"Descriptive Statistics of Fingerprints from the Files of NYSIIS"

Lawrence Razavi, M.D., M.P.H.
Tobey J.E. Reed, M.A.
James C. Wohlieb, B.A.

Behavioral Sciences Foundation P.O. Box 8246

Boston, Massachusetts, 02114

This project was supported by Grant Number $1 / 1 / / 1 / 28$ awarded by the Law Enforcement Assistance Administration, U.S. Department of Justice, under the Omnibus Crime Control and Safe Streets Act of 1968 , as amended. Points of view or opinions stated in this document are those of the authors and. do not necessarily represent the official position or policies of the U.S. Department of Justice.

Volume I (Report)

Content Pages
Preface and acknowledgwents 3-4
Summary 5-28
Scope 5
Methods and Materials 5-10
Results $10-24$
Disseminatión 25
Conclusions 25-28
References Cited 29-31
Tables 32-70
Volume II (Appendices)
Appendix A NYSIIS (NYSCJS) Fingerprint Staristics
Al NYSIIS Sub-file description 1-10
A2 NYSIIS I Descriptive Statistics and Giaphs 1-152
Appendix B Methodology
B1 Fingerprint Classification Manual 1-11
B2 Coding Methods and Forms 1-6
B3 Proposed manual probábility prediction 1-9
B4 Software
B4-1 Program titles, machines, fnputs, functionB4-2 Elementary statistics inst for computer 1-12programs.

PREFACE

Basic statistics on fingerprint variability, categorized in terms of race, sex and demographic variables, are not available for the North American population. In identification work, classification is done by the Henry System, an arbitrary scheme unrelated to anatomical characteristics, and one which gives unwieldy and unequal dermatoglyphic categories. The result is an unnecessary loss of efficiency in fingerprint file usage, and an incidental lack of utility to medical and biological practitioners. This situation can be improved by using biometric techniques for classifying and analyzing fingerprints, because these are based on biological principles and because fingerprints are biological phenomena. Furthermore, it should be possible to build these techniques into an automatic (computer controlled) statistical procedure for accessing and updating files; and to search for fingerprints on the basis of their true probability of occurrence.

The purpose of this project was to:

1. Collect data on variability of fingerprints in the North American population from the files of NYSIIS (now NYSCJS).
2. Standardize methods for measuring and classifying fingerprints using anthropometric criteria.
3. Develop methods for coding and data processing.

Output

1. A crude data base has been obtained which specifies fingerprint pattern variation according to the following groups in the population: male/female; White/Black/Latin and Mongolian; criminal, mentally 111 or civil 1icensee.
2. A classification manual on fingertip patterns has been prepared.
3. A model computer-usable fingerprint file search strategy has been designed using the above data base.

Resources for such work include:

1. Computing facilities and allied software.
2. Collaboration with NYSIIS and Taft Consulting Corporation.
3. Collaboration with local correctional and law enforcement agencies.

Future work should aim at:

1. Complete statistics on North American dermatoglyphics, digit by digit (specified by radial and ulnar counts) and including finger interdependency frequencies.
2. Full classification manual including coding procedures and equisized categorization of fingerprints, in computer compatible form.
3. Integrated library of software for analyzing data.

Acknowledgments

This work could not have been done without the permission and interest of Dr. Robert R.J. Gallati, Mr. Paul McCann, Dr. Edward De Franco, and Mr. Adam D'Alessandro. We are extremely grateful to the NYSIIS staff for their support and for giving us access to their data.

All computing procedures at NYSIIS were conducted by Taft Consulting Corporation: their performance was of a high caliber and an integral part of the project. In our judgment, continued coilaboration would be essential to any future work of this kind.

We should like to reemphasize the benefit obtained from our grant monitors, Dr. Helen Erskine and Mr. Louls Mayo during a time when reorganization at NYSIIS and NILE made it difficult for us to maintain our objectives. Some difficulties were experienced in that funds were not available for hiring personnel until some time after the starting date of the project; and the NYSIIS central processor was unavailable for a period of five months. We were able, however, to extend the grant at no cost for the added six months necessary snd are particularly grateful for the efforts of the grant monitors.

Scope

The substance of the report is contained in the volume of descriptive statistics of fingerprints from NYSIIS (Appendix A: Data Base). Appendix B deals with methodology (Manual, Coding Forms, Search Methods, and Software List).

The report is confined to descriptive statistics for identification and police science use only. It does not discuss medical studies on diseases which may be associated with variations in fingerprints: this is beyond the scope of NILE's interests, and the NYSIIS automated file, as presently constituted, does not allow full ten-digit coeparisons necessary in bio-medical work. Methods and Materials

Fingerprints were analyzed in several sub-samples taken from records In computer-retrievable format at the New York State Criminal Justice Service (NYSCJS) fingerprint files in Albany, New York. Prior to November, 1972, NYSCJS' name was New York State Identification and Intelligence System, NYSIIS.

The population from which the sample is drawn is all persons over the age of 18 who could have come in contact with NYSCJS because of an arrest, application for a State license or civil service employment, or commitment to a State mental institution. Our basic sample frame (2.7×10^{6} persons) is drawn -- from all persons on the file over the age of 18 and entered into the file between mid-1968 and late 1972.

Samples were collected in Algol using a Burroughs 6700, bulk analysis was done in Fortran on a Burroughs 3500. Secondary analysis was done on a Hewlett-Packard Model 10 programable calculator. Graphing was done on a CalComp plotter using a PDP-7 computer. Statistical formulae used were derived from Chakravartti, Laha, and Roy 1969, and Steel and Torrie 1960.

Several sub-samples were extracted:*

1. 153,512 persons. This file contains all persons for whom no information was missing and who were consistently reported with respect to sex and race.
2. 191,269 persons**: This sample containes persons for whom height, year of birth earlier than 1946, and criminal historles were not screened for missing information. This sample and the first are not mutually exclusive.
3. 76,877 persons. This sample is a sub-set of sample \#2 on which complex statistics were calculated.

This file has two primary advantages:

1. It is very large and spans a long period of time so that suitable samping frames may be selected for various purposes without difficulty.
2. It is computer-retrievable so that large-scale processing is feasible.

There are four primary disadvantages:

1. The entire file is the result of numerous ad hoc methodological changes necessitated by the growth of the file since its inception in 1903. Hence, only cases may be used for whom full records are available and for those who entered the file during a relatively short time-frame during which methods and ascertainment would be relatively standardized. All persons in the present samples entered the file within the last five years.
2. The main purpose of the file is identification, and emphasis is placed on location of intra-digital characteristics such as minutiae and acquired anomalies. Speed of access and matching are the chief requirements and storage is limited to the pattern types which recur with greatest frequency.
2.1 The fingerprint pattern types are classified as ulnar loops, radial loops, whorls, plain arches, and tented arches. The definitions of pattern types are the same as those used in general dermatoglyphics usage with

* Details of these samples in Appendix A.
** Raw data from the largest file are complled in Appendix A-2. (NYSIIS I file).
the exception of tented arches. In dactyloscopy (identification), the term tented arch subsumes not only the classic tented arch in which the pattern has a single, central triradius but also includes patterns which anthropometrictans would identify as loops. The difference is in the existence of a ridge which abuts at a right angle to the apex of the innermost recurving ridge; in anthropometrics this ridge anomaly is ignored where dactyloscopists call any pattern with "spoiling of the innermost recurve" a tented arch though it has no morphogenetic or classificatory similarity to the classed tented arch. Although this "misclassification" may affect any loop, it occurs most frequently in small loops. To some extent the difficulties are minimized because the computer file format does not record "arches" on all ten digits. NYSCJS has on its computer only persons who do not have any arches or tented arches unless these patterns occur only on digits II or VII (the index fingers). Persons not fitting this desciption are in manual files. The reason for this is practical; arches of efther type are rare on digits other than II or VII. The total percentage on all other digits is approximately the same as for these two digits alone -- about 7%, half of which occur on the third pair of digits.
2.2 NYSCJS records digits with 27 or more ridge counts as 26 . Again the reason is practical because higher counts are rare except on the first digit. A test sample, not otherwise reported here, was run with and without the 26 th ridge-class in order to evaluate the effect. There was no significant difference in the mean ridge count per digit although all digits had a slightly lower mean when the 26 th ridge count class was excluded. The sole exception was the first digit which was two ridges lower; this result indicates the mean ridge count of digits I and VI as reported in this paper are probably one ridge or so too low.
2.3 NYSCJS records only the radial ridge count of whorls. Thus the total finger ridge count (TFRC) and mean ridge counts per digit camnot be calculated using the standard practice of taking the larger of the two possible counts (radial, ulnar) of whorls. The effect of this defect was investigated by analyzing a special test sample of 752 Caucasian males in which all radial and ulnar ridge counts were recorded. It was found that the radial count was also the larger count in 93% of whorls; the mean ridge count for any digit using only the radial side was 0.4 ridges lower than using the higher of the two sides. Again, this trends the extremes of the distribution in the same way as the defects cescribed above.

The sum of the above deficits is that the tail ends of the distribution of ridge counts are arbitrarily truncated by loss of low and high values (exclusion of arches and $26+$ counts). No conclusions can be drawn, therefore, about differences between sub-groups which depend on these extremes though these are often the statistical criteria most useful for analysis in anthropometric studies.
3. Non-dermatoglyphic characteristics of the file are
3.1 Sex and race: these descriptors are originally specified by the individual on application forms and by admitting officers on arrest booking sheets or hospital admission forms. NYSCJS records the number of times an individual is reported for each race and sex. Races are recorded as Caucasian, Negro, or Mongoloid with no provision for alternatives. Ethic or ancestral origin, other than racial, is not known. Within these limitations, only cases in which the same race or sex has been consistently recorded were included in our sample.
3.2 Birth statistics: all persons in this sample are born in the United States or Canada, excluding Puerto Rico. Month and year of birth are recorded. Records in which birthplace or birthdates were not stated or were inconsistent were excluded.
3.3 Social characteristics: the basic divisions of this file are civil records, penal records, and mental health records. Under civil records, the type of license application, presence or absence of civil service employment application, and State employment are recorded. Under penal records the number and types of arrests, number and types of convictions (both specified by law code), type of imprisonment, length of sentence, type of release, narcotic user status, and NYSCJS' recidivist definition are recorded. Under mental health records the type of institution, reason for admission, and type of release are noted. It is uncertain whether these categories have more than label value, but some attempt was made to minimize lack of compatibility by sampling within a relatively short time-frame.

For the purposes of this paper initial grouping was made by sex, race, and definition of social (civil/criminal, depending upon whether an arrest record is present).

All samples are maximized, given the constraints of the file, although this results in unequal sample sizes. Maximization has the advantage of producing complete statistics on rare variants, such as the mean ridge count of radial loops on digit X of females; the frequency of this pattern on this digit is only 0.07%.

A note should be made of the fact that the information came from files used primarily for police sciences; name of lientification number, individual identifiers and non-relevant information were rigorously excluded from this file. There is no possibility of identification of any specific individual - the file was constructed to praclude this possibility.

Dermatoglyphic statistics were calculated as follows:
Total finger ridge counts, mean finger ridge counts per digit, pattern-specific ridge counts per digit, pattern-specific summed ridge counts, overall pattern frequencles per digit, homologous digit and hand, number of patterns per ser, IIdge counts per number of patterns per set.

For ridge counts, variance and covariance matrices, regression and factor analyses and all possible t-tests were calculated. Since more data has been calculated than may be conveniently presented in one paper, only initial statistics which are in most general use to workers in the field will be reported. Fuller details will be presented in forthcoming papers. Comparative data from the literature case from papers published between 1892 and 1973 (a full bibliography will be published in the Bulletin of the International Dermatoglyphics Association).

Results
Total Einger ridge count
The total finger ridge count (TFRC) is the sum of one ridge count value for each digit per individual. It is intended to measure overall differences between populations in either pattern frequencies or pattern sizes. When Bonnevie originally proposed a summary statistic, she used the mean value for the two possible ridge counts of whorls as the single value for whorl-bearing digits (Bonnevie, 1924). Criticized by Gruneberg because a single value thus derived may reflect a wide variety of combinations of ridge counts on either side of the digit, Bonnevie adopted the convention of utilizing the larger of the two possibie counts (Bruneberg ' 28 , Bonnevie ' 32). Almost all authors have continued this convention (see especially Abel ' 37 , '38; Geipel '35, '54; Holt '48 to '68). Rife' 53 sumned both whorl counts for a single value.

[^0]TFRCa and single digit mean ridge counts are shown in Table 2. At the top of the colums is a group number (from 1 to 12). Thesa group numbers correspond to the group numbers in the tables in the Appendix in which all possible t-tests between these groups is charted. All of these data are from sub-sample number 1 , with a total of 153,512 persons.

The mean TFRC for the entire population 15139.05, S.D. $=34.83$, but this figure is biased towards males and Caucasians since the sample sizes are unequal. The mean TFRCs for males and females are 140.12, S.D. $=$ 35.40, $\mathrm{N}=131,833$ and $132.52, \mathrm{S.D}=34.35, \mathrm{~N}=21,679$ respectively. The male TFRCs are higher than the female in all races or civil/criminal groups except for Oriental criminals in which the female value is higher; this may be because of the small sample sizes in the Oriental groups. The small Oriental groups preclude definite statements about the dermatoglyphics of this group so that only general trends can be noted.

Considerable difference also exists tetween the racial groups. The Oriental groups tend to have the highest TFRCs, but they are only slightly higher than the Caucasian values and the differences between these groups are not statistically significant. Although only three studies in the literature in which the TFRC was given or could be calculated were located the mean reported $T F R C$ for Orlentals in the literature is $151.71, S . D .=3.06$, (total number of people $=839$). Note that this S.D. is not the same as the standard deviation for a population (see Table 4).

The mean for Oriental males and females is 141.05 , S.D. $=33.81$, $N=263$ and $143.48, S . D .=31.82, N=52$. The male value, especially, is * very close to the value for Caucasian males; 142.11, S.D. $=37.31, \mathrm{~N}=$ 92,955, whereas the Caucasian female value is considerably lower; 134.79, S.D. $=37.11, \mathrm{~N}=12,854$. The mean TFRC for Caucasian females may be
somewhat higher than the true value because of the lack of data on arches on digits other than II or VII since females have-more arches on these digits than males (see below). Comparison with the world literature indicates that the mean female TFRC reported for 104 Caucasian groups is 128.81. The literature mean for Caucasian males, 139.80 , is very similar to the NYSCJS values. The NYSCJS values are not statistically significantly different from the literature values (using z-test of location in a normal curve); nonetheless the Caucasian female values appear to be low.

Persons of the Negro race have the lowest mean TFRCs; the mean for Negro males is 135.32 , S.D. $=35.28, \mathrm{~N}=38,615$ and for females 129.13, S.D. $=34.12, \mathrm{~N}=8,773$. The comparative literature value for African males is 123.41, S.D. $=12.30, \mathrm{~N}=11$ studtes $(1,281$ persons). There is no comparative literature for African females. Only one study of American Negroes is available, in which the mean TFRC for males 18119.0 , S.D. $=40.8, N=224$: Female $\overline{\mathrm{X}}=106.4$, S.D. $=47.4$. Thus it is difficult to ascertain the degree to which the defects of the NYSCJS files affect the TFRC values for both the Negro and Oriental groups.

Despite the drawbacks of the file, all of the groups were subject to the same analysis. Therefore, it may be stated that the Negro groups have a mean TFRC that is lower than that of both Caucasians and Orientals. Whether Orientals have a higher TFRC than Caucasians has not been ascertained.

Although the definition of criminal used in this initial analysis of the file is crude, persons with one or more arrest charges are classified as criminal; significant differences between the criminal and non-criminal groups were found, especially in males. The TFRC of the criminal groups are about two ridges lower than the non-criminal groups. Although this difference is not as great as the five-to-six ridge difference between sexes or races, it is significant in most groups at the $P=0.001$ level.

For Caucasian males, the non-criminal group has a mean TFRC of 143.83, S.D. $=37.31, \mathrm{~N}=17,722$; whereas the criminal group has a mean TFRC of 141.71, S.D. $=36.92, \mathrm{~N}=75,233$ persons. In all groups the standard deviations for the non-criminal samples are slightly larger than for the criminal groups, although the significance of this was not tested.

The only exception to the criminal/non-criminal difference is female Orientals in which the criminal group is 9.7 ridges higher. The sample size for non-criminal female Orientals is only four.

Digit I*

The thumbs are, for anatomical reasons, if no other, unique. They are the largest of the digits, in opposition to the fingers. In the factor analyses programs of several authors (listed in Knussmann, 1967), the thumbs are influenced by a factor which is not shared with any other digits. The same is true of our factor analyses, which were done slightly differently from those listed in Knussmann.

The mean ridge count of the right thumb is the highest of any digit. In the worid literature, the mean ridge count of the thumb for 18 Caucasian European groups is 18.59, S.D. $=0.13$, which is slightly lower than the NYSCJS groups in which the means are 19.54 and 19.27 for non-criminal and criminal groups respectively. For all of the groups, the right thumb does not show a consistent difference between the criminal and non-criminal groups. The difference between races is greater for digit I than for any other digit. The mean for Caucasian civil males is 19.54 ; for Negro civil males it is 16.89. The t-value for this difference is 33.55 , which is decidedly significant. The Oriental and Caucasian values are very similar; the differences are statistically significant, but only barely so.

[^1]For all of the groups, the females have a mean ridge count about two ridges lower than the males. This difference is statistically significant in all of the races except the Orientals.

Digit II
Contrary to the first digit, the right hand index finger shows the least variation between the races, sexes, or criminal groups. The highest mean is 12.54 for maie Oriental non-criminals and the lowest is 10.90 for male Caucasian criminals. All of the others have mean ridge counts between 11.00 and 11.99. There does not appear to be any significant trends, although some of the differences are sigrificant. Both White male criminals and Negro male non-criminals are significantly different from several other groups, but this is probably because these are the extreme values for groups of reasonable size.

