be consulted. If both meet their tests, the 
series may still be accepted. 

For example, for Illinois Index larceny/theft, the ADR of 
the irregular is 1.59. For Index homicide, it is 1.45, an( for 
Index aggravated assault, it is 1.51. These ADRs are all within 
the II random ll range, which indicates that the quali~y of each of 
the three adjustments can be trusted. Each of the lrregular com­
ponents varies randomly over time, as we would expect them to do. 
These random ADRs indicate that the irregular components do n~t 
contain seasonal fluctuation, nor do the other components contaln 
irregular fluctuation. 

In our experience, using the X-11 with hundreds of crime and 
crime-related series, we have found only four series in which the 
ADR indicated a non-random irregular. Three series with an ADR 
below the random range are very short (four to six years) .. One 
series with a high ADR, Chicago Index assault 1967-1978, lS a 
moving-average transformation of an original series that was col­
lected in units of 13 police periods per year. This moving 
average probably has less irregular variation than the original 
series, resulting in an overly smooth irregular. 

30The statistics given here are for the additive or multi­
plicative adjustment, whichever has the highest stable seasonal­
ity F. Statistics for the alternative adjustment for these se­
ries are ve~y similar. 
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Thus, in practice, you may find very few series with an ir­
regular ADR outside the random limits. If you do find one 
consider it as a warning that something may be amiss. Look 
carefully at the series itself for an explanation. In the above 
examples, the low and high ADRs were apparently related to short 
series or to unusually smooth series. In any event, do not 
accept the adjustment unless other indicators, especially the F 
of stable seasonality and the percent contribution of theirregu­
lar, are unequivocal. 

Months for Cyclical Dominance 

Months for cyclical dominance (MCD) compares the relative 
contribution of the trend/cycle to the relative contribution of 
the irregular. Like the ADR of the irregular, the MCD is an 
indication of the quality of the adjustment (the extent to which 
you should trust the results). 

As discussed above (note 28), the standard output of the 
X-11 program includes a table giving the relative contributions 
of each of the three components over a one-month span, a two­
month span, and so on. From one month to the next, the irregular 
usually provides the most visible movement in a series. Thus 
the relative contribution of the irregular over a one-month sp~ 
is usually high. In contrast, the contribution of the trend/ 
cycle to month-to-month variation is usually low. However, the 
trend/cycle contribution usually builds over time; its contribu­
~ion over.a t~o-month span is greater than over a one-month span, 
~ts contr~but~on over a three-month span is still greater, and so 
on. Thus, in most series, the relative effect of the trend/cycle 
gradually increases, until it exceeds the contribution of the 
irregular. The span at which this occurs is the MCD. 

An MCD of 1 means that the percent contribution of the 
trend/cycle over a one-month span exceeds the percent contribu­
tion of the irregular over a one-month span. An MCD of 2 means 
that the trend/cycle exceeds the irregular over a two-month span. 
In many economic series, the MCD is low. The relative contribu­
~ion of the t~end/cycI7 i~ substantial over a one-month span, and 
~ncreases rap1dly, unt~l 1t exceeds the irregular contribution at 
the three- or four-month span. However, the contribution of the 
trend/cycle in many crime series is less than this. Conse­
quently, we have found few crime series that meet Plewes's rule 
of thumb: 

Series with MCD values of 1, 2, or 3 usually exhibit 
sufficient smoothness to be acceptable; series with 
MCD's of 4 or 5 are borderline, and the impact of the 
irregular should be carefully analyzed; when an MCD of 
6 appears, the particular month in which the I/C ratio 
becomes less than one should be identified (the X-11 
program prints no value larger than 6). The decision to 
publish the series should be made on other grounds since 
a long MCD is usually reflective of other problems'in the 
series. 
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For example, table 1 shows the relative contributions of 
each component to the total variation in the larceny/theft series 
(additive adjustment) from a one-month to a 12-month span. 
Because the trend/cycle contribution exceeds the irregular con­
tribution for the first time at a five-month span, the MCD for 
larceny/theft i'5 5. The MCD of the Index aggravated assault 

. . "" (. b - - , T' .. ,,..... .r>'" 1.. I ~ 1.. • • d . I ser~es ~s 0 'taole t:.). . tie l"lv.u OJ. vue nuex uom1C1 e ser~es \not 
shown) is over 12 months (the trend/cycle contribution does not 
exceed the irregular contribution at any span from one to 12 
months) . 

Table 1 

Relative Contributions of Components to Variance 
Illinois Larceny/Theft, Additive Adjustment 

Span in 
Months 

1 
2 
3 
4 
5 
6 
7 
9 

11 
12 

Irregular 

18.16% 
7.29 
3.95 
2.65 
2.40 
2.11 
2.15 
3.67 

10.83 
21.01 

Trend/ 
Cycle 

1.16% 
1.49 
1. 97 
2.53 
2.97 
3.60 
4.82 
9.70 

39.28 
78.75 

Table 2 

Seasonal 

80.69% 
91. 22 
94.07 
94.82 
94.63 
94.29 
93.02 
86.64 
49.89 

0.24 

Relative Contributions of Components to Variance 
Illinois Aggravated Assault, Additive Adjustment 

Span in 
Months 

1 
2 
3 
4 
5 
6 
7 
9 

11 
12 

Irregular 

38.46% 
16.40 
10.50 

8.07 
6.30 
4.79 
5·15 
8.41 

23.55 
36.53 

Trend/ 
Cycle 

1. 92% 
2.94 
3.53 
4.07 
4.44 
4.84 
6.36 

12.59 
43.26 
63.20 
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Seasonal 

59.62% 
80.66 
85.97 
87.86 
89.26 
90.36 
88.49 
79.00 
33.19 
0.27 
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Notice that the contribution of the seasonal component drops 
close to zero over a 12-month span. This makes sense, because, 
by definition, seasonal. values 12 months apart are similar to 
each other. The seasonal differencing technique (see II Station­
arity,1I page 41 below) takes advantage of this fact. 

A high MCD is a warning that the series may contain so much 
irregular variation that the presence and degree of seasonal 
fluctuation cannot be reliably determined. In practice, we have 
found only a few crime series with an MCn of J or 4, and none 
with an MCD of 1 or 2 (although we conunonly find a low MCD in 
non-crime series). Because the contributions of the irregular, 
the trend/cycle, and the seasonal add to 100 percent, a high MCD 
does not always indicate that the adjustment should be rejected. 
If the MCD is high, look at the percent contribution of the 
seasonal over a one or two-month period. In a ser-ies containing 
little or no overall trend, both the irregular and the seasonal 
components may contribute more than the trend/cycle component. 
For example, in the Illinois aggravated assault series, the con­
tribution of the trend/cycle does not exceed the contribution of 
the irregular until a six-month span (table 2). However, the 
contribution of the seasonal is 60 percent over a one-month span. 
In such a case, consider the possibility that the series may con­
tain relatively weak, but consistent, seasonal fluctuation. Look 
at other diagnostics, in particular the final seasonal factors 
(see IIPattern Consistencyll), 

Pattern Consistency 

Consistency in the seasonal pattern is another important 
consideration in determining whether or not a series is sea­
sonal. Both the component and ARIMA approaches include consis­
tency, or regularly evolving fluctuation, in their conceptual 
definition of seasonality. While a gradual change from year to 
year may indicate moving seasonality (see pages 32 to 33 below), 
abrupt change or change in sign from one year to the next argue 
against the hypothesis that the series is seasonal, by the usual 
definition. 31 

There are two kinds of seasonal consistency: year-to-year 
and within-season. For example, if April observations are very 
high in four scattered years of a 10-year series, and very low in 
the other years, then April is not consistently high; the series 
does not have a consistent pattern of seasonal fluctuation from 
year to year. Similarly, we should conclude that a certain 
season tends to be high only if each month of that season tends 
to be high. For example, if June is always slightly high over a 
10-year period, and July and August are very high, then we might 
say that sununers are generally high. On the other hand, if June 
is always high, July is lm'1, and August is high, then all we can 
say is that the patterns of the summer months vary. 

31See Warren, et al. (1981) for an example of an analysis of 
seasonality that does not include year-to-year consistency in the 
definition. 
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The II seasonal factor ll table, produced by the X-II program, 
allows us to examine year-to-year and within-season consistency. 
A seasonal factor table contains one value per month or quarter. 
For example there are 144 seasonal factors for a 12-year monthly 
series (tabie 3). Each seasonal factor indicates the degree to 
which the month in question is relatively high or lo~( due to 
seasonal fluctuation. 

In a multiplicative adjustment, the seasonal fac~or:s show 
the relative seasonal weight of each month. In an add~t1ve ad­
justment the seasonal factors show the absolute amount by which 
the month is high or low. Thus, in a multiplicative adjustment, 
the seasonal factors range from .00 to 1.99, with 1.00 indicating 
an average month with no seasonal fluctuation. In an additive 
adjustment, the seasonal factors range above and below zero, and 
the scale depends upon the particular data. For example, a sea­
sonal factor of 20 for a certain month in a homicide series would 
indicate that that month was seasonally high by about 20 homi­
cides. With the standard deviation, which the table a~so 
includes, you can decide whe iJi1er 20 homicides should be cons1d­
ered high or within the normal range. 32 

Year Jan 

1965 1.04 
i966 1 .01 
1967 0.98 
1968 0·94 
1969 0.90 
1970 0.R7 
1971 0.87 
1972 0.87 
1973 0.88 
1974 0.87 
1975 0.86 
1976 0.84 
1977 0.83 
1970 0.82 

Table 3 

Final Seasonal Factors, Multiplicative Adjustment 
Male Homicide Victims. Chicago: 1965-1978 

Feb Mar ~ May Jun Jul .~ ~ Oct 

0.76 0.98 \ 1.06 0.95 1.03 ,.05\ 1 .14 1.01 1.13 
0.77 0·97 1.06 0.96 1.02 1.04 1.15 1.02 1 .13 
0.79 0.94 1.05 0.99 1.01 1.04 1.15 1.04 1.13 
0.82 0.91 1.04 1.01 1.01 1.04 1.13 1.05 1 .12 
0.85 0.88 1.02 1.03 1.00 1.07 1.13 1.05 1 .11 
0.88 0.08 1.01 1.03 1 .01 1 .11 1.12 1.02 1.09 
0.89 0.90 0.98 1.03 1.02 1.16 1 .1 2 1.00 1.07 
0.89 0.95 0.94 1.03 1.03 1.19 1.09 0·99 1.07 
0.87 1.02 0.88 1.03 1.04 1.21 1.06 1.00 1.09 
0.85 1.08 0.85 1.03 1.04 1.20 1.02 1.04 1.09 
o .fl2 1.14 [ 

0.83 1.01 1.04 1.18 1.00 1.08 1.08 
0.80 1.17 0.83 0.98 1.04 1.16 0.98 1.13 ,.07\ 
0.79 1.20 0.83 0.96 1.03 1.15 0·99 1.16 1.06 

0.78 1 .21 0.83 0.94 1.03 1.15 Cl.99 1 .17 1.05 

Nov Dec 

0.83 1.03 
0.85 1.04 
0.89 1.03 
0·92 1.02 
0.95 1.01 
0.95 1.01 
0·94 1.01 
0.92 1.02 
0·91 1.02 
0.91 1.03 
0·92 1.05 
0.94 1.07 
0·94 1.08 
0.94 1.08 

32For a similar diagnostic check for consistency, but using 
ARIMA methods, see Thompson and Tiao (1971:540-541). 
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The seasonal factors (multiplicative adjustment) of homi­
cides of male victims in Chicago from 1965 through 1978 (table 3) 
show that, while some months may be discernibly high and others 
low in the number of male homicide victims, there is no consis­
tent pattern from year to year.33 If we define a "high month" as 
10 percent high" and a low month as 10 percent low. January 
changes over time from an average month to a low month. March 
begins as an average month, but becomes high in later years, 
while April begins average but becomes low. The seasonal factors 
of July, August, September, October, and November all change from 
year to year. Only one month, February, is consistently high or 
low throughout the 14 years, although some argument could be made 
for July being high. If we consider all the evidence, including 
this lack of seasonal consistency, as well as the low stable 
seasonality F (4.00), the high relative contribution of the ir­
regular (63 percent), an irregular ADR of 1.52 (indicating that 
the irregular does not contain any seasonal fluctuation), and an 
MCD higher than 12 months, it becomes difficult to argue that 
mur·ders of males occur seasonally. 

