

The author(s) shown below used Federal funding provided by the U.S. Department of Justice to prepare the following resource:

Document Title: Development of Improved

Extraction/Purification Methods and

Comprehensive Screening/Confirmation by

LC-QqQ-MS Analysis for Novel

Psychoactive Substances

Author(s): Ashley Nicole Kimble

Document Number: 255173

Date Received: September 2020

Award Number: 2017-IJ-CX-0004

This resource has not been published by the U.S. Department of Justice. This resource is being made publically available through the Office of Justice Programs' National Criminal Justice Reference Service.

Opinions or points of view expressed are those of the author(s) and do not necessarily reflect the official position or policies of the U.S. Department of Justice.

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

DEVELOPMENT OF IMPROVED EXTRACTION/PURIFICATION METHODS AND COMPREHENSIVE SCREENING/CONFIRMATION BY LC-QqQ-MS ANALYSIS FOR NOVEL PSYCHOACTIVE SUBSTANCES

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

CHEMISTRY

by

Ashley Nicole Kimble

2019

To: Dean Micheal R. Heithaus College of Arts, Sciences and Education

This dissertation, written by Ashley Nicole Kimble, and entitled Development of Improved Extraction/Purification Methods and Comprehensive Screening/Confirmation by LC-QqQ-MS Analysis for Novel Psychoactive Substances, having been approved in respect to style and intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

_	Jose Almirall
_	Piero Gardinali
_	Rudolf Jaffe
_	DeEtta Mills
_	Anthony P. DeCaprio, Major Professor
Date of Defense: June 10, 2019	
The dissertation of Ashley Nicole Kimble	e is approved.
-	Dean Micheal R. Heithaus College of Arts, Science and Education
-	Andres G. Gil
Vice Pre	sident for Research and Economic Development and Dean of the University Graduate School

Florida International University, 2019

© Copyright 2019 by Ashley Nicole Kimble

All rights reserved.

ACKNOWLEDGMENTS

I want to thank Dr. Anthony P. DeCaprio for being by advisor and constantly being there to answer my questions, encourage me to continue the hard work, and for allowing me to be a part of his research laboratory. I would like to thank my additional committee members Dr. DeEtta Mills, Dr. Piero Gardinali, Dr. José Almirall, and Dr. Rudolf Jaffe. I am appreciative of all of your advice, questions, and dedication to helping be a better researcher. Thank you, Dr. Luis Arroyo, for being there to introduce me to all the instrumentation in our lab and allowing me to learn hands on, it was incredibly valuable. I must thank Mr. Ralph Hindle for all of your insight about instrumentation and software, I learned so many things from you, especially shortcuts, you saved me so much time.

First, I must thank my lab family which started out quite small and grew and grew over my 5 years here. I specifically must thank Dr. Melanie Eckberg and Dr. Allen Gilliland for quickly accepting me in their tight knit group and helping me delve right into research and some fun. Soon after me, Jenna joined our group and things were never the same, in a good way of course. I cannot thank her enough for always encouraging me to look at my research differently and that what I was doing was awesome. William you are always there to be a voice of reason, even if you don't realize it. I don't know what I would have done without all of you. I could not have asked for a better lab group.

To all of the other friends I have made while in Miami, thank you for all of the support and laughs that you provide me with. James and Meghan, you were my very first friends here and you made my first year unforgettable with movie nights, donut mornings, and study sessions. Quentin, what can I say about you. We started off as friends, became

roommates and now your one of my best friends and I couldn't imagine life without you. You are one of my biggest support systems and I appreciate all you do for me and I wouldn't have made it through these 5 years without you.

Lastly, I must thank my friends and family who have supported me throughout my entire life. Mutti, thank you for always believing in me and all the little cards and gifts you've sent me through the years. I love you and don't know what I would have done without you. Pops, I can't express how important you've been to me my whole life. Thank you for all of the phone calls and visits while I was here. I always knew that I had your support and love. Niki, we've been best friends since elementary school, and I couldn't ask for a better one. Your family always accepted me as one of their own and I love all of you and your support. We may not see each other as much as we'd like but I know that I always have your support. Dante, thank you for always reminding that you are here if I need you, the adorable animal photos to brighten my day, and your amazing excel black magic wizardry.

I don't know where I'd be today without all of your love and support. Thank you to everyone that has helped me during my journey. All of you have impacted me in ways that words cannot quite describe. Thank you!

ABSTRACT OF THE DISSERTATION

DEVELOPMENT OF IMPROVED EXTRACTION/PURIFICATION METHODS AND COMPREHENSIVE SCREENING/CONFIRMATION BY LC-QqQ-MS ANALYSIS FOR NOVEL PSYCHOACTIVE SUBSTANCES

by

Ashley Nicole Kimble

Florida International University, 2019

Miami, Florida

Professor Anthony P. DeCaprio, Major Professor

The presence of novel psychoactive substances (NPS) in forensic casework poses major difficulties for detection, since there are many structural variations of NPS circulating in the street market. There are currently no comprehensive screening/confirmatory/quantitation methods available that encompass the majority of NPS encountered in forensic toxicology. A major issue faced with developing such a method is that full validation is extremely time consuming. The use of a liquid chromatography triple quadrupole tandem mass spectrometry (LC-QqQ-MS/MS) method makes the detection of a large number of NPS possible because of high selectivity and sensitivity.

This research included four main tasks: 1) development of a dynamic multiple reaction monitoring (dMRM) LC-QqQ-MS method for 800+ NPS, 2) validation of the dMRM method for screening and confirmation of 800+ NPS using a series of mixtures of non-coeluting standards, 3) comparison and optimization of NPS extraction methods for

urine and whole blood, and 4) screening of spiked and authentic specimens to determine the real-world potential of the dMRM method.

Validation was completed for the parameters of selectivity, limit of detection (LOD), limit of quantitation (LOQ), carry over, linearity, bias, precision, freeze-thaw stability, and matrix effects. A method that ultimately included a total of 729 compounds was validated with LOD and LOQ in the pg/mL range. The research presented here implements the largest validated method of its kind for NPS with capabilities as a screening method for NPS in urine and whole blood and as a confirmatory method in urine.

Several extraction methods were also compared to determine their efficacy for the extraction of NPS from urine and whole blood. These included dilute- and crash-and-shoot, online and classical solid phase extraction, and QuEChERS. Techniques were compared for elimination of matrix effects, recovery, process efficiency, time, and cost.

Through the analysis of blind spiked and authentic specimens, the applicability of the validated method as a screening and confirmatory method was successfully demonstrated. The method developed in this project will aid in reliable identification of NPS in clinical and forensic toxicological samples. Additionally, this work provided data to improve the reliability of extraction of NPS from biological matrices.

TABLE OF CONTENTS

CHAPTER	PAGE
1. INTRODUCTION	1
1.2 Rationale for Research	
1.3 Significance of Study	
1.3.1 Task 1 – Creation of a dMRM database and screening/confirmatory method using a 1.3.2 Task 2 - Validation of the dMRM screening/confirmatory method using a	a
mixture approach	
1.3.3 Task 3 - Evaluation and optimization of NPS extraction/purification metl 1.3.4 Task 4 - Analysis of blind spikes and authentic specimens	
2. LITERATURE REVIEW	8
2.1 Novel Psychoactive Substances	
2.2 Classes of Novel Psychoactive Substances	10
2.2.1 Synthetic Cathinones	
2.2.3 Synthetic Opioids	15
2.3 Identification of Drugs of Abuse and Novel Psychoactive Substances	
2.3.1 Traditional Forensic Toxicological Analysis	18
2.3.2 Immunoassays	19
2.3.3 Instrumental Analysis	21
2.3.3.1 Gas Chromatography Mass Spectrometry	21
2.3.3.2 Liquid Chromatography Mass Spectrometry	22
2.4 Extraction Methods	
2.4.1 Extraction Methods for Common Drugs of Abuse	
2.4.2 Solid Phase Extraction	
2.4.2.1 Online Solid Phase Extraction	
2.4.3 QuEChERS	
2.4.4 Evaluation of Extraction Techniques	32
3. DEVELOPMENT OF A DYNAMIC MULTIPLE REACTION MONITORING	
METHOD	
3.1 Introduction	34
3.2 Method and Materials	
3.2.1 Chemicals and Materials	
3.2.2 Standards and Sample Preparation	
3.2.4 Methods	
3.3 Results and Discussion	
3.4 Conclusions	
4.1 Introduction	
4.2 Materials and Methods 4.2.1 Chemicals and materials	
4.2.2 Solution and sample preparation	
4.2.3 Instrumentation	
¬.∠.J monumentation	🔻 🖰

	4.2.5 LC Conditions and MS parameters	48
	4.2.6 Quantification	49
	4.2.7 Assay validation	49
	4.2.8 Selectivity	49
	4.2.9 Matrix effects and recovery	
	4.2.10 Linearity of calibration and limits of detection/quantitation	
	4.2.11 Precision and accuracy	
	4.2.12 Freeze-thaw stability	52
	4.3 Results	
	4.3.1 Selectivity and carryover	
	4.3.2 Linearity of calibration and limit of detection/quantitation	
	4.3.3 Precision and accuracy	
	4.3.4 Freeze-thaw stability	
	4.3.5 Matrix effects and recovery	
	4.4 Discussion	
	4.5 Conclusions	76
_		
5	. COMPARISON OF MULTIPLE EXTRACTION/PURIFICATION METHODS	
	5.1 Introduction	
	5.2 Materials and Methods	
	5.2.1 Chemicals and Materials	
	5.2.2 Preparation of standard solutions	
	5.2.3 Dilute-and-Shoot/Crash-and-Shoot Methodology	
	5.2.4 The QuEChERS Methodology	
	5.2.5 On-line SPE Methodology	
	5.2.6 SPE Methodology	
	5.2.7 Comparison of techniques	
	5.2.8 LC-QqQ-MS analysis	
	5.3.1 Dilute-and-shoot/crash-and-shoot methodology	
	5.3.2 The QuEChERS Methodology	
	5.3.3 Online SPE methodology	
	5.3.4 Solid phase extraction methodology	
	5.3.5 Comparison of techniques	
	5.4 Conclusions	
	5.4 Conclusions	70
6	. ANALYSIS OF BLIND SPIKES AND AUTHENTIC SPECIMENS	100
U	6.1 Introduction	
	6.2 Materials and Methods	
	6.2.1 Chemicals	
	6.2.2 Collection of Authentic Specimens	
	6.2.2 Preparation of samples	
	6.3 Results and Discussion.	
	OL TECHNO MIN DIDONOLO III	100
7	. SUMMARY AND PROSPECT	.120

REFERENCES	123
APPENDICES	136
VITA	451

LIST OF TABLES

TABLES
Table 1. Structural classes for all compounds included in the dMRM database
Table 2. Molecule types for all compounds included in the dMRM database
Table 3. List of the abbreviations used for the NPS contained in the three mixes used for validation.
Table 4. List of internal standards used for validation, drug class, and retention times 47
Table 5. Dynamic MRM MS method parameters for NPS in Mix 1 and internal standard matches.
Table 6. Dynamic MRM MS method parameters for NPS in Mix 2 and internal standard matches
Table 7. Dynamic MRM MS method parameters for NPS in Mix 3 and internal standard matches
Table 8. LOD, LOQ, R2 values, and precision and bias values for all compounds in Mix 1 at three different concentration levels
Table 9. LOD, LOQ. R2 values and precision and bias values for all compounds in Mix 2 at three different concentration levels.
Table 10. LOD, LOQ, R2 values, and precision and bias values for all compounds in Mix 3 at three different concentration levels.
Table 11. Freeze-thaw stability for all analytes in Mix 1
Table 12. Freeze-thaw stability for all analytes in Mix 2 (LC-QqQ-MS)
Table 13. Freeze-thaw stability for all analytes in Mix 3 (LC-QqQ-MS)
Table 14. Percent matrix effects and percent recovery for all compounds in Mix 1 70
Table 15. Percent matrix effects and percent recovery for all compounds in Mix 2 71
Table 16. Percent matrix effects and percent recovery for all compounds in Mix 3 72
Table 17. Programming timetable for the Flex Cube for Online SPE

Table 18. Matrix effects, recovery, and process efficiency for Mix 2 compounds in spiked (50 ng/mL) whole blood samples following crash-and-shoot processing
Table 19. Matrix effects, recovery, and process efficiency for Mix 2 compounds in spiked (50 ng/mL) whole blood samples following QuEChERS processing91
Table 20. Shows the results for mix 2 using SPE in terms of matrix effects, recovery, and process efficiency using 50 ng/mL spiked whole blood samples
Table 21. Cost of each extraction technique and the time each one takes to prepare a set of 20 samples.
Table 22. True identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 1 (low concentration)
Table 23. The true identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 3 (intermediate concentration)
Table 24. The true identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 2 (varied concentrations) . 107
Table 25. The true identity and concentration and experimental identity and concentration of blind spiked whole blood samples included in set 1 (low concentration)
Table 26. The true identity and concentration and experimental identity and concentration of blind spiked whole blood samples included in set 2 (medium concentration)
Table 27. The identity of compounds found in authentic specimens and the number of positive specimens for each compound
Table 28. The identity of metabolites found in authentic specimens and the number of positive specimens for each compound
Table 29. The identity of compounds found in authentic specimens after a general screening and the number of positive specimens for each compound
Table 30. The identity of compounds found in each individual authentic specimen during the general screening and the NPS screening

LIST OF FIGURES

FIGURES
Figure 1. Represents the ESI process
Figure 2. Schematic of a triple quadrupole mass spectrometer showing the function of each quadrupole.
Figure 3. The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the recovery of synthetic cannabinoids are statistically different at three different concentration levels (5, 20, and 80 ng/mL). The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference in terms of recovery between the medium and low levels and the high and low levels.
Figure 4. The top panel visually represents the results of a Means/ANOVA test used to determine whether or not matrix effects of synthetic cannabinoids are statistically different at three different concentration levels (5, 20, and 80 ng/mL). The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference in terms of matrix effects between the high and low levels 69
Figure 5. The top panel represents the MRM results of extracting the compounds in Mix 2 from whole blood using an in-house one-pot approach, while the bottom panel is the result of extracting the same compounds from whole blood using a two-step approach.
Figure 6. Visually represents the results of a Means/ANOVA test used to determine whether or not there is a statistically significant difference between the commercial two step approach and the in-house one-pot approach in terms of recovery
Figure 7. The top panel visually represents the results of a Means/ANOVA test used to determine whether or not the amounts of salts used in the QUEChERS one-pot kit has an effect on elimination of matrix effects. The bottom panel shows the results of Tukey HSD test showing that there are no statistically significant differences
Figure 8. Typical LC-QqQ-MS MRM response for Mix 2 using the reversed phase online SPE approach
Figure 9 The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the three extraction methods based on matrix effects are significantly different. The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference between the results of SPE and QuEChERS with blood in terms of elimination of matrix effects

Figure 10. The top panel visually represents the results of a Means/ANOVA test used	
to determine whether results of the three extraction methods based on recovery are	
significantly different. The bottom panel shows the results of Tukey HSD test showing	,
that there is a statistically significant difference between the results of SPE and	
QuEChERS with blood and crash and shoot and SPE in terms of recovery	. 96
Figure 11. The top panel visually represents the results of a Means/ANOVA test used	
to determine whether results of the three extraction methods based on process	
efficiency are significantly different. The bottom panel shows the results of Tukey	
HSD test showing there are no statistically significant differences	. 96

LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

AF Ammonium Formate

ANOVA Analysis of Variance

BE Bond Elut

CB1 Cannabinoid Type 1 Receptor

CB2 Cannabinoid Type 2 Receptor

CDC Center for Disease Control and Prevention

CE Collision Energy

CI Chemical Ionization

CSA Controlled Substance Act

CV Coefficient of Variation

d-SPE Dispersive SPE

DEA Drug Enforcement Administration

DFC Drug Facilitated Crime

dMRM Dynamic Multiple Reaction Monitoring

DMSO Dimethyl sulfoxide

DUI Driving Under the Influence

EC Endocannabinoids

EC C18 Encapped C18

EDTA Ethylenediaminetetraacetic acid

El Electron Ionization

EIC Extracted Ion Chromatogram

ELISA Enzyme Linked Immunosorbent Assay

EMIT Enzyme Multiplied Immunoassay Technique

ESI Electrospray Ionization

FA Formic Acid

FIA Flow Injection Analysis

GC-MS Gas Chromatography Mass Spectrometry

H2O Water

HCl Hydrochloric Acid

HPLC High Performance Liquid Chromatography

HRMS High Resolution Mass Spectrometry

HSD Honestly Significant Difference

IS Internal Standard

LC-MS Liquid Chromatography Mass Spectrometry

LLE Liquid-Liquid Extraction

LOD Limit of detection

LOQ Limit of Quantitation

m/z Mass to Charge Ratio

ME Matrix Effects

MeCN Acetonitrile

MeOH Methanol

mg Milligram

mL Milliliter

MRM Multiple Reaction Monitoring

MS Mass Spectrometry

MS/MS Tandem Mass Spectrometry

NaCl Sodium Chloride

ng Nanogram

NIST National Institute of Standards and Technology

NPS Novel Psychoactive Substances

OSAC Organization of Scientific Area Committees

OTC Over the Counter

PCP Phencyclidine

PE Process Efficiency

PP Protein Precipitation

ppb Parts Per Billion

ppm Parts Per Million

PSA Primary Secondary Amine

QC Quality Control

QqQ Triple Quadrupole Mass Spectrometry

QTOF Quadrupole Time-of-Flight Mass Spectrometry

QuEChERS quick, easy, cheap, effective, rugged, and safe

RE Recovery

RP Reversed Phase

RT Retention Time

SAMHSA Substance Abuse and Metal Health Services Administration

SIM Selected Ion Monitoring

SPE Solid Phase Extraction

SRM Selected Reaction Monitoring

SWGTOX Scientific Working Group for Forensic Toxicology

THC Δ^9 -Tetrahydrocannabinol

TIC Total Ion Chromatogram

UPLC Ultra Performance Liquid Chromatography

Δc Change in Concentration

μg Microgram

μL Microliter

1. INTRODUCTION

1.1 Statement of the Problem

Novel psychoactive substances (NPS) have been a global health hazard for the past several decades. Novel psychoactive substances are structural alterations of controlled substances created to evade drug law. There have been reported fatal overdoses that can be attributed to NPS, especially from synthetic cannabinoids and opioids. Novel psychoactive substances are difficult to control and detect in biological fluids, because of their constantly changing structures introduced by illicit manufacturers as current drugs become scheduled and illegal to possess. Drugs of abuse are scheduled according to their unique chemical structure, therefore every small structural alteration results in a compound no longer being regulated by controlled substance laws. Changes to structure can be as small as the addition or removal of a functional group or single atom, such as a halogen. Consequently, there are practically endless structural possibilities for NPS. Such derivatives can have extremely varied pharmacological effects, ranging from minimal effect to severe toxicity. 2,6

Many screening methods used in clinical and forensic toxicology detect compounds on the basis of their structure or specific functional groups. Since screening methods tend to be structure-specific, NPS can be missed during screening, resulting in false negatives. In a forensic or clinical setting, if a sample is wrongly reported as negative it is possible that the sample will be discarded, making it impossible to retest the sample with advanced methodology. False negatives are especially problematic when the results of these tests are being used for treatment and potentially determining cause of death. One of the biggest issues faced by law enforcement in terms of detecting NPS is that many manufacturers

have different structures waiting for distribution as soon as an existing NPS structure becomes known, scheduled, and detectable.⁷ Consequently, it is difficult for clinical and forensic toxicology laboratories to detect NPS as new ones become available.

A possible solution for the detection of NPS involves the creation of comprehensive libraries and databases containing chromatographic and mass spectral data for individual NPS entities. When combined with libraries and databases, comprehensive targeted screening and confirmatory methods have the potential to detect large numbers of NPS in clinical and forensic toxicology. Currently, there are a number of libraries for gas chromatography (GC) generated using electron ionization (EI) mass spectrometry (MS). Additionally, there exist libraries for liquid chromatography (LC) using electrospray ionization (ESI) MS, but these lack the comprehensiveness and standardization associated with existing GC libraries.^{8,9} Even though such MS libraries exist, many of them are theoretical (i.e., determined by calculations of fragmentation rather than using actual reference standards to determine fragmentation) or contain few to no NPS. The majority of forensic toxicological laboratories have in place GC and/or LC-MS methods capable of detecting typical drugs of abuse and other compounds commonly found in their casework. In recent years, many such laboratories have also begun including NPS, but the number of NPS entities included in these types of methods is generally only a small representation of the sheer number of NPS that are potentially available. 10 Clinical and forensic toxicology laboratories struggle to identify NPS in a timely and reliable manner. Misidentification can lead to major health epidemics if, for example, a potent NPS is not detected until after there have been multiple overdoses in a specific area. Research has been done in order to combat

these issues, but more needs to be done before clinical and forensic toxicology laboratories can properly detect NPS as they are produced and released to the illicit market.

In recent decades, NPS have become a major global public health issue, especially in the United States, Europe, and China. 11,12 Specifically, in the United States synthetic opioids, especially fentanyl derivatives, are contributing to the opioid epidemic. Commonly used opioids and a number of novel derivatives have been the cause of death of thousands in the U.S. over the past few years. Not only are NPS concerning to the forensic toxicology communities, they are also a health hazard. Many NPS are first detected in Europe before being distributed to the U.S. Novel psychoactive substances are relatively easy to obtain since they can often be purchased via the internet. The internet has made the sale and purchasing of NPS easier than it would have been in the past. There is generally little pharmaceutical information available for the majority of NPS, which leads to the risk of increased overdoses and toxicity. 13 Many consumers falsely believe that "legal" means safer, which is not the case for many NPS, further worsening their health hazard. 13 The health concerns revolving around NPS need to be combatted, starting with identification in clinical and forensic toxicology. Being able to detect NPS quickly and reliably will aid in scheduling, further research, and informing the public of their hazards. Consequently, the development of screening and confirmatory methods for the detection of a wide variety of NPS will aid clinical and forensic toxicology laboratories in the timely and reliable detection of such harmful substances, helping to prevent or manage further epidemics.

1.2 Rationale for Research

Many toxicological laboratories use immunoassays for initial drug screening, which are robust when used for the detection of common drugs of abuse but can be problematic when working with NPS. Immunoassays are capable of detecting drug compounds through an antigen-antibody interaction which relies on the compound's structure. As a result of the structure relation requirement, issues arise when trying to screen for NPS, since they exhibit structural differences as compared to common drugs of abuse. Screening methods using LC and GC MS are more adaptable to the structural changes that NPS undergo than immunoassays. Analytical methods are also routinely used in forensic toxicological laboratories. However, most commonly these methods function based on library matches or a targeted method. Many of these methods and/or libraries only contain a small set of NPS, and some methods contain NPS that are no longer seen in modern case work. In addition, even though screening methods are available for some NPS, very few of those methods have been validated and are capable of quantitative results.

A similar issue to the detection of NPS arises when trying to extract NPS from biological matrices. Extraction methods for common drugs of abuse are well established in clinical and forensic toxicological laboratories. However, it is not always possible to use those same methods for the majority of NPS compounds. Many extraction methods rely on the structure and chemical properties of the compound to successfully extract the analyte of interest from its biological matrix. Since NPS undergo structural alterations, some of these methods may no longer be able to reliably separate the analyte of interest from the matrix. It is important to have extraction methods capable of isolating NPS from biological matrices and ensuring that they are not discarded as waste during the extraction process.

1.3 Significance of Study

The current research is designed to be applicable to forensic science, clinical and forensic toxicology, and law enforcement. The research described here has revolved around the development and validation of a comprehensive dynamic multiple reaction monitoring (dMRM) method for screening and confirmation of hundreds of NPS. The validated method was then used to evaluate the effectiveness of different extraction methods for NPS and to determine statistically significant differences among the methods. The ultimate goal is to implement optimized extraction approaches and a validated analytical method into forensic toxicology laboratories to aid in the timely and reliable detection of NPS in case samples.

The NPS to be included in the database generated for the project were determined by researching published articles, forensic case work reports, drug user blogs/forums, and overdose reports to ensure that the NPS being included were still in use and relevant for clinical and forensic toxicological samples. In addition to common NPS, the database also includes common adulterants, to ensure that the method is capable of differentiating the NPS from them. The research presented here was divided into four major tasks.

1.3.1 Task 1 – Creation of a dMRM database and screening/confirmatory method

This task was the foundation for all the tasks to come after. Up to 10 precursor-product ion transitions were collected for all NPS to be included in the final analytical method. Once transitions were established, all compounds were analyzed to determine retention times in order to create a dMRM method capable of screening for over 800 NPS.

1.3.2 Task 2 - Validation of the dMRM screening/confirmatory method using a mixture approach

After method development was finalized, full method validation was completed using a set of defined mixtures of non-coeluting NPS in order to decrease the time required to complete the validation. Method validation was performed following established toxicological guidelines. The parameters validated for included linearity, limit of detection, limit of quantitation, carry over, bias, precision, matrix effect, and freeze-thaw-stability.

1.3.3 Task 3 - Evaluation and optimization of NPS extraction/purification methods

The third portion of the research was completed by comparing crash-/dilute-and-shoot, QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe), online SPE, and classical SPE to determine which protocols have statistically significant benefits over the others for the extraction of NPS from urine and whole blood. Comparison was done using drug recovery, elimination of matrix effects, and improved process efficiency. Even though extraction methods for common drugs of abuse have been thoroughly studied, extraction methods for NPS have not been comprehensively evaluated. Extraction methods were compared and then optimized to ensure that the ideal conditions were used for each method.

1.3.4 Task 4 – Analysis of blind spikes and authentic specimens

To apply the current research to actual casework samples, blind spiked urine and whole blood were analyzed quantitatively and qualitatively. Blind spiked samples were used to ensure that the validated method is capable of correctly identifying multiple compounds per sample in different matrices. Additionally, blind spikes were used to test the effectiveness of extraction methods used throughout the present research. Blind spikes were treated identically to how case samples would be prepared and tested. Finally, authentic urine specimens were also collected and tested using the validated method to identify the presence of NPS and to ensure that there were no interferences by common drugs of abuse and medications that were likely to be present in authentic samples.

2. LITERATURE REVIEW

2.1 Novel Psychoactive Substances

Novel psychoactive substances (NPS) have been gaining popularity over the past few decades by consumers, sellers, and manufacturers. 14 Novel psychoactive substances are also known as "legal highs," "designer drugs," and "spice." According to the Controlled Substances Act (CSA) passed in 1970, drugs of abuse are scheduled on the basis of their structure, pharmacological effect, potential for abuse, and accepted medical uses. 15 These compounds can fall under one of five schedules. Schedule V compounds have a very low potential for abuse and many accepted medical uses. Schedule IV and III substances have a low potential for abuse and a moderate potential for abuse, respectively. Schedule I and II compounds have high potential for abuse and no or limited medical use, respectively. Novel psychoactive substances are specifically created to evade drug laws, as a consequence of their structural differences from common, scheduled drugs of abuse. These structural changes can be as simple as the addition of a methyl group, a small change that renders the compound novel and, therefore, unscheduled. Prime examples of this are the NBOMe compounds, which all have the same base structure but with the simple addition of a halogen atom that creates a new compound that is no longer scheduled. 16

An NPS is a compound that is structurally and pharmacologically "substantially similar" to a Schedule I or II compound. The Drug Enforcement Administration (DEA) has been making an effort to schedule NPS through regulations such as The Federal Analog Act passed in 1986, which stated that new compounds can be scheduled if they are proven to be structurally and pharmacologically similar to a Schedule I or II compound. Although the act was helpful, proving structural and pharmacological similarity can be difficult. Not

all NPS have the same structural backbone as the common drugs of abuse to which they are designed to have similar pharmacological effects. A prime example of this are the synthetic cannabinoids. The structures of many synthetic cannabinoids vary greatly from that of Δ^9 -tetrahydrocannabinol (THC), which is the active component in marijuana. Synthetic cannabinoids can have extremely varied structural characteristics and are divided into separate classes within the general class. Some of these subclasses include cyclohexylphenols, naphthoylindoles, phenylacetylindoles, and indole carboxylates.¹⁷

There are efforts for temporary scheduling of NPS that are capable of leading to permanent scheduling within two years and adding an additional 12-month extension to continue research efforts. It is generally very difficult to monitor the distribution of NPS, since they are often sold online under the label of "not for human consumption." It is not uncommon for NPS to be developed for research purposes but then diverted for illicit use, with their potential for abuse discovered at a later time. There are published books and online forums that give step-by-step instructions on the synthesis of different NPS, which only makes it easier for illicit drug manufacturers. Unfortunately, as a result of all the resources available to clandestine laboratories, it is difficult for entities such as the DEA to act proactively to schedule NPS.⁵

The speed at which drug manufacturers are able to place structurally different NPS on the market also makes it very difficult for forensic toxicologists to detect all of the different possible compounds that can be found in a specimen. New compounds that are found on the market and not detectible by current methods can then lead to false negatives, which is undesirable from a clinical and forensic viewpoint. It is important to have a method capable of detecting the majority of NPS that are available to consumers. Another issue that

forensic laboratories face when screening for NPS is that it is impossible to develop and validate methods as quickly as manufacturers can create new structures.

2.2 Classes of Novel Psychoactive Substances

There are a wide variety of NPS that have been recorded in literature and which can be placed into various drug classes depending on structure and pharmacological effects. Novel psychoactive substances can generally be classified according to the following structural categories; benzodiazepines, cathinones, phenethylamines, synthetic cannabinoids, synthetic opioids, and tryptamines. Different classes of NPS need to be treated differently for analysis depending on the structure and the chemical properties of their functional groups. For many NPS, the mechanism of action and pharmacological effects are unknown. The lack of understanding around NPS poses a health risk, since people are ingesting compounds that are not well understood. It is not uncommon for NPS to be more potent than many common drugs of abuse, contributing further to their status as health hazards. Different classes of NPS to be more potent

All drug classes of NPS are of public health concern. There are reported overdoses and in some cases fatalities for the majority of them in the past decade in the U.S. and around the world. ^{19,20} There is typically little to no reliable pharmacological information available for these compounds and many of their mechanisms of actions are not well understood. For example, there have been numerous fatalities due to NBOMes, which are part of the phenethylamine class of NPS. ^{16,21,22} Synthetic benzodiazepines have also been detected in forensic cases, with the most common compounds being flubromazolam and flubromazepam. Often, illicit benzodiazepines are seen in cases in combination with THC and amphetamine. ²³

Three of the most prevalent classes of NPS are synthetic cathinones, synthetic cannabinoids, and synthetic opioids. Fatalities involving these drug classes have been reported all over the world, some of which can be considered to be epidemics. There have been cases of mass fatalities for all three of these categories in the U.S. alone. The phenomenon of increased potency of some of these compounds as compared to typical drugs of abuse is not well appreciated by users, further leading to overdoses and related fatalities. The most extensive research on NPS has been conducted on these three classes, resulting in a number of review articles focusing on use, mechanism of action, structures, and pharmacological effects. 24-26

2.2.1 Synthetic Cathinones

Synthetic cathinones, also referred to as "bath salts," have been abused in the U.S. and around the world for many years and are still being identified in clinical and forensic case samples.^{27,28} Synthetic cathinone abuse can be seen in both impaired driving cases and fatal intoxications.²⁹ Synthetic cathinones can vary considerably in structure, and, because of their varied structures, they can also differ in mechanism of action and pharmacological effects.³⁰ Synthetic cathinones act upon the monoamine transporters for dopamine, noradrenaline, and serotonin.³¹ As a result of variable structures of synthetic cathinones, their affinity for the transporters and ability to inhibit reuptake of these neurotransmitter molecules can vary greatly. These differences can lead to complex combinations of dopaminergic, adrenergic, and/or serotonergic effects in users.³² These effects contribute to the stimulant and mood-altering feelings associated with synthetic cathinone abuse.

As with many NPS, there is little to no pharmacological information available on synthetic cathinones. The pharmacology of synthetic cathinones is not well understood,

however, synthetic cathinones can exhibit similar effects to amphetamines. Side effects from synthetic cathinone use in high doses can include hallucinations, delirium, hyperthermia, and tachycardia. Chronic users can exhibit extreme agitation and violent behavior associated with "excited delirium." Additional side effects can include dehydration, muscle damage, and organ failure. Heavy synthetic cathinone abuse in some cases can lead to death.

Detecting synthetic cathinones in human specimens poses numerous difficulties. For example, it is known that cathinones are not stable in plasma.³³ There are issues associated with the quantitative repeatability of synthetic cathinone test results. The stability and changes in concentration that can occur during storage are not well understood for synthetic cathinones, leading to issues with detection and quantification.³⁴ Another issue with analysis is that synthetic cathinones can undergo *in situ* degradation when analyzed using GC-MS, because of their low boiling point and thermal instability.³⁵ Synthetic cathinones need to be treated properly to ensure that they are not degraded during sample preparation or analysis.

2.2.2 Synthetic Cannabinoids

There have been findings of synthetic cannabinoids presenting much higher potencies than THC, which can lead to an increased number of overdose cases.³⁶ Synthetic cannabinoids are considered dangerous and the Center for Disease Control and Prevention (CDC) has posted warnings on their website suggesting that people under no circumstances use anything they purchased after March, 2018 because of recorded cases of extreme bleeding after use of synthetic cannabinoids.³⁷ Synthetic cannabinoids can be sprayed onto plant material and smoked, vaped from a liquid form, or used in different foods and

consumed orally. They can be found in convenience stores, but more often are purchased online.⁷

Not all synthetic cannabinoids were developed for illicit distribution; many were developed as part of legitimate scientific research. Some prime examples are the JWH compounds, which were discovered in the laboratory of John W. Huffman at Clemson University. The JWH compounds were synthesized to study their reactions with cannabinoid receptors in the brain. The initial research was published in 1998 however, JWH 018 was not found being used as an alternative to cannabis until 2008. 18,38

Synthetic cannabinoids can be subcategorized into several different classes determined by their structure. These subclasses include, but are not limited to, cyclohexylphenols, naphthoylindoles, benzoylindoles, phenylacetylindoles, alkoylindoles, indole carboxylates, indole carboxamides, and indazole carboxamides. ¹⁷ Cyclohexylphenol cannabinoids are bicyclic derivatives of classical cannabinoids exhibiting the most similar structure to THC. ¹⁷ Naphthoylindoles are considered to be the "first generation" of synthetic cannabinoids and were originally identified in herbal substances. The other subclasses are newer synthetic cannabinoids that arose from changing the naphthoyl moiety with varying aromatic and non-aromatic groups. There are practically endless possibilities of structures for synthetic cannabinoids to exhibit.

The cannabinoid system in the human body has naturally occurring neurotransmitters known as endocannabinoids (EC). Many synthetic cannabinoids act on the same receptors as THC, however there are hundreds of possible structures, some that vary greatly from THC. Similar to natural cannabinoids, synthetic cannabinoids compete with endogenous EC at CB receptor sites. The most common receptors in the cannabinoid system are CB₁

and CB₂.³⁹ The CB₁ and CB₂ receptors are located in different areas of the body and responsible for different effects once activated. The CB₁ receptor is expressed primarily in the brain and is associated with the psychotropic effects of THC.³¹ In contrast, the CB₂ receptor is primarily a peripheral receptor expressed in the immune, gastrointestinal, and other organ systems, although recent work has also reported the presence of CB₂ receptors in the brain. As a result of the complexity of the cannabinoid system in the body it is difficult to determine the targeted receptor and clinical effects of synthetic cannabinoids.

Synthetic cannabinoids exhibit many effects similar to commonly used cannabis products, although there are some differences. Physical effects caused by synthetic cannabinoids can include, but are not limited to, tachycardia, anxiety, hallucinations, acute kidney injury, convulsions, and psychosis. 31,40 Synthetic cannabinoids have been associated with severe toxicity and deaths by consumers leading to a number of mass intoxication reports in the United States between 2013 and 2015. 17 An example of an outbreak occurred in a small radius in New York City involving 33 intoxications due to AMB-FUBINACA. 41

Synthetic cannabinoids can be metabolized into phase I and phase II metabolites. The metabolism of some synthetic cannabinoids has been studied and metabolites are readily found in clinical and forensic toxicological samples when testing urine.⁴² In fact, it is common to only detect metabolites of synthetic cannabinoids in urine rather than detecting the parent compound. Therefore, it is important that methods designed for the detection of synthetic cannabinoids also includes metabolites.

2.2.3 Synthetic Opioids

Since 2013 there has been an opioid crisis in the United States and synthetic opioids, especially fentanyl derivatives, are part of the epidemic,.⁴³ Synthetic opioids are often much cheaper than heroin and other opioids, which is a major factor as to why they show up unknown to the consumer. 44 Not only are synthetic opioids inexpensive, they are also easily purchased online anonymously from countries such as China. Illicit drug sellers will purchase synthetic opioids online and, unknown to their customers, they lace heroin with it to make even more of a profit. It is important to realize that fentanyl, carfentanil, and other fentanyl derivatives are much more potent than other opiates and opioids like heroin and morphine. 43,45 The fact that many fentanyl derivatives are so potent has led to an overabundance of synthetic opioid related overdoses and deaths. A large part of the opioid crisis revolves around drug users not knowing that heroin has been laced with more potent synthetic opioids, leading to fatalities. 46 During 2013 in Rhode Island, Pennsylvania, and North Carolina there were many fatal overdoses due to acetylfentanyl. However, acetylfentanyl was not scheduled until 2015 by the DEA. 47,48 The DEA reported a 300% increase in fentanyl cases from 2014 to 2015. Additionally, the CDC reported a 72% increase in synthetic opioid related deaths in that same time frame.⁴³

New fentanyl derivatives continue to appear in the U.S. and Europe. Just like all other NPS, they are difficult to detect as new structures frequently appear in clinical and forensic toxicological cases. For example, during the years 2016 and 2017, over ten new fentanyl derivatives appeared in the U.S. contributing to overdoses and fatalities. Some examples include 4-methoxy-burtyryl-fentanyl, o-fluoro-fentanyl, tetrahydrofuranylfentanyl, and cyclopropylfentanyl.⁴⁵ The prevalence of synthetic opioids in the U.S. is a public health

threat. It is important to be able to detect them and control them in order to combat the opioid epidemic in the U.S. and elsewhere.

Fentanyl and many of its derivatives act upon the μ -, δ -, and/or κ -opioid receptors in the human brain. Common effects of synthetic opioid abuse include respiratory depression, miosis, and a changed mental status. There is a lack of research around the pharmacokinetics and pharmacodynamics in humans for illicit synthetic opioids. The information that does exist is derived primarily from animal models. What is known is that many fentanyl derivatives have increased potency because of their lipophilic nature, ability to cross the blood brain barrier, and their high receptor affinity. As an example, U-47700 is 7.5 times more potent in binding to the opioid receptor than morphine. The increased potency exhibited by many synthetic opioids can lead to life-threatening respiratory and central nervous system depression. As a result of increased potency, many synthetic opioids require a higher dose of naloxone to counteract the opioid effect, which is not always known at the time of an overdose.

2.3 Identification of Drugs of Abuse and Novel Psychoactive Substances

Biological matrices for toxicologic analysis can include but are not limited to urine, oral fluid, exhaled breath, serum, plasma, whole blood, breast milk, meconium, and hair. The matrix chosen for analysis depends on the type of test being performed, what the analytes of interest are, what fluids are can reasonably be collected, and the window of detection desired. For example, breast milk and meconium are tested when a new mother is suspected to be abusing illegal drugs and there is a possibility that the baby was exposed *in utero*. ⁴⁹ Hair can be used to determine long term abuse since it is possible that the analyte of interest stays in the hair as it grows. Segmental analysis can be performed to determine

abuse during a certain time frame in someone's life.⁵⁰ Different matrices have different windows of detection that can range from minutes to potentially years.

Urine and blood are typically used for routine testing for drugs of abuse (i.e., work place testing, rehabilitation, child welfare tests, and drug-facilitated assault).⁵¹ Urine is often preferred over blood for routine testing for a number of reasons. Urine has a longer window of detection than blood; urine's window of detection can last days while blood is generally only a few hours. The collection process for urine is less invasive than blood and often results in a higher sample volume. A higher sample volume can be beneficial since there will be enough sample to retest if needed. Additionally, metabolites found in urine are concentrated, making them easier to detect. Even with many benefits, urine does have disadvantages when it comes to quantification.⁵² Since the metabolites are concentrated in the urine it is difficult to calculate the actual amount of parent compound in the system.⁵³ Consequently, urine is a useful matrix for screening methods, but blood is often preferred when quantitation is important. Blood has some advantages over urine for both screening and quantitation.⁵⁴ Since quantitation is easier using blood samples, screening and quantitation can be done with using just one matrix. Additionally, compared to urine, blood levels often correlate with impairment, which is generally not true for urine. Additionally, the body regulates blood volume and only allows it to vary within a small window.⁵⁴ Finally, parent drugs of abuse can often be detected in blood prior to metabolism, unlike urine where metabolites are more common.

Urine and blood are the most common sample matrices used for the detection of NPS.

When urine is the matrix being analyzed it is important that metabolites are screened for, especially when synthetic cannabinoids are of interest. Typically, only metabolites of

synthetic cannabinoids are found in urine, therefore looking for parent drugs only may not be sufficient. Analysis of synthetic cannabinoid metabolites in urine can be challenging, due to their multiplicity (often up to two dozen metabolites may be present) and possible instability. Blood can be used as an alternative matrix to urine for NPS with longer half-lives where it is more pertinent to screen for the parent compound. Unfortunately, most NPS are not well understood or researched, therefore the metabolism and metabolites of many NPS are not known. Since many metabolites are unknown, blood may be the desired matrix since the parent ion can be screened for. It is important to consider what NPS a method is capable of screening for when choosing the ideal matrix to use.

2.3.1 Traditional Forensic Toxicological Analysis

Toxicological sample analysis for forensic and clinical laboratories typically requires two steps. The first stage is screening for a wide variety of drugs of abuse, while the second stage typically involves confirmation with a more selective and sensitive method of detection. Only samples that show a positive result on the screening method move on to be confirmed via the second analysis approach. This poses a problem for the detection of NPS, since many screening methods are not designed to specifically detect them. Therefore, samples that may be positive for NPS may be overlooked and never confirmed.

Forensic toxicological analysis is well understood and established for common drugs of abuse. The Substance Abuse and Mental Health Services Administration (SAMHSA) is an agency under the Department of Health and Human Services. SAMHSA has developed the term SAMHSA 5, which are five drug group analytes that are typically tested for in clinical and forensic toxicology laboratories. These five groups of drugs include phencyclidine (PCP), cocaine, amphetamines, THC, and opiates. Forensic and clinical

laboratories have well established protocols for testing the SAMHSA 5, unfortunately those protocols are inadequate for assessing the presence of NPS that may be found in case samples.

2.3.2 Immunoassays

Immunoassays are one of the most common screening tools used in toxicology, followed by the use of GC-MS or LC-MS for confirmation. Immunoassays are an effective, inexpensive, and rapid screening method for common drugs of abuse but have their disadvantages when it comes to screening for NPS. ⁵⁶ Immunoassays are designed to react with a specific structure or functional group. Since NPS are constantly undergoing structural changes, it is unlikely that they will show cross reactivity with immunoassays commonly used in forensic and clinical toxicology.

Frequently used immunoassays include enzyme linked immune sorbent assay (ELISA) and enzyme multiplied immunoassay technique (EMIT). Unfortunately, since NPS continuously undergo structural changes it is difficult to detect new compounds emerging on the market. There are disadvantages when using immunoassays to screen for NPS. Immunoassays work through an antigen-antibody interaction, which relies on the structure of the analyte in order to show cross reactivity, which is required for a positive result. Typically, each immunoassay only cross reacts with a small number of compounds, since the antigen-antibody interaction must be specific in order to be selective. When new NPS appear on the market they often are missed by immunoassay screenings since the antibody often is not capable of reacting with a structure different than originally intended.

There have been numerous research papers published that tested the cross reactivity of NPS with different immunoassays.⁵⁷⁻⁵⁹ An example is the work accomplished by

Swortwood et al. demonstrating the lack of cross reactivity between various NPS and commonly used immunoassays. ⁶⁰ Beck et al. published research looking into the cross-reactivity of NPS with commercially available immunoassays. Their findings revealed that many of the NPS tested do cross react with commercial immunoassays, leading to an issue of potential false positives. They proposed that these commercial immunoassays could potentially be used to detect for the NPS that showed cross-reactivity. ⁵⁹ This can pose some issues since compounds are cross-reacting with immunoassays that are not designed to detect them, making the immunoassay less selective and further needing to rely on secondary testing for confirmation.

Recently, there have been immunoassays developed specifically for the detection of NPS, but the creation of new immunoassays can be expensive and a very lengthy process. 61,62 In 2011 Wang et al. published data on an immunoassay designed to detect fentanyl in urine. 63 However, as different fentanyl derivatives became a concern, the immunoassay did not show cross reactivity with the derivatives. Randox Toxicology does have some commercial ELISAs for fentanyl, MT-45, AH-7921, and U-47700, however, this is a small subset of NPS that are available. Ellefsen et al. validated a commercially available immunoassay for synthetic cathinones in urine showing that there is substantial cross-reactivity with a number of synthetic cathinones. 64 Because of the high risk of false negatives and false positives for NPS using commercial immunoassays, a reliable screening method needs to be available that can easily be adapted for the everchanging structures of NPS that can be seen in clinical and forensic cases.

2.3.3 Instrumental Analysis

Instrumental analysis tends to be more selective and sensitive than other analysis methods. The most common instrumentation used in clinical and forensic toxicology laboratories are GC-MS and LC-MS. Such instrumentation can provide high through-put and more sensitive and selective results than other screening methods. Instrumental analysis is most commonly used for confirmation and is also capable of quantitating drug compounds in biological matrices. Instrumental analysis can also be used for screening purposes.

2.3.3.1 Gas Chromatography Mass Spectrometry

Gas chromatography mass spectrometry (GC-MS) has been the gold standard in toxicological screening for many years. Gas chromatography is well understood and established in many laboratories. It is a rugged, selective, and sensitive technique that can be used for a number of applications including screening for drugs of abuse.