The NYSCJS values are almost exactly the same as the pooled ifterature values. The literature female mean of means of 10.18 is low compared to NYSCJS but this is based upon only eleven studies. Digit III

Digit III exhibits all three major differences. None of the absolute differences in the means of the various groups is great, but the differences which exist are uniform and consistent. For example, male means tend to be about 0.2 to 0.3 ridges higher than the female, and they are higher in all of the groups. The differences between sexes are also about $0.3-0.4$ ridges: Orientals are highest, Caucasians are middle, and Negroes are lowest. The 0.3 - 0.4 ridge difference is incremental between groups so that Orientals and Negroes differ by twice this amount. This is the only digit in which the races divide into three groups, except for digit VII, the left hand homologut.

Unlike digits I and II, digit III shows a consistent difference between the criminal/non-criminal groups of about 0.2 ridges -- somewhat less than the sexual difference. Some of the Oriental groups are too small to evaluate. These differences are statistically significant for the male groups, but not for the females. For Caucasian males the t-value for the difference between the means is 4.78 , which is significant at $P=0.001$.

The mean ridge counts for the NYSCJS samples are considerably higher than the pooled European values. The pooled male mean is 11.49 , compared with 12.48 for Caucasian male non-criminals. This is probably due to the lack of arches for this digit in the NYSCJS population, especially since arches have a zero ridge-count.

Digit IV
The fourth digit, like the third, exhibits all three kinds of differences and the absolute values of these differences is greater. For females, the racial differences are not uniform. As on all digits except II the male mean is higher than the female. The criminal/non-criminal differences are uniform for all groups, although the difference is not statistically significant for the females.

The NYSCJS means are again very similar to the pooled European values. In the literature, the reportage of the mean for digit IV of males varies more than for any other digit. The mean reported value is 15.95, S.D. $=1.30$, $\mathrm{N}=18$ studies.

Digit V
Digit V is unique in not showing a consistent racial difference, although the sexual variation is present, and the criminal/non-criminal factor is small, but present. Males show a slight tendency to be higher in Caucasians than in Negroes; all of the racial differences are so small that

It is difficult to determine meaningful variation. The differences for males are statistically significant at the $P=0.001$ level. For Caucasian male non-criminals, the mean ridge count is 13.94 , for the Negro group it is 13.57; for females the respective means are 12.88 and 12.80 . These means are almost exactly the same as those for the pooled literature data; male 13.24 and female 12.30.

Digit VI

The thumbs are unique not only in the greater differences in ridge counts between the sexes, etc, but also the difference in the means of the homologous digits is greater than for any other pair of digits. Digit VI of male Caucasian non-criminals has a mean of 17.04 , compared to the mean of digit I of 19.54 . In the pooled European literature values, the mean for digit VI is 15.68 , compared to 18.59 for digit I.

The sex difference for $D i_{g i t} I$ is strong, males having a mean alnost two ridges above the females. The mean for male Caucasian males is 17.04, the mean for the female group is 15.25 ridges. The t-value for this difference is 14.80 , which is signfficant. The racial pattern for VI is the same as for I; that is, the Negro means are $2.0-2.5$ ridges below both the Caucasians and Orientals. The criminal means are all 0.2-0.3 ridges below the non-criminal, with the exception of male Orientals. These differences are statistically significant for the Caucasian and Negro males, but not for the other groups.

Both thumbs have a pattern to the standard deviations which differs from that of the other digits. All of the other digits tend to show a greater standard deviation for Caucasians than for Negroes. Generally the Oriental standard deviations are also higher than the Negro values, but this
is not always clear since the small size of these samples greatly influences the standard deviations. On the thumbs the Negro groups have greater varlation In the ridge counts than either of the other racial groups. The difference is not great. For Caucasian male non-criminals the standard deviation for digit VI is 5.05; for Negro male non-criminals the S.D. is 5.32. Digit VII

Unlike digit II, digit VII shows a distinct pattern to the differences In all three characteristics under discussion. Racially, Orientals have the highest mean ridge count which tends to be considerably above that of the other groups. Male non-criminal Crientals have a mean of 12.64 , which compares to the Negro and Caucasian means of 10.89 and 10.59 respectively.

The criminal and non-criminal groups again differ by about 0.3 ridges, the difference being statistically significant for Negro females and Caucasian males. The Oriental female criminal mean is nigher than the non-criminal mean, but the samples are too small for evaluation. Digit VIII

Digit VIII shows a strong, consistent difference in the sexual means of about 0.6 ridges. The mean for Caucasian non-criminal males is 12.81; for females it is 12.05 , the t-value for this difference is 6.45 which is highly significant. Both of these means are higher than the pooled literature values of 11.73 and 10.29 for males and females respectively. Using the z-test of location in a normal curve, the NYSCJS values are significantly high at probabilities less than 0.001 . The reason for this difference is not known.

The mean ridge counts for the non-criminal groups are higher than for the criminal, with the exception of the Negro females in which the means for this characteristic are equal on digits VIII, IX, and X. Only the
difference for male Caucasians is statistically significant for digit VIII; the criminal mean is 12.81 and the non-crininal is 12.63 , the t-value for this difference is 4.29 which is significant at $P=0.001$.

Digit IX

Both digits VIII and IX have higher means for Orfentals than for Caucasfans. The Caucasian means are higher than the Negro, thus a tripartite layering of the means is again present. For non-criminal males, the respective means are $16.32,16.15$, and 15.73 indicating a greater difference between Negroes and Caucasians than Caucasians from Orientals. Only the difference between Negroes and Caucasians is statistically significant: $t=3.45, P<0.001$.

Digit IX shows a consistent sex difference of about 0.5-0.7 ridges. These differences are significant for all groups except the Orientals. Male non-criminal Caucasians have a mean ridge count of 16.15 , compared to the female mean of 15.40 ; the t-value is $6.14, \mathrm{P}<0.001$.

The criminal means are consistently lower than the non-criminal, but this difference is only statistically significant for Caucasian and Negro males. The male Caucasian criminal mean is 16.01 , the non-criminal mean is 16.15; the t-value for this difference is $3.28, \mathrm{P}<0.001$. The non-criminal means are about 0.1-0.2 ridges lower in all of the groups except the Orientals. The Oriental non-criminal mean is lower than the criminal mean; 16.32 and 16.54 respectively. This difference is not statistically significant.

The female Caucasian non-criminal mean is somewhat above the pooled literature mean of 14.56 ridges, although the difference is not significant. The NYSCJS and literature means are more similar, 16.15 and 15.73 ridges, for males.

Digit X

The racial differences in the fingerprint mean ridge counts are epparent on the fifth digit of the left hand, although they weren't on the right hand. The mean for Caucasians is higher than that for Negroes; the Oriental situation is far from ciear. The difference is about 0.2-0.3 ridges and is statisticaily significant for all comparisons except Negro male criminals versus Oriental male criminals and Negro male non-criminals versus Oriental male non-criminals. For Caucasian non-criminals the means, by sex, are 13.89 and 12.76 for males and females. All of the male values are 1.1-1.2 ridges higher than the female values, except in the Oriental comparisons.

The NYSCJS Caucasian, non-criminal means compare quite favorably with the pooled literature means of 13.40 and 11.92 for males and femaies. The means of the non-criminal groups are higher than for the criminal groups: for White males the means are 13.89 and 13.65 for non-criminals and criminals, this difference is statistically significant (t-value $=6.54, \mathrm{P}<0.001$). All of the non-criminal means are higher, except for female Negroes. They are statistically significant only for males; the female Oriental difference (13.83, 7.00) for criminals and non-criminals is statistically significant -$t=2.56$, df $=52, \mathrm{P}<0.02$-- although the number of female non-criminals is very low (e.g., four). This is probably not a valid comparison.

Transformations*

The tables listing pattern frequency show rather large standard deviations and this suggests that pattern frequency figures are inherently less accurate for statistical processing than ridge counting figures. Pattern classification schemes use ideal examples of each pattern class but do not define the borderline that exists between pattern types. Many of these
intermediate types, however, do exist and with no great rarity. On the other hand, xidge-counting is inherently more accurate since only one such border exists between the existence or absence of a ridge count of a given value; or equivalently between the absence or presence of triradil. Random errors will sum to zero and systematic errors may be reduced by rigoxous definition of rules for ridge-counting, such as those suggested by Henry (1903) for use by fingerprint bureaus. The most straight-forward solution to the problem 1s to make use of radial and ulnar ridge counts to transform pattern classifications into digit-specified radial and ulnar ridge counts.

Data for pattern frequencies by digit have been collected for 163 studies. Grouped means were calculated for arches, loops (radial and ulnax) and whorls on each digit. Breakdow of the studies by georacial area is shown in Table 16. Data for the 43 European groups are presented In Table 17.

The existance of a ridge count (or, equivalently, a triradius) on a particular side of a digit may be inferred from the pattern type -- both LU and W have a ridge count on the ulnar side (US), etc. The percentage occurrences of a ridge count on each side of the digits were calculated for all 163 studies. The grouped mean values for the $R S$ and $U S$ are presented for each group (Table 18) for homologous pairs of digits. Taking the frequency of occurrence of each of these counts, Table l8a is derived which Is close to Table 18b.

The simplified pattern-type expectancies are calculated for the simplified percentage occurrences of a ridge count on either side of each digit (Table 19a). For example, for whorls a ridge count is present on both sides of the digit; for digit II 75.00% of the RS has a ridge count and 50.00% of the ulnar-side has a ridge count, thus the concurrent chance of both occurring $1875 \% \times 50 \%$ or 38%.

The observed pattern frequencies for these 153 studies is shown In Table 19b. The concordance between the observed and expected values is rather great. This analysis indicates that the sides of the digits are independent, that the classical pattern types (ALW) are names specifying the existence of a ridge count on both sides of the digit (W), one side of the digit (L) or absent from both sides of the digit (A). Similarly, variations in the number of ridges on either side of the digit are codified in the names of the sub-groups of whorls.

The percentage occurrence of a ridge count on the RS of all digits is about 100% for all digits, except the second, in all the georacial groups. Therefore, differences which have been reported for the sexes and which may exist between races, are differences in the occurrence of a ridge count on the ulnar side of the digits and the mean value of the ulnar ridge counts.

This analysis also shows why Bonnevie's choice of the larger of the two ridge counts for whorls as the single value for inciusion in the FFRC was unfortunate because exclusion of the ulnar ridge count excludes the side of the digit which maximally reflects dfferences in various populations. It is therefore likely that analysis of the two sides of the digits independently will be of value to those working with specific groups.

Height*

Although the non-dermatoglyphic characteristics are not related to fingerprints, they are descriptive of the population and the differences between groups within this population. Four primary descriptive statistics vere included in this preliminary analysis, and the definitions of these are sometimes rather crude. Height is recorded for each input into the NYSCJS system; the heights recorded here are the averaged values for each individual
*non-dermatoglyphic variables: Tables 21, 34-37.
averaged for all individuals in the sanple. The non-dermatoglyphic characteristice exhibit some interesting patterns, often in contradistinction to other studies; they will be presented without comment, partially because we do not have sufficient information for rigorous analysis of these data.

Naturally, the mean heights of the females is shorter than the males, and all such differences are decidedly significant. The mean height for noncriminal Caucasian males is 69.98 Inches; for females it is 64.24 Inches. There is relatively little difference between the heights of the various races. The differences in the means of criminal male and female Caucasians are significantly lower than the means of the criminal male and female Negroes, although the differences for the non-criminal groups are not significant between these races. The Oriental and Caucasian height differences are statistically 6Ignificant for males, but not for females; similarly for the Oriental-Negro comparison.

The average height of the criminals is between one-half and threequarters of an inch less than that of the non-crimianls. Female criminals are an exception and are not shorter than their non-criminal counterparts. Ail of the differences are statistically significant, except for the Orientals. For Caucasian males, the mean criminal height is 69.10 inches; for noncriminals it is 69.98 inches. The t-value for this difference is 111.10; the probability that there is no real difference between these heights is astronomically low.

Year of Birth

The criminal groups are considerably younger than the non-criminal groups. The difference is about five to six years. This is not too surprising since the non-criminal groups are civil service applicants, license holders, and certain government employees. It has previously been well established
that criminals are often quite young at the time of first arrest. The correlation coefficient of the TFRC and the $Y O B$ is $r=0.013$ for males and 0.019 for females; the t-values for the probability that $r=0$ are 1.09 and 0.57 respectively. Since these correlations are non-significant, it appears that the difference between the times of birth of the criminal and noncriminal groups is not the cause of the dermatoglyphic differences in the mean ridge counts or TFRC.

The average age of the females is three to five months younger than the males in all groups except Oriental female criminals whose mean ages are exactly equal. Other than the Oriental groups, all of these differences are statistically significant except for the difference between non-criminal Negroes. The criminal Caucasians and Orientals are younger than the criminal Negroes; the non-criminal Negroes are slightly younger than the non-criminal Caucasians -- the Oriental mean ages are not clear with respect to this characteristic.

Number of Charges

The number of arrest charges per individual is higher for Negroes than for Caucasians or Orientals. This is probably because of the age differences in these groups. For Caucasians, the correlation coefficients for the number of charges and the $Y O B$ is $r=0.11, t=31.60$ for females and $r=0.08, t=8.78$ for males. Since the Negro groups tend to be somewhat older than the Caucasian or Oriental groups, they have had more time, past the age of 18 , in which to get arrested.

The number of charges for females is considerably less than for males; for Caucasians, the mean number of charges for females is 2.10 ; for males it is 2.20 , the t-value for this difference is $6.34, \mathrm{P}<0.001$.

For Negroes, the sexual difference is even greater, the female mean is 2.65 arrests and for males it is 3.10 arrests, for a t-value of 16.08. The difference between the ages of these Negro groups was barely significant, $t=2.07$ for mean YOBs of 45.54 and 45.86 , males being younger. The mean number of arrests for Orientals is lowest of the racial groups, but the sexual difference is still present: for females the mean number of charges is 1.67 , for nales it is 1.94 ; this difference is highly significant, $t=54.27 . *$

Sentence Length

The mean length of sentences for Negroes is between two and two and a half times as large as for either Caucasians or Orientals. In addition, approximately the same ratio exists between males and females within each race. This is probably a sociological factor of selection against Negroes coupled with a tendency for women not to receive as long a sentence as males, or not to comit the same kinds of crimes (many of the female arrests in this file are for prostitution; many of the male arrests are for breaking and entering or theft).

The mean sentence length for Negro males is 10.68 months, for Caucasian males the mean sentence length is 4.22 months; the t-value for this difference is 18.21 , although it is doubtful how meaningful this t-value 1s. There is no question but that the differences between these groups are statistically significant and meaningful, but the distributions are not Gaussian. The standard deviations are 7-8times the means. For Negroes, the coefficients of variations are 718.82% and 802.87% for males and females. The standard deviations suggest that the distributions are bimodal rather than Gaussian. Unfortunately, the distribution of this characteristic has not yet been graphed.

[^2]
Dissemination

Information on these results and volumes of basic statistics have been provided to our collaborators and interested local agencies including the following:

1. Massachusetts Department of Corrections, Research Department
2. Barnstable County Police Department, Criminaiistics Research (Sheriff Lou Cataldo)
3. John Jay College of Criminal Justice, New York City (Professor Charles Kingston)
4. Fingerprint Bureau of the Metropolitan Police, London, England
5. International Dermatoglyphics Association, Johns Hopkins University (Dr. Digamber Borgoankar).

Conclusions
The NYSIIS file has certain unique advantages. No other body of data of this size or immediacy exists. It is autonatically processable and serviced by a well-established computing system. This is important because updating will be necessary. However, NYSIIS has avoided entering certain measures described in the previous sections, and to realize the full potential of the system for improving classification and manipulation of the file, it is extremely important to store all possible dernatoglyphic information. Specific modifications to the file should be made as follows:

1. The file should be updated regularly according to the changing mix of the population at large and on the NYSIIS records, and volumes of current descriptive statistics issued.
2. Counts present on digits other than II and VII, and the distinction of plain arches Erom tented arches, and, possibly, tented arches from small loops (i.e., patterns with spoiled inner recurves); ulnar counts and whorls; and counts above 26 , should be included as soon as possible.

