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ABSTRACT 

In 2010 we initiated a research project to address criticisms raised in a 2009 National Academy 
of Sciences (NAS) report regarding the presumption of fingerprint uniqueness and the reliability of 
latent print identifications using the ACE-V methodology (National Research Council 2009).  This 
project addresses the question of fingerprint uniqueness (i.e., the discriminating value of the various 
fingerprint ridgeline features) by statistically evaluating the spatial distribution of these features.  
The purpose of the project was to review the latent print ACE-V comparison methodology to 
ascertain the fingerprint features considered during the comparison process and apply principles of 
spatial analyses to calculate false-match probabilities.  The objectives were to spatially analyze 
fingerprint features (e.g., minutiae and ridge lines) using Geographic Information Systems (GIS) 
techniques and empirically derive probabilities to provide a quantitative measure of the 
discriminating value of the various ridgeline features.  The resultant probabilities are applicable for 
subsequent qualification of latent print comparison conclusions. 

Project methods included spatial pattern characterization using GIS, geometric morphometric 
(GM) analysis, and the calculation of false-match probabilities using Monte Carlo (MC) simulations.  
A data set of digitized fingerprints from the Oregon population was compiled and spatially analyzed 
utilizing GIS software to place minutiae and ridge line features in a common Cartesian coordinate 
system.  The parameters of these fingerprint features, including minutiae location, direction and 
minutiae ridgeline configurations, were evaluated.  Geometric morphometrics was used to study 
shape variation between and among fingerprint pattern types.  GIS-based procedures were 
established for the selection of landmarks and semi-landmarks, the superimposition of fingerprint 
images, the visualization of shape change, the ordination of superimposition data, and the application 
of multivariate statistics.  Using MC simulations, random-match probabilities were calculated to 
evaluate the spatial configurations of minutiae within and between pattern types to quantitatively 
evaluate the discriminating value of fingerprints features; that is, do two fingerprints or two regions 
of different fingerprints have the same spatial distribution of minutiae and ridgelines?  MC 
simulations were performed using 3, 5, 7 and 9 minutiae with other minutiae attributes chosen for 
additional match criteria. 

GIS results showed there was a greater density of minutiae and ridgelines below the core 
compared to above the core, regardless of pattern type.  However, the distributions of bifurcations 
and ridge endings were more similar within any pattern type rather than among them.  Also, pattern 
types with comparable ridge flow (e.g., right and left slant loops, and whorls and double loop 
whorls) had greater similarity between them when comparing various metrics such as axis 
dimensions and Thiessen polygon ratios.  GM results demonstrated little shape variation among 
fingerprints of the same pattern type with the greatest shape variation associated with the deltas.  
Additional GM spatial analyses suggested a very high degree of shape consistency between left and 
right slant loops and between whorls and double loop whorls.  MC simulations showed that the 
probability of random minutiae correspondence drastically decreased as the fingerprint attribute 
criteria (e.g., minutiae type and direction) increased.  In addition, increasing the number of minutiae 
and fingerprint attributes applied in searches away from the core and delta regions yielded lower 
probabilities for a false match.  However, results demonstrated that minutiae spatial distributions in 
regions around and below the core were not always unique. 

Fingerprint characterization of ridgeline minutiae configurations and establishing random-match 
probabilities when using specified features quantitatively describe the discriminating value of these 
fingerprint ridgeline features.  As such, random-match probabilities will allow the latent print 
examiner to qualify their comparison conclusions. 
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EXECUTIVE SUMMARY 

Fingerprint comparisons used for identification of individuals based on matches of minutiae and 
friction ridge features between a ten-print standard and a latent print have been employed since the 
early 1900s (for review see:  Henry 1900; Hoover 1931; Barnes 2011).  Acceptance of such 
identifications in a court of law has been based on the premise that fingerprints do not change over 
the lifetime of an individual and that fingerprints are unique to every individual.  Several studies 
have demonstrated the permanence of fingerprints (Galton 1892, Wentworth and Wilder 1932, 
Ashbaugh 1999, see Langenburg 2011 for a review).  However, since the landmark ruling of 
Daubert vs. Merrell Dow Pharmaceuticals (1993) which set the scientific standard for the 
admissibility of forensic evidence, the premise of fingerprint uniqueness has had multiple 
challenges.  Two such challenges include the United States vs. Mitchell (1999) and United States vs. 
Brian Keith Rose (2009), claiming that fingerprint uniqueness has not been scientifically tested or 
validated and that examiner accuracy (i.e., error rate) associated with latent print examiner 
identifications has not been determined.  In addition, in February, 2009 the National Academy of 
Sciences (NAS) released a report, “Strengthening Forensic Science in the United States: A Path 
Forward” (National Research Council Committee on Identifying the Needs of the Forensic Sciences 
Community 2009) which was critical of the forensic science community, primarily the impression 
disciplines of trace, firearms and latent prints.  NAS cited recommendations to improve the scientific 
reliability and accuracy of several forensic science methodologies, including the ACE-V procedure 
used for latent print comparisons.  The NAS report specifically indicated, “Additionally, more 
research is needed regarding the discriminating value of the various ridge formations and clusters of 
ridge formations” (National Research Council Committee on Identifying the Needs of the Forensic 
Sciences Community 2009).  These criticisms cited in the NAS report primarily stem from a 
perceived lack of statistical validation of fingerprint “uniqueness” or distinctiveness (i.e., what is the 
probability that fingerprint features occur in the same spatial configuration on two different 
fingerprints) and the subsequent lack of application of empirical statistics or probabilities to latent 
print comparison conclusions.   

This project addresses the question of fingerprint uniqueness (i.e., the discriminating value of the 
various ridgeline features and sets of ridgeline features) by statistically evaluating the spatial 
distribution of fingerprint features and establishing probabilities that describe the spatial distribution 
of these fingerprint features across the whole fingerprint, as well as within regions of the fingerprint.  
The purpose of the project was to initially review, with latent print examiners, the latent print ACE-
V comparison methodology to ascertain the fingerprint features considered during the comparison 
process and apply principles of spatial analyses to develop statistical certainty measures for latent 
print comparison conclusions.  The specific objectives were to (1.) use Geographic Information 
Systems (GIS) spatial analysis techniques to evaluate fingerprint features or topological attributes 
(e.g., minutia number, type and orientation, and ridge lines), and (2.) derive probabilities that can be 
used for qualifying latent print comparison conclusions. 
 
Geographic Information Systems 

A Geographic Information System (GIS) is a collection of hardware and software components 
that integrate digital map elements with relational database functionality.  GIS data are typically 
captured in the form of either raster grids (e.g., pixels) or vector features (i.e., points, lines, and 
polygons) with points referenced in space using X, Y and sometimes Z coordinate values (Price 
2012).  The power of a GIS is in its ability to allow users to integrate, store, edit and analyze spatial 
features and relationships, as well as query and display spatial information.  Such systems include 
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traditional mapping capabilities (e.g., land surveying and aerial photography) and provide users with 
tools to interactively search and analyze spatial information. 

GIS technology was initially developed for cartography with one of the first computerized land-
management systems in Canada in1962 (Tomlinson 1967, 1970).  Since then, GIS systems have 
been applied in increasingly novel ways to include land use planning, environmental management, 
marketing, and criminology.  Most recently, GIS has been used for characterizing surgical 
procedures (Garb et al. 2007), conducting dental EMR imaging (Wu et al. 2006) and for in 
neuroanatomical and anthropological research (Ungar and M’Kirera 2003, Martone et al. 2004).  
While GIS is widely used for crime pattern analysis and emergency management applications, (ESRI 
2000, 2001; Chainey et al. 2005; Bodbyl-Mast 2009), its analytical capabilities have not been 
previously applied to fingerprint characterization and pattern recognition (Stanley et al. 2012).   

GIS-based spatial analysis involves analyzing the positions, patterns and relationships between 
objects located in a defined space, similar to graph theory in discrete mathematics (Maguire et al. 
2005; Smith et al. 2007).  Collections of objects in a defined coordinate space may be linked or 
associated with one another geometrically or by functional associations.  Techniques in spatial 
analysis include data modeling, image processing, grid algebra, surface analysis, network analysis 
and visualization.  The GIS-based tools available for spatial analysis have grown exponentially in 
recent years, all driven by the practical need to understand, predict, and model relationships between 
objects located in space.  Given that fingerprint analyses and latent print comparisons are based on 
spatial associations between minutiae and ridgelines (e.g., minutia patterns, ridge counts and 
minutiae location), GIS-based tools are a natural extension.  Utilization of GIS in conducting 
dactylographic research is particularly appealing given that fingerprint minutiae and ridge patterns 
are analogous to geometries reflected in Earth surface topography, a traditional focus of GIS.   

This project takes a novel approach utilizing GIS and related tools to derive spatial statistics for 
fingerprint patterns, with the ultimate deliverable involving the estimation of false-match 
probabilities that can be applied to qualify latent print comparison conclusions.  The methodologies 
presented herein provide a framework for cataloging, characterizing and quantifying fingerprint 
features using custom GIS tools.  An extensive set of GIS-based analytical tools were developed and 
have yielded valuable results that aid in the quantification of fingerprint characteristics and spatial 
distribution of minutiae and ridge lines in georeferenced coordinate space.  The analytical tools are 
very robust and provide firm foundation upon which to derive probabilities which describe the 
discriminating value of these fingerprint features. 

The primary results of the GIS-based spatial characterization component of the study are 
summarized as follows: 

 
(1) Techniques in Geographic Information Systems can be employed to spatially analyze 

fingerprint patterns; 

(2) The standardized georeference system developed for this study provides a standardized 
coordinate system that allows complex analysis of minutiae and ridgeline distributions across 
fingerprint space; 

(3) A wide variety of spatial analysis tools can be developed in the GIS software environment to 
characterize fingerprint features and statistically characterize distributions between pattern 
types; 

(4) A robust sample set of over 1200 fingerprints, 102,000 minutiae and 20,000 ridge lines were 
digitally captured from the Oregon population as part of this project effort; 
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(5) The average number of minutiae per fingerprint is 85.1, with ridge endings outnumbering 
bifurcations by a factor of 1.4; 

(6) Minutiae and ridge lines are most densely packed in the region below the core, with the 
greatest ridge line-length density surrounding the core; 

(7) More complex ridge patterns with higher degrees of line curvature (e.g., whorls and double 
loop whorls) are associated with a greater number of minutiae as compared to more 
streamlined patterns (e.g., arches). 

 
GIS methodologies and standardized georeferencing allowed for the placement of fingerprint 

features within a common coordinate space.  Once fingers were aligned in a common coordinate 
space, the spatial analyses were conducted to characterize pattern types, minutiae distributions and 
ridge line configurations.  Overall, there was a greater density of minutiae and ridgelines below the 
core than above, regardless of pattern type.  However, the distributions of bifurcations and ridge 
endings were more similar within any pattern type rather than among them.  Also, similar pattern 
types (e.g., loops and whorls) tend to have greater similarity between them when comparing various 
metrics such as hull axis ratios and Thiessen polygon ratios, suggesting that these patterns arise 
through similar biological phenomena.  

As latent examiners have observed, fingerprint minutiae distributions are neither uniform nor do 
they appear to be random.  Furthermore, when taking into account the greater number of ridges in 
the lower region of the fingerprint, as compared with the upper, it does not explain the differential 
distribution of minutiae across the fingerprint.  It appears that the more complex the ridge pattern 
type (e.g., double loop whorls vs. arches), the greater number of minutiae present on the finger.  The 
spatial variation between the upper and lower regions of the fingerprint also implies that this 
minutiae differential is influenced by complexity of pattern associated with deltas and other 
disruptions in ridge flow.  Conversely, the upper regions of the finger have a relatively uniform flow 
of ridgelines with simpler line geometries.  Thus, the more complex pattern types (e.g. whorls and 
double loop whorls) tend to be similar to each other, are associated with larger pattern dimensions, 
and significantly differ from all other pattern types.  The less complex pattern types, as exemplified 
by arches, tend to display fingerprint metrics at the other end of the scale. 
 
Geometric Morphometric Analyses 

Research on the spatial relationship of fingerprint features, (e.g., minutiae and ridge lines) and 
the application of this information to automatic fingerprint identification systems have historically 
employed biometric techniques.  These methods generally involve analyzing linear geometrical 
properties of the fingerprint physical characteristics (e.g., the distances between minutiae and the 
geometric pattern formed).  While biometric techniques are an invaluable tool for exploring 
covariance among sets of geometric comparators, these techniques ignore the biomathematical 
aspects of the original measurements (Bookstein 1996). These biomathematical aspects include 
inherent biological properties (e.g., homology and embryology) of biological features (i.e., minutiae) 
that can be represented by their spatial arrangements.  Furthermore, failure to consider these aspects 
when analyzing minutiae may exclude important spatial patterns that are dictated by underlying 
embryological and evolutionary cues. 

As a biomathematical modeling method, geometric morphometrics utilizes biologically-based 
features (i.e., homologies) that are useful for quantitatively studying shape variation and is what 
distinguishes it from biometric approaches.  Geometric morphometrics includes techniques from 
statistics, non-Euclidean geometry, multivariate biometrics and computer graphics that do not 
sacrifice biomathematical aspects (Bookstein 1996). 
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Within the forensic science community, forensic anthropology has led the way in exploring the 
applicability of geometric morphometric techniques.  Examples include analyzing mandibular 
morphology(Franklin et al. 2007, Franklin et al. 2008) and craniofacial landmarks (Kimmerle et al. 
2008), studying frontal sinus radiography methods for making identifications (Christensen 2005), 
creating a virtual 3-D reconstruction of a fragmented cranium (Benazzi et al. 2009), and estimating 
pediatric skeletal age (Braga and Treil 2007).  However, to date, there has been very little 
exploration of the use of geometric morphometric techniques for the study of fingerprint shape 
variation.   

For this project, geometric morphometric analyses were employed to study shape variation of 
four fingerprint pattern types in an effort to ascertain the extent and degree of variation within and 
among fingerprint patterns.  These analyses were conducted utilizing GIS spatial analysis tools 
described in Chapter 2 as it minimized data manipulation and increased the overall efficiency of 
spatial analyses. 

Tasks completed include: 1) establishing a methodology for conducting geometric 
morphometric analyses on fingerprints in a GIS environment in combination with Python 
programming language and R statistical software (version 2.15.0), and 2) completing an initial 
analysis of shape variation on four fingerprint patterns [(A) left slant loops (B) right slant loops, (C) 
whorls, and (D) double loop whorls] using generalized Procrustes analysis, thin plate spline and 
principle components analysis.  The resulting data were used to characterize the shape of four 
fingerprint pattern types and describe the foundational shape variation within and among these 
pattern types, specifically: 

 
(1) Generalized Procrustes Analysis (GPA) showed that there was little shape variation in the 

innermost core ridgeline (a feature used in our comparison of patterns types) in left and right 
slant loops and whorls and double loop whorls.  In addition, the greater variation in the 
continuous ridge line (features used in our comparison of patterns types) is due to variation 
in the size and possible rotational effects of each of the original fingerprint images in 
coordinate space. 

 
(2) Thin-Plate Spline (TPS) showed that the greater the deformation in any given area of the 

TPS grid, the more shape variation there is between the pattern types in those particular 
regions.  These results indicate a very high degree of shape consistency between left and 
right slant loops with the greatest degree of shape variation in the delta region.  The greatest 
degree of shape variation was likewise found in the two delta regions of whorls and double 
loop whorls. 

 
(3) Principle Components Analysis (PCA) showed that the direction of variation is consistent 

between loop patterns in the first principle component (PC) with approximately 43% and 
37% of the shape variation being accounted for left and right slant loops, respectively.  
While variation is consistent in the following two PCs, the direction of the variation is 
different for left and right slant loops.  The greatest amount of shape variation occurs in the 
delta regions.  This can be seen for all three PCs.  The extent and pattern of variation is also 
similar for whorls and double loop whorls with the greatest degree of shape variation 
occurring in the delta regions. 
 

Utilizing geometric morphometrics, in conjunction with a GIS tools, represents a novel approach 
for evaluating and quantifying spatial relationships among friction ridgeline features (i.e., minutiae).  
The impacts of this work include an increase in forensic science knowledge and understanding of the 
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spatial patterns of friction skin minutiae.  Additionally, there will be direct implications for 
quantifying another element of potential variance associated with estimating probabilities for 
describing the discriminating value of fingerprint features, especially when the probabilities are 
based on ten-print standards.  This is the first empirical study that quantifies fingerprint shape 
variation utilizing geometric morphometric methods for latent print comparison purposes, which in 
turn, could have implications for the latent print comparison process and practice. 
 
False-Match Probabilities and Monte Carlo Simulations 

The Monte Carlo (MC) method  is a computer algorithm used to repeatedly resample data from a 
given population to make inferences about stochastic processes.  The Monte Carlo method is one of 
the optimal ways to quantify rare events that have correspondingly low probabilities of occurrence.  
Because of the rare nature of these events, it is extremely difficult to evaluate them using typical 
analytical means.  The goal of a MC simulation is to produce an expected result, µ=E(X), where X is 
a random variable.  The Monte Carlo simulation creates n independent samples of X, and as n 
increases towards infinity, the average of the n independent samples ) moves towards µ 
(Rubinstein and Kroese 2007), thus, producing a very large number of independent samples which 
allows for the detection of rare events and for the estimation of the probability of occurrence. 

The MC method has been used in a variety of fields to analyze rare events.  Lin and Wen (2010) 
used MC simulations, specifically Markov Chain Monte Carlo simulations, in the analysis of natural 
disasters.  They studied the occurrence of large debris flows such as landslides and floods, to help 
determine the placement of villages to reduce the destruction caused by these phenomena.  The MC 
simulations were used to determine where disastrous debris flows would most likely occur, and help 
plan where villages would be built in areas of China.  In community ecology, MC methods have 
been employed to study the robustness of species diversity indices (Ricklefs and Lau 1980; Manly 
2006).  In addition, it is commonly used in the estimation of phylogenies when studying evolution 
(Bouchard-CôTé et al. 2012).  The MC method has also been used to study the frequency in which 
airplanes pass within close proximity to each other (Paielli and Erzberger 1996).  The authors used 
the MC probabilities to make inferences and suggestions on how to reduce the possibility of close 
proximity flights.  While this is not an exhaustive review, it demonstrates that this statistical method 
has been used in a wide variety of disciplines to make inferences about phenomena that are either 
rare or difficult to analytically quantify.   

In the case of fingerprints, for the last century Latent Print Examiners have emphatically avowed 
that fingerprints are unique with no two fingers, on the same individual or on different individuals, 
including identical twins, possessing the same fingerprint characteristics when considering all levels 
of detail (i.e., pattern, type, minutiae, ridgelines, pores).   Biologically, there is a basis for this 
premise of uniqueness due to genetic and epigenetic factors that play a role in fingerprint 
development.  However, statistically, there is always a minute chance that an exact replica of any 
given fingerprint could exist somewhere in the world.  The probability or likelihood that an exact 
replica of a fingerprint exists somewhere in the world can be, and has been, theoretically and 
empirically calculated.  For examples, see Champod and Margot 1996; Dass et al. 2005; Srihari 
2009; Neumann et al., 2012.  See Langenburg (2011) for a review of individuality probability 
models proposed from 1892 to 2001.  Most latent prints, however, are typically only a portion of the 
entire fingerprint; thus, the question becomes, what is the likelihood or probability that an exact 
replica of a region of any given fingerprint exists in the world.  That is, are all regions of a 
fingerprint unique? 

The employment of the Monte Carlo method, as supported by the literature, is an efficacious 
method for the creation of probabilities associated with minutiae pattern similarities.  The MC 
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method employed in this study is a naïve Monte Carlo, meaning that there are no assumptions built 
into the simulations, and Markov Chains were not employed in creating the distributions.  Thus, this 
is an empirical, “brute force” approach to estimate probabilities describing fingerprint similarities.  
The MC method produces probabilities associated with the spatial patterns of fingerprint attributes 
(minutiae and ridgelines), and are foundational probabilities which quantify the discriminating value 
of these various ridgeline features.  As such, these probabilities can be employed during the 
comparison process to qualify the comparison conclusion. 

The probabilities of a false match generated by the Monte Carlo simulations demonstrate that 
even with very little information, if the number of minutiae used is sufficiently large, the probability 
of finding a similar minutiae pattern is quite rare.  For example, in MC1, where the only information 
considered is the location of the minutiae in X-Y coordinate space, the probability of a false match 
decreases 100 fold when the number of minutiae is increased by two, such as five selected versus 
three selected.  This demonstrates that increasing the number of minutiae selected drastically impacts 
that probability of finding a similar minutiae pattern.  In addition, the area where the minutiae are 
selected also changes the probability of a false match, with the upper regions of a finger having 
lower probabilities of a false match than regions below or near the core.  As one would expect, the 
greater number of minutiae below the core allows for a greater chance of having similar patterns 
exist in that region. 

Adding multiple layers of attribute information to the MC simulation made it more restrictive 
and thus, more difficult to find false matches in the sample set.  However, the probability of a false 
match is not drastically different either among pattern types or when the searches were performed 
within pattern type.  The Monte Carlo simulations had difficulty finding any false matches with 
seven or nine minutiae, with only a single match identified when selecting nine minutiae and 
considering X-Y minutiae coordinates only.  This indicates that the probability of a false match is 
extremely low when nine minutiae are selected.  It must be stressed that zeroes do not mean that 
there is no probability of a false match.  Because the denominators of the probabilities are inherently 
associated with the number of fingerprints in the database, these results suggest that the database, 
while large, was not of sufficient size for finding false matches using the MC parameters selected. 