Gas chromatography can be coupled to different mass spectrometers for a variety of detection purposes. There are different types of sources that can be utilized for GC-MS. Ionization sources can either be hard or soft. Hard ionization sources are extremely energetic and result in extreme fragmentation. Soft ionization techniques only produce ions of the molecular species being analyzed.⁶⁵ There are three ionization sources that are typically used in GC-MS, including electron ionization, chemical ionization, and field ionization.⁶⁵ Electron ionization, chemical ionization, and field ionization are generally considered to me hard, intermediate, and soft ionization techniques, respectively.

Gas chromatography MS is excellent for the detection of volatile, non-polar, and thermally stable compounds. However, many other compounds require derivatization

before analysis. Gas chromatography MS has increased resolving ability and selectivity as compared to LC-MS. Even though there are a number of benefits associated with GC-MS, it is also has disadvantages that need to be considered when determining the appropriate analysis technique for drug compounds in biological fluids. Depending on the matrix of the sample that is being tested, GC-MS may require extensive sample preparation such as derivatization before analysis.

2.3.3.2 Liquid Chromatography Mass Spectrometry

Recently, many laboratories have moved towards using liquid chromatography mass spectrometry (LC-MS) for clinical and forensic toxicological analysis.^{66,67} There are a number of benefits of using LC-MS over GC-MS for biological samples. One benefit is the ease of sample preparation, since there is no need for derivatization. Liquid chromatography MS is a very good technique for the detection of non-volatile, polar, and thermally-labile compounds. This is important because many drugs of abuse and NPS fall into this category of analyte. These types of compounds need to be analyzed using a direct ion source. These sources can either be in liquid phase or solid state. Analytes are in a liquid state for liquid phase ionization and introduced to the source using nebulization.⁶⁵ Examples of liquid phase ionization include electrospray ionization, atmospheric pressure chemical ionization, and atmospheric pressure photoionization.

Electrospray ionization (ESI) is a very common source used with LC-MS. Originally, ESI was most commonly used for the analysis of proteins, but later it was adapted for other polymers, biopolymers, and small polar molecules.⁶⁵ Electrospray ionization is appealing

for LC-MS since it allows for high sensitivity and can easily be coupled to LC. Electrospray ionization is formed by applying a strong electric field, under atmospheric pressure, to a liquid as it passes through a capillary tube. A high potential difference is applied between the capillary and the counter electrode to acquire the electric field. The field produces a charge build up at the liquid surface at the end of the capillary, which disperses to form charged droplets creating a Taylor cone.⁶⁸ The droplets then pass through either an inert gas or a heated capillary to remove the remaining solvent. Figure 1 is a schematic of the ESI process.

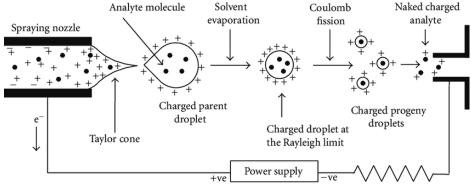


Figure 1. Represents the ESI process ⁶⁸

Most commonly, tandem mass spectrometers are used in forensic toxicology laboratories for screening and confirmation of drug compounds in biological matrices. Triple quadrupole mass spectrometers (QqQ-MS) are one example of a tandem mass spectrometer that is commonly used in forensic toxicology laboratories. The first quadrupole sifts out a precursor ion, the second is a collision cell for fragmentation, and the third selects the product ions for detection. Figure 2 is a schematic of a triple quadrupole mass spectrometer.

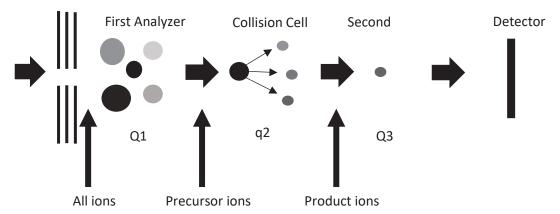


Figure 2. Schematic of a triple quadrupole mass spectrometer showing the function of each quadrupole.

There are four main scanning modes that can be used with tandem mass spectrometry. These scanning modes include product ion scan, precursor ion scan, neutral loss scan, and selected reaction monitoring (SRM). In product ion scan mode, specific precursor ions (*i.e.*, specific m/z ratio) are selected for in the first quadrupole, then they go through fragmentation, and finally the third quadrupole scans for all precursor ions resulting from the chosen product ion. In precursor ion scan mode, the precursor ions are scanned for in the first quadrupole and then after fragmentation specific product ions are targeted and looked for in the third quadrupole. In neutral loss scan mode, all precursor ions are scanned for in the first quadrupole, they undergo fragmentation and then the third quadrupole is offset by a selected neutral loss and scanned. Lastly, during SRM, the first and third quadrupole both have m/z ratios that have been targeted for. Selected reaction monitoring can either be single reaction monitoring, which targets one precursor ion and one product ion or multiple reaction monitoring (MRM) targeting multiples transitions of each precursor ion.

There are two main acquisition techniques associated with tandem mass spectrometry, targeted and non-targeted. Targeted methods can provide extremely low LOD and are ideal for quantification.⁶⁹ Targeted analysis in forensic toxicology labs is often accomplished

using an MRM method and LC-QqQ-MS.⁶⁹ Most MRM methods target two to three transitions per analyte of interest. When using MRM, analytes of interest are detected in samples through the comparison of retention times and ion ratios. Targeted MS/MS approaches typically require database searches or library matches. There are LC-MS libraries available containing a large number of forensically significant compounds. Some examples of libraries and databases are the Wiley Registry MSMS and the NIST 11 MSMS library.⁷⁰ Dresen et al. developed an ESI MS/MS library containing 800 forensically relevant compounds in 2006 and added an additional 453 compounds in 2009.^{71,72} Electrospray ionization MS/MS libraries are widely used in clinical and forensic toxicology.

There are several libraries available for both low resolution and high-resolution MS instruments. Compounds of interest are typically identified in clinical and forensic toxicological samples on the basis of library matches.⁶⁷ Therefore, in order to identify any analyte of interest, it must be in available libraries and/or databases. Non-targeted analysis using HRMS is possible; however, it is not well established in forensic toxicology laboratories at the present time. While non-targeted analysis may become more routine in clinical and forensic toxicology laboratories in the future, current approaches generally utilize available databases and libraries to identify NPS in case samples.

As an alternative to traditionally used low resolution (unit) mass spectrometers, high resolution mass spectrometers (HRMS) are also used in some forensic laboratories for screening purposes. HRMS has increased in popularity over the past decade because of increased selectivity over low resolution MS. There are several reviews and research articles published focusing on HRMS for clinical and forensic toxicology applications.⁷³-

⁷⁶ Time of flight (TOF) and orbitrap are key examples of tandem HRMS. Disadvantages of HRMS for clinical and forensic toxicological analysis include the cost of the instrumentation, complexity of data analysis software, and the need for a skilled operator.⁷⁷ Regardless, HRMS is an excellent technique for screening for drugs of abuse. However, low resolution LC-MS/MS techniques (*i.e.*, LC-QqQ-MS) are still the standard in many forensic laboratories for quantitation.⁶⁶

In 2010 Wohlfarth et al. published a paper describing a LC-MS/MS method for detecting a number of NPS in serum. The classes of NPS included in their work were synthetic amphetamines, trytamines, and piperazines. They were able to screen for a total of 35 NPS.⁷⁸ Extensive research on screening and confirmatory methods for use in detecting NPS in different biological matrices has been done since then. Ammann et al. created methods for the detection and quantification of NPS in blood, specifically targeting synthetic cannabinoids and designer cathinones.^{79,79} Adamowicz and Tokarczyk developed a method for the rapid screening of 143 NPS by LC-MS/MS. The compounds they focused on varied widely in drug class.⁸⁰ A screening and quantitative method was designed by Glicksberg et al. to detect synthetic cathinones in urine and whole blood using LC/QTOF. Their method was designed to detect 22 NPS, which is a small subset of the NPS that have been reported.⁸¹ Swortwood et al. created a method for the LC-QqQ-MS capable of screening for 32 cathinones and tryptamines in serum.⁸²

Work has also been done focusing on the detection of synthetic cannabinoids and their metabolites in urine using LC-MS/MS. 42,83 These are examples of class-based methods; with the number of NPS currently available and their varying classes it is important that there exists a more comprehensive method. There are a number of methods that have been

created that are capable of screening for a much higher number of NPS that are not class focused. For example, recently Patridge et al. created and validated a method for the screening of 320 compounds, including several NPS, using LC-QTOF-MS. However, Patridge's method was only designed to quantitate 39 of the 320 compounds. Vaiano et al published a screening method for 64 NPS in blood using LC-MS/MS. The importance of Vaiano's research was its application to real case samples. Vainano's research is a prime example of the applicability of LC-MS/MS for screening NPS in biological matrices. Work has been published suggesting that LC-MS/MS is a beneficial alternative to immunoassays for screening many drugs of abuse for forensic toxicology.

An increased number of NPS have been detected in clinical and forensic toxicological samples over the past two decades and extensive research has been accomplished in order to combat the detection issues that are associated with NPS. However, there are still several gaps in the research revolving around the detection of NPS. Many of the published methods are only class focused and can only detect a small subset of the possible NPS in that class, especially for synthetic cannabinoids. Even though there are more comprehensive methods available, many of them lack the ability to quantify samples. With the quantity of NPS that are available to consumers and their potential to cause overdose toxicity and death, it is important to have a comprehensive screening and confirmatory method for NPS.

2.4 Extraction Methods

2.4.1 Extraction Methods for Common Drugs of Abuse

Toxicological analysis is completed by analyzing an array of biological fluids, each requiring extraction or purification to detect the analytes of interest. The most effective

extraction technique highly depends on the matrix the sample is in and the analytes of interest. Some commonly used extraction methods include dilute-and-shoot, crash-and-shoot, liquid-liquid extraction (LLE), and solid phase extraction (SPE).⁵⁵

Matrix effects are of major concern when deciding on a proper extraction and detection methods for different drugs of abuse from biological matrices. The ionization step in LC-MS is susceptible to matrix effects. 67,87,88 Matrix effects are caused by the presence of coeluting compounds that can increase or decrease the signal of the analyte of interest. An increase of signal is known as ion enhancement and a decrease of signal is referred to as ion suppression. Matrix effects are not always detrimental to an LC-MS method, but can be an issue when detecting analytes of interest in the lower limits of detection and quantitation of the method or when accurate determination of concentration is important (e.g., driving under the influence cases).

Dilute-and-shoot is a common method used in forensic toxicology laboratories for the analysis of urine samples, which involves diluting urine samples with water before analysis. The dilution of the urine samples is necessary to protect instrumentation from the high salt concentration that can be present in urine. The dilution aids in decreasing potential matrix effects in the urine samples although it does not remove them. Crash-and-shoot involves denaturing and precipitating out proteins from whole blood, plasma, or serum samples. This is done by adding cold solvent to the sample and then centrifuging the sample to pellet and remove cellular material and proteins. The supernatant can then be used for analysis. The addition of the solvent will remove most proteins that could damage instrumentation and/or cause matrix effects.

2.4.2 Solid Phase Extraction

Solid phase extraction (SPE) is a common extraction technique used in forensic toxicology labs. Solid phase extraction is a robust technique that is capable of removing the majority of matrix interferences from various biological matrices, including urine, blood, and hair. Solid phase extraction is composed of four main steps; conditioning, loading, washing, and eluting. Conditioning is done to wet and alter the pH of the extraction cartridge so that the analytes of interest are capable of attaching to the cartridge during the loading process. Cartridges can be made of different adsorbent materials, all of which have different uses. The loading step is completed by slowly running the sample through the cartridge. Washing is done in order to remove any unwanted compounds/substances from the cartridge before elution. Elution occurs when the analytes of interest are removed from the cartridge and recovered in a solution that can then be analyzed and which should be free of most of the contaminants originally present in the complicated matrix.

Solid phase extraction is well understood and researched for common drugs of abuse. Applications of SPE for NPS are less studied and typically are adaptations of protocols for common drugs of abuse of similar classes. Since many NPS have undergone structural alterations changing their chemical interactions, Solid phase extraction protocols may need to be altered in order to properly extract NPS from different matrices. Solid phase extraction relies heavily on the chemical structure of the analytes of interest in order to retain them on the SPE cartridge and to elute them during the proper stage.

2.4.2.1 Online Solid Phase Extraction

Online SPE is an alternative to classical SPE which is designed to decrease the time and overall cost of extracting compounds from various matrices. The extraction method is both automated and in line with the instrumentation, which eliminates a number of transfer steps, which can result in increased recovery of the analytes of interest. Often, online SPE is used as an additional cleanup step for environmental water samples. ⁸⁹ However, work has been done with online SPE for the extraction of drugs of abuse. Heuett and co-workers developed an online SPE method for the extraction of common drugs of abuse from waste water. ⁹⁰ Moosavi et al. developed an automated SPE method for the extraction of thiopental from plasma. ⁹¹ Many of the developed methods are not specifically designed to be implemented into forensic and clinical toxicological laboratories. There is one example of work that has been done focusing on NPS using online SPE, published by Lehman et al. ⁹² Their work focused on the extraction of 74 NPS from serum using online SPE LC-MS/MS. These are examples of the usefulness of online SPE for the extraction of drugs of abuse from biological matrices.

There a number of benefits to online SPE, but it is not without its challenges. Online SPE can be very complex when developing a new method, has potential for sample loss, and sample can be retained on cartridges, which can also lead to carry over. Online SPE is also limited to the available cartridges for the system, which are not as varied as the options for classical SPE.

2.4.3 QuEChERS

The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction technique was originally developed in 2003 by Anastassiades et al. to extract pesticides from a wide variety of produce.⁹³ Since then many environmental laboratories have utilized QuEChERS for different complex matrices, including food, soil samples, and invertebrates.⁹⁴⁻⁹⁶ In general, QuEChERS is an ideal extraction method for extremely dirty

and complex samples. The QuEChERS technique was originally designed as a two-step process. The first is a drying and partitioning step, while the second step involves dispersive SPE (d-SPE).⁹³ During the first step, acetonitrile is added to the sample so that liquid-liquid partitioning can be performed by adding anhydrous magnesium sulfate and sodium chloride. Once the first step is completed, a specific volume of the acetonitrile layer is removed and added to MgSO₄ and a sorbent (typically primary secondary amines; PSA) is added to accomplish d-SPE.

Companies such as Agilent Technologies and UCT have developed commercial QuEChERS kits for extraction with various applications, typically advertised for environmental samples, which require large sample volumes. However, some manufacturers do sell QuEChERS kits compatible with small sample sizes.

The QuEChERS approach has also been employed in forensic applications using a variety of biological matrices including whole blood and liver tissue. 97-99 Different research groups have tested a number of different approaches using different sample sizes, combinations of salts and sorbents, and one and two step methods. In 2013, Matsuta et al. designed a one-pot extraction method for 13 compounds of various classes and metabolites in blood. Matsuta's work was one of the earlier examples using QuEChERS for a forensic application. Westland and Dorman also published work in 2013 revolving around using QuEChERS for biological matrices. Their work focused on extracting benzodiazepines from sheep blood and human urine. Soon after, Usui et al. published their QuEChERS method for extracting drugs of abuse from liver samples. Their method was applied to forensic toxicological case samples, showing the potential of QuEChERS for case work. Anzillotti et al. designed a cleanup up method for drugs of abuse and benzodiazepines

using QuEChERS, showing further applications of QuEChERS in the field of forensic toxicology. 101 Dulaurent et al. designed a QuEChERS approach for a broader set of drug classes including opiates, amphetamines and cocaine in whole blood. 102 Recently Dybowski and Dawidowicz published a QuEChERS method for Δ^9 -tetrahydrocannabinol and its metabolites in whole blood. 103 Pouliopoulos et al. designed a QuEChERS approach for the detection of psychotropic drugs in postmortem blood samples. 104

The publications described above show the potential of QuEChERS in the field of forensic toxicology for the extraction of drugs of abuse from various biological matrices. There are advantages and disadvantages to this approach as described in current literature. Some of these methods require a large volume of sample, which is not ideal for case work. A mini one-pot approach is ideal for forensic applications. Case work samples usually have a limited volume to work with and require high throughput. Using a mini one-pot approach limits the amount of sample needed, cuts down on time and transfer steps, which makes it an ideal alternative extraction technique for forensic toxicology samples.

2.4.4 Evaluation of Extraction Techniques

All of the extraction techniques discussed need to be evaluated and optimized for NPS and compared to determine the benefits and costs associated with each method. There is published literature on the use of SPE for the extraction of NPS from blood and serum. 75,78,82 The majority of methods published for the detection of NPS in serum or blood utilized SPE or a form of protein precipitation. 42,80,82,105 There is very little published data solely focusing on the extraction of NPS from biological fluids, the focus is typically on the detection method. Little research using online SPE and QuEChERS has been reported for the extraction of NPS from biological fluids. Lehmann et al. published a method

capable of detecting 74 NPS using in-line SPE LC-MS/MS. Lehmann's research is one of the few examples of the use of automated SPE for the extraction of NPS. 92 It is important that the usefulness of these techniques be tested for the extraction of NPS so that they can be implemented into forensic toxicology laboratories. It is not always possible to use a method designed for common drugs of abuse for NPS, often times they need to be optimized specifically for the extraction of NPS. Optimized extraction techniques for NPS resulting in increased recovery of NPS from biological matrices can be beneficial for forensic toxicological laboratories.

3. DEVELOPMENT OF A DYNAMIC MULTIPLE REACTION MONITORING METHOD

3.1 Introduction

Novel psychoactive substances are a global health hazard. Novel psychoactive substances are structural alterations of drugs of abuse that are manufactured in order to evade drug laws.² The detection of NPS poses difficulties for clinical and forensic toxicological laboratories because of the structural alterations. Immunoassays are commonly used for screening biological matrices. However, immunoassays are not capable of detecting the majority of NPS. 82,86 Immunoassays are designed to detect specific drug structures or classes of drug compounds. Therefore, immunoassays are not appropriate for detecting NPS unless specifically designed to do so. There are a few immunoassays capable of screening for a small number of NPS, which still leaves out a large number of NPS that can be found in clinical and forensic toxicological samples. 61,64 As an alternative to immunoassays, MS-based analytical techniques can be used to screen biological matrices for drugs of abuse. Mass spectrometry-based techniques (e.g., GC-MS and LC-MS) typically require a spectral library or compound database in order to screen for compounds. There are a limited number of LC-MS libraries and databases that include NPS. In order to detect NPS they must be included in the spectral libraries and databases for positive matches.

The research presented here reports the collection of MS transitions and development of a comprehensive dMRM method for the detection of 750 chemical compounds, the majority of which can be considered NPS and metabolites. Transitions were collected for all 750 compounds and 76 additional deuterated internal standard compounds. Of the total

number of compounds, a final method was developed to detect 731 NPS and 22 internal standards, with two transitions per compound.

3.2 Method and Materials

3.2.1 Chemicals and Materials

Reference standards for the NPS compounds, including deuterated standards, were obtained from Cayman Chemical (Ann Arbor, MI) as the neat solid material for the majority of compounds, although some were already in solution. Optima LCMS grade methanol (MeOH), acetonitrile, dichloromethane, dimethyl sulfoxide (DMSO), HPLC water, ammonium formate (99%), and formic acid were purchased from Fisher Scientific (Fair Lawn, NJ).

3.2.2 Standards and Sample Preparation

Neat standards (including deuterated compounds) were dissolved in MeOH or DMSO, depending on the analyte's solubility, to achieve concentrations of 1, 2, 5, or 10 mg/mL. From these initial preparations, 10 μ g/mL working solutions were prepared in MeOH for all analytes to be used for transition optimization and method development. In addition, from the 10 μ g/mL solutions, 1 μ g/mL solutions were prepared in methanol for each of the analytes to collect transitions and LC retention times in order to create the final dMRM method. An arginine reference standard from Cayman Chemical was used as a quality control standard and run daily.

3.2.3 Instrumentation and Software

All samples were analyzed using an Agilent 1290 Infinity Binary Pump LC coupled to an Agilent 6460 triple quadrupole MS/MS with Jet Streaming technology and electrospray ionization (ESI) equipped with Agilent MassHunter software version B7.0.

Chromatographic separation was performed using an Agilent Zorbax Rapid Resolution HD Eclipse Plus C₁₈ column (3.0 x 100 mm, 1.8 µm). Data acquisition was performed in dMRM mode using positive ESI. The dMRM method employed two transitions for each analyte and internal standard, which aids in achieving increased selectivity. Using multiple transitions can help in discerning one compound from another if they have similar retention times or coelute, provided that they have uniquely different transitions.

3.2.4 Methods

All standards were initially analyzed by flow injection analysis (FIA; without LC column) by QqQ-MS using the 1 µg/mL working dilution. Diluted standards were individually injected directly into the Jet Stream ESI ion source. Data were collected in positive ion mode using an isocratic mobile phase of 80:20 0.1% formic acid in methanol:5 mM ammonium formate with 0.1% formic acid in HPLC grade water. If FIA was successful, the standards were then analyzed using Optimizer software, which searches for 4 to 10 product ion transitions that are analyzed via an Optimizer Report. The report includes precursor ion, fragmentor voltage, product ions identified, collision energies, and abundances. All compounds that had four or more transitions with ion abundances above 1000 counts were then separated by LC to obtain standardized retention times.

Collected transitions were used to develop a dMRM method. Chromatographic separation was achieved using gradient elution with a flow rate of 0.3 mL/min using 5 mM ammonium formate/0.1% formic acid in HPLC water as mobile phase A and MeOH with 0.1% formic acid as mobile phase B. The gradient used for analysis was as follows: hold at 5% B for 1 min, followed by 5% B to 98% B from 1 to 9.5 min, then hold at 98% B until

16 min, followed by a 3-min re-equilibration at 5% B. The analytical column was held at a temperature of 40°C during separation.

The MS source parameters were as follows: gas temperature, 325°C; gas flow 6 L/min; nebulizer 40 psi; sheath gas temperature 350°C; sheath gas flow 11 L/min; capillary voltage 4,000 V; and nozzle voltage 750 V. Agilent MassHunter Optimizer software was used to determine the ideal data acquisition parameters for MRM mode. A dMRM method was chosen to increase selectivity, using analyte retention times, detection windows (Δt_R), and constant scan cycle time to allow for the detection of multiple analytes in a small window. Analyte detection windows ranged from 0.25 min (*i.e.*, \pm 0.125 min around t_R) to 0.75 min (*i.e.*, \pm 0.375 min around t_R) depending on the analyte.

To collect retention times for method development, individual compounds were injected at concentrations of 1 μg/mL in MeOH at volumes of 3 μL. Separation was conducted over 16 min using an Agilent Zorbax Eclipse Plus C₁₈ Rapid Resolution HD column (3.0 x 100 mm; 1.8 μm) and the LC-QqQ-MS method described above. Retention time data were collected using a dMRM method with all retention times set to 8 min and a window of 16 min so that there was a continuous scan. The "Find by MRM" function of MassHunter Qualitative Analysis software was used to isolate the individual compound from each injected solution and the corresponding retention data were recorded.

3.3 Results and Discussion

Agilent MassHunter Optimizer software was used in order to identify the up to 10 fragments, associated collision energy, and optimal fragmentor voltage for each of the analytes included in this method. Appendix 1 shows the in-house identifier, compound name, chemical formula, precursor ion, transitions, collision energies, and abundances for

all compounds that underwent optimization and were included in the final method. From these data the two most abundant and/or most individualized transitions were chosen for each compound and included in the final dMRM method.

Not all of the compounds analyzed by FIA showed the expected m/z ratio in positive mode. Since positive mode was found to be appropriate for the majority of NPS to be included in this method, any compound that required negative mode ionization was excluded. The majority of compounds that required negative mode ionization were synthetic cannabinoids, with a few exceptions. Some of the excluded compounds include delorazepam, THJ 018, multiple CP cannabinoids, and a few RCS cannabinoids.

The information described above was then used to create a dMRM method capable of qualifying and quantifying the analytes of interest that require positive mode ionization. The LC gradient was chosen to separate as many compounds as possible during a 16-min run. The use of a dMRM method allowed for increased selectivity and for compounds with similar retention times but different transitions to be differentiated. An example would be 25I-NBMD and bromazepam, both with $t_R = 9.00$ min, which could be separately identified as a result of their unique transitions.

The final dMRM method included two transitions each for 750 compounds and 22 deuterated internal standards. Table 1 depicts the breakdown of drug entities included in the final method based on drug class. Table 2 depicts the distribution of compounds in the final method based on molecule type. The goal of this dMRM method was to be as comprehensive as possible, based on available standards, for the detection of NPS in clinical and forensic toxicological samples. Common adulterants found with illicit drug

samples are one of the sub-categories that fall under the "other" category. The method is designed to detect NPS and their common adulterants in case samples.

Table 1. Structural classes for all compounds included in the dMRM database.

Drug Class	Number in Method
Synthetic Cannabinoids	449
Other*	121
Cathinone	112
Phenethylamine	43
Tryptamine	17
Piperazine	8

^{*} includes opioids, amphetamines, benzofuran, and common adulterants

Table 2. Molecule types for all compounds included in the dMRM database.

Molecule Type	Number in Method
Precursor Compounds	470
Metabolites	117
Isomers	128
Analogs	30
Glucuronides	5

The final MRM database included data for 826 individual analytes including 76 deuterated standards (see Appendix). However, the final dMRM method was unable to include transitions for all of the compounds in the database in a single MS run. This limitation is caused by the instrument's ability to collect usable data, which relies greatly on cycle time and dwell time. Dwell time is the amount of time in ms that it takes to collect one transition, while cycle time is the time it takes in ms to collect all transitions associated with a compound.

$$dwell time (ms) = \frac{peak \ width \ (ms)}{(number \ of \ transitions)(number \ of \ points)} \quad (1)$$

Dwell time is determined using equation 1. The issue with having too many transitions (i.e., >800) is that there will not be enough points on the peaks of the data collected in order to quantitate the peak area. Ideally there should be about 20 points on the peak; with 1000+ transitions it is impossible to have enough points while still maintaining a reasonable dwell time. In a dMRM method there is a list of transitions that the instrument needs to scan through. Inclusion of all 826 compounds, with two transitions each, would require 1652 transitions. A specific retention time and window is assigned to every compound. Throughout this window the instrument needs to go through the scan 20 times in order to have 20 points on the peak. For certain compounds, retention time windows overlap, therefore they are sharing the total cycle time and that will change the dwell time for each transition. If the dwell time becomes too low the data will not be reproducible or statistically relevant. There are only so many transitions that can share the same retention window. If there are too many sharing the same cycle time, when the instrument tries to cycle through the transitions 20 times it will be trying to collect data from a peak that has already been eluted, because it cannot cycle through fast enough.

Additionally, when attempting to collect such a high number of peaks in a single 16 min run, the resolution between peaks would be very low. Consequently, since there are limitations associated with dwell time and cycle time, it is not possible to measure 800+ compounds in a single dMRM method. Therefore, in order to use the method described, it is necessary to break it into two separate screening runs. This is needed so that the quality of the resulting data are not compromised. For forensic toxicological laboratories to implement this method, each sample would therefore need to be run twice, resulting in a

32-min rather than 16 min run. This should be acceptable considering the advantages of screening for so many NPS in each specimen.

3.4 Conclusions

The work presented here aimed to create a dMRM method capable of screening for 750 NPS. After undergoing flow injection analysis, it was determined that 729 of the total number of NPS were suitable for positive ion mode. Those 729 NPS were included in the final developed dMRM. The final method is intended to screen for a variety of NPS including metabolites. In order to use this method for forensic purposes it needs to be fully validated.

4. METHOD VALIDATION USING A MIXTURE APPROACH

4.1 Introduction

In recent years, "designer drugs," also known as novel psychoactive substances (NPS), have become of major concern all over the world, especially in the United States. Novel psychoactive substances are compounds that are considered to be "substantially similar" to Schedule I or II substances determined by chemical structure and pharmacological effects, but that have not been scheduled and therefore are not yet "illegal". 106 Suppliers and consumers use NPS to evade established drug laws. Since every small structural change can result in a new NPS, these compounds are constantly increasing in numbers, making it very difficult for clinical and forensic laboratories to keep up with detection and identification. 107 The popularity of NPS continues to increase, as reflected by Internet content, the media, published scientific research, and the types of forensic and clinical cases reported, including reported fatalities and unexpected side effects. 108,109 It is not uncommon for NPS to have a more potent effect than their scheduled counterparts, leading to more cases of overdose and increased negative side effects. A recent example of potent NPS are the fentanyl derivatives that have been seen during the recent opioid crisis in the United States. 43-45 The continuous rise of NPS makes it clear that new detection methods are needed in order to keep up with the changing structures of compounds being abused.

With the increased importance of reliable detection of NPS in forensic casework, research focusing on creating and validating methods capable of detecting NPS has accelerated. 77,82,110 The majority of published methods that focus on detecting NPS fall into two categories; those that provide quantitation of a relatively small number of NPS and those that can screen for (but not quantitate) a larger number of NPS. As a consequence of

the limitations of current screening/confirmatory approaches, methods need to be created that encompass both of the goals discussed above.

There are established guidelines by OSAC that need to be followed so that a toxicological method can be considered validated. There are strict instructions on what parameters need to be validated depending on the overall purpose of the method being validated (*i.e.*, qualitative or quantitative). Peters et al. published additional guidelines on method validation as it refers to forensic toxicological analyses. Forensic toxicology methods must be painstakingly validated and periodically tested to ensure the quality of the results. The main parameters for validation are LOD, LOQ, selectivity, linearity, carry over, bias, precision, freeze/thaw stability, and matrix effects. There are specific ranges of acceptable values that all of these results need to fall into in order to be considered validated. Each compound in a method must be validated for all of the parameters listed. For any method consisting of a small set of compounds it is possible to validate the method one compound at a time, however, it is more efficient to validate methods using a mixture approach.

The present work focuses on the development of a validated LC-QqQ-MS method that is designed to confirm and quantitate 800+ NPS. To fully validate a method of this size, a mixture approach was adopted. Specifically, 826 individual NPS and metabolites were incorporated into 16 non-coeluting mixtures for method validation. The mixture approach was utilized to facilitate timely method validation for such a large number of analytes, since validation of one compound at a time was not feasible. Mixture approaches have previously been used for the validation of screening methods. ^{78,84} However, they are less commonly

used to validate quantitative methods. Typically, only one mixture is used for methods quantitating 40 or less compounds in total.^{80,82,113} The current work employs the mixture approach on a much wider scale, to fully validate a quantitative method capable of detecting a very large number of NPS. The present report focuses on a subset of three mixtures that have been fully validated as a proof-of-concept of this approach.

4.2 Materials and Methods

4.2.1 Chemicals and materials

Reference standards for the NPS compounds, including deuterated standards, were obtained from Cayman Chemical (Ann Arbor, MI) as the neat solid material for the majority of compounds, although some were already in solution. Abbreviations and number association that will be used for a subset of the NPS included in this work can be seen in Table 3, which also separates the compounds into their mixtures. A total of 16 mixtures were designed for method validation, the results of three of those mixtures will be shown here. All other mixtures that have successfully undergone validation can be seen in the Appendix.

Table 3. List of the abbreviations used for the NPS contained in the three mixes used for validation.

#	Mixture 1	#	Mixture 2	#	Mixture 3
1	4-OH MET	26	3,4-DHMA	58	N,N-DMC
2	NMT	27	2-FMC	59	Phenylpiperazine
3	4'-fluoro- α -PPP	28	4-FIC	60	4-hydroxy DiPT
4	4-APDB	29	4-OH MiPT	61	THH
5	4-fluoro PBP	30	Clencyclohexeral	62	MMAI
6	5-MAPB	31	NEB	63	2,3-pentylone isomer
7	3-methyl BP	32	4-MMC	64	(-)-3,4-MDPV
8	4-methyl-α-EAB	33	3-methyl PPP	65	3C-B-fly
9	α-PVP metabolite 1	34	3,4-dimethoxy- α-PVP	66	Para-Fluorofentanyl
10	4-MeO-α-PVP	35	2,3-MDPV	67	PCEEA
11	JWH 200 5-hydroxyindole metabolite	36	4-ethyl-N,N-DMC	68	Benzydamine
12	PCMPA	37	2C-T-2	69	Bromazepam

13	AM2233 azepane isomer	38	PCPr	70	AB-PINACA N-(5- hydroxypentyl) metabolite
14	4-MeO PV8	39	2C-T-4	71	25E-NBOMe
15	Benocyclidine	40	4'-Methylhexedrone	72	Etaqualone
16	25I-NBMD	41	25I-NBF	73	JWH 198
17	AB-005	42	Loperamide	74	AB-FUBINACA
18	Flubromazepam	43	AB-005 azepine isomer	75	(R)-(-)-JWH 018 N- (4-hydroxypentyl) metabolite
19	AM694 N-(5-hydroxypentyl) metabolite	44	A-796260	76	(+)-WIN 55,212-2
20	5-fluoro SDB-006	45	AB-FUBINACA 3-FB isomer	77	JWH 073 6-MeO indole analog
21	JWH 081 N-(5- hydroxypentyl) metabolite	46	JWH 018 N-(5- hydroxypentyl) metabolite	78	JWH 073 2'- naphthyl-N-(1,1- DME) isomer
22	PB-22 6-hydroxyisoquinoline isomer	47	MAM2201 N-pentanoic acid metabolite	79	BB-22 8- hydroxyisoquinoline isomer
23	NPB-22	48	ADB-PINACA isomer 1	80	JWH 019
24	JWH 203	49	RCS-4 2-MeO isomer		
25	THCA-A	50	PB-22		
		51	XLR11 N-(2-FP) isomer		
		52	UR-144 Degradant		
		53	AKB48 N-(5-FP) analog		
		54	KM 233		
		55	Δ8-THC		
		56	EG-018		
		57	SER-601		

Optima LCMS grade methanol, acetonitrile, HPLC water, ammonium formate (99%) and formic acid were purchased from Fisher Scientific (Fair Lawn, NJ). Certified blank urine was purchased from UTAK Laboratories Inc. (Valencia, CA) and aliquoted into 10 mL portions and stored at -20°C until needed.

4.2.2 Solution and sample preparation

Neat standards (including deuterated compounds) were dissolved in methanol (MeOH) or dimethyl sulfoxide (DMSO), depending on the analyte's solubility, to achieve concentrations of 1, 2, 5, or 10 mg/mL. From these initial preparations, $10 \,\mu\text{g/mL}$ working solutions were prepared in MeOH for all analytes to be used for optimization and method

validation.

4.2.3 Instrumentation

All samples were analyzed using an Agilent 1290 Infinity Binary Pump LC coupled to an Agilent 6460 triple quadrupole MS/MS with Jet Streaming technology and electrospray ionization (ESI) equipped with Agilent MassHunter software version B7.0. Chromatographic separation was performed using an Agilent Zorbax Rapid Resolution HD Eclipse Plus C₁₈ column (3.0 x 100 mm, 1.8 μm). Data acquisition was performed in dMRM mode using positive ESI. The dMRM method employed two transitions for each analyte and internal standard, which aids in achieving increased selectivity. Using multiple transitions can help in discerning one compound from another if they have similar retention times/coelute, as long as they exhibit uniquely different transitions.

4.2.4 Preparation of standard mixtures

The 10 µg/mL solutions were used to prepare NPS mixtures for validation by spiking MeOH with each compound for a final concentration of 200 ng/mL per compound. The spiked MeOH solutions were used as the working solutions to create all samples needed for method validation. Validation mixtures contained anywhere from 22 to 65 compounds of varying NPS structural and pharmacological classes. The 750 compounds included in the final dMRM method were divided into a total of 16 different mixtures for ease of data analysis. Using a series of non-coeluting standard mixtures helped ensured selectivity during method validation. Compounds chosen for each mixture were determined by retention time and primary MRM transitions. Each mix included only non-coeluting compounds to ensure selectivity. In addition, an internal standard (IS) mixture of 22 compounds, each at a concentration of 200 ng/mL, was prepared to be used for

quantification. The 22 deuterated IS compounds, along with LC retention time and drug class can be found in Table 4. Internal standards were chosen in order to cover all of the drug classes included in the in the final dMRM method. As it was impossible to find a deuterated compound for every NPS used in this research, a set of internal standards were chosen in order to match structures and drug classes as well as possible for each analyte.

Table 4. List of internal standards used for validation, drug class, and retention times.

Compound	RT	Drug Class
JWH 007-d9	11.63	Synthetic Cannabinoid
JWH 018-d9	11.52	Synthetic Cannabinoid
JWH 073 5-Hydroxyindole metabolite-d7	10.69	Synthetic Cannabinoid
JWH 081 N-pentanoic acid metabolite-d5	10.54	Synthetic Cannabinoid
(-)-11-nor-9-carboxy-Δ ⁹ -THC-d3	11.47	Cannabinoid
(±)-CP 47,497-C8-homolog-d7	12.05	Synthetic Cannabinoid
AM 2201 N-(4-hydroxypentyl) metabolite-d5	10.26	Synthetic Cannabinoid
MAM 2201 N-pentanoic acid metabolite-d5	10.67	Synthetic Cannabinoid
PB-22-d9	11.3	Synthetic Cannabinoid
UR-144 N-(4-hydroxypentyl) metabolite-d5	10.85	Synthetic Cannabinoid
XLR 11 N-(4-hydroxypentyl) metabolite-d5	11.59	Synthetic Cannabinoid
RCS-4 N-(5-hydroxypentyl) metabolite-d5	10.08	Synthetic Cannabinoid
25I-NBOMe-d3	9.18	Phenethylamine
Benocyclidine-d10	9.08	Arylcyclohexylamine
3,4-Methylenedioxy pyrovalerone-d8	7.48	Stimulant
AB-PINACA-d9	10.74	Synthetic Cannabinoid
ADB-PINACA-d9	11.03	Synthetic Cannabinoid
AB-FUBINACA-d4	10.25	Synthetic Cannabinoid
Acetyl norfentanyl-d5	5.98	Opioid
Norsufentanil-d3	7.49	Synthetic Opioid
Butylone-d3	6.53	Stimulant
cis-Tramadol-d6	7.15	Opioid

Calibrators and quality control (QC) samples were prepared using pooled certified blank urine. Sample preparation before analysis consisted of using a dilute-and-shoot method with a ratio of 1:5 (urine:HPLC water). Samples were prepared by spiking urine with one of the NPS 200 ng/mL mixtures described above in addition to the IS spiking solution. Once spiked, the urine samples were diluted using HPLC water before undergoing LC-MS analysis.

4.2.5 LC Conditions and MS parameters

Chromatographic separation was achieved using gradient elution with a flow rate of 0.3 mL/min using 5 mM ammonium formate/0.1% formic acid in HPLC water as mobile phase A and MeOH with 0.1% formic acid as mobile phase B. The gradient used for analysis was as follows: hold at 5% B for 1 min, followed by 5% B to 98% B from 1 to 9.5 min, then hold at 98% B until 16 min, followed by a 3-min re-equilibration at 5% B. The analytical column was held at a temperature of 40°C during separation.

The MS source parameters were as follows: gas temperature, 325°C; gas flow 6 L/min; nebulizer 40 psi; sheath gas temperature 350°C; sheath gas flow 11 L/min; capillary voltage 4,000 V; nozzle voltage was 750 V. Agilent MassHunter Optimizer software was used to determine the ideal data acquisition parameters for MRM mode. The software uses the mass of each compound to determine optimal fragmentor voltage, resulting product ions, and associated collision energies and can optimize for up to 10 transitions for each precursor ion.

Prior to validation of the method, retention time data for all compounds were collected. Separation was conducted over 16 min using an Agilent Zorbax Eclipse Plus C₁₈ Rapid Resolution HD column (3.0 x 100 mm; 1.8 μm) and the LC-QqQ-MS method described above. The "Find by MRM" function of Qualitative Analysis software was used to isolate the individual compound from each injected solution and the corresponding retention data were recorded. These data were used to design the validation mixtures so that no two

components of a mixture would co-elute, thus minimizing interference with identification and quantitation of the compounds.

4.2.6 Quantification

Agilent MassHunter Quantitative Analysis software version B.07.00 was used for quantification. The software was used to calculate and plot peak area ratios of drug versus internal standard. Using the calibration curves produced, the software then calculated the concentration of each sample.

4.2.7 Assay validation

The LC-MS/MS method was validated in accordance with guidelines for forensic toxicology method validation provided by OSAC and as described by Peters et al. 107-108

The parameters evaluated consisted of selectivity, matrix effects, recovery, linearity, freeze-thaw stability, carry over, accuracy, and precision.

4.2.8 Selectivity

Blank pooled urine samples were prepared using the dilute-and-shoot procedure described above and analyzed using the dMRM method to ensure that there were no peaks present that could interfere with the analytes of interest or internal standards. Blank urine was spiked with the IS mixture at a concentration of 100 ng/mL and analyzed to confirm that the internal standard peaks did not interfere with the detection of the targeted analytes. Lastly, each of the NPS mixtures were spiked into urine and analyzed to ensure that the targeted analytes did not interfere with the internal standard peaks.

4.2.9 Matrix effects and recovery

Traditionally, matrix effects are determined by comparing three different samples sets

(*i.e.*, analyte of interest in solvent, analyte of interest spiked after extraction, and analyte of interest spiked before extraction); the described approach is not feasible when using a dilute-and-shoot method. As an alternative, matrix effects were determined by comparing the results of the analytes of interest spiked in HPLC water (Set 1) and spiked into pooled urine that was diluted before analysis (Set 2). Matrix effects were determined at three different concentrations, 5 ng/mL (LOW), 20 ng/mL (MED) and 80 ng/mL (HIGH) through the comparison of peak areas. Matrix effects were calculated by using equation 2 shown below. Positive values represent ion enhancement and negative values represent ion suppression; the higher the value, the higher the level of interference. According to OSAC guidelines, a value of ±25% for matrix effect is acceptable for method validation.

$$Matrix \ Effect = \left(\frac{Set \ 1 - Set \ 2}{Set \ 1}\right) * 100 \tag{2}$$

4.2.10 Linearity of calibration and limits of detection/quantitation

Calibration curves were analyzed by using seven calibration levels ranging from 1 to 100 ng/mL (*i.e.*, 1, 2, 5, 10, 20, 50, and 100 ng/mL). Each of the 22 IS in the IS spiking mixture were present in each calibrator at a concentration of 40 ng/mL. Each calibration level was prepared in pooled blank urine at a volume of 0.4 mL. Replicates (n=4) at each concentration were analyzed using the dMRM method described above over the course of five different days. Regression lines were calculated for each analyte of interest using Agilent MassHunter Quantitative Analysis software with a weighted (1/x) model.

Limit of detection and LOQ were determined using Equations 3 and 4, respectively. Using the calibration curve to derive LOD and LOQ was deemed a viable option since all calibration curves were linear. Alternative methods for determining LOD and LOQ could have been employed, but this approach was appealing since it did not include additional

analysis, which can shorten the time required for method validation when working with a large number of compounds. The described approach uses the equation of the line, where s_y is the standard deviation of the y-intercept and Avg_m is the average slope of the line:

$$LOD = (3.3s_y)/Avg_m \tag{3}$$

$$LOQ = (10s_v)/Avg_m \tag{4}$$

4.2.11 Precision and accuracy

Precision and accuracy were determined through the analysis of QC samples at three different concentrations, 5, 20, and 80 ng/mL. Each QC concentration level was analyzed in replicates (n=3) over five different days. The mean value for each concentration on each day were used to determine interday bias and precision. Each replicate was used to determine intraday bias and precision. Equations 5 and 6 are used to determine interday and intraday percent coefficient of variance (%CV) values, respectively. According to OSAC guidelines, 20% CV and ±20% bias are acceptable for method validation.

Interday CV (%) =
$$\frac{\text{std dev.of all observations for each concentration}}{\text{grand mean for each concentration}} x \ 100$$
 (5)

Intraday CV (%) =
$$\frac{\text{std dev.of a single run of samples}}{\text{mean calculated value of a single run of samples}} x 100$$
 (6)

Recovery was determined using the same QC samples that were used for bias and precision studies. The average of each concentration (LOW, MED, and HIGH) with repeats (n=3) over five different runs were used to determine percent recovery. The average concentration was divided by the expected concentration and multiplied by 100% in order

to determine percent recovery.

4.2.12 Freeze-thaw stability

Freeze-thaw stability was completed over three freeze thaw cycles at two different concentrations (LOW and HIGH). At the start of the experiment, 5 mL of 5 ng/mL (LOW) and 80 ng/mL (HIGH) of the NPS mix being tested was prepared in matrix and aliquoted into four amber vials. The first vial was used for time zero and the other three vials were placed in the freezer (-20°C) for 24 h, after which they were all removed and allowed to thaw to room temperature for 2 h. After this time, one vial was analyzed as first thaw and the other two vials were placed back in the freezer for 20 h, before being thawed to room temperature for 2 h. After being thawed, one vial was analyzed as the second thaw cycle and the other was placed back into the freezer for another 20 h and then analyzed once it returned to room temperature as the third thaw. Calibration curves were made fresh daily for quantification. Mean concentrations of first, second, and third thaw samples were compared to the mean concentrations of the analytes of interest at time zero. Compounds were considered stable as long as the mean concentration stayed within ±15% of the mean concentration calculated at time zero.

4.3 Results

The final dMRM method that underwent method validation included two transitions each for 750 compounds and 22 deuterated internal standards. Tables 5, 6, and 7 show the dMRM parameters used for Mixes 1, 2, and 3, respectively and the internal standard match for each compound. Information regarding the dMRM parameters for all other compounds included in the final method can be seen in the Appendix.

Table 5. Dynamic MRM MS method parameters for NPS in Mix 1 and internal standard matches.