While there may be some difficulties in re-training identification personnel in distinguishing spoiled loops from tented arches, the classificatory value of the distinction of the small loop sub-set of the loop population will be immediately evident. This should add no great labor to the task of measuring and classifying ridge counts precisely because it is a relatively infrequent finding. When present, however, it serves as an extremely useful method for characterizing a single digit and of itself may offer an extremely fast route to matching or locating particular prints. It is a strategic error to eliminate characteristics because they are rare, in order to save time and expense of recording: as much or more is lost in the time and cost of locating unique fingerprint patterns when many of their peculiar and special characteristics are not available.
3. These updated statistics can be useful for the following purposes:
3.1 Survey of the efficiency of the recording system: a surprisingly large number of rejects were encountered during the initial processing of the NYSIIS file; because of missing or unusable information.
3.2 Development of search table whereby fingerprints can be correlated with absolute frequencies or according to their covariance with other digits. This search table should, of course, be updated in the same way as the basic statistics on which it depends.
3.3 It should be useful to specify the descriptive statistics by more detailed social mental health and crime categories since these provide Independent methods of categorizing data.
3.4 An integrated library of software should be completed to maintain the descriptive statistics up to date and to take account of modifications in recording techniques.
3.5 A rational classification scheme can be based on the above (biometric rather than arbitrary) measures and this will probably have more equisized boxes than the present Henry System or its derivatives.
3.6 Computational difficulties of multiple regression and factor analysis or hierarchial probability schemes require both a large body of data and an automatically processable file. It seems highly desirable co train specialists in techniques for using these statistical procedures and the NYSIIS file offers a good opportunity for this. The current access rate to NYSIIS is approximately 192,000 sets per year. Clerical cost of searching, which includes recoding and accessing, is about $\$ 2$ per search plus $\$ 0.55$ for amortizing of computer costs, and the time taken is two seconds. Manual searches, however, take about 10 to 15 minutes at a cost of approximately \$3. The overall saving is one of time rather than cash, and amounts to $\$ 5.50$ per search, i.e., $\$ 10^{6}$ per year. These figures alone make it desirable to make the file as fully computable and as complete as possible.
4. Because pattern classification is highly subjective compared to ridge counting, transformation of the daca to more readily interpretable format is strongly recomended. The presence of a ridge count on one or other side of the digit defines the presence of a loop; the presence on both sides defines a whorl and absence on either side defines an arch. The frequency of a ridge count, of whatever value, will be the same as the frequency of the patterns arising from the presence of such ridge counts. The two tables of frequencies can be calculated independently. If this is done they are found to approximate extremely closely. This suggests that recording radial ulnar ridge counts on all digits may be sufficient for basic pattern classification into arch, whorl, loop ulnar and loop radial
as a preliminary method for quantifying classification schemes. The chief value would be to raticnalize the initial classification of the files and make them more amenable to automatic computation.

Recommendations

Some of the following recomendations are implicit in the way in which data has been compiled for this report (Appendix A); and in the methoojology used (Appendix B). These data provide the ground-work for future work which should $a \operatorname{mat}$ the following specific objectives:

1. Detailed digit-by-digit descriptive statistics, to include total radial
and ulnar ridge counts and, by transformation, pattern types classified according to size as well as specific morphology.
2. Categorization of single and covariant groups of fingerprints into groups of similar size and greater amenability to automatic storage and acciss.
3. Probabilistic search stratery based upon the above criteria (see also Appendix B3).
4. Allied software for statistical processirig:
4.1 Access and retrieval packages (see Appendix B4)
4.2 Descriptive statistics package (tabular frequencles by item, group, and category
4.3 Analytical statístics pacixage (graphical distributions; comparisons between groups; multiple regression analyses).

References Cited

Abel, W. 1937 ṫber efne Verefnfachung der genetischen Auswertung von Papillarmustern der Fingerbeeren bei Rassenuntersuchuncen. Standardisation Anthropologique Syntietique 5;21-26.

Abel, W. 1938 Kritische Studien iber ale Entwickiung der Papillarmuster auf den Fingerbeeren. Z. E. menscini. Vererb. u. Konst.lehre 21;497-529.

Bonnevie, K. 1932 Zur Mechanik der Papillarmusterbildung: II. Anomallen der menschlichen Finger- und Zehenbeeren, nebst Diskussion aber die Natur der hier wirksamen Epidermispolster. Arch. £. Entwick= lungsmech. d. Organ. 12б; 348-372.

Chakravarti, Jim, et al. 1967 Handbook of Methoüs of Applied Statistics. Volume I. Techniques of Computation Descriptive Methods and Statistical Inference. Wiley Press, New York City.

Chamla, M-C. 1962 La répartition géographique des crêtes papillaires ilgitales dans le monde: nouvel essal de synthèse. L'Anthropologie (2arls) 66526-541 and 67;1-48.

Cumins, H. and Midlo, C. 1943 Fingerprints, Palms, and Soles. Blakiston Co, republished 1961 Dover Publications, New York City.
daCunha, A.X. and Âbrew, M.D.A. 1954 Impressöes digitals de Portugues. Contrib. Antrop. Portogues. 5;315-347.

```
Dankmeljer, J. and Renes, R.C. }1938\mathrm{ General rules in the symmetrical
    occurrences of papil1ary patterms. AJPA 24;67-79.
```

Danloneljer, J. 1938 Some anthropological data on finger prints. AJPA 23;377-388.
Geipel, G. 1935 Anleitung zur exbbiologischen Beurteilung der Finger- und
Handlefsten. J. F. Lehmann Co., Munchen.

Geipel, G. 1954 Die Vererbung der Fingerleistenmuster in Lichte der Bonnevieschen Arbeitshypothese, Z, f. M. u. A. 46;131-142.

Gruneberg, H. 1928 Die Vererbung der menschlichen Tastfiguren. Z. f. Indukt. Abst. - . Vererbs.lehre. 46;285-309.

Harman, H.H. 1967 Modern Factor Analysis Second edition. U. of Chicago Press, Chicago, U.S..

Holt, S.B. 1957 Genetics of dermal ridges: sib-pair correlatfons for tutal finger ridge-count. Ann. Hum. Genet. (Lond.) 21;352-362.

Holt, S.B. 1968 The Genetics of Dermal Ridges. Chas. C. Thomas, PubI. Springfield, Ill.

Knussmann, R. 1969 Biostatische Analysen der Interkorrelationen von Haut= Ieistenmerkmalen des Menschen. Humangentik 8;208-216.

Leschi, J. 1950 Empreintes digitales et races. Essal de synthèse. L'Anthropologie (Paris) 54;35-66.

Loeffler, L. 1969 Papillarleisten und Hautfurchensystem. In Humangenetik by Becker, P.E. PP. 205-339.

Penrose, L.S. and Loesch, D. 1970 Topological classification of palmar dermatoglyphics. J. Ment. Defic. Res. 14;111-128.

Race, R.R. and Sanger. R. 1958 Blood groups in man. Blackwell Press, Oxford.

Rife, D.C. 1953 Finger prints as criteria of ethnic relationship. Am. J. Human Genet. 5;389-399.

Semenovskif, P.S. 1927 The distributuion of the principal types of epidermic patterns on the fingers in man. Russkǐ antropologicheskil zhurnal. 16; ($\frac{1}{2}$) , 7-26.

Steel, R.G. and Torife, J.H. 1960 Principles and Procedures of Statistics McGraw Press, New York City.

Steinberg, F.S., Cereghino, J.J., and Plato, C.C. 1971 Dermatoglyphic features of normal black Americans. Book of Abstracts IV Int'I. Congr. Hum. Genet. (Paris).

Taylor, A.I. 1968 Autosomal trisomy syndromes. J.Med. Genet. 5; 227.

Uchida, I.A., Miller, J.R., and Soltan, H.C. 1964 Dermatoglyphics associated with the XXYY chromosome complement. Am. J. Hum. Genet. 16;284-291.

Weninger, M. 1965 Questioned paternity in the field of dermatoglyphics. Genetics Today 3;991-1000. Proc. XI Int'1. Congr. Hum. Genet.

Wolfe, R.I. 1950 The phylogeny of digital patterns in man and its bearing on racial affinity: a study in human ecology. Human Biol. 22;34-64.

Group	Mean TFRC	SoD.	N
Allrace, M\&F	139.05	34.83	153,512
Allrace, Males	140.12	35.40	131,833
Allrace, Females	132.52	34.35	21,679
Caucasian, Males	142.11	37.31	
Caucasian, Females	134.79	37.11	12,854
Negro, Males	135.32	35.28	38,615
Negro, Females	129.13	34.12	8,773
Oriental, Males	141.05	33.81	263
Oriental, Females	143.48	31.82	52

Mean TFRCs for general North American population (NYSCJS).

Total finger ridge counts for race- and sex-specified subgroups of the NYSCJS data. Race and sex are determined by asking the subjects.

Table 2

Group	Mean	S.D.	'	M
:				
Allrace, M\&F	136.04	13.67	171	$293,123 *$
Allrace, Males	139.80	13.99	104	$226,142^{*}$
Allrace, Females	128.81	11.44	63	$46,981 *$
Caucasian, Males	139.57	4.01	69	12,566
Caucasian, Females	129.13	6.20	43	7,618
Negro, Males	123.41	12.30	11	1,281
Native Amer, Males	139.81	16.84		13

Grouped Mean TFRC Values for Pooled Georacial Groups from literature

Grouped mean TFRC values are calculated for 139 studies from the literature.
N is the number of studies. M is the total number of persons in the studies. Asterisked studies include pooled data from 41 subgroups of the NYSCJS data. No literature data is available for non-Caucasian female groups.

Table 3

FEMALES

Distribution of Literature TFRCs

Distribution of TFRCs from literature sources; all races and ethnic groups are combined. The given statistics are unweighted for sample size. TFRCs from the NYSCJS data are included. Some outlying values are omfted such as a male TFRC of 205 and a female value of 90 .

	Group	I	II	III	IV	V	VI	VII	VIII	IX	X
	Allrace	18.40	10.55	12.07	15.87	13.51	16.08	10.01	12.42	15.71	13.38
	$\begin{aligned} & \text { Males } \\ & \mathrm{N}=160,229 \end{aligned}$	5.02	5.88	4.51	5.02	4.56	5.11	5.64	4.64	4.85	4.26
				,							
	Allrace	17.00	11.06	12.09	15.70	12.81	14.65	10.14	11.97	15.26	12.56
	$\begin{aligned} & \text { Females } \\ & \mathrm{N}=31,040 \end{aligned}$	4.86	5.31	4.22	4.94	4.56	4.92	5.27	4.54	5.03	4.44
	Caucastan	19.54	11.12	12.48	16.23	13.94	17.04	10.59	12.81	16.15	13.89
	$\begin{aligned} & \text { Males } \\ & \mathrm{N}=17,722 \end{aligned}$	4.78	6.05	4.83	5.25	4.81	5.05	5.68	4.89	5.02	4.42
	Caucasian	17.58	11.17	12.14	15.66	12.75	15.16	10.27	11.94	15.31	12.58
\%	$\begin{aligned} & \text { Females } \\ & \mathrm{N}=10,920 \end{aligned}$	4.79	5.50	4.47	5.28	4.79	4.90	5.33	4.80	5.32	4.67
\sim_{\sim}^{ω}	Negro	16.54	11.11	11.99	15.85	13.36	14.60	10.71	12.43	15.48	13.11
	$\begin{aligned} & \text { Males } \\ & N=36,699 \end{aligned}$	5.22	4.80	4.29	4.80	4.29	5.25	4.82	4.56	4.67	4.08
	Negro	13.37	11.13	11.76	15.62	12.66	13.25	10.27	11.78	14.99	12.25
	Females	5.04	4.45	4.07	4.80	4.28	5.07	4.60	4.48	4.79	4.22

Mean Ridge counts per Digit
The mean ridge count per digit and the standard deviation are shown. The N for all items in a row is In the group column. Orientals are not show separately because of their rarity in the NYSCJS files.

Table 6

	Group	Digit I			Digit VI		
		$\overline{\mathrm{x}}$	S.D.	N	$\overline{\mathrm{X}}$	S. ${ }^{\text {d }}$	N
	Allrace males	18.51	5.07	131,833	16.17	5.20	131,833
	Allrace females	16.73	5.10	21,679	14.40	5.06	21,679
	Caucastan males	19.32	4.78	92,955	16.82	5.04	92,955
	Caucasian females	17.62	4.80	12,854	15.18	4.90	12,854
	Negro males	16.56	5.23	38,615	14.61	5.25	38,615
	Negro females	15.37	5.04	8,773	13.26	5.07	8,773
$\begin{aligned} & 0 \\ & \text { on } \\ & \text { on } \end{aligned}$	Oriental males	18.55	5.64	263	16.25	5.63	263
$\stackrel{\sim}{\sim}$	Oriental females	17.64	4.61	52	15.23	4.71	52
Mean Ridge counts of the First							
The mean ridge counts of the thumbs exhibit							
the greatest variation between races in the NYSCJS							
data. The Negro means are about three ridges lower							

Table 7

Table 8

Digit- and Pattern-specific Mean Ridge counts
The mean, standard deviation, and N of the ridge counts of each digit specified by the type of pattern on the digit. N is the number of digits and the number of persons. The total number of subjects is 160,229 males; 33,040 fenales.

The number of patterns indicates the number of whorls in a set of ten digits. All column are the same as for MSRC--Ulnax Loops (Table 9), The total sample is 66,811 males and 10,066 females. The $\%$ column of these tables is the same as the outer border of Poll's Ambimanuars. See nota under Table 非11.

	MALES				FEMALES			
Number of Radial Loops	\%	$\overline{\mathrm{X}}$	S.D.	N	\%	\bar{X}	S.D.	${ }^{-N}$
0	69.76	-----	----	46,606	76.21	-----	----	7,671
1	22.53	10.08	6.30	15,052	18.69	10.17	6.42	1,881
2	6.88	9.80	5.42	4,599	4.76	9.76	5.52	479
3	0.74	9.79	4.90	494	0.32	8.18	4.13	32
4	0.09	11.69	5.19	57	0.03	4.58	0.24	3
5	0.005	9.47	2.36	3	0.00	-----	----	0
6	0.000	-----	----	0	0.00	-----	----	0

in a set of ten digits. The total sample is 66,811 males and 10,066
females. No person in this sample had six or more radial loops.
The MSRCs of Tables 9,10 , and 11 msy be used to calculate the expected YFRC for a given combination of pattern types (e.g. per individual). The expected TFRC may be used in prediction of unknown digits as well as in clinical studies. If an individual has fewer than 6 patterns of the same type the means for each pattem on each digit ara summed; when $s i x$ or more of the same pattern are present, the mean for the number of pattems of the same rype in the set is summed for that number.

Table 12

	MALES	FEMALES
A	1.01	0.67
R	3.88	2.93
U	61.71	65.04
W	32.39	30.69

The percentage of pattern types in the NYSCJS file. Male N equals $1,602,290$ digits; female N equals 310,400 digits. Arch frequencies are spurious due to the nature of the file (see text).

MALES

| Pattern
 Type | I | II | III | IV | V | VI | VII | VIII | IX | X |
| :---: | ---: | ---: | ---: | ---: | ---: | :---: | ---: | :---: | ---: | ---: | ---: |
| U | 49.53 | 34.48 | 77.13 | 45.54 | 80.81 | 61.13 | 40.07 | 77.95 | 59.63 | 86.23 |
| W | 50.16 | 38.24 | 21.13 | 53.37 | 18.93 | 38.43 | 34.81 | 20.46 | 40.07 | 13.69 |
| R | 0.31 | 17.90 | 1.74 | 1.09 | 0.26 | 0.44 | 15.46 | 1.60 | 0.31 | 0.09 |

FEMALES

U	57.16	42.93	82.59	. 53.26	86.46	60.57	40.05	77.93	59.78	86.44
W	42.72	39.63	17.13	46.34	13.45	39.18	38.11	21.11	39.89	13.48
R	0.12	12.02	0.28	0.40	0.09	0.24	15.26	0.95	0.33	0.08
Digit-specific Pattern Frequencies										
The \% of ulnar loops, whor1s, and radial loops is given										
for each digit. Arch fxequencies are only available for digits										
II and VII (see text). The N is 160,229 for each male digit;										
31,040 for each female digit.										

Table 14
MALES EEMALES

		A	L	W	UL	RL	A	L	W	UL	RL
	Allrace	4.07	57.69	37.63	52.86	3.68	4.94	59.44	35.12	56.04	3.06
		2.24	7.37	8.52	6.24	2.07	3.97	6.76	9.21	5.84	0.85
		269	269	269	120	120	145	145	145	60	60
	European	5.17	65.06	29.67	60.33	5.44	8.08	65.80	26.11	61.88	4.21
		1.31	1.87	2.36	1.32	0.32	1.43	1.75	1.83	0.78	0.29
		69	69	69	23	23	30	30	30	14	14
	India	2.77	53.18	43.28	50.72	2.54	1.71	55.84	40.78	55.02	2.15
		1.40	5.78	6.23	5.14	1.66	3.20	7.68	8.39	8.19	0.60
		74	74	74	37	37	39	39	39	12	12
	Oriental	2.05	51.12	46.49	47.80	3.41	3.12	55.23	41.76	52.96	2.91
		0.81	3.60	3.59	2.77	0.53	1.51	3.72	3.92	2.85	0.51
		58	58	58	37	37	44	44	44	31	31
N00	Amerindian	4.80	55.68	36.52	54.47	4.35	7.62	60.22	32.33	56.37	3.73
		0.33	1.63	1.75	0.59	0.15	0.84	3.13	2.89	-----	
		19	19	19	13	13	5	5	5	1	1
	African	6.57	62.68	30.25	65.98	3.49	8.60	64.29	26.67	64.68	2.85
		2.42	6.49	5.54	3.54	1.01	4.29	4.26	6.66	3.37	0.59
		49	49	49	5	5	27	27	27	3	3

Pooled Overall Pattern Frequencies

The mean, standard deviation, and N of the reported ifterature
values for the basic pattern types. Calculation was weighted for sample
size. The N is the number of studies included in each group; not all
studies subdivided loops. NYSCJS studies not included.

Table 15
ALLRACE
ALLSEX

	X	A	L	W	UL	RL
		4.37	58.30	36.75	53.92	3.47
	S.D.	2.99	7.20	8.84	6.28	1.78
	N	414	414	414	180	180
	Pooled Overall Pattern Frequencies					
Mean, standard deviation, and N (number of studies)						
of 414 literature values weighted for sample size. All						
races and sexes combined; all axe "nomal", non-pathological						
samples. See text for limitations and description of method.						