Trading Day Option 

The X-II package provides a "trading-day adjustment II that 
gives the user an idea of the importance of each day of the week. 
The adjustment counts the number of Mondays, Tuesdays, and so on, 
in each month of the series, and determines whether months with 
three Mondays (for example) differ from months with five Mondays. 
The program then calculates weights for each day of the week, and 
computes standard tests of significance for each day. Thus, X-II 
trading-day statistics are not a result of direct ana~ysis of the 
effect of each day of the week. Rather, they are estimated from 
aggregate data. 

Therefore, analysts who are primarily interested in diurnal 
periodicity might want to analyze daily data, if available, in 
preference to trading-day estimates f.rom monthly data. On the 
other hand, use of the trading-day adjustment is quicker and less 
expensive than conducting an extensive analysis of daily data. 
It may uncover effects that might be overlooked by other methods. 

To utilize the advantages of both approaches, use them both, 
sequentially. The X-II program allows the user to set a priori 
weights for days of the week. A direct analysis of daily data 
may provide the information with which to set these daily 
weights. For an example of a model of daily variation that com­
bines ARIMA and regression, see Bell and Hillmer (1983). 

33We chose this homicide series as an example because it 
contains the most seasonality of any homicide series we have 
analyzed (Block and Block,1980; Block,et a1.1983; Block,1984). 
The common assumption that homicide is seasonal (Wolfgang,1966; 
President's Commission, 1967; Warren, et a1.1981) is due to dif­
fering definitions and measures of both homicide and seasonality 
(Block,1984). 
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However there are limits to the use of the trading-day 
option. It ~ill not provide accurate estimates when the average 
absolute month-to-month change of the irregular component is 8 
percent or more (Shiskin et a1.1967; McInt~re,1983). ~ecause 
most crime series are more irregular than th~s, the trad~ng-day 
option can seldom be used with crime data. 

Appropriate Applications 

At the Statistical Analysis Center, we have found component 
seasonality methods to be very usefu~ in the .initia~ description 
of a series. Since the X-II program ~s relat~vely s~mple to use, 
it is especially appropriate when it is necessary to describe the 
patterns in a large number of series (for example, seven Index 
crimes in Illinois's 102 counties -- 714 series). The X-II also 
provides standard measures that can be compared from seri:s ~o 
series (see, fo'(' example, Block, 1984). Component analys~s ~s 
especially appropriate when the decision at hand requ~res a 
separate description of the pattern of seasonal fluctuat~on, or 
the pattern of the series adjusted for seasonality. 

The X-II program is not appropriate for highly irregular 
series, short series (six or fewer years), or for series con­
taining an abrupt change or discontinuity (Plewes 1977:2; 
Shiskin,et al. 1965:5-6). For an overview of potential problems 
for X-II users, see Fromm (1978). 

Extremes 

Although the X-II program is not appropriate for highly ir­
regular series, it is good to use when the ser~es contains ~ f:w 
extreme values. Because it is based on a mov~ng average, ~t ~s 
not resistant in the same way that a nonlinear smoother is (see 
note 18 above; Velleman,1982; Cleveland, et al.1978). It does, 
however' resist the effect of extremes with s. graduated weighting 
system '( Pierce, 1980: 131) . Values exceeding 2.5 standard devia­
tions are weighted zero, and values from 1.5 to 2.5 standard 
deviations are graduated linearly from full to zero weight. This 
is the default option, which the user is allowed to modify. 

Series Length 

The reason for the limit on series length becomes obvious if 
you consider that the X-II algorithm searches for similarities 
among months, and that there is only one January, one February, 
and so on, per year. To analyze a six-year series, for example, 
is to look at the similarities among six Januaries, six Februa­
ries, and so on. Thus, the number of observations is really only 
six. 
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In practice, we have found that X-11 results vary with the 
length of the series. For example, an analysis of the seven 
Index crimes in Illinois (Block,1984:3-5) found that the stable 
seasonality F values and the percent contributions of the sea­
sonal and of the irregular differed with the addition of three 
years to the series. For several crimes, the F value increased 
with the longer series, but the percent contribution of the sea­
sonal component decreased. One explanation for this apparent 
contradiction is that a longer series allows a more accurate 
description of seasonal activity. This more accurate description 
tells us that the seasonal contribution, in these crimes, is 
less. 

Discontinuities 

If there is an abrupt change or discontinuity in the se­
ries, no continuous method, component or ARIMA, will work. 
Smoothers such as a moving average are analytically coptinuous. 
They are defined in the same way throughout the series.3~ There­
fore, X-11 cannot accurately describe discontinuities or abrupt 
changes in the direction of a series. 

If you suspect that a series contains a discontinuity, 
Shiskin, et a1. (1967:5) suggest that you break it into segments 
for analysis. Also, investigate the data source to determine 
whether there was a change in definitifm or data collection prac­
tices (see Block,1982:56-58). 

Moving Seasonality 

The X-11 program assumes that seasonal fluctuation follows a 
stable or gradually evolving pattern from year to year (see IIPat­
tern Consistency," page 28 above). If there is a large amount of 
year-to-year change in the seasonal pattern, the series is said 
to contain "moving seasonality. II 

One of the X-11 diagnostics, an F of moving seasonality 
will alert you to its presence. In contrast to the F of stabl~ 
seasonality, which is the ratio of the between-month variance of 
the seasonal to the irre~ular, the F of moving seasonality is the 
between-year ratio. It tests the null hypothesis that the years 
all have the same seasonal pattern. An added attraction of the 
X-11/ARIMA is a combined test for stable and moving seasonality 
(Dagum,1983a). . 

34Macaulay (1931: 21), in his classic text on time series 
smoothing, argues that, even though freehand smoothing with a 
~rench curv*: i,s generally unsatisfactory, .. if the underlying 
~deal curve ~s ~tse1f not smooth," then a freehand method is bet­
t:r than mathematical curve-fitting. If there are discontinui­
t 7es or sharp changes of dir:ction (cusps) in the underlying se­
r~es, then any overall, cont~nuous smoothing method will obscure 
them, rather than describe them accurately. An analyst might 
then be,mi~led into thinking that there was no abrupt change in 
the _ser~es (Block,1983:7,8,58,59). 
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When X-11 results indicate a significant F of moving season­
ality, we suggest the following procedure: 

1. Inspect the series for abrupt changes or disconti­
nuities. Is there an abrupt change in level? Does the se­
ries suddenly develop (or lose) seasonal fluctuation after a 
certain date? If so no continuous method, whether component 
or seasonal is a~propriate. Check the definition and 
validity of ~he data set. If the definition of the series 
changed at some point, divide the series into two parts at 
that point, and analyze the parts separately. 

2, If there is no discontinuity, compare the additive 
to the multiplicative adjustment. Do both contain moving 
seasonality? If not, assume that the adjustment that does 
not reflects the true nature of the series. 

3. If both additive and multiplicative adjustments in­
dicate moving seasonality, determine the particular month(s) 
that vary in seasonal fluctuation. Using options available 
in the X-11 program, change the moving average for these 
months. (For more detail, see Plewes 1977:5-6.) 

4. In any case, question the results of an adjustment 
in which the moving seasonality F value is significant. 

Figure 11 shows a series containing an appar:nt discon­
tinuity. In this series, the number of pe~ple ~n I11in~is 
receiving the first 26 weeks of unemployment ~nsurance, mov~ng 
seasonality F values are significant in both the additive adjust­
ment and the multiplicative adjustment.35 Between October, 1974 
and January, 1975, the number of unemployed people in Illinois 
tripled (Block, et al. 1981). The seasonal factors (table 4) 
reflect this drastic change. The seasonal factor of many months 
changes in about 1974. April, for example, is usually ~ little 
high, but is very high in 1974. August.fol10ws the oppos~te pat­
tern. October is always low, but 1974 ~s extremely low. 

The distinction between gradual change (moving seasonality) 
and abrupt change (discontinuity) requires subjective interpret~­
tion and an intimate knowledge of the data source. In th~s 
Illinois unemployment example, we thoroughly investigated the 
source of the data to determine if some change in data collection 
practices had occurred, and finally concluded that there ~as no 
change in the definition of the data. Thus, the apparent d~scon­
tinuity may represent a real increase in the number of unemploy­
ment insurance recipients. Such an hypothesis may be tested, 
using IItime series intervention ll methods (Glass, et al. 1975). 

35Moving seasonality F values are 6.16 an~ 7.09, :es~e~tive-
1y. A value of 2.41 or higher should be cons~dered s~gn~f~ca~t. 
That is, the possibility that the series conta~ns mov~ng 
seasonality should not be ruled out. We cannot conf~dently as­
sume that the seasonal pattern is the same in every year of the 
series. 
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Figure 11 

llt.INOIS UNEMPLOrfff:NT INSURRNCE RECIPIENTS. 1965-1978 
FIRST 26 WEEKS 
SOURCE,BURERU OF LRBOR STRTlSTlCS 

51''' J .. 6t , y 10 5 lJ ..... 111: 13 \11.1 7\ S t' l'S 
MONTH 

Table 4 

Seasonal Factors, Additive Adjustment 
Illinois Unemployment Insurance Recipients 

'le~r Jan. Feb. Mar. Apr. Mav Jun. .TIll. All;;. S"ot. O~t. Nov. 1)~. 
i) 

1965 181 259 174 1~8 -17 -76 -39 -65 -150 -150 -116 -52 1966 184 256 176 49 -17 -75 -3'7 -6'7 -150 -153 -117 -51 
1967 189 249 171 ,- " .15 -70 -36 -71 -153 -164 -117 -52 J,_ 
1968 199 247 179 63 -15 -65 -40 -79 -161 -177 -117 -50 1969 210 248 183 '71~ -14 -61 -47 -88 -172 -196 -123 -47 19'10 230 255 197 88 -10 -62 -54 -96 -187 -213 -139 _lt5 
1971 251 265 208 100 -3 -54 -52 -105 _201~ -243 -165 _5 1+ 
1912 274 277 229 121 8 -45 -46 -118 -227 -274 -193 -58 
19'13 291 292 260 128 11 -40 -31 -131 -238 -299 -221 -65 1974 300 310 2')2 132 2 -42 -26 -130 -243 -309 -238 -61 19"75 290 332 318 120 -17 -47 -28 -123 -235 -303 -246 -60 ly'!6 ~71 352 341 112 -34 -58 -46 -112 -228 -287 -241 _4J! 
19'77 250 366 352 94 -51 -75 -63 -101 -215 -251 -237 -35 1978 240 3'70 353 83 -63 -88 -75 -91 -205 -243 -235 -32 
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ARIMA Methods 

ARIMA time series models are a sophisticated way of fore­
casting future observations from past observations. Box and 
Jenkins (1970) suggested that most time series encountered in 
practice follow either (or a combination of) two types of sto­
chastic processes: moving average or autoregressive. 36 By deter­
mining wh~t process a series followed in the past, and assuming 
that that process will continue, we can forecast the future. 