These analyses demonstrate that the database was not of sufficient size to produce probabilities 
with a greater number of minutiae.  Thus, increasing the database size would allow for the finding of 
fingerprints with similar patterns of nine minutiae and higher.  In addition, adding ridge counts as a 
parameter in the Monte Carlo simulations would also add one more parameter that is used by 
examiners in fingerprint identification.  The drawback to including these parameters is that both 
vectorization of ridge lines (to allow for ridge counting) and the preparation of fingerprints is very 
time consuming.  In addition, if the database is increased 10 to 100 fold, to about 100,000 
fingerprints, the Monte Carlo simulations will need to be altered because the naïve Monte Carlo 
method employed is computationally time consuming.  The employment of parallel Markov Chain 
Monte Carlo methods, or conditional Monte Carlo methods, would need to be implemented to allow 
for the production of data in a relatively quick timeframe.  Also, simulations that perform a modified 
Markov Chain Monte Carlo associated with a nearest neighbor approach will allow the simulations 
to be more similar to the way latent print examiners search target groups of minutiae on fingerprints.  
These additional procedures will produce probabilities that are more closely associated with all the 
data used by examiners when performing latent print comparisons. 
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CHAPTER 1 –PROJECT INTRODUCTION 

1.  INTRODUCTION 
 
A.  Statement of the Problem 
 

Fingerprint comparisons used for identification of individuals based on matches of minutiae and 
friction ridge features between a ten-print standard and a latent print have been employed since the 
early 1900s (for review see:  Henry 1900; Hoover 1931; Barnes 2011).  Acceptance of such 
identifications in a court of law has been based on the premise that fingerprints do not change over 
the lifetime of an individual and that fingerprints are unique to every individual.  Several studies 
have demonstrated the permanence of fingerprints (Galton 1892; Wentworth and Wilder 1932; 
Ashbaugh 1999; see Langenburg 2011 for a review).  However, since the landmark ruling of 
Daubert vs. Merrell Dow Pharmaceuticals (1993) which set the scientific standard for the 
admissibility of forensic evidence, the premise of fingerprint uniqueness has had multiple 
challenges.  Two such challenges include the United States vs. Mitchell (1999) and United States vs. 
Brian Keith Rose (2009), claiming that fingerprint uniqueness has not been scientifically tested or 
validated and that examiner accuracy (i.e., error rate) associated with latent print examiner 
identifications has not been determined.  In addition, in February 2009 the National Academy of 
Sciences (NAS) released a report, “Strengthening Forensic Science in the United States: A Path 
Forward” (National Research Council Committee on Identifying the Needs of the Forensic Sciences 
Community 2009) which was critical of the forensic science community, primarily the impression 
disciplines of trace, firearms and latent prints.  The NAS report cited recommendations to improve 
the scientific reliability and accuracy of several forensic science methodologies, including the ACE-
V procedure used for latent print comparisons.  Specifically the NAS report indicated, “Additionally, 
more research is needed regarding the discriminating value of the various ridge formations and 
clusters of ridge formations” (National Research Council Committee on Identifying the Needs of the 
Forensic Sciences Community 2009).  These criticisms cited in the NAS report primarily stem from 
a perceived lack of statistical validation of fingerprint “uniqueness” or distinctiveness (i.e., what is 
the probability that fingerprint features occur in the same spatial configuration on two different 
fingerprints) and the subsequent lack of application of empirical statistics or probabilities to latent 
print comparison conclusions. 

This project addresses the question of fingerprint uniqueness (i.e., the discriminating value of the 
various ridgeline features or clusters of ridgeline features) by statistically evaluating the spatial 
distribution of fingerprint features and establishing probabilities that describe the spatial distribution 
of these fingerprint features across the whole fingerprint as well as within regions of the fingerprint.  
The purpose of the project was to initially review, with latent print examiners, the latent print 
comparison practice or the ACE-V methodology to ascertain the fingerprint features utilized during 
the comparison process and apply principles of spatial analyses to develop statistical certainty 
measures for latent print comparison conclusions.  The specific objectives were to (1.) use 
Geographic Information Systems (GIS) spatial analysis techniques to evaluate fingerprint features or 
topological attributes (e.g., minutia number, type and orientation, and ridge lines), and (2.) derive 
probabilities that can be used for qualifying latent print comparison conclusions. 
 
B.  Literature Review 

 
Multiple studies, the first being Galton’s in 1892, attempted to establish statistical probabilities 

for fingerprint individuality (Galton 1892). These early studies evaluated fingerprint pattern types 
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(loops, whorls, and arches), a few minutiae and sometimes ridge counts (Galton 1892; Henry 1900; 
Roxburgh 1933; Gupta 1968; Osterburg et al. 1977; Sclove 1979; see Langenburg 2011 for review) 
to base probability estimations on untested assumptions regarding minutiae types, frequency of 
occurrence and distributions (Stoney and Thornton 1986, 1987; Srihari and Srinivasan 2007).  In 
addition, many of these studies used a small sample size, evaluated single pattern types (e.g., ulnar 
loops), included only one gender, or a limited number of minutiae (e.g., ridge endings and 
bifurcations).  Although Stoney and Thornton (1986) systematically evaluated all pattern types, 
minutiae densities, frequencies, orientation, and spatial association, the analyses were limited to the 
distal portion of male thumb prints only.  In a more recent study, Swofford (2005) statistically 
analyzed pattern type and ethnicity.  This work demonstrated a significant correlation between 
pattern type and fingers, but not pattern type and ethnicity. 

Champod and Margot (1996) evaluated nine minutiae types, minutiae number, orientation, 
length, and ridge counts from 1000 inked fingerprints.  They described minutiae configuration 
probabilities showing that minutiae density is higher in the core and delta regions as compared to the 
periphery. They also found that minutiae frequency is independent of pattern type and the number of 
minutiae, but that it is dependent on surface position.  They found no significant difference between 
pattern type and gender.  Gutierrez et al. (2007, 2011) performed similar studies to evaluate minutiae 
frequency of occurrence, distribution and association with pattern types using 200 individuals (100 
males & 100 females) from a Spanish population and 14 to 20 minutiae types.  Similar to Champod 
and Margot (1996), Gutierrez et al., (2007) found no significant difference between pattern type and 
gender with the exception of the right index finger and they also showed that ridge endings, followed 
by convergences and bifurcations, are the most frequent minutiae types with a greater density of 
ridge endings in the periphery and bifurcations in the central area.  Other observations showed that 
whorl patterns contain significantly more minutiae than other pattern types, with arches having the 
greatest density of minutiae in the core region.  Gutierrez-Redomero et al. (2008) expanded upon the 
above studies to include ridge density and the evaluation of gender differences using likelihood 
ratios.  Their results indicated a lower ridge density for the thumb and index fingers, with ridge 
densities decreasing from the radial to ulnar side for all fingers.  In addition, females typically have a 
higher ridge density than males.  Most recently, Gutierrez-Redomero et al., (2012) compared these 
results to the distribution and frequency of minutiae in two Argentinian population samples.  Their 
data showed a significant difference in the frequency of minutiae type and pattern type between the 
two populations.  In addition, in the Argentinian populations, females had a higher frequencty of 
ridge endings compared to males.   

Several other researchers have built on these observations to employ statistical approaches for 
establishing probability distributions for fingerprint individuality using minutiae location, 
orientation, pattern type and/or ridge flow (Pankanti et al. 2002; Dass et al. 2005; Fang et al. 2007; 
Zhu et al. 2007; Su and Srihari 2010; Neumann et al., 2006, 2007 ).  These studies demonstrated that 
the greater the number of minutiae used in the analyses, the lower the probability of random 
correspondence and that inclusion of ridge morphology strengthens the probability.  For a review of 
proposed fingerprint individuality probability models see Langenburg (2011) and Stoney (2001). 

The fundamental assumption for utilizing fingerprints in latent print comparisons is that 
fingerprints are unique to each individual and that fingerprint patterns do not change over an 
individual’s lifetime.  There are published data that support the veracity of the latter assumption 
(Galton 1892; Wentworth and Wilder 1932; see Langenburg 2011 for a review).  In addition, in the 
last ten years the scientific community has accumulated a significant body of data that supports the 
premise and limits of the discriminating value of fingerprint ridge features which describes 
fingerprint uniqueness (Pankanti et al. 2002; Dass et al. 2005; Fang et al. 2007; Srihari and 
Srinivasan 2007; Zhu et al. 2007; Su and Srihari 2010; Neumann et al., 2006, 2007).  However, 
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stating that fingerprints are unique and that they do not change over time does not address the 
accuracy of the methodology employed for performing fingerprint comparisons nor does it provide a 
quantitative parameter for qualifying the resultant comparison conclusion.  The current practice used 
for comparing a latent print to a fingerprint standard is still, in large part, based on subjective pattern 
matching (Investigation and Justice 1990; Ashbaugh 1999; Maltoni et al. 2009) by a trained Latent 
Print Examiner and does not employ an objective quantitative analysis component.  Historically, a 
numerical point standard was adopted in most countries where analysts would compare a latent print 
to a known fingerprint standard by identifying all common features or points (see Champod 1995 for 
review).  If a sufficient number of features are in common, the examiner concludes 
“individualization”, that is, the two prints are from the same source.  While the point standard is 
widely applied in many countries, the point system is variable and non-standardized.  Different 
countries establish varying standards in terms of the number of points necessary for identification 
(e.g., 7 to 16 points), analysts arbitrarily assign more weight to some features than others and may 
not agree on which features to use for an identification.  For example, from 1953 to 2001, a 16-point 
standard was used in England and Wales (Leadbetter, 2005) whereas an 8-12 point standard was 
used in the United States until 1973 (Champod 1995; FBI Law Enforcement Bulletin 1973). 

In the United States, the International Association for Identification created a Standardization 
Committee to study the point-standard system and in 1973 the committee concluded that “no valid 
basis exists at this time for requiring that a predetermined minimum number of friction ridge 
characteristics must be present in two impressions in order to establish positive identification” (FBI 
Law Enforcement Bulletin 1973).  In September 2003, the Scientific Working Group on Friction 
Ridge Analysis, Study and Technology (SWGFAST) adopted a similar position (Polski et al., 2011).  
In 1988, England and Wales followed suite with a review of the 16-point system used in the UK 
(Evett and Williams 1996).  Several years after these studies, multiple countries, including the 
United States, moved away from a strict point identification standard to a four-step method called 
ACE-V, which includes the following steps:   (1) Analysis: the analyst examines the latent image to 
determine if sufficient quantity and clarity (quality) of detail is present to perform a comparison; (2) 
Comparison:  the analyst compares the quality and quantity of features and identifies similarities and 
dissimilarities between the known and unknown prints; (3) Evaluation: the analyst reviews the 
agreement and/or disagreement in detail and formulates a conclusion; (4) Verification:  a second 
analyst performs an independent analysis, comparison and evaluation of the two prints and the 
conclusions are compared.  The conclusions must be in agreement for an individualization to be 
reported.  For a review of the ACE-V methodology, see Ashbaugh 1991, Ashbaugh 1999 and 
Champod et al., 2004.  It should be noted that while the ACE-V methodology has generally been 
adopted in the United States, there are other methodologies similar to the ACE-V method that also 
incorporate a point standard. 

When employing the ACE-V process, there are three conclusions possible: (1) individualization 
or identification (i.e., the individual that supplied the known standard is the source of the latent), (2) 
inconclusive (insufficient agreement or disagreement between the standard and the latent to reach a 
definitive conclusion), or (3) exclusion (the individual that supplied the standard is not the source of 
the latent).  In 1979, the International Association for Identification (IAI) published Resolution VII 
stating that “friction ridge identifications are positive, and [that the IAI] officially oppose any 
testimony or reporting of possible, probably or likely friction ridge identifications” (Identification 
News 1979).  However, neither the accuracy of the practitioners employing the ACE-V method to 
make correct identifications nor the number of required fingerprint feature matches, with a defined 
level of certainty, had been statistically validated.  Following the publication of the NAS report 
(2009), IAI members redacted the above statement (IAI Resolution 2010-18) on July 16, 2010 at the 

16

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



International Association for Identification Conference in Spokane, WA (for review see Polski et al., 
2011). 

To quantitatively establish the reliability or accuracy of the ACE-V methodology, one needs to 
evaluate two things:  (1) Accuracy of the practitioner employing the ACE-V method to make correct 
identifications and (2) The probabilities of a false match to fingerprint regions to establish certainty 
levels for comparison conclusions.  Practitioner accuracy addresses the ability of Latent Print 
Examiners (LPE) to utilize the ACE-V method in making a correct identification within a 
statistically determined degree of certainty.  Several measures of practitioner accuracy evaluated in 
the last few years include analysis of latent print proficiency test data and the IAI’s certification 
examination.  However, these two measures do not delineate error types.  Wertheim et al. (2006) 
evaluated the accuracy of 92 LPEs with more than one year of experience.  Only two out of 5861 
(0.03%) identifications were erroneous or incorrect.  Langenburg (2009) performed a pilot study 
using six examiners to evaluate the accuracy of comparisons on a set of 60 samples.  The 
conclusions of the six examiners were consistent for identifications (mean = 44.7 + 2.7).  Although 
no erroneous identifications occurred, not all possible identifications were made.  Thus, practitioner 
accuracy using the ACE-V method for identifications was not 100%. 

Ulery et al. (2011) in the first large scale study, analyzed the accuracy and reliability of 169 
latent print examiners’ comparison decisions.  Six false positives or erroneous identifications were 
made out of 4083 comparisons suitable for identification, thus indicating a 0.147% error.  Ulery et 
al., went on to study the repeatability and reproducibility of these decisions (Ulery et al. 2012).  
Langenburg et al. (2012) performed a similar study using 176 examiners in which quality assessment 
software and likelihood ratio tools were utilized to assist the examiners in their comparison 
decisions.  The resultant outcome was that these tools do increase the accuracy and consistency in 
fingerprint feature selection which may have a subsequent impact on the accuracy and reliability of 
the comparison decision. 

Probabilities that describe the discriminating value of the various ridgeline features or clusters of 
fingerprint ridgeline features address the number and/or relationship of these features required to 
conclude a latent print “identification” within a statistically determined level of certainty.  Therefore, 
it is critical to estimate the probability of a false match across spatial sub-regions of a given 
fingerprint.  This is a critical concept for LPEs since they rarely compare a full fingerprint 
impression to a known standard as distorted, smudged, and/or partial impressions are common.  
Consequently, it is important not only to establish the baseline statistics for determining fingerprint 
false match probabilities, but also to evaluate how these probabilities vary across fingerprint space 
when only a portion of the impression is available for consideration.  Hence, two key questions 
frame the problem as applied in the forensic laboratory:  (1) What is the probability of a match 
between a known and unknown when comparing a subset of fingerprint features available and (2) 
What is the statistical minimum threshold required within a level of certainty to make an 
identification? 

One statistical approach for evaluating these questions was presented by Neumann et al. (2006, 
2007) and Egli et al. (2007) in which they calculated likelihood ratios (LR) for within- and between-
finger variability.  Their results showed that a calculated LR using three or more minutiae is a robust 
statistical measure that can be used to predict the probability limits of a latent identification.  Srihari 
and Srinivasan (2008) evaluated LR and ROC (receiver operating characteristic) models for potential 
use as an automatic fingerprint verification method.  Their study showed that with a large sample (40 
to 60) of minutiae, a 99.8% identification accuracy is possible.  However, accuracy decreased 
significantly when fewer minutiae were available for matching.  Ross et al. (2002) also found that 
using a combination of minutiae and ridge patterns provided the most robust matches, compared to 
using either feature alone.  Along these same lines, Su and Srihari (2010) developed a method for 
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computing fingerprint rarity using a given set of minutiae.  Results showed that the probability of 
random correspondence increased when the number of minutiae decreased.  That is, when fewer 
minutiae were considered, there was a higher probability that the latent print matched other 
fingerprints.  Most recently, Neumann et al. (2012) optimized his statistical approach using 
likelihood ratios and developed a formal model for the application of a quantitative value to 
fingerprint ridgeline feature configurations which describes the discriminating weight of the resultant 
comparison conclusion.   
 
C.  Statement of Rationale 

While there is a wealth of information available regarding fingerprint ridgeline features, (e.g., 
the distribution, density and frequency of minutiae per pattern type, hand, gender and ethnicity), 
there are few studies that have utilized this information to empirically determine the discriminating 
value of these ridgeline features; even fewer studies, one to date (Neumann et al., 2012), have been 
developed to the point of being suitable for implementation in the latent print comparison process.  
With recent court challenges to the admissibility of fingerprint evidence due to a lack of scientific 
rigor in the validation of the comparison methodology and to examiner testimony stating fingerprints 
are unique and an identification is to the exclusion of all others, scientific research evaluating the 
methodology and the discriminating value of the various fingerprints features utilized for latent print 
comparison is warranted.   

The purpose of the project was to review, with latent print examiners, the ACE-V methodology 
to ascertain the fingerprint features considered during the latent print comparison process and apply 
principles of spatial analyses to develop statistical certainty measures for latent print comparison 
conclusions.  The specific objectives were to (1) use Geographic Information Systems (GIS) spatial 
analysis techniques to evaluate fingerprint features or topological attributes (e.g., minutia number, 
type and orientation, and ridge flow and density), and (2) derive probabilities that describe the 
discriminating value of these ridgeline features and (3) utilize the derived fingerprint probabilities to 
establish certainty levels to qualify latent print comparison conclusions. 
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CHAPTER 2 – GEOGRAPHIC INFORMATION SYSTEMS, DATA 
ACQUISITION AND PATTERN CHARACTERIZATION 

1.  INTRODUCTION 
 

A Geographic Information System (GIS) is a collection of hardware and software components 
that integrate digital map elements with relational database functionality.  GIS data are typically 
captured in the form of either raster grids (e.g., pixels) or vector features (i.e., points, lines, and 
polygons) with points referenced in space using X, Y and sometimes Z coordinate values (Price 
2012).  The power of a GIS is in its ability to allow users to integrate, store, edit and analyze spatial 
features and relationships, as well as query and display spatial information.  Such systems include 
traditional mapping capabilities (e.g., land surveying and aerial photography) and provide users with 
tools to interactively search and analyze spatial information (Figure 2-1A). 

GIS technology was initially developed for cartography with one of the first computerized land-
management systems in Canada in1962 (Tomlinson 1967, 1970).  Since then, GIS systems have 
been applied in increasingly novel ways to include land use planning, environmental management, 
marketing, and criminology.  Most recently, GIS has been used for characterizing surgical 
procedures (Garb et al. 2007), conducting dental EMR imaging (Wu et al. 2006) and for in 
neuroanatomical and anthropological research (Ungar and M’Kirera 2003, Martone et al. 2004).  
While GIS is widely used for crime pattern analysis and emergency management applications, (ESRI 
2000, 2001; Chainey et al. 2005; Bodbyl-Mast 2009), its analytical capabilities have not been 
previously applied to fingerprint characterization and pattern recognition (Stanley et al. 2012).   

GIS-based spatial analysis involves analyzing the positions, patterns and relationships between 
objects located in a defined space, similar to graph theory in discrete mathematics (Maguire et al. 
2005; Smith et al. 2007).  Collections of objects in a defined coordinate space may be linked or 
associated with one another geometrically or by functional associations.  Techniques in spatial 
analysis include data modeling, image processing, grid algebra, surface analysis, network analysis 
and visualization.  The GIS-based tools available for spatial analysis have grown exponentially in 
recent years, all driven by the practical need to understand, predict, and model relationships between 
objects located in space.  Given that fingerprint analyses and latent print comparisons are based on 
spatial associations between minutiae and ridgelines (e.g., minutia patterns, ridge counts, minutiae 
location), GIS-based tools are a natural extension (Figure 2-1B).  Utilization of GIS in conducting 
dactylographic research is particularly appealing given that fingerprint minutiae and ridge patterns 
are very analogous to geometries reflected in Earth surface topography, a traditional focus of GIS.   

This project takes a novel approach utilizing GIS and related tools to derive spatial statistics for 
fingerprint patterns, with the ultimate deliverable involving the development of false-match 
probability estimates for use on active casework in forensics laboratories.  The methodologies 
presented herein provide a framework for cataloging, characterizing and quantifying fingerprint 
features using custom GIS tools.  Following is a summary of methodology and results as applied to 
fingerprint characterization. 
 
2.  METHODS 

The Python (version 2.6.5, 2010; software available from http://www.python.org) programming 
language was used in conjunction with ArcGIS software (Ver. 10.0; ESRI 2010; Price 2012) to 
create custom tools and automate complex project workflows (Figure 2-2).  The fundamental steps in 
the fingerprint data conversion process included: (1) scanning ten-print cards using TWAIN-
compliant software at 1000 dpi resolution, (2) image processing using Adobe Photoshop CS4 (image 
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rotation, fingerprint cropping, image enhancements), (3) export of unregistered images to the 
Universal Latent Workstation (ULW; Watson et al., 2007) software package for initial minutia 
detection, (4) georegistration of vector minutia point files and print images into a standardized 
coordinate reference system, and (5) export of vector and raster data layers to GIS-compliant data 
formats for use in the ESRI ArcGIS software suite. 

Metadata were also generated to describe the function and output of each software script and 
resultant data files.  The resultant data products were used to measure a wide variety of fingerprint 
metrics, along with spatial assessment of the density of minutiae for fingerprint pattern types, as well 
as within a given fingerprint region.  Table 2-1presents a list of the primary GIS-based methods 
developed as part of this study.  The GIS-based workflow has been systematically divided into three 
categories, each with a range of assigned method numbers to assist the project team with 
communication and data organization.  One hundred level techniques involve data collection and 
conversion of fingerprint images into vector-based data models.  Two hundred level techniques 
focus on pattern characterization and morphometric derivatives from the 100-level data models.  
Three hundred level methods include statistical analyses, probability modeling and geometric 
morphometric analyses.  A summary of key workflow elements and GIS methods utilized in this 
study and the types of data resulting from these techniques are  presented in Table 2-1 and Figure 2-
2 (after Aldrich 2010; Dutton 2010; Dutton et al. 2010a, 2010b; Dutton et al. 2011; Taylor et al. 
2012). 
 