Table 16

Georacial groups	TFRC	$\begin{aligned} & \text { per digit } \\ & \text { ridge-count } \end{aligned}$	$\begin{aligned} & \text { ten-digqt } \\ & \text { patterns } \\ & \text { (ALW) } \end{aligned}$	ten-digit patterns (ARUW)	per digit patterns (ARW)
Enropeam males	35	18	69	23	29
Fruropean females	28	11	30	14	14
Indian males	34	15	74	37	29
Indan females	15	9	39	12	14
Oriental males	3^{*}	--	58	37	26
Oriental females	--	--	44	31	21
African males	11	--	49	5	14
African females	--	--	27	3	4
Amerindian males	13	--	19	13	11
Amerindian females	--	--	5	1	--
Totals	139	53	414	163	162

The number of studies for each georacial area used in complifng pooled literature statistics is given. The studies are not independent; most studies giving per-digit data also give ten-digit sunmary data, most studies giving ridge-count data also give pattern frequencies. Many literature sources give data for both sexes; none for more than one georacial area.

MALES											
		I	II	III	IV	V	VI	VII	VIII	IX	X
U	$\mathrm{X}=$	50.96	31.61	74.11	46.38	81.36	62.58	38.05	75.34	61.20	87.40
	SD $=$	2.16	3.40	3.61	1.58	1.20	2.22	2.43	3.16	2.27	1.64
W		47.88	36.03	20.65	51.77	17.92	35.31	32.95	19.23	37.49	11.93
		2.97	2.74	1.02	2.30	1.71	3.94	2.32	1.75	3.29	2.30
R		0.46	21.29	2.05	1.12	0.22	0.36	18.26	1.87	0.32	0.07
		0.28	3.99	0.41	0.10	0.06	0.11	3.38	0.39	0.07	0.03
A		1.66	11.11	6.86	1.58	0.87	4.12	10.73	3.59	2.32	1.47
		0.33	2.33	1.08	0.43	0.34	0.47	1.60	1.04	0.36	0.36

The mean reported frequencies for 29 male studies and 14 female studies. The mean and standard deviation for each category are given. The N is the same for all pattern types.

			Tave			
			Exp			
Table 19a:	Digit Pair:	I	II	III	IV	v
	A	0	13	0	0	0
	L	50	50	75	50	75
	W	50	38	25	50	25
	LU	50	38	75	50	75
	LR	0	13	0	,	0

Observed \%

Table 19b:

Digit Pair:

A	2.59	7.00	5.29	1.39	0.93
L	49.60	51.13	69.29	45.55	74.71
W	50.48	38.00	26.51	53.67	22.62
LU	47.33	36.96	67.61	44.03	75.61
LR	0.48	13.99	1.62	0.56	0.24

Expected and observed pattern frequencies.
The expected pattern frequencies are calculated from the simplified percentages of a ridge count on efther side of the digit.

MEAN FINGER RIDGE COUNTS
The mean number of ridges per digit and the standard deviation ara given for each digit and the TFRC--total finger ridge count.

The mean and standard deviation of the hefght, YOB, number of charges, and sentence length for the various sub-popuiations of this sanple. Seatence length is not distributed normally, hence the S.D. Is many times the mean.

Statfstlcal Note

All t-values are the absolute value of two-talled t-tests, corrected for sample size. Asterisks indicated the level of significance as follows
$(*)=P \quad 0.05 \%$
$(\% \pi)=P \quad 0.001 \%$

T-values which are not significent are not marked. The formula used was derived from Chakravarti, Laha, and Roy; Handbook of Applied Stat1stics, W1ley Press, (1967)

$$
\begin{aligned}
& \text { " }
\end{aligned}
$$

> Caus. sex $=$
> $\begin{aligned} & \text { female } \mathrm{C} / \mathrm{NC} \text { not significant } \\ & \text { all differences slight } \\ & \text { Negro female } N / N C= \\ & \text { " } \quad \text { " } \quad \text { " } \\ & \text { " }\end{aligned}$
> female C/NC both $=$
> female C / NC not significant
> all differences slight
> all differences strong
> Comment

GROUP NUMBER KEY

Group
Number:

Table 23

2 34.35**

3 2.19* 12.92**

4 ' $33.55 * * \quad 6.80 * * \quad 14.79 * *$
$5 \quad 30.99 * * \quad 70.02 * * \quad 19.60 * * \quad 64.36 * *$
$6 \quad 18.59 * * \quad 86.69 * * \quad 10.70 * * \quad 64.34 * * \quad 18.60 * *$

	7	10.59**	18.63**	10.64**	19.66\%	0.55	5.51**					
$\begin{aligned} & \text { O } \\ & \text { D } \\ & 00 \end{aligned}$	8	5.78**	21.47**	5.83**	22.79**	11.69**	2.76*	$6.12 * *$				
an												
	9	0.12	2.32*	0.25	2.71*	3.15*	1.49	3.22*	1.00			
	10	3.00*	2.33*	2.04*	3.18*	$9.45 * *$	5.82**	$7.89 * *$	4:40**	0.98		
	11	0.14	0.84	0.25	0.96	0.75	0.27	0.80	0.14	0.17	0.44	
	12	1.21	0.65	0.91	0.95	3.47%	2.16*	3.55**	1.75	0.92	0.13	0.61
		1	2	3	4	5	6	7	8	9	10	11

$t-v a l u e s$ for mean ridge-count differences.

Group
Number:

2 4.50**
30.63 2.61*.
$40.60 \quad 4.58 * * \quad 0.89$
$5 \quad 0.43 \quad 3.56 * * \quad 0.98 \quad 0.15$
$\begin{array}{llllll}6 & 0.94 & 6.18 * * & 1.21 & 0.17 & 0.34\end{array}$

	7	0.46	1.45	0.11	0.58	0.72	0.77					
\because	8	2.10*	4.04**	1.15	2.27 *	2.72*	2.96*	0.68				
	9	0.60	0.88	0.48	0.60	0.79	0.77	0.53	0.28			
	10	0.20	0.51	0.40	0.07	0.14	0.07	0.48	1.02	0.58		
	11	0.21	0.29	0.18	0.21	0.28	0.26	0.21	0.12	0.04	0.22	
	12	1.32	1.46	1.20	1.24	1.66	1.57	1.48	1.18	0.73	1.24	0.38
		1	2	3	4	5	6	7	8	9	10	11

t-values for mean ridge-count differences.
Group
Number:
2 3.02*
$\begin{array}{lll}3 & 1.27 & 0.05\end{array}$
$4 \quad 5.88 * \% \quad 4.78 \% \pi \quad 1.70$
$56.05 * * \quad 9.69 * * \quad 4.96 * * \quad 11.68 * *$
6 3.19* 10.11** 2.90* 11.89** 4.44**
$\begin{array}{lllllll}7 & 0.83 & 1.48 & 1.41 & 2.31 * & 1.11 & 0.11\end{array}$
Page 58

8	1.23	0.09	0.03	1.74	4.93**	2.85*	1.42				
9	1.94*	1.62	1.70	1.32	2.77*	2.27*	2.31*	1.76			
10	0.68	0.18	0.20	0.42	2.14*	1.25	1.04	0.22	1.25		
11	0.38	0.30	0.32	0.22	0.61	0.47	0.51	0.33	0.16	0.24	
12	1.56	1.31	1.39	1.08	2.21*	1.82	1.90	1.44	0.06	1.05	0.19
	1	2	3	4	5	6	7	8	9	10	11

$28.20 * *$

3	1.39	2.14*									
4	9.62**	4.08**	3.45**								
5	0.58	8.04*\%	$1: 81$	9.68**							
6	3.44**	7.86**	0.03	9.53\% \%	3.89**						
7	0.30	1.56	0.42	2.28*	0.51	0.52					
8	3.81**	0.44	1.89	0.99	4.39**	2.73*	1.74				
9	2.65*	2.11*	2.35*	1.86	2.97*	2.66*	2.75*	2.18*			
10	1.56	0.30	0.97	0.22	1.83	1.14	1.21	0.15	1.76		
11	0.98	0.82	0.89	0.75	1.10	1.00	1.07	0.87	0.22	0.75	
12	1.12	0.70	0.92	0.51	1.28	1.03	1.16	0.69	0.82	0.55	0.65
	1	2	3	4	5	6	7	8	9	10	11
					Dig1	IV					

t-values for mean ridge-count differences.

```
            Group Table 27
            2.19.91**
            3 1.04 7.73**
            4 20.31** 5.40** 9.22**
\(5 \quad 1.38 \quad 19.48 * * \quad 1.94 \quad 20.66 * *\)
6 12.56** 12.50%* 4.77** 14.24** 13.33**
\(7 \quad 0.22 \quad 4.30 * * \quad 0.31 \quad 5.20 * * \quad 0.70 \quad 2.86 *\)
8 6.99** 1.39 4.66** 3.21* 8.34** 2.13* 3.48**
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9 & 1.32 & 0.08 & 1.11 & 0.39 & 1.62 & 0.50 & 1.27 & 0.15 & & & \\
\hline 10 & 0.00 & 3.12* & 0.37 & \(3.76 * *\) & 0.32 & 2.15* & 0.14 & \(2.68 *\) & 1.19 & & \\
\hline 11 & 1.36 & 1.78 & 1.39 & 1.85 & 1.48 & 1.80 & 1.50 & 1.86 & 1.45 & 1.37 & \\
\hline 12 & 0.52 & 1.60 & 0.64 & 1.82 & 0.46 & 1.32 & 0.61 & 1.54 & 1.16 & 0.51 & 1.23 \\
\hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\
\hline
\end{tabular}
Digit V
t-values for mean ridge-count differences
```


t-values for mean ridge-count differences.

$t-v a l u e s$ for mean ridge-count differences.

t-values for TFRC ridge-count differences

t-values for mean hetght diffarences.

t-values for mean muber of charges differences.

t-values for maan $Y O B$ differences.

VOLUME II (APPENDICES)

Appendix A NYSIIS (NYSCJS) Fingerprint Statistics
A1 NYSIIS Sub-file description 1-10
A2 NYSIIS I Descriptive Statistics and Graphs 1-152
Appendix B Methodology
Bl Fingerprint Classification Manual 1-11
B2 Coding Methods and Forms 1-6
B3 Proposed manual probability prediction 1-9
B4 Software
B4-1 Program titles, machines, inputs, function
B4-2 Elementary statistics list for computer 1-12 programs

A. 1 NYSIIS Sub-i£le Descriptions

NYSIIS I

1. Population Sampled

All persons between the ages of eighteen and twenty-five on $10 / 1 / 71$ who have been in the State of New York and could have had contast with NYSIIS by applying for a government job, applying for a state license, entering a state mental hospital, or being arrested for any felony or any misdemeanor (after 9/1/71). This is essentially any person who has been in New York between the ages of $18-25$ as of $10 / 1 / 71$.

2. Sample Description

All persons on the NYSIIS computerized files who 1) was between 18-25 on $10 / 1 / 71,2)$ did not have an arch or tented arch pattern on digits other than II or VII, and 3) did not have one or more prints classified as unknown patterns or ridge-counts.
3. Sample Size
191,269 persons
4. Sex Breakjown
5. Racial Breakdown
6. Sociological Breakdown
7. Pattern Classification
arches tented arches
ulnar loops radial loops
whorls
8. Ridge-count Classification
9. Dermatog1yohic Statistics
radial count of all patterns, except ulnar count of radial loops
$\left.\begin{array}{l}\text { A LIST } \\ \text { B LIST }\end{array}\right\}$ See Appendix
Both Galton's ridge-count only
Both A, T, R, U, W, patterns only.

10. General Description--Advantages

1. Tlis sample is large; it is almost 100 times the size of the largest previous well-analyzed sample. This is important in obtaining normal values for rarer patterns and pattern combinations.
2. The size of the factor and nature of its collection reduces error caused by subjectivity of the fingerprint classifier to an absolute minimum. This file was compiled over many years by at least thirty classifiers.
3. The sample is the only study which is representative of the North American population. Although 50% of the file has at least one arrest on record and 5% have spent some time in prison, all other large samples have been either 1) 100% convicted criminals, or 2) closely related persons, and 3) all are European.
4. The data are computer-stored and therefore manageable. The calculation of descriptive statistics for a sample of this size by any . other means would be impossible.
5. The sample is from identification bureau files, thus liason between dermatoglyphicists and forensic scientists is established. The police classification of fingerprints must be used. Methods of comparing procedures and classifications of fingerprints collected by different bureaux can be derived from the Gaussian distributions of some dermatoglyphic factors, thus increasing inter-agency efficiency.
6. This sample is very coarse.
a. pattern classification is limited to A, T, R, U, W.
b. arches and tented arches are limited to digits II and \mid
c. race is not specifiable
d. no sociological data is available.
e. whorl ridge-counts are counted on only one side.
f. pattern direction of whorls is not available.
7. The sample is not tractable. The various factors of importance such as pattern types and ridge-counts cannot be re-arranged or re-grouped for analysis.
8. The lack of arch and tented arch distributions precludes analysis of five-finger constellations of patterns and accurate multi-digital correlational analysis.
9. Ridge-counts are recorded as twenty-six by NYSIIS if they are 26 or greater. Since ridge-counts on individual digits can range to 42 this causes anomalous humps at the twenty-sixth ridgecount of patterns with high ridge-counts and distorts the descripti statistics somewhat.
10. Population Sampled

Same as NYSIIS I except persons born after $1 / 1 / 50$ were excluded. All other ages are present.
2. Sample Description

Same as NYSIIS I except:
a. persons born after $1 / 1 / 50$ were excluded.
b. persons with one or more fingers with a ridge-count of 26 or greater were excluded.
3. Sample Size

311,617 persons
4. Sex Breakdown

260,736 males
50,881 females
5. Racial Breakdown
not available
6. Sociological Breakdown

261,269 criminals
50,348 non-criminals and unknown

217,315	male criminals	43,421 male unknown
43,954 female criminals	6,927 female unknown	

7. Pattern Classification
8. Ridge-count Classification
9. Dermatoglyphic Statistics
A, T, R, U, W

Galton's ridge count

Same as NYSIIS I plus
bidigital pattern frequency
bidigital ridge-counts
10. General Description--Advantages

This sample is primarily useful as a statistical comparator to the NYSIIS I and NYSIIS IV samples. The NYSIIS samples are so large that there is no valid value in the literature for most of the statistics studied. It is therefore necessary to have a separate sample which has been selected on different bases for comparison and more exact estimation of the true parametric values.

Omission of the twenty-sixth ridge-count was intended because of some spurious fincrementation of this ridge-count frequency due to the methods by which ridges are counted at NYSIIS. The distribution curves are therefore more Gaussian in this sample, and lend themselves more readily to tractable mathematical manipulation.
11. General Description--Disadvantages

The differentiation between the criminal and non-criminal groups in this sample was too poorly defined to be useful. In this sample, criminal means that the person has one or more arrests for a felony or misdemeanor and non-criminal means that no criminal record is on file at NYSIIS. In addition, approximately 5,000 of the non-criminal group do have known criminal records but were not separated in the computer screening process. Consequently only trivial differences are found in the dermatoglyphics of these two groups.

As in the NYSIIS I sample, data were neither racially nor sociologically made (June, 1972).

1. Population Sampled

All persons regardless of age who could have come into contact with NYSIIS at any time. This is virtually anyone over the age of eighteen in the northeastern United States.
2. Sample Description

The entire NYSIIS computerized file as of $1 / 1 / 72$.
This includes anyone with fingerprint records at NYSIIS except persons with arches or tented arches on digits other than II and VII.

NYSIIS I and II are sub-samples of NYSIIS III.
3. Sample Size
4. Sex Breakdown
approx. 85\% male
approx. 15% female
5. Racial Breakdown
not available
6. Sociological Breakdown
not available
7. Pattern Classification

A,T,R,U,W
8. Ridge-count Classification

Galton's ridge-count
9. Dermatoglyphic Statistics
not retrieved
10. General Description-- Advantages

Although we have this data in tape format, no specific selection of data has yet been done. In effect, this file is being
held in reserve and will be used to answer specific questions which follow from analysis of the other studies and which cannot be answered except with a file of this size. An example of this type of problem is: what is the distribution of pattern types on both hands in persons who have a radial loop on digit $R-V$? What is the pattern distribution in populations which have an ulnar loop on digit L-IV with a ridge-count of 15 ?

Obviously the number of questions of this type which could be asked is almost infinite; therefore use of this file is being delayed until sufficient analysis of the other samples has been done so that this file may be used most effectively. The theoretical background delineating the necessity and usefulness of this file is in the full report under Biological Theory.

11. General Description--Disadvantages

This file cannot be used for the same type of population samples as NYSIIS I, II, and IV because it is the entire file including unknown patterns, unknown ridge-counts, and other anomalies. When this file is reduced by exclusion of these it would produce a sample similar in size and definition as the NYSIIS II sample. Since this file was not collected for this purpose, this defect is apparent rather than real.

1. Population Sampled

Same as NYSIIS I.

2. Sample Description

All persons in the computer-retrievable file except; a. persons born outside of the USA and Canada. b. persons with one or more unknown digits. c. persons born after $1 / 1 / 48$.
3. Sample Size
4. Sex Breakdown
5. Racial Breakdown

100,000 persons
approx. 85% males
approx. 15% females
approx. 75\% Caucasian
approx. 25\% Negro
approx. 1\% Other
6. Social Breakdown

20 variables--see attached list.
7. Pattern Classification

A,T,R,U,W.
8. Ridge-count Classification
9. Dermatoglyphic Statistics

A List
B List (partial)
10. General Description--Advantages

As in all the NYSIIS studies, the size of the study is its main advantage. This is especially true in this study in which race,
sex, and criminological data will subdivide the sample into units which must be large enough for dermatoglyphic analysis.

The criminal classes are ciearly definable. In addition to the classification of criminal codes cnto a sociological theory which will be provided by outside consultants, sub-samples may be composed of all persons in the sample who have violated one specific criminal law or one group of laws. This study coordinates and augments the other NYSIIS studies which have been undertaken.
11. General Considerations--Disadvantages

This sample will be composed of young persons. Of the approximately 50,000 with criminal histories, few will have more than four to five arrests and none will have a known history of recidivist activity.