Seasonal fluctuation is one possible aspect of a stochastic 
process. To identify an ARIMA model for a series, th'e analyst 
must decide whether or not a seasonal process should be part of 
the model. 

The method Box and Jenkins developed to identify the pro­
cesses of a series uses trial and error ("iterative decisions"). 
The analyst begins with an initial diagnosis of the series. This 
diagnosis uses descriptions of the relationship between observa­
t:l.ons at one time period and another to discover any systematic 
movement. If some of this movement appears to be seasonal, the 
analyst considers a number of alternative seasonal processes that 
may account for the diagnostic results. Each set of alternative 
processes becomes a tentative model. The analyst then evaluates 
the "goodness of fit" of each tentative model by calculating the 
"res iduals, II the difference between the modeled values and the 
actual data. Eventually, the analyst reaches a model that 
appears to describe the series better than alternative models. 
This model mayor may not contain a seasonal process. 

Just as the component method did not lend itself to one sim­
ple, objective interpretation of X-II results to decide whether 
or not a series fluctuates with the seasons, ARIMA also relies on 
the subjective interpretation of a number of diagnostic tests. In 
this section, we explain the most important of these diagnostics. 

Definitions 

Moving Average and Autoregressive Processes 

In a moving average (MA) 2rocess, the current observation is 
a function of a past error. 3'( Error is a random disturbance, 
sometimes called "noise" or "shock." By definition, the error of 
one observation is independent of the error of other observa­
tions. However, errors can be related to the observations them­
selves. This happens in a moving average process. 

36For a definition of II stochastic process, II see page 16, 
above. 

37 A moving average process is not the same as the "moving 
average ll of the component method. See note 19, above. 
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An MA(l) moving average process means that the current ob­
servation is affected by the error of the previous observation.38 
An MA(2) moving average process means that the current observa­
tion is affected by the error of the second previous observation. 
A seasonal moving average process, MA(12), means that the current 
observation is affected by the error of the observation one year 
ago. In general, in a series following a moving average process, 
the current observation is correlated with past error(s). 

In an autoregressive (AR) process, the current observation 
is a function of a past observation (not a past error). An AR(l) 
autoregressive process means that the current observation is 
affected by the previous observation. An AR( 2) autoregressive 
process means that the current observation is affected by the 
second previous observation. A seasonal autoregressive process, 
AR( 12), means that the current observation is affected by the 
observation one year ago. 

Most series can be described as either MA(l), MA(2), AR(l), 
AR( 2), or a combination o '.i.' MA and AR processes. Some series are 
a combination of a serial MA or AR process (or both) and a sea­
sonal MA or AR process (or both). How can we identify the pro­
cess, or combination of processes, that best describes the series 
at hand? 

Identifying the Proce'ss of a Series 

There is no way to measure past error directly. 39 How, 
then, can we differentiate a moving average process from an auto­
regressive process? An important diagnostic for identifying the 
process of a series is the correlogram. Moving average and auto­
regressive processes produce different "autocorrelation" pat­
terns. Autocorrelation refers to the correlation betl'leen the 
observations of a time series. A correlation between each 
observation and the neighboring observation is a first-order 
autocorrelation, or an autocorrelation at lag 1. A correlation 
between each observation and the observation two months away is a 
second-order autocorrelation, or an autocorrelation at lag 2. A 
correlogram is a chart of the autocorrelations of a series at 
various lags. The correlograrn in figure 12 shows each autocorre­
lation from lag 1 to lag 36 for Illinois larceny/theft. The 
first-order autocorrelation is .801, which means that observa­
tions in this series tend to be closely related to their neigh­
boring observations. If one observat~on is high, the observa­
tions before and after it are likely to be high, and vice versa. 

38The word "affected II here simply means correlated. Al­
though the current observation may be predicted from the past, 
the past does not directly "cause ll the current observation. 

39Error may be estimated by using the residuals of a regres­
sion (the difference between an observation and the equilibrium 
or mean level of the series). Roberts (1974,1975,1982) calls 
this the Durbin/ARIMA method. 
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Figure 12 

Correlogram of Illinois Larceny/Theft 

S.E. 
AUTO- RANDOH 

ORDER CORR. HODEL -1 -.75 -.56 -.25 .25 .50 .75 +1 

.801 .0Y0 
2 .580 .690 
3 .326 .089 
4 .085 .089 
5 -.140 .989 
6 -.232 .988 
7 - .153 .!i88 
8 .036 .987 
9 .229 .987 

19 .450 .087 
11 .617 .086 
12 .798 .9S6 
13 .595 .985 
14 .497 .985 
15 .166 .085 
16 -.e79 .084 
17 -.290 .984 
18 -.397 .083 
19 -.341 .e83 
20 -.162 .e83 
21 .015 .982 
22 .21'2 .9B2 
23 .353 .981 
24 .4H • e81 
25 .345 .981 
26 .167 .~Be 

27 -.941 • eBe 
28 -.211 .979 
29 -.499 .979 
36 -.497 .978 
31 -.436 .e78 
32 -.291 •• 78 
33 < 124 .9n 
34 •• 72 •• 77 
35 .218 .976 
36 .306 .076 

:----:----:----:----:----:----:----:----: 
+ 
+ 
+ 
+ 
+* 

*+ 
+t 

+ 
+ 
+ 
+ 
? 

+ 
+ 
+ 
+* 

* + 

* + 

* + 
>I< 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

u 

* + 

* + 

* + 

* + 
+* 
+ 
+ 
+ 

+ 
+ 
+ .. + 
+ 
+ 
+ 

:* + 
+ * 
+ 
+ 
+ 
+ 
+ 
* 
+ 
+ 
+ 
+ 
+ 

* + 
tot: 

. ,. 

..,. . 
'r. 

+ 
+ 
+ 

* + 
+ 
+ 
+ 
+ 
+ 
+ 

:* + 

* 

* 
't 

+ :I< 

* 

* 
* 

* 

:----:----:----:----:----:----:----:----: 
-1 

* : 
+ : 

-.75 -.50 -.25 .25 .50 .75 +1 

AUTOCORRELATIONS 
2 STANDARD ERROR LIMITS (APPROX.) 



----~,---.. ~,-. 

[" 

" 

In a moving average process, as discussed above, observa­
tions are correlated with one or more previous errore s) . Al­
though we cannot observe correlation with an error directly, a 
correlation with a previous error results in a correlation with 
the corresponding previous observation. For example, in an MA(12) 
series, the current observation is correlated with the 12th 
previous observation. This is also true of an autoregressive 
process. However, because errors are independent of each other 
by definition, the second or greater previous observations in an 
MA(1) series, or the third or greater previous observations in an 
MA(2) series, or the 24th or greater previous observations in an 
MA( 12) series are not correlated with the current observation. 
This is not true of an autoregressive process. 

In an autoregressive process, neighboring observations are 
correlated with each other. For example, in an AR( 1) process, 
observation 1 is correlated with observation 2, and observation 2 
is correlated with observation 3. Therefore, observation 1 and 
observation 3 are correlated. The correlation of observations 
one time period apart produces geometrically decreasing correla­
tions of observations two time periods apart, three periods 
apart, and so on. 

Because the second or greater previous observation is not 
correlated with the present observation in an MA(1) series, but 
is correlated with the present observation in an AR(1) series, 
autocorrelations provide a useful clue as to what model would 
best describe a series. A high autocorrelation at lag 1 that 
disappears at higher lags (for example, see figure 13) suggests 
an MA(1) model. A high autocorrelation at lag 1 that decreases 
exponentially at higher lags (for example, see figure 14) sug­
gests an AR(1) model. 

We distinguish between seasonal MA and AR processes in a 
similar way. In both kinds of series, observations 12 months 
apart are correlated with each other. That is, the January ob­
servations are similar to each other, the February observations 
are similar to each other, and so on. Therefore, both seasonal 
MA and seasonal AR processes have significant 12th-order autocor­
relations. However, in a seasonal MA series, the 24th-order and 
36th-order autocorrelations are small, while in a seasonal AR 
series, they are significant. A high autocorrelation at lag 12 
that is still high but decreasing exponentially at lags 24, 36, 
and so on, suggests a seasonal autoregressive model. A high 
autocorrelation at lag 12 that disappears at higher seasonal lags 
suggests a seasonal moving average model. 

The identification of the process of a series, especially 
combinations of AR and MA or serial and seasonal can become 
quite complex. Correlograms provide clues, but ar~ subject to 
varied interpretation. The partial correlogram (McCleary and 
Hay, 1980: 75-79; Nelson, 1973: 82-84) is helpful, and we have also 
found the Durbin/ARIMA technique (Roberts,1982) to be helpful. 
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Figure 13 

Correlogram, First Difference 
Chicago Homicide with a Gun: 1965-1978 
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Figure 14 

Corre10gram, Chicago Assault Homicide: 1965-1978 

S. E. 
AUTO- RANDOM 

ORDER CORR. MODEL -1 .25 .50 .75 +1 
:----:----:----:----:----:----:----:----: 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
3c• 
" 

3Ib 

.384 

.279 

.203 

.238 

.094 
• 171 
.149 
.2B5 
.115 
.195 
.153 
.177 
• 18~ 
.lll6 
.jP4 
.091 
.'f09 
.058 
.106 
.174 
.145 
.158 
.150 
.144 
.136 
.092 
.075 

-.057 
-.122 
-.033 

.669 

.925 

.069 

.120 

.044 

.045 

.076 

.976 

.976 

.976 

.976 

.975 

.975 

.075 

.075 

.074 

.974 

.974 

."74 

.en 

.973 

.073 

.073 

.072 

.072 

.072 

.071 

.071 

.071 

.071 

.071 

.070 

.079 

.070 

.079 

.069 

.069 

.069 

.068 

.068 

.068 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
+ t 
H 

+ '" 
*+ 

* 

::t: + 

:H 
:t + 

'I: 

>I: 

:/: 

'" >t: 

+ *: 
+t. : + 
+ *: + 
+ 'j! + 
+ 
+ 
+ 
+ 
+ 

: *+ 
:-1< + 
::t + 

:----:----:----:----:--~-:---~:----=----: 
-1 

;j: 

+ 

-.75 -.50 -.25 .25 .50 .75 +1 

AUTOCORRELATIONS 
2 STANDARD ERROR LIMITS (APPROX.) 