Drug	Precursor Ion	Transitions	CE (V)	Fragmentor (V)	t _R (min)	Internal Standard
4-OH MET	219.1	160	16	96	5.53	Butylone-d3
NMT	175.1	144	8 28	84	90.9	Benocyclidine-d10
4'-fluoro-α-PPP	222.1	123	24 28	120	6.31	Butylone-d3
4-APDB	178.1	161	8 20	84	6.56	Benocyclidine-d10
4'-fluoro-α-PPP	222.1	123	24 28	120	6.31	Butylone-d3
4-APDB	178.1	161 133	8 20	84	95.9	Benocyclidine-d10
4-fluoro PBP	236.1	112	24 28	120	28.9	Butylone-d3
5-MAPB	190.1	159 131	8 20	84	7.04	3,4-Methylenedioxy Pyrovalerone-d8
3-methyl BP	192.1	174 144	36	96	7.28	Benocyclidine-d10
4-methyl-α-EAB	206.2	188 144	32	108	7.48	Butylone-d3
α-PVP metabolite 1	234.2	216	16 20	108	7.62	JWH 081 N-pentanoic acid metabolite-d5
4-MeO-α-PVP	262.2	126	24 24	120	7.69	Butylone-d3
JWH 200 5-hydroxyindole metabolite	401.2	155 114	20 32	108	8.03	PB-22-d9
PCMPA	248.2	159 91	12 40	84	8.16	Benocyclidine-d10
AM2233 azepane isomer	459.2	58 112	60 24	108	8.55	RCS-4 N-(5- hydroxypentyl) metabolite-d5
4-MeO PV8	290.2	154	28	108	8.79	Butylone-d3

4	
2	

		121	24			
						JWH 073 5-
Benocyclidine	300.2	147	32	72	8.98	hydroxyindole
		98	4			metabolite-d7
351 MBMP	1 CVV	135	32	0.001	000	EP PAOGN 150
GIVIGINI-102	1.744	77	09	120	9.00	
4 D 005	252 2	112	24	0.001	0.20	
AB-003	5.5.5	86	36	120	7.39	Datylone-d2
L 111 hours and 112	0 222	226	32	0.001	77.0	0F 810 H/M
FIUDIOIIIAZEPAIII	0.000	184	32	071	7.11	
AM694 N-(5-	1 1/61/	230.9	20	0.001	000	$(-)$ -11-nor-9-carboxy- Δ 9-
hydroxypentyl) metabolite	434.1	202.9	99	120	9.99	THC-d3
300 dds 55 3	2002	232.1	20	120	10.20	3,4-Methylenedioxy
2-IIuoro SDB-000	2.766	91.1	99	071	10.38	
PB-22 6-						
hydroxyisoquinoline	288 7	185.1	20	108	10.57	PB-22-d9
isomer	2.885	157.1	48			
22 dain	C 038	214.1	16	100	10 77	(±)-CP 47,497-C8-
NI D-22	3.9.2	144	44	100	10.77	homolog-d7
THU	350 2	341.2	12	108	12.15	Banossiolidina 410
IIICA-A	2.666	219.1	36	100	4.01	

Table 6. Dynamic MRM MS method parameters for NPS in Mix 2 and internal standard matches.

Drug	Precursor Ion	Transitions	CE (V)	Fragmentor (V)	t _R (min)	Internal Standard
A8-THC	315.2	193.2	24 36	108	12.33	(-)-11-nor-9-carboxy- Δ 9-THC-d3
2,3-methylenedioxy pyrovalerone	276.2	175.0	20 32	120	7.41	3,4-Methylenedioxy Pyrovalerone-d8
25I-NBF	416.1	291.0	20 56	120	8.88	25I-NBOMe-d3
2C-T-2	242.1	225.1	8 52	72	7.88	25I-NBOMe-d3
2C-T-4	256.1	239.1	8 16	84	8.36	25I-NBOMe-d3
2-fluoromethcathinone	182.1	164.1	12 20	96	5.38	Butylone-d3
3,4-DHMA	182.1	123.0	20 44	84	4.19	Butylone-d3
3,4-dimethoxy-α- Pyrrolidinopentiophenone	292.2	151.1 126.0	28 24	120	7.15	Butylone-d3
3-methyl-α- Pyrrolidinopropiophenone	218.2	119.1	24 28	120	6.93	Butylone-d3
4'-Methyl-N- methylhexanophenone	220.2	202.2	8 24	96	8.39	Butylone-d3
4-ethyl-N,N-dimethylcathinone	206.1	105.1	28	120	7.43	Butylone-d3
4-fluoroisocathinone	168.1	123.0	16 40	72	5.39	Butylone-d3
4-hydroxy MiPT	233.2	160.0	20 12	96	5.86	Norsufentanil-d3
4-MMC	178.1	160.1 145.1	8	84	9.9	Butylone-d3
A-796260	355.2	125.1	32	120	10.2	UR-144 N-(4- hydroxypentyl) metabolite- d5
AB-005 azepane isomer	353.3	112.0	24	120	9.47	UR-144 N-(4-

		58.1	56			hydroxypentyl) metabolite- d5
AB-FUBINACA 3- fluorobenzyl isomer	369.2	253.0	24	96	10.11	AB-FUBINACA-d4
ADB-PINACA isomer 1	345.2	215.1 145.0	24	96	10.72	ADB-PINACA-d9
AKB48 N-(5-fluoropentyl) analog	384.2	135.1	24	120	11.81	AB-FUBINACA-d4
Clencyclohexerol	319.1	203.0	32	96	6.05	UR-144 N-(4- hydroxypentyl) metabolite- d5
EG-018	392.2	155.1	24	120	12.78	9WH 018-d9
JWH 018 N-(5- hydroxypentyl) metabolite	358.2	155.0	20	120	10.37	JWH 081 N-pentanoic acid metabolite-d5
KM 233	363.2	119.1	20	120	12.09	(-)-11-nor-9-carboxy-Δ9- THC-d3
Loperamide	477.2	266.1	24	120	9.22	Acetyl norfentanyl-d5
MAM2201 N-pentanoic acid metabolite	386.2	169.1	24 48	120	10.55	MAM2201 N-pentanoic acid metabolite-d5
N-Ethylbuphedrone	192.1	130.1	32	96	6.51	Butylone-d3
PB-22	359.2	214.1	8	09	11.2	PB-22-d9
PCPr	218.2	91.1	28	09	8.19	Benocyclindine-d10
RCS-4 2-methoxy isomer	322.2	135.0	20	120	10.96	RCS-4 N-(5-hydroxypentyl) metabolite-d5
SER-601	435.3	284.2	28	120	13.28	9P-499
UR-144 Degradant	312.2	214.1	20	120	11.64	UR-144 N-(4- hydroxypentyl) metabolite- d5
		1:00	90			

Table 7. Dynamic MRM MS method parameters for NPS in Mix 3 and internal standard matches

Drug	Precursor Ion	Transitions	CE (V)	Fragmentor (V)	t _R (min)	Internal Standard
(-)-3,4-Methylenedioxy Pyrovalerone	276.2	135.1	28	120	7.29	3,4-Methylenedioxy Pyrovalerone-d8
(+)-WIN 55,212-2	427.2	155.0	24 60	120	10.86	UR-144 N-(4-hydroxypentyl) metabolite-d5
(R)-(-)-JWH 018 N-(4-hydroxypentyl) metabolite	358.2	155.1 127.1	20 56	120	10.44	JWH 081 N-pentanoic acid metabolite-d5
2,3-pentylone isomer	236.1	188.1	12 40	108	7.24	butylone-d3
25E-NBOMe	330.2	121.1	50 52	120	9.25	25I-NBOMe-d3
3C-B-fly	298.1	281	12 24	84	7.97	25I-NBOMe-d3
4-hydroxy DiPT	261.2	160.1	20	96	6.48	
AB-FUBINACA	369.2	324.1 109.0	12 48	96	10.15	AB-FUBINACA-d4
AB-PINACA N-(5- hydroxypentyl) metabolite	347.2	302.1 213.0	12 28	96	9.19	AB-PINACA-d9
BB-22 8- hydroxyisoquinoline isomer	385.2	240.2 144.0	20	120	11.78	PB-22-d9
Benzydamine	310.2	86.1 58.1	16 56	108	8.65	AB-FUBINACA-d4
Bromazepam	316.0	209.1	28	108	9.00	Cis-tramadol-d6
Etaqualone	265.1	146.0 77.0	28	120	9.95	butylone-d3
JWH 019	356.2	228.1 144.0	24 40	120	11.82	9h-810 HWL
	328.2	154.9	28	120	11.4	

JWH 073 2'-naphthyl-N- (1,1-dimethylethyl) isomer		144.2	24			JWH 073 5-hydroxyindole metabolite-d7
JWH 073 6- methoxyindole analog	358.2	230.1	24 40	120	11.29	JWH 073 5-hydroxyindole metabolite-d7
198 JWH 198	415.2	185.1	24 32	120	10.07	10.07 JWH 007-d9
MMAI	178.1	161.0	8 24	84	7.15	JWH 073 5-hydroxyindole metabolite-d7
N,N-dimethylcathinone	178.1	105.1	20 24	108	5.48	butylone-d3
p-Fluorofentanyl	355.2	188.2	24 48	120	8.01	acetyl norfentanyl-d5
PCEEA	248.2	159.1 65.1	8	84	8.26	Benocyclidine-d10
Phenylpiperazine	163.1	120.0	20 44	108	5.77	acetyl norfentanyl-d5
Tetrahydroharmine	217.1	200.0	∞ ∞	84	89.9	6.68 Norsufentanil-d3

4.3.1 Selectivity and carryover

A set of ten diluted purchased pooled certified blank urine samples were analyzed using the developed dMRM method to ensure that there were no interfering peaks. Initially, there was a peak identified as PB-22 6-hydroxyisoquinoline isomer that interfering peak was no longer present when blank urine was re-analyzed. When analyzing IS and NPS drug mixtures spiked in blank urine using dMRM no interfering peaks were observed, confirming the value of using a dMRM method to eliminate showed up consistently in every sample. In order to address this issue, the transitions for this analyte were changed and the interfering peaks that could be present in full scan MS modes. Interferences can be detrimental to a screening and confirmatory test and can contribute to false positive results (*i.e.*, the detection of a compound that is not actually in the sample). It is extremely important to avoid false positive results in clinical and forensic toxicology.

Carry over can be the result of compounds not fully eluting from the analytical column and can affect quantitative analysis. In order to address any carry over, five blank matrix samples were injected after analysis of the highest calibrator (100 ng/mL) to determine if there was any carry over. When analyzing the five blank urine samples there was no carryover seen, meaning that the 3-min clean up after the 16 min run was sufficient to eliminate carry over from higher concentrated samples in the next sample or blank. Carry over can also contribute to false positive results, which should be avoided.

4.3.2 Linearity of calibration and limit of detection/quantitation

Agilent MassHunter Quantitative Analysis software was used to find regression lines for each of the analytes. Additionally, the software was used to aid in the determination of precision, accuracy, LOD, and LOQ for all analytes included in this experiment. All regression models were weighted by a factor of 1/x to offset heteroscedasticity. All R² values were a minimum of 0.95 for the analytes analyzed. However, the majority of compounds had an R² value >0.99. Linear range was 1 to 100 ng/mL for most NPS analyzed. There were a few compounds that did not show linearity, including THCA-A and tetrahydroharmine. Only compounds showing linearity were further analyzed for method validation. At concentrations higher than 100 ng/mL, linearity was lost for the majority of the compounds. Nevertheless, the range used is adequate for the concentration of NPS found in typical case samples, including fatalities. ¹⁰⁸ If a sample

is suspected to be above the 100 ng/mL linearity cutoff, it can be diluted before analysis, which will alleviate the issue.

Limits of detection (LOD) and limits of quantitation (LOQ) were determined using the equation of the regression line for each compound, which was possible because of the linearity of the calibration curves. Limit of detections for all compounds in Mixes 1, 2, and 3 ranged from 0.01 to 0.12 ng/mL and LOQs for all the compounds analyzed ranged from 0.02 to 0.36 ng/mL. Limit of detections and LOQs for all compounds in Mixes 1, 2, and 3 can be found in Tables 8-10, respectively. These LODs and LOQs are similar to those that have been reported previously in literature for selected NPS. 42,80,84,85 It is important to note that LOD and LOQ were determined analyzing diluted samples, therefore the detection and quantification limits represent what is possible in a diluted sample. The ability to detect and quantify NPS in the ppt range will greatly aid in the identification and quantification of some of the more potent NPS, which are often found in low concentrations in case studies.

4.3.3 Precision and accuracy

The QC samples were analyzed at 5, 20, and 80 ng/mL in triplicate on five different days. Accuracy, precision, and percent recovery ware calculated for each analyte at the three different concentrations. Acceptable values were ±20% for bias and 20% for precision (% CV). These values for the compounds included in Mixes 1, 2, and 3 can be found in Tables 8, 9, and 10, respectively. Bias, precision, LOD, and LOQ values for additional mixes can be found in the Appendix. All compounds in Mixes 1, 2, and 3 fell within the acceptable limits for both bias and precision.

Table 8. LOD, LOQ, R2 values, and precision and bias values for all compounds in Mix 1 at three different concentration levels.

				Low (Low (5 ppb)	Medi	Medium (20 ppb)	High (High (80 ppb)
Compound Name	\mathbb{R}^2	LOD (ng/mL)	LOQ (ng/mL)	% CV	% Bias	% CV	% Bias	AD %	% Bias
4-OH MET	0.9985	0.039	0.117	5.5	-6.3	2.6	-5.1	3.0	-1.5
NMT	0.9982	0.040	0.121	2.8	4.2	2.0	7.2	3.1	-0.8
4-fluoro- α -PPP	0.9953	0.027	0.083	7.2	7.4-	3.9	-8.2	2.3	-1.8
4'-fluoro- α -PPP	0.9987	0.058	0.176	9.2	1.3	5.6	8.4	2.3	0.1
4-APDB	0.9959	0.023	0.071	6.4	-3.4	4.3	-8.2	2.8	-1.6
4-fluoro PBP	0.9936	0.089	0.270	3.1	0.3	2.5	4.4	2.6	-0.2
5-MAPB	0.9843	0.025	0.077	6.3	-1.9	5.0	-3.7	2.3	-2.0
3-methyl BP	0.9994	0.028	0.085	8.1	-3.0	4.2	-8.1	2.7	-1.8
4-methyl-α-EAB	0966'0	0.020	090.0	7.7	-15.7	4.2	-17.8	3.8	-12.1
α -PVP metabolite 1	0.9943	0.056	0.171	8.5	-4.1	6.5	-8.1	2.6	-1.8
4-MeO-α-PVP	0.9983	0.024	0.073	2.7	-3.4	4.0	-2.1	3.3	-0.8
JWH 200 5-hydroxyindole metabolite	0.9941	0.028	0.085	8.7	-3.6	2.0	10.7	1.8	-1.9
PCMPA	9866.0	0.023	690.0	3.5	-3.3	5.2	3.6	2.5	-2.8
AM2233 azepane isomer	0.9992	690.0	0.209	6.3	-7.3	4.7	8.9-	2.8	-1.3
4-MeO PV8	0966.0	0.015	0.046	3.5	-6.5	1.8	-1.0	2.3	-0.5
Benocyclidine	0.9956	0.006	0.028	6.1	-8.0	1.9	1.1	1.6	-0.7
25I-NBMD	0.9991	0.076	0.230	6.5	-3.8	8.6	-15.8	2.0	-5.1
AB-005	0.9995	0.056	0.169	13.0	-0.4	3.4	12.4	4.3	-2.2
Flubromazepam	0.9601	0.017	0.052	11.1	-8.3	2.7	-11.0	3.4	-2.0
AM694 N-(5-hydroxypentyl) metabolite	0.9928	0.036	0.109	6.2	-7.0	4.5	4.6	2.6	-1.1
5-fluoro SDB-006	0.9934	0.015	0.047	4.2	9.9-	2.4	1.9	2.9	-0.4
PB-22 6-hydroxyisoquinoline isomer	0.9976	0.051	0.154	4.9	-12.2	5.5	-13.5	1.7	-2.1
NPB-22	0.9941	0.086	0.260	5.1	-2.3	3.6	-0.5	4.0	2.2

Table 9. LOD, LOQ. R2 values and precision and bias values for all compounds in Mix 2 at three different concentration levels.

				Low (5 ppb)	(qdd s	Medium	Medium (20 ppb)	High	High (80 ppb)
Compound Name	\mathbb{R}^2	LOD (ng/mL)	LOQ (ng/mL)	% CV	% Bias	% CV	% Bias	AO %	% Bias
3,4-DHMA	0.9821	0.005	0.014	2.5	4.1	2.5	-10.7	6.0	-5.6
2-fluoromethcathinone	0.9854	900.0	0.017	19.3	15.4	4.1	-8.5	0.2	-23.5
4-fluoroisocathinone	0.9515	0.018	0.052	2.8	-1.6	1.4	5.9-	2.2	-9.2
4-hydroxy MiPT	8626.0	0.015	0.045	1.3	-12.9	6.3	-2.6	1.5	-3.1
Clencyclohexerol	6866.0	0.025	0.074	1.9	-22.0	2.4	<i>L</i> '0	1.4	-3.9
N-Ethylbuphedrone	2866.0	900.0	0.017	1.7	0.4	1.6	8.0-	1.6	-0.7
4-MMC	5266.0	0.017	0.050	2.5	-1.5	1.4	2.4	1.8	-5.6
3-methyl-a-Pyrrolidinopropiophenone	0.9973	0.003	0.008	2.6	8.6	1.5	-2.1	2.5	9.0-
3,4-dimethoxy-a-pyrrolidinopentiophenone	8966.0	0.003	0.010	1.5	9.3	1.8	-2.8	1.6	-1.1
2,3-methylenedioxy pyrovalerone	9866.0	0.013	0.040	5.0	-1.4	5.7	-5.2	2.2	-6.1
4-ethyl-N,N-dimethylcathinone	8266.0	0.002	0.006	2.0	6.6	1.5	5.0-	2.2	-2.3
2C-T-2	6286.0	0.019	0.057	2.0	-11.4	1.7	6.3	1.9	-3.8
PCPr	0.9991	0.015	0.046	1.2	-7.1	1.1	2.9	2.6	-0.2
2C-T-4	0.9833	0.022	0.068	3.3	-13.5	1.1	11.6	1.9	-5.9
4'-methyl-N-methylhexanophenone	0.9987	0.005	0.017	2.6	3.8	1.6	6.0	1.8	-3.1
25I-NBF	0.9975	0.001	0.003	2.2	-9.5	1.4	L'0-	2.0	-4.7
Loperamide	0.9961	0.008	0.026	3.2	3.3	0.4	0.7-	1.9	-4.8
AB-005 azepane isomer	0.866.0	0.007	0.020	1.5	-15.0	2.1	-4.8	1.2	-7.7
A-796260	0.9974	0.032	0.097	1.5	-7.4	1.7	4.9	1.7	-1.3
AB-FUBINACA 3-fluorobenzyl isomer	0.9985	0.008	0.024	1.0	-9.9	1.3	-5.2	2.2	-4.9
JWH 018 N-(5-hydroxypentyl) metabolite	0.9984	0.011	0.032	2.0	-6.3	2.1	2.0	1.6	-1.0
MAM2201 N-pentanoic acid metabolite	0.9987	0.012	0.035	1.1	-6.9	1.7	4.6	2.3	1.3
ADB-PINACA isomer 1	0.9992	0.009	0.028	0.7	-9.7	4.3	6.4	2.2	0.7
RCS-4 2-methoxy isomer	0.9959	0.011	0.033	2.1	-6.2	1.8	15.8	2.3	-5.5

PB-22	8266.0	0.004	0.012	1.1	-20.6	2.0	5.2	1.5	0.1
XLR11 N-(2-fluoropentyl) isomer	0.9933	0.002	0.007	7.6	-31.3	1.7	5.0	1.8	-1.0
UR-144 Degradent	0.9944	0.003	0.008	9.0	-30.8	1.8	2.1	1.7	-2.8
AKB48 N-(5-fluoropentyl) analog	0966.0	0.021	0.064	4.0	-22.6	1.2	-4.5	3.3	1.1
KM 233	0.9903	0.017	0.052	2.1	-35.4	8.0	2.4	4.5	1.6
Δ 8- THC	9086.0	0.023	690.0	7.9	-37.6	2.2	-8.4	3.5	2.7
EG-018	8656.0	0.023	0.070	1.1	-37.5	1.4	-12.0	2.4	3.6
SER-601	0.9923	0.011	0.033	1.7	-38.5	9.0	3.6	2.1	2.0

Table 10. LOD, LOQ, R2 values, and precision and bias values for all compounds in Mix 3 at three different concentration levels.

				Low (Low (5 ppb)	Medium	Medium (20 ppb)	High (High (80 ppb)
Compound Name	\mathbb{R}^2	(Tu/Su)	LOQ (ng/mL)	ΛϽ %	% Bias	AJ %	% Bias	AJ %	% Bias
N,N-dimethylcathinone	0.9858	0.03	0.06	8.9	-2.8	2.8	-1.7	3.1	4.2
Phenylpiperazine	0.9825	0.03	0.07	<i>L</i> '9	9.3	4.5	4.0	4.5	1.9
tetrahydro_harmine	0.9992	0.03	0.07	13.4	9.2	8.0	0.7	8.7	-2.7
MMAI	1866.0	0.03	0.07	6.7	0.6	6.7	9.9	6.4	5.5
2,3-pentylone isomer	8286.0	0.05	0.15	8.3	-0.3	3.4	-2.2	2.9	3.0
(-)-3,4-Methylenedioxy Pyrovalerone	0.9875	0.04	0.27	5.5	3.0	4.7	4.9	4.9	2.3
3C-B-fly	0.9506	90.0	0.18	5.7	3.6	4.3	5.7	8.5	10.9
para-Fluorofentanyl	0.9832	0.05	0.11	10.5	9.3	3.7	-1.2	3.6	1.0
PCEEA	0.9984	0.07	0.2	3.8	8.5	2.6	2.7	2.7	4.0
Benzydamine	0.9963	0.03	0.09	9.9	12.1	3.7	5.1	3.4	-2.1
Bromazepam	0.9463	0.04	0.13	8.8	5.7	4.3	-1.1	3.9	-0.5
AB-PINACA N-(5-hydroxypentyl) metabolite	0.9880	0.03	0.09	11.0	-0.2	3.7	2.8	2.1	2.8
25E-NBOMe	0.9840	0.01	0.03	8.6	8.6	4.0	3.0	7.3	8.3
Etaqualone	0.9915	0.04	0.12	10.6	-0.3	4.0	-3.5	3.3	6.4
JWH 198	0.9934	0.07	0.21	8.5	-13.9	37.7	-1.8	32.9	2.0
AB-FUBINACA	0.9988	0.02	0.05	4.9	8.7	3.0	2.6	3.0	3.3

(+)-WIN 55,212-2	0666.0	0.02	0.05	4.4	14.7	3.2	-1.0	4.8	3.0
JWH 073 6-methoxyindole analog	0.9956	0.03	0.09	5.0	27.8	5.5	1.9	5.5	-0.7
JWH 073 2'-naphthyl-N-(1,1-dimethylethyl) isomer	8966'0	0.12	0.36	6.4	16.9	7.4	-6.3	6.1	2.5
BB-22 8-hydroxyisoquinoline isomer	0.9979	0.04	0.13	5.2	25.9	5.1	-6.2	5.3	-4.0

4.3.4 Freeze-thaw stability

Quality control samples at concentrations of 5 and 80 ng/mL were analyzed over three different freeze-thaw cycles to determine stability. Each day a fresh set of calibrators were analyzed with the sets of samples for quantification. Samples after concentrations, from time zero until the 3rd thaw, can be seen in Tables 11, 12, and 13, respectively. All compounds were within each thaw were compared to the concentration of time zero samples. Concentrations within ±15% of the time zero value were considered to be acceptable. The percent change in concentration for all compounds in Mixes 1, 2, and 3 at two different the acceptable range after three freeze-thaw cycles for both concentrations, except for AB-005, etaqualone, benzydamine, 3,4-DHMA, 4-fluoroisocathinone, 4-hydroxy MiPT, 4-MMC, and a few others. The freeze-thaw stability study shows that it will be acceptable to store case work samples at -20°C for up to three freeze-thaw cycles for the majority of compounds. No information on longer term storage is provided by this work; further testing would be required to assess extended storage.

Table 11. Freeze-thaw stability for all analytes in Mix 1.

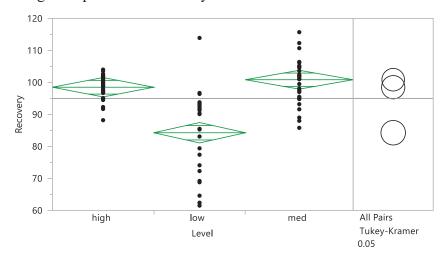
Compound Name	LOW (%Δc)	HIGH (%Δc)
4-hydroxy-MET	-12.7	-9.7
N-Methyltryptamine	-0.7	-4.2
4'-fluoro-α-pyrrolidinoprophenone	1.7	-2.5
4-APBD	5.2	4.5
4-fluoro-α-pyrrolidinobutiophenone	0.8	-2.4
5-MAPB	-0.1	-0.6
3-Methylbuphedrone	-0.9	-3.6
4-methyl-α-ethylaminobutiophenone	-5.0	-0.9
α-Pyrrolidinopentiophenone	0.01	-0.7
4-methoxy-α-pyrrolidinopentiophenone	1.6	-0.9
PCMPA	-2.8	-1.9
AM2233 azepane isomer	-5.3	-0.5
JWH 200 5-hydroxyindole metabolite	0.7	-0.6
4-methoxy PV8	2.6	-0.4
Benocyclidine	-3.5	0.2
25I-NBMD	5.8	0.2
AB-005	-52.5	15.3
Flubromazepam	14.6	8.2
AM694 N-(5-hydroxypentyl) metabolite	-1.4	2.4
5-fluoro SDB-006	-0.3	-1.1
JWH 081 N-(5-hydroxypentyl) metabolite	-2.6	0.3
JWH 203	-3.5	0.9

Table 12. Freeze-thaw stability for all analytes in Mix 2 (LC-QqQ-MS)

Compound Name	LOW (%Δc)	HIGH (%Δc)
3,4-DHMA	-62.0	-64.6
2-fluoromethcathinone	-25.1	-20.4
4-fluoroisocathinone	-45.9	-8.2
4-hydroxy MiPT	-34.1	-33.3
Clencyclohexerol	0.7	33.9
N-Ethylbuphedrone	1.4	-8.7
4-MMC	-2.4	-63.0
3-methyl-a-Pyrrolidinopropiophenone	5.0	-3.0
3,4-dimethoxy-a-pyrrolidinopentiophenone	2.6	1.5
2,3-methylenedioxy pyrovalerone	5.8	-51.3
4-ethyl-N,N-dimethylcathinone	1.8	5.4
2C-T-2	11.3	65.8
PCPr	4.7	-32.9
2C-T-4	7.9	66.9
4'-methyl-N-methylhexanophenone	-2.7	-12.4

25I-NBF	5.7	-9.6
Loperamide	-2.7	-59.2
AB-005 azepane isomer	-2.6	-14.2
A-796260	1.1	-5.8
AB-FUBINACA 3-fluorobenzyl isomer	-2.6	-57.3
JWH 018 N-(5-hydroxypentyl) metabolite	-0.5	38.7
MAM2201 N-pentanoic acid metabolite	-5.3	-18.6
ADB-PINACA isomer 1	-17.3	46.6
RCS-4 2-methoxy isomer	6.1	2.7
PB-22	5.4	-26.2
XLR11 N-(2-fluoropentyl) isomer	-3.4	42.9
UR-144 Degradent	1.9	38.8
AKB48 N-(5-fluoropentyl) analog	3.0	28.9
KM 233	-4.9	8.3
Δ 8- ΤΗС	-4.5	-22.9
EG-018	-33.3	-51.2
SER-601	-14.1	1.9

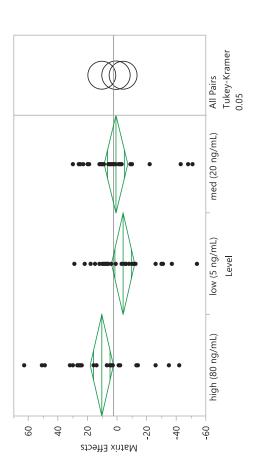
Table 13. Freeze-thaw stability for all analytes in Mix 3 (LC-QqQ-MS)


Compound Name	LOW (%Δc)	HIGH (%Δ _C)
N,N-dimethylcathinone	-11.8	9.2
Phenylpiperazine	7.2	14.3
MMAI	19.5	21.1
2,3-pentylone isomer	14.0	16.7
(-)-3,4-Methylenedioxy Pyrovalerone	-4.1	5.0
para-Fluorofentanyl	5.6	-9.3
3C-B-fly	0.2	-1.5
PCEEA	-2.5	10.4
Benzydamine	-28.7	-18.4
Bromazeam	-5.4	-14.9
AB-PINACA N-(5-hydroxypentyl) metabolite	-2.4	-13.9
25E-NBOMe	-10.6	-20.4
JWH 198	7.5	27.0
Etaqualone	1.2	-59.0
AB-FUBINACA	4.9	2.1
(+)-WIN 55,212-2	2.0	1.7
JWH 073 6-methoxyindole analog	6.3	-3.7
JWH 073 2'-naphthyl-N-(1,1-dimethylethyl) isomer	6.7	-8.6
BB-22 8-hydroxyisoquinoline isomer	-6.7	2.7
JWH 019	-1.8	8.8

4.3.5 Matrix effects and recovery

The ME and percent recovery were determined for each analyte using the procedure previously described for LOW, MED, and HIGH concentrations. A summary of matrix effects and percent recoveries for the compounds in Mixes 1, 2, and 3 can be found in Tables 14, 15, and 16 respectively. When following OSAC guidelines, the ME for each analyte is determined using the highest value noted for the concentrations tested. Acceptable values of ME for method validation must fall within $\pm 25\%$ of the peak area of the analyte in no matrix (i.e., in water). The majority of compounds at MED and HIGH concentrations fell well within these parameters with a few outliers, including 4-APBD, 4methoxy-α-pyrrolidinopentiophenone, and AB-005. However, at the low concentration of 5 ng/mL, many of the compounds did not fall within the OSAC parameters, a finding that was not completely unexpected when working with such low concentrations. Regardless, the matrix effects experienced with these compounds did not negatively affect detection, as recovery for most compounds was above 85% at all concentration levels. A few compounds, including N-methyltryptamine and 4-APBD, showed recoveries above 100%, which likely reflects ion enhancement.

Figure 3 show how synthetic cannabinoids (n=40) vary in recovery based on their concentration, three concentration levels were analyzed low (5 ng/mL) medium (20 ng/mL) and high (80 ng/mL). As the concentration increases the percent recovery also increases. There is a statistically significant difference between medium and low and high and low concentrations. As can be seen in Figure 3, the recoveries for the lowest level vary more than the other two levels and are significantly lower. This could be due to ion suppression being higher at the lower limits of the calibration curve for the validated


method. These results relate to Figure 4, which shows a one-way ANOVA comparing the matrix effects of the same three levels for synthetic cannabinoids (n=40). It can be seen in Figure 4 that the low-level samples have more ion suppression than the higher level samples. Both ANOVAs were created only using a small subset of the total number of synthetic cannabinoids included in the final dMRM method. There is no clear pattern in terms of recovery or matrix effects for synthetic cannabinoids, which can be attributed to the there being multiple subclasses of synthetic cannabinoids.

Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value
med	low	16.57100	2.184544	11.3640	21.77800	<.0001*
high	low	14.22212	2.216655	8.9386	19.50567	<.0001*
med	high	2.34888	2.126592	-2.7200	7.41775	0.5138

Figure 3. The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the recovery of synthetic cannabinoids are statistically different at three different concentration levels (5, 20, and 80 ng/mL). The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference in terms of recovery between the medium and low levels and the high and low levels.

L/ (1 / OO/ 1 . 1		Difference	Std Err Dif	Lower CL	Upper CL	p-Value
high (80 ng/mL) Tow (5 ng,	J/m/j	14.42069	5.601007	1.05394	27.78744	0.0314*
high (80 ng/mL) med (20 ng/mL)	ng/mL)	9.59236	5.650795	-3.89320	23.07793	0.2122
med (20 ng/mL) low (5 ng,	J/m/s	4.82833	5.650795	-8.65724	18.31389	0.6703

cannabinoids are statistically different at three different concentration levels (5, 20, and 80 ng/mL). The bottom panel shows the results of Tukey HSD Figure 4. The top panel visually represents the results of a Means/ANOVA test used to determine whether or not matrix effects of synthetic test showing that there is a statistically significant difference in terms of matrix effects between the high and low levels.

Table 14. Percent matrix effects and percent recovery for all compounds in Mix 1.

	Low (Low (5 ppb)	Mediu	Medium (20 ppb)	High	High (80 ppb)
Compound Name	ME (%)	%Recovery	ME (%)	%Recovery	ME (%)	%Recover
4-hydroxy-MET	1.4	93.7	33.9	94.9	13.3	98.5
N-Methyltryptamine	-10.5	104.2	31.7	107.2	6.82	99.2
4'-fluoro- α -pyrrolidinoprophenone	-26.6	8:36	6.8	91.8	L'L	98.2
4-APBD	47.3	101.3	63.3	108.4	6.53	100.1
4-fluoro-α-pyrrolidinobutiophenone	-33.4	9.96	13.6	91.8	4.8	98.4
5-MAPB	-57.7	100.3	5.2	104.4	7.7-	8.66
3-Methylbuphedrone	-60.7	1.86	6.4	8.96	-18.1	0.86
4 -methyl- α -ethylaminobutiophenone	-65.8	0.79	8.0-	91.9	-14.2	98.2
α -Pyrrolidinopentiophenone	-50.9	92.6	8.3	93.1	-10.5	9.66
4 -methoxy- α -pyrrolidinopentiophenone	-55.2	95.9	0.2	91.9	-15.9	98.2
PCMPA	23.2	9.96	37.0	6.76	2.7.2	99.2
AM2233 azepane isomer	-54.0	96.4	-1.3	110.7	-13.1	98.1
JWH 200 5-hydroxyindole metabolite	-37.3	2.96	5.4	103.6	3.8	97.2
4-methoxy PV8	-40.6	92.7	8.7	93.2	-5.0	7.86
Benocyclidine	-35.1	5.59	8.4-	0.66	-8.1	5.66
25I-NBMD	-31.6	92.0	5.5-	101.1	-2.2	99.3
AB-005	-122.7	96.2	-48.3	112.3	4.9	94.9
Flubromazepam	9.7-	9.66	15.4	112.4	0.7	8.76
AM694N-(5-hydroxypentyl) metabolite	-10.2	91.7	12.2	89.0	5.2	0.86
5-fluoro SDB-006	-11.1	93.0	8.8	104.6	-2.2	6.86
JWH081N-(5-hydroxypentyl) metabolite	-12.4	93.4	10.3	101.9	2.9	9.66
JWH 203	-30.9	N/A	-43.0	5.66	-0.4	102.2

 Table 15. Percent matrix effects and percent recovery for all compounds in Mix 2.

		L our (5 mb)	Modim	Modium (20 anh)	High	High (90 nnh)
	LOW	(add c)	Ininaiai	(add oz) m	ııgırı	(add no)
Compound Name	ME (%)	%Recovery	ME (%)	%Recovery	ME (%)	%Recovery
3,4-DHMA	-16.9	104.1	-122.2	89.3	-266.0	94.4
2-fluoromethcathinone	60.7	115.4	-25.3	91.5	-395.7	76.5
4-fluoroisocathinone	9.09	98.4	9.69	93.4	0.99	90.8
4-hydroxy MiPT	18.8	87.1	11.0	97.4	17.2	6.96
Clencyclohexerol	30.2	78.0	23.6	100.7	22.3	96.1
N-Ethylbuphedrone	36.2	100.4	29.4	99.2	-36.4	99.3
4-MMC	26.4	98.5	17.9	102.4	-11.6	94.4
3-methyl-a-Pyrrolidinopropiophenone	5.5	108.6	7.6	97.9	-11.9	99.4
3,4-dimethoxy-a-pyrrolidinopentiophenone	6.3	109.3	5.2	97.2	-14.0	98.9
2,3-methylenedioxy pyrovalerone	7.2	9.86	6.4	94.8	-12.9	93.9
4-ethyl-N,N-dimethylcathinone	14.0	109.9	8.9	99.5	-14.7	7.76
2C-T-2	19.8	9.88	10.6	106.3	-2.7	96.2
PCPr	16.5	92.9	1.9	102.9	-13.5	8.66
2C-T-4	32.1	86.5	26.3	111.6	17.7	94.1
4'-methyl-N-methylhexanophenone	24.4	103.8	14.0	100.3	-2.3	6.96
25I-NBF	11.7	90.5	<i>L</i> .6-	99.3	-18.9	95.3
Loperamide	1.4	103.3	-32.2	93.0	-58.6	95.3
AB-005 azepane isomer	4.0	85.0	-34.3	95.2	-67.4	92.3
A-796260	5.5	92.6	-5.3	104.9	0.3	98.7
AB-FUBINACA 3-fluorobenzyl isomer	-26.1	90.1	-50.7	94.8	-42.4	95.1
JWH 018 N-(5-hydroxypentyl) metabolite	7.7	93.8	0.5	102.0	7.1	99.0
MAM2201 N-pentanoic acid metabolite	14.7	93.1	8.6	104.6	16.3	101.3
ADB-PINACA isomer 1	8.8	90.3	2.4	106.4	5.4	100.7
RCS-4 2-methoxy isomer	9.9	93.8	-2.5	115.7	3.0	94.5
PB-22	7.0	79.4	-10.2	105.2	3.8	100.1
XLR11 N-(2-fluoropentyl) isomer	6.5	8.89	2.6	105.0	14.0	0.66

UR-144 Degradent	3.6	69.2	-1.3	102.1	14.0	97.2
AKB48 N-(5-fluoropentyl) analog	6.4	77.4	-2.0	95.5	2.9	101.1
KM 233	21.7	64.6	25.3	102.4	49.3	101.6
delta 8- THC	28.5	62.4	29.5	91.6	63.3	102.7
EG-018	17.7	62.5	25.8	88.0	51.5	103.6
SER-601	10.3	61.5	-20.1	103.6	24.9	102.0

Table 16. Percent matrix effects and percent recovery for all compounds in Mix 3.

	Low (Low (5 ppb)	Mediur	Medium (20 ppb)	High	High (80 ppb)
Compound Name	ME (%)	%Recovery	ME (%)	%Recovery	ME (%)	%Recovery
N,N-dimethylcathinone	-0.9	102.8	3.8	101.7	18.1	95.8
Phenylpiperazine	28.7	7.06	19.6	0.96	37.2	98.1
MMAI	18.2	8.06	25.4	99.3	40.2	102.8
2,3-pentylone isomer	19.5	91.0	20.7	93.4	44.8	94.5
(-)-3,4-Methylenedioxy Pyrovalerone	-4.8	100.3	-7.5	102.2	15.9	97.0
p-Fluorofentanyl	-6.9	97.0	-8.8	95.1	9.6	97.7
3C-B-fly	14.3	96.4	15.9	94.3	38.1	89.1
PCEEA	4.7	2.06	7.8	101.2	20.1	99.0
Benzydamine	2.3	91.5	10.3	97.3	24.6	0.96
Bromazepam	-10.7	87.9	-13.1	94.9	-407.0	102.1
AB-PINACA N-(5-hydroxypentyl) metabolite	10.2	94.3	23.4	101.2	25.7	100.5
25E-NBOMe	-23.5	100.2	-11.5	97.3	3.4	97.2
JWH 198	-7.7	91.4	-22.9	97.0	-26.7	91.7
Etaqualone	-7.0	100.3	14.5	103.5	27.4	93.6
AB-FUBINACA	-29.8	113.9	-9.3	101.8	-14.4	98.0
-(-)-JWH 018 N-(4-hydroxypentyl)	-3.4	91.3	11.3	97.5	24.8	7.96

•		•
•	٠	
г		٠

metabolite						
(+)-WIN 55,212-2	11.7		-182.0	85.8	-35.3	88.2
JWH 073 6-methoxyindole analog	1.4	85.3	18.9	101.0	26.4	97.0
JWH 073 2'-naphthyl-N-(1,1-						
dimethylethyl) isomer	-5.4	72.3	4.4	98.1	27.0	100.7
BB-22 8-hydroxyisoquinoline isomer	-6.0	83.1	9.5	106.3	29.9	97.5
JWH 019	-3.3	74.1	-2.7	106.2	32.5	104.0

4.4 Discussion

Recent research has investigated the potential of LC-QqQ-MS for the comprehensive screening, confirmation, and quantitation of NPS in human sample matrices. For example, in 2010 Wohlfarth and co-workers published an LC-MS/MS method capable of detecting over thirty NPS. Their work was one of the first attempts to create a comprehensive screening method for NPS. Since then, other research groups have continued the work in the hopes of creating comprehensive screening and confirmatory methods for these substances. However, many of those methods are focused on a single structural class of NPS (*e.g.*, synthetic cannabinoids or cathinones) and can only quantitate a relatively small number of compounds. 79,81,82,110 A recent review article on different screening methods for detecting NPS in biological matrices indicated that there were only a few methods reportedly capable of detecting >100 NPS in a single run, while the majority of methods could detect fewer than 50 compounds. 114 In addition, some of the methods capable of detecting over 100 individual NPS were not fully validated. 80,84

Strickland et al. published a method that aimed to be all-inclusive for the detection of designer drugs. Strickland's research is one of the few examples of a method that includes multiple classes of NPS. Their method took 4.5 minutes and targeted 24 compounds. The importance of their method was in assuring that the compounds included were recently found in forensic case samples and are currently being abused. Even with that consideration, it is difficult to cover such a wide array of abused compounds with such a rapid method. Al-Saffar and co-workers also published a method that aimed to be able to detect different classes of NPS in a single run. Their method included 26 compounds, but it was validated for qualitative and quantitative analysis. Even though

their method is a move in the right direction, it excluded a large portion of abused NPS. These data confirm the need for comprehensive screening methods for NPS in biological matrices that can reliably detect the hundreds of individual chemical entities that can be considered as NPS.

One major challenge in developing comprehensive screening/confirmatory methods for hundreds of NPS involves the approach used to validate such a method. Specifically, validation using a classical "one component at a time" approach is prohibitive in terms of the time required for complete method development. In contrast, validation using noncoeluting analyte mixtures holds promise for substantially reducing the time it takes to fully validate a new method designed to encompass a large number of analytes. Validating screening/confirmatory methods using a mixture approach, while not a new concept, has only been reported on a limited basis for quantitation of NPS. 80-82 For example, Ammann and co-workers used a mixture approach to validate two separate quantitative methods, one for synthetic cathinones and another for synthetic cannabinoid each capable of confirming 25 compounds. ^{79,110} Two different runs, each optimized for structural class, were required for complete analysis. In contrast, there are currently no available reports using NPS mixtures in order to validate a single comprehensive method capable of detecting multiple NPS drug classes in one run. In the present study, a LC-QqQ-MS dMRM-based assay was fully validated according to OSAC guidelines for 80 NPS using three non-coeluting mixtures of NPS standards as a proof-of-principle of the mixture approach.

Further work is underway to extend validation to additional NPS mixes to ultimately include more than 800 individual compounds. Work is also being done to test different

extraction methods for NPS from whole blood using the method discussed in the present work, showing its potential to be used to detect NPS in whole blood in addition to urine. The final validated assay could potentially have significant impact on forensic toxicology laboratories, giving them the ability to screen for a higher number of NPS than many are currently capable of. The ability to detect an increased number of NPS will decrease the number of false negatives, allowing for the proper detection of NPS. With time, more and more NPS are being introduced into the illicit market. New compounds can be added to the present assay as soon as commercial standards are produced, allowing for constantly increasing number of analytes that can be screened for.

Although the mixture approach described here has many benefits for the development of comprehensive NPS screening methods, there are also some challenges. For example, the method must be optimized for a large number of analytes in each mixture as a whole. Consequently, some individual compounds in the mixture may not be analyzed under their optimal conditions. In addition, while there is the temptation of adding new analytes to a mixture as standards become available in order to limit analysis time, this must be balanced against the loss of selectivity that can accompany the use of larger mixtures. Nevertheless, the use of analyte mixtures as described in the present work appears to be a promising approach to validate analytical methods for screening large numbers of NPS.

4.5 Conclusions

It is important to have a comprehensive screening technique for NPS in clinical and forensic toxicology laboratories in order to address the large number of NPS currently available and continuously appearing on the illicit drug market. In the present

study, a comprehensive LC-QqQ-MS method capable of screening and confirmation was developed for the detection of 729 NPS, which is by far the largest number of NPS to be included in a comprehensive analytical method to date. This was accomplished using a mixture approach in order to reduce time required for method validation. The present work demonstrates that it is possible to use a series of standard mixtures for the validation of a method containing a large number of NPS.

5. COMPARISON OF MULTIPLE EXTRACTION/PURIFICATION METHODS

5.1 Introduction

Novel psychoactive substances are compounds that are manufactured to emulate classically known and used illicit drugs. Novel psychoactive substances are often classified by one of the following drug classes; phenethylamines, amphetamines, synthetic cathinone, synthetic cannabinoids, piperazines, pipradrols/piperidines, benzofurans, and tryptamines. Clandestine laboratories circumvent federal rules and regulations by altering the structure of the parent compounds, creating new synthetic compounds, and ultimately rendering them just outside of federal jurisdiction. Once these "legal highs," "designer drugs," or "bath salts" are released to the public, it is not uncommon that they are followed by a wave of overdoses and potential fatalities. This phenomenon gives rise to an even greater issue for clinical and forensic toxicology laboratories; the extraction, detection, identification, and quantitation of NPS. The work presented here aims to focus on the extraction of NPS from biological matrices, which will then aid in the detection and quantitation of NPS.