A. Fingerprint Data Collection, Visual Assessment and Image Processing 
 

The project sample set was obtained from a random selection of over 5000 ten-print cards 
supplied by the Oregon State Police (OSP), Forensic Services Division, as derived from state 
criminal records.  As part of an inter-institutional agreement, all personal identification was removed 
before processing by project staff.   

The first step in the data collection process was to visually assess the quality of ten-print cards to 
select those samples with the best image clarity.  Approximately 1836 ten-print cards were 
qualitatively separated into four categories (1 = best, 2 = good, 3 = fair, 4 = poor) and evaluated for 
the clarity of ridgeline resolution, blotching, smudging, and scarring (Figure 2-3A).  A quality rating 
1 (best) image displays clear ridge line resolution, no-to-minimal blotching or smudging and no 
major scarring.  Minor blemishes outside the core were acceptable.  Of the 1836 ten-print cards 
visually assessed, 957 were fair (rating 3) to poor (rating 4) with 879 categorized as best (rating 1) 
and good (rating 2).  

Following the initial qualitative image assessment, the 1 and 2 quality-rated images were 
scanned at 1000 dpi as an 8 bit grayscale image (Figure 2-3B).  The ten-print was digitally separated 
into individual fingers; the initial phase of the project focused on the right thumb, right index, left 
thumb and left index (i.e., fingers 1, 2, 6, 7; Figure 2-3B).  Scanned images were then processed with 
Adobe Photoshop using a series of enhancements (noise filter, black/white balance, contrast, 
brightness enhancements) and subsequently oriented with the distal interphalangeal crease aligned to 
horizontal.  To date, greater than 600 ten-print cards have been scanned and processed providing a 
total of 2400 fingerprint images available for minutiae detection and friction ridge vectorization 
(Table 2-2). 
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B. Minutiae Detection 
 

To assist project staff in establishing standards for minutiae detection, two software applications, 
MINDTCT and Universal Latent Workstation (ULW), were compared early on in the project for 
both accuracy and ease of use.  Both of these applications are readily available in the public domain.  
MINDTCT is an older software application developed by the National Institute of Standards and 
Technology (NIST) in the early 1990s, while the ULW application is an upgraded version of 
MINDTCT developed by the FBI.  After an evaluation of both of these  applications, the ULW 
system was selected as the project standard for assisting research staff in consistently identifying and 
locating minutiae on fingerprints.  Through empirical testing, the project team concluded that ULW 
provides more accurate minutiae detection, fewer falsely labeled minutiae, better image file 
visualization of detected minutiae, greater ease of use, and better image manipulation for quality 
control (e.g., delete false minutiae, label missed minutiae).  Thus, ULW, which only identifies 
bifurcations and ridge endings, was used for minutiae detection and extraction at a 30% threshold.  
The 30% threshold was utilized to reduce the amount of false minutiae initially detected by the 
software.  After minutiae acquisition, the image was imported into the GIS system.  The fingerprint 
image was subsequently subjected to a visual inspection by the researchers to identify and correct, 
missed minutiae, mislabeled minutiae and falsely marked minutiae.  To ensure systematic image 
orientation, accurate minutiae detection, core and delta placement and pattern type identification, 
OSP Latent Print Examiners performed an independent quality control assessment.  Their review led 
to improvements in the data collection process with the addition of a second level of quality 
assurance during GIS data conversion (refer to Section 2C below). Thus, image orientation, pattern 
type designation, minutiae detection and core and delta placement procedures involved a 
combination of automated software algorithms and operator judgment.   
 

C. GIS Data Conversion and Geo-Referencing  
 
Custom Python-based software routine (scripts) tools were created in ArcGIS to assist with 

fingerprint data collection, pattern characterization, and statistical analysis (Figure 2-2 & Table 2-1).  
Initial minutiae detection was conducted using latent fingerprint processing software, with results 
exported as ANSI/NIST Type-9 records.  A tool was created to parse finger and minutia information 
from a Type-9 text file and transpose the data into a standardized coordinate graph space.  
Coordinate referencing (georeferencing) places the fingerprint image and related features in quadrant 
I (+,+) of a Cartesian coordinate system.  The Type-9 ULW summary output file was georeferenced 
to adjust the X-axis and Y-axis origin (0,0) to -100 mm distant from the fingerprint core (Figure  2-
4).  The core was defined as: Arches = highest point of recurve, Loops = ridge ending at top of 1st 
full loop and Whorls = ridge ending or bulls-eye at core.  The resultant transformation placed all 
cores of each fingerprint at a standard (100,100) mm position within Cartesian coordinate space.  
The georeferenced fingerprint coordinate space is oriented such that geographic-based azimuth 
directions are applied with due north set at 0 degrees, oriented parallel to the positive Y-axis 
direction, with subsequent orientations relative to clockwise angular measurements of East (90o), 
South (180o), and West (270o) (Figure 2-4 inset).  Once imported and registered in GIS, minutiae 
were subjected to an additional level of QC and secondary processing.  Feature points were moved to 
more accurately mark the placement of minutiae and any minutiae incorrectly labeled or falsely 
marked were corrected.  In addition, the delta regions were marked.  The delta region was defined 
according to Kucken and Newell (2005) as a triradius consisting of three ridge systems converging 
with each other at an angle of roughly 120 degrees and marked.  
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The final step in the GIS-data conversion process was to attribute the minutiae vector points with 
identifying information attached via an indexed relational database file.  Tabled information includes 
X-Y location, minutia direction, minutia identification, minutia type, fingerprint type and file 
identification (Figure 2-5).  The net result of the data acquisition process described above was to 
create a spatially-referenced set of fingerprint data, including the georeferenced fingerprint image, 
the minutia vector overlay and the associated database file.  This data set, georeferenced in 
standardized coordinate space, in turn formed the fundamental framework for subsequent geometric 
measurements, spatial analyses and statistical models (Table 2-1). 

 
D. Minutiae Location Confidence Zone 

 
The scaling of the data acquisition process described above was such that the coordinates of 

resulting georeferenced minutia locations were associated with a small degree of +/- positional error 
that was an artifact of the digitization process.  The digitized minutiae coordinates were precise to 
nanometers while ridge widths were precise to micrometers, resulting in a minutia point location 
smaller than the physical feature it represents.  Thus, while two minutiae may actually be in same 
location on a fingerprint, analysis of this coordinate position in GIS may indicate that they are not.  
To account for this difference in precision as an artifact of image digitization, a minutiae location 
confidence zone around each point was statistically estimated using ridge widths that encompass 
99.7% of the observed variation.  Fifty fingerprints were randomly selected from the available 
dataset.  Within each fingerprint, 10 points were randomly placed using a script in GIS that restricted 
positioning on ridges and not in white space.  The ridge width was then measured at the location 
resulting in 10 measurements each for 50 prints, with a total N of 500.  The mean and variance of the 
ridge widths was calculated for each finger.  The resulting 50 values were in turn pooled with a 
calculated mean = 0.4 mm, standard deviation =0.76 mm and a margin of error = 0.32 mm.  The 
analysis suggests that our data collection and digitization techniques were associated with a minutia 
positional tolerance of +/- 0.32 mm.  This positional tolerance buffer was accounted for in 
subsequent geometric measurements, spatial analyses and statistical tests (Table 2-1). 
 

E. Friction Ridge Vectorization 
 

Following acquisition and georeferencing of fingerprint images, the friction ridges were 
vectorized into line layers for subsquent attribution and morphometric analysis (Figure 2-1B).  At 
sub-millimeter scale, friction ridges are polygonal features associated with pore openings in the skin.  
Fingerprint analysis treats ridges as line patterns for use in identifications. Vectorization of ridge 
lines from raster print images involved a process of center-line skeletonization of binarized pixels 
representing two-dimensional polygon space.  A custom ArcGIS/ArcScan extension was used to 
digitize ridge center lines from raster images and attribute them according to ridge-ending type.  
Ridge line segments end at one of three conditions: outer convex hull (H) boundary, ridge ending 
(RE) minutia, or bifurcation (B) minutia.  Thus, each ridge line segment was attributed with one of 
six boundary conditions: RE-RE, RE-B, RE-H, B-B, B-H, or H-H (Figure 2-6).  
Skeletonization/vectorization allows for efficient counting of ridge lines between all minutiae on a 
fingerprint and for the derivation of other morphometric data products such as ridge density.  
Additionally, line length and line curvature were calculated for each ridge.  Once the vectorized 
ridge lines were created and georeferenced in standardized coordinate space, a complete set of 
fingerprint data layers (raster-based fingerprint image, vector-based minutia point layer, vector-
based ridge line layer) were available for subsequent geometric measurements, spatial analyses and 
statistical models (Table 2-1).   
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Accurate minutiae placement and ridgeline skeletonization depends upon positively identifying 
false ridge endings.  Fingerprint artifacts such as ridge breaks introduce errors during the automated 
skeletonization process.  For example, ridge counts between the core and delta may vary if false 
ridge endings have not been identified and corrected.  To minimize this condition, we established a 
set of rules by which to assess false ridge endings.  The User’s Guide to NIST Biometric Image 
Software (Watson et al. 2007) defines an overlap as a discontinuity in a ridge or valley usually 
introduced via the fingerprint impression process.  The NBIS selection threshold for overlaps is 
defined by two minutiae within an eight pixel distance and nearly opposite directions.  The eight 
pixel distance was intended for analysis of images scanned at 500 ppi.  Adjusting this process to 
accommodate our 1000 ppi fingerprint images required doubling of the pixel tolerance to 16 cells.  
The pixel tolerance approach was one method considered when skeletonizing ridges.  To verify our 
skeletonization technique, ten Oregon State Police latent print examiners independently traced ridges 
from the same set of fingerprint images.  Analysis of the latent examiners’ ridge tracings produced a 
consensus for determining false ridge endings.  In addition, when ridge endings were questionable, a 
comparison of slapped vs. rolled prints was performed. Slap prints typically do not display the same 
degree of distortion inherent in rolled prints, thus, the former may lack false ridge endings associated 
with the latter.  This systematic methodology for identifying false ridge endings increased 
skeletonization accuracy, established a standard for comparison, and decreased errors in subsequent 
analyses that required ridge-line vector data. 
 

F. Data Management and GIS Analysis 
 

A SQL Server database was developed to manage and store the large amount of minutiae 
information.  Our database management system is comprised of a SQL Server 2008 R2 running on a 
Windows Server 2008 R2 operating system at the back end, with a custom front end consisting of 
programs written in both Java and C++ controls that allow for a wide variety of searches to be 
performed.  Our output data categories included gender, finger (1, 2, 6, 7), pattern type (right slant 
loop, left slant loop, arch, tented arch, whorl, double loop whorl), minutiae type (bifurcation or ridge 
ending) and ridgelines.  These categories, in turn, formed the basis for grouping observations on the 
frequency of minutiae type per finger, frequency of minutiae type per pattern type, location of 
minutiae with respect to core, and the density of minutiae per finger, pattern type and quadrant.  
Additional query tools were constructed to further refine these searches to evaluate minutiae 
frequency and distribution in select areas of a finger based on either the X-Y minutia coordinate 
location, azimuth from the core and/or the distance from the core.  

Geo-referenced fingerprint images, minutiae point layers and ridgeline coverages were 
systematically aggregated within a GIS geodatabase for subsequent querying and spatial analysis.  
Python-based GIS tools were custom built and implemented for extracting specific fingerprint 
metrics (Table 2-1).  A ridge counting tool provides the capacity to count fingerprint ridges between 
all minutiae, which allows for additional levels of analysis compared to raster grids.  Pattern 
characterization scripts were created to analyze point density and percent minutiae frequency by 
spatially intersecting minutiae with pre-established templates, such as a 2-mm grid overlay and a 
core-centered ‘dart board’ diagram.    Distance and azimuth (0-360 degrees) from the finger core 
were calculated for all minutiae within the database.  Using these values, minutiae were combined by 
fingerprint pattern type and summarized in rose diagrams, which serve as circular histograms to 
visually display minutia distributions relative to the core.  Minutia densities were also calculated 
within a standardized grid composed of 2 mm x 2 mm cells in standard georeferenced coordinate 
space.  Minutiae from the project database were aggregated according to pattern type and then tallied 
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within the 2 mm grid cells.  The resulting grid layer contains attribute data that records the number 
of minutiae and ridgelines per grid cell for all fingerprint patterns. 

In addition to those GIS techniques described above, other analyses focused on delineating sub-
regions of fingerprint space in support of spatial distribution and pattern analysis (Figure 2-7).  A 
convex hull bounding polygon was defined by the inked margins of a fingerprint image with area, 
perimeter and fingerprint ID included in the output layer.  An interior detailed hull was defined as a 
bounding polygon that circumscribes the outer most minutiae cluster on the interior of a point-based 
vector model (Figure 2-7A).  For purposes of geometric measurement and comparison, hull axes 
were defined as north-south (longitudinal) and east-west (transverse) oriented lines, drawn over the 
fingerprint with perpendicular lines intersecting at the core (Figure 2-7B).  This axis layer was 
subsequently clipped using the corresponding convex hull polygon.  Axial line lengths and axis 
ratios were calculated and attributed in the resulting polyline data layer.  Voronoi diagram 
techniques were used to conduct nearest-neighbor analyses for point patterns and to establish 
weighting for positional relationships.  Thiessen polygons, examples of this approach, are used in 
surface analysis and hydrology (Maguire et al. 2005, Smith et al. 2007).  Thiessen polygons were 
constructed by a network of lines derived using the minutiae as the centroids rather than line nodes.  
The size, area, and complexity of the polygon created indicate the density of minutiae surrounding it.  
The resulting polygon features were attributed with area, perimeter, shape index and minutia-
centroid type (ridge ending vs. bifurcation) (Figure 2-7C).  Voronoi tesselation polygons were used 
to characterize the recurring patterns of minutia (ridge- ending, bifurcations) distributions and to 
created generalized likely-location maps for minutia occurrence across fingerprint pattern types 
(loops, arches, whorls). 
 

G.  Analysis of Variance 
 

Basic statistical analyses of fingerprint metrics were performed to determine if there were 
differences between pattern types.  The goal of the ANOVAs is simply to determine, for the given 
measurement, whether there is a significant difference between pattern type.  Of interest is whether 
total minutiae differ between pattern type when normalized by convex and detailed hull.  Because 
the hull area is an artifact of the rolling process, both the convex hull and the detailed hull were 
analyzed.  Secondly, the axial dimensions were explored to determine if there were differences 
between pattern types.  The lateral versus transverse ratio by its very nature takes into account finger 
size; however, the north-south ratio (ratio of the area above the core and below the core) does not.  
Thus, a two-way ANOVA was performed for the north-south ratio with pattern type and finger as the 
main effects.  Finally, an ANOVA was performed to evaluate differences in the Thiessen polygon 
analysis per pattern type. 
 
3.  RESULTS 

A variety of spatial analyses (Table 2-1) were completed for the 1200 images to evaluate 
fingerprint characteristics for each of six pattern types (left slant loop, right slant loop, whorls, 
double loop whorls, arches and tented arches).  The fingerprint characteristics evaluated include: 

 
• the number of minutiae type per pattern type,  
• the ratio of minutiae type per pattern type,  
• the distribution and density of minutiae per pattern type,  
• the distribution and density of ridge lines per pattern type, 
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• the average convex hull area and hull axis dimensions per pattern type,  
• the average detailed hull area per pattern type, and 
• the Thiessen polygon distribution per pattern type. 

 
These analyses characterize the general distribution and geometry of fingerprint features per 

pattern type and were utilized to establish the foundational framework of fingerprint probabilities 
that describe the discriminating value of these fingerprint features.  The following is a summary of 
results associated with these pattern characterization studies.  
 

A. Census of Fingerprint Pattern Types 
 

To date, over 600 ten print cards have been scanned and digitized with 1200 images from fingers 
1, 2, 6 and 7 processed through ULW, digitally converted to a GIS vector format and uploaded into 
the image database.  Of the 1200 fingerprint images, 54.8% were loops, 35.2% whorls and 10.0% 
arches (Table 2-2).  There were 85.6% more left slant loops on the left hand and 84.8% more right 
slant loops on the right hand.  Double loop whorls (DLW) and whorls (W) displayed an ~60:40 
handedness with DLW being 55:45 for left hand (LH) to right hand (RH) and whorls 39.4:60.4 LH 
to RH split.  Arches and tented arches were equally distributed per hand.  However, there are more 
double loop whorls on thumbs (75%) than on index fingers (25%) and more arches on index fingers 
(72.2%) than on thumbs (27.8%).  To date, we have not identified any tented arches on thumbs 
from the available Oregon State Police source data.  It should be noted that because we were 
lacking a statistically significant number of arches in our sample set, we preferentially weighted 
selecting ten-print cards containing arches so that we could conduct comparative analyses between 
pattern types.  Thus, the census numbers presented in Table 2-2 reflect the pattern types residing in 
our database only and do not reflect the percentages associated with a random sample of the Oregon 
population.   

 
B. Minutiae Distribution  

 
From 1200 fingerprints in the database, over 102,000 minutiae were digitized and identified, 

58% of which are ridge endings and 42% bifurcations (Tables 2-3 and 2-4, Figure 2-8).  The average 
number of minutiae per fingerprint is 85 with all pattern types showing a greater density of minutiae 
in the lower half of the fingerprint, around and below the core (Figure 2-9). Double loop whorls had 
the greatest average number of minutiae per fingerprint (99.5) and tented arches had the least (65.2) 
(Table 2-3, Figure 2-8).  The ratio of bifurcations to ridge endings varies between pattern type.  On 
average, there was one bifurcation per 1.4 ridge endings for all pattern types with arches, loops and 
whorls having a 1:1.1, 1:1.4 and a 1:1.5 ratio, respectively (Table 2-3, Figure 2-8). 

The spatial distribution of minutiae in fingerprint coordinate space is depicted in rose diagrams 
(10-degree azimuthal bins, Figure 2-9) and point density maps (total minutiae per mm2, Figure 2-10), 
(bifurcations per mm2, Figure 2-11; ridge endings per mm2, Figure 2-12).  The average minutiae 
density per fingerprint convex hull for all pattern types was 0.119 minutiae per mm2 with whorls 
having the greatest density of minutiae (0.130 per mm2) and arches the least (0.101 per mm2).  The 
minutiae density per fingerprint detailed hull was similar.  As noted above, minutiae were 
concentrated in the lower half of the fingerprint around and south of the core distributed between 
100 and 270 degrees and there were more minutiae per mm2 in the southeast quadrant for left slant 
loops and in the southwest quadrant for right slant loops.  Minutiae had a bimodal distribution for 
whorls, double loop whorls and arches where minutiae appeared to be clustered equally in both the 
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southeast and southwest quadrants (Figure 2-9).  The minutiae distribution for tented arches was 
more concentrated directly south of the core (Figure 2-10).   

The general minutiae density pattern described above for the various pattern types was similar 
for bifurcations and ridge endings (Figures 2-11 and 2-12); the average minutiae densities for 
bifurcation and ridge ending were 0.052 per mm2 and 0.067 per mm2, respectively.  However, 
bifurcations displayed the greatest density in the core region whereas ridge endings were most dense 
in the delta regions. 

 
C. Friction Ridge Distribution  

 
 A total of 188 fingerprint images were skeletonized to create georeferenced vector ridgeline data 
layers.  A sample of 179 images was used for the ridgeline density data analysis and included 30 
right-slant loops, 30 left-slant loops, 38 whorls, 22 double-loop whorls, 29 arches and 30 tented 
arches.  Ridgelines were attributed according to the technique illustrated in Figure 2-6, with over 
20,300 ridgelines digitized and georegistered across the six fingerprint pattern types.  Ridgeline 
lengths per 2-mm grid were tallied for the 179 images to evaluate the ridgeline distribution per 
pattern type (Figure 2-13).  For all pattern types, there was more total ridgeline length per 2-mm grid 
below the core (24.5 mm/mm2) than above the core (21.4 mm/mm2) with the greatest amount of 
ridgeline length per mm2 near the core region.  For left slant loops, there was more ridgeline length 
per unit area in the northeast quadrant and for right slant loops in the northwest quadrant.  The 
greatest amount of ridgeline length was in a concentric distribution about the core for whorls and 
double loop whorls, and appeared to be clustered symmetrically above the core in arches and tented 
arches.  Whorls and double-loop whorls had more 2-mm quadrats with a greater concentration of 
ridgelines per mm2 (Figure 2-13) with whorls having the greatest average of ridgeline length per 
mm2 (29.8 mm/mm2). 

In consideration of the number ridgelines per 2-mm quadrats above and below the core, in 
contrast to ridgeline length distribution, the total number of ridgelines per 2-mm quadrat and the 
average number of ridgelines per pattern type above and below the core was calculated for 188 
skeletonized fingerprint images (Figure 2-14).  For all pattern types, there were more ridgelines, on 
average, below the core (91.76) than above the core (71.29) with the average number of ridgelines 
per 2-mm quadrat being 0.61/mm2 and 0.54/mm2 below and above the core, respectively.  As with 
the 1200 fingerprint images, there was a greater number and density of minutiae below the core than 
above the core; for the 188 images utilized in this study, the average number of minutiae below and 
above the core was 57.81 and 29.23, respectively.  To evaluate whether the increased number of 
minutiae below the core was simply due to the density of ridgelines below the core, we calculated a 
ratio of minutiae per ridgelines for all pattern types and compared the values.  This ratio of minutiae 
to ridgelines was similar for all pattern types (Figure 2-14) with the average ratio for all pattern types 
being 0.63 and 0.41 for below and above the core, respectively. A paired t-test of the average 
minutiae to ridgeline ratios calculated for above and below the core for all pattern types was 
significantly different (t(0.05, 187) = -24.525). 
 