~ , . -_ .... -- .~.~",~", •. ,,-., -<. _.. ..-___ ••• _.~_. ___ • ___ ~ ___ ::::..._"_,.::......:..:.::...:...:.:...__:....::..,~._ . .:.;::,::_.<_:M:,..,"' .• ".""~.:~~<.,_.~,,~. __ .. -.~.-" 

Stationarity 

In general, seasonal series have a significant autocorrela­
tion at lag 12. However, the opposite is not always true. Some 
series that are not seasonal may have a large correlation between 
observations 12 months apart. This can happen if there is an 
overall trend in the series. For example, figure 15 is the cor­
relogram of a nonseasonal series with a decided increase over 
time. Observations 12 months apart are correlated. Figure 16 is 
the corre10gram of the same series with the increasing trend 
removed. Observations 12 months apart are not correlated. Such 
a series is said to follow an "integrated" process. The III" in 
ARIMA stands for integrated. 

This emphasizes an additional complication of identifying an 
ARIMA model: the method we have described works only for sta­
tionary series. A series is stationary if its mean and its vari­
ance are the same at every part of the series. A stationary se­
ries thus shows no trend. 4'0 Because many series do show some 
trend, they may not, therefore, be analyzed by ARIMA methods 
unless they are first transformed to remove the trend. First, 
the series is transformed to make it stationary. Second, a model 
is identified for the transformed series. 

Ju.st as there are seasonal MA and AR processes, there can be 
seasonal lack of stationarity (seasonal trend). In such a case, 
each month is systematically higher (or lower) than the same 
m~nth one year ago. In addition, just as it is possible to have 
a combination of serial and seasonal processes in the same se­
ries, it is possible to have a combination of serial and seasonal 
lack of stationarity. How do we decide whether or not a series 
is stationary, and if we decide it is not, how do we transform 
it? 

To decide whether or not a series is stationary, first look 
at its graph. 41 Does the level of the s~ries seem to increase or 
decrease over time? Second, look at a correlogram. In a series 

40A stationary series not only has no change in level over 
time, but also has no change in variance from the beginning to 
the end of the series. We do not discuss this kind of seasonal 
lack of stationarity here, because it is difficult to imagine a 
seasonal change of variance. However, with serial change in var­
iance, transforming the series with a log or a square root may 
produce a stationary series. The "ladder of powers" (Velleman 
and Hoaglin, 1981: 48-50) is a useful tool for the novice in 
determining the expected effect of various power transformations. 
Also ftee Nelson (1976) or McCleary and Hay (1981). 

lIt is easier to see a trend in a graph of a standardized 
series than in a graph of the raw data. In a standardized se­
ries, each observation is converted to its Z score, or its stan­
dard deviation above or below the mean. This useful option is 
available in the IDA package (Ling and Roberts,1982). 
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'Figure 15 

Canadloan Homicide: 1961-1980 Correlogram , 
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Figur.e 16 

Correlogram, First Difference 
Canadian Homicide: 1961-1980 
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with either serial or seasonal trend, the correlogram shows a 
pattern of high auto~orrelati~ns tha~ do not dec~ease with lag. 
In contrast in a ser~es that ~s stat:lonary, but follows an auto­
regressive process, th~ autocorrelatioD;s d~crease geom7t~ically 
(see "Identifying The Process of' a Ser~es, abo~e) . S~In1la~ly, 
in a series with seasonal trend, the autocorrelat~on at the f~rst 
seasonal lag is high, and the autocorrelations. at succ.essive 
seasonal lags do not decrease. For example, f.~gure. 17 ~s ~he 
correlogram of the Illinois larceny/theft ser~es w~th ser~al 
trend removed (by first differencing; see below). The autocor­
relations are .567 at lag 12, .520 at lag 24, and .416 at lag 36. 
The seasonal autocorrelations do decrease a little with lag, but 
the decrease is certainly less than geometrical. This suggests 
seasonal lack of trend instead of an AR(12) process. Be very 
cautious however, in seasonal decomposition of a series that has 
been log'transformed. Dagum (1981:133) has shown that, in an ad­
ditive assumption, IIlogarithmic transformation destroys the un­
derlying properties of the series and that the ARIMA models 
adequate for the non-transformed data are no longer applicable. II 

Differencing 

Differencing is a transformation intended to produce a se­
ries that is stationary in level. As discussed in the section 
just above, a series that is not stationary in level cannot be 
modeled with ARIMA methods. Unfortunately, there is no .. cook­
book" test to determine whether or not a series is stationary 
(see Rauma, 1981; Blumstein, et al., 1981). Autocorrelationsthat do 
not die out with increasing lag, such as the correlogram in 
figure 15 above, should make you suspect a non-stationary series. 
However, ultimately, you must use trial and error. Transform a 
series to remove trend; then analyze the transformed series. 

An overall trend can usually be removed by a first dif­
ference; a seasonal trend can usually be removed by a 12th 
difference. 42 In a first difference, each observation is sub­
tracted from the following observation. In a 12th difference, 
each observation is subtracted from the observation 12 months 
away. The differenced series is interpreted as the change from 
one observation to the next for a first difference, or the change 
from one year to the next for a 12th difference. If a series has 
both a serial and a seasonal trend, you would transform it into a 
stationary series by taking a 12th difference of the first 
difference. 

42Some series require two successive first difference trans­
formations to make them stationary. That is, each observation is 
subtracted from the next observation. This produces a series of 
first differences, which will be a straight line with a trend. 
Then this differenced series is differenced again. The second 
differencing produces a stationary series. 
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Figure 17 

Corre10gram, First Difference 
Illinois Index Larceny/Theft: 1972-1981 
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Figure 18 

Correlogram, First and Twelfth Difference 
Illinois Index Larceny/Theft: 1972-1981 

S.E. 
AUTO- RANDOM 

ORDER CORR. HODEL -1 -.75 -.50 -.25 0 .25 .50 .75 +1 
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For example, figure 17 is the correlogram of Illinois 
larceny/theft after first differencing. Figure 18 is the corre­
logram of the series after first and 12th differencing. In other 
words, each observation was subtracted from the following obser­
vation, which produced a series of first differences. These 
first difference values were then subtracted from the first dif­
ference value 12 months away. Compare these correlograms to the 
correlogram of the original series (figure 12, above). 

Although differencing may be necessary to p~oduce a station­
ary series, it may also produce some problems. 3 One possible 
drawback of differencing is that the differenced series has fewer 
observations than the original series. If the original series 
has 144 observations, for example, a first difference has 143. 
Even more observations are lost with 12th differencing. We have 
occasionally found this to produce confusing results. For ex­
ample, if the initial year of a series contains more (or less) 
trend or more (or less) seasonality than the rest of the series, 
a 12th difference, by eliminating the initial year, would change 
the diagnostic ~esults for the series. This is one of th~ many 
reasons that, before attempting to estimate a model, it is wise 
to inspect the pattern of the raw data (see Block, 1983) . 

Another drawback of differencing is the danger of overdif­
ferencing (also called overadjustment; see page 7 and references 
in note 5, above). For example, removing the trend from the 
Canadian homicide series (figure 15) produces a transformed 
series that contains negative autocorrelation between each obser­
vation and the next observation (figure 16). We have encountered 
this phenomenon with some frequency in crime series. Dagum 
(1981: 135) notes that, IIExcessive application of the difference 
operator, to generate a process stationary in the differences, 
induces a non-invertible moving average process in the 
residuals. 1144 In other words, the correlogram of an overdif­
f'erenced series may mimic the correlogram ofa moving average 
process. Dagum's X-ll/ARIMA package rejects a moving average 
ARIMA model if the weight of the moving average process equals 
.90 or greater. 45 This is a good rule of thumb to use in general 
situations. 

43If the original data are random, then the first differ­
ences" will be random also. However, if the original data are 
aggregated over time (for example, monthly de.,ta cumulated to 
quarterly or yearly data), then the first difference of the 
aggreg~te data will not be random. See Kendall (1976:6-7). 

44 I1 Non-invertible" refers to one of the statistical require­
ments of moving average processes, equivalent to the requirement 
of stationarity for autoregressive processes. The weight of a 
moving average term in an ARIMA model must be less than 1. See 
Nelsop (1973:46-48). 

ij5In other words, the X-l1/ARIMA assumes overdifferencing in 
a model in which the current observation is related more strongly 
than .90 to the error of the previous observation. 
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Despite these drawbacks, if your series is not stationary, 
analyzing a difference transformation of it may be your only 
alternative for identifying an ARIMA model. You may have to 
choose between several alternatives (overdifferencing versus not 
identifying a model), none of which is entirely satisfactory. 

Rules of Thumb for Evaluating a Model 

After first obtaining a stationary transformation, or deter­
mining that the original series is already stationary, and iden­
tifying a tentativ'2 model, we must evaluate this model. For ex­
ample, for Illinois larceny/theft, the ~irst-?rder and 12th-order 
autocorrelations of the transformed ser1es (f1gure 18, above) are 
significant, but the second order and 24th-order autocorrelations 
do not differ significantly from zero. This pattern of autocor­
relations suggests a combination of MA(1) and MA(12) processes. 
Therefore, we modeled larceny/theft by applying MA(1) and MA(12) 
processes to the differenced series. This produced the modeled 
series graphed in figure 10 (page 17, above). We now must deter­
mine whether or not this model accurately describes the stochas-
tic process of the series. 

One way to evaluate a model is to analyze the residuals, the 
discrepancy between the modeled values and the actual series. 
Residuals of a good model vary randomly over time. 46 This section 
explains two tools for analyzing the residuals of a model -- the 
correlogram, which has been introduced above, and a new tool, the 
cumulative periodogram. 

This section is only a quick overview of model evaluation. 
For more detail, see Nelson (1973) or McCleary and Hay (1980). 
In addition, we have found the criteria developed by Statistics 
Canada (Dagum 1981,1983a; Lothian and Morry,1975) to be useful in 
model evaluation. 

Correlograrn of Residuals 

The correlogram of the residuals of an MA( 1) and MA( 12) 
model for Illinoi~ larceny/theft (figure 19) does indeed indicate 
a random pattern. 47 Compare this pattern to the correlograms of 
the original series (figure 12), the series transformed by first 
differencing (figure 17), and the series transformed by both 
first and 12th differencing (figure 18). Clearly, the resi­
duals look most like a random series. 

46This random variation in a time series is sometimes called 
"white noise. II 

47Two of the 36 autocorrelations in figure 19 are slightly 
larger than two standard deviations, but a small percentage of 
autocorrelations might be expected to be significant, only by 
chance. 
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Figure 19 

Correlogram, Residuals of (0,1,1) (0,1,1) Model 
Illinois Index Larceny/Theft: 1972-1981 

S.E. 
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If inspecting a correlogram of residuals seems too subjec­
tive, there is an objective criterion for randomness in a set of 
sample autocorrelations. This is the IIBox-Pierce" statistic, 
also known as the "QII statistic (Box and Pierce, 1970; Nelson, 
1973:115). ARI~~ programs such as IDA calculate the Box-Pierce 
statistic whenever the user requests a correlogram. It is 
distributed approximately as chi-square, with degrees of freedom 
equal to the number of lags in the correlogram minus the number 
of autoregressive and/or moving average processes in the model. 