The most commonly used extraction/purification techniques in forensic toxicology laboratories are "dilute-and-shoot", protein precipitation ("crash-and-shoot"; PP), solid phase extraction (SPE) and liquid-liquid extraction (LLE). While these methods may not always be ideal for all drugs, due to time, cost, and lack of removal of possible interferences, they are well established for the extraction of common drugs of abuse. However, there is little available research focusing on the development of extraction methods with the sole purpose of extracting NPS from biological matrices. The majority of research done on the extraction of NPS focuses on the screening method rather than the

extraction technique. 82,116 There are only a few publications that have investigated extraction of a small subset of NPS from biological matrices. 92,117

The goal of the present research is to compare several extraction methods to determine if any one approach is more reliable than the others for the purpose of extracting NPS from biological matrices. Blood and urine are two of the most important specimens collected in forensic cases, as they can provide accurate detail into endogenous as well as exogenous analytes present in a sample, or lack thereof. Thus, it is imperative to develop near optimal conditions by taking into consideration the amount of solvent used, pH, pKa of analytes, and possible drug-drug interactions for the ideal extraction of analytes within complex matrices. With the constant emergence of NPS, there is an underlying ambiguity in that NPS that are similar in structure may co-elute. Co-eluting analytes may experience suppression or enhancement and can therefore not be specifically detected. In addition to more traditional extraction methods, the present research investigated the potential benefits of online SPE and "QuEChERS" (Quick, Easy, Cheap, Effective, Rugged and Safe) for the extraction of NPS from urine or whole blood.

Online SPE has the potential to greatly reduce analysis time, transfer steps, and sample handling. However, method development and optimization for online SPE is very complex, time consuming, and relies heavily on having the proper instrumentation. QuEChERS, developed by Anastassiades and co-workers, has become a reliable extraction method for pesticide analysis in agricultural and food produce industries. ⁹³ Initially, QuEChERS served as an approach to extract the wide range of polar and nonpolar pesticide residues left on fruit and vegetables. The process of extraction for a single sample involves a two-step process; partitioning, followed by a dispersive-solid phase extraction (d-SPE)

cleanup. 93 The method's application has since become expanded to include the extraction of pollutants from complex matrix samples such as soil, sediment, and water. Furthermore, QuEChERS has in a very limited number of cases been modified to include the extraction of NPS found in biological matrices. 117,118 The process of QuEChERS occurring in a "one-pot" process can further improve the process by cutting down on the number of steps, preparation time, cost of SPE cartridges, cleaning of glass, and use of harmful solvents. In this study, a QuEChERS method, modified to involve only a mini one-pot process, was compared to standard SPE methods and protein precipitation through the analysis of chromatographic profiles for mixes of NPS in whole-blood and urine.

5.2 Materials and Methods

5.2.1 Chemicals and Materials

Reference standards for all NPS compounds, including deuterated standards, were obtained from Cayman Chemical (Ann Arbor, MI) as the neat solid material for the majority of compounds, although some were already in solution. Optima LCMS grade MeOH, acetonitrile, DMSO, HPLC water, ammonium formate (99%), formic acid, ammonium hydroxide, HCl, glacial acetic acid, ammonium acetate, magnesium sulfate anhydrous, sodium acetate anhydrous, and sodium chloride were purchased from Fisher Scientific (Fair Lawn, NJ). Bulk sorbents of primary secondary amines (PSA) and end-capped C18 were purchased from United Chemical Technologies (Bristol, PA). Bond Elut Plexa PCX SPE cartridges were purchased from Agilent Technologies (Santa Clara, CA). Certified blank urine was purchased from UTAK Laboratories Inc. (Valencia, CA) and aliquoted into 10 mL portions and stored at -20°C until needed. Blank human whole blood

with disodium EDTA as an anticoagulant was purchased from BioIVT (Hicksville, NY) and stored at 4°C.

5.2.2 Preparation of standard solutions

Neat standards (including deuterated compounds) were dissolved in MeOH or DMSO, depending on the analyte's solubility, to achieve concentrations of 1, 2, 5, or 10 mg/mL. From these initial preparations, 10 µg/mL working solutions were prepared in MeOH for all analytes. The 10 µg/mL working solutions were used to create 200 ng/mL spiking solutions that contained up to 36 compounds. An internal standard for spiking was also created using the 10 µg/mL working solution.

5.2.3 Dilute-and-Shoot/Crash-and-Shoot Methodology

All urine and whole blood samples were spiked with the 200 ng/mL spiking solutions and the IS mix to reach the desired concentration. Dilute-and-shoot was completed by diluting spiked urine at a ratio of 1:5 with HPLC water and then directly injecting the diluted sample into the instrument for analysis. Crash-and-shoot was completed on spiked whole blood samples. This procedure consisted of adding 600 μ L of cold acetonitrile (-20°C) to 200 μ L of sample, vortexed for 30 sec and centrifuged for 5 min at 7000 rpm. After centrifuging, 100 μ L of acidified MeOH (2% HCl) was added to the organic layer and dried down using a vacufuge (1 h at 45°C) and then reconstituted in 200 μ L of MeOH for analysis.

5.2.4 The QuEChERS Methodology

A mini-one pot QuEChERS kit was developed in-house. For the one-pot method, certified drug free pooled whole blood with EDTA as an anticoagulant was spiked with drug mix and internal standard mix to reach a total sample volume of 0.2 mL. Before the

addition of sample, 600 μL of cold acetonitrile and 200 μL of HPLC water were added to a pre-weighed mini QuEChERS kit consisting of 200 mg of MgSO₄, 50 mg of NaCl, 25 mg of PSA, 25 mg of end-capped C₁₈, and ceramic homogenizer beads. Next, 200 μL of sample was added to the kit then the sample was shaken by hand for 30 s, vortexed for 1 min, and centrifuged for 5 min at 10,000 rpm. Acidified MeOH was added to the supernatant before being dried down using a vacufuge. Once dry, the sample was reconstituted in 200 μL of MeOH before LC-MS/MS analysis.

5.2.5 On-line SPE Methodology

Online SPE was initially performed using an Agilent 1290 Infinity Online SPE Solution in conjunction with an Agilent 1290 FlexCube LC unit, with a Bond Elute (BE) online polymeric sorbent material (PLRP-S) cartridge. An online SPE method was created by altering the dMRM method that had been previously developed for the detection of NPS. The online SPE method included parameters for the Agilent Flex Cube LC unit using the same mobile phases as those developed for the screening method (*i.e.*, initial 95:5 A:B; final 2:98 A:B mobile phases).

After initial experiments using this online SPE method were unsatisfactory, a new approach was taken in order to increase the retention and recovery of all compounds. This revised online SPE method utilized two different cartridges which were loaded and eluted at the same time. For this purpose, the BE cartridge described above was used in tandem with a mixed mode cartridge. This approach was developed in the hope of reducing tailing and peak broadening encountered with the initial method. It was reasoned that a mixed mode cartridge could allow for some the compounds to elute faster rather than being

retained on the reverse phase column. To properly load and elute using the two cartridges, modified FlexCube parameters were developed (Table 17).

Table 17. Programming timetable for the Flex Cube for Online SPE.

Time (min)	Function	Parameter
0	Pump for volume	Pump 3 mL: Flow at 0.5 mL/min
1.00	Valve change position	Position 2 (Load 2 Elute 1)
2.00	Valve change position	Position 1 (Load 1 Elute 2)
12.5	Pump for volume	Pump 3 mL: Flow at 0.5 mL/min
14.00	Pump for volume	Pump 4 mL: Flow at 0.5 mL/min

5.2.6 SPE Methodology

An SPE method previously created in the lab was altered in order to be used for a wide variety of NPS. Crash-and-shoot, as described above, was completed on 200 μL of sample, then 1 mL of 0.1 M phosphate buffer (pH=6) was added to the organic layer. A mixed mode Plexa PXR cartridge was used for SPE. The cartridge was conditioned with 1 mL of MeOH and 1 mL of phosphate buffer. After conditioning, the sample was loaded onto the cartridge slowly and then washed with 3 mL of buffer and 3 mL of MeOH:H₂O (20:80). After washing, the cartridge was dried for 10 min before elution. The sample was eluted with two 0.5 mL aliquots of MeOH:MeCN (50:50) and one 0.5 mL aliquot of 5% ammonium hydroxide in MeCN. Acidified MeOH (2% HCl) was added to the extract before drying using a vacufuge. Once dried, samples were reconstituted in 200 μL of MeOH before analysis.

5.2.7 Comparison of techniques

Results for all extraction methods except online SPE were compared with regard to matrix effects, recovery, process efficiency, cost, and time. Recovery (RE), matrix effects (ME), and process efficiency (PE) were determined using three sample sets, all with a final NPS concentration of 50 ng/mL. The three sets were designed as follows; neat drug

dissolved in MeOH (set A), drug spiked into the sample after extraction (set B), and drug spiked into the sample before extraction (set C). Matrix effects, recovery, and process efficiency were determined according to equations 7, 8, and 9, respectively. Cost was determined based on the materials needed to run 50 samples a day for a full year and the time required per batch of samples (20 samples).

$$ME = \frac{Set B}{Set A} * 100 \qquad (7)$$

$$RE = \frac{Set C}{Set B} * 100$$
 (8)

$$PE = \frac{Set C}{Set A} * 100 \qquad (9)$$

Techniques were separated by matrix (*i.e.*, urine or whole blood) and compared accordingly. To determine whether results for any of the techniques were significantly different from one another, a one-way analysis of variance (ANOVA) was completed using JMP software version 14. An independent one-way ANOVA was done for each parameter (ME, RE, and PE) resulting in three ANOVAs for each matrix. Average peak area was used to determine ME, RE, and PE for each compound. Each of the three ANOVAs were created for all compounds in Mix 2 (n=33). An individual ANOVA was not completed per compound, instead ANOVAs were separated based on technique and parameter (ME, RE, PE). An ANOVA is only capable of determining if any of the techniques are significantly different (determined using the F ratio on the basis of sum of squares) not which specific techniques are different from one another. To determine which specific extraction techniques produced significantly different results, a Tukey's honestly significant difference (HSD) test was completed using JMP software. Cost and time were compared

subjectively and are highly dependent on the needs of the analysis (*i.e.*, whether the elimination of matrix effects is more important than recovery).

5.2.8 LC-QqQ-MS analysis

All samples were analyzed using an Agilent 1290 Infinity Binary Pump LC coupled to an Agilent 6460 triple quadrupole MS/MS with Jet Streaming technology and electrospray ionization (ESI) equipped with Agilent MassHunter software version B7.0. Chromatographic separation was performed using an Agilent Zorbax Rapid Resolution HD Eclipse Plus C₁₈ column (3.0 x 100 mm, 1.8 μm). Data acquisition was performed in dMRM mode using positive mode ESI. The dMRM method employed two transitions for each analyte, which aids in achieving increased selectivity.

Chromatographic separation was achieved using gradient elution with a flow rate of 0.3 mL/min using 5 mM ammonium formate/0.1% formic acid in HPLC water as mobile phase A and MeOH with 0.1% formic acid as mobile phase B. The gradient used for analysis was as follows: hold at 5% B for 1 min, followed by 5% B to 98% B from 1 to 9.5 min, then hold at 98% B until 16 min, followed by a 3-min re-equilibration at 5% B. The analytical column was held at a temperature of 40°C during separation.

MS source parameters were as follows: gas temperature, 325°C; gas flow 6 L/min; nebulizer 40 psi; sheath gas temperature 350°C; sheath gas flow 11 L/min; capillary voltage 4,000 V; and nozzle voltage 750 V. Agilent MassHunter Optimizer software was used to determine the ideal data acquisition parameters for MRM mode. The software uses the mass of each compound to determine optimal fragmentor voltage, resulting product ions, and associated collision energies and can optimize for up to 10 transitions for each

precursor ion. Analyte detection windows ranged from 0.25 min (*i.e.*, \pm 0.125 min around t_R) to 0.75 min (*i.e.*, \pm 0.375 min around t_R) depending on the analyte.

5.3 Results and Discussion

5.3.1 Dilute-and-shoot/crash-and-shoot methodology

Dilute-and-shoot was determined to be an economical and fast method, however, it exhibited the highest ion suppression/enhancement from matrix effects. This was expected, since no matrix effects were being eliminated by using this technique, just reduced via dilution. Dilute-and-shoot can be used when high throughput is necessary, since it saves both time and money, however it could cause increased instrument down time if proper cleanup precautions are not used.

Crash-and-shoot showed similar results to those of dilute-and-shoot, since it is also a minimal purification technique. The goal of crash-and-shoot is to eliminate proteins by precipitating them out using cold solvent. For many screening purposes in forensic laboratories, crash-and-shoot may be desirable to cut down on time and cost of analysis.

The results for ME, RE, PE for all compounds in Mix 2 for crash-and-shoot can be seen in Table 18. Matrix effects should ideally be 80 - 120%; there were a number of compounds for which ME was not within this range. However, the majority of compounds did exhibit ME within 60 - 85%, indicating some degree of ion suppression. This result may not be surprising, as whole blood is a complicated matrix and eliminating all matrix effects simply by removing proteins present in the sample is not always enough to sufficiently eliminate matrix effects.

Table 18. Matrix effects, recovery, and process efficiency for Mix 2 compounds in spiked (50 ng/mL) whole blood samples following crash-and-shoot processing.

Compound	ME (%)	RE (%)	PE (%)
3,4-DHMA	134	33	44
2-fluoromethcathinone	97	81	78
4-fluoroisocathinone	74	85	63
4-hydroxy MiPT	0	48	0
Clencyclohexerol	44	73	32
N-Ethylbuphedrone	79	87	69
4-MMC	88	82	72
3-methyl-α-Pyrrolidinopropiophenone	88	83	73
3,4-dimethoxy-α-Pyrrolidinopentiophenone	89	83	74
2,3-methylenedioxy pyrovalerone	89	83	74
4-ethyl-N,N-dimethylcathinone	88	84	74
2C-T-2	61	76	46
PCPr	87	81	71
2C-T-4	61	74	45
4'-Methyl-N-methylhexanophenone	88	83	77
25I-NBF	87	83	72
Loperamide	89	81	72
AB-005 azepane isomer	58	94	55
AB-FUBINACA 3-fluorobenzyl isomer	80	73	58
A-796260	55	68	37
JWH 018 N-(5-hydroxypentyl) metabolite	61	88	54
MAM2201 N-pentanoic acid metabolite	47	112	53
ADB-PINACA isomer 1	73	80	58
RCS-4 2-methoxy isomer	70	81	57
PB-22	75	71	53
XLR11 N-(2-fluoropentyl) isomer	42	73	31
UR-144 Degradant	1	62	1
AKB48 N-(5-fluoropentyl) analog	13	49	6
KM 233	1	200	2
Δ8-THC	2	314	5
EG-018	34	73	25
SER-601	101	35	35

5.3.2 The QuEChERS Methodology

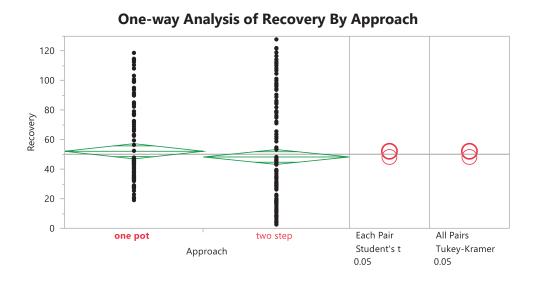

The QuEChERS method underwent some efforts at optimization before a final inhouse method was created and used for the comparison work. At first, a two-step approach using a commercial (Agilent Technologies, Inc.) QuEChERS kit designed for the extraction of 2 mL samples was tested and then compared to the results of an in-house mini QuEChERS kit that was developed. Figure 5 shows the comparison of chromatograms for the one-pot approach and the two-step method when applied to whole blood samples spiked at the 5 ng/mL level. Results of the two approaches were compared based on peak area and recovery (determined using a daily calibration curve). It was determined that at lower concentration levels the in-house mini QuEChERS approach resulted in higher recoveries than the commercial two-step approach. Other concentrations (20 and 80 ng/mL) were also compared, however, there was no significant difference between the two approaches for higher concentrations.

Figure 5. The top panel represents the MRM results of extracting the compounds in Mix 2 from whole blood using an in-house one-pot approach, while the bottom panel is the result of extracting the same compounds from whole blood using a two-step approach.

Figure 6 represents the comparison of the one-pot approach and the two-step approach for QuEChERS in terms of extracting a mix of NPS from whole blood. There was no statistically significant difference between the approaches, however, there was a

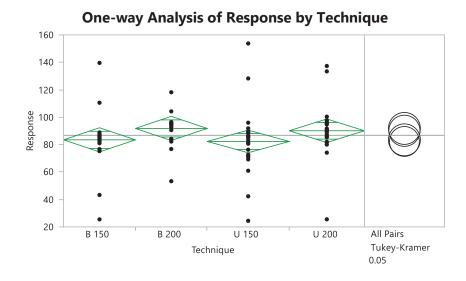

wider spread of results for the two-step approach than the one-pot method. The variation of results for the two-step approach can be attributed to the low recoveries of 5 ng/mL samples in comparison to the results seen with the one-pot approach. Figure 6 shows chromatograms for the one-pot approach and the two-step approach for 5 ng/mL samples. All work moving forward was completed using the one-pot approach.

Figure 6. Visually represents the results of a Means/ANOVA test used to determine whether or not there is a statistically significant difference between the commercial two step approach and the in-house one-pot approach in terms of recovery.

Subsequently, attempts were made to further optimize the one-pot mini QuEChERS approach. Ratios and amounts of solids were modified to assess the effect on reduction of matrix effects and drug recovery. However, these efforts did not result in in significant additional improvement in these parameters. Figure 7 represents the elimination of matrix effects by changing salts using QuEChERS. In the figure on the x-axis B=blood U=urine and the number correspond to the amount of MgSO₄ in mg in the QuEChERS kit. Since there were no statistically significant differences found through the one-way ANOVA and

Tukey's HSD test, the original amount of salts (150 mg) were used to create one-pot QuEChERS kits for extraction.

Level	- Level	Difference	Std Err Dif	Lower CL	Upper CL	p-Value
B 200	U 150	9.484481	6.075284	-6.4401	25.40911	0.4063
B 200	B 150	8.312173	6.274526	-8.1347	24.75906	0.5499
U 200	U 150	7.793373	6.001192	-7.9370	23.52379	0.5664
U 200	B 150	6.621065	6.202815	-9.6378	22.87998	0.7102
B 200	U 200	1.691108	6.202815	-14.5678	17.95002	0.9929
B 150	U 150	1.172308	6.075284	-14.7523	17.09694	0.9974

Figure 7. The top panel visually represents the results of a Means/ANOVA test used to determine whether or not the amounts of salts used in the QUEChERS one-pot kit has an effect on elimination of matrix effects. The bottom panel shows the results of Tukey HSD test showing that there are no statistically significant differences.

The results for ME, RE, PE for all compounds spiked into whole blood and extracted by QuEChERS can be seen in Table 19. Matrix effects observed for all compounds in Mix 2 were quite variable; the majority were below 100%, meaning that the compounds were experiencing ion suppression. Most of the compounds fall between 60 and 100% matrix effects, therefore they were experiencing up to 40% ion suppression. While there was a large range of recoveries, the majority of compounds were recovered at levels above 60%. It is not uncommon to see such varied recoveries due to the different structural classes of drugs that are being extracted, all of which have different chemical

interactions. Process efficiency on average fell between 40 and 60% for the compounds included in Mix 2. Ideally, process efficiency should be higher and the QuEChERS approach could be further optimized specifically to increase PE values.

Table 19. Matrix effects, recovery, and process efficiency for Mix 2 compounds in spiked (50 ng/mL) whole blood samples following QuEChERS processing.

Compound	ME (%)	RE (%)	PE (%)
3,4-DHMA	105	8	9
2-fluoromethcathinone	73	69	50
4-fluoroisocathinone	91	116	106
4-hydroxy MiPT	0.1	51	0.1
Clencyclohexerol	61	69	42
N-Ethylbuphedrone	63	72	45
4-MMC	69	69	47
3-methyl-α-Pyrrolidinopropiophenone	68	64	44
3,4-dimethoxy-α-Pyrrolidinopentiophenone	69	69	48
2,3-methylenedioxy pyrovalerone	68	66	45
4-ethyl-N,N-dimethylcathinone	68	61	42
2C-T-2	17	206	34
PCPr	67	61	41
2C-T-4	21	190	41
4'-Methyl-N-methylhexanophenone	68	64	44
25I-NBF	68	72	49
Loperamide	68	85	57
AB-005 azepane isomer	43	99	42
AB-FUBINACA 3-fluorobenzyl isomer	66	86	56
A-796260	31	139	43
JWH 018 N-(5-hydroxypentyl) metabolite	57	87	51
MAM2201 N-pentanoic acid metabolite	56	92	51
ADB-PINACA isomer 1	61	78	47
RCS-4 2-methoxy isomer	57	84	48
PB-22	56	84	47
XLR11 N-(2-fluoropentyl) isomer	46	87	39
UR-144 Degradant	16	79	13
AKB48 N-(5-fluoropentyl) analog	22	69	15
KM 233	5	112	6
Δ8-THC	3	202	7
EG-018	43	57	24
SER-601	71	78	55

5.3.3 Online SPE methodology

During the online SPE method development and optimization experiments, initial results were less than ideal, resulting in severe tailing, peak broadening, and carry over. An example of a typical chromatogram collected using the one cartridge approach can be seen in Figure 8. One of the major issues faced when trying to optimize an online SPE approach for the Agilent FlexCube instrumentation was the inability to manipulate pH in the same way as that for a classical SPE approach. In order to get around this limitation, a two-cartridge approach was attempted, but also without success. It was ultimately determined that a different online SPE instrumentation design would be required to successfully extract different classes of NPS from biological matrices in just one run. For

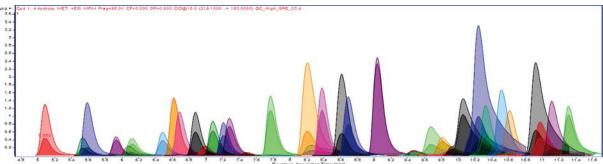


Figure 8. Typical LC-QqQ-MS MRM response for Mix 2 using the reversed phase online SPE approach. example, Lehman and co-workers developed an in-line SPE method for the extraction of 74 NPS from serum. Their in-line SPE set up was capable of up to 100 μL injection volumes and was capable of higher ranges of pH manipulation. Additionally, an ideal online SPE setup would allow for higher flow rates and the ability to use more than three solvents for the SPE process. Higher flow rates would aid in the washing of impurities from the cartridge and elution of compounds of interest. The more solvent attachments allow for a method with more steps, which may be necessary to extract such varied compounds in one run. Consequently, online SPE was not considered further when

completing comparison tests for extraction/purification methods. As an alternative, classical SPE was tested and compared to the other extraction/purification methods.

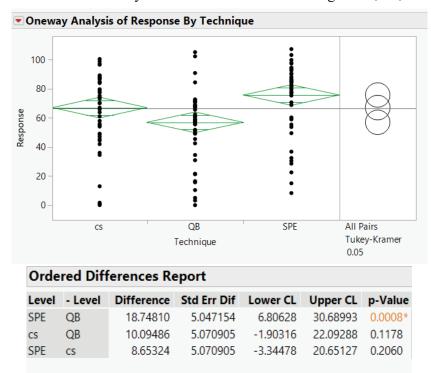
5.3.4 Solid phase extraction methodology

The classical SPE approach was adapted from a previously developed approach in the lab so that it was capable of extracting different classes of NPS. The SPE method was specifically designed to extract drug compounds with varying pKa values through pH manipulation and multiple elution steps. Table 20 shows the ME, RE, and PE for all compounds included in Mix 2. The majority of compounds underwent ion some suppression in terms of matrix effects, however, most of the compounds were found to have ME above 70%, which is desired when working with whole blood. It was shown that SPE is capable of removing a large portion of matrix effects for the majority of compounds. The major exceptions were synthetic cannabinoids, which tend to pose issues when extracting from biological matrices in general. In terms of recovery, the results were generally lower than desired; RE fell within the range of 50-100%, which might be improved with further optimization. Process efficiency varied from compound to compound without a specific trend.

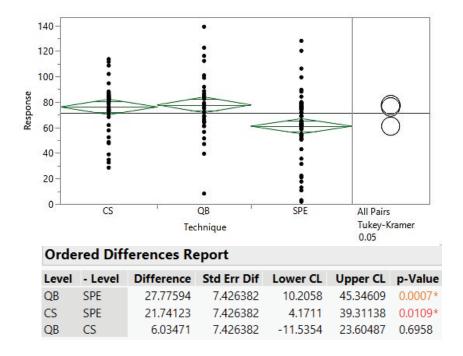
Table 20. Shows the results for mix 2 using SPE in terms of matrix effects, recovery, and process efficiency using 50 ng/mL spiked whole blood samples.

Compound	ME (%)	RE (%)	PE (%)
3,4-DHMA	132	3	4
2-fluoromethcathinone	23	106	24
4-fluoroisocathinone	29	64	18
4-hydroxy MiPT	69	2	1
Clencyclohexerol	85	22	19
N-Ethylbuphedrone	60	72	43
4-MMC	59	62	37
3-methyl-α-Pyrrolidinopropiophenone	77	53	41
3,4-dimethoxy-α-Pyrrolidinopentiophenone	86	55	47
2,3-methylenedioxy pyrovalerone	78	55	43

4-ethyl-N,N-dimethylcathinone	71	65	46
2C-T-2	84	11	9
PCPr	85	43	37
2C-T-4	87	13	11
4'-Methyl-N-methylhexanophenone	60	65	39
25I-NBF	85	52	44
Loperamide	88	23	20
AB-005 azepane isomer	86	54	46
AB-FUBINACA 3-fluorobenzyl isomer	95	62	59
A-796260	82	61	50
JWH 018 N-(5-hydroxypentyl) metabolite	86	78	67
MAM2201 N-pentanoic acid metabolite	93	79.	73
ADB-PINACA isomer 1	86	64	55
RCS-4 2-methoxy isomer	75	74	56
PB-22	77	61	47
XLR11 N-(2-fluoropentyl) isomer	55	75	42
UR-144 Degradant	31	88	27
AKB48 N-(5-fluoropentyl) analog	15	128	19
KM 233	8	120	10
Δ8-THC	31	79	24
EG-018	33	71	23
SER-601	93	77	72


5.3.5 Comparison of techniques

All extraction methods were compared on the basis of matrix effects, recovery, process efficiency, time, and overall cost. Table 21 shows the breakdown of how much each extraction technique would cost to analyze 20 samples including consumables, solvents, cartridges, and operator time assuming a \$22 hourly salary. Additionally, Table 21 shows the time each method would take to extract 20 samples. It is important to consider overall cost and time when determining which extraction method is ideal for a specific purpose. However, time and cost should not be the only factors to consider in making a final decision. These parameters should be considered in addition to ME, RE, and PE.


Table 21. Cost of each extraction technique and the time each one takes to prepare a set of 20 samples.

Technique	Cost per set (\$)	Time (min)
Dilute-and-shoot (urine)	5	10
Crash-and-shoot (blood)	39	100
QuEChERS (blood)	47	120
QuEChERS (urine)	47	120
Solid phase extraction (blood)	146	210
Solid phase extraction (urine)	132	180

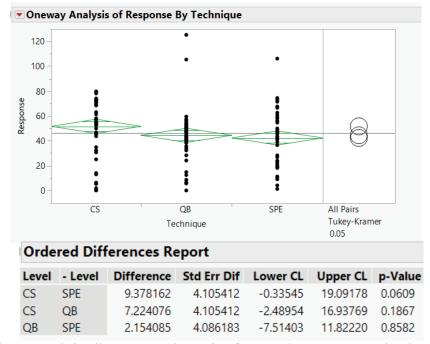

In addition, extraction method performance was statistically compared using a one-way ANOVA based on ME, RE, and PE, using peak area as a measure of response. The ANOVA and results of the Tukey's HSD test can be seen in Figures 9, 10, and 11.

Figure 9 The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the three extraction methods based on matrix effects are significantly different. The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference between the results of SPE and QuEChERS with blood in terms of elimination of matrix effects.

Figure 10. The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the three extraction methods based on recovery are significantly different. The bottom panel shows the results of Tukey HSD test showing that there is a statistically significant difference between the results of SPE and QuEChERS with blood and crash and shoot and SPE in terms of recovery.

Figure 11. The top panel visually represents the results of a Means/ANOVA test used to determine whether results of the three extraction methods based on process efficiency are significantly different. The bottom panel shows the results of Tukey HSD test showing there are no statistically significant differences.

The one-pot QuEChERS approach when completed for urine samples showed a greater elimination of matrix effects than dilute-and-shoot, but lower elimination of matrix effects than SPE. Even though QuEChERS is capable of removing a higher level of matrix effects from urine as compared to dilute-and-shoot, it has comparable recoveries and process efficiency to dilute-and-shoot. QuEChERS for whole blood showed comparable matrix effects, recovery and process efficiency as compared to crash-and-shoot. While at first glance QuEChERS may appear capable of eliminating more matrix effects based on the ANOVA plot, the p values indicate no statistically significant differences.

The SPE approach, when completed for urine samples, showed much higher elimination of matrix effects than either dilute-and-shoot or QuEChERS. Even though SPE is capable of removing a higher level of matrix effects from urine samples than dilute-and-shoot and QuEChERS, there was no significant difference when considering recovery and process efficiency. Solid phase extraction for whole blood, like the results for urine, showed higher elimination of matrix effects than the other two extraction methods. However, SPE had lower recovery than both QuEChERS and crash-and-shoot. All three extraction methods for whole blood were comparable when looking at process efficiency. SPE is more efficient at eliminating matrix effects than the other options, but is the most time consuming and expensive. The cost and time it takes to complete SPE needs to be weighed against the need for the elimination of matrix effects.

When considering the results of the ANOVAs for all parameters and Tukey HSD tests, there is no clear answer on which technique would be most beneficial for the extraction of NPS. In order to decide which approach is appropriate, it is therefore

important to consider the overall needs of the analysis. For qualitative purposes, dilute-and-shoot and crash-and-shoot may be appealing since they are quick and cost effective. For qualitative analysis, the elimination of matrix effects is not imperative, therefore it is not necessary to use a more time and cost consuming method. If quantification is needed, then a technique capable of minimizing matrix effects would be more effective. Therefore, SPE may be the best choice for quantitation or when low limits of detection are needed. QuEChERS may be ideal when high throughput and quantification is desired due to the time difference between SPE and QuEChERS.

Finally, the drying down process was analyzed to ensure that it was not contributing to sample loss. Although this step is not necessary for all samples, it was done in this study so that all extracts had the same composition and volume for analysis. Results indicated that the drying down process does account for some analyte loss. For most compounds, there was ~10% loss of analyte in the drying process using the vacuum centrifuge. However, some compounds showed a much higher sample loss, for example 2C-T-4 and KM 233, which had ~90% loss of analyte through the drying process. To avoid potentially high sample losses from drying down, it is also possible to use a gentle stream of nitrogen as an alternative. Ideally, the drying down process should only be used when necessary, such as when the goal is to concentrate samples before analysis.

5.4 Conclusions

Various extraction methods, including dilute-and-shoot, crash-and-shoot, SPE, and QuEChERS, were analyzed and compared based on elimination of matrix effects, and improved recovery and process efficiency. It was determined that none of the methods are clearly statistically better than the others for the extraction of NPS from

urine and whole blood. Each extraction method was applied to a mixture of 33 NPS that included compounds from various drug classes and metabolites. When analyzing the mixture as a whole it was determined that SPE is capable of eliminating the most matrix effects, however SPE had the lowest recoveries. Ultimately, when deciding which extraction method is best, it is necessary to consider the goals of the final method. Further optimization would need to be completed in order to have one method that is best in all aspects for multiple drug classes. However, QuEChERS has the potential to be that method with additional optimization.

6. ANALYSIS OF BLIND SPIKES AND AUTHENTIC SPECIMENS

6.1 Introduction

Full method validation and applicability of extraction methods generally need to be tested on blind spikes and authentic specimens in order to prove adaptability to forensic case work samples. A number of methods that have been validated for the detection of NPS have been applied to forensic case work samples. Authentic specimens have challenges that are not faced when analyzing spiked samples. Some of these challenges include interferences from licit medications, unknown concentrations of analytes, and increased matrix effects that can be caused by medical issues.

The present study included the analysis of blind spiked urine and whole blood samples and authentic ante-mortem urine specimens using the validated dMRM method for the detection of NPS. Blind spikes were qualitatively and quantitatively analyzed in order to further validate the dMRM method. Additionally, authentic specimens were qualitatively screened for all 826 analytes included in the full dMRM method. Analyzing blind spikes and authentic specimens is important in order to prove the applicability of a developed method to clinical and forensic samples.

6.2 Materials and Methods

6.2.1 Chemicals

Reference standards for all NPS compounds, including deuterated standards, were obtained from Cayman Chemical (Ann Arbor, MI) as the neat solid material for the majority of compounds, although some were already in solution. Optima LCMS grade methanol, acetonitrile, HPLC water, ammonium formate (99%), formic acid, magnesium sulfate anhydrous, sodium acetate anhydrous, and sodium chloride were purchased from

Fisher Scientific (Fair Lawn, NJ). Bulk sorbents of primary secondary amines (PSA), endcapped C18, and beta-glucuronidase were purchased from United Chemical Technologies (Bristol, PA). Certified blank urine was purchased from UTAK Laboratories Inc. (Valencia, CA) and aliquoted into 10 mL portions and stored at -20°C until needed. Blank human whole blood with disodium EDTA as an anticoagulant was purchased from BioIVT (Hicksville, NY) and stored at 4°C.

6.2.2 Collection of Authentic Specimens

Authentic urine specimens that had originally been collected in 2014 were obtained from a local drug testing laboratory, with volumes varying from 2.5 to 6.0 mL. Specimens were obtained from subjects in addiction treatment and pain medication monitoring programs and were supplied deidentified with no subject information provided. Specimens were assigned a sequential ID number for laboratory tracking purposes and were stored in a -20°C locked freezer until analysis.

6.2.2 Preparation of samples

Blind spiked urine samples were created such that identity and concentration were unknown to the analyst. Samples were created in certified blank urine at a final volume of 200 µL. Analytes were selected from Mixes 1, 2, and/or 3 and samples contained 0 to 9 individual analytes at varying concentrations. An aliquot of internal standard mix was added to each sample, which was then diluted to 1 mL with HPLC water before analysis.

Blind spiked whole blood samples were also created in the same manner as the blind spiked urine samples, *i.e.*, in certified blank human whole blood in a final volume of 200 µL. Analytes were selected from Mixes 1, 2, and/or 3 and samples contained 0 to 2 individual analytes. An aliquot of internal standard mix was added to each sample in the

first set of blind spiked whole blood samples before undergoing mini one-pot QuEChERS extraction. After extraction, the organic layer was removed and dried down using vacufuge after the addition of acidified MeOH. Once completely dry, samples were reconstituted with 200 μ L of MeOH for analysis. A second set of blind spiked whole blood samples were prepared using crash-and-shoot processing. An aliquot of internal standard mix was added to all samples before the addition of 600 μ L of cold MeCN. Once the MeCN was added, all samples were vortexed and then centrifuged. After centrifugation, the supernatant was removed and dried down using the same technique as the samples prepared using QuEChERS.

In addition, 50 authentic urine specimens were analyzed using the validated dMRM method. Authentic specimens were prepared by adding internal standard mix to $100~\mu L$ of sample and diluting it to $500~\mu L$ with HPLC water for analysis. After this initial analysis, the 50~authentic specimens were glucuronidase treated, making it possible to detect metabolites that may be missed otherwise. The glucuronidase solution was prepared using 2~mL of hydrolysis buffer, 18~mL water, and 5~mL of β -glucuronidase. Treatment was done by adding the glucuronidase solution to authentic urine specimens at a ratio of 1:1~and incubating for 2~h at 35~C before LC analysis. These samples were qualitatively screened for the presence of any of the 826~compounds included in the NPS standard mixes. Qualitative analysis for the blind spiked and authentic specimens was completed using the dMRM method described previously. Any peak with a signal 3~times greater than the noise was considered to be positive for that analyte. Quantitative analysis for blind spiked

samples was completed using the fully validated dMRM method described previously,

using a daily calibration curve and MassHunter Quantitative software.

6.3 Results and Discussion

A total of 38 blind spiked urine samples were prepared in three different sets for qualitative and quantitative analysis. The first set was designed to test the lower limits of the validated method, the second set was designed in the middle of the calibration curve, and the third was designed to test selectivity. The experimental identity, experimental concentration, true identity, and true concentration for the 15 blind spikes included in the first set are shown in Table 22. The only sample that was not properly identified was sample 1, which should have been identified as THCA-A, but was identified as JWH 200 5hydroxyindole metabolite. This was likely due to the fact that THCA-A was one of the few compounds that did not show linearity and therefore this method was not capable of properly identifying that compound. In addition, there were three false negative results (samples 2, 4, and 6), i.e., samples that were determined to be blank even though they each contained one compound, and one sample (sample 5) that contained two compounds with only one correctly identified. The false negatives could have been caused by ion suppression, which may have resulted in low ion intensity and levels that were not with in the LOD/LOQ of the dMRM method, since this set of spikes was designed to test the lower limits of the method. Differences between the spiked concentration and the detected concentration may also be attributed to ion suppression or enhancement. Additionally, the use of IS not chemically identical to every analyte can also introduce errors in quantitation, due to differences in relative ionization or other factors.

Table 22. True identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 1 (low concentration)

#	Compound Spiked	Conc. spiked (ng/mL)	Compound Detected	Conc. Detected (ng/mL)
1	THCA-A	5	JWH 200 5-hydroxyindole metabolite	N/A
2	4-APDB	5	pu	
3	JWH 200 5-hydroxyindole metabolite	5	JWH 200 5-hydroxyindole metabolite	7
4	N-Methyltryptamine	5	pu	
Ų	3-Methylbuphedrone	5	3-Methylbuphedrone	7
n	5-fluoro SDB-006	5	pu	
9	2-fluoromethcathinone	5	pu	
7	2C-T-4	5	2C-T-4	1
8	PB-22	5	PB-22*	6
6	4-ethyl-N,N-dimethylcathinone	5	4-ethyl-N,N-dimethylcathinone	3
5	JWH 018 N(5-hydroxypentyl) metabolite	5	JWH 018 N(5-hydroxypentyl) metabolite	6
10	MAM2201 N-pentanoic acid metabolite	5	MAM2201 N-pentanoic acid metabolite	5
11	25E-NBOMe	5	25E-NBOMe	5
12	AB-FUBINACA	5	AB-FUBINACA*	3
13	3C-B-fly	5	3C-B-fly	4
14	Para-Fluorofentanyl	5	Para-Fluorofentanyl	3
15	N,N-dimethylcathinone	5	N,N-dimethylcathinone	1
13	Phenylpiperazine	5	Phenylpiperazine	3

*Isomer of this compound were also detected. nd- not detected.

The true identity, true concentration, experimental identity, and experimental concentration can be seen in Table 23 for all compounds in the second set of spike urine samples. This set was spiked with 0 to 2 compounds each. The only sample that was not properly identified was sample 1, which should have been identified as THCA-A, but was not. This was likely due to the fact that THCA-A was one of the few compounds that did not show linearity and therefore this method was not capable of properly identifying that compound. Virtually all of the blind spikes were correctly identified, with quantitative results generally within ±20 of nominal. However, this method is not capable of discerning isomers and, as noted in the table, some isomers were determined in addition to the correct identification.

The true identity, true concentration, experimental identity, and experimental concentration can be seen in Table 24 for all compounds in the third set of spike urine compounds. This set was included 3 to 9 compounds per sample at varying concentrations. All compounds were identified correctly, except for THCA-A and 4'-fluoro-a-pyrrolidinopropiophenone. Again, THCA-A does not show linearity and 4'-fluoro-a-pyrrolidinopropiophenone was eliminated due to low abundance, which may have been caused by ion suppression. This set was designed to test selectivity, however, samples were still quantified and tested the full linear range of the method.

Table 23. The true identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 3 (intermediate concentration)

#		Conc.		Conc.
:	Compound Spiked	spiked (ng/mL)	Compound Detected	Detected (ng/mL)
1	THCA-A	50	Benzydamine	
2	4-APDB	50	4-APDB	57
3	JWH 200 5-hydroxyindole metabolite	50	JWH 200 5-hydroxyindole metabolite	45
4	blank		None	ı
5	N-Methyltryptamine	50	N-Methyltryptamine	43
,	3-Methylbuphedrone	50	3-Methylbuphedrone	99
0	5-fluoro SDB-006	50	5-fluoro SDB-006	61
7	2-fluoromethcathinone	50	2-fluoromethcathinone	47
∞	2C-T-4	50	2C-T-4	09
6	PB-22	50	PB-22*	70
10	blank		None	ı
11	4-ethyl-N,N-dimethylcathinone	50	4-ethyl-N,N-dimethylcathinone	42
5	JWH 018 N(5-hydroxypentyl) metabolite	50	JWH 018 N(5-hydroxypentyl) metabolite*	55
71	MAM2201 N-pentanoic acid metabolite	50	MAM2201 N-pentanoic acid metabolite	44
13	25E-NBOMe	50	25E-NBOMe	45
14	AB-FUBINACA	50	AB-FUBINACA*	65
15	3C-B-fly	50	3C-B-fly	57
16	para-Fluorofentanyl	50	para-Fluorofentanyl	46
17	blank		None	-
10	N,N-dimethylcathinone	50	N,N-dimethylcathinone	45
10	Phenylpiperazine	50	Phenylpiperazine	53
5	***************************************			

*Isomers of these compounds were also detected

Table 24. The true identity and concentration and experimental identity and concentration of blind spiked urine samples included in set 2 (varied concentrations)

		Conc.		Conc.
#	Compound Spiked	Spiked (ng/mL)	Compound Detected	Detected (ng/mL)
	Benocyclidine	5	Benocyclidine	5
	JWH 073 2'-naphthyl-N-(1,1-dimethyl) isomer	5	JWH 073 2'-naphthyl-N-(1,1-dimethyl) isomer	9
	4-hydroxy MiPT	5	4-hydroxy MiPT	9
,	JWH 200 5-hydroxyindole metabolite	35	JWH 200 5-hydroxyindole metabolite	36
_	XLR11 N-(2-fluoropentyl) isomer	35	XLR11 N-(2-fluoropentyl) isomer	32
	PB-22	35	PB-22*	70
	MMAI	35	MMAI	32
	4-methoxy PV8	80	4-methoxy PV8	77
	2-fluoromethcathinone	80	2-fluoromethcathinone	50
	N-Ethylbuphedrone	5	N-Ethylbuphedrone	10
	3-Methylbuphedrone	35	3-Methylbuphedrone	7
	RCS-4 2-methoxy isomer	35	RCS-4 2-methoxy isomer	35
r	Etaqualone	35	Etaqualone	31
1	PB-22 6-hydroxyisoquinoline isomer	80	PB-22 6-hydroxyisoquinoline isomer*	110
	3-methyl-α-Pyrrolidinopropiophenone	80	3 -methyl- α -Pyrrolidinopropiophenone	99
	A8-THC	80	A8-THC	06
	XLR11 N-(2-fluoropentyl) isomer	80	XLR11 N-(2-fluoropentyl) isomer	91
	AB-FUBINACA	5	AB-FUBINACA*	7
	4-Methyl-a-ethylaminobutiophenone	5	4-Methyl- α -ethylaminobutiophenone	7
	THCA-A	5	pu	1
3	MAM2201 N-pentanoic acid metabolite	5	MAM2201 N-pentanoic acid metabolite	9
	3C-B-fly	35	3C-B-fly	33
	3 -methyl- α -Pyrrolidinopropiophenone	35	3 -methyl- α -Pyrrolidinopropiophenone	33
	3,4-dimethoxy-α-Pyrrolidinopentiophenone	35	3,4-dimethoxy-α-Pyrrolidinopentiophenone	27

	ø	
(
í		1

	N,N-dimethylcathinone	35	N,N-dimethylcathinone	42
	AM694 N-(5-hydroxypentyl) metabolite	80	AM694 N-(5-hydroxypentyl) metabolite	72
	25I-NBF	5	25I-NBF	6
	4'-Methyl-N-methylhexanophenone	5	4'-Methyl-N-methylhexanophenone	8
4	2C-T-2	35	2C-T-2	37
	4-hydroxy MET	80	4-hydroxy MET	64
	4'-fluoro-a-Pyrrolidinopropiophenone	5	pu	ı
5	A-796260	5	A-796260	7
	N-Methyltryptamine	35	N-Methyltryptamine	40
Tabe	***			

*Isomer of this compound were also detected. nd - not detected.

Finally, two sets of blind spiked whole blood samples were prepared and analyzed qualitatively and quantitatively. The first set was designed to test the lower limits of the validated method, while the second set was designed to be in the middle of the calibration curve. The experimental identity, experimental concentration, true identity, and true concentration for the 15 blind spikes included in the first set are shown in Table 25. All samples in the first set were extracted using an in-house mini one-pot QuEChERS approach. The only sample that was not properly identified was sample 1, which should have been identified as THCA-A, but was not. This was likely due to the fact that THCA-A was one of the few compounds that did not show linearity and therefore this method was not capable of properly identifying that compound. However, there were 3 samples that were determined to be blank even though they all contained one compound. Additionally, sample 5 contained two compounds but only one was identified. Even though the dMRM method used for analysis was validated specifically for urine, the whole blood spiked samples were also quantitated. Many of the compounds were identified as higher concentrations than the true value this could be due to matrix effects that differ from those seen with urine.

The second set was designed to be in the middle of the calibration curve. The experimental identity, experimental concentration, true identity, and true concentration for the 18 blind spikes included in the second set are shown in Table 26. All samples in the second set were extracted prepared using a crash-and-shoot approach. The only sample that was not properly identified was sample 1, which should have been identified as THCA-A, but was not. This was likely due to the fact that THCA-A was one of the few compounds that did not show linearity. Experimental concentrations for the majority

of compounds fell within ± 20 nominal showing that the method is capable of quantifying whole blood extracts with similar percent error to those seen with urine samples.