In this sample the lack of arches and tented arches on digits other than II and VII is more critical than in the previous NYSIIS studies since literature sources have indicated that it is in these patterns that significant differences in the groups of interest are most likely to be found. However, other patterns and their ridgecounts may show similar differences in a large sample. All previous studies of this kind are small yet the trend towards higher frequencies of arches, tented arches, and small loops is readily demonstrated. The lack of arch and tented arch patterns makes analysis of this sample somewhat more involved.

1. Sex
2. Height
3. Race
4. Skin tone
5. Crume history
a. Arrest charge
b. Disposition charge
6: Crime category code
6. Ádmission type
á. Transfer
B: New admittance, etc.
7. Release type
a. Parole
b: Statutory release
c: Escape, etc.
8. Disposition codes
à: Committed criminally insane
b: Committed narcotic user
c. Committed alcoholic
d: Truant, delinquent child, etc.
9. Release codes
a. Paroled
b. Transferred within department
c. Court order release
d. Death by electrocution, etc.
A. 2 NYSIIS I Descriptive Statistics and Graphs

NYSIIS FINGERPRINT DATA CHARTS

Chart $\mathrm{N}^{\circ} \mathrm{s}$

Male: 1-5
Female: 22-26

M-1 F-22
M-2 F-23
M-3 $\quad \mathrm{F}-24$

M-4 F-25

M-5 F-26

Males: 6-13
Females: 27-33

I. PATTERN FREQUENCY

These charts sumarize the distribution of the pattern types in this sample. Pattern frequency may be specified for the population as a whole, for individual digits, and for the distributions of patterns by digit.

Bimanual Pattern Frequency

Right Hand Pattern Frequency

Left Hand Pattern Frequency
These charts show the frequency of the pattern types in the population as a whole without regard to the distribution by digit. Thus, 61.74% of all male digits have an ulnar loop pattern (Chart 1, first column). Since there are ten digits, the mean number of ulnar loops per individual is 6.17 (Chart 1, column 3).

Digit-specific Pattern Frequencies

These charts show the distributions of patterns on each digit. Thus, 17.9% of all patterns on digit II of males are radial loops; 34.48% of all patterns on this digit are ulnar loops, etc. (Chart 4, columns 3,4).

NYSIIS does not record in its computer files persons with arches or tented arches on digits other than II or VII, therefore no information is available for other digits. One reason they have constructed their files in this way is that the frequency of arches and tented arches on the other digits is very low; the total of the other digits is, at a maximum, equal to that on digits II and VII.

Digit Distribution of Patterns
These charts show the distribution of each pattern type by digit. Thus, Chart 5, column 2 shows that of all ulnar loops In males, 8.09% occur on digit $I, 5.63 \%$ occur on digit II, etc. Under the whorl column, it may be seen that 55.28% of all whorls occur on the right hand and 44.78% occur on the left hand. The all-pattern column shows the theoretical distribution of patterns assuming random distribution.

II. RIDGE-COUNT DISTRIBUTIONS

These charts sumarize the distributions of ridge-counts in this sample. Ridge-counts may be specified by pattern-type or independently. This section specifies ridge--counts sumed for all ten digits, for each pattern-type on each digit, and independently for each digit.

M-6 F-27 TFRC Values
 Mean Digital Ridge-counts

These two distributions are on one chart. The total finger ridge-count (TFRC) is the sum of all the ridge-counts for ten digits without regard to pattern type. It may range from zero for persons with ten arches to about 350 for persons with ten large whorls. The TFRC sumarizes both the pattern type and the pattern intensity (single-finger, ridge-count) in one number. The mean value for this sum for males is $136.26, \sigma=36.1$ (Chart 6 , column 1).

The mean digital ridge-counts show the mean ridge-count fcr one digit. Since there are ten digits, it should be one-tenth of the mean TFRC; the value for males, 13.79 is not exactly one-tenth of the mean TFRC because of rounding off errors. (Chart 6, column 1)

M-7 F-28 Pattern-specific Mean Ridge-counts
These charts show the mean ridge-count for each pattern for each hand or for both hands. Thus, for males, the whorls on the left hand have a mean ridge-count of 16.34 ridges (chart 7 , column 1, row 14); radial loops on the left hand have a mean ridge-count of 8.91 (Row 8) Arches and tented arches are not inluded because they always have a ridge-count of zero.

M-8 F-29 Digit-specific Mean Ridge-counts
These charts show the mean ridge-count for each digit without specifying the pattern type. Thus, for males, the mean ridge-count for digit I is 18.40 and for digit II it is 10.55 ridges (Chart 8, column 1).

M-9 F-30 Digit and Pattern Specific Mean Ridge-counts
These charts show the mean ridge-count for each pattern on each digit, the mean for all patterns on each digit, and the mean for each digit regardless of pattern type. It is a combination chart; the following charts expand each column with the descriptive statistics.

M-10. F-31 Digit-specific Mean Ridge-counts -- Radial Loops
N-11 F-32 Digit-specific Mean Ridge-counts -- Ulnar Loops
M-12 F-33 Digit-specific Mean Ridge-counts -- Whorls
These charts show the mean ridge-count for each pattern on each digit on separate charts. For example, the mean ridge-counts for ulnar loops on digit V (Chart 11) of males is 12.92 (column 1) and the frequency of ulnar loops on digit V is 80.81% (column 9).
III. MULTIDIGITAL SURGED RIDGE-COUNTS

Males: 13-21
Multidigital summed ridge-counts (MSRC) are a special kind of total finger ridge-count. For the TFRC, all ridge-counts are summed without regard to the pattern type. For the MSRC only those ridge-
counts of a particular pattern type are counted. If an individual has two ulnar loops, three radial loops, four whorls and one arch, then the MSRC for ulnar loops is the sum of the ridge-counts for the wo ulnar loops, the MSRC for whorls would be the sum for the ridge-counts for the four whorls, etc.

On these charts, the left-hand column gives the number of a particulax pattern which are present. For example, for males, char 15 shows that for a person with four ulnar loops on both hands the sum of the ridge-counts in a population has a mean value of 59.59 ridges for ulnar loops. This sum is divided by the number of ulnar loops to obtain the ridge-count of the average ulnar loop in a series, which in this case is 14.90 (column 2). The average ridge-counts for ulnar loops in a series decreases as the number of ulnar loops increases so that a digit with a low ridgecount would have a greater probability of being associated with eight or nine ulnar loops than with only one or two ulnar loops.

These charts also show the percentage of source sample which is the frequency of persons with the specified number of patterns -In this case 8.46% of the population has exactly four ulnar loops.

M-13	F-34	Multidigital Summed Ridge-counts -- Radial Loops, Both Hands
M-14	F-35	Multidigital Summed Ridge-counts -- Radial Loops, Right Hand
M-15	F-36	Multidigital Summed Ridge-counts -- Radial Loops, Left Hand
M-16	$F-37$	Multidigital Summed Ridge-counts -- Ulnar Loops, Both Hands
M-17	$F-38$	Multidigital Summed Ridge-counts -- Ulnar loops, Right Hand
M-18	F-39	Multidigital Summed Ridge-counts -- Ulnar loops, Left Hand
M-19	F-40	Multidigital Summed Ridge-counts -- Whorls, Both Hands
M-20	F-41	Multidigital Summed Ridge-counts -- Whorls, Right Hand
M-21	F-42	Multidigital Sumed Ridge-counts -- Whor1s, Left Hand

Digit

Pattern-specific Mean Ridge-counts

Digit

		$\therefore \bar{x} *$	$\bar{\chi}$			1. ${ }^{-1}$	-1.0	N -	
Description	\%	see below	cumulative mean	standard deviation	standa error	---R A N	E-----	$\begin{gathered} \text { sample } \\ \text { size } \end{gathered}$	source
number of LR on both hands								(persons)	
0	69.76	---	---	---	---	---	---	46,606	2
1	22.53	10.08	10.08	6.30	0.05	16.38	3.78	15,052	2
2	6.88	$\bigcirc 9.80$	19.59	10.84	0.16	30.43	8.75	4,599	2
3	0.74	9.79	29.38	14.69	0.66	44.07	14.69	494	2
4	0.09	11.69	46.74	20.74	2.75	67.48	26.00	57°	2
5	0.005	9.47	47.33	11.79	6.81	59.12	35.54	3	2
6	0.0	---	---	---	---	---	---	0	2
7	0.0	---	---	---	---	---	---	0	2
8	0.0	---	-	---	---	---	--	0	2
9	0.0	---	---	---	---	--- -	---	0	2
10	0.0	---	---	---	-	---	--	0	2
	-						-		

[^3]

MALES

MALES
mystes I
Multidixital Summod Ridonona......-

Digit	Radial Loop	Ulnar Loop	Whorl	Al1 Patterns	1	source
I - X	100.00	100.00	100.00	100.00		1
RH I	0.40	8.83	13.73	10.00		1
II	40.37	6.63	12.74	10.00		1
III	0.95	12.76	5.51	10.00		1
IV	1.34	8.24	14.90	10.00		1
v	0.31	13.36	4.32	10.00		1
$\therefore \Sigma \mathrm{RH}$	43.37	49.82	51.20	10.00		1
LH VI	0.81	9.36	12.60	10.00		1
VII	51.24	6.19	12.25	10.00		1
VIII	3.19	12.04	6.79	10.00		1
IX	1.11	9.24	12.82	10.00		1
X	0.27	13.36	4.33	10.00		1
£ L H	56.63	50.18	48.80	50.00		1
RYSIIS E					Pacter 26	
	Digit distribution of patterns					

Digit

0										
Description	Mean	Standard Deviation	Standard Error		--R	G E-		Sample size	$\begin{gathered} \% \text { of } \\ \text { source } \end{gathered}$	source
Digit								(digits		
I - X	10.00	6.25	0.07	22.50	16.25	3.75	0.00	9,245	2.98	1
I	14.27	5.78	0.95	25.83	20.05	8.49	2.71	37	0.12	1
II	10.88	6.25	0.10	23.38	17.13	4.63	0.00	3,732	12.02	1
III	6.00	3.76	0.40	13.52	9.76	2.24	0.00	88	0.28	1
IV	8.68	3.09	0.28	14.86	11.77	5.59	2.50	- 124	0.40	1
v	6.90	3.44	0.67	13.78	10.34	3.46	0.02	29	0.09	1
VI	14.00	4.57	0.53	23.14	18.57	9.43	4.86	75	0.24	1
VII	9.76	6.28	0.09	22.32	16.04	3.48	0.00	4,737	15.26	1
VIII	4.86	4.22	0.25	13.30	9.08	0.64	0.00	295	0.95	1
IX	7.50	4.33	0.43	16.16	11.83	3.17	0.00	103	0.33	1
X	6.80	2.90	0.58	12.60	9.70	3.90	1.00	25	0.08	1

FEMALES

Multidigital Summed Ridge-countes

[^4]Muleidicita3, Summed Ridop-rnonte
1-58

59-108

1
2

3

4
5
6
7

8

9

Males
females

BIMANUAL PATTERN FREQUENCY (MALES)
RADIAL LOOP FREQUENCY, DIGITS I-X
ULNAR LOOP FREQUENCY, DIGITS I-X
WHORL FREQUENCY, DIGITS I-X
RADIAL LOOP FREQUENCY, DIGITS I-V (M\&F)
RADIAL LOOP FREQUENCY, DIGITS VI-X (M\&F)
ULNAR LOOP FREQUENCY, DIGYTS I-V (M\&F)
ulnar loop frequency, digits vi-x (maj)
Whorl frequency, Digits I-V (M\&F)
WHORL FREQUENCY, DIGITS VI-X (M\&F)
TFRC--BIMANUAL
TFRC--RIGUT HAND
TFRC--LEFT HAND
mean ridge count, all patterns, all digits
mean ridge count, radial loops, all digits
mean ridge count, ulnar loops, all digits

$$
\begin{array}{r}
1-21 \\
22-33
\end{array}
$$

1
4
4
4

4

4
4
4
4
4
6
6
6
7
7

7

3
4

5

3/2-6
3/7-11
4/ 2-6
4/7-11
5/ 2-6
5/7-11
1

2

3

1

4

7

Description

MEAN RIDGE COUNT, WHORLS, ALL DIGITS
MEAN RIDGE COUNT, ALL PATTERNS, DIGITS'I- X
MEAN RIDGE COUNT, RADIAL LOOPS, DIGITS I- X
MEAN RIDGE COUNT, ULNAR LOOPS, DIGITS I-X
MEEN RIDGE COUNT, WHORLS, DIGITS I-X

BIMANUAL PATTERN FREQUENCY (FEMALES)
RADIAL LOOP FREQUENCY, DIGITS I-X
ULNAR LOOP FREQUENCY, DIGITS I-X
WHORL FREQUENCY, DIGITS I-X
TERC--BIMANUAL
TERC--RIGHT MAND
TFRC--LEFT HAND
MEAN RIDGE COUNT, ALL PATTERNS, ALL DIGITS:
MEAN RIDGE COUNR, RADIAL LOOPS, ALL DIGITS
MEAN RIDGE COUNT, ULNAR LOOPS, ALL DIGITS
MEAN RIDGE COUNT, WHORLS, ALL DIGITS
MEAN RIDGE COUNTS, ALL YATTERNS, DIGITS I - X
MEAN RIDGE COUNTS, RADIAL LOOPS, DIGITS I - X
MEAN RIDGE COUNTS, ULNAR LOOPS, DIGITS I - X
MEAN RIDGE COUNTS, WHORLS, DIGITS I-X

28
7

8
10
11
12
-

22
25
25
25
27
27
27
28

28

28

29

31
32
33

10
1-10
2-11
2-11
2-11

3
4

5

1

2
3
1
4
7
10
1-10
:2-11
2-11
2-11

MEAN RIDGE COUNT, VHORLS, ALL DIGITS
MEAN RIDGE COUNT, ALL PATTERNS, DIGITS I-X

Page 111 is missing from original document held by NCJRS.

DD-2D FEMALES ALL PATTERNS DIGIT THREE

FEMALES ULNAR LUBPS, DIGITEIGHT IN 24.191

The classification of fingerprints set forth herein follows the standard procedures set down by Cummins and Midio in 1943. The reason for writing the present manual is to clarify those situations which are left ambiguous by their method and, in some instances, to extend their system. In addition, it should be helpful to develop a working manual which is most relevant to the interests of the Behavioral Sciences Foundation.

There are two major tasks in classification: obtaining a ridge count and determining the pattern type. These two parts of classification are related. Before counting ridges, it is necessary first to have del:ermined the pattern type, at least implicitly. Hence, the determination of pattern type will first be reviewed.

Three classes of finger ridge pattern types exist on human hands. They are arches, loops, and whorls. Each type has a very large number of variations, and the difficulty in trying to classify pattern types, such that epidemiological information is extracted, is in deciding on how many and which of these variations occur in significant numbers among the studied population. In our penitentiary studies, it was decided to distinguish two kinds of arches, three kinds of whorls, and three kinds of loops. An additional category, "accidental", is for those patterns which cannot, even with difficulty. be fit into one of the above categories.

Several factors suppori chis set of patrern types. First, consistent with the widest consensus among dermatoglyphologists, certain pattern types seem to be indisputably natural and useful. Plain arches, radial and ulnar loops, and whorls are universally recognized in fingerprint classification. Tented arches, while not as universally used in classification, are
nonetheless widely known and included in many classifications. Biologically, they seem to represent a transition between radial and ulnar loops, and this possibility is important to our interests. Tented arches were once classified as a variant of the plain arch since both have zero ridge counts; hence, the name is solely historic.

The division of whorls into concentric whorls, spiral whorls, double loops, as well as central pocket loops, is not as common in dermatoglyphic studies, although our use of these whorl sub-classes is based on studies in the literature of their digit-specific frequencies. The reason for the three categories in our investigations is exploratory. That is, it was decided to find out whether more refined correlations could be established between a particular kind of whorl, rather than whorls in general, and any epidemiological 1tems. The power and utility of such a correlation is obvious.

However, there is a good deal of difficulty in reliably defining the three whorl patterns. If significant correlations emerge from the data, future studies, in order to attain more accuracy, may include an additional category for whorls which do not fit into one of the three possibilities provided here. Many patterns are necessarily arbitrarily designated, partly because of the poor quality of the fingerprints, but also because of the basic ambiguity of the patterns themselves.

Central pocket loops seem to represent a transition between loops and whorls. Hence, they are biologically interesting.

Definitions

A characteristic of plain arches is the absence of a triradius. Consequently, no ridge count is possible. The ridges run in slightly curved Ines with very little, if any, looping. (See Figs. 1-a and 1-b)

Fig. 1-a

Fig. I-b

A tented arch has one triradius whose distal arm, or spoke, is also either the core of the pattern or part of the core. If the distal arm forms a loop, the pattern is a loop. (Eig. 2-b)

Fig, 2-a
Core is part of triradius.

Fig, 2-b
Loop: R.C. $=0$

Therefore, a tented arch has no ridge count; or, it has a ridge count of zero; because there are no ridges lying between the pattern core and the triradius.

Ulnar and radial loops are the most numerous patterns. A loop in which the distal arm may be traced to the radial side of the hand (thumb side) is a radial loop, and one which may be traced to the ulnar side (the side opposite the thumb) is an ulnar loop. There is little difficulty in determining a loop.

A concentric whorl, like all other whorls, has two triradil associated with it and is recognized by its concentric rings. Perfect concentric whorls,
that is, whorls in which every ridge is an unbroken circle, are extremely rare. Indeed, even imperfect concentric whorls themselves are not abundant. When a pattern has more ridges forming complete rings than ridges spiraling outward from the core, it is called concentric. In practice, accurately and carefully proceeding in this manner is too laborious and inefficient. Therefore, a subjective judgment is made about whether a whorl is concentric or spiral on the basis of a careful but brief tracing of three ridges.