However, like component analysis, ARIMA ana~ysis is open to 
alternative interpretations. The Illinois larceny/theft series 
exemplifies a common situation requiring interpretation: is the 
series non-stationary, or is it an autoregressive process with a 
very high correlation between one observation and the next? The 
series transformed by first and 12th differencing (figure 18) has 
negative autocorrelation at lag 12. One interpretation of this 
is that it suggests the model we have identified, a moving aver­
age process with a negative relation between observation and er­
ror. On the other hand; the differencing may have overadjusted 
the series, adding a systematic pattern that was not in the 
original series. A simpler 12th difference without the first 
difference produces a transformed series that has the autocorre­
lations in figure 20. This pattern of autocorrelations suggests 
an AR(1) or AR(2) process. The decision as to which alternative 
is best is subjective. Therefore, analysts should be careful to 
mention their decisions, and the diagnostics that led to these 
decisions, in published results. 

Cumulative Periodogram of Residuals 

The cumulative periodogram is also very useful in evaluating 
a tentative model, e~pecially when the series may contain 
seasonal fluctuation.4~ A cumulative periodogram gives you the 

_ .48Por more detail about analysis of series in the frequency 
aoma~n. see Rosenblatt (1965:1-2) or Glass, et al.(1975:205-216). 
A periodogr~rt is a tool for analyzing of the spectrum or the har­
monics of a series. It is based on the assumption that a series 
is made up of sine and cosine waves. The analysis of the period, 
phase, and amplitude of these waves is known as analysis in the 
"frequency domain," in contrast to the "time domain," which is 
the kind of analysis we have discussed so far in this report. 
Period is the time required for a full cycle. Frequency is the 
number of cycles per time unit. Because frequency is the recip­
ro~a~ o~ period, the meaning of "high frequency" and IIlow peri­
od~c~ty are the same, and IIpower domain II means the same thing as 
IIfrequency domain." Phase is the position of the cosine function 
relative to the starting point of the series. The measure of 
amplitude, or power over the frequency domain, is the spectrum 

II t" A id . ' or power spec rum. per 0 ogram measures the ~ntensity of the 
spectrum at a certain frequency. The "normalized cumulative 
period<?gram" . (Bc:x and Jenkins, 1976: 295) is a good tool for 
detect~ng per~od~c patterns in the residuals 0: a model. 
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Figure 20 

Correlogram, Twelfth Difference 
Illinois Index Larceny/Theft: 1972-1981 

S. E. 
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same sort of information that a correlogram gives you, but from a 
different perspective. The spectrum is mathematically equivalent 
to the autocorrelation function (Box and Jenkins 1976:39-45). It 
is simply an alternative way of describing the pattern of 
relationships among the observations. 

Box and Jenkins (1976:294) reconunend a periodogram analysis 
in preference to a correlogram for evaluating departures from 
randomness in the residuals of a model. When we fit a model to a 
series containing seasonal fluctuation, we want to be sure that 
the model accounts for all of the seasonality. We do not want 
the residuals of the model to contain periodicity. As Box and 
Jenkins point out (1976:294): 

we are on the lookout for periodicities in the 
residuals. The autocorrelation function will not be a 
sensitive indicator of such departur~s from randomness, 
because periodic effects will typically dilute themselves 
among several autocorrelations. The periodogram, on the 
other hand, is specifically designed for the detection of 
periodic patterns in a background of white noise. 

For example, figure 21 shows two cumulative periodograms 
side by side for comparison. The periodogram for the original 
larceny/theft data Indicates two distinct departures from lin­
earity. The jump at an interval of 2 is often seen in non-sta­
tionary series. The jump at an approximate period of 11.9 months 
is often seen in a seasonal series. The graph of the residuals 
of the MA(l) MA(12) model, on the other hand, does not indicate 
any significant periodicity. The cumulative relative sum of 
periodogram (asterisks) moves in a well-behaved fashion, well 
within the 5 percent confidence limits (crosses). 

Appropriate Applications 

Obviously, the combinations of moving average processes and 
autoregressive processes, serial processes and seasonal proces­
ses, can become quite complicated. Identifying the ARIMA model 
that best describes a series is not entirely objective, nor is it 
simple for an analyst to state these subjective decisions in a 
published report. It is not uncommon for two statisticians to 
identify different models for the same series, even though they 
use the same methods. As Pierce (1980:130) argues, "Theoreti­
cally incompatible models can produce results uncomfortably close 
to each other and uncomfortably far from the truth. II 

In contrast to the X-ll, which can be used easily and quick­
ly for a large nwnber of series, and which has standard options 
and criteria that can be explicitly stated, ARIMA methods require 
a lengthy analysis and re-analysis of each individual series. 
Therefore, they are most appropriate for analyzing one or two im­
portant series, rather than as the standard method of analyzing 
all of an agency's data (see Kuiper,l978: 59-60). 
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Figure 21 

Cumulative Periodograms 
Origina~ Data and Mociel Residuals 

Illinois Index Larceny/Theft: 1972-1981 
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As discussed. above (page 31) J neither ARIMA nor component 
methods are appropriate for highly irregular series, short series 
(six or fewer years) J or series containing an abrupt change or 
discontinuity. 

Extremes 

ARIlrtA methods, in contrast to component methods, are not 
resistant to the effect of extremes (see Chernick,et al., 1982). 
Therefore, they are not appropriate for series containing extreme 
values. However, ARIMA can, of course, be used if the series is 
first transformed to remove or re-weight the extremes. 

Series Length 

A general rule of thumb in ARIMA time series analysis is 
that a m~n~mum of 50 observations are necessary to estimate the 
stochastic process of a series (see Hartman,et al., 1980). How­
ever, with seasonal processes, even more observations are neces­
sary. Also, keep in mind that, if a 12th difference is necessary 
to make the series stationary, 12 observ'ations will be lost. 

Discontinuities 

An ARIMA model, like a component model, is analytically con­
tinuous (see note 34, above). Analytic continuity means that the 
behavior Clf the series in one small region is the same as the be­
havior of the series everywhere (Cox,1971:36). In other words, 
an ARIMA model describes the relationship of each observation to 
preceding observation(s). This relationship is the same 
throughout the series. 

If there is an abrupt change or discontinuity in the defini­
tion of the series, a continuous model is not appropriate. If 
you suspect that this is the case, first inspect the series care­
fully, and check the original data source for possible changes in 
definition or data collection practices. Based on your knowledge 
of the series, you may want to hypothesize that some intervention 
changed the behavior of the series after a certain date. Such an 
hypothesis can be tested (see Glass,et al.1975; Shine,1980,1982). 
Your final model may be complex, including a change in level or 
stochastic process after the occurrence of the hypothesized 
intervention. In any case, do not try to fit a continuous model 
to a series containing a discontinuity. 
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Moving Seasonality 

ARIMA methods are particu.larly helpful for describing series 
that contain moving seasonality (see page 32, above). The ARIMA 
concept is based on the assumption that the current observation 
is more strongly related tr) recent observations than it is to 
observations in the distant past. The whole purpose of identi­
fying an autoregressive or moving average process is to describe 
this decreasing relationship. However, as discussed above (page 
33), the distinction between moving seasonality and discontinuity 
is not always easy to make. ARIMA methods can handle the first, 
but not the second. 
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Alt, 
1977 

Frank B., Stuart J; Deutsch and Jamie J. Goode 
Estimation for the mUlti-consequence intervention model. 
Proceedings of the Statistical Computing Section, American 
Statistical Association. 
Presents an algorithm for an interrupted time series exper-
iment. 

Anderson, R.L. 
1950 Tests of significance in time-series analysis. Pp. 352-355 

in Statistical Inference in Dynamic Economic Models. 
Tjalling C. Koopmans (ed.) New York: John Wiley & Sons. 
Discusses the F of stable seasonality. 

Armstrong, J. Scott 
1978 Forecasting with econometric methods: Folklore versus Fact. 

Journal of Business 51(4):549-564. Responses by Chow, 
Kosobud, McNees, Miller, Wecker, and Zellner, pp 565-600, 
same issue. 
One of the first serious criticisms of econometric fore­
casting. 

Ascher, William 
1978 Forecasting: An Appraisal for Policy-Makers and Planners. 

Baltimore: Johns Hopkins University Press. 

Banks, Jerry and David Vatz 
1976 Sinusoidal pattern analysis in criminal justice. Crimino-

1Qgy 14(2):251-258. 
Uses a multiple regression with trend and sine-cosine com­
ponents. For an introduction to spectral analysis, see 
Rosenblatt (1965). 

Beaton, Albert E. and John W. Tukey 
1974 The fitting of power series, meaning polynomials, illustra­

ted on band-spectroscopic data. Technometrics 16(May,2): 
147-185. 

Bell, 
1983 

A review of spectral analysis, with emphasis on robust and 
resistant techniques. 

W. R. and S. C. Hillmer 
Modeling time series with calendar variation. Journal of 
the American Statistical Association 78(383):526-534. 
Combination of regression and ARIMA models handles trading­
day and Easter holiday variations. 

Bliss, C. I. 
1958 Periodic regression in biolGgy and climatology. Connecti­

cut Agricultural Experimental Station Bulletin 615:1-56. 
1970 Statistics in Biology. Vol. II. New York: McGraw-Hill. 

Two sources for periodic regression analysis (PRA). For an 
example of the use of PRA, see Warren, et al (1981). 
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Block, Carolyn Rebecca 
1976 Cross-sectional and longitudinal analysis of developmental 

data. Social Science Research 5:137-151. 
1979 Descriptive Time Series Analysis for Criminal Justice Deci­

sion Makers: Local Illinois Robbery and Burglary. Chicago: 
Statistical Analysis Center, Illinois Law Enforcement Com-
mission. 
Seasonal analysis of Index robbery and Index burglary in 77 
Illinois law enforcement jurisdictions. 

1983 Manual for the Pattern Description of Time Series: Guide to 
Pattern Description. Statistical Analysis Center, Illinois 
Criminal Justice Information Authority. Revised from 1982 
edition. . 
Presents a simple method, easy to ~ommunicate to a general 
audience, of describing patterns of change over time. Also 
see Miller (1982). 

1984 Is Crime Seasonal? Statistical Analysis Center, Illinois 
Criminal Justice Information Authority. 
Contains a discussion of issues particularly relevant to 
analysis of seasonal fluctuation in crime, a review of re­
search literature on seasonality of crime, and the results 
of seasonal analysis of 135 Index crime series. 

Block, Carolyn Re~ecca and Richard L. Block 
1980 Patterns of Change in Chicago Homicide: The Twenties, The 

Sixties, and The Seventies. Statistical Analysis Center, 
Illinois Law Enforcement Commission. 

Block, Carolyn Rebecca, Craig McKie and Louise S. Miller 
1983 Patterns of change over time in Canadian and United States 

Homicide. Policy Perspectives 3(2):121-180. 