D. Convex Hull and Detailed Hull Analysis 
 

The average fingerprint convex hull area for all pattern types and digits (1, 2, 6, & 7) is 719.2 
mm2. (Table 2-4,)  Double loop whorls have the largest average convex hull area (811.6 mm2) and 
tented arches the smallest average convex hull area (568.8 mm2).  When evaluating the convex hull 
by digit, thumbs have a larger average convex hull area (860.9 mm2) for all pattern types compared 
to index fingers (611.7 mm2; Figure 2-15).  When combining minutiae counts with convex hull 

30

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



areas, bulk minutiae densities (counts per mm2) can be calculated across pattern types (Table 2-4, 
Figure 2-16).  The average minutiae density per convex hull area was similar in range for all pattern 
types (0.10-0.13 per mm2 with arches exhibiting the smallest total minutiae density per convex hull 
area ratio at 0.10 per mm2 and whorls the largest (0.13 per mm2). 

A one-way Analysis of Variance (ANOVA) was performed to assess significance for minutiae 
densities/convex hull area across pattern types and a significant difference was found with an α=0.05 
(F(5,1194)=14.8  p=0.0000000000000417).  Using Tukey’s Honestly Significant Difference post-hoc 
test to examine the difference of the means of the pattern types, arches were different from all other 
pattern types except right slant loops (Figure 2-16).  The two whorl types were different from right 
slant loops, but only whorls different from tented arches and left slant loops, with p-values of 0.0172 
and 0.0000090 respectively.   Interestingly, using this metric of normalized minutiae count, tented 
arches appear to more similar to the loops than the pure arch.  In general it appears that pattern types 
with greater ridge complexity produce a greater number of minutiae. 

Analysis of the detailed hull area and minutia distribution yielded similar results to those for the 
bounding convex hull above (Table 2-5 and Figure 2-17).  Similar to the convex hull area, tented 
arches had the smallest average detailed hull area (328.2 mm2) and double loop whorls had the 
largest (486.8 mm2).  The current sample set was limited in that no tented arches have been 
identified for thumbs in the Oregon data set.  Of the detailed hull data available for thumbs, arches 
are associated with the largest average detailed hull areas (577.5 mm2), and directly parallel the 
observations described for the bounding convex hulls above.  A one-way Analysis of Variance 
(ANOVA) was performed to assess significance for minutiae densities per detailed hull area across 
pattern types and significance was found with an α=0.05 (F(5,1194)=15.04, p=0.0000000000000242).  
As similarly described for convex hulls, arches were significantly different from all patterns except 
for right-slant loops.  Whorls were significantly different from the two loop pattern types.  However, 
for detailed hulls, left slant loops and double loop whorls were no longer significantly different.  
Thus, there seems to be a larger amount of minutia-free space on the edges of double loop whorls 
(Figure 2-17). 

Comparisons of the axial hull dimensions are summarized in Table 2-6 and Figures 2-18, 2-19 
and 2-20.  The longitudinal (L) and transverse (T) axes lengths are similar for all pattern types 
except for tented arches which were approximately 3 mm shorter compared to the average (Table 2-
6).  Although arches had shorter L and T axes, the ratio of the L-to-T axes was the same for all 
pattern types (Table 2-6) and digits (1, 2, 6 & 7; Figure 2-18).  Double loop whorls had the longest 
south axis (i.e., core to crease) length (15.7 mm) and tented arches the shortest (13.5 mm).  Tented 
arches and whorls had the largest south to north axis ratio; 1.4 compared to 1.2 for loops, 1.3 for 
double loop whorls and 1.1 for arches (Table 2-6). 

A one-way Analysis of Variance (ANOVA) was performed to assess the significance of the 
L-to-T axis ratios across pattern types.  The resultant analysis was not significant (F(5,1194)=1.075, 
p=0.373;  Figure 2-19).  A two-way ANOVA of north-south axis ratios was conducted to evaluate 
differences in dimensions above and below the core in fingerprint coordinate space (Figure 2-20).  
The attribute variables included pattern type, finger, and pattern type times finger (i.e., interaction 
term).  Results indicate that pattern type and finger were associated with significant differences in 
the N-S axes ratios, F(5,1189)=4.708; p=0.00291 and F(1,1189)=29.951; p=0.000000054, respectively.  
However, the interaction term (pattern type *finger) was not significant with a p=0.1755787.  Both 
parameters were significant, but finger was highly significant indicating that it has a much larger 
influence over the north-south ratio than pattern type.  Using Tukey’s Honestly Significant 
Difference (Tukey HSD) for a post-hoc test to analyze the differences between the means from the 
ANOVA, there were no differences in the ratio within finger, but quite a few differences between 
fingers.  Left slant loops on thumbs were different from all pattern types on index fingers except for 
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arches at the 0.05 level.  Right slant loops on thumbs were significantly different from both whorl 
patterns on index fingers, while arches on thumbs were significantly different from double loops 
whorls on index fingers.  Results suggest that there is a fundamental difference in the placement of 
the core within certain pattern types that alters the ratio of the north and south axial dimensions. 
 

E. Thiessen Polygon Analysis 
 

The average Thiessen polygon area across all pattern types for bifurcations and ridge endings 
was 8.35 mm2 and 8.79 mm2, respectively (Table 2-7).  Arches had the largest average Thiessen 
polygon areas for both bifurcations (9.94 mm2) and ridge endings (10.2 mm2) and whorls had the 
smallest average Thiessen polygon areas for bifurcations and ridge endings (7.27 mm2 and 7.94 mm2 
respectively). 

The total Thiessen polygon area for bifurcations and ridge endings was calculated per image and 
averaged across all images.  A ratio of bifurcations to ridge endings per pattern type was then 
calculated and a one-way Analysis of Variance (ANOVA; F(5,1194)=7.359; p=0.000000833) 
performed.  The ratio (B:RE) for total Thiessen polygon area was significant for the two whorl 
patterns when compared to all other pattern types except whorls and right slant loops, but do not 
differ amongst themselves.  There was no significant difference between the other pattern types.  The 
two whorl patterns were closer to each other in minutiae distribution than the other pattern types.  
While there was no difference between the arches and loops, the box plots and means indicate a 
trend, with arches having the lowest ratios of Thiessen ridge ending-to-bifurcation areas and the 
whorls with the largest ratios (Figure 2-21). 
 
4.  CONCLUSIONS 

An extensive set of GIS-based analytical tools were developed and have yielded valuable results 
that aid in the quantification of fingerprint characteristics and spatial distribution of minutiae and 
ridge lines in georeferenced coordinate space.  The above narrative, tables and figures provide 
examples of the results generated thus far.  The analytical tools are very robust and provide a firm 
foundation upon which to expand our fingerprint probabilities. 

The primary results of the GIS-based spatial characterization component of the study may be 
summarized as follows: 

 
(1) Techniques in Geographic Information Systems can be successfully applied to spatially 

analyze fingerprint patterns; 

(2) The standardized georeference system developed for this study provides a standardized 
coordinate system that allows complex analysis of minutiae and ridgeline distributions across 
fingerprint space; 

(3) A wide variety of spatial analysis tools can be developed in the GIS software environment to 
characterize fingerprint features and statistically characterize distributions between pattern 
types; 

(4) A robust sample set of over 1200 fingerprints, 102,000 minutiae and 20,000 ridge lines were 
digitally captured from the Oregon population as part of this project effort; 

(5) The average number of minutiae per fingerprint is 85.1, with ridge endings outnumbering 
bifurcations by a factor of 1.4; 
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(6) Minutiae and ridge lines are most densely packed in the region below the core, with the 
greatest line-length density surrounding the core; 

(7) More complex ridge patterns with higher degrees of line curvature (e.g. whorls and double 
loop whorls) are associated with a greater number of minutiae as compared to more 
streamlined patterns (e.g. arches). 

 
Discussion 

GIS methodologies and standardized georeferencing allowed for the placement of fingerprint 
features within a common coordinate space.  Once fingers were aligned in coordinate space, the 
spatial analyses were conducted to characterize pattern types, minutiae distributions and ridge line 
configurations.  Overall, there was a greater density of minutiae and ridgelines below the core than 
above for all pattern types with the distribution of bifurcations and ridge endings being more similar 
within any pattern type rather than among them.  On average there were more ridge endings than 
bifurcations for all pattern types with whorls having the greatest number of minutiae followed by 
loops then arches.  The overall characterization of the spatial distribution, frequency and density of 
minutiae and ridgelines in our study are similar to previously published work (Stoney and Thornton, 
1987; Champod and Margot, 1996; Gutierrez et al., 2007; Srihari, 2009).  Similar pattern types (e.g., 
right and left slant loops) tend to have greater similarity between them when comparing various 
metrics such as hull axis ratios and Thiessen polygon ratios, suggesting that these patterns arise 
through similar biological phenomena.  

As latent examiners have observed, fingerprint minutiae distributions are not uniform nor do they 
appear to be random.  Furthermore, when taking into account the greater number of ridges in the 
lower region of the fingerprint, as compared with the upper, it does not explain the differential 
distribution of the minutiae across the fingerprint.  It appears that the more complex the ridge pattern 
type (e.g., double loop whorls vs. arches), the greater number of minutiae present on the finger.   The 
spatial variation between the upper and lower regions of the finger also implies that this differential 
minutiae distribution is influenced by the complexity of pattern type as the lower sections are where 
the deltas and other disruptions in ridge flow occur more frequently.  Conversely, the upper regions 
of the finger have a relatively uniform flow of ridgelines with simpler line geometries.  Thus, the 
more complex pattern types (whorls and double loop whorls) tend to be similar to each other, are 
associated with larger pattern dimensions, and significantly differ from all other pattern types.  The 
less complex pattern types, as exemplified by arches, tend to display fingerprint metrics at the other 
end of the scale. 
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Figure 2-1.  Diagram showing components of geographic information systems 
and related applications to fingerprint analysis. 

36

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



EPSON Scan

Scan Ten Print Cards: 
• Folders: J:\fingerprint\Fingerprints\Ones\Masters

J:\fingerprint\Fingerprints\Twos\Masters
• File format:  .TIFF
• File Name Example:  1_12_Master.tif

Photoshop

Crop & Save  Individual Fingerprints from Ten Print Cards:
• Folders: J:\fingerprint\Fingerprints\Ones\...

J:\fingerprint\Fingerprints\Twos\...
• File Format:  .TIFF
• File Name Example:  1_12_ri.tif

Photoshopp

Crop, Rotate, and Adjust Contrast of Fingerprints:
• Folder: J:\fingerprint\Fingerprints\Processed\...
• File Format:  .TIFF
• File Name Example:  1_12_ri_P.tif

ULW

Export .TIFF  as 1000 DPI .BMP:
• Folder: J:\fingerprint\Fingerprints\Data\Images_enhanced\...
• File Format: .BMPFile Format:  .BMP
• File Name Example:  1_12_ri_crop.bmp

Export Current View of Detected Minutiae:
• Folder: J:\fingerprint\Fingerprints\Data\Images_enhanced\...
• File Format:  .BMP
• File Name Example:  1_12_ri_min.bmp

Export Summary  Output
• Folder: J:\fingerprint\Fingerprints\Data\ULW  files\...
• File Format:  .txt
• File Name Example:  1_12_ri.txt

ULW Parser

Open ULW Parser
• J:\fingerprint\Fingerprints\Data\Parsed_ulwdata\ULWParser5_1.jar

Parse ULW Summary  Output .txt  from previous step, 2 files are then generated:
• Folder: J:\fingerprint\Fingerprints\Data\Parsed_ulwdata\...
• File Format:  .txt
• File Name Example:  1_12_ri.txt

Photoshop

Convert 1000 DPI ULW .BMP to .TIFF:
• Folder: J:\fingerprint\Fingerprints\Data\tfw  files\...
• File Format:  .TIFF
• File Name Example:  1_12_ri_crop.tif

• Folder: J:\fingerprint\Fingerprints\Data\tfw  files\...
• File Format:  .tfw (Tiff World File)
• File Name Example:  1_12_ri_crop.tfw

ArcMap

Convert Parsed .txt to Shapefile:
• Folder: J:\fingerprint\Fingerprints\Data\Shapefiles\...
• File Format:  .shp (format  includes .shx, .sbn, .sbx, .dbf)
• File Name Example: 1 12 ri shp

Parsed .txt file
J:\fingerprint\Fingerprints\Data\Parsed_u
lwdata\...

File Format:  .txt

Fil N E l 1 12 i

.tfw (Tiff World File)
J:\fingerprint\Fingerprints\Data\tfw 
files\...

File Format:  .tfw

File Name Example: 1 12 ri crop tfwFile Name Example:  1_12_ri.shp

ArcMap

Overlay Shapefiles and Georeferenced TIFF  files, Perform QAQC on Shapefiles
1. Add or delete minutiae, record minutiae   type in attribute  table
2. Re‐calculate X‐Y coordinates
3. Add PT‐ID’s for each newly added point
4. Shapefiles are saved over the original shapefile generated in previous step

• Folder: J:\fingerprint\Fingerprints\Data\Shapefiles\...

File Name Example:  1_12_ri.txt File Name Example:  1_12_ri_crop.tfw

Figure 2-2. Workflow processes developed for data acquisition. 
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Figure 2-3.  Illustration of methods used to assess fingerprint quality and 
process images as part of the data acquisition techniques .  
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Figure 2-5. Process employed to convert scanned fingerprint images into 
attributed raster and vector GIS data layers.  
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Ridgeline Codes
Ridge Ending - Ridge Ending
Ridge Ending - Bifurcation

Bifurcation - Bifurcation
Bifurcation - Hullg g

Ridge Ending - Hull Hull - Hull

Figure 2-6.  Attribute coding applied to friction ridgelines.
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Figure 2-7.  Geometric elements used to analyze fingerprint space.  A. Outline of 
convex hull circumscribing the outer fingerprint image; detail hull is defined by 
polygon circumscribing the inner minutiae point field.  B. Axial geometries used to p yg g p g
derive convex hull dimensional metrics.  C. Thiessen polygon technique in which 
minutiae are used to define the centroids of a mutually intersecting set of polygons 
covering fingerprint space.  The polygons are attributed by the minutiae type and 
defined by perimeter and area.
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Figure 2-8 Box plots showing frequency distribution of minutiae typesFigure 2-8. Box plots showing frequency distribution of minutiae types 
distributed across pattern types.  Refer to Table 2-3 for related data summary. 
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Figure 2-9. Rose plots showing frequency distribution of minutiae locations by 
pattern type, organized by azimuth direction from core in 10-degree bins. 
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Figure 2-10. Maps showing total minutiae density (count per mm2) as distributed across 
a standardized 2-mm grid in georeferenced fingerprint space. 
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Figure 2-11. Maps showing bifurcation density (count per mm2) as distributed across a 
standardized 2-mm grid in georeferenced fingerprint space. 
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Figure 2-12. Maps showing ridge-ending density (count per mm2) as distributed across a 
standardized 2-mm grid in georeferenced fingerprint space. 
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Figure 2-13. Maps showing ridge-line density (total length in mm per mm2) as 
distributed across a standardized 2-mm grid in georeferenced fingerprint space. 
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Pattern Type Minutiae/Ridgeline 
Ratio Above Core 

Minutiae/Ridgeline 
Ratio Below Core 

All Images (n=188) 0.41 0.63 
LSL (n=31) 0.47 0.64 
RSL (n=33) 0.45 0.63 
W (n=41) 0.49 0.71 
DLW (n=23) 0.51 0.68 
A (n=30) 0.46 0.64 
TA (n=30) 0.44 0.66 

 
 
Figure 2-14.  Analysis of minutiae and ridgelines distributions across all fingerprint pattern 
types, separated by position above and below the core, in the northern and southern 
hemispheres of fingerprint space, respectively. 
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Figure 2-15. Box plots showing distribution of convex hull area (mm2) across all pattern 
types.  Refer to Table 2-4 for related data summary (note: tented arches did not occur on 
thumbs in dataset).
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df SSE MSE F value p-value
Pattern Type 5 0.0921 0.018425 14.8 0.0000000000000417

R id l 1194 1 4867 0 001245

ANOVA: Total minutiae density (no./mm2) over convex hull 
area separated by pattern type

Pattern Type

Arch LSL RSL T.arch Dbl loop Whorl
Arch NA 0.0015032 0.0669361 0.0391189 0.0000092 0.0000000
LSL 0.0015032 NA 0.2955132 0.9999392 0.1971476 0.0000090

Residuals 1194 1.4867 0.001245

P-values: α=0.05

RSL 0.0669361 0.2955132 NA 0.9212220 0.0011341 0.0000000
T.arch 0.0391189 0.9999392 0.9212220 NA 0.5482928 0.0172091

Dbl loop 0.0000092 0.1971476 0.0011341 0.5482928 NA 0.3276075
Whorl 0.0000000 0.0000090 0.0000000 0.0172091 0.3276075 N/A

Figure 2-16. Box plots showing distribution of total minutiae density per convex hull 
( 2) A l i f i (ANOVA) i darea (no. per mm2).  Analysis of variance (ANOVA) across pattern types are summarized 

below. Refer to Table 2-4 for related data summary.
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ANOVA: Total minutiae density (no./mm2) over detailed hull area 
separated by pattern type

Arch LSL RSL T.Arch Dbl loop Whorl
Arch NA 0.0144153 0.0855195 0.0041448 0.0003037 0.0000000

P-values: α=0.05

Pattern Type 5 0.290 0.05807 15.04 0.0000000000000242
Residuals 1194 4.611 0.00386

LSL 0.0144153 NA 0.8829769 0.7303483 0.3259980 0.0000000
RSL 0.0855195 0.8829769 NA 0.3359697 0.0456987 0.0000000

T.arch 0.0041448 0.7303483 0.3359697 NA 1.0000000 0.1954212
Dbl loop 0.0003037 0.3259980 0.0456987 1.0000000 NA 0.0186161
Whorl 0.0000000 0.000000 0.0000000 0.1954212 0.0186161 NA

Figure 2 17 Box plots showing distribution of minutiae density per detailed hull areaFigure 2-17. Box plots showing distribution of minutiae density per detailed hull area 
(no. per mm2).  Analysis of variance (ANOVA) across pattern types are summarized 
below. Refer to Table 2-5 for related data summary.
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Fig re 2 18 Bo plots sho ing distrib tion of con e h ll a ial ratios across all patternFigure 2-18. Box plots showing distribution of convex hull axial ratios across all pattern 
types examined in this study.  Refer to Table 2-6 for related data summary and to Figure 
2-7B for diagrammatic illustration of axial dimensions used to measure hull geometry (L = 
longitudinal axis length in mm; T = transverse axis length in mm) (note: tented arches did 
not occur on thumbs in dataset). 
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Longitudinal-Transverse Ratio by Pattern Type
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ANOVA: Longitudinal/Transverse axis ratio by pattern type

Pattern Type

A LSL RSL TA DLW W
0.6

df SSE MSE F value p-value
Pattern Type 5 0.096 0.01923 1.075 0.373
Residuals 1194 21.360 0.01789

ANOVA: Longitudinal/Transverse axis ratio by pattern type

Figure 2-19. Box plots showing distribution of convex hull axial ratios.  Analysis of 
variance (ANOVA) across pattern types are summarized below.  Refer to Table 2-6 for 
related data summary and to Figure 2-7B for diagrammatic illustration of axial 
di i d t h ll tdimensions used to measure hull geometry. 
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North-South Axis Ratio by Finger and Pattern Type
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DLW-Index
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W-Index

W-Thumb
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ANOVA N th/S th i ti b tt t

Arch:I LSL:I RSL:I T.Arch:I Dbl loop:I Whorl:I Arch:T LSL:T RSL:T T.Arch:T Dbl loop:T Whorl:T 

df SSE MSE F value p-value
Pattern Type 5 6.08 1.217 4.708 0.000291
Finger 1 7.74 7.739 29.951 0.000000054
Pattern Type*Finger 4 1.64 0.410 1.586 0.175578
Residuals 1189 307.23 0.258

ANOVA: North/South axis ratio by pattern type

Arch:I NA 0.8835113 0.9973559 0.8192346 0.1758699 0.4679175 0.9499467 0.9967518 1 NA 0.9999969 0.9459585

LSL:I 0.8835113 NA 0.9971687 0.9999987 0.7483235 0.9951065 0.2038209 0.0005255 0.098428 NA 0.8545904 1

RSL:I 0.9973559 0.9971687 NA 0.9863364 0.3084518 0.6751565 0.4644285 0.0435598 0.7182466 NA 0.999867 0.9998494

T.Arch:I 0.8192346 0.9999987 0.9863364 NA 0.9764705 1 0.1710767 0.0087225 0.2034831 NA 0.8296569 0.9999895

Dbl loop:I 0.1758699 0.7483235 0.3084518 0.9764705 NA 0.9920498 0.0199723 0.0001542 0.0070114 NA 0.1104891 0.7302978

Whorl:I 0.4679175 0.9951065 0.6751565 1 0.9920498 NA 0.0666095 9.70E-06 0.0051905 NA 0.2525371 0.9921769

A h T 0 9499467 0 2038209 0 4644285 0 1710767 0 0199723 0 0666095 NA 0 9982791 0 9426147 NA 0 7121668 0 2700999Arch:T 0.9499467 0.2038209 0.4644285 0.1710767 0.0199723 0.0666095 NA 0.9982791 0.9426147 NA 0.7121668 0.2700999

LSL:T 0.9967518 0.0005255 0.0435598 0.0087225 0.0001542 9.70E-06 0.9982791 NA 0.9795118 NA 0.4150379 0.0078023

RSL:T 1 0.098428 0.7182466 0.2034831 0.0070114 0.0051905 0.9426147 0.9795118 NA NA 0.9934509 0.3030109

T.Arch:T NA NA NA NA NA NA NA NA NA NA NA NA

Dbl loop:T 0.9999969 0.8545904 0.999867 0.8296569 0.1104891 0.2525371 0.7121668 0.4150379 0.9934509 NA NA 0.9624923