Table 25. The true identity and concentration and experimental identity and concentration of blind spiked whole blood samples included in set 1 (low concentration)

#	Compound Spiked	Conc. spiked (ng/mL)	Compound Detected	Conc. Detected (ng/mL)
1	THCA-A	5	JWH 200 5-hydroxyindole metabolite	N/A
2	4-APDB	5	1	ı
3	JWH 200 5-hydroxyindole metabolite	5	JWH 200 5-hydroxyindole metabolite	6
4	N-Methyltryptamine	5	1	1
Ų	3-Methylbuphedrone	5	3-Methylbuphedrone	2
n	5-fluoro SDB-006	5	1	1
9	2-fluoromethcathinone	5	1	1
7	2C-T-4	5	2C-T-4	3
8	PB-22	5	PB-22*	8
6	4-ethyl-N,N-dimethylcathinone	5	4-ethyl-N,N-dimethylcathinone	5
-	JWH 018 N(5-hydroxypentyl) metabolite	5	JWH 018 N(5-hydroxypentyl) metabolite	8
10	MAM2201 N-pentanoic acid metabolite	5	MAM2201 N-pentanoic acid metabolite	5
11	25E-NBOMe	5	25E-NBOMe	4
12	AB-FUBINACA	5	AB-FUBINACA*	6
13	3C-B-fly	5	3C-B-fly	9
14	Para-Fluorofentanyl	5	Para-Fluorofentanyl	4
1.5	N,N-dimethylcathinone	5	N,N-dimethylcathinone	2
CI	Phenylpiperazine	5	Phenylpiperazine	4

*Isomer of this compound were also detected

111

Table 26. The true identity and concentration and experimental identity and concentration of blind spiked whole blood samples included in set 2 (medium concentration)

Jucent	officellitation)			
#	Compound Spiked into Urine	Conc. spiked (ng/mL)	Compound Detected	Conc. Detected (ng/mL)
1	THCA-A	50	Benzydamine	N/A
2	4-APDB	50	4-APDB	86
3	JWH 200 5-hydroxyindole metabolite	50	JWH 200 5-hydroxyindole metabolite	34
4	blank	0	None	ı
5	N-Methyltryptamine	50	N-Methyltryptamine	46
,	3-Methylbuphedrone	50	3-Methylbuphedrone	8
0	5-fluoro SDB-006	99	5-fluoro SDB-006	24
L	2-fluoromethcathinone	99	2-fluoromethcathinone	47
8	2C-T-4	99	2C-T-4	55
6	PB-22	90	PB-22*	99
10	blank	0	None	ı
11	4-ethyl-N,N-dimethylcathinone	99	4-ethyl-N,N-dimethylcathinone	12
	JWH 018 N(5-hydroxypentyl) metabolite	50	JWH 018 N(5-hydroxypentyl) metabolite*	36
71	MAM2201 N-pentanoic acid metabolite	90	MAM2201 N-pentanoic acid metabolite	26
13	25E-NBOMe	99	25E-NBOMe	40
14	AB-FUBINACA	50	AB-FUBINACA*	43
15	3C-B-fly	50	3C-B-fly	37
91	para-Fluorofentanyl	50	para-Fluorofentanyl	23
17	blank	0	None	ı
10	N,N-dimethylcathinone	50	N,N-dimethylcathinone	9
10	Phenylpiperazine	920	Phenylpiperazine	41

*Isomer of this compound were also detected

In a final test of applicability, a total of 50 authentic urine specimens were qualitatively analyzed using a method with transitions for all of the 16 standard mixes, therefore allowing screening for any of the 729 compounds included. Table 27 shows the identity of the compounds found and the number of specimens that were positive for each compound, while Table 28 shows the identity of metabolites found following glucuronidase treatment and the number of specimens positive for each. A general toxicology screen looking for common drugs of abuse and their metabolites was completed in addition to the NPS screen. The results of the general screening are shown in Table 29. The results of the NPS screen and general screening for each of the 50 authentic specimens can be seen in Table 30. Cathine and levamisole were present in the highest number of specimens. Cathine is a metabolite of pseudophedrine and likely represents use of this common over the counter (OTC) drug rather than direct ingestion of cathine. 119 Levamisole is a common adulterant of cocaine, which explains why it is present in the majority of samples that were positive for beonzoylecgonine. Interestingly, several NPS/metabolites were also confirmed present in at least one specimen, illustrating the potential value of this method for identification of compounds not typically screened for in forensic specimens.

Table 27. The identity of compounds found in authentic specimens and the number of positive specimens for each compound.

Compound Detected	Number of Positives
Levamisole	12
Cathine	11
6-IT	5
2C-I	4
4-methoxy-N,N-dimethylcathinone	4
Hydroxy Bupropion	4
Sildenafil Citrate	4
3-Bromomethcathinone	3
4-FMC	3
3-fluoromethcathinone	2
3-methoxyamphetamine	2
6-APB	2
Mescaline	2
2,3-Dichlorophenylpiperazine	1
4-acetoxy DMT	1
4-hydroxy MET	1
4-methyl-α-ethylaminobutiophenone	1
Benzydamine	1
Deoxypipradol	1
Loperamide	1
Propylhexedrine	1

Table 28. The identity of metabolites found in authentic specimens following glucuronidase treatment and the number of positive specimens for each compound.

Compound Detected	Number of Positives
4-fluoromethcathinone metabolite	10
Buphedrone metabolite	5
Pentedrone metabolite	4
JWH 200 7-hydroxyindole metabolite	3
JWH 073 5-hydroxyindole metabolite	1

Table 29. The identity of compounds found in authentic specimens after a general screening and the number of positive specimens for each compound.

Compound Detected	Number of Positives
Pregabalin	46
Morphine	19
Buprenorphine	17
Norbuprenorphine	16
Gabapentin	14
Ritalinic Acid	10
Dextroprhan	9
Oxazepam	8
Oxycodone	8
Alprazolam	7
Beonzoylecgonine (cocaine)	6
OH-Alprazolam	6
Oxymorphone	6
Temazepam	6
Doxepin	5
Nordiazepam	5
Ethylmorphine	4
Hydrocodone	4
Amphetamine	3
Hydromorphone	3
M6G	3
Methamphetamine	3
Norephedrine	3
Dextromethorphan	2
EDDP	2
Methadone	2
C6G	1
Codeine	1
Lorazepam	1
MDMA	1
Mitragynine	1
OH-Mitragynine	1
PMMA	1
THC	1
Tramadol	1

Table 30. The identity of compounds found in each individual authentic specimen during the general screening and the NPS screening

Specimen #	Compounds Detected in NPS Screen	Compounds Detected in Routine Screen
513	cathine, levamisole	beonzoylecgonine, gabapentin, MDMA, norephedrine, pregabalin, ritalinic acid, tramadol
514	cathine, levamisole, 3-fluoromethcathinone, 4-FMC, 4-methoxy-N,N-dimethylcathinone	beonzoylecgonine, buprenorphine, hydrocodone, oxycodone, oxymorphone, pregabalin
515	cathine	alprazolam, amphetamine, methamphetamine, norephedrine, oh-alprazolam, pregabalin, THC
516	3-methoxyamphetamine	hydrocodone, pregabalin
517	3-methoxyamphetamine	alprazolam, doxepin, EDDP, methadone, oxazepam, pregabalin, temazepam
518	levamisole, hydroxy bupropion	doxepin, pregabalin
519	levamisole, 4-acetoxy DMT	beonzoylecgonine, buprenorphine, doxepin, morphine, norbuprenorphine, pregabalin
520	4-hydroxy MET, 4-methoxy-N,N-dimethylcathinone	doxepin, morphine, oxazepam, pregabalin
521	hydroxy bupropion, propylhexedrine	pregabalin
522	2,3-dichlorophenylpiperazine, deoxypipradol, loperamide	morphine, pregabalin
523	sildenafil	morphine, pregabalin
524	pu	buprenorphine, gabapentin, norbuprenorphine, oxymorphone, pregabalin, ritalinic acid
525	sildenafil	pregabalin, ritalinic acid
526	sildenafil	buprenorphine, gabapentin, norbuprenorphine, pregabalin
527	mescaline	alprazolam, EDDP, methadone, oh-alprazolam, pregabalin
528	pu	pregabalin
529	mescaline,	ethylmorphine, gabapentin, pregabalin
530	pu	pregabalin
531	cathine, levamisole	pregabalin
532	pu	pregabalin
533	sildenafil	morphine, pregabalin, ritalinic acid

		himmanning daytingthoughon daytinghon golonantin
534	cathine, 4-FMC	ouprenorphine, ucan officially ucan opinan, gaoapenun, norbuprenorphine
535	pu	C6G, codeine, dextroprhan, M6G, mitragynine, morphine, oh-mitragynine, pregabalin
536	3-fluoromethcathinone	buprenorphine, dextroprhan, morphine, norbuprenorphine, pregabalin, ritalinic acid
537	pu	buprenorphine, dextroprhan, norbuprenorphine, nordiazepam, oxazepam, pregabalin, temazepam
538	pu	dextroprhan, pregabalin
539	3-bromomethcathinone, cathine	amphetamine, buprenorphine, dextroprhan, lorazepam, morphine, norbuprenorphine, nordiazepam, norephedrine, oxazepam, PMMA, pregabalin, temazepam
540	hydroxy bupropion	ethylmorphine, pregabalin
541	4-methoxy-N,N-dimethylcathinone, 6-IT	amphetamine, pregabalin
542	cathine, 4-FMC	alprazolam, buprenorphine, dextroprhan, hydrocodone, norbuprenorphine, nordiazepam, oh-alprazolam, oxazepam, oxycodone, oxymorphone, pregabalin, temazepam
543	9-ІТ	buprenorphine, dextroprhan, ethylmorphine, gabapentin, morphine, pregabalin, ritalinic acid
544	levamisole, benzydamine	alprazolam, buprenorphine, ethylmorphine, hydromorphone, M6G, morphine, norbuprenorphine, nordiazepam, ohalprazolam, oxazepam, oxymorphone, pregabalin, temazepam
545	cathine	alprazolam, buprenorphine, morphine, norbuprenorphine, ohalprazolam, pregabalin
546	nd had	pregabalin
547	levamisole, 6-IT	beonzoylecgonine, buprenorphine, dextromethorphan, dextroprhan, gabapentin, methamphetamine, morphine, norbuprenorphine
548	levamisole, 4-methoxy-N,N-dimethylcathinone	buprenorphine, doxepin, morphine, norbuprenorphine, pregabalin
549	cathine, levamisole	pregabalin, ritalinic acid
550	pu	hydrocodone, morphine, pregabalin
551	4-methyl- α -ethylaminobutiophenone	pregabalin

α	
$\overline{}$	
_	

552	levamisole	beonzoylecgonine, buprenorphine, morphine, norbuprenorphine, pregabalin
553	3-bromomethcathinone	buprenorphine, gabapentin, morphine, norbuprenorphine, nordiazepam, oxazepam, PMMA, pregabalin, temazepam
554	cathine	alprazolam, methamphetamine, oh-alprazolam, pregabalin
555	cathine	pregabalin
556	hydroxy bupropion	pu
557	pu	beonzoylecgonine, buprenorphine, gabapentin, hydromorphone, morphine, norbuprenorphine, oxycodone, oxymorphone, pregabalin, ritalinic acid
558	pu	gabapentin, hydromorphone, M6G, morphine, oxymorphone, ritalinic acid
559	levamisole	gabapentin, morphine, oxazepam, pregabalin, ritalinic acid
260	levamisole	gabapentin, pregabalin
969	3-bromomethcathinone	gabapentin, pregabalin
597	pu	gabapentin, pregabalin
and the state of the	7 900	

6.3 Conclusions

In order to further test the applicability of the validated dMRM method blind spiked samples in urine and whole blood and authentic urine specimens analyzed. Testing blind spikes and authentic specimens made it possible to determine the method's potential as both a screening and confirmatory method. The results from screening and confirmation of the blind spiked samples it was shown that the dMRM method has potential to be used as a confirmatory method for samples in urine and a screening method for samples in whole blood. Due to the number of NPS included in this method it is a semi-qualitative method because it is impossible to match every compound with a deuterated internal standard. Since some compounds do not have an ideal match when quantitated the compound may undergo different matrix effects and ionization than the paired internal standard. However, the results from the blind spike studies and authentic specimens with the validated method indicate that it shows great potential as a comprehensive screening method for the the largest number of NPS reported to date.

7. SUMMARY AND PROSPECT

Novel psychoactive substances (NPS) have gained popularity over the past two decades all over the world and it does not seem that there will be an end soon. The increased popularity of NPS makes it imperative that clinical and forensic toxicological laboratories have access to reliable comprehensive screening methods for NPS. Unlike with common drugs of abuse, immunoassays are not capable of selectively detecting NPS due to their multiple structural alterations. Immunoassays are one of the most common screening methods for clinical and forensic human specimens. However, they need to be replaced by methods capable of reliably screening for a large number of NPS within varying drug classes. Alternative screening methods do exist, some of which are capable of detecting NPS. Instrumental screening methods (*i.e.*, GC-MS and LC-MS) can be used to screen clinical and forensic toxicology specimens. These methods typically work based on spectral library or database matches. It is vital that spectral libraries and databases exist that include NPS in order to properly screen for them in clinical and forensic toxicological samples.

The goal of the research presented here was to aid in the screening and confirmation of NPS in clinical and forensic toxicological specimens. An MRM transition ion database and a comprehensive screening and confirmatory dMRM method for the detection of NPS in biological matrices were created and are the largest of their kind. In addition to the creation of a dMRM method, validation using a mixture approach was completed to ensure that method parameters fell within OSAC guidelines. Often, method validation is done

using small mixtures or a one-at-a-time approach, however, this was not feasible for the quantity of NPS that this method was designed to screen for. Consequently, an approach using a series of mixtures of non-coeluting NPS standards was adapted in order to greatly reduce the time it takes to fully validate a comprehensive screening method. Blind spiked urine samples were screened and quantitated using the described dMRM method. This was done to further validate the selectivity and sensitivity of the method as it would be used in the field of forensics. The majority of NPS were correctly identified and most concentrations were determined to be within $\pm 20\%$ of the spiked concentration showing the selectivity and sensitivity of the overall method. Additionally, the dMRM method was used to screen 50 authentic urine specimens to show real world relevance of the method. From the 50 specimens 21 compounds were detecting including NPS (synthetic cathinones) showing the potential of this method for clinical and forensic toxicological specimens.

It is not uncommon that biological matrices must undergo extraction and/or purification before they can be injected into an instrument and analyzed. Consequently, this project also aimed evaluate extraction techniques for NPS in whole blood and urine. Depending on the complexity of the matrix, developing and optimizing an extraction technique can be very difficult. The research described here was designed to determine if particular extraction methods were more efficient than others for the extraction of NPS from whole blood and urine. Forensic toxicological laboratories in general have standard extraction procedures in place for common drugs of abuse, typically involving protein precipitation and/or SPE. The procedure of protein precipitation does not differ from one compound to the next, however SPE involves complex chemistry and relies on pH and pKa

of the compounds in the sample. Therefore, SPE and potentially other extraction techniques need to be optimized for NPS. This research delved into the usefulness of dilute-and-shoot, crash-and-shoot, online-SPE, classical SPE, and QuEChERS for the extraction of NPS from biological matrices.

This work investigated the potential of on-line SPE and QuEChERS as alternative extraction technique for NPS, since neither technique has been commonly used in forensic toxicology laboratories. QuEChERS is an appealing technique for complex matrices and is more time and cost efficient than SPE. On-line SPE is much more time efficient but was found to involve extremely complex method development. QuEChERS is an appealing alternative to traditional extraction techniques, since it can easily be implemented into different clinical and forensic toxicological laboratories with simple purchase of reagents but not requiring additional instrumentation. The one disadvantage of QuEChERS as compared to classical SPE is the elimination of matrix effects. This is an important factor to consider when determining the needs of an extraction technique.

Future work will be necessary in order to update and expand upon the database and dMRM method as more NPS are reported in literature, however, this will require the availability of appropriate reference standards. Further optimization of QuEChERS would be needed to increase the elimination of matrix effects with the goal of having comparable results to that of SPE. When considering the time and cost efficiency of QuEChERS, it would be a beneficial extraction technique to be implemented into forensic toxicology laboratories. Since QuEChERS is designed for complex matrices it has even further

potential to be used to extract NPS from biological matrices other than urine and whole blood.

REFERENCES

- 1. Elliott, S.; Evans, J. A 3-year review of new psychoactive substances in casework. *Forensic Science International* **2014**, *243*, 55-60.
- 2. Liechti, M. E. Novel psychoactive substances (designer drugs): overview and pharmacology of modulators of monoamine signalling. *Swiss Medical Weekly* **2015**, *145*, w14043.
- 3. Manchester, K. R.; Lomas, E. C.; Waters, L.; Dempsey, F. C.; Maskell, P. D. The emergence of new psychoactive substance (NPS) benzodiazepines: A review. *Drug Testing and Analysis* **2018**, *10* (1), 37-53.
- 4. Palamar, J. J.; Le, A. Use of new and uncommon synthetic psychoactive drugs among a nationally representative sample in the United States, 2005-2017. *Human Psychopharmacology: Clinical and Experimental* **2019**, e2690.
- 5. Coulson, C.; Caulkins, J. P. Scheduling of newly emerging drugs: A critical review of decisions over 40 years. *Addiction* **2012**, *107* (4), 766-773.
- 6. Dargan, P.; Wood, D. Novel psychoactive substances: classification, pharmacology and toxicology; *Academic Press*: 2013.
- 7. Zawilska, J. B.; Andrzejczak, D. Next generation of novel psychoactive substances on the horizon: A complex problem to face. *Drug and Alcohol Dependence* **2015**, *157*, 1-17.
- 8. Montesano, C.; Vannutelli, G.; Gregori, A.; Ripani, L.; Compagnone, D.; Curini, R.; Sergi, M. Broad screening and identification of novel psychoactive substances in plasma by high-performance liquid chromatography high-resolution mass spectrometry and post-run library matching. *Journal of Analytical Toxicology* **2016**, *40* (7), 519-528.
- 9. Peters, F. T. Recent advances of liquid chromatography (tandem) mass spectrometry in clinical and forensic toxicology. *Clinical Biochemistry* **2011**, *44* (1), 54-65.

- 10. Reuter, P.; Pardo, B. New psychoactive substances: Are there any good options for regulating new psychoactive substances? *International Journal of Drug Policy* **2017**, *40*, 117-122.
- 11. Favretto, D.; Pascali, J. P.; Tagliaro, F. New challenges and innovation in forensic toxicology: focus on the "New Psychoactive Substances". *Journal of Chromatography A* **2013**, *1287*, 84-95.
- 12. Sun, H. q.; Bao, Y. p.; Zhou, S. j.; Meng, S. q.; Lu, L. The new pattern of drug abuse in China. *Current Opinion in Psychiatry* **2014**, *27* (4), 251-255.
- 13. Zaami, S.; Giorgetti, R.; Pichini, S.; Pantano, F.; Marinelli, E.; Busardo, F. P. Synthetic cathinones related fatalities: an update. *European Review of Medicine and Pharmacological Science* **2018**, 22 (1), 268-274.
- 14. Palamar, J. J.; Martins, S. S.; Su, M. K.; Ompad, D. C. Self-reported use of novel psychoactive substances in a US nationally representative survey: Prevalence, correlates, and a call for new survey methods to prevent underreporting. *Drug and Alcohol Dependence* **2015**, *156*, 112-119.
- Title 21 United States Code (U.S.C.) . Controlled Substances Act. 2018.
 U.S.Department of Justice, Drug Eforcement Administration Division Control Division.
- 16. Tang, M. H. Y.; Ching, C. K.; Tsui, M. S. H.; Chu, F. K. C.; Mak, T. W. L. Two cases of severe intoxication associated with analytically confirmed use of the novel psychoactive substances 25B-NBOMe and 25C-NBOMe. *Clinical Toxicology* **2014**, *52* (5), 561-565.
- 17. Abbate, V.; Schwenk, M.; Presley, B. C.; Uchiyama, N. The ongoing challenge of novel psychoactive drugs of abuse. Part I. Synthetic cannabinoids (IUPAC Technical Report). *Pure and Applied Chemistry* **2018**, *90* (8), 1255-1282.
- 18. Wiley, J. L.; Marusich, J. A.; Huffman, J. W.; Balster, R. L.; Thomas, B. F. Hijacking of basic research: the case of synthetic cannabinoids. *Methods Report (RTI Press)* **2011**, *2011*.
- 19. Tittarelli, R.; Mannocchi, G.; Pantano, F.; Saverio Romolo, F. Recreational use, analysis and toxicity of tryptamines. *Current Neuropharmacology* **2015**, *13* (1), 26-46.
- 20. Koch, K.; Auwärter, V.; Hermanns-Clausen, M.; Wilde, M.; Neukamm, M. A. Mixed intoxication by the synthetic opioid U47700 and the benzodiazepine flubromazepam with lethal outcome: Pharmacokinetic data. *Drug Testing and Analysis* **2018**, *10* (8), 1336-1341.

- 21. Nikolaou, P.; Papoutsis, I.; Stefanidou, M.; Spiliopoulou, C.; Athanaselis, S. 2C-I-NBOMe, an "N-bomb" that kills with "Smiles" toxicological and legislative aspects. *Drug and Chemical Toxicology* **2015**, *38* (1), 113-119.
- 22. Shanks, K. G.; Sozio, T.; Behonick, G. S. Fatal intoxications with 25B-NBOMe and 25I-NBOMe in Indiana during 2014. *Journal of Analytical Toxicology* **2015**, *39* (8), 602-606.
- 23. H-iseth, G.; Tuv, S. S.; Karinen, R. Blood concentrations of new designer benzodiazepines in forensic cases. *Forensic Science International* **2016**, 268, 35-38.
- 24. Prosser, J. M.; Nelson, L. S. The toxicology of bath salts: a review of synthetic cathinones. *Journal of Medical Toxicology* **2012**, *8* (1), 33-42.
- 25. Seely, K. A.; Patton, A. L.; Moran, C. L.; Womack, M. L.; Prather, P. L.; Fantegrossi, W. E.; Radominska-Pandya, A.; Endres, G. W.; Channell, K. B.; Smith, N. H. Forensic investigation of K2, Spice, and "bath salt" commercial preparations: a three-year study of new designer drug products containing synthetic cannabinoid, stimulant, and hallucinogenic compounds. *Forensic Science International* **2013**, *233* (1-3), 416-422.
- 26. Smith, J. P.; Sutcliffe, O. B.; Banks, C. E. An overview of recent developments in the analytical detection of new psychoactive substances (NPSs). *Analyst* **2015**, *140* (15), 4932-4948.
- 27. Couto, R. A.; Goncalves, L. s. M.; Carvalho, F.; Rodrigues, J. A.; Rodrigues, C. l. M.; Quinaz, M. B. The analytical challenge in the determination of cathinones, key-players in the worldwide phenomenon of novel psychoactive substances. *Critical Reviews in Analytical Chemistry* **2018**, 1-19.
- 28. Spiller, H. A.; Ryan, M. L.; Weston, R. G.; Jansen, J. Clinical experience with and analytical confirmation of "bath salts" and "legal highs" (synthetic cathinones) in the United States. *Clinical Toxicology* **2011**, *49* (6), 499-505.
- 29. Hasegawa, K.; Wurita, A.; Minakata, K.; Gonmori, K.; Nozawa, H.; Yamagishi, I.; Suzuki, O.; Watanabe, K. Identification and quantitation of a new cathinone designer drug PV9 in an aroma liquid product, antemortem whole blood and urine specimens, and a postmortem whole blood specimen in a fatal poisoning case. *Forensic Toxicology* **2014**, *32* (2), 243-250.

- 30. Ellefsen, K. N.; Concheiro, M.; Huestis, M. A. Synthetic cathinone pharmacokinetics, analytical methods, and toxicological findings from human performance and postmortem cases. *Drug Metabolism Reviews* **2016**, *48* (2), 237-265.
- 31. Weinstein, A. M.; Rosca, P.; Fattore, L.; London, E. D. Synthetic cathinone and cannabinoid designer drugs pose a major risk for public health. *Frontiers in Psychiatry* **2017**, *8*, 156.
- 32. Ashrafioun, L.; Bonadio, F. A.; Baik, K. D.; Bradbury, S. L.; Carhart, V. L.; Cross, N. A.; Davis, A. K.; Feuille, M.; Harper, A. R.; Lackey, J. H. Patterns of use, acute subjective experiences, and motivations for using synthetic cathinones ("bath salts") in recreational users. *Journal of Psychoactive Drugs* **2016**, *48* (5), 336-343.
- 33. Morad, A. M.; Al-Meshal, I. A.; Nasir, M.; El-Feraly, F. S. High-performance liquid chromatographic determination of cathinone in plasma. *Chromatographia* **1989**, *27* (5-6), 201-204.
- 34. Johnson, R. D.; Botch-Jones, S. R. The stability of four designer drugs: MDPV, mephedrone, BZP and TFMPP in three biological matrices under various storage conditions. *Journal of Analytical Toxicology* **2013**, *37* (2), 51-55.
- 35. Kerrigan, S.; Savage, M.; Cavazos, C.; Bella, P. Thermal degradation of synthetic cathinones: implications for forensic toxicology. *Journal of Analytical Toxicology* **2016**, *40* (1), 1-11.
- 36. Radominska-Pandya, A.; Moran, J.; Fantegrossi, W.; Prather, P. Synthetic cannabinoids: Rapidly emerging drugs of abuse. *The FASEB Journal* **2017**, *31* (1 supplement), 811.
- 37. Centers for Disease Control and Prevention . Synthetic cannabinoids: What are they? What are their effects? 4-24-2018. 4-14-2019.
- 38. Huffman, J. W.; Yu, S.; Showalter, V.; Abood, M. E.; Wiley, J. L.; Compton, D. R.; Martin, B. R.; Bramblett, R. D.; Reggio, P. H. Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. *Journal of Medicinal Chemistry* **1996,** *39* (20), 3875-3877.
- 39. Debruyne, D. l.; Le Boisselier, R. Emerging drugs of abuse: current perspectives on synthetic cannabinoids. *Substance Abuse and Rehabilitation* **2015**, *6*, 113.

- 40. Tait, R. J.; Caldicott, D.; Mountain, D.; Hill, S. L.; Lenton, S. A systematic review of adverse events arising from the use of synthetic cannabinoids and their associated treatment. *Clinical Toxicology* **2016**, *54* (1), 1-13.
- 41. Adams, A. J.; Banister, S. D.; Irizarry, L.; Trecki, J.; Schwartz, M.; Gerona, R. "Zombie" outbreak caused by the synthetic cannabinoid AMB-FUBINACA in New York. *New England Journal of Medicine* **2017**, *376* (3), 235-242.
- 42. Knittel, J. L.; Holler, J. M.; Chmiel, J. D.; Vorce, S. P.; Magluilo Jr, J.; Levine, B.; Ramos, G.; Bosy, T. Z. Analysis of parent synthetic cannabinoids in blood and urinary metabolites by liquid chromatography tandem mass spectrometry. *Journal of Analytical Toxicology* **2016**, *40* (3), 173-186.
- 43. Armenian, P.; Vo, K. T.; Barr-Walker, J.; Lynch, K. L. Fentanyl, fentanyl analogs and novel synthetic opioids: a comprehensive review. *Neuropharmacology* **2018**, *134*, 121-132.
- 44. Jalal, H.; Buchanich, J. M.; Roberts, M. S.; Balmert, L. C.; Zhang, K.; Burke, D. S. Changing dynamics of the drug overdose epidemic in the United States from 1979 through 2016. *Science* **2018**, *361* (6408), eaau1184.
- 45. Jannetto, P. J.; Helander, A.; Garg, U.; Janis, G. C.; Goldberger, B.; Ketha, H. The Fentanyl epidemic and evolution of fentanyl analogs in the United States and the European Union. *Clinical Chemistry* **2019**, *65* (2), 242-253.
- 46. ÖDonnell, J. K.; Halpin, J.; Mattson, C. L.; Goldberger, B. A.; Gladden, R. M. Deaths involving fentanyl, fentanyl analogs, and U-47700: 10 states, July-December 2016. *MMWR. Morbidity and Mortality Weekly Report* **2017**, 66 (43), 1197.
- 47. Lozier, M. J.; Boyd, M.; Stanley, C.; Ogilvie, L.; King, E.; Martin, C.; Lewis, L. Acetyl fentanyl, a novel fentanyl analog, causes 14 overdose deaths in Rhode Island, March-May 2013. *Journal of Medical Toxicology* **2015**, *11* (2), 208-217.
- 48. Rogers, J. S.; Rehrer, S. J.; Hoot, N. R. Acetylfentanyl: an emerging drug of abuse. *The Journal of Emergency Medicine* **2016**, *50* (3), 433-436.
- 49. Ostrea Jr, E. M.; Brady, M. J.; Parks, P. M.; Asensio, D. C.; Naluz, A. Drug screening of meconium in infants of drug-dependent mothers: an alternative to urine testing. *The Journal of Pediatrics* **1989**, *115* (3), 474-477.

- 50. Strano-Rossi, S. A. B. I.; Bermejo-Barrera, A.; Chiarotti, M. Segmental hair analysis for cocaine and heroin abuse determination. *Forensic Science International* **1995**, *70* (1-3), 211-216.
- 51. Cone, E. J. Legal, workplace, and treatment drug testing with alternate biological matrices on a global scale. *Forensic Science International* **2001**, *121* (1-2), 7-15.
- 52. Maurer, H. H. Current role of liquid chromatography mass spectrometry in clinical and forensic toxicology. *Analytical and Bioanalytical Chemistry* **2007**, *388* (7), 1315-1325.
- 53. Shima, N.; Katagi, M.; Kamata, H.; Matsuta, S.; Sasaki, K.; Kamata, T.; Nishioka, H.; Miki, A.; Tatsuno, M.; Zaitsu, K. Metabolism of the newly encountered designer drug +-pyrrolidinovalerophenone in humans: identification and quantitation of urinary metabolites. *Forensic Toxicology* **2014**, *32* (1), 59-67.
- 54. Moeller, M. R.; Steinmeyer, S.; Kraemer, T. Determination of drugs of abuse in blood. *Journal of Chromatography B: Biomedical Sciences and Applications* **1998**, *713* (1), 91-109.
- 55. Levine, B. Principle of Forensic Toxicology. 2019.
- 56. Bertol, E.; Vaiano, F.; Borsotti, M.; Quercioli, M.; Mari, F. Comparison of immunoassay screening tests and LC MS-MS for urine detection of benzodiazepines and their metabolites: results of a national proficiency test. *Journal of Analytical Toxicology* **2013**, *37* (9), 659-664.
- 57. Nakanishi, K.; Miki, A.; Zaitsu, K.; Kamata, H.; Shima, N.; Kamata, T.; Katagi, M.; Tatsuno, M.; Tsuchihashi, H.; Suzuki, K. Cross-reactivities of various phenethylamine-type designer drugs to immunoassays for amphetamines, with special attention to the evaluation of the one-step urine drug test Instant-View, and the Emit assays for use in drug enforcement. *Forensic Science International* **2012**, *217* (1-3), 174-181.
- 58. Nieddu, M.; Trignano, C.; Burrai, L.; Pirisi, M. A.; Boatto, G. Cross-reactivities of 41 new amphetamine designer drugs to EMIT immunoassays. *Forensic Toxicology* **2013**, *31* (1), 133-137.
- 59. Beck, O.; Rausberg, L.; AlGÇÉSaffar, Y.; Villen, T.; Karlsson, L.; Hansson, T.; Helander, A. Detectability of new psychoactive substances, "legal highs", in CEDIA, EMIT, and KIMS immunochemical screening assays for drugs of abuse. *Drug Testing and Analysis* **2014**, *6* (5), 492-499.

- 60. Swortwood, M. J.; Hearn, W. L.; DeCaprio, A. P. Cross-reactivity of designer drugs, including cathinone derivatives, in commercial enzyme-linked immunosorbent assays. *Drug Testing and Analysis* **2014**, *6* (7-8), 716-727.
- 61. Arntson, A.; Ofsa, B.; Lancaster, D.; Simon, J. R.; McMullin, M.; Logan, B. Validation of a novel immunoassay for the detection of synthetic cannabinoids and metabolites in urine specimens. *Journal of Analytical Toxicology* **2013**, *37* (5), 284-290.
- 62. Kerrigan, S.; Mellon, M. B.; Banuelos, S.; Arndt, C. Evaluation of commercial enzyme-linked immunosorbent assays to identify psychedelic phenethylamines. *Journal of Analytical Toxicology* **2011**, *35* (7), 444-451.
- 63. Wang, G.; Huynh, K.; Barhate, R.; Rodrigues, W.; Moore, C.; Coulter, C.; Vincent, M.; Soares, J. Development of a homogeneous immunoassay for the detection of fentanyl in urine. *Forensic Science International* **2011**, 206 (1-3), 127-131.
- 64. Ellefsen, K. N.; Anizan, S.; Castaneto, M. S.; Desrosiers, N. A.; Martin, T. M.; Klette, K. L.; Huestis, M. A. Validation of the only commercially available immunoassay for synthetic cathinones in urine: Randox Drugs of Abuse V Biochip Array Technology. *Drug Testing and Analysis* **2014**, *6* (7-8), 728-738.
- 65. de Hoffmann, E.; Stroobant, V. Mass spectrometry: principles and applications; 2007.
- 66. Remane, D.; Wissenbach, D. K.; Peters, F. T. Recent advances of liquid chromatography (tandem) mass spectrometry in clinical and forensic toxicology: an update. *Clinical Biochemistry* **2016**, *49* (13-14), 1051-1071.
- 67. Peters, F. T.; Remane, D. Aspects of matrix effects in applications of liquid chromatography mass spectrometry to forensic and clinical toxicology: a review. *Analytical and Bioanalytical Chemistry* **2012**, *403* (8), 2155-2172.
- 68. Banerjee, S.; Mazumdar, S. Electrospray ionization mass spectrometry: a technique to access the information beyond the molecular weight of the analyte. *International Journal of Analytical Chemistry* **2012**, *2012*.
- 69. Oberacher, H.; Arnhard, K. Current status of non-targeted liquid chromatographytandem mass spectrometry in forensic toxicology. *TrAC Trends in Analytical Chemistry* **2016**, *84*, 94-105.

- 70. Oberacher, H. Applying tandem mass spectral libraries for solving the critical assessment of small molecule identification (CASMI) LC/MS challenge 2012. *Metabolites* **2013**, *3* (2), 312-324.
- 71. Dresen, S.; Kempf, J.; Weinmann, W. Electrospray-ionization MS/MS library of drugs as database for method development and drug identification. *Forensic Science International* **2006**, *161* (2-3), 86-91.
- 72. Dresen, S.; Gergov, M.; Politi, L.; Halter, C.; Weinmann, W. ESI-MS/MS library of 1,253 compounds for application in forensic and clinical toxicology. *Analytical and Bioanalytical Chemistry* **2009**, *395* (8), 2521.
- 73. Causanilles, A.; Kinyua, J.; Ruttkies, C.; van Nuijs, A. L. N.; Emke, E.; Covaci, A.; de Voogt, P. Qualitative screening for new psychoactive substances in wastewater collected during a city festival using liquid chromatography coupled to high-resolution mass spectrometry. *Chemosphere* **2017**, *184*, 1186-1193.
- 74. Meyer, M. R.; Maurer, H. H. LC coupled to low-and high-resolution mass spectrometry for new psychoactive substance screening in biological matrices: where do we stand today? *Analytica Chimica Acta* **2016**, 927, 13-20.
- 75. Seither, J. Z.; Hindle, R.; Arroyo-Mora, L. E.; DeCaprio, A. P. Systematic analysis of novel psychoactive substances. I. Development of a compound database and HRMS spectral library. *Forensic Chemistry* **2018**, *9*, 12-20.
- 76. Ojanperä, I.; Kolmonen, M.; Pelander, A. Current use of high-resolution mass spectrometry in drug screening relevant to clinical and forensic toxicology and doping control. *Analytical and Bioanalytical Chemistry* **2012**, *403* (5), 1203-1220.
- 77. Pasin, D.; Cawley, A.; Bidny, S.; Fu, S. Current applications of high-resolution mass spectrometry for the analysis of new psychoactive substances: a critical review. *Analytical and Bioanalytical Chemistry* **2017**, *409* (25), 5821-5836.
- 78. Wohlfarth, A.; Weinmann, W.; Dresen, S. LC-MS/MS screening method for designer amphetamines, tryptamines, and piperazines in serum. *Analytical and Bioanalytical Chemistry* **2010**, *396* (7), 2403-2414.
- 79. Ammann, J.; McLaren, J. M.; Gerostamoulos, D.; Beyer, J. Detection and quantification of new designer drugs in human blood: part 1: Synthetic cannabinoids. *Journal of Analytical Toxicology* **2012**, *36* (6), 372-380.

- 80. Adamowicz, P.; Tokarczyk, B. Simple and rapid screening procedure for 143 new psychoactive substances by liquid chromatography-tandem mass spectrometry. *Drug Testing and Analysis* **2016**, *8* (7), 652-667.
- 81. Glicksberg, L.; Bryand, K.; Kerrigan, S. Identification and quantification of synthetic cathinones in blood and urine using liquid chromatography-quadrupole/time of flight (LC-Q/TOF) mass spectrometry. *Journal of Chromatography B* **2016**, *1035*, 91-103.
- 82. Swortwood, M. J.; Boland, D. M.; DeCaprio, A. P. Determination of 32 cathinone derivatives and other designer drugs in serum by comprehensive LC-QQQ-MS/MS analysis. *Analytical and Bioanalytical Chemistry* **2013**, *405* (4), 1383-1397.
- 83. Wohlfarth, A.; Scheidweiler, K. B.; Chen, X.; Liu, H. f.; Huestis, M. A. Qualitative confirmation of 9 synthetic cannabinoids and 20 metabolites in human urine using LC-MS/MS and library search. *Analytical Chemistry* **2013**, *85* (7), 3730-3738.
- 84. Partridge, E.; Trobbiani, S.; Stockham, P.; Scott, T.; Kostakis, C. A Validated Method for the Screening of 320 Forensically Significant Compounds in Blood by LC/QTOF, with Simultaneous Quantification of Selected Compounds. *Journal of Analytical Toxicology* **2018**.
- 85. Vaiano, F.; Busardo, F. P.; Palumbo, D.; Kyriakou, C.; Fioravanti, A.; Catalani, V.; Mari, F.; Bertol, E. A novel screening method for 64 new psychoactive substances and 5 amphetamines in blood by LC-MS/MS and application to real cases. *Journal of Pharmaceutical and Biomedical Analysis* **2016**, *129*, 441-449.
- 86. Dziadosz, M.; Teske, J.; Henning, K.; Klintschar, M.; Nordmeier, F. LC-MS/MS screening strategy for cannabinoids, opiates, amphetamines, cocaine, benzodiazepines and methadone in human serum, urine and post-mortem blood as an effective alternative to immunoassay based methods applied in forensic toxicology for preliminary examination. *Forensic Chemistry* **2018,** *7*, 33-37.
- 87. Annesley, T. M. Ion suppression in mass spectrometry. *Clinical Chemistry* **2003**, 49 (7), 1041-1044.
- 88. Matuszewski, B. K.; Constanzer, M. L.; Chavez-Eng, C. M. Strategies for the assessment of matrix effect in quantitative bioanalytical methods based on HPLC MS/MS. *Analytical Chemistry* **2003**, *75* (13), 3019-3030.

- 89. Axel, M.; Ewelina, K.; Jenny-Maria, B.; Leif, K. An online SPE LC-MS/MS method for the analysis of antibiotics in environmental water. *Environmental Science and Pollution Research* **2017**, *24* (9), 8692-8699.
- 90. Heuett, N. V.; Ramirez, C. E.; Fernandez, A.; Gardinali, P. R. Analysis of drugs of abuse by online SPE-LC high resolution mass spectrometry: communal assessment of consumption. *Science of the Total Environment* **2015**, *511*, 319-330.
- 91. Moosavi, S. M.; Shekar, K.; Fraser, J.; Smith, M. T.; Ghassabian, S. High-throughput assay for quantification of the plasma concentrations of thiopental using automated solid phase extraction (SPE) directly coupled to LC-MS/MS instrumentation. *Journal of Chromatography B* **2016**, *1038*, 80-87.
- 92. Lehmann, S.; Kieliba, T.; Beike, J.; Thevis, M.; Mercer-Chalmers-Bender, K. Determination of 74 new psychoactive substances in serum using automated in-line solid-phase extraction-liquid chromatography-tandem mass spectrometry. *Journal of Chromatography B* **2017**, *1064*, 124-138.
- 93. Anastassiades, M.; Lehotay, S. J.; Stajnbaher, D.; Schenck, F. J. Fast and easy multiresidue method employing acetonitrile extraction/partitioning and "dispersive solid-phase extraction" for the determination of pesticide residues in produce. *Journal of AOAC international* **2003**, 86 (2), 412-431.
- 94. Braganca, I.; Placido, A.; Paiga, P.; Domingues, V. F.; Delerue-Matos, C. QuEChERS: a new sample preparation approach for the determination of ibuprofen and its metabolites in soils. *Science of the Total Environment* **2012**, *433*, 281-289.
- 95. Lehotay, S. J.; Son, K. A.; Kwon, H.; Koesukwiwat, U.; Fu, W.; Mastovska, K.; Hoh, E.; Leepipatpiboon, N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. *Journal of Chromatography A* **2010**, *1217* (16), 2548-2560.
- 96. Stubbings, G.; Bigwood, T. The development and validation of a multiclass liquid chromatography tandem mass spectrometry (LC-MS/MS) procedure for the determination of veterinary drug residues in animal tissue using a QuEChERS (QUick, Easy, CHeap, Effective, Rugged and Safe) approach. *Analytica Chimica Acta* **2009**, *637* (1-2), 68-78.
- 97. Usui, K.; Hashiyada, M.; Hayashizaki, Y.; Igari, Y.; Hosoya, T.; Sakai, J.; Funayama, M. Application of modified QuEChERS method to liver samples for forensic toxicological analysis. *Forensic Toxicology* **2014**, *32* (1), 139-147.

- 98. Usui, K.; Hayashizaki, Y.; Hashiyada, M.; Funayama, M. Rapid drug extraction from human whole blood using a modified QuEChERS extraction method. *Legal Medicine* **2012**, *14* (6), 286-296.
- 99. Westland, J. L.; Dorman, F. L. QuEChERS extraction of benzodiazepines in biological matrices. *Journal of Pharmaceutical Analysis* **2013**, *3* (6), 509-517.
- 100. Matsuta, S.; Nakanishi, K.; Miki, A.; Zaitsu, K.; Shima, N.; Kamata, T.; Nishioka, H.; Katagi, M.; Tatsuno, M.; Tsuboi, K.; Tsuchihashi, H.; Suzuki, K. Development of a simple one-pot extraction method for various drugs and metabolites of forensic interest in blood by modifying the QuEChERS method. *Forensic Science International* **2013**, 232 (1), 40-45.
- 101. Anzillotti, L.; Odoardi, S.; Strano-Rossi, S. Cleaning up blood samples using a modified "QuEChERS" procedure for the determination of drugs of abuse and benzodiazepines by UPLC-MSMS. *Forensic Science International* **2014**, *243*, 99-106.
- 102. Dulaurent, S.; El Balkhi, S.; Poncelet, L.; Gaulier, J. M.; Marquet, P.; Saint-Marcoux, F. QuEChERS sample preparation prior to LC-MS/MS determination of opiates, amphetamines, and cocaine metabolites in whole blood. *Analytical and Bioanalytical Chemistry* **2016**, *408* (5), 1467-1474.
- 103. Dybowski, M. P.; Dawidowicz, A. L. Application of the QuEChERS procedure for analysis of 9-tetrahydrocannabinol and its metabolites in authentic whole blood samples by GC-MS/MS. *Forensic Toxicology* **2018**, *36* (2), 415-423.
- 104. Pouliopoulos, A.; Tsakelidou, E.; Krokos, A.; Gika, H. G.; Theodoridis, G.; Raikos, N. Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC-MS-MS. *Journal of Analytical Toxicology* **2018**, *42* (5), 337-345.
- 105. Montesano, C.; Vannutelli, G.; Piccirilli, V.; Sergi, M.; Compagnone, D.; Curini, R. Application of a rapid μ-SPE clean-up for multiclass quantitative analysis of sixteen new psychoactive substances in whole blood by LC-MS/MS. *Talanta* **2017**, *167*, 260-267.
- 106. Johnson, L. A.; Johnson, R. L.; Portier, R. B. Current "legal highs". *Journal of Emergency Medicine* **2013**, 44 (6), 1108-1115.
- 107. Baumann, M. H.; Volkow, N. D. Abuse of new psychoactive substances: threats and solutions. *Neuropsychopharmacology* **2016**, *41* (3), 663.

- 108. Kubo, S. i.; Waters, B.; Hara, K.; Fukunaga, T.; Ikematsu, K. A report of novel psychoactive substances in forensic autopsy cases and a review of fatal cases in the literature. *Legal Medicine* **2017**, *26*, 79-85.
- 109. King, L. A.; Corkery, J. M. An index of fatal toxicity for new psychoactive substances. *Journal of Psychopharmacology* **2018**, 0269881118754709.
- 110. Ammann, D.; McLaren, J. M.; Gerostamoulos, D.; Beyer, J. Detection and quantification of new designer drugs in human blood: Part 2: Designer cathinones. *Journal of Analytical Toxicology* **2012**, *36* (6), 381-389.
- 111. OSAC standard practices for method validation in forensic toxicology. *Journal of Analytical Toxicology* **2013**, *37* (7), 452-474.
- 112. Peters, F. T.; Drummer, O. H.; Musshoff, F. Validation of new methods. *Forensic Science International* **2007**, *165* (2), 216-224.
- 113. Strickland, E. C.; Cummings, O. T.; Mellinger, A. L.; McIntire, G. L. Development and validation of a novel all-inclusive LC-MS-MS designer drug method. *Journal of Analytical Toxicology* **2018**, *43* (3), 161-169.
- 114. Graziano, S.; Anzillotti, L.; Mannocchi, G.; Pichini, S.; Busardo, F. P. Screening methods for rapid determination of new psychoactive substances (NPS) in conventional and non-conventional biological matrices. *Journal of Pharmaceutical and Biomedical Analysis* 2018.
- 115. Al-Saffar, Y.; Stephanson, N. N.; Beck, O. Multicomponent LC-MS/MS screening method for detection of new psychoactive drugs, legal highs, in urine-experience from the Swedish population. *Journal of Chromatography B* **2013**, *930*, 112-120.
- 116. Seither, J.; Reidy, L. Confirmation of carfentanil, U-47700 and other synthetic opioids in a Human Performance Case by LC-MS-MS. *Journal of Analytical Toxicology* **2017**, *41* (6), 493-497.
- 117. Kudo, K.; Usumoto, Y.; Kikura-Hanajiri, R.; Sameshima, N.; Tsuji, A.; Ikeda, N. A fatal case of poisoning related to new cathinone designer drugs, 4-methoxy PV8, PV9, and 4-methoxy PV9, and a dissociative agent, diphenidine. *Legal Medicine* **2015**, *17* (5), 421-426.
- 118. Lehmann, S.; Schulze, B.; Thomas, A.; Kamphausen, T.; Thevis, M.; Rothschild, M. A.; Mercer-Chalmers-Bender, K. Organ distribution of 4-MEC, MDPV, methoxetamine and α-PVP: comparison of QuEChERS and SPE. *Forensic Toxicology* **2018**, 1-14.