Block, Carolyn Rebecca, Louise S. Miller, Richard Block, Douglas 
Hudson 

1981 Explaining patterns of change over time in Chicago homi­
cides with a gun. Manuscript. Statistical Analysis 
Center, Illinois Law Enforcement Commission. 

Blumstein, Alfred, Jaqueline Cohen, Soumyo Moitra, and Daniel 
Nagin 

1981 On testing the stability of punishment hypothesis: a reply. 
The Journal of Criminal Law & Criminology 72(4):1799-1808. 
Reply to Rauma (1981). Discusses the issue of 
stationarity. 

Box, George E.P. and Gwilym M. Jenkins 
1976 Time Series Analysis: Forecasting and Control. San Fran­

cisco: Holden-Day. 
The classic treatment of ARIMA. This is a revision of the 
first edition, which was published in 1970. 
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Box, 
1967 

Box, 
1970 

George E.P., Gwilym M. Jenkins and D.W. Bacon 
Models for forecasting seasonal and nonseasonal time se­
ries. Pp. 271-311 in B. Harris (ed.) Advanced Seminar on 
Spectral Anal:lsis of_Tim~ Series, New York: John Wiley and 
Sons, Inc. 

George E.P. and David A. Pierce 
Distribution of residual autocorrelations in auto-regres­
sive-integrated moving average time series models. Journal 
of the American Statistical Association 65(332):509-526. 
Introduces the "Box-Pi~l'ce" statistic, which has become a 
standard criterion for randomness in a correlogram of 
residuals. 

Box, George E.P. and George C. Tiao 
1965 A change in level of a non-stationary time-series. 

trika 52:181-192. 
Biome-

Campbell, Donald T. and H. Laurence Ross 
1968 The Connecticut crackdown on speeding. Law and Society Re­

view 3:33-53. 
One of the first time series experiments. 

Campbell, Donald T. and Julian C. Stanley 
1966 Experimental and Quasi-Experimental Designs for Research. 

Chicago: Rand McNally College Publishing Co. 
This is the classic reference on time series experiments. 

Chernick, Michael R .• Darryl J. Downing and David H. Pike 
1982 Detecting outliers in time series data. Journal of the Am­

erican Statistical Association 77 (December,380):743-747. 

Cleveland, William S., Douglas M. Dunn and Irma J. ~erpenning 
1978 SAEL: A resistant seasonal procedure. Graphical methods 

for interpretation and diagnosis. Pp. 201-241 in Zellner 
(ed.) 1978. 
SABL is like the X··11 in its component approach, but dif­
fers in its treatment of extremes, its choices regarding 
multiplicative versus additive adjustment, and its graph­
ical displays. For a comparison of SABL and X-l1, see 
Levenbach and Cleary (1981). For general theory of non­
linear smoothing, see Emerson and Hoaglin (1983) and 
Velleman (1980,1982). 

Cohen, Lawrence E .. , Marcus Felson and Kenneth C. Land 
1980 Property crime rates in the United States: A macrodynamic 

analysis, 1947-77, with ex ante forecasts for the mid-
1980s. American Journal of Sociology 86(1,July):90-118. 
Also see Felson and Land (1977). 

Cox, M.G. 
1971 Curve fitting with piecewise polynomials. Journal of the 

Institute of Mathematics and its Applications 8(1):36-52. 
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Dagum, Estela Bee 
1978 A Comparison and Assessment of Seasonal Adjustment Methods 

for Employment and Unemployment Statistics. Background pa­
per No.5, National Commission on Employment and Unemploy­
ment Statistics, Washington, D.C. 20006. 

1981 Diagnostic checks for the ARIMA models of the X-11-ARIMA 
seasonal adjustment method. Pp. 133-145 in O.D. Anderson 
and M.R. Perryman (eds.), Time Series Analysis. Amsterdam: 
North-Holland Publishing Company. 
Discusses the calculation of, and the supporting theory 
for, the three criteria for ARIMA models built in to the 
X-11/ARIMA package. Also discusses the effect of log 
transformation on the models. See Lothian and Morry (1978). 

1983 The X-11-ARIMA Seasonal Adjustment Method. Seasonal Adjust­
ment and Time Series Staff, Statistics Ganada, Ottawa, 
KIA OT6. 
Dagum has done, or inspired others to do, much of the ad­
vanced work in seasonal adjustment today, including this 
X-11/ARIMA method. 

1983 Seasonality. Forthcoming in Encyclopedia of Statistical 
Sciences, S. Katz and N. Johnson (eds.), vol. 6. 

1983 Moving averages. Forthcoming in Encyclopedia of Statisti­
cal Sciences, S. Katz and N. Johnson (eds.), vol. 6. 

Deutsch, Stuart Jay 
1978 Stochastic models of crime rates. International Journal of 

Comparative and Applied Criminal Justice 2(2):127-151. 
Builds ARIMA models for seven Index crimes in each of 10 
U.S. cities. Finds that robbery, burglary, aggravated 
assault, larceny, and motor vehicle theft are seasonal, but 
homicide and forcible rape are not. 

1979 Lies, damn lies and statistics: A rejoinder to the comment 
by Hay and McCleary. Evaluation Quarterly 3(2, May):315-
328. 

Deutsch, Stuart Jay and Francis B. Alt 
1977 The effect of Massachusetts' gun control law on gun-related 

crime in the city of Bo~ton. Evaluation Quarterl~ 1(4, 
November):543-568. 
Finds that assault with a gun and armed robbery are season­
al, but homicide is not. See Hay and McCleary (1979) for a 
criticism, and Deutsch (1979) for the rejoinder. Also see 
Pierce and Bowers (1979) for an analysis of the same data. 

Deutsch, Stuart Jay and Ltl Ann Sims 
1978 An identification algorithm for dynamic intervention mo~ 

deling with application to gun control. Series no. J-78-
29, Georgia Institute of Technology, Atlanta 30332. Mimeo­
graphed. 
See Alt, Deutsch and Goode (1977). 

Dutta, M. 
1975 Econometric Methods. Cincinnati: South-Western Publishing 

Co. ' 
See Chapter 6 for an elementary discussion of analyzing 
seasonality by regressing dummy variables. 
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Edgerton, Julie, Linda Phelps, Karen Boley-Chang, and Constance 
Osgood 

1978 Ecology of Rape, Kansas City Metropolitan Area: Summary Re­
port of the Rape Data Bank. Institute for Community Stud­
ies, University of Missouri, Kansas City. Report prepared 
for the Metropolitan Organization to Counter Sexual 
Assault. 
"No definite seasonal pattern" in 1971 and 1975 rape offen­
ses in Kansas City, Missouri, Kansas City, Kansas, and 
Independence, Missouri. The method used was simple inspec­
tion of two years of monthly data. 

Emerson, John D. and David C. Hoaglin 
1983 Resistant lines for ~ versus ~. Pp.129-165 in Understandin~ 

Robust and Exploratory Data Analysis, Hoaglin, Mosteller 
and Tukey (eds.). New York: John Wiley & Sons, Inc. 
Review of the theory and method of resistant lines, inclu­
ding partitioning the series into three groups by various 
methods, and alternative approaches such as repeated 
medians. Also see Velleman (1980,1982). 

Felson h Marcus and Kenneth C. Land 
1977 Social, demographic and economic interrelationships with 

Educational trends in the United States. Research in Popu­
lation Economics: An Annual Compilation of Research, 
Vol. I, Julian Simon (ed.). 
Example of time-inhomogenous analysis method. Also see 
listings under Land, Land and Felson, and Cohen et al. 

Fromm, Gary 
1978 Comment on "An Overview of the Objectives and Framework of 

Seasonal Adjustment" by Kallek. Pp.26-29 in Zellner (1978). 

Glass, Gene V. 
1968 Analysis of data on the Connecticut speeding crackdown as 

a time series quasi-experiment. baw and Society Review 3 
(August) : 55-76. . 
See Stanley and Ross (1968). 

1971 Estimating the effects of intervention into a non-station­
ary time series. University of Colorado, Laboratory of Ed­
ucational Research, Report No. 51. 

Glass, Gene V., Victor L. Willson and John M. Gottman 
1975 Design and Analysis of Time-Series Experiments. Boulder: 

Colorado Associated University Press. 
With Campbell and Stanley (1966), this is the classic time 
series experiment literature. For time series intervention, 
also see Shine (1980,1982), Tyron (1982). 

Granger, Clive W.J. 
1978 Seasonality: Causation, interpretation and implications. 

Pp. 33-46 in Zellner (1978). 
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Grether, D.M. and M. Nerlove 
1970 Some properties of "optimal" seasonal adjustment. Econome­

trica 38(5,September):682-703. 
Clearly written. 'For other discussions of criteria see 
Lovell (1963), Willson (1973), and Granger (1978). ' 

Hamming, R. W. 
1977 Digital Filters. Englewood Cliffs, New Jersey: Prentice­

Hall. (Second edition; first edition 1977.) 
This is the classic reference for spectral analysis. See 
discussion of the "Gibbs" phenomenon, which is an argument 
against moving averages. 

Hannon, E. J' • 
1960 The estimation of seasonal variation. The Australian 

Journal of Statistics 2(1,April):1-15. 
1963 The estimation of seasonal variation in economic time se­

ries. American Statistical Association Journal 58(March): 
31-44. 

Hartmann, D.P., J.M. Gottman, R.R. Jones, W. Gardner, A.E. Kazdin 
and R. Vaught 

1980 Interrupted time-series analysis and its application to be­
havioral data. Journal of Applied Behavior Analysis 13: 
543-559. 
Review of literature on necessity of 50-100 observations 
for fitting an ARIMA model. For a simplified intervention 
analysis for shorter series, see Tyron (1982). 

Hauser, Robert M. 
1978 Some exploratory methods for modeling mobility tables and 

other cross-classified data. University of Wisconsin­
Madison: Center for Demography and Ecology. 
Also see Land (1980), Felson and Land (1977). 

Hay, Richard A. Jr. and Richard McCleary 
1979 Box-Tiao time series models for impact assessment: A com­

ment on the recent work of Deutsch and Alt. Evaluation 
Quarterly 3(2,May):277-314. 
The two analyses disagree on the seasonality of the armed 
robbery series. Also see Deutsch's (1979) rejoinder. 

Hibbs, Douglas A., Jr. 
1974 Problems of statistical estimation and causal inference in 

time-series regression models. Pp. 252·-308 in Sociological 
Methodology 1973-1974. 

1977 On analyzing the effects of policy interventions: Box­
Jenkins ~nd Box-Tiao vs. structural equation models. Pp. 
137-179 1n Sociological Methodology 1977. David R. Heise 
(ed.), San Francisco: Jossey-Bass. 
Also see Makridakis, et al. (1982), Willson (1973). 
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Hickman, J.P. and J.G. Hilton 
1971 Probability and Statistics. Scranton, Pa: Intext. 

See Chapter 19 for an explanation of the ratio-to-moving-
average method. 

Hurwicz, Leonid 
1950 Variable parameters in stochastic pro,:'esses: trend and sea­

sonality. Statistical Inference in Dynamic Economic Models 
Tjalling C. Koopmans (ed.). New York: John Wiley & Sons. 