Whorl:T 0.9459585 1 0.9998494 0.9999895 0.7302978 0.9921769 0.2700999 0.0078023 0.3030109 NA 0.9624923 NA

Figure 2-20. Box plots showing distribution of convex hull, north/south axial ratios.  g p g ,
Two-way analysis of variance (ANOVA) by finger and across print types are 
summarized below.  Refer to Table 2-6 for related data summary and to Figure 2-7B for 
diagrammatic illustration of axial dimensions used to measure hull geometry. 
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Ratio of Thiessen Polygon Areas by Pattern Type
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df SSE MSE F value p-value
Pattern Type 5 48.6 9.717 7.359 0.000000833

ANOVA: Thiessen polygon ratio by pattern type

Pattern Type

Arch LSL RSL T.arch Dbl loop Whorl
Arch NA 0 5252503 0 1539685 0 990632 0 0005655 0 0046764

P-values: Thiessen Polygon ratio: α=0.05

Residuals 1194 1576.6 1.320

Arch NA 0.5252503 0.1539685 0.990632 0.0005655 0.0046764
LSL 0.5252503 NA 0.7588360 0.906176 0.0003792 0.0068614
RSL 0.1539685 0.7588360 NA 0.466062 0.0301573 0.2614357

T.arch 0.990632 0.906176 0.466062 NA 0.003369 0.0252534
Dbl loop 0.0005655 0.0003792 0.0301573 0.003369 NA 0.8945737
Whorl 0.0046764 0.0068614 0.2614357 0.025254 0.8945737 NA

Figure 2-21. Box plots showing distribution of Thiessen polygon area ratios of ridge 
endings to bifurcations. Analysis of variance (ANOVA) across pattern types are 
summarized below. Refer to Table 2-7 for related data summary and Figure 2-7C for 
diagrammatic illustration of Thiessen polygon geometry.
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TABLES 

Table 2-1.  Summary of analytical methods developed for GIS-based fingerprint analysis 

100 - Data Collection 
Methods 

200 - Pattern 
Characterization Methods 

300 – Statistical/Probability 
Methods 

Image Database Entry 
Dart Board Min-Point 

Frequency-Density Quadrat Minutiae Azimuth Frequency
Histograms 

Core-to-Minutia 
Point-to-Point Digitization 

Delta-to-Minutia 
Point-to-Point Digitization 

Thiessen Polygons I 
(Clipped to Hull) 

Minutia-to-Minutia 
Point-to-Point Digitization I 

(w/o Core + Delta) 

Thiessen Polygons II 
(Dissolved by Min-Type) 

Minutiae Azimuth Frequency
Rose Diagrams 

Minutia-to-Minutia 
Point-to-Point Digitization II 

 (with Core + Delta) 
TIN Polygons 

Radar Plot 
Minutiae Positions 

(azimuth vs. dist. from core) 

Ridge Counts 
Min-Point Frequency 

Density Quadrat (2 mm Grid) 

Nearest Neighbor Analysis 

Ridgeline Skeletonization 
Principle Components 

Analysis (PCA) Core-Only Point Layer 

Ridge Line Frequency Density 
Quadrat  (2 mm Grid) 

Delta-Only Point Layer 

Convex & Detailed Hull 
Bounding Polygons 

Generalized Procrustes 
Analysis (GPA) 

Axis Layer 
(Longitudinal/Transverse) 

Ridge Line Frequency Density 
TIN-Based & Thiessen 

Polygon-Based Thin-Plate Spline (TPS) 
Deformation Modeling 

Minutiae Buffers 

Coded Ridgelines 
Superimposition Landmark/Semilandmark 

Designation 
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Table 2-2.  Census summary of fingers and pattern types analyzed 

Frequency of Pattern Type by Finger and Hand 

FINGER 
Left 
Slant 
Loops 

Right 
Slant 
Loops 

Double 
Loop 

Whorls 
Whorls Arches Tented 

Arches TOTAL 

Left Index  125 45 28 58 18 30 304 

Right Index  48 110 15 78 21 36 308 

Left Thumb  173 2 66 41 9 0 291 

Right Thumb  2 152 63 74 6 0 297 

TOTAL  349 309 171 251 54 66 1200 

HAND 
Left 
Slant 
Loops 

Right 
Slant 
Loops 

Double 
Loop 

Whorls 
Whorls Arches Tented 

Arches TOTAL 

Left Hand  298 47 94 99 27 30 595 

Right Hand  50 262 78 152 27 36 605 

Western Oregon University, Division of Natural Sciences and Mathematics
Taylor et al. - Application of Latent Print Comparison Probabilities 58

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



 
 
 
 
 

Table 2-4.  Summary of Minutiae Type and Convex Hull Area for Left Slant Loops (LSL), Right Slant 
Loops (RSL), Whorls (W), Double Loop Whorls (DLW), Arches (A) and Tented Arches (TA) 

Pattern 
type 

No. of 
Images 

No. 
Bifurcations 

(B) 

No. 
Ridge 

Endings 
(RE) 

Ratio of 
B:RE 

Total 
No. 

Minutiae

Convex Hull 
Area           

(mm2) 

Avg. Minutiae 
Density/Convex Hull    
(no./mm2 hull area) 

Avg. Stdev. B RE Total 
Minutiae 

LSL 348 12701 16936 1:1.3 29637 742.62 236.93 0.05 0.07 0.11 
RSL 309 10390 14420 1:1.4 24810 739.69 232.85 0.05 0.06 0.11 
W 251 9085 13166 1:1.5 22251 698.70 230.11 0.05 0.08 0.13 

DLW 172 6812 10306 1:1.5 17118 811.64 225.85 0.05 0.07 0.12 
A 54 1843 2092 1:1.1 3935 753.63 260.93 0.05 0.05 0.10 

TA 66 2044 2259 1:1.1 4303 568.77 152.88 0.05 0.06 0.11 
Total 1200 42875 59179 1:1.4 102054 719.17 223.26 0.05 0.06 0.11 

 
 
 
 
 
 
 
 
 

Table 2-3.  Summary of minutiae types identified and processed 

Pattern Types:  Left Slant Loops (LSL), Right Slant Loops (RSL), Whorls (W), Double 
Loop Whorls (DLW), Arches (A), and Tented Arches (TA) 

Pattern 
type 

No. of 
Images 

No. 
Bifurcations (B)

No. Ridge 
Endings (RE) 

Ratio of 
B:RE 

Total No. 
Minutiae 

LSL 348 12701 16936 1:1.3 29637 
RSL 309 10390 14420 1:1.4 24810 
W 251 9085 13166 1:1.5 22251 

DLW 172 6812 10306 1:1.5 17118 
A 54 1843 2092 1:1.1 3935 

TA 66 2044 2259 1:1.1 4303 
Total 1200 42875 59179 1:1.4 102054 
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Table 2-5.  Summary of detailed hull area, minutiae density and hull shape 
factor across all pattern types. 

Pattern  
type 

Detailed Hull Area 
(mm2) 

Avg. Minutiae Density 
(no./mm2hull area) 

Avg. Shape 
Factor 

Avg. Stdev. B RE Total 
Minutiae Avg. Stdev. 

LSL 447.81 153.67 0.09 0.11 0.20 1.27 0.08 
RSL 424.78 133.90 0.09 0.11 0.20 1.27 0.08 
W 409.34 140.26 0.10 0.13 0.23 1.29 0.09 

DLW 486.82 148.03 0.08 0.13 0.21 1.28 0.09 
A 434.39 157.74 0.08 0.09 0.17 1.28 0.09 

TA 328.16 92.28 0.10 0.11 0.21 1.28 0.08 
Shape Factor = perimeter/(2 x√(π x area)) 

Table 2-6.  Summary of convex hull dimensions across all pattern types.  Refer to Figure 2-7B for 
diagrammatic illustration of axial dimension used to measure hull geometry. 

Pattern 
Type 

Longitudinal 
Axis Length 

(mm) 

Transverse 
Axis Length 

(mm) 

South Axis 
Length (mm) 

L:T Axis 
Ratio 

W:E Axis 
Ratio 

S:N Axis 
Ratio 

Avg. Stdev Avg. Stdev Avg. Stdev Avg. Stdev Avg. Stdev Avg. Stdev 
LSL 28.06 4.58 27.47 4.97 14.69 2.62 1.03 0.14 0.98 0.24 1.20 0.49 
RSL 27.94 4.71 27.50 4.77 14.83 2.61 1.02 0.12 1.02 0.26 1.21 0.44 
W 27.19 4.76 26.54 4.87 15.18 2.87 1.04 0.14 1.04 0.26 1.36 0.46 

DLW 29.18 4.64 29.17 4.37 15.74 2.96 1.01 0.14 1.00 0.24 1.31 0.62 
A 28.10 4.52 28.01 5.56 14.51 2.29 1.02 0.14 1.16 0.41 1.14 0.34 

TA 24.63 3.54 23.72 3.64 13.54 1.80 1.05 0.12 1.04 0.35 1.37 0.76 
Avg. 
Total 27.52  27.07  14.75  1.03  1.04  1.27  
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Table 2-7.  Summary of Thiessen polygon area by pattern types and by minutiae type.  

Refer to Figure 2-7C for diagrammatic illustration of Thiessen polygon geometry 

Pattern 
type 

Thiessen Polygons 
Bifurcation Area   

(mm2) 

Thiessen 
Polygons  

Ridge Ending 
Area (mm2) 

Thiessen 
Polygons 

Core Area       
(mm2) 

Thiessen Polygons 
Delta Area    (mm2) 

Avg. Stdev. Avg. Stdev. Avg. Stdev. Avg. Stdev. 
LSL 8.39 7.08 8.63 7.15 3.41 3.08 2.80 4.28 
RSL 8.64 7.87 9.14 7.80 4.18 3.84 3.50 4.28 
W 7.27 6.70 7.94 6.78 3.38 2.67 3.40 4.64 

DLW 7.53 6.93 8.20 7.28 3.35 2.52 3.98 5.63 
A 9.94 8.50 10.15 8.06 6.64 4.42 N/A N/A 

TA 8.31 7.10 8.68 7.18 3.46 3.43 N/A N/A 
Average 8.35 7.36 8.79 7.38 4.07 3.33 3.42 4.71 
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CHAPTER 3 – GEOMETRIC MORPHOMETRIC ANALYSES 

1.  INTRODUCTION 
 

Research on the spatial relationship of fingerprint features, (e.g., minutiae and ridge lines) and 
the application of this information to automatic fingerprint identification systems have historically 
employed biometric techniques.  These methods generally involve analyzing linear geometrical 
properties of the fingerprint physical characteristics (e.g., the distances between minutiae and the 
geometric pattern formed).  While biometric techniques are an invaluable tool for exploring 
covariance among sets of geometric comparators, these techniques ignore the biomathematical 
aspects of the original measurements (Bookstein 1996).  These biomathematical aspects include 
inherent biological properties (e.g., homology and embryology) of biological features (i.e., minutiae) 
that can be represented by their spatial arrangements.  Furthermore, failure to consider these aspects 
when analyzing minutiae may exclude important spatial patterns that are dictated by underlying 
embryological and evolutionary cues.  As a biomathematical modeling method, geometric 
morphometrics utilizes biologically-based features (i.e., homologies) that are useful for 
quantitatively studying shape variation and is what distinguishes it from biometric approaches.  
Geometric morphometrics includes techniques from statistics, non-Euclidean geometry, multivariate 
biometrics and computer graphics that do not sacrifice biomathematical aspects (Bookstein 1996). 

Within the forensic science community, forensic anthropology has led the way in exploring the 
applicability of geometric morphometric techniques.  Examples include analyzing mandibular 
morphology(Franklin et al. 2007, Franklin et al. 2008) and craniofacial landmarks (Kimmerle et al. 
2008), studying frontal sinus radiography methods for making identifications (Christensen 2005), 
creating a virtual 3-D reconstruction of a fragmented cranium (Benazzi et al. 2009), and estimating 
pediatric skeletal age (Braga and Treil 2007).  However, to date, there has been very little 
exploration of the use of geometric morphometric techniques for the study of fingerprint shape 
variation.   

For this project, geometric morphometric analyses were employed to study shape variation of 
four fingerprint pattern types in an effort to ascertain the extent and degree of variation within and 
among fingerprint patterns.  These analyses were conducted utilizing GIS spatial analysis tools 
described in Chapter 2 as it minimized data manipulation and increased the overall efficiency of 
spatial analyses.  Tasks completed include: (1) establishing a methodology for conducting geometric 
morphometric analyses on fingerprints in a GIS environment in combination with Python 
programming language and R statistical software (version 2.15.0; software available from 
http://www.r-project.org/), and (2) completing an initial analysis of shape variation on four 
fingerprint patterns [(A) left slant loops (LSL), (B) right slant loops (RSL), (C) whorls (W) and (D) 
double loop whorls (DLW)] using generalized Procrustes analysis, thin plate spline and principle 
components analysis.  The resulting data were used to characterize the shape of four fingerprint 
pattern types and describe the foundational shape variation within and among these pattern types.   

 
2.  METHODS 
 
The methods developed and employed include the following steps: 
 

A.  Landmark/Semilandmark Designation and Acquisition  
B.  Generalized Procrustes Analysis (GPA)  
C.  Thin-Plate Spline (TPS) 
D.  Principle Components Analysis (PCA) 
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See (Slice 2007) for definitions and further discussion. 
 
A.  Landmark and Semilandmark Designation and Acquisition: 
 

As described in Chapter 2, fingerprint images were obtained from ten-print cards provided by the 
Oregon State Police Forensic Services Division.  All images were georeferenced in ArcGIS to 
position the core at (100, 100 mm) within Cartesian coordinate space.  Each image was vectorized 
(i.e., skeletonized) prior to analysis to clearly demarcate the ridge lines. 

Determination of landmarks (putative biological homologues) and selection of semilandmarks 
(points along a ridge line, see Figure 3-1) followed the definitions used by Zelditch et al. (2004) in 
conjunction with fingerprint features described by Wertheim (2011).  Landmarks and semilandmarks 
were designated and acquired for 30 images from each of the four pattern types (LSL, RSL, W and 
DLW).  Due to similarities between LSLs and RSLs, and Ws and DLWs, landmark and 
semilandmark designation and acquisition for each of these fingerprint pattern type pairs was 
conducted in a comparable fashion as described below. 

Features associated with the core and the delta regions were designated as 
landmarks/semilandmarks.  For loops, the core was defined as a point along the innermost ridgeline 
that forms the first full loop where the tangential angle most closely approximates 0 degrees (i.e., 
highest point of recurve).  For whorls, the core was defined as the ridge ending or “bulls-eye” at the 
center of the whorls.  All cores were georeferenced at 100, 100 mm in Cartesian coordinate space.  
The delta region was defined according to Kücken and Newell (2005) as a triradius consisting of 
three ridge systems converging with each other at an angle of roughly 120 degrees.  A scalable 
equilateral triangle was utilized for placement of the delta.  One operator placed all the delta-
defining triangles in a manner that best reflected the flow of each of the ridge systems while keeping 
each defining triangle as small as possible.  Quality control measures included visual inspection of 
the placement of each delta-defining triangle and 100% consensus among project staff.  Three 
landmarks were then derived from the vertices of the equilateral triangle that approximated the delta 
region (Figure 3-2). 

Four landmarks and nineteen semilandmarks were chosen for LSL and RSL pattern types.  The 
four landmarks included the core and the three landmarks derived from vertices of the equilateral 
triangle that approximated the delta region (Figure 3-1).  Following designation of the core 
landmark, a radial line template composed of seven lines separated by 18 degree increments was 
drawn such that all segments radiated distally from the core.  Seven semilandmarks were calculated 
at points of intersection between the radial line template and the first continuous ridgeline distal to 
the core (Figure 3-2A; Points 1-7).  Two reference lines were drawn; a vertical reference line from 
the core X-coordinate to the distal interphalangeal crease and a horizontal reference line from the Y-
coordinate of the lowermost delta vertex to the vertical reference line (Figure 3-2A).  Ten equidistant 
horizontal lines were then drawn perpendicular to the vertical reference line extending from the core 
landmark to where it intersected with the delta reference vertex (six lines are shown).  The points of 
intersection between the uppermost six horizontal lines and the innermost loop ridgeline (i.e., the 
core ridgeline) yielded 11 semilandmarks; six semilandmarks were designated along the core 
ridgeline distal to the delta (semilandmarks 9-14), and five were designated along the ridgeline 
proximal to the delta (semilandmarks 15-19).  The final semilandmark (23) was designated at the 
point of intersection between the X-coordinate of the core landmark and the distal interphalangeal 
crease of the finger.  The crease line geometry was derived from the convex hull fingerprint polygon 
(Figure 3-2A). 
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Six landmarks and fourteen semilandmarks were chosen for whorl and double loop whorl pattern 
types.  The six landmarks were derived from the three vertices of the two equilateral triangles that 
approximated each delta region (Figure 3-2B, landmarks 14-19).  Following the establishment of the 
core reference point, a radial line template composed of thirteen lines separated by nine degree 
increments was drawn such that all segments radiated distally from the core.  Thirteen 
semilandmarks were calculated at points of intersection between the radial line template and the first 
continuous ridgeline distal to the core (Figure 3-2B, semilandmarks 1-13).  The final semilandmark 
was calculated at the point of intersection between the X coordinate value of the core reference point 
and the distal interphalangeal crease of the finger (Figure 2-3B, semilandmark 20).  The crease line 
geometry was derived from the convex hull fingerprint polygon (Figure 3-2B). 

After defining landmarks and semilandmarks, a GIS automated extraction procedure was 
developed and employed for recording semilandmark data for all 120 fingerprint images.  All 
landmarks and semilandmarks were captured as vector point files that corresponded to a single 
fingerprint image.  The extraction procedure resulted in four vector files for loop patterns and three 
vector files for whorl patterns that were derived from individual fingerprint features.  For loop 
pattern types, the four vector files included the single, uninterrupted, edge-to-edge ridgeline 
proximal to the core, the innermost recurving ridge from the fingerprint core, an equilateral triangle 
that best approximated the delta region triradii ridgeline convergence formations, and a convex hull 
polygon that bounded the margins of a cropped fingerprint image (Figure 3-2A).  For whorl pattern 
types, the three vector files included the single, uninterrupted, edge-to-edge ridgeline proximal to the 
core, two equilateral triangles that best approximated the delta regions’ triradii ridgeline convergence 
formations, and a convex hull polygon that bounded the margins of a cropped fingerprint image 
(Figure 3-2B). 
 
B. Generalized Procrusted Analysis (GPA): 
 

Using a custom ArcGIS tool, landmark and semilandmark coordinates were superimposed into a 
common coordinate system that preserved shape variables in order to conduct statistical analyses.  
This involved formatting X-Y coordinate values from landmark and semilandmark point files as 
numeric arrays, calculating Procrustes mean shape values and registering landmark and 
semilandmark coordinates using geometric transformations (i.e., translation, rotation, and scaling).  
Procrustes mean shape values were generated using the “procGPA” function in the ‘shapes’ package 
(Dryden and Mardia 1998; Dryden 2012) for R (version 2.15.0). This analysis included the 
superimposition of all landmarks and semilandmarks for LSLs and RSLs and all Ws and DLWs, 
respectively, in order to show inter-class variance between each pair of fingerprint pattern types that 
are most similar one another.  This analysis was based on a total of 60 fingerprint images per each 
pattern type pair. 
 
C. Thin-Plate Spline (TPS): 
 

The Procrustes mean shape values were analyzed using the “tpsgrid” function of the ’shapes’ 
package (Dryden and Mardia 1998; Dryden 2012) for R (version 2.15.0) to produce thin-plate spline 
(TPS) deformation grids.  TPS deformation grids were used to provide a maximally smooth (i.e., 
minimally bent) interpolation of the inter-landmark space and to provide an exact mapping of the 
group landmark and semilandmark means of one fingerprint pattern type superimposed onto another.  
TPS analysis included comparison of LSL to RSL fingerprint mean shape values and W to DLW 
fingerprint mean shape values. 
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D. Principle Component Analysis (PCA): 
 

Principle component analysis (PCA) computations were made to provide a reduced set of values 
that summarize the significantly larger original data set for each fingerprint pattern type.  Each 
component “captured” a percentage of the total variation based on the distribution of these data in 
coordinate space.  The direction of relative displacement, if any, for each of these landmarks was 
also determined.  The X-Y coordinates of the landmarks and semilandmarks for 30 LSL, RSL, W, 
and DLW pattern types were formatted into numeric arrays and input into R (version 2.15.0) using 
the “shapepca” function of the ‘shapes’ package (Dryden and Mardia 1998; Dryden 2012).  The 
“shapepca” function calculates principle components based on the data from the arrays.  Each 
component “captured” a percentage of the total variation based on the distribution of these data in 
coordinate space.  The first three PC scores explained approximately 80% of the variability in the 
sample.  In addition, thin-plate splines were generated for each PC value used in the analysis to show 
deformation of shape associated with each PC. 
 
3.  RESULTS AND CONCLUSIONS 
 
Generalized Procrustes Analysis (GPA):  

 
A generalized Procrustes analysis was performed to evaluate overall pattern type shape and the 

variation of shape within each pattern type.  A Procrustes analysis normalizes size and rotational 
effects to produce a graph that projects only shape.  The landmarks and semilandmarks for 30 LSLs 
and 30 Ws were plotted and the mean shape calculated.  Figure 3-3 demonstrates the variability in 
distribution for the landmarks and semilandmarks for all 30 prints with the dark triangles 
representing the mean of each feature’s location.   