119. Deventer, K. V. E. P.; Van Eenoo, P.; Baele, G.; Pozo, O. J.; Van Thuyne, W.; Delbeke, F. T. Interpretation of urinary concentrations of pseudoephedrine and its metabolite cathine in relation to doping control. *Drug Testing and Analysis* **2009**, *1* (5), 209-213.

APPENDICES

Appendix 1. The compound name, chemical formula, unique in-house identifier, retention time, precursor ion, all product ions and associated collision energies and abundances for all compounds in the final dMRM method senarated by mixture mumber

Compound Name Formula ID In the Compound Name Formula ID In the Compound Name Formula ID ID ID ID ID ID ID I					H		40.00		
25I-NBMD C18H20INO4 FIU_0379 9.11 442.04 298.1 16 25I-NBMD 291 20 261 16 262 16 276 32 276 32 174.1 8 164.1 28 165.1 60 165.1 60 3-Methylbuphedrone C12H17NO FIU_0425 7.17 192.13 161.1 8	¥ #	Compound Name	Cnemical Formula	In House ID	(min)	Precursor Ion	Product	CE	Abundance
291 20 286.1 16 276 32 276 32 277 32 286.1 16 278 32 286.1 16 278 32 286.1 16 278 32 286.1 16 278 32 286.1 16 286.1 16 286.1 16 278 32 286.1 16 286	-	25I-NBMD	C18H20INO4	FIU_0379	9.11	442.04	298.1	16	26142
286.1 16 276 32 174.1 8 164.1 28 164.1 28 165.1 60 165.1 60 175.1 60 275.1 60 275.1 60 275.1 60 275.1 60 275.1 60 275.1 60 275.1 60 275.1 60 275.1 60							291	20	96047
276 32 174.1 8 174.1 8 164.1 28 165.1 20 145.1 20 135.1 32 1 105.1 60 79.1 60 77.1 60 77.1 60 77.1 60 77.1 60							286.1	16	196843
174.1 8 164.1 28 164.1 28 145.1 20 145.1 20 135.1 32 1 105.1 60 79.1 60 77.1 60 77.1 60 77.1 60							276	32	32969
164.1 28 145.1 20 145.1 20 135.1 32 1 105.1 60 79.1 60 77.1 60 77.1 60 77.1 60 77.1 60							174.1	œ	702207
145.1 20 135.1 32 1 105.1 60 105.1 60 79.1 60 77.1 60 77.1 60 51.1 60 51.1 8							164.1	28	18476
135.1 32 1 105.1 60 79.1 60 77.1 60 51.1 60 51.1 8 161.1 8							145.1	20	376605
105.1 60 79.1 60 77.1 60 77.1 60 51.1 60 61.17NO FIU_0425 7.17 192.13 161.1 8							135.1	32	1196209
79.1 60 77.1 60 77.1 60 C12H17NO FIU_0425 7.17 192.13 161.1 8							105.1	09	73216
77.1 60 51.1 60 C12H17NO FIU_0425 7.17 192.13 161.1 8							79.1	09	232510
51.1 60 C12H17NO FIU_0425 7.17 192.13 161.1 8 161.1 8							77.1	09	326616
C12H17NO FIU_0425 7.17 192.13 161.1 8							51.1	09	24342
œ		3-Methylbuphedrone	C12H17NO	FIU_0425	7.17	192.13	161.1	œ	344234
							161.1	∞	141099

					159.1	20	99200
					146.1	16	200785
					144.1	36	376141
					105.1	20	180964
					91.1	48	84682
					77.1	09	126436
					65.1	09	87906
4-APDB	C11H15NO	FIU_0417	6.44	178.11	133.1	20	270092
					120.1	24	24257
					119.1	12	24730
					105.2	28	38710
					103.1	40	27934
					91.1	48	34474
					79.2	40	37856
					77.2	25	85321
					51.2	09	30663
4-fluoro-a- Pyrrolidinobutiophenone	C14H18FNO	FIU_0397	6.74	236.13	165.1	16	267311
					137.1	20	144229
					123	32	157117

ď
7
T

					112.1	24	262664
					109.1	28	458875
					95.1	26	207940
					84.1	32	113650
					75.1	09	89763
					70.1	20	99710
					55.1	48	44392
4'-fluoro-a- Pyrrolidinopropiophenone	C13H16FNO	FIU_0399	6.19	222.12	151.1	16	232987
					123.1	24	349431
					103.1	36	209745
					98.1	28	404864
					95.1	52	64672
					84.2	32	40979
					77.1	09	183706
					70.1	16	88531
					56.1	26	138769
					55.7	48	58514
4-hydroxy MET	C13H18N2O	FIU_0749	5.45 2:	219.14191	160	16	118064

					142	32	6053
					132	32	18540
					131.5	36	2504
					117	40	19684
					115	48	75184
					88	09	19173
					77.1	09	7807
					72.1	12	334783
					65.1	09	11123
4-methoxy PV8	C18H27NO2	FIU_0411	8.69	290.20418	219.2	16	485978
					154.2	28	619924
					135.1	32	263495
					121.1	24	896340
					107.1	44	72222
					91.1	09	64198
					84.2	48	175841
					77.2	09	312126
					69.2	09	72277
					55.2	09	65725

4-methoxy-a- Pyrrolidinopentiophenone	C16H23NO2	FIU_0401	7.57	262.17288	191.1	16	530903
					188.2	∞	527600
					135	32	232327
					126.1	24	450678
					121.1	24	684502
					107.1	44	56103
					97.1	48	60685
					91.7	09	88344
					84.1	40	125580
					77.1	09	305935
					55.2	26	55004
4-Methyl-a- ethylaminobutiophenone	C13H19NO	FIU_0402	7.36	206.14666	160	16	203080
					159.1	20	305315
					144.1	32	392813
					132.1	20	74175
					130.1	44	62924
					105.1	28	209488
					91.1	48	117533

5-fluoro SOB-006 C21H23FN2O FIU_0440 10.29 339.17944 232.1 20 59266 59						77.1	09	100580
C21H23FN2O FIU_0440 10.29 339.17944 232.1 20 206.1 20 144 40 140 40 132.1 32 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 37 118.1 37 118.1 37 118.1 37 118.1 37 118.1 38						65.1	09	97836
206.1 20 144 40 146 40 132.1 32 132.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 37 118.1 37 118.1 37 118.1 37 118.1 37	5-fluoro SDB-006	C21H23FN2O	FIU_0440	10.29	339.17944	232.1	20	592602
144 40 132.1 32 132.1 32 132.1 32 132.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36 118.1 36						206.1	20	404949
132.1 32 118.1 36 118.1 36 118.1 36 118.1 36 118.1 56 91.1 56 69.2 40 69.2 40 65.1 60 15.1 56 12.1 28 115.1 28 115.1 52 115.1 32						144	40	187950
118.1 36 116.1 60 116.1 60 116.1 56 91.1 56 69.2 40 69.2 40 65.1 60 65.1 60 131.1 20 131.1 20 131.1 20 131.1 32						132.1	32	99024
116.1 60 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 56 91.1 32 91.1 36						118.1	36	138347
91.1 56 69.2 40 69.2 40 65.1 60 65.1 60 65.2 52 65.2 52 70 70 70 70 70 70 70 70 70 70 70 70 70 7						116.1	09	70792
69.2 40 65.1 60 62.2 52 62.2 52 62.2 52 63.2 60 63.						91.1	26	826346
65.1 60 C12H15NO FIU_0420 6.94 190.11536 159.1 8 131.1 20 1 129.1 28 116.1 32 115.1 52 115.1 52						69.2	40	41150
55.2 52 C12H15NO FIU_0420 6.94 190.11536 159.1 8 131.1 20 1 129.1 28 116.1 32 115.1 52 115.1 52						65.1	09	129623
C12H15NO FIU_0420 6.94 190.11536 159.1 8 131.1 20 1 1 129.1 28 129.1 28 116.1 32 116.1 32 116.1 32 116.1 32 116.1 32 116.1 32 116.1 32 116.1 32 116.1 32 116.1 36						55.2	52	6729
20 1 28 32 32 40 36	5-MAPB	C12H15NO	FIU_0420	6.94	190.11536	159.1	∞	861733
28 32 52 40 36						131.1	20	1009047
32 52 40 36						129.1	28	27045
52 40 36						116.1	32	6229
36						115.1	52	92822
36						103.1	40	48032
						91.1	36	226735

0
4
Ċ

					76.1	09	19551
					70.1	09	68784
					58.1	09	238730
					55.2	09	23624
AM694 N-(5-hydroxypentyl) metabolite	C20H20INO2	FIU_0698	9.98	434.05387	234.1	40	12567
					230.9	20	850211
					220	40	11943
					202.9	26	312614
					186.1	12	98669
					144	26	13714
					130	44	6020
					104.7	09	11314
					104	09	50017
					9/	09	156720
a-Pyrrolidinopentiophenone metabolite 1	C15H23NO	FIU_0407	7.81	234.17796	216.2	16	297432
					215.1	∞	640731
					173.1	24	106962

				145.1	20	51346
				117.1	28	27466
				103.1	36	23254
				91.1	36	93734
				79.1	40	66749
				77.1	09	73524
				72.1	20	448673
				57.2	28	31397
Benocyclidine	C19H25NS	FIU_0391	8.89 300.17077	226.1	32	7418
				173	32	15404
				147	32	620996
				135	28	17365
				103.1	09	36467
				86.1	4	450750
				81.1	32	77341
				79.1	09	22182
				69.1	09	34782
				67.1	32	27904
Flubromazepam	C15H10BrFN2O	FIU_0678	9.71 332.99605	211	32	745

					206.1	48	628
					184	32	6882
					179.1	26	4337
					105.1	52	3359
					104.1	09	4786
JWH 081 N-(5-hydroxypentyl) metabolite	C25H25N03	FIU_0516	10.51	388.18344	230.1	28	186558
					185.1	20	2390607
					157.1	48	705961
					144	40	224925
					142	09	297044
					128.3	09	161942
					127	09	456377
					116	09	68151
					114	09	136197
					69.1	40	61715
JWH 200 5-hydroxyindole metabolite	C25H24N2O3	FIU_0531	8.29	401.17869	160.1	36	3014
					155	20	564845

					127	09	252431
					114.1	32	308841
					100.1	09	7421
					86.1	26	7861
					84.1	52	21667
					70.1	09	90989
					68.1	09	3790
					56.2	09	6072
JWH 203	C21H22CINO	FIU_0534	11.36	340.13899	214.1	28	108406
					188.1	20	172257
					144	44	108807
					132.1	32	44098
					130	52	55877
					125	28	1084924
					118.1	36	23717
					116	09	50535
					66	09	41926
					89.1	09	117666
N-Methyltryptamine	C11H14N2	FIU_0756	5.98	175.1157	144	∞	263533

					132	œ	54859
					127	32	21000
					117	28	47145
					115	44	37217
					91	44	24577
					06	26	13644
					89	09	21090
					77	48	15813
					65.1	09	13445
NPB-22	C22H21N3O2	FIU_0595	10.95	360.16338	215.1	16	1353981
					145	40	836951
					129.7	09	114
					117	09	103623
					90.1	09	177918
					71.2	36	11694
PB-22 6-hydroxyisoquinoline isomer	C23H22N2O2	FIU 0603	11.16	359,16813	214.1	16	536563
		I			ν. απ	04	6693
					128	9	5600
					144	44	223678

					130	48	4767
					116	09	68262
					89	09	7707
					71.1	40	3705
					55.1	09	2183
PCMPA	C16H25NO	FIU_0389	8.04	248.19361	159.1	12	683975
					117.1	28	32506
					91.1	40	860073
					81.1	20	127867
					79.1	52	17255
					73.1	24	35540
					67.1	20	20122
					65.1	09	172066
					58.2	28	175286
					55.1	40	11968
THCA-A	C22H30O4	FIU_0453	13.22	359.21441	341.2	12	45770
					234.3	36	103
					219.1	36	9468
					211.3	36	262

						203.2	36	807
						193.2	24	21943
						69.2	52	1848
						55.2	09	2014
7	?8-ТНС	С21Н30О2	FIU_0454	12.27	315.22458	135.1	20	16535
						123.1	36	18191
						107.1	36	6320
						93.1	24	10781
						91.1	26	7223
						81.2	48	4993
						77.2	09	7819
						69.2	36	6143
						67.2	26	6716
	2,3-methylenedioxy pyrovalerone	C16H21NO3	FIU_0108	7.29	276.2	175	20	2047695
						149	32	525363
						135	24	2924163
						126.1	32	1693388
						84.1	44	397748
						79.1	48	264551

					77.1	09	669203
					70.1	20	235520
					65.1	09	830244
					55.1	26	235166
25I-NBF	C17H19FINO2	FIU_0378	9.04	416.04445	291	20	681306
					275.9	32	257739
					260.9	48	121283
					164.1	28	149900
					149.1	40	126534
					134.1	40	111284
					121.1	52	78130
					109.1	26	252726
					104.1	52	78022
					91.1	09	135377
2C-T-2	C12H19NO2S	FIU_0146	7.88	242.1	225.1	∞	1011348
					210.1	16	132670
					195	24	64849
					164.1	20	85218
					134.1	28	96527

	1
_	

					121	36	48444
					119	36	47882
					91.1	52	162391
					77.1	09	86829
					59	40	51093
2C-T-4	C13H21NO2S	FIU_0020	8.57	256.1	239.1	∞	1739095
					197.1	16	1081480
					182	24	429416
					167	36	341836
					164.1	24	214683
					164.1	12	462601
					134.1	36	171171
					121	44	106071
					119	44	89011
					91.1	26	328543
					77.1	09	117332
2-Fluoromethcathinone	C10H12FNO	FIU_0117	11.65	182.1	149	20	323785
					148	36	197216
					123	20	64393

					103	32	83565
					101	26	45896
					77.1	48	111780
					75.1	09	65655
					58.1	36	20636
					51.1	09	44179
3,4-dimethoxy-a- Pyrrolidinopentiophenone	C17H25NO3	FIU_0393	7.09	292.18344	221.1	16	471584
					165	28	200975
					151.1	28	732198
					126.1	24	602609
					107	09	106169
					97.1	52	55242
					84.1	40	113952
					77.1	09	124661
					69.1	09	67566
					55.2	09	60492
3-methyl-a- Pyrrolidinopropiophenone	C14H19NO	FIU_0395	6.88	6.88 218.14666	202.2	œ	621004

					147.1	16	310958
					146.1	16	407197
					119.1	24	518374
					117.1	36	91511
					98.1	28	332567
					91.1	48	253525
					77.1	09	97633
					70.1	20	100738
					65.1	09	90449
					56.2	26	122555
					55.1	48	55536
4'-Methyl-N- methylhexanophenone	C14H21NO	FIU_0396	8.35	220.16231	189.1	∞	198304
					161.1	12	1426357
					158.1	36	140871
					145.1	24	242869
					144.1	40	268172
					133.1	20	1419465
					131.1	28	85902
					105.1	24	275429

		4	Ŀ
•	`	J	
		á	i

4-hydroxy MiPT	C14H20N2O	FIU_0750	5.85 2	233.15756	160.1	∞	3375994
					160	20	141533
					132	32	19884
					131.5	36	2923
					117	44	25703
					115	44	88696
					105	44	6389
					89	09	16625
					86.1	12	315763
					77	09	8381
					65.1	09	9635
4-methylmethcathinone (Mephedrone/4-MMC)	C11H15NO	FIU_0006	99.9	178.1	145.1	20	2302144
					144.1	36	1455458
					130	32	140954
					119	20	309913
					115	52	136339
					103.1	48	158629
					91.1	40	400797
					77.1	09	495361

(
Ĺ		
Ξ	_	

					65.1	09	262038
A-796260	C22H30N2O2	FIU_0441	9.77	355.23073	125.1	20	1119736
					114.1	32	519024
					100.1	26	15824
					97.1	36	125151
					84.1	52	46333
					83.2	40	44130
					70.1	52	146725
					69.1	44	74507
					57.2	26	137447
					55.2	26	238364
AB-005 azepane isomer	C23H32N2O	FIU_0713	9.5	353.25146	352.1	4	42452
					324.1	12	53475
					253	24	44169
					125	20	45915
					112	24	657114
					98.1	32	20312
					84.1	99	17451
					81	52	11750

					79	09	0629
					70	09	47807
					58.1	26	204217
					56.1	09	7589
					55.1	09	42897
ADB-PINACA isomer 1	C19H28N4O2	FIU_0734	10.73	345.22123	328.2	4	274056
					300.2	12	247817
					215.1	24	314954
					209	24	61
					145	48	177721
					117	09	19264
					06	09	22848
					89.5	09	9735
					71.1	44	3018
AKB48 N-(5-fluoropentyl) analog	C23H30FN3O	FIU_0727	11.85	384.23729	135.1	24	470715
					107	26	41915
					93	09	67050
					91	09	11533
					81.1	09	19852

C	(
C	ć	
·	ŕ	

					79	09	57951
					77	09	11623
					69.1	09	5924
					67.1	09	24116
					55.1	09	9666
EG-018 C2	C28H25NO	FIU_0468	12.73	392.19361	350.1	40	89
					264.1	24	81057
					236.1	36	5998
					233.4	20	69
					194	44	6117
					179.1	52	66432
					166.1	26	13400
					155.1	24	1066831
					127.1	09	762090
					77.2	09	9722
(5-hydroxypentyl)					,	;	
metabolite C2.	C24H23NO2	FIU_0484	10.32	358.17288	230.1	28	35272
					208.9	24	108
					155	24	625456

					155	20	1330282
					144	40	61181
					127	52	867032
					116	09	23187
					77.1	09	14406
					69.1	40	17352
JWH 018 N-propanoic acid metabolite	C22H17NO3	FIU_0487	9.97	344.12084	284.2	24	8653
					216.1	24	122192
					144	44	37083
					133.2	16	280
					127.9	09	6280
					127	26	532594
					116.1	09	20701
					77.1	09	16504
					73.1	48	8391
KM 233	C25H30O2	FIU_0459	12.04	363.22458	302.1	16	63
					194.4	09	174
					191.3	32	200
					163.1	32	4167

					135.2	28	3040
					119.1	20	468436
					93.2	44	3440
					91.1	09	289710
					79.2	26	11550
					65.1	09	6694
Loperamide	C29H33CIN2O2	FIU_0764	9.25	477.22306	266.1	24	495262
					238.1	52	18421
					223.1	09	2768
					222.1	09	3490
					210.1	09	234375
					193.1	26	5052
					178	09	7396
					167.1	09	9271
					115	09	18840
					72.1	09	58975
MAM2201 N-pentanoic acid metabolite	C25H23NO3	FIU_0643	10.53	386.16779	244.1	24	52242
					174.1	12	530579
					169.9	24	50012

					169.1	24	060269
					146.1	16	266630
					144	40	52536
					141.8	52	24097
					141.1	48	395051
					130.1	32	326747
					115.1	09	134388
					101.1	36	12951
					83.1	40	15759
					55.1	26	41321
N-Ethylbuphedrone	C12H17NO	FIU_0431	6.46	192.13101	145.1	20	241546
					118.1	24	111048
					117.1	32	64030
					91.1	32	248108
					77.1	09	224389
					65.1	09	72657
					51.1	09	74430
PB-22	C23H22N2O2	FIU_0596	11.18	359.16813	214.1	∞	1938796
					158.1	36	22440

					144	40	753166
					130.1	48	15143
					116	09	246065
					89.1	09	31084
					71.1	40	11476
					55.2	09	7274
PCPr	C15H23N	FIU_0390	8.16	218.18305	159.1	∞	680438
					117	20	25073
					115	48	14536
					91.1	28	738575
					81.1	16	102919
					79.1	40	12197
					67.1	16	15195
					65.1	09	235075
					60.2	4	488820
					55.1	40	9181
RCS-4 2-methoxy isomer	C21H23NO2	FIU_0085	10.97	322.2	144	36	40072
					135	20	6826092
					120	52	111190

					107.1	40	53326
					105	48	105693
					92	09	751008
					79.1	44	401234
					77.1	09	3790055
					64.1	09	78160
					51.1	09	226015
SER-601	C28H38N2O2	FIU_0463	13.21	435.29333	417.3	16	23680
					284.2	28	181091
					214.1	48	20506
					135.1	32	839440
					107.1	09	99991
					93.1	09	132123
					81.2	09	35563
					79.2	09	115502
					67.2	09	45300
					55.2	09	17024
UR-144 Degradant	C21H29NO	FIU_0645	11.63	312.22491	214.1	20	302746
					206.9	09	69

					158.1	36	4585
					144	40	129095
					130.1	52	3131
					116	09	46762
					89	09	11851
					83.1	32	4550
					71.2	36	2381
					55.2	09	10718
XLR11 N-(2-fluoropentyl) isomer	C21H28FNO	FIU_0661	11.4	11.4 330.21549	312.2	20	11935
					232.1	24	33302
					144.1	44	11056
					130	26	4618
					125.1	24	83427
					97.1	28	17325
					83.1	24	12727
					69.1	44	13842
					57.2	48	19229
					55.1	44	42930

L	1
(2
~	

(-)-3,4-Methy 3 Pyrovalerone	(-)-3,4-Methylenedioxy							
	alerone	C16H21NO3	FIU_0356	7.73	276.15214	315.3	4	40769
						247.2	12	39282
						205.1	16	347586
						175.1	20	408998
						175.1	4	58816
						149	32	253614
						135.1	28	383560
						126.1	28	506535
						121	48	140927
						84.1	40	146297
						77.1	09	112730
						65.1	09	297826
						55.1	26	77494
IM-(+)	(+)-WIN 55,212-2 (mesylate)	C27H26N2O3	FIU_0094	10.79	427.2	328.1	28	80845
						299.1	28	62119
						212	36	52652
						200.1	44	72975
						175.1	4	108163

	٥	
(7	
1	_	
7		7

$\overline{}$
9
$\overline{}$

					155.1	20	890886
					144.1	40	32667
					127.1	26	607512
					116.1	09	11799
					77.1	09	10917
					69.2	40	25517
э9-тнс	C21H30O2	FIU_0455	12.15	315.22458	193.1	20	46218
					135.2	20	20933
					123.1	36	29699
					107.1	36	11891
					93.1	24	18446
					91.1	09	11394
					81.2	20	11724
					69.2	40	13427
					67.2	26	12520
					55.2	26	10339
2,3-pentylone isomer	C13H17NO3	FIU_0026	7.47	236.1	218.1	∞	727720
					188.1	12	1974111
					175.1	12	857458

					159.7	24	604545
						i)
					159.1	28	424298
					135	20	667530
					131.1	40	907532
					86.1	20	209571
					77.1	09	454804
					65.1	09	250844
3C-B-fly	C13H16BrNO2	FIU_0315	8.49	298.03644	281	12	193399
					253	24	24972
					202.2	∞	598438
					202.1	24	104498
					187.1	36	61286
					173.1	36	39237
					159.1	40	26262
					145.1	25	18648
					131.1	26	22939
					115.1	09	23843
					91.1	09	26066

4-Methyl-a- ethylaminopentiophenone	C14H21NO	FIU_0403	7.92	220.16231	324.1	12	72894
					175.1	∞	216047
					160.1	16	250979
					159.1	20	155713
					144.1	36	398270
					132.1	24	148883
					105.1	24	258233
					91.1	26	156085
					77.1	09	94195
					65.1	09	117031
AB-FUBINACA	C20H21FN4O2	FIU_0715	10.13	369.16485	352.1	4	57840
					330.1	4	70311
					302.1	12	72370
					253	24	59804
					109	48	60703
BB-22 8-hydroxyisoquinoline isomer	C25H24N2O2	FIU_0626	11.64	385.18378	240.2	20	341445
					144	44	135629

21440	20753	11923	116465	29173	11795	63	4248	8077	520989	52030	7750	285414	4928	32641	24219	14712	70869	43604
09	40	52	26	12	28	24	40	32	16	20	09	26	09	20	24	36	28	40
116	97.1	69.1	55.2	265.1	174	150.1	146	91.1	86.1	85.6	71.1	58.1	56.1	288	261	260	209.1	208.1
				310.18411										316.00072				
				8.69										8.91				
				FIU_0772										FIU_0674				
				C19H23N3O										C14H10BrN3O				
				Benzydamine										Bromazepam				

					184	28	19204
					182.1	36	107649
					105.1	52	12246
					80.1	32	18638
					78.1	09	13747
Etaqualone	C17H16N2O	FIU_0760	9.93	265.12626	155	24	4476587
					146	28	171874
					131	40	72970
					130	26	56170
					118	36	33889
					117	48	25580
					106	36	14604
					105	40	23400
					103	26	26953
					79.1	25	47869
					77	09	89059
JWH 019	C25H25NO	FIU_0204	11.87	356.2	228.1	24	820152
					158	36	14899
					144	40	504711

					130	52	14808
					127	26	4018455
					116	09	188942
					89.1	09	26097
					77.1	09	98227
					57.1	44	27368
JWH 073 2'-naphthyl-N-(1,1-dimethylethyl) isomer	C23H21NO	FIU_0049	11.42	328.2	272.2	∞	782
					154.9	28	886
					144.2	24	890
					127.1	44	986
JWH 073 6-methoxyindole analog	C24H23NO2	FIU_0504	11.21	358.17288	230.1	24	95875
					174.1	40	63493
					159.1	26	12528
					155	24	2648765
					146.1	25	31299
					131	09	12150
					127	26	1982006
					119.1	09	14586

C	٧	٦
ŕ		

					77.1	09	44841
					57.1	44	6139
JWH 198	C26H26N2O3	FIU_0529	9.71	415.19434	185.1	24	1071980
					170	52	7293
					157	52	258683
					142	09	85256
					127	09	123126
					114.1	32	430279
					100.1	52	9723
					86.1	52	11111
					84.1	09	33976
					70.1	09	103310
Methylhexanamine	C7H17N	FIU_0249	6.99	116.2	99.1	4	16762
					57.1	12	352833
					55.2	28	1541
MMAI	C11H15NO	FIU_0759	7.27	178.11536	161	∞	114350
					146	24	17813
					131	32	14037
					128	32	5207

					115	52	8603
					105.1	20	2191683
					105	24	22136
					103	48	16676
					100	12	2386
					91	36	8894
					77.1	09	21797
N,N-dimethylcathinone	C11H15NO	FIU_0252	5.552	178.1	188.2	24	1405182
					133	12	1388177
					103	36	235494
					79.1	36	410746
					77.1	48	1129270
					72.1	24	1582470
					70.1	48	92944
					58.1	28	128139
					57.7	52	67377
					51.1	09	493223
para-Fluorofentanyl	C22H27FN2O	FIU_0670	7.93	355.21074	234.2	24	137932
					150.1	36	208005

ı		_
ř	ζ	٠

					146.1	32	47935
					134.1	32	142300
					105.1	48	1323016
					103.1	09	149472
					79.2	09	201995
					77.2	09	127959
					57.2	40	43315
PCEEA	C16H25NO	FIU_0388	8.22	248.19361	159.1	∞	724788
					117.1	32	29668
					115.1	26	17043
					105.1	28	4746
					91.1	36	837643
					81.1	20	125235
					79.1	26	14687
					67.1	20	18474
					65.1	09	191147
					55.1	40	11641
Phenylpiperazine	C10H14N2	FIU_0259	5.772	163.1	161.1	16	90896
					120	20	1095572

					118	28	227891
					106.1	28	66941
					103	32	110897
					93.1	32	49409
					91.1	40	112231
					77.1	44	585727
					65.1	26	73134
					51.1	09	365911
tetrahydro-Harmine	C13H16N2O	FIU_0701	92.9	217.12626	200	∞	95891
					188	∞	106388
					185	20	11859
					173	28	38572
					158	36	12319
					156	40	9915
					145	36	17625
					144	48	11702
					132.1	∞	278224
					130	48	24165
					103	09	9530

4	(±)-Cannabichromene	C21H30O2	FIU_0435	12.34	315.22458	259.1	12	13764
						233.2	12	10679
						193.1	16	29978
						123	40	10291
						121.1	20	1222329
						109.1	16	4276
						107.1	32	3106
						81.1	16	12887
						69.2	32	11537
						67.1	09	5033
						55.1	09	4706
	(±)-epi CP 47,497	C21H34O2	FIU_0565	14.45	319.25588	167	52	1768
						155.1	28	957268
						137	09	1011
	25T2-NBOMe	C19H25N03S	FIU_0384	8.51	348.15551	331.1	12	103037
						211.1	16	177422
						196	32	26276
						181	44	15374
						174.1	∞	2249439

					134.1	44	16848
					93.1	36	171318
					91.1	52	1091684
					77.1	09	36293
					65.1	09	159936
2-methylethcathinone	C12H17NO	FIU_0119	69.9	192.1	159.1	20	345503
					146	16	902266
					145.1	20	1064793
					144.1	32	1086867
					131.1	28	419458
					130	44	403533
					115	52	165517
					91.1	44	364123
					77.1	09	320344
3,4-methylenedioxy pyrovalerone (MDPV)	C16H21NO3	FIU_0024	7.52	276.2	205.1	16	1080770
					175.1	24	1324664
					149	32	824011
					135	24	1208863
					126.1	28	1595907

					121	48	419197
					84.1	44	464988
					77.1	09	344910
					65.1	09	879407
					55.1	26	246234
3'-4'-methylenedioxy-a- pyrrolidinopropiophenone	C14H17NO3	FIU_0125	6.02	248.1	189.1	4	245662
					177	16	674037
					149	24	574241
					147	24	1585673
					119	36	527575
					98.1	24	2094454
					91.1	48	1099682
					70.1	40	87480
					65.1	09	725244
					56.1	09	537012
					55.6	26	222319
4-acetoxy DiPT	C18H26N2O2	FIU_0745	5.79	303.19943	202	16	132374
					160	28	344673

					142	48	16664
					134	24	4674
					132	48	20606
					117	09	42606
					114.1	16	312530
					105.1	09	13505
					102.1	16	33201
					72.1	32	70273
4-methoxy PCP	C18H27NO	FIU_0387	7.99	274.20926	147.1	36	5712
					121.1	36	213978
					106	09	4664
					91.1	09	28386
					86.1	0	95305
					81.1	24	10763
					79.5	09	3980
					78.1	09	26378
					77.1	09	38397
5-fluoro AMB	C19H26FN3O3	FIU_0708	10.62	364.19582	304.1	12	342091
					233	20	403551

					213	32	132149
					177	36	49611
					171	44	13501
					145	44	219791
					116.9	09	38235
					06	09	50298
					88.9	09	21975
					69.1	40	67911
5-fluoro NPB-22	C22H20FN3O2	FIU_0577	10.42	378.15396	233.1	16	1170458
					213.1	28	341088
					202.1	4	193221
					185.1	36	22004
					177.1	32	140963
					171.1	40	36609
					145	44	592556
					121	44	18387
					117	09	106271
					90.1	09	149594
					69.1	36	167724

5-methoxy-a-Ethyltryptamine	C13H18N2O	FIU_0752	7.12	219.14191	162	∞	10255
					160	16	162585
					159.1	4	465869
					148	12	12454
					145	36	57929
					130	44	7229
					117	48	92689
					06	09	27254
					88	09	18770
					58.1	28	7383
6-APB	C11H13NO	FIU_0422	6.9	176.09971	131.1	16	429828
					129.1	24	11710
					116.1	32	34084
					115.1	52	45379
					103.1	40	20205
					91.1	32	106119
					77.2	52	111589
					65.2	09	43537
					51.2	09	46292

r	Υ	
C	X	
÷		

A-834735	C22H29NO2	FIU_0689	11.02	340.21983	242.1	24	12609
					125.1	24	193742
					99.1	36	12845
					97.1	32	27588
					83.1	36	11888
					81.1	44	5513
					79.1	52	3563
					69.1	40	32027
					57.2	48	33240
					55.2	44	61735
AB-PINACA N-(5- hydroxypentyl) metabolite	C18H26N4O3	FIU_0725	9.18	347.20049	231.1	20	30297
					213	28	62387
					175	32	5497
					171	44	6001
					145	48	23199
					131	52	2331
					06	09	3271
					69.1	44	11777

AB-PINACA pentanoic acid							
metabolite	C18H24N4O4	FIU_0726	9.09	361.17976	344.1	4	52075
					316.1	12	56332
					298.1	20	19586
					245.1	20	19036
					227	36	20998
					217	32	28767
					199	48	4506
					175	44	4950
					145	26	9793
					55.1	09	16211
Acetyl fentanyl	C21H26N2O	FIU_0667	7.32	323.20451	324.3	4	239588
					202.1	20	220466
					188.1	24	1463153
					134.1	28	175597
					132.1	36	261461
					117	09	58630
					105.1	40	1637881
					103.1	09	228792
					79.1	09	338140

09	20	24	32	28	44	09	09	48	12	16	28	40	40	09	09	09
77.1	373.6	248.1	212.1	155.1	144.1	127	116	69.1	378.2	305.2	249.1	221.1	217.1	206.1	189.1	178.1
	11.44 376.13899								396.17327							
	11.44								10.02							
	FIU_0636								FIU_0672							
	C24H22CINO								C23H25N05							
	AM2201 N-(3-chloropentyl) isomer								ATM4 4-acetoxy analog							
	AM220 isomer								ATM4							

BB-22 5-hydroxyisoquinoline isomer	C25H24N2O2	FIU_0620	11.64	11.64 385.18378	384.1	0	2371
					240.2	24	326734
					188.1	24	1781082
					144	44	160396
					116	09	23928
					97.1	44	22789
					69.2	52	13316
					55.2	09	124549
Butyryl fentanyl	C23H30N2O	FIU_0669	8.29	351.23581	352.3	0	362383
					230.2	24	230241
					146.1	36	86916
					134.1	28	261634
					132.1	36	322205
					105.1	48	1643249
					103.1	09	194889
					79.1	09	252033
					77.1	09	192673
CB-13	C26H24O2	FIU_0176	13.07	369.2	299.1	16	763302

					281.1	28	43985
						})
					252.1	09	31559
					241.1	16	202408
					171	28	1940179
					155	24	2253863
					143	52	659771
					127	09	1738277
					115	09	609693
					77.1	09	27331
CP 47,497-C9-homolog	C23H38O2	FIU_0568	14.51	347.28718	210.8	28	104
					121	24	2295
					107.1	20	2713
					71.1	16	2149
					57.1	32	2818
D2PM	C17H19NO	FIU_0181	7.72	254.2	236.1	12	3588641
					178.1	48	306780
					167.1	32	217205
					165.1	09	322611
					158.1	20	439424

					152	26	266546
					130	32	914499
					117	40	244293
					91.1	40	241134
					77.1	09	275464
Delorazepam	C15H10Cl2N2O	FIU_0675	9.57	305.01702	196.1	09	99
					193.1	48	209
					179.2	09	1705
					165.1	36	2143
					140	32	4973
					99.2	26	235
JWH 200 4-hydroxyindole metabolite	C25H24N2O3	FIU_0530	9.82	401.17869	155	24	673867
					127	09	340709
					114.1	32	734541
					100.1	26	13405
					86.1	52	17245
					84.1	52	52158
					70.1	09	143643
					68.1	09	9477

ă	
_	`
$\overline{}$	

					58.1	09	7900
					56.1	09	10934
JWH 203 N-(5-hydroxypentyl) metabolite	C21H22CINO2	FIU_0536	10.22	10.22 356.13391	230.1	28	9102
					204.1	16	109231
					186.1	16	184811
					144.1	48	26584
					130	36	46178
					125	28	542463
					118	28	10319
					66	09	16453
					89.1	09	43399
					69.1	36	14538
JWH 387	C24H22BrNO	FIU_0550	12.06	420.08848	233	28	511810
					214.1	28	84677
					205	52	305239
					144	52	53243
					126	09	224465
					116.1	09	16024

Methiopropamine	C8H13NS	FIU_0308	5.52	156.07687	125	∞	283684
					97	24	374348
					91.1	24	18916
					81.1	28	20771
					79.1	36	17333
					69.1	48	11566
					66.1	48	11342
					65.1	26	15550
					58.2	œ	359989
					53.1	48	98382
PB-22 N-(4-hydroxypentyl)-3- carboxyindole metabolite	C14H17NO3	FIU_0609	8.83	248.12084	230.1	4	11815
					186	œ	5420
					174	20	3847
					157.1	28	188
					130	32	3473
					128.1	44	641
					93	12	92
					77	09	1812

					69.1	20	2403
UR-144	C21H29NO	FIU_0268	11.85	312.2	214.1	24	928611
					144	36	589452
					130	26	129459
					125.1	20	2475727
					116	09	241218
					97.1	28	552399
					83.1	24	326052
					69.1	40	375001
					57.1	48	639495
					55.1	40	1224554
XLR12	C20H24F3NO	FIU_0666	11.23	352.181	353.3	0	351590
					254.1	28	326414
					144	48	177183
					125.1	24	806231
					116	09	138509
					97.1	32	164250
					83.1	24	153361
					69.1	44	113809

					77.1	09	183073
					65.1	09	12998
					55.1	09	6140
2C-E	C12H19N02	FIU_0014	8.43	210.1	193.1	∞	1855745
					178.1	16	738861
					163.1	28	369121
					135.1	20	175389
					115	52	89190
					105.1	28	289192
					103.1	40	103167
					91.1	52	274033
					79.1	40	174784
					77.1	09	309902
2C-I	C10H14INO2	FIU_0025	8.18	308	291	∞	1001652
					276	20	327561
					260.9	32	149200
					164.1	20	159682
					149	28	141339
					134.1	32	154742

					106	25	219173
					105.6	09	61119
					91.1	26	321837
					78.1	09	215637
2-methoxymethcathinone	C11H15NO2	FIU_0118	6.24	194.1	176.1	œ	991788
					161	20	569396
					146	28	152952
					144	36	104320
					132	36	122990
					118	40	191448
					117	26	107569
					91.1	52	109691
					77.1	09	160028
					58.1	20	75381
3-fluoromethcathinone (hydrochloride)	C10H12FNO	FIU_0131	11.65	182.1	164.1	12	1605492
					149	20	1119625
					148	36	758213
					123	20	187934
					103.1	32	259411

					101	26	168349
					95	52	76280
					77.1	48	352149
					75	09	239356
					51.1	09	129921
4-fluoro PV8	C17H24FNO	FIU_0409	8.67	278.18419	207.2	20	95752
					154.2	28	382888
					137.1	20	98781
					123.1	32	232441
					109.1	24	651031
					95.1	09	264425
					84.2	44	164865
					72.2	32	56197
					70.2	20	109277
					55.2	26	46963
4-fluoro PV9	C18H26FNO	FIU_0410	9.16	292.19984	177.1	16	570049
					168.2	32	406329
					137.1	20	90019
					125.1	20	100235

					123.1	36	225314
					109.1	28	841614
					95.1	09	268112
					84.2	48	171654
					72.2	36	75278
					70.2	20	114176
					55.2	26	79203
4-methoxy-a- Pyrrolidinobutiophenone	C15H21NO2	FIU_0400	6.97	248.15723	149.1	20	389778
					135	28	200754
					121.1	32	419348
					112.1	24	435277
					91.1	52	106767
					84.1	36	85157
					77.1	26	264095
					70.1	48	96777
					55.2	52	64271
4-methyl-a- pyrrolidinobutiophenone (HCI)	C15H21NO	FIU_0148	7.4	232.2	161.1	16	1488009

					133.1	16	531978
					119	28	681065
					112.1	28	976569
					105.1	28	2205142
					91.1	48	964711
					84.1	32	377228
					77.1	09	314627
					70.1	44	218660
					65.1	09	506222
5-fluoro ADBICA	C20H28FN3O2	FIU_0706	10.26	362.21656	345.2	∞	262237
					273.6	4	53
					232.1	20	297629
					144	48	129991
					116	09	45854
					88	09	4351
					69.1	48	10037
5-fluoro PB-22 8- hydroxyisoquinoline isomer	C23H21FN2O2	FIU_0589	10.71	377.15871	232.1	20	2515332
					212.1	40	24396

١	٢	١	1	•
٩	•	_	•	
1	r	1		٦
ľ		•		

				176.1	40	15269
				161.1	∞	255598
				158	40	19570
				144	48	1168634
				130	09	19029
				116	09	430178
				89.1	09	35737
				69.1	44	93366
				61.1	09	15522
6-APDB	C11H15NO	FIU_0423	6.45 178.11536	133.1	20	216061
				120.1	28	11970
				105.1	28	29797
				103.1	40	18627
				100.2	4	6466
				91.1	48	19956
				79.2	40	27938
				77.1	25	65486
				51.2	09	20410
Acetyl norfentanyl	C13H18N2O	FIU_0668	5.8 219.14191	136.1	16	54754

					94.1	36	38367
					84.1	16	925546
					82.1	32	11214
					77.1	09	24360
					67.1	28	24080
					57.1	28	7642
					56.2	28	228000
					55.1	44	338411
					53.1	09	14730
ADB-PINACA	C19H28N4O2	FIU_0733	10.92	345.22123	344.2	4	93835
					328.2	4	270236
					316.1	12	98571
					300.1	12	277681
					232.1	20	5162
					215	24	343729
					145	48	203544
					125.8	36	20
					117	09	21225
					06	09	24901

					89.5	09	12483
					71.1	44	2929
ADB-PINACA N-(5-hydroxypentyl) metabolite	C19H28N4O3	FIU_0738	9.63	361.21614	231	20	44215
					213	32	82008
					188.1	∞	465922
					185.1	40	3689
					175	36	8114
					171	48	8589
					145	52	32910
					131	25	3603
					69.1	48	17081
a-Ethylaminopentiophenone	C13H19NO	FIU_0404	7.17	206.14666	146.1	16	251766
					130.1	36	254640
					118.1	24	164429
					117.6	36	65938
					105.1	24	57604
					91.1	32	255679

					77.1	09	236677
					65.1	09	79354
					51.1	09	75160
AKB48 N-(4-fluorobenzyl) analog	C25H26FN3O	FIU_0740	11.94	404.20599	135.1	20	669326
					107	09	55132
					93	09	88456
					91	09	12840
					81.1	09	25167
					79.1	09	74219
					77	09	13774
					69.1	09	8223
					67.1	09	27495
					55.1	09	12570
BB-22 6-hydroxyisoquinoline isomer	C25H24N2O2	FIU_0622	11.52	385.18378	240.2	20	501239
					144	44	193649
					138.5	24	64
					116	09	30511

					97.1	40	31800
					69.1	48	18234
					55.2	09	173871
JWH 193	C26H26N2O2	FIU_0528	98.6	399.19943	169.1	20	1001650
					141	26	424479
					114.1	32	459911
					100.1	09	10409
					86.1	52	11791
					84.1	26	38421
					70.1	09	111000
					68.1	09	6438
					58.1	09	7454
					56.2	09	8185
JWH 210	C26H27NO	FIU_0225	12.095	370.2	214.1	24	1230945
					183.1	28	4075202
					155.1	44	1247308
					153.1	26	1045567
					144	44	659238
					129	09	388347

					128.2	09	219700
					116	09	222546
					115	09	419288
					77.1	09	197334
JWH 210 5-hydroxyindole metabolite	C26H27NO2	FIU_0539	11.32	386.20418	230.1	24	92449
					183.1	28	374825
					178	20	146366
					160	44	59085
					155	44	121471
					153	09	93409
					132	09	21012
					129.1	09	32997
					127.9	09	14656
					115	09	34942
					77.1	09	17021
Levamisole	C11H12N2S	FIU_0763	5.55	205.07212	149	4	2033
					130	44	13591
					128	36	20736
					123	28	44966

					117	28	28490
					103	40	16127
					91	40	99914
					77	26	44320
					65	09	34975
PB-22 3-carboxyindole metabolite	C14H17NO2	FIU_0597	10.51	232.12593	188.1	œ	8886
					186.3	20	116
					144	28	1355
					132	16	10470
					118	20	11328
					91	44	4748
PB-22 N-(4-hydroxypentyl) metabolite	C23H22N2O3	FIU_0608	10.06	375.16304	281.6	09	115
					230.1	12	1439072
					225.3	∞	107
					214.1	25	87
					144	36	686688
					116	09	135422
					89.1	09	13211

					87.1	32	19830
					69.1	40	410011
					67.1	26	7095
Pentedrone metabolite ((±)- Ephedrine stereochemistry)	C12H19NO	FIU_0341	7.6	7.6 194.14666	176.1	∞	723346
					145.1	16	45243
					133.1	24	126644
					132.1	32	55838
					117.1	24	38017
					91.1	40	112699
					79.1	36	21077
					77.1	09	49015
					65.1	09	34924
					56.1	40	31100
RCS-8 4-methoxy isomer	C25H29NO2	FIU_0088	11.73	376.2	254.1	32	496131
					149	24	1420456
					144	48	435283
					135	36	1808051
					121	36	4720971

(2
٠,	
(`

						107	26	309871
						91.1	09	401812
						77.1	09	1203244
						69.1	52	364009
						55.1	09	261828
9	(+)-3,4-Methylenedioxy Pyrovalerone	C16H21NO3	FIU_0357	7.73	276.15214	205.1	16	342544
						175.1	20	397365
						149	32	238258
						135	28	367160
						126.1	28	475979
						121	48	127849
						84.1	44	144399
						77.1	09	107016
						65.1	09	290472
						55.1	26	73340
	(+/-)-WIN 55,212 (mesylate)	C27H26N2O3	FIU_0101	10.77	427.2	340.1	28	20420
						328.1	28	25770
						299.1	28	19194