Kallek, Shirley 
1978 An overview of the objectives and framework of seasonal ad-

justment. Pp. 3-25 in Zellner (1978). 

Kendall, Sir Maurice 
1976 Time-Series. Second edition. New York: Hafner Press. 

This is an excellent introduction to time series analysis. 
Unlike most other beginning texts, it covers all methods: 
component, autoprojection, ARIMA, etc. It includes an over­
view of problems relevant to all time series analysis, and 
discusses the application of various methods to solving 
these problems. It describes a forecasting competition by 
Reid (also see Makridakis, et al.1982). Highly recommended 
as an initial text for someone new to time series analysis. 

Kendall, M.G. and A. Stuart 
1966 The Advanced Theory of Statistics. Vol.3. New York: Hafner 

Publishing Co., Inc. 
Chapter 46 outlines seasonality and trend. Contains more 
technical detail than Kendall (1976). 

Ku, Richard and Bradford Smith 
1977 First Year Evaluation of the Illinois Urban High Crime Re­

duction Program: Final Report. Manuscript. Abt Associates, 
Inc., Cambridge, Massachusetts. 

1978 Second Year Evaluation of the Illinois Urban High Crime Re­
duction Program: Final report. Manuscript. Abt Associates, 
Inc., Cambridge, Massachusetts. 
Analysis of 1972 to mid-1978 residential burglary and rob­
bery in Peoria, Champaign, and Joliet, Illinois. Models 
fitted by polynomial regression. Uses ratio-to-moving­
average to adjust for seasonality, but does not address 
questions of whether the series contain seasonal fluctua­
tion. No diagnostic results given. 

Kuiper, John 
1978 A survey and comparative analysis of various methods of 

seasonal adjustment. Pp. 59-76 in Zellner (1978). 

Lamp, 
1983 

For other method comparisons, see Makridakis, et al. (1982) 
and Kendall (1976). 

Rainer 
Jahreszeit und Kriminalitat (Time of year and criminality). 
Paper presented at the International Congress on Criminol­
ogy, Vienna. Max-Planck-Institut, Freiburg. 
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Land, Kenneth C. 
1979 Modeling macro social change. Ch. 8, pp. 219-278 in Socio­

logical Methodology 1980. 

Land, Kenneth C. and Marc Felson 
1976 A general framework for building dynamic macro social indi­

cator models, including an analysis of changes in crime 
rates and police expenditures. American Journal of Socio-
12Ei 82:565-604. 
Also see Cohen, et al. (1980). 

Leinhardt, Samuel and Stanley S. Wasserman 
1978 Exploratory Data Analysis: An Introduction to Selected 

Methods. Pp. 311-372 in Sociological Methodology 1979, 
Karl F. Schuessler (ed.). 
For another introduction to EDA, see Velleman and Hoaglin 
(1981). 

Lester, David 
1972 Why People Kill Themselves. Springfield, Illinois: Charles 

Thomas. 
Contains a review of literature on seasonality of suicide. 
Also see Vigderhous (1978). 

Leuthold, R.M., A.J.A. MacCormick, A. Schmitz and D.G. Watts 
1970 Forecasting daily hog prices and quantities: A study of al­

ternative forecasting techniques. Journal of the American 
Statistical Association 65(March):90-107. 
Example of an econometric model with day of the week and 
season of the year as predictors. Uses Theil's (1966) in­
equality coefficient to measure the accuracy of prediction. 

Levenbach, Hans and James P. Cleary 
1981 The Beginning Forecaster: The Forecasting Process through 

Data Analysis. Belmont, California: Wadsworth. 

Ling, 
1979 

1980 

1982 

A good introduction to component methods. Contains a lot 
of information on SABL (Cleveland " et al. 1978), including 
a comparison of SABL and X-II. Although it does not cover 
ARIMA, a companion volume, The Professional Forecaster, 
does. 

Robert F. and Harry V. Roberts 
Exploring Statistics with IDA. Clemson University and Uni­
versity of ;Chicago. Mimeographed. 
Users Manuall for IDA. Palo Al to, California: The Scientif­
ic Press. I 
IDA: A Usel-' s Guide to the IDA Interactive Data Analysis 
and ForecaHting System. New York: Scientific Press and 
MCGraW-Hil~. 
IDA is an jeasy-to-use, very IIfriendly" interactive package 
for time ~eries analysis. Developed by the University of 
Chicago G~'aduate School of Business. The ARIMA analyses 
in this rtlPort were done on IDA. Also see Roberts. 
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Lothian, J. and M. Morry 
1978 Selection of models for the automated X-II-ARIMA seasonal 

adjustment prog~am. Seasonal Adjustment and Time Series 
Analysis Staff, Statistics Canada. 
Reviews the analysis of 175 1S-year economic series that 
provided the basis for choosing the three ARIMA models to 
be built in to the X-ll/ARIMA program. 

Lovell, Michael C. 
1963 Seasonal adjustment of economic time series and multiple 

regression analysis. American Statistical Association 
Journal 58(304,December):993-1010. 
An excellent, clearly written review of criteria for sea­
sonal adjustment methods. Also see Willson (1973), Kuiper 
(1978), Grether and Nerlove (1970), and Makridakis, et al. 
(1982) for other critical reviews. 

Macaulay, Frederick R. 
1931 The Smoe~hing of Time Series. New York: National Bureau of 

Economic Research. 
An early, classic review of smoothing, including moving 
average. For detecting seasonality, see pp. 121-129. 

Makridakis, Spyros, A. Anderson, R. Carbone, R. Fildes, M. Hibon, 
R. Lewandowski, J. Newton, E. Parzen and R. Winkler 

1982 The accuracy of extrapolation (time series) methods: re­
sults of a forecasting competition. Journal of Forecasting 
1:111-153. 
Describes a forecasting competition, performed on 1,001 
time series by seven experts using 24 alternative 
methods, to forecast for six to 18 time periods. Expands 
and enlarges on Makridakis and Hibon (1979) .. For other 
method comparisons, see Kendall (1976), Hibbs (1977), 
Willson (1973), and Kuiper (1978). 

Makridakis, Spyros and Michele Hibon , 
1979 Accuracy of forecasting: An empirical investigation. lour­

nal of the Royal Statistical Society A 142, part 
2:97-145. 
Concludes that, "(a) Judgmental approaches are not neces­
sarily more accurate than objective methods; (b) Causal or 
explanatory methods are not necessarily more accurate than 
extrapolative methods; and (c) More complex or statistical­
ly sophisticated methods are not necessarily more accurate 
than simpler methods. II 

Makridakis, Spyros and Steven C. Wheelwright 
1978 Forecasting: Methods and Applications. Santa Barbara: 

John Wiley and Sons. 
A basic forecasting textbook. 

Mallows, C.L. 
1980 Some theory of non.linear smoothers. The Annals of Statis­

tics 8(4):695-715. 
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Marshall, Clifford W. 
1977a Application of Time Series Methodology to Crime Analysis. 

The Polytechnic Institute, 33 Jay St., Brooklyn, NY 11201. 
Law Enforcement Assistance Administration grant 
#76-TA-99-0028. 

1977b The State Space Forecasting Technique Applied to Reported 
Crime Data. Supplement to 1977a, above. 
Uses X-11 with crime data for Cincinnati, 1967-1974. Finds 
robbery and aggravated assault, but not burglary, to be 
seasonal. Rape has too much irregular variation to tell. 

McCain, Leslie J. and Richard McCleary 
1979 The statistical analysis of the simple interrupted time­

series quasi-experiments. Pp. 233-293 in Quasi-experimen­
tation: Design and Analysis Issues for Field Settings, by 
Thomas D. Cook and Donald T. Campbell. Chicago: Rand 
McNally. 
A practical guide to seasonal ARIMA models, especially 
with respect to intervention analysis. 

McCleary, Richard and Richard A. Hay, Jr. 
1980 Applied Time Series Analysis for the Social Sciences. 

Beverly Hills: Sage Publications. 
With Nelson (1973), this is an excellent introduction to 
ARII.fA methods. 

McIntire, Robert J. 
1983 Comments on If How to Handle Seasonality. 1/ Bureau of Labor 

Statistics, letter, June 30, 1983. 

Miller, Louise S. 
1982 Manual for the Pattern Description of Time Series: Techni­

cal Manual. Statistical Analysis Center, Illinois Criminal 
Justice Information Authority. 
See Blo~k (1983). 

Munk, 
1962 

W.H., G.R. Miller, F.E. Snodgrass and N.F. Barber 
Directional recording of swell from distant storms. 
of the Royal Statistical Society A 255:62-583. 
Elementary treatment of spectral analysis. 

Journal 

Nelson, Charles R. 
1973 Applied Time Series Analysis. San Francisco: Holden-Day, 

Inc. 
Witb McCleary and Hay (1980), this is an excellent intro­
duction to ARIMA methods. 

Nettheim, Nigel F. 
1965 A Spectral Study of IfOveradjustment" for Seasonality. U.S. 

Department of Commerce, Bureau of the Census. Working 
Paper No. 21. 
Concludes that, "A situation in which the best procedure is 
to overadjust and then to correct for the overadjustment is 
unlikely to be a final resting place. II 
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Pfeifer, Phillip E. and Stuart Jay Deutsch 
1980 Identification and interpretation of first order space-time 

ARIMA models. Technometrics 22(August,3):397-408. 
An extension of ARIMA into the spatial domain. 

Pierce, David A. 
1980 A survey of recent developments in seasonal adjustment. The 

J~erican Statistician 34(August,3):125-134. 
This is a relatively simple review and update. 

Pierce, Glenn L. and William J. Bowers 
1979 The impact of the Bartley-Fox gun law on crime in Massachu·· 

setts. Unpublished manuscript. Center for Applied Social 
Research, Northeastern University, Boston, 02115. 
Found aggravated assault with and without a gun to be sea­
sonal. Also see Deutsch and Alt (1977). 

Pittman, David J. and William Handy 
1964 Patterns in criminal aggravated assault. Journal of Crimi­

nal Law! Criminology. and Police SC.ience 55: 462-470. 
Random sample of 25 percent of aggravated assaults kno'wn to 
police in st. Louis, 1961. Found no seasonal pattern, no 
relation between indoor-outdoor location and season. 

Plewes, Tom 
1977 Criteria for judging the accuracy of a seasonal adjustment. 

Technical paper, U.S. Department of Labor, Bureau of Labor 
Statistics, Washington, D.C. 
See discussion in text, under "Component Methods." 

Plosser, Charles I. 
1978 A time series analysis of seasonality in econometric 

models. Pp. 365-397 in Zellner (1978). 
States the argument for incorporating seasonal fluctuation 
into a model. 

President's Commission on Law Enforcement and the Administration 
of 

1967 
Justi(~e 
The Challenge of Crime in a Free Society. U.S. Government 
Printing Office. 
IfMurdE~r is a seasonal offense. Rates are generally higher 
in thEl swnmer, except for December, which is often the 
highesrt month and almost always 5 to 20 percent above the 
yearly average. In December 1963, following the assassina­
tion clf President Kennedy, murders were below the yearly 
averag;e by 4 percent, one of the few years in the history 
of the! UCR that this occurred" (p. 27). Also see Wolfgang 
(1966). 