For left slant loops, each of the semilandmarks demarking the innermost core ridge line were 
tightly clustered around their respective mean shape indicating little shape variation along this entire 
ridge line.  In other words, the innermost core ridgeline is similarly shaped for all 30 LSL.  Likewise, 
the semilandmarks representing the continuous ridge line were also closely clustered around their 
respective means.  However, there was greater dispersion of the delta landmarks and the 
interphalangeal crease semilandmark indicating greater shape variation for these regions.   

Results were similar for whorls.  The continuous ridge line semilandmarks were clustered around 
their calculated means indicating minimal shape variation for this entire ridge line.  However, delta 
landmarks and interphalangeal crease semilandmarks showed more dispersion indicating greater 
shape variation in these regions. 

To visualize the native distribution and location of all landmarks and semilandmarks for loop and 
whorl pattern types, the landmarks and semilandmarks for 30 LSLs and RSLs, and 30 Ws and 
DLWs, respectively, were superimposed in Cartesian coordinate space with all cores positioned at 
100, 100 mm (Figure 3-4).  This figure shows the variation in distribution of landmarks and 
semilandmarks within each of the paired fingerprint pattern types (i.e., LSLs-RSLs and Ws-DLWs).  
Landmark and semilandmark positions along the continuous ridge line were more dispersed than 
they were in the GPA.  This difference is due to variation in the size and possible rotational effects 
of each of the original fingerprint images in coordinate space.  These data will be useful for 
establishing the shape variance within pattern type as well as among pattern types and could be 
utilized to investigate both native finger deformation and depositional fingerprint distortion. 
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Thin-Plate Spline (TPS) 
 

GPA calculated mean shape values for LSLs (Figure 3-5A) and RSLs (Figure 3-5C) were 
superimposed on each other (Figure 3-5 B and D).  The deformation in the TPS grid (Figure 3-3B 
and D) shows the positional differences between the distribution of those landmark and 
semilandmark means as projected in 3-dimensional space.  The greater the deformation in any given 
area of the grid, the more shape variation there is between the two pattern types in those particular 
regions.  These results indicate a very high degree of shape consistency between left and right slant 
loops with the greatest degree of shape variation in the delta region.  The same TPS analytical 
procedure was performed on Ws superimposed on DLWs to evaluate shape variation between those 
two pattern types (Figure 3-6).  The greatest degree of shape variation was likewise found in the two 
delta regions (Figure 3-6 B and D). 
 
Principle Components Analysis (PCA) 
 

A principle components analysis (PCA) was performed on all landmarks and semilandmarks as 
distributed in the original fingerprints.  Calculations were then executed to reduce the total of each of 
these landmarks and semilandmarks across all fingerprints to a single set and to summarize the 
degree of shape variation for each landmark/semilandmark in each pattern type.  The first three 
principle components (PC) scores for LSL, RSL, W, and DLW fingerprint pattern types were 
graphed (Figures 3-7, 3-8, 3-9, 3-10 respectively).  These graphs represent a reduction of the total 
number of landmarks and semilandmarks from 690 points to 23 for LSL and RSL patterns and 600 
points to 20 for W and DLW patterns.  The direction of relative displacement, if any, for each of 
these landmarks and semilandmarks was indicated by a vector line (Figures 3-7 through 3-10 graphs 
A-C).  In addition, the degree of variation for each PC was indicated by the amount of deformation 
in the corresponding deformation grid (Figures 3-7 through 3-10 grids D-F).  The direction of 
variation is consistent between loop patterns in the first PC with approximately 43% and 37% of the 
shape variation being accounted for left and right slant loops, respectively.  While variation is 
consistent in the following two PCs, the direction of the variation is different for left and right slant 
loops (Figures 3-7 and 3-8).  The greatest amount of shape variation occurs in the delta regions.  
This can be seen for all three PCs (Figures 3-7 and 3-8).  The extent and pattern of variation is also 
similar for Ws and DLWs (Figures 3-9 and 3-10) with the greatest degree of shape variation 
occurring in the delta regions. 
 
4.  SUMMARY 

 
Utilizing geometric morphometrics, in conjunction with a GIS, represents a novel approach for 

evaluating and quantifying spatial relationships among friction ridgeline features (i.e., minutiae).  
The impacts of this work include an increase in forensic science knowledge and understanding of the 
spatial patterns of friction skin minutiae.  Additionally, there will be direct implications for 
quantifying another element of potential variance associated with estimating probabilities for 
describing the discriminating value of fingerprint features, especially when the probabilities are 
based on ten-print standards.  This is the first empirical study that quantifies fingerprint shape 
variation utilizing geometric morphometric methods for latent print comparison purposes, which in 
turn, could have implications for the latent print comparison process and practice. 
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Fi 3 1 L d k ( ) D i i d S il d k ( ) S l i fFigure 3-1.  Landmark (  ) Determination and Semilandmark (  ) Selection for 
Loop (A) and Whorl (B) Pattern Types
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Figure 3-4. Landmarks and semilandmarks mapped in Cartesian coordinate space
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Right Slant Loop mean shape (B) superimposed on Left Slant Loop mean shape (A)
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Figure 3-5.  Thin plate spline deformation modeling of left slant loops and right 
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Double Loop Whorl mean shape (B) superimposed on Whorl mean shape (A)
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Figure 3-6.  Thin plate spline deformation modeling of whorls and double loop 
whorls
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Figure 3-7. Principal component analysis and deformation modeling for left slant 
loops

Western Oregon University, Division of Natural Sciences and Mathematics
Taylor et al. - Application of Latent Print Comparison Probabilities 74

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



PC 1: 
36.5%

PC 2: 
33%

A. B.

33%

PC 3: 
17 5%

D.C.

17.5%

Figure 3-8. Principal component analysis and deformation modeling for Right
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Figure 3 8. Principal component analysis and deformation modeling for Right 
Slant Loops
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Figure 3-9. Principal component analysis and deformation modeling for whorls
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Figure 3-10. Principal component analysis and deformation modeling for double 
loop whorls 
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CHAPTER 4 – FALSE-MATCH PROBABILITIES AND MONTE CARLO 
ANALYSES 

1.  INTRODUCTION 
 

The Monte Carlo (MC) method  is a computer algorithm used to repeatedly resample data from a 
given population to make inferences about stochastic processes.  The Monte Carlo method is one of 
the optimal ways to quantify rare events, events that occur with a very low probability.  Because of 
the rare nature of these events, it is extremely difficult to evaluate them using typical analytical 
means.  The goal of a MC simulation is to produce an expected result, E(X), where X is a random 
variable.  The Monte Carlo simulation creates n independent samples of X, and as n increases 
towards infinity, the average of the n independent samples ) asymptotes towards µ 
(Rubinstein and Kroese 2007), thus producing a very large number of independent samples which 
allows for the detection and quantification of rare events and for the estimation of the probability of 
occurrence. 

The MC method has been used in a variety of fields to analyze rare events.  Lin and Wen (2010) 
used MC simulations, specifically Markov Chain Monte Carlo simulations, in the analysis of natural 
disasters.  They studied the occurrence of large debris flows such as landslides and floods, to help 
determine the placement of villages to reduce the destruction caused by these phenomena.  The MC 
simulations were used to determine where disastrous debris flows would most likely occur, and help 
plan where villages would be built in areas of China.  In community ecology, MC methods have 
been employed to study the robustness of species diversity indices (Ricklefs and Lau 1980; Manly 
2006).  In addition, it is commonly used in the estimation of phylogenies when studying evolution 
(Bouchard-CôTé et al. 2012).  The MC method has also been used to study the frequency in which 
airplanes pass within close proximity to each other (Paielli and Erzberger 1996).  The authors used 
the probabilities created by the MC method to make inferences and suggestions on how to reduce the 
possibility of close proximity flights.  While this is not an exhaustive review, it demonstrates that 
this statistical method has been used in a wide variety of disciplines to make inferences about 
phenomena that are either rare or difficult to analytically quantify.   

With the publication of the National Academy of Science report (2009) and court cases such as 
Daubert vs. Merrell Dow Pharmaceuticals (1993), there has been an increased awareness of the 
need to evaluate forensic methods through scientific means.  A fundamental area related to 
fingerprint identification is the probabilities associated with random correspondence between regions 
of a fingerprint.  For the last century, Latent Print Examiners have emphatically affirmed or provided 
testimony that fingerprints are unique with no two fingers, on the same individual or on different 
individuals, including identical twins, possessing the same fingerprint features. This has been 
affirmed qualitatively as no two fingerprints have been identified as being indistinguishable.  
Moreover, numerous arguments have been presented in the literature that fingerprints are unique 
(Ashbaugh 1994, 1999; Wertheim 2011; Langenburg 2011).  While there is a strong biological basis 
for stating fingerprints are unique due to genetic and epigenetic factors that play a role in fingerprint 
development, statistically there is always a minute chance that an exact replica of any given 
fingerprint could exist somewhere in the world.   

For forensic science, the premise that an entire fingerprint is unique is not in question.   
However, when a latent print examiner receives a latent print for comparison to a standard, the entire 
fingerprint is rarely available.  Most latent prints are typically only a portion of the entire fingerprint. 
Consequently, the question is not whether an entire fingerprint is identical to another fingerprint, but 
rather, what is the likelihood or probability that a similar set of minutiae from a specific region of 
any given fingerprint exists in the world?  That is, do regions differ in their similarity? 
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Several authors have calculated probabilities of random correspondence, or random match 
probabilities, in an attempt to quantify the discriminating features of a fingerprint (Champod and 
Margot 1996, Pankanti et al. 2002, Dass et al. 2005, Chen and Jain 2009, Dass and Li 2009).  Many 
of these studies have been conducted employing a theoretical statistical approach in which the 
authors use underlying probability distributions, such as a Poisson distribution, Gaussian 
distribution, or von Mises distribution, to perform their analysis (Champod and Margot 1996, 
Pankanti et al. 2002; Dass et al. 2005; Dass and Li 2009; Su and Srihari 2009).  Furthermore, many 
of these studies were performed in relation to matching algorithms for biometric systems (Sujan and 
Mulqueen 2002; Parziale and Niel 2004; Tan and Bhanu 2006), but were not employed to 
understand the foundational probabilities of fingerprint features having similar patterns.  There have 
been a few studies focused exclusively on random match probability generation for use in the 
forensic lab such as Neumann et al. (2006, 2007), who produced likelihood ratios for a random 
match of both 3 minutiae and any number of minutiae.  For a review of proposed fingerprint 
individuality statistical models from 1892 to 2001, see Langenburg (2011). 

Statistical techniques that have not been explored in relation to evaluating the spatial distribution 
of fingerprint features are re-sampling techniques such as Monte Carlo simulations or Bootstrapping.  
Bootstrapping is considered to be a type of the Monte Carlo method and is a computer algorithm 
used to repeatedly re-sample data from a given population to make inferences about stochastic 
processes (Gotelli and Ellison 2004; Manly 2006; Rubinstein and Kroese 2007).  Re-sampling 
techniques, or randomization tests, provide a relatively straight forward empirical approach for 
producing random correspondence probabilities of minutiae from non-progenitor fingerprints.  These 
methods allow for the random sampling of a set of minutiae in any spatial distribution from a given 
pool of minutiae.  The resultant minutiae sets are then used as sampling units to compare across a 
large sample of fingerprints.  In addition, the technique makes no assumptions about underlying 
distributions associated with the data.  Because this procedure is performed thousands of times, a 
sampling distribution of non-progenitor matches can be obtained (i.e., probability of a false match). 

 
Any minutiae, m i , can be defined as 

  
   (eq 1) 

 
Where x is its location on the x axis, y is its location on the y axis, θ is the angular direction in 

degrees, and T is a categorical variable representing the minutiae type. Any fingerprint Fj is then a 
sample space of all minutiae present: 

 
  (eq 2) 

 
Where n is the total number of minutiae on a fingerprint with each minutia defined by the 

equation above. Each fingerprint is then defined by its sample set of minutiae with each minutia 
defined by equation 1.  In latent print comparisons, a subset of the entire sample set is usually 
available for the comparison. This is typically because only a subset of the entire sample space is 
available or identifiable, and in the case of latent print comparisons, a “target” group of well-defined 
minutiae is often used.   The sample used for comparison can be defined as: 
 

  (eq 3) 
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Where o is the total number of observable minutiae within the subsample.  These observable 
minutiae create a specific spatial configuration within a given region of the finger.  Employing a 
randomization technique allows for the exploration of the occurrence of minutiae spatial patterns 
across fingerprints through purely empirical means without having to invoke assumptions related to 
the underlying probability distributions. The large number of sampling iterations allows for creation 
of an empirical probability distribution that is an estimate of the true probability distribution.  The 
greater the number of iterations, the closer the empirical distribution is to the true distribution 
(Rubinstein and Kroese 2007).  Following Rubinstein and Kroese (2007), the expected value, E(X), 
can be obtained, where 

 
  (eq 4) 

 
Where  , are a series of independent samples drawn from the sample space, and B is the 

total number of samples taken and  is a function to which the sample is applied.  Minutiae 
within a fingerprint are not assumed to be independent.  However, the sampling unit used in a 
randomization technique is not the single minutia but the set of minutiae that are randomly selected. 
Because the minutiae used in the first sample are returned to the pool prior to the next iteration, 
every possible minutiae set has an equal chance of being drawn for every iteration.  Thus, the 
sampling unit for any given iteration is independent of the previous sampling unit or any subsequent 
iteration. 
 The purpose of this study was to apply boot strapping techniques to create probabilities of 
random correspondence, and to explore how these probabilities change across the landscape of the 
fingerprint.  The probabilities were produced using a sample set from the Oregon population and the 
statistical method employed a naïve Monte Carlo, meaning no assumptions are built into the 
simulations.  Thus, this is an empirical, “brute force” approach to estimate probabilities which 
describe fingerprint similarities.  The MC method produces probabilities associated with the spatial 
patterns of fingerprint minutiae attributes.  These foundational probabilities quantify the 
discriminating power of fingerprint ridgeline features and as such, can be employed during the 
comparison process to qualify the comparison conclusions. 
 
2.  METHODS 
 
 Fingerprints used in this study were acquired from ten-print cards obtained from the Oregon 
State Police using the techniques described in Chapter 2.  Fingerprint attributes were stored in a geo-
database from which the Monte Carlo data were queried.  The Monte Carlo simulations were built 
using a combination of Python, R, and SQL languages implemented through a GIS interface that 
allowed for the execution of customized scripts written in these languages.  The use of a Geographic 
Information System (GIS) allows for the placement of all fingerprints and attribute data into a 
common coordinate space.  GIS readily allows for the subdivision of a finger into regions within 
which the exploration of similar minutiae sets may be explored.  In addition, all data associated with 
a minutia are available within the GIS geo-database which allows for an examination of how 
different attributes such as direction and minutiae type affect the chance of a random match. 

The function  is an algorithm that uses the sample  in order to produce fingerprints with 
similar patterns.  For the current study, the algorithm is a series of queries to a database, and thus is 
not a mathematical function.  The samples themselves are not of interest, per se, but the number of 
times the sample occurs on fingerprints that are not the progenitor is.  Therefore, for each sample; 
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Because  is an integer, a simplification of the equation above is: 

 
    (eq 5) 

Because the algorithm is searching a database with a finite population, there must be a limiting 
factor applied to the expected value  to limit the scope of the probability produced.  The 
database size may be altered based on the type of query performed, and whether the value of interest 
changes when the analysis is performed on the entire fingerprint suite or if it is limited to within 
pattern type.  Since the database size will change based on which run is performed, the database size 
is added to the denominator to normalize the outcome.  Equation 4 becomes, 

 
   (eq 6) 

 
where d is the population size within the database to which the comparisons are made.  The 
probability of a non-progenitor fingerprint having a similar pattern to any given minutia set is quite 
small, and it can be assumed that any finger chosen at random will most likely not produce any 
minutiae sets that will match another finger even when a large number of samples are drawn from 
the finger. Therefore, k fingerprints need to be used as independent replicates in order to produce an 

>0, where k>1.  Equation 7 becomes, 
 

      (eq 7) 
 

where k is the total number of fingerprints used, and j is an index of the fingerprint from which the 
minutia sets are drawn, and xij is the number of fingerprints with the same minutiae configuration for 
a given iteration 

Eight Monte Carlo simulations were performed with variable attribute criteria added 
systematically to the simulation run (Table 4-1).  This allows for the assessment of how each 
attribute (i.e., the database information used to describe the minutiae characteristics) affects the 
probability of a false match.  The simulations were designed to test the random match probability 
expected value of specific regions of a fingerprint.  A moving filter was designed by constructing a 
sampling grid comprised of nine mutually overlapping cells in a 3 x 3 matrix (Figure 4-1).  Within 
each grid cell, the total minutiae were counted and from this set of minutiae, sets of three, five, seven 
or nine minutiae were selected.   

Minutia sets were randomly drawn from each grid cell, without replacement, that included either 
three, five, seven or nine minutiae per run, using a combination of the minutia X-Y coordinate 
location, pattern type (left slant loops, right slant loops, whorls, double loop whorls, arches, tented 
arches), minutiae type (i.e., bifurcations or ridge endings) and minutiae direction.  For four of the 
pattern types (i.e., left slant loops, right slant loops, whorls and double loop whorls), 50 randomly 
selected fingerprints were used for the minutiae draw.  Due to the limited sample size and 
occurrence, only 20 fingerprints were selected to draw from for arches and 25 for tented arches.  
These simulations were iterated 1000 times with the results output into a database environment for 
subsequent analyses.  Comparisons were performed across all pattern types or within pattern type 
depending on the Monte Carlo simulation parameters selected.  Four simulation runs, each consisting 
of a different number of minutiae selected (i.e., 3, 5, 7, or 9), were conducted within each of the nine 
sampling grid cells of the filter matrix.  This procedure was performed for all 50 prints (20 prints for 
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arches, 25 prints for tented arches) selected for a total of 50,000 iterations/grid for loops and whorls, 
20,000 for arches and 25,000 for tented arches respectively.  For loops and whorls, 1,800,000 
iterations were performed for each pattern type and for each Monte Carlo simulation.  For arches and 
tented arches 720,000 and 900,000 total iterations per Monte Carlo were performed, respectively.  
The entire set of simulations was run three times per pattern type and for each set a different group 
of fingerprints was randomly chosen, and the probabilities averaged.  Because every simulation was 
performed 1000 times, 1000 can be substituted for B in equation 7.  Thus, probabilities of a false 
match were calculated using the following equation: 

 
  (eq 8) 

 
d=number of fingerprints the minutiae set are compared to 
j=index of print from which minutiae are drawn 
i=index of iteration 
x=number of matches per iteration 
k=number of prints actually used in the simulation 

 
The variable xij is number of fingerprints with the same minutiae configuration for a given 

iteration.  While ideally, k should equal the total number of prints used in the analysis, sometimes the 
area sampled did not have a sufficient number of minutiae to actually make a draw.  For example, if 
there were only six minutiae in a grid cell, sample runs with seven or nine minutiae would not be 
possible. The variable d changes according to the number of pattern types used in the sample run.  

Minutiae are not single pixel entities.  Thus, they have an area associated with each of them that 
is in part reflected by the width of the ridge.  In addition, there is operator-introduced variability 
when a point is placed at the center of a minutia which involves the spread of pixel dimensions 
across the ridge width.  Thus, an operator could place two points on the same minutia and be off by 
nanometers, and these points would not be selected as the same entity.  In order to account for these 
sources of variability, a confidence zone or tolerance around each minutia point was estimated.  To 
account for this difference in precision, a 99.7% minutia location confidence zone was calculated.  
This measurement was based on a random sampling of 500 ridge widths from a subsample of 50 
images without regard for pattern type.  For each of the 50 images, ten points were randomly placed 
using a GIS script that restricted the placement to ridges.  The ridge width was then measured at 
these locations resulting in 10 measurements for each of the 50 images (N = 500).  Because 
independence of ridge widths within a fingerprint cannot be assumed, the mean ridge widths were 
calculated for each image (n = 10) and the resulting 50 values were in turn pooled to calculate a 
mean 0.4 mm and standard deviation 0.76 mm.  The standard error of the mean was 0.107 mm.  
Thus, each minutia has a confidence zone of ± 0.32 mm.  For the Monte Carlo simulations, two 
minutiae with overlapping confidence zones cannot be differentiated and were considered as 
occupying the same space. 

As stated in Chapter 2, Universal Latent Workstation (ULW) was used to identify minutiae by 
X-Y coordinates and provided minutia direction, θ.  These data were imported into ArcGIS and 
minutiae moved to more accurately mark their placement on the ridge line.  In addition, any minutiae 
incorrectly labeled, not labeled or falsely marked were corrected.  For those minutiae incorrectly 
labeled or falsely marked, minutia direction (i.e., theta) was entered manually.  A margin of error 
was determined for both bifurcations and ridge endings to control for operator variability in this 
manual designation of direction.  Ridge ending directions were measured along the ridge line while 
bifurcations were measured through the valley created by the bifurcation.  Fifty bifurcations and 
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ridge endings were randomly chosen from images in the database.  Theta (θ) was then measured by 
four project staff for a total of four independent measurements per minutia and a mean and standard 
deviation calculated.  The variance for each of the four measurements from the mean was calculated 
and then a mean variance calculated.  For ridge endings, the variance range was 1.5 to 38.5 degrees 
with a mean variance of 10.33 degrees and a median of 10 degrees.  For bifurcations, the variance 
range was 0 to 46 degrees with a mean and median variance of 13.51 and 11 degrees, respectively.  
For the Monte Carlo simulations that included direction, a tolerance buffer of ±5 degrees was used 
for both ridge endings and bifurcations directions during the searches of the database.  The same 
tolerance buffer was used for both minutiae types to allow for consistency across the Monte Carlo 
simulations especially when minutiae type was not specified.  Using the smaller of the two median 
buffers allows for a more conservative estimate of false matches. 