Fig. $3 b$ and $3 c$
Frequently occuring concentric whorls

Fig. 3d

A perfect concentric whorl
A perfect concentric Spiral whorls perfect form, a spiral whorl has a single ridge which spirals outward from the core all the way to one of the two triradil. Most frequently, though, numerous breaks and divisions are observed along the basic, spiraling ridge so that it is impossible to follow one ridge all the way from the core to a triradius. Elther a single core or a single, basic, spiraling ridge, or both, is the defining quality of a spiral whorl. Often, a single ridge will be seen to spiral outward from the core by a distance of only one ridge per revolution. This idiosyncrasy is an aid in quickly identifying spiral whorls.

Fig. 4a A perfect spiral whorl

Figs. $4 b$ and $4 c$ Common spiral whorls

Fig. 4d
Spiral whorl with a rod as the core

Double loops, the most frequently occurring whorl patterns, typically have two triradil and two cores. Following a single ridge as it winds outward
from the center shows that the ridge progresses outward by more than one ridge per revolution. This is always true of double loops. A number of combinations of designs are seen among double loops. What appear to be two distinct loops sometimes intertwine to form a double loops (Fig. 5a). In other cases (Fig. 5b), a single loop has seemingly doubled back on itself to form a double loop. A third arrangement is two single ridges wrapping around each other (Fig. 5c); and a fourth, a "hybrid", is a single ridge and a loop wrapping around each other (Fig. 5d).

Fig. 5a Two interweaving loops

Fig. 5b
A single doubledback loop

Fig. 5c
Two single interlooping ridges

Fig. 5d A single ridge interlooping with a doubled-back loop

Central pocket loops are relatively infrequent. They can be thought of as unilaterally-developed or one-sided double loops. The typical central pocket loop is a normal loop containing a second loop opening in the opposite direction from the larger loop, and it is usually found with two triradii, one of which is oddly shaped or "small" due to its peculiar association with the small, inner loop. Both radial and ulnar counts are not possible in some linds of central pocket loops, because there are no ridges lying between one of the triradil and the pattern core. Hence, ridge counts may resemble those of radial and ulnar loops. However, there is usually a double ridge count, although the ridge count is lopsided, e.g., $1 / 20$ or $15 / 2$. Both radial and ulnar counts are made whenever possible.

Fig. 6-a

Fig. 6-b
Ac.p,l. with both radial and ulnar counts

Fig. 6-c

Fig. 6-d
\qquad

Central pocket loops, like other loops and whorls, can be designated as efther radial or ulnar, depending on the direction toward which the larger loop opens.

The accidental category is for patterns which do not fit the criteria of any other pattern types. Included among accidentals are usually patterns which.have been grossly deformed, apparently resulting from healing and new growing epidermis following some trauma to the finger tip (such as a severe laceration). Occasionally double patterns, for instance, two loops side by side with a single triradius, occur; and these are included among accidentals as well.

No information or amputated is the category used for missing terminal phalanges and for fingerprints which indicate wysplasia of the ridges. In the latter case, there are no ridges or very few, preventing any pattern determination or ridge count. Instead of ridges, numerous dots or specks, representing many islands on the finger tip, are most often seen on the print. This is different from those accidental patterns which are abnormally formed ridges.

Ridge counts are made along a line running between the triradius and the core of a pattern. All ridges crossing the line, except ridges which form the core and the triradius, are counted. When a loop is the pattern core, it is counted as one in the ridge count. Very short ridges which contain no sweat gland orifices are not counted. (Fig. 7-a).

Fig. 7-a
"Islands" are not counted. R.C. $=4$

Fig. 7-b
Vestigial ridges are not counted. R.C. $=4$

Also, very faint ridges, in contrast to the normal, bold ridges, on a plint are not counted. These impressions are called "vestigial" ridges. Dis.tinguishing them is not always easy, and lightly printed ridges are some-times included in the ridge count for that reason.

A ridge which divides into two or more ridges at the point where the line of count crosses it, is given a value equal to the number of ridges Into which it divides. For example, a ridge which splits into two ridges, Is counted as two ridges. (Fig. 7-c)

Fig. 7-c.

There is a good deal of trouble in consistently locating the core and triradius of a pattern, and the subjective choice of the classifier is occasionally necessary. The triradius is that point or that junction of ridges associated with the pattern being classified which (1) represents three different "families" of ridges, $1 . e .$, ridges which flow in three distinct
directions relative to each other; and (2) approximates a trisected circle; that is, the ridges are nearly 120 degrees apart around a circle which has its center at the center of the triradius. When more than one point meets both of these conditions, the one closer to the core of the pattern is chosen. (Fig. 8-c) Examples are given below with the triradius circled. In some cases (Fig. 8-b), ridges flowing from three directions do not actually join. The triradius then is an imaginary point located at

Fig. 8-a

Fig. 8-b

Fig. 8-c

Fig. 8-d

Fig. 8-e

Fig. 8-f
the center of a circle which is approximately trisected by the nearest IIdges flowing from three different directions relative to each other. Often, the end of a single ridge (Fig: 8-d) or an "island" (Fig. 8-e) is found in that area and is conveniently used as the triradius.

The core is more troublesome to locate than the triradius. In a loop, the core is the end of the single ridge or loop which is situated at the center of the pattern. Where two rods (Fig. 9-c) or two loops (Fig. 9-e) are at the center, the one farther from the triradius is the core. Where three occur, the middle one is chosen (Figs. 9-d and 9-f).

Fig. 9-a

R.C. $=3$

Fig. 9-c

Fig. 9-d

Fig. 9-e

If the central rod or loop terminates some distance short of the end of the pattern (Figs. 9-g, 9-h, 9-i), the core is located on the end of the

Fig. 9-f

Fig. 9-g

R.C. $=4$

Fig, 9-h

R.C. $=3$

Fig. 9-i

R.C. $=3$

Fig. 9-j
innermost loop or rod which does extend to the end of the pattern. Other possible core configurations are shown in Fig. 9. When the distal ridge eminating from a triradius is part of the pattern core (e.g., Fig. 2-b), the pattern always has a ridge count of at least one. This ensures the rule that only arches and tented arches have zero ridge counts.

Fig. 9-k

Fig. 9-1

Cores of whorls follow similar patterns. A rod at the center of a whorl has the core located on its end lying nearest the triradius (Fig.10-a).

Fig. 10-a

Fig. 10-b

Fig. 10-c

Fig. 10-d

In Figure 10 the line of count is drawn connecting the core and the iriradius.

Technique

The ingerprints in some studies are Xerox copies of fingerprint records. Some detail is lost in a copy of this sort, and more details are missed as the quality of the original print and the copying machine decrease. On those prints which are kept in a study, however, one should be confident that the ridge counts and pattern determinations are reasonably accurate. Some cautious gressing is tolerated, and this should be remembered when critically evaluating the fingerprint data.

One disadvantage of poor prints is the tendency to imagine mcre or less ridges in the line of count than really exist on the subject's finger. For this reason, only those impressions which require guessing for no more than 5 ridges are classiffed.

Somewhat the same problem exists with missing triradii. By comparing ridge counts made on prints with and without triradii, it was found that the position of the triradius is unpredictable if it lies more than a ridge away from the last ridge on the poor print. However, a cautious guess is infrequently made when the triradius is thought to lie within three ridges of the last legible line on a print of a pattern which is missing a triradius. It is hoped that the infrequency of this practice and the slze of the population will correct for resulting inaccuracies.

Fingerprints are rejected as illegible when the specific pattern type is not detarminaile, due not to the basic ambiguity of the pattern, but rather to the loss of ridge impressions from the Xerox copy of the print. A considerable number are deleted from the study for this reason. Again, on comparison of good and poor quality prints it is evident that
unless the particular pattern type (i.e., one of the possibilities defined above) can be determined with assurance, there is a great deal of doubt about the location of triradil and cores, anc consequently about the accuracy of ridge counts as well. Loops can be mistaken for arches, and whorls can be confused with loops.

Fingerprint Code

Ir order to incorporate information on the symmetry of fincer pattern types the following code will be used. The code is a two-digit code, the first digit specifies the symmetry and the second digit specifies the pattern type. Arches, tented arches, and accidental whorls are n'st specified with respect to symmetry.

The first-digit symmetry codes are:

```
1 = ulnar direction
2 = symmetrical
3 = radial direction
```

The second-digit pattern codes are:
$1=p l a i n$ arch
$2=$ tented arch 3 = single loop 4 = double loop 5 = central pocket loop $6=$ concentric whorl $7=$ spiral whorl 8 = accidental whorl

Arches, tented arches, and accidentals are coded 01, 02, and 08 respectively, the zero signifying exemption from symmetry considerations.

Single loops can only be radial or ulnar direction, therefore the codes are:
$13=$ ulnar loop
33 = radial loop.
Code 23 = a symmetric loop, which is not an acceptable pattern type.

Whorls can occur as radial, ulnar, or symmetric. Therefore the codes for double loop whorls are:

14 = ulnar double loop
29 = symmetric double loop
34 = radial symmetric 100 p .
The definition of radial, ulnar, and symmetric for whorls follows the police definition for inner, meet, and outer whorls. This is determined by tracing the arms of the triradii which trend towards the opposite triradius. On the right hand the arm leading from the left (printed) triradius to the right is followed. If this arm passes inside of the right triradius it is an inner whorl; if it passes within three ridges of the right triradius it is meet whorl, and if below the right triradius by more than three ridges then it is an outer whorl.

Identification practitioners always trace from the left triradius on the print, regardless of which hand the print is on. For this reason the terms radial and ulnar are not strictly coequal to those of inner and outer whorls. In terms of symmetry the following chart explains this:

This problem may be overcome in the following way:
On a print of the right hand, trace from the left triradius to the right. On a print of the left hand, trace from the right triradius to the left.

Code	Pattern Type	Symbol
01	plain arch	A
02	tented arch	T
13	single loop, ulnar	U
33	single loop, radial	R
14	double loop, ulnar	$D L^{\text {u }}$
24	double loop, symmetric	$D L^{\text {s }}$
34	double loop, radial	DL ${ }^{\mathbf{r}}$
15	central pocket loop, ulnar	CPL ${ }^{\text {u }}$
25	central pocket loop, symmetric	CPL ${ }^{5}$
35	central pocket loop, radial	CPL ${ }^{\text {r }}$
16	concentric whor1, ulnar	CW^{1}
26	concentric whorl, symmetric	$\mathrm{CW}^{\text {S }}$
36	concentric whorl, radial	$C W^{\text {r }}$
17	spiral whorl, ulnar	SW
27	spiral whorl, symmetric	SW ${ }^{\text {S }}$
37	spiral whorl, radial	$S W^{\text {r }}$
08	accidental whorl	Acc.

$01,02,08,13-17,24-27,33-37$

I

JW-1-1

II. Sex

$$
1=\text { male }
$$

$$
* 2=\text { female }
$$

$$
9=\text { data unavailable }
$$

III. Race

$$
1=\text { black }
$$

$$
2=\text { white }
$$

$$
3=\text { Spanish }
$$

$$
4=\text { other }
$$

$$
9=\text { data unavailable }
$$

IV. Counter

$1=\mathrm{J}$. Woh 11eb
$2=$ T. Reed
$3=A$. Gerald
$4=$ L. Cataldo (asst)
$5=$ L. Cataldo
codes/ Form JW-1-1 genera 1

Feb. 1972
TJER

B. 3 Proposed Manual Probability Prediction Based on One or More Known Digits

The following procedure, based upon NYSIIS distributions, is intended as a manul method of determining the most probable search strategy based on a knowledge of the pattern type and ridge-count of one or more digits when the digit, hand and sex are known.

Although fingerprints can be used to differentiate sex, this crnnot yet be done on the basis of only one or two digits with as much reliability as knowledge of the type of crime committed. According to NYSIIS figures it is possible to determine the digit from a latent in about 40% of the casts; when this is not possible and no other data are present, a pattern should be assigned to the digit on which it is most common (i.e., a whorl to digit IV, an ulnar loop to digit X, etc). Exact procedures for cases in which the digit is not known have not yet been calculated.

worksheet

Digits:Section AVI VIIVIIIIX\bar{X}
Section B

1. Pattern Frequency Value (from Chart 1)
2. Pattern Number Value (from Chart 2)
3. Pattern Ridge-Count Adjustment
4. Pattern Correlation Value (from Chart 3)
Section C
Sum of $\mathrm{B} 2+\mathrm{B} 3=$ $\div 2=$
Sect B1
Sect B4
\qquad
Total:
Total value index $\div 3=$ Probability index $=$

Procedure: Section A

1. Place a "1" on the line above every digit known to be a whorl.
2. Place an "O" on the line above every digit known not to be a whorl
3. Place the values corresponding to each digit from chart 1 for the remaining unknown digits.

Chart 1

Digit	I	II	III	IV	V
Value	.50	.38	.2 .2	.53	.19
		VI	VII	VIII	IX
	.38	.35	.20	.40	.14

The following procedures are to determine whether the digit with the highest value (but not al) of Section A is a whorl or not. Place this highest value on the line at the end of line $B-1$.

Section B, Part 2

1. Count the number of is in Section A.
2. Add 1
3. Place the value in chart 2 corresponding to this number on the line at the end of $B-2$ on the worksheet.

Chart 2

Number	Value	Number	Value
1			
2	.80	6	.23
3	.66	7	.16
4	.42	8	.11
5	.31	9	.05
		10	.01

This is to determine the probability of another whorl existing

(Optional)

Section B, Part 3

1. Calculate the mean ridge-count for all known whorls (\vec{X}_{W}).
2. Divide \bar{X}_{w} by the value from Chart 3 which corresponds to the number of known whorls plus one.

Chart 3

Number	Value		Number	Value
1	14.6		6	16.5
2	15.7		7	16.8
3	15.7		8	17.3
4	15.9		10	17.8
5	16.2			18.10

3. Divide the result of this division by 2 .
4. Enter the result on line $B-3$ of the worksheet.

Section B, Part 4

1. Take the value from Chart 4 which corresponds to:
a. the opposite, homologous digit if known
b. the nearest known digit on the same hand (preferably a whorl)
c. any digit.
2. Enter the tables by the digit specified in operation 1 above. If this value is a 1 use the Chart 3 -A. If it is a 0 use Chart $3-B$.
3. Read across on this line to the row corresponding to the unknown digit; i.e. the digit of Section A with the highest value other than one from Chart 1.
4. Place this value on line $B-4$.

Section C

1. Add the values on lines $B 2+B 3 ;$ divide by 2 ; enter"this value on line Cl.
2. Enter values from Sections B1 + B4.
3. Add these three values of digits. $W / W-$ and $I W / W$-patterns.

HALES:
CHART FOUR

1. Corditional frequencios
of K-patterns in L.I L.II L.III L.IV L.V R.I R.II R.III R.IV at against K
patterns in.

L... (11
51.24
L.11 50.45
42.38.
,
R

保

L.11	50.45

L.III
54.61
73.64
42.38
59.62
$19.72 \quad 66.57$
53.12
-

$$
t 1
$$

L.IV
L.V
47.20
55.58
43.17°
80.47
27.24
69.79

$35.09 \quad 66.72$ as

R.I	58.50	46.08	27.80	46.76	14.71		49.21	33.12	66.10
R.II	48.61	65.69	40.13	60.11	19.88	66.06		46.08	78.60
R.III	51.46	70.15	60.08	73.29	23.02	71.24	73.84		90.25
R.IV	40.64	47.57	31.98	56.89	17.10	59.07	52.32	37.47	
R.Y	50.54	60.20	44.38	78.60	43.59	71.37	71.15	49.89	91.20

Unconditional fre-

2. Conditional frequencies of K -patterns in L.I L.II L.III L.IV L.V R.I R.II R.III R.IV against $1: 4$ -

Interpretation

If the probability Index is .50 then there is a $50 / 50$ chance that the pattern on the unknown digit is a whorl. If this value is above .60 (or so) then this digit may be assumed to be a whorl.

This procedure should be repeated for the next highest (non-one) value from Section A until the Probability Index is below (say) . 40.

worksheet

Section B

$$
\therefore \text { TEST DIGIT IT }
$$

Section C

$$
\text { Sum of } B 2+B 3=\frac{1.38}{\because} \div 2=
$$

Sect B1 \qquad

Sect B4 \qquad

Total:

Total value index $\div 3=$ Probability index $=\underset{\sim}{7}$ \therefore Pabaitity of a whorl on E \dot{i}. 7
worksheet

Digits: $\quad \frac{-}{I I} \quad \frac{-}{I I I} \therefore \frac{-}{I V} \quad \frac{-}{V}$
$\operatorname{section} A \frac{-}{V I} \frac{-}{V I I} \frac{16}{\operatorname{VIX}} \frac{-}{X}$

Section B

$$
\therefore \text { TEST DIST IX }
$$

1. Pattern Frequency Value (from Chart
IX
2. Pattern Number Value (from Chart 2)
$\underset{Q+1}{ }$

140
-
\qquad
3. Pattern Ridge-Count Adjustment
.86
4. Pattern Correlation Value (from Chart 3) \qquad

Section C
Sum of B2 $2+B 3=\frac{1,38}{\because} \div 2=$
Sect B1 \qquad

Sect B4

Total:
 1.88

Total value index $\div 3=$ Probability index $=\ldots 3$

$$
\text { Pretatrinin of what on } \bar{x} \text { w. } 63
$$

worksheet

Digits: $\frac{-}{I} \quad \frac{-}{I I} \quad \frac{-}{I I I} \therefore \frac{-}{I V} \quad \frac{-}{V}$

Section A

$$
\begin{aligned}
& \frac{.55}{V I} \frac{-\frac{-}{V I I}}{} \quad . \quad \text { DUI }
\end{aligned}
$$

$$
\frac{-}{I X}
$$

$$
\frac{-}{X}
$$

Section B

1. Pattern Frequency Value (from Chart 1) 38
2. Pattern Number Value (from Chart 2) $\quad 152$
3. Pattern Ridge-Count Adjustment
4. Pattern Correlation Value (from Chart 3) \qquad

Section C Sum of B2 $2+B 3=\frac{1.38^{\circ}}{\ldots} \div 2=$

Sect B1 \qquad

Sect B4

Total: 1.66

Total value index $\div 3=$ Probability index $=1.55$

The P.I. for a whorl on digit $I V$ is . 71 and the P.I. for a whorl on digit IX is .63. Since .71 is higher, it is indicated that there is a 52% chance that a third whorl is present and a 71% chance that a whorl is present on digit IV. PI for digit VI is . 55.