					2121	36	16268
					7.777	3	10200
					200.1	44	24450
					155	24	1749417
					127	09	810686
					100.1	48	243642
					70.1	09	44863
					56.1	09	43262
(±)-JWH 073 N-(3-hydroxybutyl) metabolite	C23H21NO2	FIU_0510	10.3 34	344.15723	284.1	24	22739
					216.1	24	36391
					158.1	32	25448
					155	20	759571
					155	16	1825048
					144	44	17895
					130	48	23135
					127	26	581475
					116	09	9723
					77.1	09	16256
					55.2	26	8530
1'-naphthoyl indole	C19H13NO	FIU_0107	10.09	272.1	254.1	20	13489

					179.1	∞	834875
					144	20	1064251
					127	40	1571228
					116	48	375694
					101	09	60558
					89.1	09	343881
					77.1	09	329137
					63.1	09	30423
					51.1	09	16941
2,5-DMMA	C12H19NO2	FIU_0304	7.25	210.14158	164.1	20	328314
					151.1	16	621865
					149.1	32	187888
					123.1	24	58603
					121.1	28	310579
					91.1	40	225177
					78.1	09	139118
					77.1	26	192965
					65.1	09	117420
2C-T-7	C13H21NO2S	FIU_0312	9.07	256.1293	239.1	∞	513065

					224.1	20	42920
					197.1	20	67597
					182	28	58606
					167	36	76734
					164.1	24	48230
					134.1	32	45939
					121.1	44	22386
					119	48	20742
					91.1	26	73590
2C-TFM	C11H14F3NO2	FIU_0313	8.53	250.09766	233.1	∞	161749
					218	20	105955
					203.1	∞	641016
					203	36	56012
					175.1	12	586087
					151	40	6082
					133.1	36	12825
					127	26	23931
					121.1	24	550540
					115.1	40	7765

	_	
(
	=	
٠,		
(

					113	48	20627
					91.1	09	14144
					77.1	09	13527
2-methoxy Ketamine	C14H19NO2	FIU_0283	7.03	234.14158	135.1	24	38646
					115.1	09	35198
					93.1	32	51285
					91.1	48	459790
					77.1	09	89389
					67.2	28	108334
					65.2	09	167281
3,4-EDMC	C12H15NO3	FIU_0285	6.28	222.10519	204.1	12	773196
					189.1	20	314874
					163.1	24	72046
					148.1	28	197052
					133	36	227621
					105.1	52	73840
					91.1	44	116514
					77.1	09	96040
					65.1	09	113162

7		
	_	

					52.1	09	27862
					51.1	09	24061
4-quinolone-3-carboxamide CB2 ligand	C26H34N2O3	FIU_0151	12.72	423.3	272.6	24	846128
					202	44	368765
					187	09	145440
					135.1	28	5354440
					107.1	09	588428
					93.1	09	843037
					81.1	09	231173
					79.1	09	728317
					77.1	09	123049
					67.1	09	271053
5-fluoro JWH 018 adamantyl analog	C24H30FNO	FIU_0474	11.62	368.23114	135.2	36	1063440
					107.1	26	140480
					93.1	09	218304
					91.1	09	38066
					81.2	09	59976
					79.2	09	207437

					77.1	09	40949
					69.2	09	18282
					67.2	09	72180
					55.2	09	29403
5-fluoro PB-22 7- hydroxyisoquinoline isomer	C23H21FN2O2	FIU_0587	10.55	377.15871	232.1	24	1679788
					212.1	44	20280
					176.1	44	12071
					158	40	18539
					144	48	1042519
					130.1	26	16766
					116	09	346830
					89.1	09	31060
					69.2	48	71486
					61.1	09	12336
AM1248 azepane isomer	C26H34N2O	FIU_0456	9.86	391.26711	135.2	32	241646
					112.2	28	496340
					107.1	26	24952
					98.1	44	37564

_		
5	`	ı
7		-

L	٢	۱
•		

					275.1	16	293382
					182.1	16	213452
					142.1	16	240826
					97.1	24	87608
					85.1	32	196331
					71.1	32	387338
					58.1	28	2599650
					55.1	09	314099
DOI	C11H16INO2	FIU_0299	8.73 322.02257	257	305	∞	419743
					277	20	113922
					178.1	20	163710
					163.1	28	89350
					135.1	36	110861
					105.1	52	99762
					103.1	09	44843
					91.1	09	62462
					79.1	09	48173
					77.1	09	101358
JWH 213	C27H29NO	FIU_0543	12.06 384.22491		228.1	28	362663

					183.1	28	1846841
					158	44	231505
					155.1	44	559364
					153.1	26	467202
					130	09	68152
					129.1	09	181442
					127.8	09	74762
					115.1	09	175718
					77.1	09	73776
JWH 251 4-methylphenyl isomer	C22H25NO	FIU_0077	11.42	320.2	214.1	24	754154
					188.2	20	199026
					144.1	40	567236
					130.1	48	134294
					119	24	419304
					116.1	09	249506
					105.1	24	1828336
					91.1	26	267202
					79.1	09	266183
					77.1	09	245281

Lisdexamfetamine	C15H25N3O	FIU_0301	5.63	264.19976	280.2	0	232757
					247.2	12	24768
					136.1	12	9050
					129.1	œ	19886
					119.1	20	8899
					91.1	40	22812
					85.2	28	136
					84.1	24	110392
					67.1	44	4084
					56.1	09	29628
Mepirapim	C19H27N3O	FIU_0329	9.29	314.21541	214.1	12	1082746
					158.1	32	12956
					144.1	36	425625
					130.1	44	8942
					116.1	09	165617
					91.1	32	193
					89.1	09	39360
					71.2	36	7366
					55.2	52	4746

Mescaline	C11H17NO3	FIU_0319	6.1	212.12084	195.1	4	221645
					180.1	16	51089
					165.1	20	38973
					135	28	9649
					133.1	28	17840
					105.1	40	10825
					91.1	48	22622
					79.1	40	11814
					77.1	26	43236
					65.1	09	15648
MT-45	C24H32N2	FIU_0328	9.61	349.25655	181.1	24	1160727
					179.1	40	88903
					169.1	20	393925
					167.1	20	91623
					166.1	40	398058
					165.1	09	300109
					153.1	40	46172
					149.1	∞	938291
					103.1	26	371135

					87.1	32	115883
					77.1	09	129098
para- Methoxymethamphetamine	C11H17NO	FIU_0307	6.64	6.64 180.13101	121	20	680782
					119	36	14331
					93.1	24	20217
					91.1	36	204015
					78.1	52	161368
					77.1	40	119965
					65.1	26	114966
					52.1	09	29479
					51.1	09	38474
PB-22 7-hydroxyisoquinoline isomer	C23H22N2O2	FIU_0605	11.22	359.16813	214.1	24	1693224
					158	36	27828
					144	44	975805
					143.2	26	2784
					130.1	26	20429
					116	09	290169

					89.1	09	30487
					71.2	40	15875
					55.2	09	8908
Pentedrone metabolite ((±)-Pseudoephedrine stereochemistry)	C12H19NO	FIU_0342	7.51	194.14666	176.1	∞	802809
					145.1	16	49571
					133.1	24	151368
					132.1	32	68685
					117.1	20	43358
					104.1	36	29306
					91.1	44	126771
					77.1	09	35084
					65.1	09	39991
					56.1	40	41050
Propylhexedrine	C10H21N	FIU_0302	8.31	156.1674	125.1	∞	21793
					83.1	16	116302
					69.2	16	371871
					67.2	12	5018
					57.2	12	52422

					55.2	28	193989
					53.2	52	6437
UR-144 N-(2-hydroxypentyl) metabolite	C21H29NO2	FIU_0648	11.01	328.21983	230.1	24	30908
					144	40	23786
					130.1	48	9699
					125.1	24	152328
					116	09	10349
					97.1	32	25740
					83.1	24	16343
					69.1	40	22507
					57.2	48	33477
					55.1	44	99029
UR-144 N-(5-methylhexyl) analog	C23H33NO	FIU_0656	12.29	340.25621	322.3	20	17752
					242.2	24	41749
					144	40	23285
					130.1	09	6577
					125.1	24	140806

						97.1	32	29712
						83.1	28	16883
						69.1	40	19898
						57.2	48	43015
						55.2	48	67582
7	(R)-(-)-MT-45	C24H32N2	FIU_0324	9.6	349.25655	181.1	24	1251652
						179.1	44	98594
						169.2	16	464387
						167.2	20	103109
						166.1	40	464629
						165.1	09	355992
						153.1	40	54038
						103.1	26	428647
						87.1	36	135549
						77.1	09	140327
	2,3-Dichlorophenylpiperazine	C10H12Cl2N2	FIU_0326	8.49	231.03775	188	20	131580
						152.7	28	73679
						152	36	80899
						118.1	40	28664

3	
2	
7	

2C-T C11H17NO2S FIU_0311 7.66 228.098 211.1 56 58639 2C-T C11H17NO2S FIU_0311 7.66 228.098 211.1 8 561379 134.1 24 64240 134.0 inethylethcathinone C13H19NO FIU_0331 7.98 206.14666 188.2 12 762838	295598	20	173.1					
117.1 56 90.7 56 90.7 56 90.1 60 89.6 60 75.1 60 70.1 20 70.1 20 181 24 164.1 20 119 36 91.1 48	51/5/	12	17.1	206.14666	7.98	FIU_0331	C13H19NO	imethylethcathinone
117.1 56 90.7 56 90.7 56 90.1 60 89.6 60 89.6 60 75.1 60 75.1 60 70.1 20 196 20 118 24 166 20 164.1 20 1134.1 24 1134.1 24	86688	48	91.1					
117.1 56 90.7 56 90.7 56 90.1 60 90.1	33248	36	119					
117.1 56 90.7 56 90.8 60 90.1 60 89.6 60 89.6 60 75.1 60 70.1 20 70.1 20 196 20 1181 24 1181 24	31062	36	121					
117.1 56 90.7 56 90.8 60 90.1 60 89.6 60 75.1 60 75.1 60 70.1 20 70.1 20 70.1 20 70.1 20 70.1 20 70.1 20 1181 24 1164.1 20	73037	24	134.1					
117.1 56 90.7 56 90.7 56 90.1 60 90.1 60 90.2 90 .1 60 90.3 90 .1	47394	20	164.1					
117.1 56 90.7 56 90.8 90.1 60 89.6 60 89.7 80 89.6 60 89.7 80 89.7 80 89.8 80	58717	20	166					
117.1 56 90.7 56 90.8 60 89.6 60 89.6 60 89.6 60 89.6 60 89.6 60 89.7 8 89.8 60 89.8 	64240	24	181					
117.1 56 90.7 56 90.8 90.1 60 90.1 60 90.1 60 90.1 60 90.1 60 90.1 60 90.2 60 90.1 60 90.2 60 90.3 60 90.1 8 9.5 60	101653	20	196					
56 60 60 20	561379	00	211.1	228.098	7.66	FIU_0311	C11H17NO2S	-
92 99 99 99 99 99 99 99 99 99 99 99 99 9	13990	20	70.1					
26 60 60	13446	9	75.1					
56 60	12413	09	9.68					
56	12302	9	90.1					
56	21105	26	90.7					
	58659	26	117.1					

					159.1	20	326413
					158.1	32	395250
					144.7	24	106532
					144.1	36	105431
					115.1	09	106431
					105.1	36	93991
					91.1	26	106950
3-Bromomethcathinone	C10H12BrNO	FIU_0352	7.41	242.01023	145.1	16	364113
					144.1	36	238510
					132.1	20	22824
					131	40	15869
					128	26	18496
					104	36	11727
					103.1	09	27212
					78	09	17422
					77.1	09	43051
					58.2	09	7153
3C-P	C14H23NO3	FIU_0316	8.29	254.16779	237.1	4	175322
					195.1	12	217228

					167.1	20	46877
					163.1	16	47645
					149.1	4	625482
					135.1	20	25931
					107.1	28	83462
					103.1	40	15716
					91.1	09	26379
					79.1	40	24030
					77.1	09	53173
4-Methoxyamphetamine	C10H15NO	FIU_0293	69.9	166.11536	121.1	16	403590
					119	36	10174
					93.1	20	6156
					91.1	32	118106
					78.1	48	96133
					77.1	40	72439
					65.1	52	75461
					52.1	09	24971
					51.1	09	26844
4-methoxy-N,N- Dimethylcathinone	C12H17NO2	FIU_0332	6.47	208.12593	163.1	12	268429

	Ļ	7		
1	C			
1	٢		۰	

					135.1	20	374350
					105.1	32	148883
					103.1	40	75961
					91.1	09	93866
					79.1	40	105894
					77.1	26	177530
					72.2	20	649795
					70.1	52	34223
					58.2	28	22286
5-fluoro NNEI	C24H23FN2O	FIU_0437	10.55 375.17944	7944	232.2	20	801759
					212.2	40	8266
					206.2	16	18743
					176.1	40	4557
					158.1	44	7466
					144.1	48	406051
					130.1	09	7367
					116.1	09	137737
					89.1	09	11688
					69.2	44	36116

9-octadecenamide (oleamide)	C18H35NO	FIU_0157	11.72	282.3	111.1	12	35047
					97.1	16	57377
					95.1	16	28919
					83.1	20	62044
					81.1	20	25419
					71.1	20	31999
					69.1	24	84689
					67.1	36	16158
					57.1	28	75143
					55.1	40	106311
BB-22 4-hydroxyquinoline isomer	C25H24N2O2	FIU_0619	11.87	385.18378	240.1	12	679498
					158	40	2631
					144	40	242106
					125.4	52	63
					116	09	40566
					97.1	40	33999
					89.1	09	3288
					69.1	52	19312

					55.1	09	198022
Cathine	C9H13NO	FIU_0323	5.68	152.09971	134.1	4	399942
					117.1	16	129016
					115.1	24	101578
					91.1	36	86537
					89.1	52	7744
					77.1	40	7708
					65.1	52	39152
					63.1	09	7549
					56.1	16	23121
					51.1	09	10832
Diclofensine	C17H17Cl2NO	FIU_0298	9.85	322.06872	291	20	38008
					279	20	85701
					256.1	28	27313
					252.1	∞	1527188
					209.1	36	21371
					178.1	09	39973
					165.1	09	24296
					159	32	23787

					121.1	24	178112
					91.1	52	48760
					77.1	52	19798
FUB-PB-22	C25H17FN2O2	FIU_0594	10.76	397.12741	301.1	20	106
					224.1	28	11390
					109	44	1409363
					83.1	09	34895
HMA	C10H15NO2	FIU_0300	5.21	182.11028	165.1	4	222342
					137	16	99809
					133.1	16	48909
					105.1	24	56550
					103.1	32	15992
					94.1	44	14357
					79.1	32	30876
					77.1	48	47161
					65.1	52	11638
					51.1	09	20746
JWH 018 2-hydroxyindole metabolite	C24H23NO2	FIU_0475	12.51	358.17288	340.2	16	56591
					270.1	24	99942

					254.2	26	347
					252.6	40	838
					252.1	40	49856
					251.1	09	24784
					230.1	20	9346
					155.1	20	15972
					127.1	26	11992
JWH 251 3-methylphenyl isomer	C22H25NO	FIU_0076	11.41	320.2	214.1	24	2540962
					188.2	16	607795
					144	40	1658027
					130.1	48	159603
					119	24	269801
					116	09	710628
					105.1	24	2951181
					91.1	26	210814
					79.1	09	355442
					77.1	09	348348
MBZP	C12H18N2	FIU_0327	5.45	191.147	160.1	∞	765293
					100.1	16	39905

					99.1	12	247295
					91.1	24	1169459
					84.1	24	9208
					70.1	28	62134
					65.1	26	397011
					63.1	09	30028
					58.2	40	115136
					56.1	28	42801
					51.1	09	18793
Mephedrone	C11H15NO	FIU_0337	6.9	178.11536	224.1	12	435090
					145.1	20	580164
					144.1	36	376708
					130.1	32	39373
					119.1	24	86636
					115.1	52	36706
					103.1	48	42353
					91.1	36	104420
					77.1	09	133572
					65.1	09	65730

NRG-3	C16H19NO	FIU_0340	9.12	242.14666	211.1	12	159337
					194.1	36	80735
					181.7	16	325438
					181.1	24	343752
					180.1	40	202246
					167.1	32	114928
					141.1	24	209455
					127.1	26	84986
					115.1	09	111817
RCS-4 N-(4-hydroxypentyl) metabolite	C21H23NO3	FIU_0574	14.51	338.16779	111.1	20	19492
					97.1	24	31254
					95.1	20	16121
					83.1	24	30687
					81.1	24	13559
					71.1	28	19382
					69.1	36	41678
					67.1	40	9018
					57.2	40	37105
					55.1	52	51393

	UR-144 N-(2-chloropentyl)							
	analog	C21H28CINO	FIU_0647	11.64	346.18594	248.1	24	24585
						144	40	15950
						130.1	26	3887
						125.1	24	77720
						116.1	09	6232
						97.1	32	15258
						83.1	24	10781
						69.1	44	16166
						57.2	26	17681
						55.1	48	37963
∞	(-)-(S)-Cathinone	C9H11NO	FIU_0344	5.59	150.08406	133.2	∞	70853
						117.1	24	166242
						105.1	16	88675
						103.1	32	14783
						8.68	40	54402
						89.1	52	51167
						79.1	32	23572
						77.1	40	74263
						51.1	09	55674

(±)-Ethylphenidate	C15H21NO2	FIU_0279	8.12	248.16	174.1	24	12580
					163.1	∞	450428
					129.1	40	4034
					115.1	09	7099
					91.1	09	23219
					84.1	20	1404865
					70.2	48	4475
					69.2	09	10177
					67.2	09	22288
					65.2	09	7635
					56.1	09	334424
2,3-MDA	C10H13NO2	FIU_0358	7.05	180.09463	174.1	∞	920493
					135	16	297130
					133.1	16	74445
					105.1	24	177076
					103.1	32	38437
					91.1	40	7465
					79.1	32	90323
					77.1	44	191386

					65.1	44	12707
					51.1	09	116146
2,4-Dimethylmethcathinone	C12H17NO	FIU_0349	7.86	192.13101	159.1	20	669562
					158.1	32	359343
					144.1	32	177906
					116.8	52	21510
					115.1	26	86963
					105.1	32	35737
					91.1	09	81412
					77.1	09	65270
					58.2	12	67072
30C-NBOMe	C20H26CINO5	FIU_0385	8.35	396.14995	181.1	12	1313212
					151	26	22893
					148	48	235340
					137.1	09	78969
					123.1	09	26954
					120.1	26	23410
					107.1	09	24969
					91.1	09	20905

					90.5	09	31829
					77.1	09	25079
4-Fluoromethcathinone metabolite ((\pm) -Pseudoephedrine							
stereochemistry)	C10H14FNO	FIU_0355	6.14	184.10594	166.1	œ	957374
					151.1	20	163911
					135.1	20	123112
					133	36	56834
					122.1	36	11460
					115.1	28	107652
					109	36	141519
					83.1	09	67403
					70.1	20	35481
					56.1	40	19331
4-Methylethcathinone metabolite ((±)-Ephedrine stereochemistry)	C12H19NO	FIU_0333	7.32	194.14666	176.1	∞	982397
					161.1	20	81004
					147.1	20	82802
					146.1	28	75159

					131.1	20	131292
					116.1	32	52983
					115.1	25	69475
					105.1	24	44898
					91.1	36	151734
5-fluoro PB-22 N-(3- fluoropentyl) isomer	C23H21FN2O2	FIU_0591	10.85	377.15871	232.1	12	335201
					212.1	36	23466
					176	44	4804
					158	40	6443
					148	09	2965
					144	48	85426
					130	26	5878
					116	09	33197
					69.1	25	32572
					61	09	3730
A-836339	C16H26N2O2S	FIU_0442	10.24	311.1715	352	4	99027
					253	20	72417
					187.1	16	2131532
					155.1	36	144832

•	•	٧	•	
1	۲	•	2	
(١		
4				

675347	09	70.1					
43078	09	84.1					
2882892	40	98.1					
2311684	20	112.1					
730738	09	127					
1020648	32	155					
137799	36	158					
33086	12	177.1					
662973	20	286.1	383.2	8.79	FIU_0159	C26H26N2O	AM1220
62269	44	109					
32111	12	324.1	369.16485	9.8	FIU_0720	C20H21FN4O2	AB-FUBINACA isomer 5
310195	48	55.2					
210341	26	57.2					
358874	44	59.2					
83446	44	69.2					
50246	26	87.1					
112367	36	97.2					
432296	24	125.1					
150865	40	129.1					

					58.1	09	451422
					55.1	09	67784
bk-2C-B	C10H12BrNO3	FIU_0314	7.58	274.00006	257	4	15844
					178	12	30634
					163.1	32	14816
					162.1	28	30711
					134.1	40	7210
					119	09	10714
					105	44	4845
					91.1	09	6924
					77.1	09	11872
JWH 018 2'-naphthyl-N-(1- methylbutyl) isomer	C24H23NO	FIU_0037	11.71	342.2	272.1	20	61542
					214.1	20	320866
					155.1	24	3961741
					144	40	890806
					127.1	26	2875178
					116	09	408235
					101	09	14966
					89.1	09	90970

					77.1	09	73585
					71.2	32	14648
JWH 250 N-(5-hydroxypentyl) metabolite	C22H25NO3	FIU_0546	10.02	10.02 352.18344	204.1	16	30070
					186.1	12	59991
					144.1	40	22438
					131.1	40	13908
					130.1	44	38757
					121.1	20	509301
					93.1	40	46476
					91.1	26	296378
					69.2	40	16174
					65.1	09	25483
JWH 309	C30H27NO	FIU_0231	12.445	418.2	290.2	20	35097
					220.1	40	16795
					192.1	52	7816
					189	24	4001654
					165.1	09	14172
					155	20	4777497

					127	09	3441735
					101	09	7583
					77.1	09	38110
JWH 398 6-chloronaphthyl isomer	C24H22CINO	FIU_0081	11.91	376.2	214.1	24	603340
					161	52	3533857
					158	36	9891
					149.1	20	10567
					144	40	347931
					130.1	48	9133
					126	09	918657
					116	09	112090
					89.1	09	15544
NNEI	C24H24N2O	FIU_0447	11.05	357.18886	214.2	20	733015
					188.2	16	16676
					158.1	44	10094
					144.1	44	323174
					132.1	28	3926
					130.1	52	7543
					116.1	09	99833

					89.1	09	10298
					71.2	40	6795
					55.2	09	4279
Pravadoline	C23H26N2O3	FIU_0260	9.295	379.2	135	20	4442637
					114.1	36	710049
					107	52	437431
					100.1	26	24517
					92	09	240906
					86.1	48	25525
					84.1	52	76314
					79.1	09	78822
					77.1	09	964849
					70.1	09	249950
PV9	C18H27NO	FIU_0414	8.99	274.20926	168.2	32	227170
					119.1	20	101200
					107.1	20	87006
					105.1	32	191455
					91.1	28	666212
					84.2	40	125960

	٧	٦
ę	_	ŕ
•	ď	j

						77.1	09	314657
						72.2	36	62514
						70.2	20	128781
						55.2	26	56754
6	(R)-(-)-JWH 073 N-(3- hydroxybutyl) metabolite	C23H21NO2	FIU_0511	10.3 34	344.15723	284.1	24	45717
						216.1	24	69693
						158	32	56847
						155	24	1526382
						144	44	41505
						130.1	52	41771
						127	52	1184444
						116	09	20368
						77.1	09	35078
						55.1	25	17162
	(S)-2- Diphenylmethylpyrrolidine	C12H19N	010	7 88	7387	1787	23	88716
			70-01-0	00.7	7.007	T.0.T	7	01
						167.1	20	97389
						165.1	25	95726

					143.1	12	612375
					129	12	206428
					128	32	196308
					117.1	16	1235644
					115	40	353612
					91.1	32	2262178
					65.1	09	673049
2C-P	C13H21NO2	FIU_0174	8.83	224.2	207.1	∞	2370806
					192.1	16	794252
					188.1	∞	1326095
					163.1	28	393182
					149.1	28	102947
					135	24	155614
					105.1	36	205058
					103	48	116322
					91.1	26	235297
					79.1	52	176193
					77.1	09	382344

2-methyl-a- Pyrrolidinopropiophenone	C14H19NO	FIU_0392	8.9	6.8 218.14666	160.1	00	1004880
					147.1	16	261616
					119.1	24	420128
					117.1	36	98367
					98.1	24	434430
					91.1	40	231079
					77.1	09	109283
					70.1	20	47186
					65.1	09	97081
					56.1	09	127391
					55.1	48	53439
3-Methyl-a- Pyrrolidinobutiophenone (HCI)	C15H21NO	FIU_0135	7.26	232.2	174.1	∞	2647797
					161.1	16	973302
					145.1	20	1275444
					133.1	20	426623
					119	28	581551
					112.1	28	829297

					105.1	24	2147103
					91.1	48	985537
					84.1	32	376516
					77.1	09	308484
					70.1	16	331020
					65.1	09	496869
4-acetoxy DMT	C14H18N2O2	FIU_0746	6.1	247.13683	202	12	38949
					160	20	75052
					159.1	4	465959
					142	40	4005
					134	20	2403
					132	36	12099
					131.5	40	1825
					117	48	11952
					115	26	30669
					105	52	3793
					58.1	16	184611
4-Fluoropentylindole	C13H16FN	FIU_0684	10.73	206.12668	186.1	12	5057
					141.2	26	98

-	
1	
N	
$\overline{}$	

				132.2	20	1970
				130	16	12745
				130	16	4013
				118.1	24	2631
				118	20	7318
				91.1	52	5001
				91	44	1834
				81.2	20	96
4-hydroxy DET	C14H20N2O	FIU_0747	5.8 233.15756	160	20	161985
				142	36	9052
				132	32	21432
				117	44	26820
				115	48	94958
				105	40	6792
				68	09	18928
				86.1	12	363422
				77	09	8781
				58.1	40	32609
4-methoxy PV9	C19H29NO2	FIU_0412	9.18 304.21983	233.2	16	431945

					168.2	28	615177
					135.1	96	258873
					T23.T	00	6/0067
					121.1	28	901678
					107.1	52	67556
					84.2	44	178074
					77.1	09	300103
					72.2	36	40816
					69.2	09	64425
					55.2	26	72009
7-APB	C11H13NO	FIU_0424	7.02	176.09971	159.1	4	562444
					131.1	16	700125
					116.1	32	33120
					115.1	48	47814
					103.1	36	41825
					102.7	48	11973
					91.2	32	110412
					77.1	48	218512
					65.2	26	48948
					51.2	09	92417

ADB-PINACA N-(4-hydroxypentyl) metabolite	C19H28N4O3	FIU_0737	9.64	9.64 361.21614	358.1	4	72811
					231.1	20	89654
					213	32	124422
					185	40	2092
					175	36	11360
					171	44	5892
					145	52	54013
					06	09	1827
					69.1	48	44417
AM2201	C24H22FNO	FIU_0163	11.01	360.2	270.1	24	31572
					232.1	24	907050
					163	∞	08929
					144	40	619525
					127	26	4584774
					116	09	269380
					105	40	38314
					88	09	44472
					77.1	09	128925

					69.1	40	44081
AM2201 7-hydroxyindole metabolite	C24H22FNO2	FIU_0631	10.95	376.16346	248.1	28	65361
					160	40	41201
					132.1	26	9005
					127	09	136036
					104	09	17978
					77.1	09	2802
					69.1	44	3169
AM2201 8-quinolinyl carboxamide	C23H22FN3O	FIU_0614	11.37	376.17469	232.1	16	302230
					212	40	2669
					199.6	44	53
					180.4	48	74
					171	∞	2743
					158	40	2602
					155.1	24	4550430
					144	44	135298
					116	09	45282
					88	09	4037

					69.1	44	10497
AM2233	C22H23IN2O	FIU_0165	8.38	459.1	362	20	500976
					235.1	28	33379
					230.9	36	380866
					202.9	09	223095
					158	52	32211
					112.1	24	1649095
					98.1	40	2891913
					76.1	09	71428
					70.1	09	394360
					58.1	09	298433
Buphedrone metabolite ((\pm)-Ephedrine stereochemistry)	C11H17NO	FIU_0429	6.31	180.13101	162.1	∞	825436
					133.1	20	183472
					132.1	32	76956
					131.1	16	87394
					104.1	36	33627
					91.1	32	190854
					79.1	36	28177

					77.1	09	54782
					70.1	20	31488
					65.1	09	59518
Desoxypipradrol (hydrochloride)	C18H21N	FIU_0182	8.17	252.2	167.1	20	428612
					165	52	204036
					152	48	156604
					131.1	20	505186
					129.1	28	306158
					128	52	213080
					117.1	24	176782
					115	48	281925
					91.1	36	1770614
					65.1	09	459065
JWH 018 6-hydroxyindole metabolite	C24H23NO2	FIU_0478	10.82	358.17288	230.1	24	67048
					221.7	0	103
					160	40	45661
					155	24	1157306
					132	09	21538

					127	09	885622
					105	09	6881
					77.1	09	20705
JWH 018 N-(3-methylbutyl) isomer	C24H23NO	FIU_0047	11.57	342.2	214.1	20	18863
					158.1	28	2081
					144	40	8185
					127.1	52	99556
					119.1	12	57
					116.1	09	3770
					77.1	09	6074
JWH 081 N-(4-hydroxypentyl) metabolite	C25H25NO3	FIU_0515	10.52	388.18344	230.1	24	77729
					185.1	24	1908398
					157.1	48	552662
					144	36	146817
					142	09	224647
					129	26	21513
					127	09	338286

34358	106689	78971	13823	10554	2750418	1839506	3990	19670	3327	559569	243544	444672	48261	91819	202160	114231	1346056	78358
09	09	40	24	40	24	09	09	09	52	24	16	40	28	44	09	24	24	26
116	114	69.1	268.2	170	155	127	115.1	77.1	57.1	214.1	188.1	144	132.1	130	116	105	91.1	77.1
			396.22491							306.17796								
			12.28							11.16								
			FIU_0524							FIU_0526								
			C28H29NO							C21H23NO								
			JWH 146							JWH 167								

					65.1	09	130593
JWH 200 6-hydroxyindole metabolite	C25H24N2O3	FIU_0532	8.62	401.17869	155	24	461839
					127	09	235000
					114.1	32	134649
					100.1	09	3877
					86.2	26	3976
					84.1	26	13437
					70.1	26	37432
JWH 200 7-hydroxyindole metabolite	C25H24N2O3	FIU_0533	9.85	401.17869	351.1	16	103
					155	24	203327
					127	09	104923
					114.1	28	217002
					102.5	09	160
					100.1	44	5560
					86.1	09	4730
					84.1	26	14248
					70.1	26	40410
					56.1	09	3525

JWH 210 3-ethylnaphthyl							
isomer	C26H27NO	FIU_0071	11.99	370.2	214.1	24	2296544
					183.1	24	5064879
					155.1	40	2408535
					153.1	26	1421332
					144.1	44	1312734
					128.7	09	488880
					128.2	09	289546
					116.1	09	410274
					115.1	09	480211
					77.1	09	306644
LY2183240	C17H17N5O	FIU_0461	10.09	308.14331	280.2	0	310087
					192.2	16	4093
					167.1	16	106535
					165.1	09	12344
					152.1	26	8932
					87.1	12	30449
					72.2	32	146626
					59.2	24	5470
					56.1	09	4204

	MN-18	C23H23N3O	FIU_0728	11.78	358.18411	215	16	293262
						144.9	40	165572
						121.1	48	102
						116.9	09	20923
						06	09	34319
						89.5	09	11458
	Phenylpiracetam	C12H14N2O2	FIU_0766	7.51	219.10553	202	4	62329
						174	œ	107141
						145	20	33287
						129	24	22618
						128	44	6897
						117	36	20935
						115	52	13111
						91	09	19074
						77	09	8740
						55.1	36	5891
10	(S)-(+)-JWH 018 N-(4- hydroxypentyl) metabolite	C24H23NO2	FIU_0473	10.33	358.17288	340.2	16	10864
						284.2	24	15422

					230.1	24	11572
					186.2	12	19319
					155.1	20	837610
					144.1	40	31233
					127.1	26	568140
					116.1	09	11876
					77.2	09	9965
					69.2	40	23042
(S)-(+)-MT-45	C24H32N2	FIU_0325	9.61	349.25655	181.1	24	1348728
					179.1	40	109145
					169.2	16	481881
					167.2	16	110702
					166.1	40	463168
					165.1	09	376021
					153.1	40	54200
					103.1	26	452122
					87.2	32	143251
					77.1	09	148661
2,4,6-Trimethoxyamphetamine C12H19NO3	C12H19NO3	FIU_0280	8.02	226.14	209.1	4	1206523

					181.1	20	500507
					151.1	24	65931
					136	32	83243
					121.1	28	176428
					93.1	52	54798
					91.1	40	144129
					78.1	09	80617
					77.1	09	110784
					65.1	09	104737
2-Amino-1-phenylbutane	C10H15N	FIU_0320	7.19	150.12045	133.1	4	310981
					105	∞	1547
					91.1	16	654486
					65.1	44	215451
					63.1	09	20547
					51.1	09	19569
2C-G	C12H19NO2	FIU_0310	8.57	210.14158	193.1	4	344603
					178.1	12	658131
					163.1	28	284498
					133.1	20	32164

					115.1	25	35114
					105.1	40	50956
					91.1	48	113732
					79.1	44	47953
					77.1	09	62488
					65.1	09	44531
4-bromo-2,5-DMMA	C12H18BrNO2	FIU_0306	8.33	288.05209	257	12	408487
					229	20	204439
					199	32	65880
					178.1	20	215263
					163.1	32	97931
					135.1	40	117116
					105.1	48	114322
					91.1	09	72974
					79.1	09	51580
					77.1	09	104526
4-fluoromethcathinone (4-FMC)	C10H12FNO	FIU_0007	5.89	182.1	164.1	12	1980509
					149	20	1196810
					148	36	642220

					123	20	267291
					103	32	343195
					101	26	154930
					77.1	48	408254
					75.1	09	217329
					58.1	40	62829
					51.1	09	139634
5-methoxy DMT	C13H18N2O	FIU_0015	6.12	219.1	174.1	12	1425105
					159.1	28	435091
					143	32	189080
					131.1	40	347719
					130	52	600002
					115	52	79862
					103.1	09	155994
					78.1	09	80299
					77.1	09	138656
					58.1	12	2605704
AM251	C22H21Cl2IN4O	FIU_0166	11.85	555	454.9	32	1667176
					328	26	268291

					55.1	20	41361
Diethylcathinone	C13H19NO	FIU_0347	6.32	206.14666	133.1	16	186937
					130.1	44	26890
					105.1	24	430105
					103.1	40	47096
					100.1	24	230351
					79.1	40	81874
					77.1	26	231588
					72.1	16	84231
					58.1	32	75245
					51.1	09	62423
JWH 073 6-hydroxyindole metabolite	C23H21NO2	FIU_0503	10.56	344.15723	216.1	24	98395
					213.3	32	107
					160.1	40	64696
					136.9	16	144
					132	09	33652
					127	26	1118593
					105	09	13126
					77.1	09	39530

					57.1	40	7292
JWH 203 3-chlorophenyl isomer	C21H22CINO	FIU_0068	11.43	340.2	339.4	0	8250
					203.4	0	40
					124.9	24	1178
					75	99	93
					57.2	32	720
JWH 203 N-pentanoic acid metabolite	C21H20CINO3	FIU_0537	10.12	10.12 370.11317	218.1	16	77909
					200.1	16	182016
					172.1	32	34683
					156	40	21682
					144	44	23472
					130	09	19993
					125	36	429943
					118	36	7164
					89.1	09	28460
					55.1	26	34506
JWH 210 2-ethylnaphthyl isomer	C26H27NO	FIU_0538	11.64	11.64 370.20926	214.1	24	841275

					183.1	24	1267260
					165.1	44	87040
					1.00	;	0
					165.1	40	173014
					155.1	44	914973
					155.1	44	436246
					153.1	09	288961
					153.1	26	598823
					144.1	44	1089196
					144	44	540680
					141.1	40	623325
					141.1	36	299439
					128.7	09	204759
					128.7	09	103625
					116.1	09	382218
					115.6	09	260556
					115.6	09	177042
					115.2	09	126721
JWH 210 N-pentanoic acid metabolite	C26H25NO3	FIU_0542	10.76	10.76 400.18344	244.1	24	38733
					183.1	28	400033

					155.1	44	107188
					153.9	09	36926
					144	40	36043
					129	09	31922
					127	09	14454
					115.1	09	28572
					83.1	40	9650
					55.1	26	25064
	RCS-4 N-(5-hydroxypentyl) metabolite	C21H23NO3	FIU_0576	14.53 338.16779	321.3	∞	20744
					111.1	20	10109
					97.1	24	17556
					95.1	20	8011
					83.1	24	15315
					81.1	28	8002
					71.1	20	9805
					69.1	36	22008
					57.2	36	20356
					55.2	26	26679
11	2,4-Dimethylethcathinone	C13H19NO	FIU_0346	8.1 206.14666	188.2	∞	795999

_
20

173.1 20 242215	∞	160.3 16 159358	159.1 20 294710	32 385094 35	145.1 24 101115	144.1 40 101386	115.1 60 91814	91.1 56 95586	72.1 12 87081	291 20 270909	276 32 99966	272.1 16 223920	174.1 8 2194709	32	32 32 40	32 32 40 44	32 32 40 44 32 7
17	16	16	15	15	14	14	11	5	7	8.96 428.06444		27	17	17	17	17 16 17 17 17 13	17 16 17 17 13 13 12 12
										FIU_0380 8.							
										. C18H22INO3							
										251-NBOMe 3-methoxy isomer							

					91.1	09	376311
					77.1	09	141918
2C-C	C10H14CINO2	FIU_0143	7.54	216.1	199	∞	987049
					184	16	465013
					174.1	∞	14572
					169	32	260080
					164	20	96218
					103	28	42645
					91	48	130393
					78.1	09	60265
					77.1	48	221729
					65.1	09	70213
					51.1	09	67653
2С-Н	C10H15NO2	FIU_0147	6.55	182.1	150	16	937820
					135	32	451049
					107	40	102394
					105.1	24	170097
					103	32	114571
					91.1	48	97059

					79.1	36	206042
					77.1	25	479482
					51.1	09	155428
2-Methyl-a- pyrrolidinobutiophenone (HCI)	C15H21NO	FIU_0121	7.2	232.2	161.1	16	712959
					133.1	20	303253
					119	28	751316
					112.1	24	1055298
					105.1	24	1401788
					91.1	48	1205154
					84.1	32	223744
					77.1	09	235736
					70.1	44	189210
					65.1	09	540930
3,4-Dimethylmethcathinone (HCI)	C12H17NO	FIU_0123	7.21	192.1	159.1	20	2665048
					158.1	36	1503972
					144	36	705768
					133.1	20	219496

					117.1	48	121135
					115	09	333069
					105.1	32	169940
					91.1	26	336569
					77.1	09	285566
4-Chloroamphetamine	C9H12CIN	FIU_0291	7.82	170.06583	153	4	158378
					125	16	207100
					99.1	48	20840
					6.06	52	2380
					90.1	44	21373
					89.1	48	46112
					75.1	48	3769
					73.1	09	11804
					65.1	52	5733
					63.1	09	24032
4-fluoro-a- Pyrrolidinopentiophenone	C15H20FNO	FIU_0398	7.44	250.15289	179.1	16	228898
					126.1	28	287573
					123	32	197197
					109.1	24	558343

					97.1	48	45289
					95.1	26	252583
					84.1	36	128980
					75.1	09	84285
					72.2	28	45165
					70.1	20	96416
4-Fluoromethcathinone metabolite ((±)-Ephedrine stereochemistry)	C10H14FNO	FIU_0354	6.19	184.10594	166.1	∞	818656
					151.1	20	142427
					135.1	20	115570
					133.1	32	48524
					122	36	16291
					115.1	28	95728
					109.1	36	116852
					83.1	09	48972
					70.1	20	29709
					56.2	36	16915
4-methoxy DMT	C13H18N2O	FIU_0144	11.71	219.1	186.1	4	189442
					174.1	12	765906

					159	28	289512
					143.1	36	99279
					131	40	78350
					130	52	234200
					117	36	121096
					115	52	191205
					91.1	26	91946
					77.1	09	112737
					58.1	12	3365262
4'-Methoxy-a- pyrrolidinopropiophenone (tosylate)	C14H19NO2	FIU_0145	6.53	234.1	163.1	16	1147358
					135.1	24	1348034
					105	36	503713
					103.1	48	248455
					98.1	24	1790794
					91.1	09	237389
					79.1	48	342539
					77.1	09	624919
					56.1	09	440154

					55.1	25	189835
4-methyl-a-Ethyltryptamine	C13H18N2	FIU_0751	7.98	203.147	146	∞	15733
					144	16	161319
					130	48	8537
					129.2	44	6810
					128	26	6728
					115	26	20218
					91	25	15633
					77.1	09	8418
					58.1	20	16352
4'-Methyl-a- pyrrolidinohexanophenone	C17H25NO	FIII 0149	8 49	260.2	374 1	5	63450
	CIVIZONO		0.	7.00.7	1.4.7	77	000
					253	70	67276
					189.1	16	1315960
					140.1	28	1054542
					119	28	892220
					105.1	24	2873232
					91.1	26	1121485
					84.1	40	487725

					77.1	09	344672
					72.1	20	243482
					70.1	20	210572
					65.1	09	421791
5-fluoro PB-22	C23H21FN2O2	FIU_0578	10.62	377.15871	232.1	12	2654377
					212.1	40	21801
					209.1	4	185715
					158.1	40	22853
					144	44	1192067
					130.1	52	19785
					116	09	443248
					89.1	09	42273
					69.1	44	91102
					67.2	09	8837
					61.2	26	15142
5-fluoro PB-22 N-(2- fluoropentyl) isomer	C23H21FN2O2	FIU_0590	10.82	377.15871	232.1	12	574530
					212	40	28610
					176	44	6320
					158	44	6128

					144	48	155674
					130	26	6148
					129.1	09	5787
					116	09	45782
					69.1	48	30593
					67.1	26	3916
5-methoxy DALT	C17H22N2O	FIU_0154	7.02	271.2	174.1	16	2100684
					159	36	696857
					143	40	289793
					131	44	497275
					130	09	904120
					115	09	115652
					110.1	12	3448027
					81.1	32	215470
					79.1	44	163195
					68.1	28	112500
6-1⊤	C11H14N2	FIU_0688	6.57	175.1157	158.1	4	196250
					143.1	28	12674
					130.1	20	80112

					117.1	24	38179
					115.1	52	14362
					103.1	40	9831
					91.1	40	5100
					90.1	52	10716
					89.1	09	13410
					77.1	52	25675
AB-FUBINACA isomer 1	C20H21FN4O2	FIU_0718	10.15	369.16485	352.1	4	58898
					109	52	60489
AM2201 benzimidazole analog	C23H21FN2O	FIU_0457	11.09	361.16379	273.1	24	140896
					233.1	20	226397
					177.1	28	382773
					155.1	32	692290
					145.1	32	201946
					129.1	48	116825
					127.1	09	852792
					117.1	26	41239
					102.1	09	40141
					90.1	09	36387

AM630	C23H25IN2O3	FIU_0167	10.37	505.1	135	24	1615419
					114.1	40	225440
					107	09	151319
					100.1	48	42491
					92	09	28435
					86.1	09	7886
					84.1	09	23231
					79.1	09	17900
					77.1	09	171294
					70.1	09	68974
AM694 N-pentanoic acid metabolite	C20H18INO3	FIU_0699	9.9	448.03314	244	36	7692
					234.1	40	11226
					230.9	24	414779
					220	28	11728
					202.9	09	173851
					200.1	12	12623
					144	26	10121
					104	09	24861
					9/	09	69513

					55.1	09	13929
Buphedrone metabolite ((±)- Pseudoephedrine stereochemistry)	C11H17NO	FIU 0430	6.27	180.13101	162.1	∞	1088855
			7.	1	133.1	2 6	213663
					133.1	70	713003
					132.1	32	98325
					131.1	16	100686
					117.1	52	29999
					104.1	36	45698
					91.1	36	210167
					77.1	09	46459
					70.1	24	34837
					65.1	09	72759
CB-52	C26H43NO3	FIU_0178	11.95	418.3	361.2	12	442484
					224.2	12	122835
					125	24	161615
					123	44	184095
					83.1	32	69180
					81.1	40	48298
					69.1	44	60095

					67.1	09	65929
					58.1	20	2474757
					55.1	09	166212
Dimethocaine	C16H26N2O2	FIU_0432	6.27	279.19943	206.1	16	75459
					160.2	16	92041
					149	12	7976
					142.1	16	496900
					120	24	841008
					98.1	44	25077
					92.1	52	384112
					86.2	32	466953
					65.1	09	384141
					58.2	48	102919
DPT	C16H24N2	FIU_0755	7.42	245.19395	144	24	171262
					128	48	0629
					127	48	22985
					117	40	38226
					114.1	12	341500
					102.1	12	14512

					91	09	28506
					86.1	28	55626
					77	09	15700
					72.1	32	23049
Escaline	C12H19NO3	FIU_0318	6.99	226.13649	181.1	12	137130
					166.1	20	17023
					121.1	20	26900
					103.1	28	20788
					93.1	24	22839
					91.1	36	51623
					78.3	56	11686
					77.1	48	47579
					65.1	09	23350
Etizolam	C17H15CIN4S	FIU_0677	9.55	343.07059	314.1	24	73954
					289.1	24	11811
					279.1	28	5588
					259.1	40	13381
					224.1	48	11313
					223	52	9352