 
3.  RESULTS 

 
All eight MC simulations generated similar probability results for all pattern types (Figure 4-2).  

All simulations accurately detected the progenitor print from which the minutiae were chosen, and in 
some instances, detected a non-matching fingerprint (i.e., false match) which contained minutiae in 
the same X-Y coordinate space as the progenitor print (Figures 4-3 and 4-4).  Figure 4-2 shows an 
estimation of the mean probability for encountering a random correspondence for each pattern type.  
The magnitude difference in the probabilities between the three minutiae and other minutiae (i.e., 5, 
7, and 9) renders the other bars miniscule in comparison. 

The probabilities of a false match (i.e., random match probability) for all MC simulations 
performed are presented in Tables 4-2 through 4-13.  The variation between pattern types was 
negligible, with each pattern type performing similarly in each Monte Carlo simulation.  The 
probability of a false match decreases as fingerprint attributes (e.g., minutiae number, minutiae type) 
were added to the simulation, dependent of the type of information utilized in the sample run.   
For simulations based on X-Y coordinates of three minutiae and using all attribute criteria (minutiae 
coordinates, type, direction, and pattern type), the probability of generating a false minutiae match is 
about 1 in 5 million.  In the case of the simplest simulation, using X-Y minutiae coordinate 
information only, the use of three minutiae has a chance of generating a false match of 1 in 1600.  
However, by increasing the number of selected minutiae to five in simulation runs, the chance of a 
false match drops drastically to 1 in 125000. 

Monte Carlo simulations show that the probability of a false match varies across the fingerprint 
with a higher occurrence in the regions below the core and in the delta regions (grids 1-6).  
Conversely, the regions above the core (grids 7-9) are associated with less densely packed minutiae 
and unique arrangements. This aligns with this projects earlier fingerprint characterization (see 
Chapter 2) with the lower region of the fingerprint having more minutiae than the upper region.  
Thus, there was a greater chance of similar patterns occurring.  Figures 4-3 and 4-4 are examples of 
matching fingerprints found using the Monte Carlo method.  As can be seen, these are not 
fingerprints that would be mistaken for the same individual by a Latent Print Examiner.  However, 
they do demonstrate that similar patterns can exist on fingers of different individuals. The 
probabilities associated with these similar patterns of minutiae form the baseline possibility of these 
patterns existing, and are what should be used to build a probability associated with the identification 
of an individual during a criminal investigation.  Finally, zero probability of a false match does not 
reflect the true probability for those simulations.  The zeroes indicate that the probabilities of a 
match are so small that the dataset (1200 fingerprints) is insufficient for the generation of 
probabilities in these regions. 
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4. CONCLUSIONS 
 
The random match probabilities generated by the Monte Carlo simulations demonstrate that 

even with little information, if the number of known minutiae positions is sufficiently large, the 
probability of finding a similar pattern is quite rare.  For example, in the MC1, where the only 
information considered is the minutiae X-Y position, the probability of a false match decreases 100 
fold when the number of minutiae is increased by two, such as five selected versus three selected.  
This demonstrates that the number of minutiae selected drastically impacts the probability of finding 
a similar pattern.  In addition, the location on the finger where the minutiae are selected also changes 
the probability of false match, with the upper regions of a finger having lower probabilities of a false 
match than regions below or near the core.  This follows the observations noted in Chapter 2 that 
show a greater number of minutiae below the core than above.  As one would expect, the greater 
number of minutiae below the core allows for a greater chance of having similar patterns exist in the 
region.  Adding attribute parameters to the simulation made it more stringent and thus, more difficult 
to find false matches in our database.  However, the probability of a false match was not drastically 
different either among pattern types or when the searches were performed within pattern type.  The 
Monte Carlo simulations performed had difficulty finding any false matches using seven or nine 
minutiae.  In fact, there was only a single nine false match in the entire set, and that was for the 
simplest Monte Carlo (MC1) based on minutiae position alone.  This indicates that the probability of 
a false match is extremely low when large numbers of minutiae configurations are used in an 
identification.  It must be stressed that zeroes do not mean that there is no probability of matching at 
these higher levels.  Because the denominators of the probabilities are inherently associated with the 
number of fingerprints in the database, these results suggest that our database of 1200 images was of 
insufficient size for finding matches using the seven and nine minutiae sets. 

The results of this study are similar to results from previous work that used different 
statistical techniques and different populations of fingerprints.  For example, the probabilities for 
MC6 for three minutiae are very similar to what Neumann et al. (2006) obtained.  They found that 
for the core area of right slant loops from dataset 1, the likelihood of the three minutiae configuration 
resulting in a false match is 1.13 x 10-7.  This is comparable to our findings in MC6 for the same 
pattern type with a probability of 1.54 x 10-7.  A limitation to the present study is that replicates were 
not used as part of a validation process during simulations.  Other studies such as (Pankanti et al. 
2002) were able to create a database that had two copies of the same finger as a way to verify the 
results from the initial test.  Because the 10 print cards used were archival cards from OSP, there was 
no way to obtain independently rolled prints for the same fingers.  Replication of the same 
fingerprint would be desirable in further studies because skin elasticity and distortion could be 
directly quantified and would allow for validation and refinement of the obtained probabilities 
through the use of an independent dataset.  

As was stated earlier, these analyses demonstrated that a population sample of 1200 fingerprint 
images is too small to produce false-match probabilities using sets of seven and nine minutiae.  
Thus, drastically increasing the fingerprint sample size would most likely allow for the identification 
of fingerprints with similar ridgeline feature configurations for nine minutiae and higher.  In 
addition, incorporating ridgeline counts into the Monte Carlo simulations would include an 
additional primary feature used by Latent Print Examiners when performing comparisons.  The 
drawback to including these parameters is that both the vectorization of ridge lines (to allow for 
ridge counting) and the preparation of fingerprint images is very time consuming.  Increasing the 
fingerprint sample database to approximately 100,000 fingerprints would require alterations to the 
Monte Carlo simulation because the naïve Monte Carlo method employed here is computationally 
time consuming.  The employment of parallel Markov Chain Monte Carlo methods, or conditional 
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Monte Carlo methods would need to be implemented to allow for the production of data in a 
relatively timely fashion.  If applied to a larger dataset, the MC simulations, as performed in this 
study, would take approximately six to seven weeks of computer runtime for the simulations to 
produce data for analyses.  Also, simulations that perform a modified Markov Chain Monte Carlo 
associated with a nearest neighbor approach would allow the simulations to be more similar to the 
way Latent Print Examiners search target groups of minutiae on fingerprints.  These additional 
procedures could produce probabilities that are more closely associated with all the fingerprint 
features used by examiners when performing latent print comparisons. 
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Figure 4-1.  Nine grid cell filter used for Monte Carlo simulations.
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Figure 4-3 Illustration of a false match using a Monte Carlo 1 simulation ofFigure 4-3.  Illustration of a false match using a Monte Carlo 1 simulation of 
grid cell 5 having 7 minutiae located at the same X-Y coordinates. 
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Figure 4-4 Illustration of a false match using a Monte Carlo 7 simulation ofFigure 4-4.  Illustration of a false match using a Monte Carlo 7 simulation of 
grid cell 2  with 6 minutiae  with same X-Y coordinates and direction. 
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TABLES  

 
 
 
 
 
 
 
 

Table 4-1.  Parameter Combinations for Monte Carlo (MC) Minutiae 
Matching Simulator  

Key Match Pattern 
Type 

Match Minutiae 
Type  

Match Minutiae 
Direction  

MC1 No No  No  
MC2 No Yes  No  
MC3 Yes No  No  
MC4 Yes Yes  No  
MC5 No Yes  Yes  
MC6 Yes Yes  Yes  
MC7 No No  Yes  
MC8 Yes No  Yes  
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Table 4-2.  Monte Carlo Simulations 1-4 
Probabilities of a False Match for Arches 

MC1 
Coordinates only 

MC2 
Coordinates, Minutiae Type 

3 5 7 9  3 5 7 9 

Grid 1 2.38E-04 1.71E-06 1.25E-08 0 Grid 1 2.95E-05 8.68E-08 0 0 

Grid 2 2.62E-04 1.67E-06 0 0 Grid 2 3.63E-05 1.21E-07 0 0 

Grid 3 2.65E-04 1.66E-06 0 0 Grid 3 3.91E-05 2.43E-08 0 0 

Grid 4 1.46E-04 5.18E-07 0 0 Grid 4 1.93E-05 0 0 0 

Grid 5 1.61E-04 6.54E-07 0 0 Grid 5 2.24E-05 3.52E-08 0 0 

Grid 6 1.74E-04 8.79E-07 0 0 Grid 6 2.53E-05 2.43E-08 0 0 

Grid 7 5.46E-05 1.60E-07 0 0 Grid 7 1.05E-05 0 0 0 

Grid 8 5.56E-05 1.85E-07 0 0 Grid 8 8.88E-06 1.17E-08 0 0 

Grid 9 7.29E-05 7.41E-08 0 0 Grid 9 1.19E-05 0 0 0 

MC3 
Coordinates, Pattern Type 

MC4 
Coordinates, Pattern Type, Minutiae Type 

 3 5 7 9  3 5 7 9 

Grid 1 2.37E-04 7.68E-06 0 0 Grid 1 3.23E-05 0 0 0 

Grid 2 1.76E-04 5.31E-07 0 0 Grid 2 1.84E-05 0 0 0 

Grid 3 1.40E-04 2.66E-07 0 0 Grid 3 1.47E-05 0 0 0 

Grid 4 1.37E-04 7.97E-07 0 0 Grid 4 1.43E-05 0 0 0 

Grid 5 1.02E-04 5.31E-07 0 0 Grid 5 1.45E-05 0 0 0 

Grid 6 1.04E-04 2.61E-07 0 0 Grid 6 1.58E-05 0 0 0 

Grid 7 1.67E-05 0 0 0 Grid 7 2.37E-06 0 0 0 

Grid 8 3.96E-05 0 0 0 Grid 8 1.21E-05 0 0 0 

Grid 9 6.00E-05 0 0 0 Grid 9 8.14E-06 0 0 0 
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Table 4-3.  Monte Carlo Simulations 5-8 
Probabilities of a False Match for Arches 

MC5 
Coordinates, Minutiae Type & Direction

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 
Grid 1 3.68E-08 0 0 0 Grid 1 2.61E-07 0 0 0 

Grid 2 2.51E-08 0 0 0 Grid 2 0 0 0 0 

Grid 3 3.76E-08 0 0 0 Grid 3 0 0 0 0 

Grid 4 5.71E-07 0 0 0 Grid 4 2.61E-07 0 0 0 

Grid 5 1.17E-08 0 0 0 Grid 5 0 0 0 0 

Grid 6 3.60E-08 0 0 0 Grid 6 0 0 0 0 

Grid 7 0 0 0 0 Grid 7 0 0 0 0 

Grid 8 5.01E-08 0 0 0 Grid 8 5.21E-07 0 0 0 

Grid 9 0 0 0 0 Grid 9 0 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 4.58E-07 0 0 0 Grid 1 0 0 0 0 

Grid 2 4.58E-07 0 0 0 Grid 2 9.25E-07 0 0 0 

Grid 3 6.26E-07 0 0 0 Grid 3 4.63E-07 0 0 0 

Grid 4 1.04E-07 0 0 0 Grid 4 4.63E-07 0 0 0 

Grid 5 2.29E-07 0 0 0 Grid 5 4.63E-07 0 0 0 

Grid 6 2.08E-07 0 0 0 Grid 6 4.63E-07 0 0 0 

Grid 7 4.18E-08 0 0 0 Grid 7 0 0 0 0 

Grid 8 6.25E-08 0 0 0 Grid 8 2.78E-06 0 0 0 

Grid 9 5.43E-07 0 0 0 Grid 9 4.18E-06 0 0 0 
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Table 4-4.  Monte Carlo Simulations 1-4 

Probabilities of a False Match for Left Slant Loops 
MC1 

Coordinates only 
MC2 

Coordinates, Minutiae type 
3 5 7 9  3 5 7 9 

Grid 1 2.54E-04 1.73E-06 1.73E-08 0 Grid 1 3.69E-05 2.24E-08 0 0 

Grid 2 2.53E-04 1.74E-06 1.14E-08 0 Grid 2 3.75E-05 6.84E-08 0 0 

Grid 3 2.47E-04 1.73E-06 5.52E-09 0 Grid 3 3.77E-05 4.53E-08 0 0 

Grid 4 1.80E-04 7.65E-07 5.52E-09 0 Grid 4 2.48E-05 2.32E-08 0 0 

Grid 5 1.79E-04 8.72E-07 0 0 Grid 5 2.68E-05 7.32E-08 0 0 

Grid 6 1.80E-04 8.49E-07 1.69E-08 0 Grid 6 2.73E-05 5.67E-08 0 0 

Grid 7 6.88E-05 2.50E-07 0 0 Grid 7 1.04E-05 1.17E-08 0 0 

Grid 8 7.21E-05 2.30E-07 5.55E-09 0 Grid 8 1.08E-05 2.21E-08 0 0 

Grid 9 7.93E-05 1.45E-07 0 0 Grid 9 9.86E-06 1.74E-08 0 0 

MC3 
Coordinates, Pattern Type 

MC4 
Coordinates, Pattern Type, Minutiae Type 

 3 5 7 9  3 5 7 9 

Grid 1 2.10E-04 1.25E-06 0 0 Grid 1 3.10E-05 7.91E-08 0 0 

Grid 2 2.66E-04 1.78E-06 0 0 Grid 2 4.08E-05 6.00E-08 0 0 

Grid 3 3.03E-04 2.52E-06 0 0 Grid 3 4.51E-05 1.16E-07 0 0 

Grid 4 1.52E-04 6.58E-07 0 0 Grid 4 2.23E-05 0 0 0 

Grid 5 1.89E-04 1.21E-06 2.05E-08 0 Grid 5 2.82E-05 5.71E-08 0 0 

Grid 6 2.19E-04 1.35E-06 0 0 Grid 6 3.59E-05 3.95E-08 0 0 

Grid 7 6.37E-05 0 0 0 Grid 7 1.44E-05 0 0 0 

Grid 8 7.64E-05 2.50E-07 0 0 Grid 8 1.25E-05 1.14E-07 0 0 

Grid 9 9.18E-05 4.85E-07 0 0 Grid 9 1.30E-05 5.86E-08 0 0 
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Table 4-5.  Monte Carlo Simulations 5-8 

Probabilities of a False Match for Left Slant Loops 

MC5 
Coordinates, Minutiae Type & Direction 

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 
Grid 1 1.66E-07 0 0 0 Grid 1 4.04E-07 0 0 0 

Grid 2 1.27E-07 0 0 0 Grid 2 1.36E-07 0 0 0 

Grid 3 7.36E-08 0 0 0 Grid 3 2.55E-07 0 0 0 

Grid 4 1.55E-07 0 0 0 Grid 4 2.21E-07 0 0 0 

Grid 5 8.67E-08 0 0 0 Grid 5 1.58E-07 0 0 0 

Grid 6 1.39E-07 0 0 0 Grid 6 1.60E-07 0 0 0 

Grid 7 1.92E-07 0 0 0 Grid 7 2.69E-07 0 0 0 

Grid 8 6.35E-08 0 0 0 Grid 8 3.06E-07 0 0 0 

Grid 9 4.07E-08 0 0 0 Grid 9 9.94E-08 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 6.09E-07 0 0 0 Grid 1 1.55E-06 0 0 0 

Grid 2 6.50E-07 8.33E-09 0 0 Grid 2 2.38E-06 0 0 0 

Grid 3 8.16E-07 0 0 0 Grid 3 1.78E-06 0 0 0 

Grid 4 4.42E-07 0 0 0 Grid 4 1.06E-06 0 0 0 

Grid 5 4.92E-07 0 0 0 Grid 5 1.41E-06 0 0 0 

Grid 6 5.67E-07 0 0 0 Grid 6 1.69E-06 0 0 0 

Grid 7 1.92E-07 0 0 0 Grid 7 5.45E-07 0 0 0 

Grid 8 3.66E-07 0 0 0 Grid 8 1.00E-06 0 0 0 

Grid 9 3.74E-07 0 0 0 Grid 9 1.23E-06 0 0 0 
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Table 4-6.  Monte Carlo Simulations 1-4 

Probabilities of a False Match for Right Slant Loops 
MC1 

Coordinates only 
MC2 

Coordinates, Minutiae type 
3 5 7 9  3 5 7 9 

Grid 1 2.34E-04 1.58E-06 2.89E-08 0 Grid 1 3.44E-05 9.19E-08 0 0 

Grid 2 2.46E-04 1.49E-06 1.15E-08 0 Grid 2 3.71E-05 6.82E-08 0 0 

Grid 3 2.56E-04 1.90E-06 1.74E-08 0 Grid 3 3.95E-05 9.57E-08 0 0 

Grid 4 1.68E-04 8.77E-07 3.45E-08 0 Grid 4 2.36E-05 1.15E-08 0 0 

Grid 5 1.77E-04 8.51E-07 0 0 Grid 5 2.65E-05 4.63E-08 0 0 

Grid 6 1.84E-04 9.06E-07 1.71E-08 0 Grid 6 2.87E-05 4.52E-08 0 0 

Grid 7 7.50E-05 2.47E-07 0 0 Grid 7 8.71E-06 6.28E-08 5.99E-09 0 

Grid 8 7.52E-05 2.83E-07 0 0 Grid 8 1.01E-05 0 0 0 

Grid 9 6.97E-05 1.04E-06 0 0 Grid 9 1.03E-05 0 0 0 

MC3 
Coordinates, Pattern Type 

MC4 
Coordinates, Pattern Type, Minutiae Type 

 3 5 7 9  3 5 7 9 

Grid 1 2.49E-04 1.53E-06 0 0 Grid 1 3.76E-05 4.41E-08 0 0 

Grid 2 2.33E-04 1.30E-06 2.16E-08 0 Grid 2 3.70E-05 4.41E-08 0 0 

Grid 3 2.07E-04 1.40E-06 4.31E-08 0 Grid 3 3.59E-05 4.41E-08 0 0 

Grid 4 1.77E-04 1.13E-06 2.25E-08 0 Grid 4 2.46E-05 8.82E-08 0 0 

Grid 5 1.63E-04 5.58E-07 2.25E-08 0 Grid 5 2.55E-05 2.16E-08 0 0 

Grid 6 1.44E-04 6.34E-07 2.25E-08 0 Grid 6 2.10E-05 0 0 0 

Grid 7 6.51E-05 9.14E-08 0 0 Grid 7 8.07E-06 0 0 0 

Grid 8 6.42E-05 2.21E-07 0 0 Grid 8 8.32E-06 4.51E-08 0 0 

Grid 9 4.56E-05 0 0 0 Grid 9 3.55E-06 0 0 0 
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Table 4-7.  Monte Carlo Simulations 5-8 

Probabilities of a False Match for Right Slant Loops 

MC5 
Coordinates, Minutiae Type & Direction

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 
Grid 1 8.00E-08 0 0 0 Grid 1 1.35E-07 0 0 0 

Grid 2 5.71E-08 0 0 0 Grid 2 1.75E-07 0 0 0 

Grid 3 2.23E-07 0 0 0 Grid 3 6.37E-07 0 0 0 

Grid 4 1.71E-08 0 0 0 Grid 4 4.30E-08 0 0 0 

Grid 5 5.71E-08 0 0 0 Grid 5 1.54E-07 0 0 0 

Grid 6 1.29E-07 0 0 0 Grid 6 1.75E-07 0 0 0 

Grid 7 2.25E-08 0 0 0 Grid 7 0 0 0 0 

Grid 8 5.93E-09 0 0 0 Grid 8 0 0 0 0 

Grid 9 0 0 0 0 Grid 9 0 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 5.42E-07 0 0 0 Grid 1 6.79E-07 0 0 0 

Grid 2 3.08E-07 0 0 0 Grid 2 9.38E-07 0 0 0 

Grid 3 1.00E-06 0 0 0 Grid 3 1.62E-06 0 0 0 

Grid 4 2.75E-07 0 0 0 Grid 4 3.56E-07 0 0 0 

Grid 5 3.17E-07 0 0 0 Grid 5 6.48E-07 0 0 0 

Grid 6 2.92E-07 0 0 0 Grid 6 6.15E-07 0 0 0 

Grid 7 2.02E-07 0 0 0 Grid 7 0 0 0 0 

Grid 8 2.00E-07 0 0 0 Grid 8 1.94E-07 0 0 0 

Grid 9 4.34E-08 0 0 0 Grid 9 1.01E-07 0 0 0 
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Table 4-8.  Monte Carlo Simulations 1-4 