The next step in analysis is to determine whether a fourth whorl is present and on which digit. The procedure shall be continued, this time using a PNV for four whorls, examining first the highest remaining Pattern Frequency Value (Chart 1) and second the highest Pattern Correlation Value corresponding to a known digit (i.e. in this case digits I,II or IV, but not IV, which has been calculated). When this procedure has been repeated until low Probability Indices are generated, then the FBI-Henry classes may be calculated, using the usual values.

B. 4 Software

B.4.1 Program titles, machines, inputs and functions
B.4.2 Elementary statistics lists to be used for computer programs.

B. 4.1

Program Name
GETENTRY
STATCT
NYSSTAT

MGHMAT

MGHDATA

STATPR

Language
Algol

Algol

Algol

Algol

Fortran

Cobol

NYSIIS PROGRAMS

Input	Program Function
NYSIIS fingerprint file	screens file, eliminates records which are not related to set of fingerprints on file or that pre-date mid-1!
GETENTRY	extracts sub-set classes from file by race, criminal history, mental status and sociological and demograph: variables.
STATCT	```calculates descriptive statistics: means, standard deviations, frequencies and distributions of finger- print data.```
GETENTRY	constructs a correlation, variance, and covariance matrices of the fingerprint and social history data.
MGHSTAT	```calculates descriptive statistics, and analytic statistics from the MGHMAT matrix. Summarizes data in minimal usable format.```
NYSSTAT	prints frequency distributions

B.4.2 ELEMENTARY STATISTICS LIST

A11 statistics are derived according to categories of race and sex.
I. Ridge Count Frequencies

For each item, the mean, standard deviation, median, skewness, kurtosis, variance, standard error, and the number of subjects (N) are computed in addition to a frequency distribution.
1.1.1 Bimanual absolute total finger ridge count (AFRC)
1.1.2 Right Hand " " " " " "
1.1.3 Left Hand
"
11
"

1.2.1 Bimanual Bonnevie total finger ridge count (BFRC)
1.2.2 Right Hand " " " $"$
1.2.3 Left Hand
" "
"
"
1.3.1 Bimanual Galton total finger ridge count (GFRC)
1.3.2 Right Hand " " " "
1.3.3 Left Hand
"
1111
"
2.1 Bimanual Radial ridge count
2.2 Right Hand Radial ridge count
2.3 Left Hand
3.1 Bimanual Ulnar ridge count
3.2 Right Hand Ulnar ridge count
3.3 Left Hand " "
3.3 Left Hand
$\begin{array}{ccccccc}\text { 4.1.1.1 } & \text { Bimanual } & \text { absolute digit I ridge count } \\ \text { 4.1.1.2 } & \text { " } & \text { " } & \text { " II } & \text { " } & \text { " } \\ \text { 4.1.1.3 } & " & \text { " } & \text { " III } & \text { " } & \text { " } \\ 4.1 .1 .4 & " & \text { " } & \text { " IV } & \text { " } & \text { " } \\ 4.1 .1 .5 & " & " & \text { " } & \text { V } & \text { " } & \text { " }\end{array}$

4.1.2.1	Right	Hand	absolute	digit I	ridge	count
4.1.2.2	"	"	"	" II	,	"
4.1.2.3	"	"	.	" III	"	1
4.1.2.4	"	"	"	IV.	"	"
4.1.2.5	"	"	"	V	"	"

4.1.3.1 Left Hand absolute digit I ridge count
4.1.3.2 " " " " II " "
4.1.3.3 " " " "III "
$\begin{array}{lllllll}4.1 .3 .4 & " & " & " & " I V & " & " \\ 4.1 .3 .5 & " & " & " & " & V & "\end{array}$

4.2 .1 .1	Bimanual	Bonnevie digit I ridge count				
4.2 .1 .2	$"$	$"$	$"$	II	"	$" 1$
4.2 .1 .3	$"$	$"$	$"$	III	$"$	$"$
4.2 .1 .4	$"$	$"$	$"$	IV	"	$"$
4.2 .1 .5	$"$	$"$	$"$	V	$"$	$"$

4.2 .3 .1	Left	Hand Bonnevie digit I ridge count				
4.2 .3 .2	$"$	$"$	$"$	$"$ II	"	$"$
4.2 .3 .3	$"$	$"$	$"$	$" I I I$	$"$	$"$
4.2 .3 .4	$"$	$"$	$"$	$" I V$	$"$	$"$
4.2 .3 .5	$"$	$"$	$"$	$"$ V	$"$	$"$

4.3 .1 .1	Bimanual	Galton digit I ridge count				
4.3 .1 .2	$"$	$"$	$"$	II	$"$	$"$
4.3 .1 .3	$"$	$"$	$"$	III	$"$	$"$
4.3 .1 .4	$"$	$"$	$"$	IV	$"$	$"$
4.3 .1 .5	$"$	$"$	$"$	V	$"$	$"$

4.3 .2 .1	Right Hand Galton digit I ridge count						
4.3 .2 .2	$"$	$"$	$"$	$"$	II	$"$	$"$
4.3 .2 .3	$"$	$"$	$"$	$"$	III	$"$	$"$
4.3 .2 .4	$"$	$"$	$"$	$"$	IV	$"$	$"$
4.3 .2 .5	$"$	$"$	$"$	$"$	V	$"$	$"$

4.3 .3 .1	Left	Hand	Galton digit I ridge count			
4.3 .3 .2	$"$	$"$	$"$	$"$ II	$"$	$"$
4.3 .3 .3	$"$	$"$	$"$	$" I I I$	$"$	$"$
4.3 .3 .4	$"$	$"$	$"$	$"$	IV	$"$
4.3 .3 .5	$"$	$"$	$"$	$"$	V	$"$

5.1.1 Bimanual radial digit I ridge count

5.1 .2	$"$	$"$	$"$	II	$"$	$"$
5.1 .3	$"$	$"$	$"$	III	$"$	$"$
5.1 .4	$"$	$"$	$"$	IV	$"$	$"$
5.1 .5	$"$	$"$	$"$	V	$"-$	$"$

5.2 .1	Right Hand radial	digit I ridge count					
5.2 .2	$"$	$"$	$"$	$"$	ri	"	$"$
5.2 .3	$"$	$"$	$"$	$"$	III	$"$	$"$
5.2 .4	$"$	$"$	$"$	$"$	IV	$"$	$"$
5.2 .5	$"$	$"$	$"$	$"$	V	$"$	$"$

5.3 .1	Left	Hand ulnar digit I ridge count				
5.3 .2	$"$	$"$	$"$	$" I I$	$"$	$"$
5.3 .3	$"$	$"$	$"$	$" I I I$	$"$	$"$
5.3 .4	$"$	$"$	$"$	$" I V$	$"$	$"$
5.3 .5	$"$	$"$	$"$	$"$	V	$"$

6.1 .1	Bimanual ulnar digit I ridge count					
6.1 .2	$"$	$"$	$"$	II	$"$	$" 1$
6.1 .3	$"$	$"$	$"$	III	$"$	$" 1$
6.1 .4	$"$	$"$	$"$	IV	$"$	$"$
6.1 .5	$"$	$"$	$"$	V	11	$"$

6.2 .1	Right Hand ulnar digit I ridge count						
6.2 .2	$"$	$"$	$"$	$"$	II	"	$"$
6.2 .3	$"$	$"$	$"$	$"$	III	$"$	$"$
6.2 .4	$"$	$"$	$"$	$"$	IV	$"$	$"$
6.2 .5	$"$	$"$	$"$	$"$	V	$"$	$"$

6.3 .1	Left hand ulnar digit I ridge count					
6.3 .2	$"$	$"$	$"$	$"$ II	$"$	$"$
6.3 .3	$"$	$"$	$"$	$"$ III	$"$	$"$
6.3 .4	$"$	$"$	$"$	$"$	IV	$"$
6.3 .5	$"$	$"$	$"$	$"$	V	$"$

II. Pattern Frequencies

For each item, the frequency (in both per cent and absolute value) and the numbers of subjects (N) are computed in addition to a frequency distribution.

1.1.1	Bimanual	Erequency	Of	arches
1.1.2	11	"	"	tented arches
1.1.3	1	"	11	ulnar arches
1.1 .4	1	11	"	radial loops
1.1.5	"	"	"	double loops
1.1 .6	1	11	"	whorls
1.1 .7	"	"	"	central pocket loops

1.2.1 Frequency of arches on Right Hand
1.2.2 " "tented arches on right hand
1.2.3 " "ulnar loops on right hand
1.2.4 " "radial loops on right hand
1.2.5 " " double loops on right hand
1.2.6 " " whorls on right hand
1.2 .7 " "central pocket. loops on right hand
1.3.1 Frequency of arches on Left Hand
1.3 .2 " $"$ tented arches on leit hand
1.3.3 " "ulnar loops on left hand
1.3.4 ". "radial loops on left hand
1.3.5 " " double loops on left hard
1.3.6
1.3 .7
" " whorls on left hand
1.3.7 " " central pocket loops on left hand
2.1.1.1 Bimanual frequency of arches on digit I

2.1 .1 .2	$"$	$"$	$"$ tented arches on digit I
2.1 .1 .3	$"$	$"$	$"$ "nar loops on digit I
2.1 .1 .4	$"$	$"$	$"$ radial loops on digit I
2.1 .1 .5	$"$	$"$	" double loops on digit I
2.1 .1 .6	$"$	$"$	" whorls on digit I
2.1 .1 .7	$"$	$"$	" central pocket loops on digit I

2.1.2.1	Bimanual	frequency	of arches on digit II
2.1.2.2	11	"	" tented arches on digit II
2.1.2.3	"	"	" ulnar loops on digit II
2.1.2.4	"	11	" radial loops on digit II
2.1.2.5	11	"	" double loops on digit II
2.1.2.6	"	"	" whorls on digit II
2.1.2.7	1	1	" central pocket loops on digit II
2.1.3.1	Bimanual	Erequency	of arches on digit III
2.1.3.2	"	"	" tented arches on digit III
2.1.3.3	11	"	" ulnar loops on digit III
2.1.3.4	"	"	" radial loops on digit III
2.1.3.5	"	"	" double loops on digit III
2.1.3.6	"	"	" whorls on digit III
2.1.3.7	"	"	" central pocket loops on digit III
2.1.4.1	Bimanual	frequency	of arches on digit IV
2.1.4.2	"	"	" tented arches on digit IV
2.1.4.3	"	"	" ulnar loops on digit IV
2.1.4.4	"	"	" radlal loops on digit IV
2.1.4.5	1	11	" double loops on digit IV
2.1.4.6	"	"	" whorls on digit IV
2.1.4.7	"		" central pocket loops on digit IV
2.1.5.1	Bimanual	Erequency	of arches on digit V
2.1.5.2	"	"	" tented arches on digit V
2.1.5.3	"	"	" ulnar loops on digit V
2.1.5.4	1	"	" radial loops on digit V
2.1.5.5	11		" double loops on digit V
2.1.5.6	"	"	" whorls on digit V
2.1.5.7	"	"	" central pocket loops on digit V
2.2.1.1	Frequency	of arche	on Right Hand digit I
2.2.1.2	"	" tente	arches on right hand digit I
2.2.1.3	1	" ulnar	loops on right hand digit I
2.2.1.4	"	" radia	1 loops on right hand digit I
2.2.1.5	"	" doubl	e loops on right hand digit I
2.2.1.6	"	" Whorl	s on right hand digit I
2.2.1.7	"	" centr	1 pocket loops on digit I
2.2.2.1	Frequency	of arche	on Right Hand digit II
2.2.2.2	II.	" tente	d arches on right hand Eigit II
2.2.2.3	"	" ulnar	loops on right hand digit II
2.2.2.4		" radia	1 loops on right hand digit II
2.2.2.5		" doubl	e loops on right hand digit II
2.2.2.6	"	" whorl	s on right hand digit II
2.2.2.7	"	" centr	al pocket loops on right hand digit II
2.2.3.1	Frequency	of arche	on Right Hand digit III
2.2.3.2		" tente	arches on right hand digit III
2.2.3.3	"	" ulnar	loops on right hand digit III
2.2.3.4	11	" radia	1 loops on right hand digit III
2.2.3.5	"	" doubl	e loops on right hand digit III
2.2.3.6	"	" whorl	s on right hand digit III
2.2.3.7	11	" centr	1 pocket loops on right hand digit III

2.2 .4 .1
2.2 .4 .2
2.2 .4 .3
2.2 .4 .4
2.2 .4 .5
2.2 .4 .6
2.2 .4 .7
2.2.5.1

Frequency	of arches on Right Hand digit IV " tented arches on right hand digit IV
11	ulnar loops on right hand digit IV
1	radial loops on right hand digit IV
"	double loops on right hand digit IV
11	whorls on right hand digit IV
"	" central pocket loops on right hand digit IV
Frequency	of arches on Right Hand digit V
	" tented arches on right hand digit V
"	ulnar loops on right hand digit V
"	radial loops on right hand digit V
11	double loops on right hand digit V
11	whorls on right hand digit V
11	" central pocket loops on right hand digit V
Frequency	of arches on Left Hand digit I
"	ulnar loops on left hand digit I
'	radial loops on left hand digit I
"	double loops on left hand digit I
11	whorls on left hand digit I
"	central pocket loops on left hand digit I
Frequency	of arches on Left Hand digit II " tented arches on left hand digit II
11	ulnar loops on left hand digit II
"	radial loops on left hand digit II
11	double loops on left hand digit II
11	whorls on left hand digit II
"	central pocket loops on left hand digit II

Frequency of arches on Left Hand digit III tented arches on left hand digit III ulnar loops on left hand digit III radial loops on left hand digit III double loops on left hand digit III whorls on left hand digit III central pocket loops on left hand digit III

Frequency of arches on Left Hand digit IV
tented arches on left hand digit IV
ulnar loops on left hand digit IV
radial loops on left hand digit IV double loops on left hand digit IV whorls on left hand digit IV central pocket loops on left hand digit IV
2.3.5.1
2.3.5.2
2.3.5.3
2.3.5.4
2.3.5.5
2.3.5.6
2.3.5.7
arches on Left Hand digit V tented arches on left hand digit V ulnar loops on left hand digit V radial loops on left hand digit V double loops on left hand digit V whorls on left hand digit V central pocket loops on left hand digit V
III. Pattern specific ridge counts

For each item, the mean, standard deviation, variance, median, skewness, kurtosis, standard error, and the number of subjects (N) are computed in -ddition to a frequency distribution.
1.1.1 Bimanual ridge count per ulnar loops
1.1.2 " " " radiel loops
1.1.3.1 Bimanual absolute ridge count per double loops
1.1.3.2 Bimanual Bonnevie ridge count per double loops
1.1.3.3 Bimanual Galton/radial ridge crunt per double loops
1.1.3.4 Bimanual ulnar ridge count per double loops
1.1.4.1 Bimanual absolute ridge count per whorls
1.1.4.2 Bimanual Bonnevie ridge count per whorls
1.1.4.3 Bimanual Galton ridge count per whorls
1.1.4.4 Bimanual ulnar ridge count per whorls
1.1.5.1 Bimanual absolute ridge count per central pocket loops
1.1.5.2 Bimanual Bonnevie ridge count per central pocket loops
1.1.5.3 Bimanual Galton ridge count per central pocket loops
1.1.5.4 Bimanual ulnar ridge count per central pocket loops
1.2.1 Right Hand ridge count per UL
1.2.2 Right Hand ridge count per RL
1.2.3.1 Absolute " " " DL for right hand
1.2.3.2 Bonnevie " " " DL " " "
1.2.3.3 Radial/Galton ridge count per DL for right hand
1.2.3.4 Ulnar ridge count per DL for right hand
1.2.4.1 Absolute ridge count per W for right hand
1.2.4.2 Bonnevie " " " " " " "
1.2.4.3 Radial/Galton ridge count per W for right hand
1.2.4.4 Ulnar ridge count per W for right hand
1.2.5.1 Absolute ridge count per CPL for right hand
1.2.5.2 Bonnevie " " " for right hand
1.2.5.3 Radial/Galton ridge count per CPL for right hand
1.2.5.4 Ulnar ridge count per CPL for right hand
1.3.1 Left Hand ridge count per UL
1.3.2 " " " " " RL
1.3.3.1 Absolute left hand ridge count per DL
1.3.3.2 Bonnevie left hand ridge count per DL
1.3.3.3 Radial/Galton left hand ridge count per DL
1.3.3.4 Ulnar left hand ridge count per DL
1.3.4.1 Absolute left hand ridge count per W
1.3.4.2 Bonnevie left hand ridge count per W
1.3.4.3 Radial/Galton left hand ridge count per W
1.3.4.4 Ulnar left hand ridge count per W
1.3.5.1 Left hand absolute ridge count per CPL
1.3.5.2 Left hand Bonnevie ridge count per CPL 1.3.5.3 Left hand Radial/Galton ridge count per CPL 1.3.5.4 Left hand Ulnar ridge count per CPL