Priestley, ~l:. B. 
1981 Spectr'al Analysis and Time Series. Vol. 1, Univariate Se­

ries; Vol. 2, Multivariate Series. London: Academic Press. 
Provid,es an overview. For periodogram analysis, see pages 
394-3917 of volume 1. Also see Hanuning (1977) and 
Rosenblatt (1965). 
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Quetelet, Adolphe 
1842 A Treatise on Man and the Development of his Faculties. 

English translation, 1968. New York: Burt Franklin. 
Quetelet, a Belglan statistician, states, "The seasons, in 
their course, exercise a very marked influence: thus, 
during summer, the greatest number of crimes against per­
sons are committed and the fewest against property; the 
contrary takes place during the winter" (p. 90). Also 
see Sylvester (1982). 

Rauma, David 
1981 Crime and punishment reconsidered: Some comments on 

Blumstein's stability of. punishment hypothesis. The Journal 
of Criminal Law & Criminology 72(4):1772-1798. 
Includes a review of the problem of determining whether or 
not a series is stationary. Concludes, IIIn general, the 
existing tests for stationarity all require some specifica­
tion of the form that the possible nonstationarity takes" 
(p. 1779). Also see the reply (Blumstein, et al. 1981), 
which also focuses on stationarity. 

Roberts, Harry V. 
1974 Conversational Statistics. Palo Alto: The Scientific Press, 

Hewlett-Packard University Business Series. 
1976 Conversational Statistics II. University of Chicago, Grad­

uate School of Business. Mimeographed. 
1978 Comment on liThe analysis of single and related time series 

into components: proposals for improving the X-l111 by 
Raphael Raymond V. Bar On. Pp. 161-170 in Zellner (1978). 

1982 Data Analysis for Managers. Manuscript. 
Also see listings under Ling and Roberts. 

Roberts, Harry V., Robert F. Ling and George R. Bateman 
1979 Exploring Statistics with IDA. Palo Alto, California: The 

Scientific Press. 
Also see listings under Roberts, Ling. 

Rosenblatt, Harry M. 
1965 Spectral Analysis and Parametric Methods for Seasonal Ad­

justment of Economic Time Series. U.S. Department of Com­
merce, Bureau of the Census, Working Paper No. 23. 
A clearly written basic introduction to the spectral anal­
ysis of seasonal fluctuation. For a more detailed text, 
see Hamming (1977) or Priestly (1981). Also see Munk, et 
al. (1962), Beaton and Tukey (1973), Nettheim (1965), -­
Bliss (1958,1970). 

SAS Institute, Inc. 
1982 SAS/ETS User's Guide. 1982 Edition. Cary, N.C.: SAS Insti­

tute, Inc. 
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Schlicht, Ekkehart 
1981 Seasonal adjustment principle and a seasonal adjustment 

method derived from this principle. Journal of the Ameri­
can Statistical Association 76:374-378. 

Schneider, Anne L. and David Sumi 
1977 Patterns of Forgetting and Telescoping in LEAA Survey Vic­

timization Data. Institute of Policy Analysis, 777 High 
Street Suite 222, Eugene, Oregon 97401. 
Discus~es seasonal patterns in victim survey responses. 
Suggests that respondents use the season of the year to as­
sist their long-term memory of a victimization. Also notes 
that police reporting practices may affect the seasonality 
of crimes IIknown to the police." The aggregate number of 
unfounded crimes is subtracted each month from the aggre­
gate number of reported crimes, rather than canceling the. 
actual crime report that was unfounded. The effect of th~s 
would be to reduce the intensity of any seasonal fluctua­
tion. Also see US/BJS (1980). 

Shine, Lester C., II 
1980 On two fundamental single-subject behavior functions. Ed­

ucational and Psychological Measurement 40:63-72. 
1981 Integrating the study of Shine's actualized and pure single 

subject behavior functions. Educational and Psychological 
Measurement 41:673-685. 

1982 An illustration of how the effects 
are handled in analyses of Shine's 
single-subject behavior functions. 
logical Measurement 42:87-94. 

of serial dependencies 
pure and actualized 
Educational and Psycho-

An alternative approach to testing intervention hypotheses. 

Shiskin, Julius 
1957 Electronic computers and business indicators. The Journal 

of Business 30(4,October):219-261. 
This is a good introQuction to the logic of the Census X-II 
program, as it was o~iginally developed. It r:views the 
X-II in comparison to easy methods that are st~ll common, 
such as same-month-last-year, monthly-means, and ratio-to­
moving-average. 

1968 Time series: seasonal adjustment. Pp. 80-88 in Interna­
tional Encyclopedia of the Social Sciences 16, David L. 
Sills (ed.). 
Also see Tintner, et al. (1968). 

1978 Keynote address: Seasonal adjustment of sensitive indica­
tors. Pp. 97-103 in Zellner (1978). 
Shiskin is considered to be the IIfather" of the Census X-l1 
program. The conference recorded in Zellner (1978) was or­
ganized to honor him. 
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Shiskin, Julius, Allan H. Young and John C. Musgrave 
1967 The X-11 Variant of the Census Method II Seasonal Adjust­

ment Program. U.S. Department of Commerce, Bureau of the 
Census. Reprinted 1976. 

Sims, 
1974 

This is the Census X-11 user's guide. 

Christopher A. 
Seasonality in regression. Journal of the American Statis­
tical Association 69(347,September):618-626. 
Discusses bias in regression due to seasonal adjustment and 
seasonal noise. See Rosenblatt (1965), Wallis (1974). 

Stein, Donald P., Jay-Louise Crawshaw and Algrid R. Barskis 
1967 Computer-Aided Crime Prediction in a Metropolitan Area. 

Technical Reports 1-202 and 1-202-A, The Franklin Institute 
Research Laboratories, Philadelphia. 
1966 Part I offenses, 5 percent sample. Predictors inclu­
ded weather, time of day, day of week, month of year, phase 
of the moon. Probability that a certain type of crime 
would occur, given that some crime did occur. 

Sylvester, Sawyer F. 
1982 Adolphe Quetelet: At the beginning. Federal Probation 46 

(December,4):14-19. 

Thiel, Henri 
1966 Applied Economic Forecasting. Amsterdam: North Holland 

Publishing Co. 
A classic economics forecasting text. 

Thompson, Howard E. and George C. Tiao 
1971 Analysis of telephone data: A case study of forecasting 

seasonal time series. The Bell Journal of Economics and 
z"tanagement Science 2 (Autumn) : 515-541. 
Contains a diagnostic check for consistency, the i~plicit 
assumption "that the same relationship exists between ob­
servations 12 periods apart for all 12 months of the year. II 

Tintner, Gerhard, P. Whittle, Herman Wold and Julius Shiskin 
1968 Time series. Pp. 47-88 in International Encyclopedia of 

the Social Sciences 16, David L. Sills (ed.). 
Also seQ Shiskin (1968). 

Tukey, John W. 
1962 The future of data analysis. Annals or Mathematical Sta-

tistics 33:1-67. 
1~77 Exploratory Data Analysis. Reading, Mass.: Addison-Wesley. 

Tyron, Warren W. 
1982 A simplified time-series analysis for evaluating treatment 

interventions. Journal of Applied Behqvior Analysis 15 
(3,Fall):423-429. 
Intervention analysis for short series. See Hartmann, et 
al. (1980). --.. 
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Velleman, Paul F. 
1980 Definition and comparison of robust nonlinear data 

smoothing algorithms. Journal of the American Statistical 
AssocIation 75(371):609-615. 

1982 Applied nonlinear smoothing. Pp. 141-177 in Sociological 
Methodology 1982, Samuel Leinhardt (ed.). 
This is a review of resistant smoothers, an alternative to 
the moving average. Also see Tukey (1977), Mallows (1980), 
Velleman and Hoaglin (1981), Beaton and Tukey (197~). 

Velleman, Paul F. and David C. Hoaglin 
1981 Applications, Basics and Computing of Exploratory Data 

Analysis. Boston: Duxbury Press. 
This is a beginner's guide to EDA (Exploratory Data Analy­
sis). It includes a discussion of resistant time s~ries 
analysis methods. Also see Tuke~r (1977), Velleman (1982), 
Cleveland, et al. (1978), Emerson and Hoaglin (1983). 

Vigderhous, Gideon 
1977 Forecasting sociological phenomena: Application of Box­

Jenkins methodology to suicide rates. Pp. 20-51 in Socio­
logical Methodology 1978. 
Good overview of ARIMA methods. 

United States, Bureau of Justice Statistics 
1980 Crime and Seasonality. National Crime Survey Report SD­

NCS-N-15,NCJ-64818. Report written by Richard W. Dodge and 
Harold R. Lentzner, Crime Statistics Analysis staff, Center 
for Demographic Studies, U. S. Bureau of the Census. 
Although plagued by short series and other problems, this 
is the most comprehensive seasonal analysis of victim data 
to date. Uses Census X-11 with 1973-1977 National Crime 
Survey data. Finds stable seasonality F values of 10.0 or 
l~igher for household larceny (under and over $50), personal 
larceny without contact (under and over $50), and unlawful 
entry without force. Also see the pioneering article on 
this subject I S(~hneidflr and Sumi (197'l). 

Wallis, Kenneth F. 
1974 Seasonal adjustm~nt and relations between variables. Jour­

nal of the American Statistical Association 69(March,345): 
18-31. 
Argues that the use of seasonally adjusted and unadjusted 
data in the same model may lead to spurious dynamic rela­
tionships. 

Warren, Charles W., Jack C. Smith and Carl W. Tyler 
1981 Seasonal variation in suicide and homicide: A question of 

consistency. Unpublished manuscript. Pu~lic Health Ser­
vice, U.S. Centers for Disease Control, Atlanta, 30333. 
Although this paper does not explicitly define seasonality, 
the implicit definition includes the possibility of year­
to-year inconsistency. Example of PRA (periodic regression 
analysis). See Bliss. 
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Willson, Victor L. 
1973 Estimation of intervention effects in seasonal time-series. 

University of Colorado, Laboratory of Educational Research, 
Report No. 63. . 
Compares four methods of handling seasonality (linear sine 
term, prior seasonal adjustment, differencing, and ignoring 
the seasonal component) with seven simulated series. Finds 
that a sine term "works best in cases where error variance 
and amplitude are of the same order of magnitude. Seasonal 
adjustment seems better for situations when the amplitude 
is much larger than the error variance. Differencing was a 
poor method in all cases." Also sao Hibbs (1977). 

Wolfgang, Marvin E. 
1966 Patterns in Criminal Homicide. New York: John Wiley & Sons. 

See pp. 96 to 106 for a review of research on seasonality 
of crime, from the early 1800's. Also see Quetelet (1842), 
Lester (1972), and US/BJS (1980). 

Zellner, Arnold (ed.) 
1978 Seasonal Analysis 

the Conference on 
Series, September 
ment of Commerce, 
Report ER-1. 

of Economic Time Series. Proceedings of 
the Seasonal Analysis of Economic Time 
9-10, 1976, Washington, D.C. U.S. Depart­
Bureau of the Census, Economic Research 

This is an extremely 
it is out of print. valuable source book. Unfortunately, 

The Illinois State Library has a copy. 
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