Probabilities of a False Match for Tented Arches 
MC1 

Coordinates only 
MC2 

Coordinates, Minutiae type 
3 5 7 9  3 5 7 9 

Grid 1 3.29E-04 2.30E-06 1.06E-07 1.08E-08 Grid 1 4.28E-05 5.43E-08 0 0 

Grid 2 3.44E-04 2.50E-06 2.15E-08 0 Grid 2 4.67E-05 1.83E-07 0 0 

Grid 3 3.56E-04 2.95E-06 9.45E-08 0 Grid 3 4.96E-05 1.28E-07 0 0 

Grid 4 2.38E-04 1.63E-06 2.09E-08 0 Grid 4 3.37E-05 7.64E-08 0 0 

Grid 5 2.32E-04 1.35E-06 1.04E-08 0 Grid 5 3.10E-05 5.49E-08 0 0 

Grid 6 2.36E-04 1.27E-06 1.11E-08 0 Grid 6 3.13E-05 3.27E-08 0 0 

Grid 7 1.05E-04 2.71E-07 0 0 Grid 7 1.57E-05 4.87E-08 0 0 

Grid 8 9.06E-05 2.35E-07 0 0 Grid 8 1.31E-05 0 0 0 

Grid 9 7.46E-05 2.92E-07 0 0 Grid 9 1.02E-05 0 0 0 

MC3 
Coordinates, Pattern Type 

MC4 
Coordinates, Pattern Type, Minutiae 

Type 
 3 5 7 9  3 5 7 9 

Grid 1 3.07E-04 1.65E-06 0 0 Grid 1 3.13E-05 0 0 0 

Grid 2 3.61E-04 4.29E-06 0 0 Grid 2 4.57E-05 0 0 0 

Grid 3 4.03E-04 1.97E-06 0 0 Grid 3 3.63E-05 1.90E-07 0 0 

Grid 4 2.23E-04 1.81E-06 0 0 Grid 4 3.41E-05 0 0 0 

Grid 5 2.17E-04 1.40E-06 0 0 Grid 5 2.74E-05 0 0 0 

Grid 6 2.17E-04 1.43E-06 0 0 Grid 6 2.93E-05 0 0 0 

Grid 7 1.03E-04 0 0 0 Grid 7 2.45E-05 0 0 0 

Grid 8 6.11E-05 2.15E-07 0 0 Grid 8 9.34E-06 0 0 0 

Grid 9 2.03E-05 0 0 0 Grid 9 0 0 0 0 
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Table 4-9.  Monte Carlo Simulations 5-8 

Probabilities of a False Match for Tented Arched 

MC5 
Coordinates, Minutiae Type & Direction

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 
Grid 1 1.70E-07 0 0 0 Grid 1 1.81E-06 0 0 0 

Grid 2 8.55E-08 0 0 0 Grid 2 0 0 0 0 

Grid 3 5.21E-08 0 0 0 Grid 3 0 0 0 0 

Grid 4 5.49E-08 0 0 0 Grid 4 1.89E-07 0 0 0 

Grid 5 5.49E-08 0 0 0 Grid 5 2.15E-07 0 0 0 

Grid 6 6.39E-08 0 0 0 Grid 6 4.04E-07 0 0 0 

Grid 7 0 0 0 0 Grid 7 0 0 0 0 

Grid 8 2.09E-08 0 0 0 Grid 8 0 0 0 0 

Grid 9 4.56E-08 0 0 0 Grid 9 0 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 4.84E-07 0 0 0 Grid 1 9.10E-07 0 0 0 

Grid 2 3.33E-07 0 0 0 Grid 2 6.06E-07 0 0 0 

Grid 3 7.33E-07 0 0 0 Grid 3 2.72E-06 0 0 0 

Grid 4 1.83E-07 0 0 0 Grid 4 3.04E-07 0 0 0 

Grid 5 2.84E-07 0 0 0 Grid 5 3.04E-07 0 0 0 

Grid 6 1.50E-07 0 0 0 Grid 6 9.10E-07 0 0 0 

Grid 7 1.33E-07 0 0 0 Grid 7 0 0 0 0 

Grid 8 1.67E-07 0 0 0 Grid 8 3.04E-07 0 0 0 

Grid 9 2.71E-07 0 0 0 Grid 9 0 0 0 0 
 

Western Oregon University, Division of Natural Sciences and Mathematics
Taylor et al. - Application of Latent Print Comparison Probabilities 99

This document is a research report submitted to the U.S. Department of Justice. This report has not 
been published by the Department. Opinions or points of view expressed are those of the author(s) 

and do not necessarily reflect the official position or policies of the U.S. Department of Justice. 



 
Table 4-10.  Monte Carlo Simulations 1-4 

Probabilities of a False Match for Double Loop Whorls 
MC1 

Coordinates only 
MC2 

Coordinates, Minutiae type 
3 5 7 9  3 5 7 9 

Grid 1 1.84E-04 1.04E-06 5.55E-09 0 Grid 1 2.80E-05 1.05E-07 0 0 

Grid 2 2.02E-04 1.07E-06 0 0 Grid 2 3.26E-05 6.26E-08 0 0 

Grid 3 1.91E-04 1.26E-06 1.19E-08 0 Grid 3 2.95E-05 4.04E-08 0 0 

Grid 4 1.37E-04 5.37E-07 1.74E-08 0 Grid 4 2.04E-05 2.89E-08 0 0 

Grid 5 1.47E-04 6.05E-07 5.93E-09 0 Grid 5 2.28E-05 1.19E-08 0 0 

Grid 6 1.41E-04 7.21E-07 0 0 Grid 6 2.20E-05 2.85E-08 0 0 

Grid 7 6.69E-05 6.37E-08 0 0 Grid 7 9.91E-06 5.55E-09 0 0 

Grid 8 6.39E-05 1.83E-07 5.63E-09 0 Grid 8 8.98E-06 5.93E-09 0 0 

Grid 9 5.44E-05 2.13E-07 0 0 Grid 9 9.22E-06 0 0 0 

MC3 
Coordinates, Pattern Type

MC4 
Coordinates, Pattern Type, Minutiae 

Type 
 3 5 7 9  3 5 7 9

Grid 1 2.59E-04 2.08E-06 8.00E-08 0 Grid 1 4.09E-05 7.60E-08 0 0

Grid 2 2.79E-04 1.25E-06 0 0 Grid 2 4.40E-05 3.81E-08 0 0

Grid 3 2.55E-04 1.54E-06 0 0 Grid 3 3.84E-05 1.18E-07 0 0

Grid 4 1.93E-04 1.29E-06 0 0 Grid 4 2.99E-05 1.18E-07 0 0

Grid 5 2.02E-04 8.91E-07 0 0 Grid 5 3.05E-05 0 0 0

Grid 6 1.81E-04 7.01E-07 0 0 Grid 6 2.71E-05 4.01E-08 0 0

Grid 7 8.54E-05 1.56E-07 0 0 Grid 7 1.34E-05 0 0 0

Grid 8 8.45E-05 2.35E-07 0 0 Grid 8 1.27E-05 3.81E-08 0 0

Grid 9 7.80E-05 1.64E-07 0 0 Grid 9 1.24E-05 0 0 0
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Table 4-11.  Monte Carlo Simulations 5-8 

Probabilities of a False Match for Double Loop Whorls 

MC5 
Coordinates, Minutiae Type & Direction

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 

Grid 1 7.33E-08 0 0 0 Grid 1 1.55E-07 0 0 0 

Grid 2 6.93E-08 0 0 0 Grid 2 1.54E-07 0 0 0 

Grid 3 8.49E-08 0 0 0 Grid 3 1.52E-07 0 0 0 

Grid 4 5.15E-08 0 0 0 Grid 4 1.57E-07 0 0 0 

Grid 5 1.35E-07 0 0 0 Grid 5 7.81E-08 0 0 0 

Grid 6 1.07E-07 0 0 0 Grid 6 7.70E-08 0 0 0 

Grid 7 3.55E-08 0 0 0 Grid 7 0 0 0 0 

Grid 8 4.04E-08 0 0 0 Grid 8 3.80E-08 0 0 0 

Grid 9 1.70E-08 0 0 0 Grid 9 7.77E-08 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 2.00E-07 0 0 0 Grid 1 2.29E-07 0 0 0 

Grid 2 2.00E-07 0 0 0 Grid 2 2.29E-07 0 0 0 

Grid 3 4.17E-07 0 0 0 Grid 3 1.20E-06 0 0 0 

Grid 4 1.33E-07 0 0 0 Grid 4 2.29E-07 0 0 0 

Grid 5 2.17E-07 0 0 0 Grid 5 2.29E-07 0 0 0 

Grid 6 3.17E-07 0 0 0 Grid 6 5.14E-07 0 0 0 

Grid 7 1.00E-07 0 0 0 Grid 7 5.71E-08 0 0 0 

Grid 8 3.42E-07 0 0 0 Grid 8 5.71E-07 0 0 0 

Grid 9 3.96E-07 0 0 0 Grid 9 9.42E-07 0 0 0 
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Table 4-12.  Monte Carlo Simulations 1-4 
Probabilities of a False Match for Whorls 

MC1 
Coordinates only 

MC2 
Coordinates, Minutiae type 

3 5 7 9  3 5 7 9 

Grid 1 2.28E-04 1.54E-06 1.69E-08 0 Grid 1 3.31E-05 5.67E-08 0 0 

Grid 2 2.31E-04 1.42E-06 1.14E-08 0 Grid 2 3.49E-05 6.77E-08 0 0 

Grid 3 2.39E-04 1.45E-06 1.14E-08 0 Grid 3 3.64E-05 7.87E-08 0 0 

Grid 4 1.78E-04 9.17E-07 5.52E-09 0 Grid 4 2.65E-05 2.83E-08 0 0 

Grid 5 1.77E-04 8.81E-07 0 0 Grid 5 2.65E-05 2.32E-08 0 0 

Grid 6 1.83E-04 1.06E-06 5.52E-09 0 Grid 6 2.75E-05 3.38E-08 0 0 

Grid 7 8.56E-05 1.41E-07 0 0 Grid 7 1.13E-05 0 0 0 

Grid 8 8.09E-05 2.49E-07 0 0 Grid 8 1.18E-05 1.11E-08 0 0 

Grid 9 8.72E-05 2.38E-07 0 0 Grid 9 1.39E-05 1.69E-08 0 0 

MC3 
Coordinates, Pattern Type

MC4 
Coordinates, Pattern Type, Minutiae 

Type 
 3 5 7 9  3 5 7 9

Grid 1 2.72E-04 2.38E-06 5.34E-08 0 Grid 1 3.81E-05 2.67E-08 0 0 

Grid 2 2.89E-04 2.36E-06 0 0 Grid 2 4.45E-05 8.01E-08 0 0 

Grid 3 3.08E-04 2.28E-06 0 0 Grid 3 4.71E-05 1.96E-07 0 0 

Grid 4 2.14E-04 1.14E-06 0 0 Grid 4 2.93E-05 0 0 0 

Grid 5 2.31E-04 1.05E-06 0 0 Grid 5 3.33E-05 5.31E-08 0 0 

Grid 6 2.43E-04 1.50E-06 0 0 Grid 6 3.66E-05 2.67E-08 0 0 

Grid 7 1.15E-04 6.81E-07 0 0 Grid 7 1.39E-05 2.67E-08 0 0 

Grid 8 1.01E-04 3.63E-07 0 0 Grid 8 1.52E-05 5.34E-08 0 0 

Grid 9 1.10E-04 5.97E-07 0 0 Grid 9 1.72E-05 5.45E-08 0 0 
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Table 4-13.  Monte Carlo Simulations 5-8 
Probabilities of a False Match for Whorls 

MC5 
Coordinates, Minutiae Type & Direction

MC6 
Coordinates, Pattern Type, 
Minutiae Type & Direction 

3 5 7 9  3 5 7 9 

Grid 1 1.28E-07 0 0 0 Grid 1 1.64E-07 0 0 0 

Grid 2 3.38E-08 0 0 0 Grid 2 1.67E-07 0 0 0 

Grid 3 8.31E-08 0 0 0 Grid 3 1.69E-07 0 0 0 

Grid 4 3.90E-08 0 0 0 Grid 4 1.89E-07 0 0 0 

Grid 5 3.38E-08 0 0 0 Grid 5 8.23E-08 0 0 0 

Grid 6 6.15E-08 0 0 0 Grid 6 1.40E-07 0 0 0 

Grid 7 1.45E-07 0 0 0 Grid 7 4.78E-07 0 0 0 

Grid 8 1.05E-07 0 0 0 Grid 8 1.11E-07 0 0 0 

Grid 9 5.04E-08 0 0 0 Grid 9 0 0 0 0 

MC7 
Coordinates, Minutiae Direction 

MC8 
Coordinates, Pattern Type, 

Minutiae Direction 
 3 5 7 9  3 5 7 9 

Grid 1 3.75E-07 0 0 0 Grid 1 8.47E-07 0 0 0 

Grid 2 2.92E-07 0 0 0 Grid 2 7.66E-07 0 0 0 

Grid 3 1.11E-06 0 0 0 Grid 3 7.65E-07 0 0 0 

Grid 4 2.33E-07 0 0 0 Grid 4 5.65E-07 0 0 0 

Grid 5 2.08E-07 0 0 0 Grid 5 3.23E-07 0 0 0 

Grid 6 4.75E-07 0 0 0 Grid 6 8.06E-07 0 0 0 

Grid 7 2.17E-07 0 0 0 Grid 7 1.61E-07 0 0 0 

Grid 8 3.00E-07 0 0 0 Grid 8 6.05E-07 0 0 0 

Grid 9 5.25E-07 0 0 0 Grid 9 3.62E-07 0 0 0 
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CHAPTER 5 – SUMMARY 

1.  PROJECT SUMMARY 
 

The purpose of the study was to evaluate and quantify fingerprint characteristics (e.g., minutiae 
and ridge lines) using Geographic Information Systems (GIS) techniques to derive probabilities of a 
false match to describe the discriminating value of fingerprint features and to establish certainty 
levels for fingerprint identifications.  Using GIS software as the unifying platform, many disparate 
analyses derived from a variety of mathematical and scientific disciplines (e.g., statistics, geometry, 
geology, ecology) were adapted to characterize fingerprints and create metrics to describe the 
distribution and frequency of fingerprints ridgeline features.  These methods included geometric 
morphometrics, spatial statistics, Monte Carlo, and cartographic analysis.  They were systematically 
employed to characterize fingerprint spatial patterns and ascertain the similarity of regions within 
and among fingerprints. 

GIS allowed for the placement of fingerprints within a common georeferenced coordinate space 
centered about the core.  Once fingers were projected in a standardized coordinate space, the 
aforementioned spatial analyses were conducted to characterize pattern types and minutiae 
distributions.  Overall, there was a greater density of minutiae and ridgelines below the core 
compared to above the core regardless of pattern type.  However, the distributions of bifurcations 
and ridge endings were more similar within any pattern type rather than among them.  Also, pattern 
types with comparable ridge flow (e.g., loops and whorls) had greater similarity between them when 
comparing various metrics such as axis dimensions and Thiessen polygon ratios, suggesting that 
these patterns arise through similar biological phenomena.   

As latent examiners have observed, fingerprint minutiae distributions are not uniform nor do they 
appear to be random.  Furthermore, taking into account the greater number of ridges in the lower 
region as compared with the upper region of the finger does not explain the differential distribution 
of the minutiae across the fingerprint.  It appears that the more complex the pattern type (i.e., double 
loop whorls are more complex than arches), the greater number of minutiae present on the finger. 

The discrepancy between the upper and lower regions of the finger also implies that this minutiae 
differential is influenced by complexity of pattern because the lower sections are where the deltas 
occur along with other more frequent disruptions in ridge flow.  Conversely, the upper regions of the 
finger (above the core) have a relatively uniform flow of ridgelines.  Thus, the more complex pattern 
types, whorls and double loop whorls, tend to be similar to each other, are associated with larger 
pattern dimensions, and significantly differ from all other pattern types.  The less complex pattern 
types, as exemplified by arches, tend to display fingerprint metrics at the other end of the scale.  

Geometric morphometric techniques were successfully applied to provide an independent 
measure of shape variation in fingerprint features.  While this type of analysis has not been widely or 
systematically applied to fingerprint patterns, geometric morphometrics offers promise as a tool for 
further refining our understanding of comparisons.  Given the inherent biological assumptions 
regarding fingerprint features as landmarks in this analysis, it is anticipated that these results will be 
especially informative about the extent of variation around readily identifiable regions such as deltas 
and cores.  This information about fingerprint features and shape variation could be used in future 
studies to determine and / or predict the limits of both native and depositional fingerprint distortion 
for any pattern type. 

Along with pattern characterization and analyses, a primary goal of the study was to assess false-
match probabilities associated with fingerprint minutiae patterns.  The study used a naïve brute force 
Monte Carlo approach for empirically estimating probabilities of identical minutiae spatial patterns 
occurring on different fingers. The simulations demonstrated a general trend that the minutiae in the 
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upper region of a finger above the core have a lower probability of coincidence as compared to those 
below, regardless of pattern type and complexity of model parameterization.  In addition, when 
considering only the spatial location of minutiae in standardized coordinate space, increasing the 
number of minutiae used in a comparison drastically decreased the probability of coincidence 
between fingers.  Probabilities of false match decreased even further when other attribute 
parameters, such as minutiae type and direction, were added to the selection model.  The Monte 
Carlo simulations indicated that our database was too small to produce probabilities for larger sets of 
minutiae used for comparison.  This suggests that the occurrence of a false match with larger sets of 
minutiae is extremely rare, and to create an associated probability, the data set will need to be 
increased 10 to 100 fold.  However, the probabilities that were produced from the current data set are 
quite robust, are adequate for use within the Oregon population, and they provide a baseline 
probability of occurrence for minutiae patterns on fingerprints.  

Utilizing geometric morphometrics, in conjunction with a GIS, represents a novel approach for 
evaluating and quantifying spatial relationships among friction ridgeline features (i.e., minutiae).  
The impacts of this work include an increase in forensic science knowledge and understanding of the 
spatial patterns of friction skin minutiae.  Additionally, there will be direct implications for 
quantifying another element of potential variance associated with estimating probabilities for 
describing the discriminating value of fingerprint features, especially when the probabilities are 
based on ten-print standards.  This is the first empirical study that quantifies fingerprint shape 
variation utilizing geometric morphometric methods for latent print comparison purposes, which in 
turn, could have implications for the latent print comparison process and practice. 

Increasingly, the forensic community is being asked to provide quantifiable metrics and 
statistics during testimony on latent print comparisons.  The research presented herein provides 
information that will aid in bolstering latent print examiners’ testimony with data that characterize 
fingerprint patterns and metrics.  While not all the analyses used in the study will be directly applied 
within the criminal justice system, the scientific approach to pattern characterization taken here will 
strengthen the validity of using fingerprints for identification.  The spatial analysis of fingerprints, 
and the consistent clustering of similar pattern types strongly suggest a biological association 
between fingerprint development and fingerprint pattern type. 
 
2. IMPLICATIONS FOR POLICY AND PRACTICE 

Impacts of this work include making a significant contribution toward forensic practice in the 
laboratory by establishing a degree of certainty and defining the limits for latent print identifications.  
In addition, this will strengthen the accuracy and reliability of the ACE-V methodology as called for 
in the National Academy of Sciences report (National Research Council, 2009).  While GIS is 
widely used for crime pattern analysis and emergency management applications (Bodbyl-Mast, 
2009; Chainey and Ratcliffe, 2005; ESRI, 2000, 2001), use as an analytical tool for fingerprint 
probability estimates is virtually absent from the literature.  In addition, much of the statistical 
modeling of fingerprint patterns is being conducted in the computer science community for use in 
biometric verification (e.g., Maio et al., 2002; Cappelli et al., 2006; Dass and Jain, 2007) and is 
largely absent from latent print comparison applications.  This project takes a novel approach in 
utilizing GIS and related tools to derive probability estimates for latent print identifications with the 
final deliverable involving model testing on active casework in a forensic laboratory.  The final 
project outcomes connect the daily work of latent print examiners to science-based research; thus, 
directly addressing the National Academy of Sciences call for improved linkages between forensics 
and the academic community. 
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Impact on the Development of the Latent Print Discipline 
There has been minimal impact on the development of the latent print discipline thus far.  

However, it is anticipated that the end product of this grant will have a significant impact on the 
latent print comparison practice and testimony provided.  The project’s aim was to provide a 
quantitative measure of the discriminating value of the various ridgeline features by estimating the 
probability of a false-match.  The resultant probabilities are applicable for subsequent qualification 
of latent print comparison conclusions.  The results of this study will aid latent print examiners in 
testimony by grounding their results in the scientific method.  In addition, our use of GIS is a novel 
approach to fingerprint analysis. GIS software is readily available in the marketplace, with a vast 
community of users.  Thus, a value-added outcome of this work will include the development of 
alternative methodologies and tools to aid latent print analysts in improving the efficacy of latent 
print identifications.   
 
Impact on Other Disciplines 

Because the resultant product(s) will be a pattern-based process, the use of GIS for pattern based 
statistical analysis can be applied to any pattern identification forensic discipline including, but not 
limited to, toolmarks, ballistics, and shoe and tire impressions. 
 
3.  IMPLICATIONS FOR FURTHER RESEARCH 

Current project results highlight areas where additional work is needed.  One area is the 
estimation of false-match probabilities with greater numbers of minutiae which will require a 
significantly larger fingerprint image dataset (one that is beyond the resources of this current work).  
The implementation of parallel Markov Chain Monte Carlo methods or conditional Monte Carlo 
methods will allow for the generation of probability simulation data and consequently greater 
numbers of simulation runs.  Also, simulations that perform a modified Markov Chain Monte Carlo 
associated with a nearest neighbor approach will more closely emulate the way latent print 
examiners search target groups of minutiae on fingerprints.  Results from geometric morphometric 
spatial analyses for the current study indicate that this approach is ideally suited for studying elastic 
skin deformation and attendant fingerprint distortion.  In addition, the novel GIS approach employed 
here for conducting spatial analyses and deriving probability estimates can be utilized for further 
fingerprint characterization. 
 
4.  DISSEMINATION OF RESEARCH FINDINGS 

During the review period, data were disseminated to Oregon State Police (OSP), Forensic 
Services Division (FSD) latent print examiners for review, consultation, and feedback.  In addition 
we presented at the IAI conference in August and at the Pacific Northwest-IAI conference in 
September.  We will continue to disseminate information and collaborate with OSP, FSD latent print 
examiners.  We also anticipate submitting a paper or papers for publication in forensic journals (e.g., 
Journal of Forensic Science or Journal of Forensic Identification) in the upcoming months. 
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Website 
We developed a website for dissemination of information and research activities to the 

community (http://whorl.wou.edu/).  Information posted to this website includes the original 
project proposal, conference presentation abstracts, and reports as well as related links to other 
forensic science information. 
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