2.1.1.1	Bimanual digit I ridge count per UL
2.1.1.2	Bimanual digit I ridge count per RL
2.1.1.3.1	Bimanual absolute digit I ridge count per DL
2.1.1.3.2	Bimanual Bonnevie digit I ridge count per DL
2.1.1.3.3	Bimanual Radial/Galton digit I ridge count per DL
2.1.1.3.4	Bimanual Ulnar digit I ridge count per DL
2.1.1.4.1	Bimanual absolute digit I ridge count per W
2.1.1.4.2	Bimanual Bonnevie digit I ridge count per W
2.1.1.4.3	Bimanual Radial/Galton digit I ridge count per W
2.1.1.4.4	Bimanual Ulnar digit I ridge count per W
2.1.1.5.1	Bimanual absolute digit I ridge count per CPL
2.1.1.5.2	Bimanual Bonnevie digit I ridge count per CPL
2.1.1.5.3	Bimanual Radial/Galton digit I ridge count per CPL
2.1.1.5.4	Bimanual Ulnar digit I ridge count per CPL
2.1.2.1	Bimanual digit II ridge count per UL
2.1.2.2	Bimanual digit II ridge count per RL
2.1.2.3.1	Bimanual absolute digit II ridge count per DL
2.1.2.3.2	Bimanual Bonnevie digit II ridge count per DL
2.1.2.3.3	Bimanual Radial/Galton digit II ridge count per DL
2.1.2.3.4	Bimanual Ulnar digit II ridge count per DL
2.1.2.4.1	Bimanual absolute digit II ridge court per W
2.1.2.4.2	Bimanual Bonnevie digit II ridge count per W
2.1.2.4.3	Bimanual Radial/Galton digit II ridge count per W
2.1.2.4.4	Bimanual Ulnar digit II ridge count per W
2.1.2.5.1	Bimanual absolute digit II ridge count per CPL
2.1.2.5.2	Bimanual Bonnevie digit II ridge count per CPL
2.1.2.5.3	Bimanual Radial/Galton digit II ridge count per CPL
2.1.2.5.4	Bimanual Ulnar digit II ridge count per CPL
2.1.3.1	Bimanual digit III ridge count per UL
2.1.3.2	Bimanual digit III ridge count per RL
2.1.3.3.1	Bimanual absolute digit III ridge count per DL
2.1.3.3.2	Bimanual Bonnevie digit III ridge count per DL
2.1.3.3.3	Bimanual Radial/Galton digit III ridge count per DL
2.1.3.3.4	Bimanual Ulnar digit III ridge count per DL
2.1.3.4.1	Bimanual absolute digit III ridge count per W
2.1.3.4.2	Bimanual Bonnevie digit III ridge count per W
2.1.3.4.3	Bimanual Radial/Galton digit III ridge count per W
2.1.3.4.4	Bimanual Ulnar digit III ridge count per W
2.1.3.5.1	Bimanual absolute digit III ridge count per CPL
2.1.3.5.2	Bımanual Bonnevie digit III ridge count per CPL
2.1.3.5.3	Bimanual Radial/Galton digit III ridge count per CPL
2.1.3.5.4	Bimanual Ulnar digit III ridge count per CPL
2.1.4.1	Bimanual digit IV ridge count pe- UL
2.1.4.2	Bimanual digit IV ridge count per RL
2.1.4.3.1	Bimanual digit IV absolute ridge count per DL
2.1.4.3.2	Bimanual digit IV Bonnevie ridge count per DL
2.1.4.3.3	Bimanual digit IV Radial/Galton ridge count per DL
2.1.4.3.4	Bimanual digit IV Ulnar ridge count per DL
2.1.4.4.1	Bimanual digit IV absolute ridge count per W
2.1.4.4.2	Bimanual digit IV Bonnevie ridge count per W
2.1.4.4.3	Bimanual digit IV Radial/Galton ridge count per W
2.1.4.4.4	Bimanual digit IV Ulnar ridge count per W

2.1.4.5.1
2.1.4.5.2
2.1.4.5.3
2.1.4.5.4
2.1.5.1
2.1.5.2
2.1.5.3.1
2.1.5.3.2
2.1.5.3.3
2.1.5.3.4
2.1.5.4.1
2.1.5.4.2
2.1.5.4.3
2.1.5.4.4
2.1.5.5.1
2.1.5.5.2
2.1.5.5.3
2.1.5.5.4
2.2.1.1
2.2 .1 .2
2.2 .1 .3 .1
2.2 .1 .3 .2
2.2 .1 .3 .3
2.2 .1 .3 .4
2.2 .1 .4 .1
2.2 .1 .4 .2
2.2 .1 .4 .3
2.2 .1 .4 .4
2.2 .1 .5 .1
2.2 .1 .5 .2
2.2 .1 .5 .3
-2.2 .1 .5 .4
2.2.2.1
2.2.2.2
2.2.2.3.1
2.2.2.3.2
2.2.2.3.3
2.2.2.3.4
2.2.2.4.1
2.2.2.4.2
2.2.2.4.3
2.2.2.4.4
2.2.2.5.1
2.2.2.5.2
2.2.2.5.3
2.2.2.5.4
2.2.3.1
2.2.3.2
2.2.3.3.1
2.2.3.3.2
2.2.3.3.3
2.2.3.3.4

Bimanual digit IV absolute ridge count per CPL
Bimanual digit IV Bonnevie ridge count per CPL
Bimanual digit IV Radial/Galton ridge count per CPL
Bimanual digit IV Ulnar ridge count per CPL
Bimanual digit V ridge count per UL
Bimanual digit V ridge count per RL
Bimanual digit V absolute ridge count per DL
Bimanual digit V Bonnevie ridge count per DL
Bimanual digit V Radial/Galton ridge count per DL
Bimanual digit V Ulnar ridge count per DL
Bimanual digit V absolute ridge count per W
Bimanual digit V Eonneive ridge count per W
Bimanual digit V Radial/Galton ridge count per W
Bimanual digit V Ulnar ridge count per W
Bimanual digit V absolute ridge count per CPL
Bimanual digit V Bonnevie ridge count per CPL
Bimanaul digit V Radial/Galton ridge count per CPL
Bimanual digit V Ulnar ridge count per CPL
Right Hand digit I ridge count per UL
Right Hand digit I ridge count per RL
Right Hand digit I absolute ridge count per DL
" Radial/Galton ridge count per DL
" Ulnar ridge count per DL
absolute " " "W
" Bonnevie " " " W
" Radial/Galton ridge count per W
" Ulnar ridge count per W
" Absolute" " " CPL
" Bonnevie" " " CPL
" Radial/Galton ridge count per CPL
" Ulnar ridge count per CPL
Right Hand digit II ridge count per UR
absolute ridge count per DL
Bonnevie ridge count per DL Radial/Galton ridge count per DL Ulnar ridge count per DL absolute ridge count per W Bonnevie ridge count per W Radial/Galton riage count per W Ulnar ridge count per W absoiute ridge count per CPL Bonnevie ridge count per CPL Radial/Galton ridge count per CPL Ulnar ridge count per CPL

Right Hand digit III ridge count per UL Absolute ridge count per DL Radial/Galton ridge count per DL Ulnar ridge count per DL
2.2.3.4.1
2.2.3.4.2
2.2.3.4.3
2.2.3.4.4
2.2.3.5.1 2.2.3.5.2 2.2.3.5.3 2.2.3.5.4
2.2.4.1
2.2.4.2
2.2.4.3.1
2.2.4.3.2
2.2.4.3.3
2.2.4.3.4
2.2.4.4.1
2.2.4.4.2
2.2.4.4.3
2.2.4.4.4
2.2.4.5.1
2.2.4.5.2
2.2.4.5.3
2.2.4.5.4

2.3.1.1
2.3.1.2
2.3.1.3.1
2.3.1.3.2
2.3.1.3.3
2.3.1.3.4
2.3.1.4.1
2.3.1.4.2
2.3.1.4.3
2.3.1.4.4
2.3.1.5.1
2.3.1.5.2
2.3.1.5.3
2.3.1.5.4

Right Hand digit III absolute ridge count per ${ }_{" 1}{ }_{"}^{\mathrm{W}}$
" " " " Radial/Galton ridge count per W
' Ulnar ridge count per W
" absolute iidge count per CPL
" Bonnevie ridge count per CPL
" Radial/Galton ridge count per CPL
" Ulnar riage count per CPL

Right	Hand	digit	IV ridge coun'i per UL
"	"	"	" absolute ridge count per DL
"	"	"	" Bonnevie " " "
"	"	"	" Radial/Galton ridge count per DL
"	"	"	" Ulnar ridge count per DL
"	"	"	" absolute ridge count per W
"	"	"	" Bonnevie " " " "
"	"	"	" Radial/Galton ridge count per W
"	"	"	" Ulnar ridge count per W
"	"	"	" absolute radge count per CPL
"	"	"	" Bonnevie " " "
"	"	"	Radial/Galton ridge count per CPL
"	"		" Ulnar ridge count per CPL

Right	Hand "	$\operatorname{digit}_{\text {" }}$	$\begin{gathered} \text { ridge count per UL } \\ \text { " } \\ \text { " } \end{gathered}$
"	"	" "	Absolute ridge count per DL
"	"	" "	Bonnevie " " " "
"	"	" "	Radial/Galton ridge count per DL
"	"	" "	Ulnar ridge count per DL
"	"	" "	Absolute ridge count per W
"	"	" "	Bonnevie " " "
"	"	" "	Radial/Galton ridge count per W
"	"	" "	Ulnar ridge count per W
"	"	" "	Absolute ridge count per CPL
"	"	" "	Bonnevie " " "
"	"		Radial/Galton ridge count per CPL
"	"	" "	Ulnar ridge count per CPL

Left Hand Digit I ridge count per UL
". ". " " " " absolute ridge count per DL
" "" ." " Radial/Galton ridge count per DL
" " "Ulnar ridge count per DL
" " " " absolute riage count per W
" " " Bonnevie ridge count per W
" " " " Ulnar ridge count per W
" " " " Bonnevie" " "CPL
" " " " Ulnar ridge count per CPL

2.3.2.1	Left	Hand	Digit	II	ridge count per UL
2.3.2.2	"	"		"	" " " RL
2.3.2.3.1	"	"	"	"	absolute ridge count per DL
2.3.2.3.2	"	11	11	1	Bonnevie " " " "
2.3.2.3.3	11	11	11		Radial/Galton ridge count per DL
2.3.2.3.4	11	11	1	"	Ulnar ridge count per DL
2.3.2.4.1	1	11	11	"	absolute ridge count per W
2.3.2.4.2	"	11	"	11	Bonnevie ridge count per W
2.3.2.4.3	"	"	11	"	Radial/Galton ridge count per W
2.3.2.4.4	11	"	"	"	Ulnar ridge count per W
2.3.2.5.1	1	11	"		absolute ridge count per CPL
2.3.2.5.2	1	11	11	1	Bonnevie ridge count per CPL
2.3.2.5.3	"	"	"	"	Radial/Galton ridge count per CPL
2.3.2.5.4	1	"	"	1	Ulnar ridge count per CPL
2.3.3.1	Left	Hand	Digit	III	I ridge count per UL
2.3.3.2	"	"	"	"	" " RL
2.3.3.3.1	"	"	11	1	absolute ridge count per DL
2.3.3.3.2	11	11	11	"	Bonnevie " " " "
2.3.3.3.3	"	"	1	"	Radial/Galton ridge count per DL
2.3.3.3.4	11	"	11	"	Ulnar ridge count per DL
2.3.3.4.1	"	"	11	"	absolute ridge count per W
2.3.3.4.2	11	11	11	11	Bonnevie ridge count per W
2.3.3.4.3	1	"	11	11	Radial/Galton ridge count per W
2.3.3.4.4	1	11	"	"	Ulnar ridge count per W
2.3.3.5.1	11	11	11	11	absolute ridge count per CPL
2.3.3.5.2	11	11	11	1	Bonnevie " "
2.3.3.5.3	"	11	1	"	Radial/Galton ridge count per CPL
2.3.3.5.4	"	11	"	1	Ulnar ridge count per CPL
2.3.4.1	Left	Hand	Digit	IV	ridge count per UL
2.3.4.2	1	"	"	"	" " " RL
2.3.4.3.1	"	11	1	1	absolute ridge count per DL
2.3.4.3.2	"	1	1	1	Bonnevie ridge count per DL
2.3.4.3.3	11	11	11	11	Radial/Galton ridge count per DL
2.3.4.3.4	1	"	1	"	Ulnar ridge count per DL
2.3.4.4.1	11	11	"	"	absolute ridge count per W
2.3.4.4.2	1	11	11	11	Bonnevie ridge count per W
2.3.4.4.3	'	"	"	"	Radial/Galton ridge count per W
2.3.4.4.4	11	1	11	"	Ulnar ridge count per W
2.3.4.5.1	1	11	11	1	absolute ridge count per CPL
2.3.4.5.2	1	11	11	1	Bonnevie ridge count per CPL
2.3.4.5.3	"	11	.	"	Radial/Galton ridge count per CPL
2.3.4.5.4	"	"	"	"	Ulnar ridge count per CPL
2.3.5.1	Leit	Hand	Digit	V r	ridge count $F=r$ UL
2.3.5.2	"	"	11	1	" " " RL
2.3.5.3.1	11	1	11	11	absolute ridge count per DL
2.3.5.3.2	"	"	11	"	Bonnevie " " "
2.3.5.3.3	11	"	1	1	Radial/Galton ridge count per DL
2.3.5.3.4	"	"	I'		Ulnar ridge count per DL
2.3.5.4.1	11	"	"		absolute ridge count per W
2.3.5.4.2	"	"	"		Bonnevie ridge count per W
2.3.5.4.3	1	11	"		Radial/Galton ridge count per W
2.3.5.4.4	"	"	"	"	Ulnar ridge count per W

2.3.5.5.1 Left Hand Digit V absolute ridge count per CPL 2.3.5.5.2 " " " "Bonnevie " " " " 2.3.5.5.3 " " " "Radial/Galton ridge count per CPL 2.3.5.5.4 " " " "Ulnar ridge count per CPL

3.1 .1	Mean Cumulative ridge count per	1	arch			
3.1 .2	$"$	$"$	$"$	$"$	$"$	2
arches						
3.1 .3	$"$	$"$	$"$	$"$	$"$	3 arches
3.1 .4	$"$	$"$	$"$	$"$	$"$	4
3.1 .5	$"$	$"$	$"$	$"$	$"$	5
3.1 .6	$"$	$"$	$"$	$"$	$"$	6
3.1						
3.1	$"$	$"$	$"$	$"$	$"$	7
3.1 .8	$"$	$"$	$"$	$"$	$"$	8
3.1 .9	$"$	$"$	$"$	$"$	$"$	9

3.3 .1	Cumulative pattern-specific ridge count	per	1	ulnar	loop			
3.3 .2	$"$	$"$	$"$	$"$	$"$	$" 1$	2	ulnar
loops								

3.4 .1	Cumu	att	c	ridg	count	per	1	radial	loop
3.4.2	"	"	"	"	"	"	2	"	loops
3.4.3	"	"	"	"	"	"	3	"	
3.4 .4	"	"	"	"	"	"	4	"	"
3.4 .5	1.	"	"	"	"	"	5	"	"
3.4 .6	11	"	"	"	"	"	6	"	"
3.4 .7	1	"	"	"	"	"	7	"	"
3.4 .8	"	".	"	"	" 11.	"	8	"	"
3.4 .9	"	"	"	"	"	"	9	"	"
3.4 .10	"	"	"	"	"	"	10	"	"

3.5.1	Cumulative	ridge	count	per	1	double	loop
3.5.2	"	"	"	"	2	"	loops
3.5 .3	"	"	"	"	3	"	
3.5 .4	"	"	"	"	4	"	"
3.5 .5	"	"	"	"	5	"	"
3.5 .6	"	"	"	"	6	"	"
3.5 .7	"	"	"	"	7	"	"
3.5.8	"	"	"	"	8	"	"
3.5 .9	"	"	"	"	9	"	"
3.5 .10	"	"	"	1	10	"	"

3.6 .1	Cumulative ridge count per	1	whorl			
3.6 .2	$"$	$"$	$"$	$"$	2	whorls
3.6 .3	$"$	$"$	$"$	$"$	3	$"$
3.6 .4	$"$	$"$	$"$	$"$	4	$"$
3.6 .5	$"$	$"$	$"$	$"$	5	$"$
3.6 .6	$"$	$"$	$"$	$"$	6	$"$
3.6 .7	$"$	$"$	$"$	$"$	7	$"$
3.6 .8	$"$	$"$	$"$	$"$	8	$"$
3.6 .9	$"$	$"$	$"$	$"$	9	$"$
3.6 .10	$"$	$"$	$"$	$"$	10	$"$

3.7 .1	Cumulative ridge count per	1	CPL			
3.7 .2	,$"$	$"$	$"$	$"$	2	$C P L$
3.7 .3	$"$	$"$	$"$	$"$	3	$"$
3.7 .4	$"$	$"$	$"$	$"$	4	$"$
3.7 .5	$"$	$"$	$"$	$"$	5	$"$
3.7 .6	$"$	$"$	$"$	$"$	6	$"$
3.7 .7	$"$	$"$	$"$	$"$	7	$"$
3.7 .8	$"$	$"$	$"$	$"$	8	$"$
3.7 .9	$"$	$"$	$"$	$"$	9	$"$
3.7 .10	$"$	$"$	$"$	$" 10$	$"$	

[^0]: * See Tables 1-3 and 33.

[^1]: * digital frequencies: see Tables 4-8, 20, 22-32.

[^2]: * statistical summaries: see Tables $20-37$.

[^3]: ...nen-m -

[^4]: FEMALES