\vdash	
ò	
2	

					210	48	6615
					206.1	24	11288
					191.1	52	1735
					138	40	12639
Eutylone (hydrochloride)	C13H17NO3	FIU_0185	6.7	236.1	218.1	12	1383223
					189.1	20	842136
					188.1	16	1843317
					174	36	756834
					160.1	24	400784
					145.1	40	250103
					116.6	48	279272
					116	26	167123
					86.1	16	323008
					65.1	09	374725
Hydroxy Bupropion	C13H18CINO2	FIU_0761	7.58 2	256.10261	238.1	∞	220908
					167	20	40913
					166.5	20	20295
					139	28	41290
					131	28	31026

					130	09	43493
					115	52	11580
					103	48	25437
					77	09	24691
					55.1	32	13209
JWH 018 benzimidazole analog	C23H22N2O	FIU_0481	11.69	343.17321	273.1	20	368881
					215.1	20	750681
					159.1	28	243050
					155	32	1345243
					155	24	1835622
					147	28	105809
					145	28	515310
					131.1	36	212214
					127	09	1789735
					117	52	107340
					90.1	09	96763
JWH 018 N-(4-oxo-pentyl) metabolite	C24H21NO2	FIU_0483	10.31	356.15723	272.1	20	60913
					228.1	16	29547

					211.6	00	06
					184	16	6896
					155	24	922434
					155	20	2588699
					144	36	61251
					127	26	1541042
					116	09	18891
					85.1	32	246131
					77.1	09	33814
JWH 019 N-(5-fluorohexyl) isomer	C25H24FNO	FIU_0492	11.09	374.18419	354.2	20	119050
					284.2	24	23901
					246.1	24	137610
					226.1	32	31390
					176	36	20211
					155	28	1411279
					144	48	103486
					127	09	1170744
					116	09	46287
					55.1	52	48828

	_	4
	`	ų
1	n	c
	٠	
1	_	

JWH 030 2-naphthoyl isomer	C20H21NO	FIU_0497	11.52 2	292.16231	169.1	28	1262
					164.1	16	198288
					155	16	1700750
					136.1	24	18390
					127	48	1009673
					108	32	34589
					101.1	09	19416
					94	36	97720
					80.1	32	29778
					77.1	09	101277
					66.1	09	43408
JWH 073 5-hydroxyindole metabolite	C23H21NO2	FIU_0502	10.6 3	344.15723	310.7	4	45
					216.1	24	134220
					160	40	89532
					132	09	40736
					127	26	824013
					120.9	20	150
					105.1	09	5121

					77.1	09	26304
					57.2	44	9523
JWH 073 7-hydroxyindole metabolite	C23H21NO2	FIU_0505	10.85	344.15723	216.1	24	291460
					174.1	36	4426
					160	40	258390
					132	26	49055
					127	26	1651577
					104.1	09	102079
					101.1	09	9350
					77.1	09	62160
					57.1	40	19100
JWH 073 N-butanoic acid metabolite	C23H19NO3	FIU_0509	10.1	358.13649	230.1	20	36441
					212	24	12852
					155	24	682790
					144	40	41386
					127	25	478799
					116	09	12998
					87.1	36	22745

					77.1	09	10267
JWH 122 2-methylnaphthyl isomer	C25H25NO	FIU_0061	11.49	356.2	214.2	20	535
					141	44	966
JWH 122 7-methylnaphthyl isomer	C25H25NO	FIU_0065	11.72	356.2	141.1	44	1111
					115	09	630
JWH 122 N-(5-hydroxypentyl) metabolite	C25H25N02	FIU_0521	10.61	372.18853	230.1	28	71118
					227.8	09	129
					223.4	26	144
					169.1	24	1345702
					144	44	94599
					141.1	25	735704
					140.4	25	41798
					115.1	09	263250
					69.2	44	26437
JWH 210 5-ethylnaphthyl isomer	C26H27NO	FIU_0072	11.96	370.2	214.2	24	1244992
					183.1	24	5912549

					155.1	40	2383227
					153.1	26	1658477
					144.1	44	786248
					128.7	09	611379
					128.2	09	363568
					116	09	259945
					115.1	09	649101
					77.1	09	294169
JWH 210 N-(5-hydroxypentyl) metabolite	C26H27NO2	FIU_0541	10.84	386.20418	230.1	28	84540
					183	24	1298232
					155.1	44	317176
					153.9	09	109044
					153	26	243491
					144	48	92372
					129	09	93591
					127.9	09	36917
					115	09	96031
					77.1	09	38162

JWH 250 N-pentanoic acid metabolite	C22H23NO4	FIU_0547	9.93 366.16271	1 200.1	16	29494
				131.1	32	13369
				130.1	40	31165
				121.1	20	513783
				93.1	40	48991
				91.1	26	291466
				83.1	44	11566
				77.1	09	17423
				65.1	09	20063
				55.2	09	42411
N-Phenylacetyl-L-prolylglycine ethyl ester	C17H22N2O4	FIU_0765	8.52 319.15796	5 216	4	280812
				201.1	12	6715
				188.1	12	265785
				91	09	84296
				70.1	24	409046
				65.1	09	6486
PB-22 5-hydroxyisoquinoline isomer	C23H22N2O2	FIU_0601	11.3 359.16813	3 214.1	24	1875489

					174.1	40	117
					158.1	40	28091
					144	44	940990
					130.1	26	19928
					116	09	301147
					89.1	09	32696
					71.2	40	14989
					55.2	09	8188
PB-22 8-hydroxyisoquinoline isomer	C23H22N2O2	FIU_0607	11.3	359.16813	214.1	16	549358
					158	40	7238
					144	44	230136
					130	48	5274
					116	09	74609
					89	09	8750
					71.1	36	4206
					55.1	09	2421
PB-22 N-pentanoic acid metabolite	C23H20N2O4	FIU_0612	9.94	9.94 389.14231	244.1	12	1226669

9977	6109	425898	107190	122565	8807	130835	67042	293916	87330	248551	115271	195068	633622	128743	323753	56424	125628	40688
32	36	40	09	36	09	40	09	09	16	28	20	32	28	40	09	32	20	26
172.1	156.1	144	116	101.1	89.1	83.1	59.1	55.2	189.2	154.2	119.1	105.1	91.1	84.2	77.2	72.2	70.2	55.2
									260.19361									
									8.47									
									FIU_0413									
									C17H25NO									
									C17									
									PV8									

RCS-4 3-methoxy isomer	C21H23NO2	FIU_0086	11.3	322.2	214.1	24	419753
					144	40	363539
					135	24	5293292
					116	09	165554
					107	36	2406541
					92	09	1221544
					79.1	48	222296
					77.1	09	3034318
					64.1	09	193370
					51.1	09	125214
Sildenafil	C22H30N6O4S	FIU_0768	8.69	475.20492	291.1	48	56
					283	44	2094
					100.1	32	6705
					9.66	32	4373
					58.1	52	16295
					26	52	1140
Sildenafil Citrate	C22H30N6O4S	FIU_0769	8.69	475.20492	283.1	44	1906
					100.1	32	6317
					9.66	28	3824

					70.1	26	666
					58.1	48	15123
					56.1	26	1181
URB937	C20H22N2O4	FIU_0273	9.56	355.2	230	∞	330117
					213	24	363074
					187	28	59223
					185	36	41119
					169	40	40962
					157	48	60945
					141	52	77129
					139	26	21273
					128	09	48593
					115	09	52598
XLR11 Degradant	C21H28FNO	FIU_0660	11.09	330.21549	232.1	24	247404
					216.8	40	53
					167.1	26	179
					144	40	117723
					130.1	26	2416
					116.1	09	50927

						89.1	09	9664
						83.1	32	4543
						69.2	40	10825
						55.2	26	8715
	XLR11 N-(4-hydroxypentyl) metabolite	C21H28FNO2	FIU_0664	10.42	346.21041	347.3	0	201476
						248.7	20	66194
						248.1	20	1230020
						210	∞	292584
						144	36	829514
						116	09	238449
						87.1	36	121677
						67.1	48	205737
						59.1	09	137686
						57.1	44	49883
						55.1	26	105980
12	(-)-CP 55,940	С24Н40О3	FIU_0091	11.68	377.3	301.2	4	43476
						233.2	12	58611
						216.1	20	131
						175.1	4	61840

					71.1	20	30646
(±)-JWH 018 N-(3- hydroxypentyl) metabolite	C24H23NO2	FIU_0470	10.58	358.17288	284.1	24	47167
					230.2	24	32699
					174.1	œ	720367
					158.1	32	34602
					155.1	24	965041
					144.1	44	19174
					141.1	32	7420
					130.1	25	23549
					127.1	26	691464
					77.2	09	14360
					59.2	48	7184
1'-Naphthoyl-2-methylindole	C20H15NO	FIU_0681	10.3	286.11536	158.1	20	61936
					130.1	44	16449
					128	26	2163
					127	40	151965
					121.1	16	1677157
					103.1	26	9937

					101	09	4656
					77.1	09	34676
2,3-Dimethylmethcathinone	C12H17NO	FIU_0348	7.58	192.13101	159.1	20	686999
					158.1	32	340794
					144.1	36	181175
					116.8	52	20047
					115.1	26	85202
					105.1	32	32381
					91.1	26	76106
					77.1	09	69453
					58.2	24	28737
25N-NBOMe	C18H22N2O5	FIU_0383	7.98	347.15287	93.1	36	200830
					91.1	52	1330738
					77.1	09	34996
					65.1	09	187609
2C-N	C10H14N2O4	FIU_0155	6.55	227.1	151	16	65265
					137	16	27450
					107	28	14687
					105.1	36	19878

(٥	1
(J	١

					103.1	40	26554
					91	44	66672
					79.1	40	27742
					77.1	26	93303
					65.1	09	60175
2-Ethylamino-1-phenylbutane	C12H19N	FIU_0321	7.43	178.15175	133.1	∞	169511
					105.1	12	3808
					91.1	16	925276
					65.1	26	309318
					63.1	09	24781
					51.1	09	16920
2-Ethylmethcathinone (hydrochloride)	C12H17NO	FIU_0113	7.21	192.1	146.1	16	736520
					145.1	20	1376349
					144.1	36	1432023
					131	28	239164
					130	44	140197
					128	48	139152
					103.1	99	127973

					77.1	09	414584
					58.1	28	71419
2-Fluoroamphetamine (hydrochloride)	C9H12FN	FIU_0114	6.21	154.1	137	4	924895
					109	16	1881739
					89.1	40	46503
					83.1	44	604590
					81.1	48	16666
					75.1	09	13315
					65.1	52	15318
					63.1	26	122396
					59.1	48	94382
					57.1	09	304545
3,4-Dimethylmethcathinone metabolite ((±)-Ephedrine							
stereochemistry)	C12H19NO	FIU_0350	7.78	194.14666	176.1	œ	669818
					161.1	20	99275
					145.1	20	56679
					130.1	28	47662
					129.1	36	33898

					115.1	26	31667
					105.1	32	58958
					91.1	48	27896
					77.1	09	34026
					56.1	28	41907
3,4-Dimethylmethcathinone metabolite ((±)-Pseudoephedrine	C12H10NO	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7	1041466	1,976	α	010702
			;		1, 7, 7, 1	0	715702
					1/4.1	×	/15283
					161.1	24	135654
					145.7	28	55552
					145.1	20	75197
					130.1	28	29990
					129.1	40	45849
					115.1	25	44416
					105.1	32	67546
					91.1	52	41421
					56.2	32	57003

C	7	
•	٦	٠

3-Ethylmethcathinone (HCI)	C13H19NO	FIU_0127	7.33	206.2	178.1	œ	491172
					146	16	4561
					145.1	24	8362
					144.1	36	10491
					131.1	24	835
					77	09	2458
3-Fluoroamphetamine (HCI)	C13H19NO	FIU_0128	6.28	206.2	134.8	20	115
3-lodoamphetamine	C9H12IN	FIU_0288	8.39	262.00144	245	∞	116842
					216.9	16	164042
					213	∞	2310
					183.2	20	1651
					118.1	20	41960
					117.1	40	87754
					115.1	09	29667
					91	09	44327
					90.1	40	114642
					89.1	09	93152
3-methoxy PCP	C18H27NO	FIU_0386	8.67	274.20926	189.1	12	476961

				121.1	28	592000
				91.1	26	255444
				86.1	œ	1047493
				81.1	24	173567
				79.1	52	45930
				78.1	09	100685
				77.1	09	115538
				69.2	26	26960
				65.1	09	94306
4-Bromoamphetamine	C9H12BrN	FIU_0290	8.1 214.01531	348.1	4	27217
				320.1	12	30764
				249	24	28269
				197	00	79688
				169	16	86136
				119.5	20	86
				118.1	20	25826
				117.1	36	37896
				115.1	09	11525
				91.1	09	20024

					90.1	44	31054
					89.1	09	27467
					64.2	09	2641
4-Fluorobuphedrone	C11H14FNO	FIU_0426	6.54	196.10594	150.1	16	179807
					149.1	24	299614
					148	40	165491
					147	16	1620514
					135	32	41709
					119.1	24	2148167
					109.1	28	137909
					101.1	09	44622
					95.1	48	58274
					83.1	26	46606
					75.1	09	89841
4'-Methyl-a- pyrrolidinopropiophenone (HCI)	C14H19NO	FIU_0150	6.83	218.2	117	36	365629
					98.1	28	1597591
					91	44	988360
					77.1	09	434401

					70.1	20	255411
					65.1	09	368092
					56.1	26	518796
					55.1	48	215520
4-Methylbuphedrone	C12H17NO	FIU_0427	7.15 19	192.13101	161.1	∞	186293
					159.1	16	93287
					146.1	16	183068
					145.1	20	356441
					144.1	36	365359
					105.1	24	158574
					91.1	44	76908
					77.1	09	120838
					65.1	09	73948
4-methylethcathinone (4-MEC)	C12H17NO	FIU_0009	7.03	192.1	174.1	∞	2536175
					146.1	16	1030649
					145.1	20	1207627
					144.1	32	1201326
					131.1	28	462798
					130.1	44	381702

					119.1	24	386789
					115	26	209152
					91.1	40	577057
					77.1	09	376686
5-fluoro AB-PINACA N-(4- hydroxypentyl) metabolite	C18H25FN4O3	FIU_0705	8.93	365.19107	222.3	40	71
					174.9	40	2447
					155.1	28	4845629
					152.5	32	89
					144.9	48	16562
					67.1	09	3763
5-fluoro PB-22 4- hydroxyisoquinoline isomer	C23H21FN2O2	FIU_0581	10.8	377.15871	232.1	20	289686
					212	40	2916
					200	28	45
					180.6	09	61
					158	40	2486
					144	44	137719
					116	09	47185

5	₹	t
,	-	
`	=	1
r	Υ	

					88	09	3930
					69.1	48	6086
					61.1	09	1736
5-fluoro PB-22 6- hydroxyisoquinoline isomer	C23H21FN2O2	FIU_0585	10.44	10.44 377.15871	232	20	282512
					212.1	40	3133
					158	40	2264
					144	48	132682
					141.8	09	124
					116	09	50425
					88	09	4592
					69.1	44	10149
					61.1	26	1616
5-fluoro PB-22 N-(4- fluoropentyl) isomer	C23H21FN2O2	FIU_0592	10.64	10.64 377.15871	352	4	64567
					324.1	12	61697
					253	24	59264
					232.1	12	459513
					212.1	36	36483

					176	40	4295
					158	48	4630
					144	44	160238
					130	26	2890
					116	09	57799
					89	09	0929
					69.1	48	27476
					61.1	09	2220
5-Fluoropentyl-3- pyridinoylindole	C19H19FN2O	FIU_0685	9.89	311.14814	235.1	24	11835
					232.2	32	17185
					223.1	28	10462
					205.1	36	5103
					194.1	36	9538
					144.1	44	36103
					116.1	09	22055
					106	28	12614
					80.1	44	14298
					78.1	48	9683
AB-FUBINACA isomer 2	C20H21FN4O2	FIU_0719	9.94	9.94 369.16485	109	48	59051

	≿
	306

Acetildenafil	C25H34N6O3	FIU_0771	8.53	467.26924	297.1	48	24767
					166.1	09	25303
					127.1	36	46811
					112.2	36	28000
					111	32	66049
					97.1	09	22972
					84.1	48	36287
					72.1	48	32613
					70.1	09	34349
					56.1	09	11976
ADBICA N-(4-hydroxypentyl) metabolite	C20H29N3O3	FIU_0695	9.63	360.22089	343.2	4	584215
					315.2	12	5344
					257.1	∞	8459
					230.1	20	602090
					144	36	280196
					116	09	57897
					104.1	4	3889
					88	09	909

					87.1	32	8109
					69.1	44	185100
ADBICA N-pentanoic acid metabolite	C20H27N3O4	FIU_0697	9.52	373.20016	357.1	∞	322095
					329.1	12	7203
					244	20	326262
					172.1	40	2222
					144	40	116045
					116	09	26602
					101	40	30463
					83	44	31052
					59.1	09	19717
					55.1	09	94469
AM1241	C22H22IN3O3	FIU_0161	8.69	504.1	407	20	119512
					275.9	40	86099
					229.9	09	53848
					112.1	28	417591
					98.1	28	3132890
					84.1	09	18049
					81.1	99	18914

					70.1	09	306760
					58.1	09	151378
					55.1	09	21745
AM2201 N-(3-fluoropentyl) isomer	C24H22FNO	FIU_0029	11.23	360.2	232.1	24	894009
					212.1	36	101562
					163.1	∞	34633
					155.1	28	5352422
					144	44	332788
					127.1	26	4564750
					116.1	09	153770
					105	44	20278
					77.1	09	115583
					69.1	48	160157
AM2201 N-(4-fluoropentyl) isomer	C24H22FNO	FIU_0030	11.02	360.2	340.2	20	120647
					284.1	24	83465
					232.1	24	851798
					212.1	36	127795
					144	44	492945

					127.1	09	4729212
					116.1	09	235998
					77.1	09	112815
					69.1	44	08666
AM2201 N-(4-hydroxypentyl) metabolite	C24H22FNO2	FIU_0632	10.15	376.16346	248.1	24	10447
					155	28	170129
					144	40	15849
					127	09	123105
					116	09	3892
					87.1	40	1643
					67.1	48	3631
					59.1	09	2061
AM2232	C24H20N2O	FIU_0164	10.24	353.2	225.1	24	539640
					155	24	718606
					155	20	4192055
					144	48	339634
					129	26	20337
					127	26	3291319

_	
\subset	3
_	1
~	
C	٦

					116	09	230106
					88	09	47582
					82.1	40	24923
					77.1	09	98507
					55.1	09	92567
deschloro-N-ethyl-Ketamine	C14H19NO	FIU_0297	6.97	218.14666	173.1	∞	551118
					145.1	16	432062
					131.1	28	32303
					129.1	24	34373
					117.1	32	58630
					115.1	52	55787
					91.1	36	767639
					77.1	09	75845
					67.1	20	98397
					65.1	09	184741
Diethylcathinone (hydrochloride)	C13H19NO	FIU_0183	90.9	206.2	155	24	2056130
					133	16	946456
					130	40	143864

_	
~	Ī
$\overline{}$	
	,

					105.1	24	2274253
					103.1	40	246885
					100.1	24	1396183
					79.1	40	410062
					77.1	26	1202677
					72.1	16	462075
					58.1	32	401950
					51.1	09	340274
JWH 018 2'-naphthyl-N-(1,2- dimethylpropyl) isomer	C24H23NO	FIU_0036	11.63	342.2	272.1	20	201855
					214.1	20	266516
					155	24	3598355
					144	36	1076583
					127.1	26	2466159
					116	09	420088
					101	09	9991
					89.1	09	82543
					77.1	09	55947
					71.1	32	50244

JWH 018 5-hydroxyindole						
metabolite	C24H23NO2	FIU_0477	10.86 358.17288	230.1	24	97003
				174.1	36	3958
				160	40	65046
				135.2	24	115
				132	26	21901
				127	26	609279
				77.1	09	16508
JWH 018 7-hydroxyindole metabolite	C24H23NO2	FIU_0479	11.08 358.17288	230.6	24	1551
				230.1	24	289567
				160	40	279592
				132	26	39869
				127.1	44	2016
				127	26	1842672
				104.1	09	91869
				77.1	09	46357
JWH 018 8-quinolinyl carboxamide	C23H23N3O	FIU_0480	12 358.18411	340.2	12	5172
				214.1	12	2643200

					171	∞	26241
					158.1	40	35645
					144	40	1171077
					130.1	48	20114
					116	09	360281
					89.1	09	47453
					71.2	40	19174
					55.1	09	10564
JWH 018 N-(1,2- dimethylpropyl) isomer	C24H23NO	FIU_0042	11.43	342.2	272.1	20	383059
					254.1	36	13295
					214.1	20	291346
					155.1	24	4168628
					155	24	1402048
					144	36	1180414
					127.1	26	3084598
					116	09	431380
					89.1	09	90547
					77.1	09	69772
					71.1	32	98689

JWH 019 N-(2-fluorohexyl)							
isomer	C25H24FNO	FIU_0489	11.31	374.18419	246.1	24	368044
					226.1	40	22010
					169.1	52	1322
					155	28	1900413
					144	44	135109
					127	09	1593275
					116	09	45671
					77.1	09	19828
					61.1	09	12212
					55.1	52	61164
JWH 019 N-(6-fluorohexyl) isomer	C25H24FNO	FIU_0494	11.11	374.18419	246.1	24	132803
					155	28	893384
					144	44	87211
					127	26	763832
					116	09	33645
					94.8	40	102
					61.1	25	6728
					55.2	26	20777

JWH 073 N-(2-hydroxybutyl)	COSHOUNDO	בווו טבטפ	10.27	244 15722	1 100	70	17759
	C2311211102		10.37		704.T	t 7	DC / /T
					216.1	24	183504
					144	40	130902
					127	52	1204520
					116	09	50957
					89.1	09	10544
					77.1	09	36919
					73.1	36	17045
					55.1	48	36990
JWH 073 N-(2-methylpropyl) isomer	C23H21NO	FIU_0054	11.28	328.2	155	20	1902
JWH 073 N-(4-hydroxybutyl) metabolite	C23H21NO2	FIU_0507	10.1	344.15723	216.1	24	21941
					205.2	∞	105
					204.2	09	108
					155	24	651464
					144.1	40	38558
					127	26	471078
					116.1	09	16213

					77.1	09	12306
					55.1	48	18474
JWH 122 5-methylnaphthyl isomer	C25H25NO	FIU_0063	11.73	356.2	169	24	1385
					141	40	1351
					115.1	09	870
JWH 145 2-phenyl isomer	C26H25NO	FIU_0523	11.48	368.19361	319.1	4	7246
					287	20	3852
					257	28	3209
					240.2	20	45902
					227	40	3335
					196.9	52	3168
					170	40	40575
					155	20	2204135
					127	52	1544608
					77.1	09	27336
JWH 200 2'-naphthyl isomer	C25H24N2O2	FIU_0067	9.52	385.2	298.2	16	4292
					221	12	69
					155.1	20	195990

					127	09	28906
					114.1	28	72068
					84.1	26	5913
					70.1	09	18366
JWH 210 6-ethylnaphthyl isomer	C26H27NO	FIU_0073	12.01	370.2	214.2	24	1953525
					183.1	28	5373899
					155.1	44	4112413
					144	44	1022318
					140.1	09	1196513
					129.1	09	365496
					128.2	09	216570
					116.1	09	329063
					115.6	09	294456
					77.1	09	126829
JWH 210 7-ethylnaphthyl isomer	C26H27NO	FIU_0074	11.92	370.2	214.1	24	1498231
					183.1	24	6486207
					155.1	44	4399405
					144.1	44	835153

					140.1	09	1438861
					128.7	09	420728
					128.2	09	239839
					116	09	274094
					115.1	09	337574
					77.1	09	136041
JWH 398 7-chloronaphthyl isomer	C24H22CINO	FIU_0082	11.83	376.2	270	28	4304
					214.1	24	422784
					189	24	5322561
					161	52	4131989
					158	36	7402
					144	40	273263
					130	26	8230
					126	09	1097324
					116	09	92140
					89.1	09	13907
JWH 398 N-pentanoic acid metabolite	C24H20CINO3	FIU_0553	10.78	10.78 406.11317	275.9	09	84
					247.1	40	101

					189	28	88924
					161	56	56748
					126	09	7275
					55.2	26	2961
Mephedrone metabolite ((\pm)-Ephedrine stereochemistry)	C11H17NO	FIU_0338	6.99	180.13101	162.1	∞	768126
					147.1	20	144546
					131.1	20	100460
					116.1	28	40766
					115.1	48	49576
					105.1	32	29998
					91.1	28	115468
					77.1	09	38070
					65.1	09	31402
					56.1	28	28849
MN-25-2-methyl derivative	C27H39N3O3	FIU_0446	10.6	454.29914	275.2	20	551216
					190.2	36	30146
					188.2	40	26043
					137.2	36	24367

					114.2	36	987061
					95.2	09	49812
					84.2	09	41499
					81.2	26	144164
					70.2	09	118484
					67.2	09	14254
N,N-DMA	C11H17N	FIU_0309	6.32	164.1361	119.1	∞	239934
					91.1	24	845533
					77	09	7650
					72.2	12	5534
					65.1	52	258856
					63.1	09	20164
					51.1	09	22385
N-ethyl-N-Methylcathinone	C12H17NO	FIU_0335	6.13	192.13101	133.1	16	225851
					130.1	44	12605
					105.1	24	428456
					103.1	40	49636
					86.1	24	253295
					79.1	40	82229

_	
$\overline{}$	7
$^{\circ}$	•
C	

217680	17139	115131	78471	4575	65	82	69	13632	10745	3356067	14923	2083	319	3592	10456	5788	4000	10563
52	16	44	09	24	0	20	09	36	52	00	36	09	09	09	32	32	40	44
77.1	60.2	58.2	51.1	285.1	281.2	249.5	228.3	206.1	205.1	174.1	167.1	155	115.9	78.1	341.1	327.1	313.1	299.1
				354.02761											9.86 491.18208			
				8.33											9.86			
				FIU_0680											FIU_0770			
				C16H12BrN5											C22H30N6O3S2			
				Pyrazolam											Thiosildenafil			

						155.1	20	174405
						100.1	32	14555
						9.66	32	10758
						85.1	36	4206
						70.1	09	4116
						58.1	26	45026
						56.1	09	4768
	XLR11 N-(4-pentenyl) analog	C21H27NO	FIU_0665	11.53 31	310.20926	311.3	0	209681
						212.1	20	411479
						144	40	198994
						130	48	95769
						125.1	20	1601517
						97.1	28	320808
						83.1	20	206324
						69.1	36	232328
						57.2	48	345974
						55.1	44	676564
13	13 (-)-11-nor-9-carboxy-Δ9-THC	C21H28O4	FIU_0089	11.54	345.2	327.2	12	45436

					299.2	20	26249
					193.1	28	11488
					187.1	32	2960
					123	44	5074
					119	32	6641
					105	52	3620
					91.1	09	6413
					79.1	48	4070
					69.1	44	5538
1,4-Dibenzylpiperazine (HCI)	C18H22N2	FIU_0106	7.51	267.2	188.2	00	620951
					176.2	16	93571
					175.1	16	1221085
					146.1	20	69239
					134.1	24	738685
					120.1	20	139521
					118.1	09	46551
					104.1	32	69276
					91.1	36	4171244
					65.1	09	914480

$\overline{}$		
_	ď	
(•	
C	~	

					56.1	32	40208
2-Bromoamphetamine	C9H12BrN	FIU_0281	7.76	214.01531	197	00	93000
					169	16	178864
					118.1	20	7878
					117.1	36	17700
					115.1	09	9729
					91.2	26	14736
					90.1	44	77102
					89.1	09	67356
					64.2	09	7315
					63.1	09	9157
2-Chloroamphetamine	C9H12CIN	FIU_0282	7.52	170.01	153.1	00	156899
					125	16	309933
					115.1	44	4499
					99.1	48	31493
					91.3	44	6099
					90.1	48	33007
					89.1	44	71313
					73.1	09	20150

					65.2	26	15159
					63.1	09	35294
3-Chloroamphetamine	C9H12CIN	FIU_0287	7.76	170.06583	174.1	∞	2550771
					153	4	101647
					125	16	231341
					105.3	20	102
					66	44	20837
					90.1	48	22077
					89.1	44	44883
					75.1	48	3633
					73.1	09	12654
					65.1	48	5414
					63.1	09	24892
3'-fluoro-a-					,	,	
Pyrrolidinopropiophenone	C13H16FNO	FIU_0394	6.17	222.12159	178.1	12	1206753
					151	16	129977
					123	24	349783
					103.1	36	227859
					98.1	28	513166

84.1 36 66 3. hydroxy Phenazepam C15H10BrCIN2O2 FIU_0673 9.56 364.96142 258.1 28 36 3 4 3 6 4 3 6 4 3 6 4 3 6 6 3 6 4 3						95.1	25	94417
77.1 56 70.1 20 70.1 						84.1	36	60404
70.1 20 15 C15H10BrCIN2O2 FIU_0673 9.56 364.96142 258.1 28 C15H10BrCIN2O2 FIU_0673 9.56 364.96142 258.1 28 257.1 36 213 44 210 24 208.2 36 208.1 40 208.1 4						77.1	26	184576
56.1 52 14 51.0 FIU_0673 9.56 364.96142 258.1 28 55.1 52 6 55.1 52 6 55.1 52 6 55.1 52 6 55.1 52 6 55.1 36 55.1 40 55.						70.1	20	194135
55.1 52 6 64.96142 258.1 58 64.96142 258.1 28 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 11 36 25 25 11 36 25 25 11 36 25 25 25 25 25 25 25 25 25 25 25 25 25						56.1	52	147388
C15H10BrCINZOZ FIU_0673 9.56 364.96142 258.1 28 257.1 36 213 44 213 44 210 24 208.2 36 206.1 40 206.1						55.1	52	67358
257.1 36 213 44 210 24 210 24 208.2 36 206.1 40 210.178.1 60 210.133 6.77 192.1 146.1 16 210.283 210 24 210.283 6.77 192.1 40 210.83 141 210.83 127 211 28 51	3-hydroxy Phenazepam	C15H10BrCIN2O2		9.56	364.96142	258.1	28	3609
213 44 210 24 208.2 36 208.2 36 206.1 40 206.1 4						257.1	36	3255
210 24 208.2 36 208.2 36 206.1 40 206.1 40 179.1 56 179.1 60 178.1 60 176.1 8 1441 151 60 144.1 32 127 131 28 551						213	44	3091
208.2 36 208						210	24	1553
206.1 40 179.1 56 179.1 60 178.1 60 176.1 8 141 151 60 151 108 177.1 192.1 146.1 16 108						208.2	36	1214
179.1 56 178.1 60 178.1 60 176.1 8 141 176.1 60 175.1 100 115.1 100 115.1 100 115.1 100 115.1 100 115.1 100 115.1 100						206.1	40	7718
178.1 60 178.1 60 176.1 8 141 176.1 8 141 151 60 151 160 108 1181 18 127 1181 18 127						179.1	26	4059
176.1 8 141 151 60 C12H17NO FIU_0133 6.77 192.1 146.1 16 108 144.1 32 127						178.1	09	4398
C12H17NO FIU_0133 6.77 192.1 146.1 16 108 144.1 32 127						176.1	∞	1413195
C12H17NO FIU_0133 6.77 192.1 146.1 16 16 144.1 32 131 28						151	09	3279
32	3-Methylethcathinone (hydrochloride)	C12H17NO	FIU_0133	6.77	192.1	146.1	16	1081702
28						144.1	32	1271568
						131	28	517821

					130	44	457786
					119.1	24	360883
					91.1	40	541974
					77.1	09	387880
					65.1	09	300296
4-CAB	C10H14CIN	FIU_0322	8.31	184.08148	188.1	∞	2305526
					167	4	106482
					125	12	285411
					107.1	20	85
					66	48	28500
					06	48	26570
					89.1	52	26607
					75.1	52	4645
					73	09	15538
					65.1	26	5701
					63.1	09	30559
4-Ethylmethcathinone (hydrochloride)	C12H17NO	FIU_0137	7.33	192.1	159.1	20	186543
					146.1	16	762999
					145.1	20	1530849

					144.1	36	1563277
					131.1	28	206958
					130	44	120557
					105.1	28	245244
					103.1	52	145054
					77.1	09	487937
4-hydroxy DiPT	C16H24N2O	FIU_0748	6.48	261.18886	160.1	20	1230835
					142.1	40	60745
					135.1	4	233520
					132.1	36	164998
					117	48	167989
					114.1	12	555085
					105.1	52	48410
					102.1	12	87423
					89.1	09	51912
					77.1	09	36219
					72.2	32	210003
4-methyl-N- Methylbuphedrone	C13H19NO	FIU_0428	7.12	7.12 206.14666	161.1	12	505408
					133.1	16	158480

					119	24	174087
					105.1	20	562910
					91.1	40	260995
					86.1	24	242605
					77.1	09	87857
					71.1	48	108300
					65.1	09	190940
					56.1	09	79852
5-APB (hydrochloride)	C11H13NO	FIU_0152	7.01	176.1	132.1	16	66475
					131	16	1378255
					116	32	99438
					115	48	135102
					103	40	68392
					91.1	32	374196
					77.1	48	416424
					65.1	09	144923
					51.1	09	163102
5-EAPB	C13H17NO	FIU_0419	7.18	204.13101	159.1	œ	708956
					131.1	20	900722

5-fluoro PB-22 3- hydroxyquinoline isomer	C23H21FN2O2	FIU_0580	11.02	377.15871	232.1	20	1882439
					212.1	40	17483
					176.1	40	11809
					158.1	44	16479
					144	44	929363
					130.1	26	14975
					116	09	319989
					89.1	09	30929
					69.1	44	69993
					61.1	09	10396
5-fluoro PB-22 4- hydroxyquinoline isomer	C23H21FN2O2	FIU_0582	10.87	377.15871	232.1	∞	1897728
					212.1	40	17054
					176	40	9731
					158	40	15619
					144	44	888120
					130	52	12541
					116	09	324045
					89.1	09	34703

					69.1	44	74062
					61.1	52	9026
5-fluoro PB-22 5- hydroxyquinoline isomer	C23H21FN2O2	FIU_0584	10.76	377.15871	232.1	20	1809130
					212.1	44	16787
					176	44	10839
					158	40	17693
					144	48	976533
					130	09	15052
					116	09	334482
					89.1	09	30601
					69.1	44	76819
					61.1	09	12076
5-fluoro SDB-005	C23H21FN2O2	FIU_0439	11.23	377.15871	233.1	œ	1251693
					213.1	28	292691
					185.1	32	22057
					177.1	32	110835
					171.1	36	28304
					145.1	44	448148
					121.1	48	16250

					117	09	79467
					90.1	09	122458
					69.2	36	154775
5-Fluoropentylindole	C13H16FN	FIU_0686	10.72	206.12668	233.1	20	236953
					142.2	12	92
					137.6	16	44
					132.1	16	3395
					132	16	12878
					118	20	21692
					118	20	2697
					91.1	48	2746
					91.1	44	11067
					69.1	20	3575
					65.1	09	3595
2-1⊤	C11H14N2	FIU_0687	5.89	175.1157	158.1	4	233062
					143.1	28	14453
					130.1	20	98165
					117.1	24	46424
					115.1	52	14682

	_	•
(٦	ř
	٦	٢

					103.1	40	12302
					91.1	44	5086
					90.1	52	12945
					89.1	09	16807
					77.1	26	31415
5-MAPDB	C12H17NO	FIU_0421	6.33	192.13101	366.1	4	55817
					338.1	12	62083
					161.1	œ	960213
					133.1	24	635520
					117.1	48	27725
					115.1	26	36630
					105.1	36	103195
					103.1	44	59521
					91.1	09	65140
					79.2	40	89541
					77.1	09	188927
					51.2	09	42113
AB-PINACA N-(4- hydroxypentyl) metabolite	C18H26N4O3	FIU_0724	9.2	9.2 347.20049	284.1	20	4799

ι		•
(7	•
(7	

					231	20	25948
					213	28	45745
					174.9	32	3039
					171	44	2165
					144.9	48	17703
					102.8	40	99
					69.1	44	14503
ADB-FUBINACA	C21H23FN4O2	FIU_0732	10.44	383.1805	253	24	53397
					225	40	712
					211.2	28	70
					154.6	36	99
					109	99	53668
ADBICA N-(5-hydroxypentyl) metabolite	C20H29N3O3	FIU_0696	9.63	360.22089	343.1	00	599813
					315.1	12	9915
					230.1	20	690910
					144	44	293888
					130	52	3493
					116	09	74818

					88	09	7235
					87.1	36	4688
					69.1	44	96537
					67.1	26	4104
ADB-PINACA pentanoic acid metabolite	C19H26N4O4	FIU_0739	9.51	375.19541	330.1	12	69957
					284.1	16	737394
					245	24	30480
					227	36	23476
					217.1	32	39583
					199	48	5377
					185	48	3804
					175	52	6631
					145	09	11949
					55.1	09	17335
AH 7921	C16H22Cl2N2O	FIU_0671	8.51	329.11092	202	20	100510
					190	24	195101
					173	32	641453
					145	09	293644
					109	09	47317

					95.2	32	369619
					93.1	26	31944
					67.2	09	206759
					55.2	09	109266
AKB48	C21H31N3O	FIU_0158	12.94	342.3	(blank)	(blank)	(blank)
AM1220 azepane isomer	C26H26N2O	FIU_0627	8.9	383.20451	286.1	20	15779
					155	28	125473
					127	09	131479
					112.1	20	839474
					98.1	28	97887
					84.1	26	18887
					81.1	26	14939
					70.1	09	61167
					58.1	09	215786
					55.2	09	25027
AM1248	C26H34N2O	FIU_0162	9.73	391.3	155	24	4618817
					135.1	32	3376107
					112.1	36	1318693
					107.1	09	263159

					98.1	52	1078622
					93.1	09	391400
					81.1	09	112984
					79.1	09	324495
					70.1	09	231906
					67.1	09	119298
					58.1	09	396787
AM2201 5-hydroxyindole metabolite	C24H22FNO2	FIU_0629		10.26 376.16346	248.1	24	17710
					160	44	12361
					155	28	115739
					132	09	5614
					127	26	97682
AMT	C5H10N2S	FIU_0757	3.98	131.05647	124.5	16	41
					112	12	83
					104	12	2698
					77	16	8437
					72	20	9163
					09	52	25194
					53.1	32	1650

a- Pyrrolidinopentiothiophenone	C13H19NOS	FIU_0408	6.59	238.11873	167.1	12	156888
					126.2	20	810428
					111.1	40	109663
					97.1	24	336963
					84.2	40	124674
					83.6	26	42469
					70.2	16	46047
					69.2	09	108807
					55.8	26	37649
					55.2	48	65152
Benzedrone	C17H19NO	FIU_0343	8.71	254.14666	236.1	œ	142434
					162.1	12	11638
					146.1	12	63950
					144.1	12	8925
					131.1	24	6432
					119.1	24	13124
					91.1	20	1209268
					65.1	09	345750

_	
\subset	
=	i
_	4
a	٦

					63.1	09	13133
					51.1	09	6527
bk-DMBDB (hydrochloride)	C13H17NO3	FIU_0170	6.46	236.1	191.1	12	1389419
					163	16	638643
					161	16	1482770
					149	24	1017098
					121	40	496318
					105.1	32	494796
					86.1	24	2124511
					77.1	09	372129
					71.1	52	677383
					65.1	26	1016942
CMP	C10H17N	FIU_0303	7.03	152.1361	155	24	4289659
					121.1	œ	52041
					93.1	12	84915
					91.1	28	23268
					79.1	20	289089
					77.1	36	262848
					65.1	26	8519

					58.2	∞	489652
					55.1	24	13917
					53.1	26	13086
					51.1	09	132741
Diclazepam	C16H12Cl2N2O	FIU_0676	9.98	319.03267	256.1	24	1554
					227.1	32	13124
					205.1	44	3994
					165.1	09	5018
					155	24	2894192
					154	32	14542
					125	26	5629
					118.1	09	2725
					117.1	48	3278
					91.1	52	2821
					58.1	36	3030
FDU-PB-22	C26H18FNO2	FIU_0593	11.43	396.13216	224.1	28	6092
					109	40	723015
					106.4	99	98
					83.1	09	20354

Harmaline	C13H14N2O	FIU_0186	7.26	215.1	200.1	24	1124468
					174.1	24	1154314
					172.1	32	1180156
					171.1	44	808670
					159	32	267578
					157.1	44	217445
					143.1	44	143862
					131.1	44	491377
					130	26	501056
					68.1	24	277321
HU-210	C25H38O3	FIU_0187	12.14	387.3	261.1	12	44036
					243.1	16	96186
					201.1	24	35670
					147	20	10741
					133.1	24	16865
					123	28	10340
					105.1	26	10650
					85.1	24	72769
					71.1	24	158553

					57.1	28	104560
JW 618	C17H14F6N2O2	FIU_0443	10.13	393.09595	373.1	36	24136
					197.1	44	126781
					183.8	48	7457
					183.1	48	60025
					181.1	09	14660
					170.3	44	24900
					169.1	44	092989
					155.1	09	67743
					154.1	09	110466
					141.1	09	12087
JWH 018 2'-naphthyl-N-(2-methylbutyl) isomer	C24H23NO	FIU_0039	11.73	342.2	214.1	24	551061
					155	20	38635
					144	40	555355
					130.1	26	6344
					127	26	3485598
					116	09	211698
					101.1	09	18963
					89.1	09	41824

					77.1	09	106649
					71.1	36	46570
JWH 018 2'-naphthyl-N-(3- methylbutyl) isomer	C24H23NO	FIU_0040	11.74	342.2	214.1	24	458478
					158.1	36	50092
					144	40	247990
					130.1	48	30177
					127	26	2328641
					116	09	101936
					89.1	09	19311
					77.1	09	79788
					71.2	36	14399
JWH 018 N-(1-ethylpropyl) isomer	C24H23NO	FIU_0482	11.28	342.17796	272.1	20	206130
					272.1	20	83125
					254.1	40	13422
					254.1	40	5639
					214.1	20	402340
					214.1	20	152939
					155.1	24	381314

					155	24	2155201
					144	36	1298335
					144	36	558080
					127	26	1658579
					116	09	551772
					116	09	236169
					89.1	09	125729
					89.1	09	49949
					77.1	09	98264
					77.1	09	39847
					71.1	32	19865
					71.1	32	6198
JWH 018 N-(2-methylbutyl) isomer	C24H23NO	FIU_0046	11.53	342.2	214.2	20	5474
					155	24	1606321
					144.1	36	5198
					127	99	34781
JWH 019 N-(6-hydroxyhexyl) metabolite	C25H25NO2	FIU_0495	10.53	10.53 372.18853	244.1	28	35101
					238.9	48	198

					207.9	44	125
					155	20	1245939
					144	48	40651
					127	09	860916
					116.1	09	17289
					77.1	09	9426
					55.1	26	32369
JWH 071	C21H17NO	FIU_0499	10.67	300.13101	172.1	20	426098
					157.1	40	10195
					144	44	134235
					129	26	22301
					127.1	48	1476597
					116	09	115658
					101.1	09	29869
					89.1	09	48266
					77.1	09	154180
JWH 081 4-hydroxynaphthyl metabolite	C24H23NO2	FIU_0514	11.11	358.17288	214.1	24	269636
					188.1	20	40299

					171	24	1642061
					144.1	40	162541
					143	48	618568
					132.1	32	10449
					118	40	5594
					115.9	09	67210
					115	09	743543
					89.1	09	22114
JWH 122 N-(4-hydroxypentyl) metabolite	C25H25N02	FIU_0520	10.65	372.18853	354.2	16	17483
					298.1	24	29841
					230.1	24	45751
					229.1	4	37350
					212.1	28	10644
					173.1	∞	8802
					169.1	24	1823193
					144	40	106982
					141.1	25	1027290
					115.9	09	32254

					115.1	09	340781
					85.2	16	25633
					69.1	40	66305
JWH 133	С22Н32О	FIU_0522	11.11	313.24532	205.1	4	1250
					181.2	48	123
					149	∞	2097
					91	48	4136
JWH 147	C27H27NO	FIU_0218	12.18	382.2	333	∞	3008
					254.1	20	34243
					226.9	40	1340
					170	44	29961
					155	20	5029637
					142	52	8601
					127	26	3626908
					115.1	09	12122
					101	09	11221
					77.1	09	60434
JWH 149	C26H27NO	FIU_0525	11.83	370.20926	243.4	48	107
					228.1	24	468716

					169.1	28	2673026
					158.1	44	283943
					141.1	52	1804444
					130.1	09	92031
					115	09	658829
					103.1	09	22656
					91	09	11309
JWH 203 N-(4-hydroxypentyl) metabolite	C21H22CINO2	FIU_0535	10.26	356.13391	338.2	16	25992
					282	20	30445
					204.1	16	42172
					186.1	16	430745
					170.1	48	17383
					144.1	44	23626
					130.1	24	79701
					125	32	619379
					89.1	09	51486
					69.1	40	35670

-	_
`	7
L	4

JWH 210 N-(4-hydroxypentyl) metabolite	C26H27NO2	FIU_0540		10.87 386.20418	230.1	24	63232
					183.1	24	1892839
					155.1	44	486182
					153	26	393758
					144	40	136724
					129.1	09	150146
					128.2	09	59583
					115	09	150287
					77.1	09	56364
					69.1	44	77445
JWH 398 3-chloronaphthyl isomer	C24H22CINO	FIU_0079	11.96	376.2	214.1	24	262038
					189	28	2917443
					161	52	2289818
					158	36	5018
					144	44	196136
					130	26	5222
					126	09	601245

					116	09	65883
					88	09	9554
JWH 398 5-chloronaphthyl isomer	C24H22CINO	FIU_0080	11.97	376.2	270.1	36	3702
					214.1	24	361956
					189	24	4063660
					161	48	3199653
					158.1	36	7012
					144	44	254584
					130	48	7288
					126	09	756038
					116	09	83352
					89.1	09	12689
JWH 398 8-chloronaphthyl isomer	C24H22CINO	FIU_0083	11.31	376.2	340.2	24	38331
					270.1	36	34681
					214.1	28	238945
					189	28	4586007
					161	25	3373594
					146.1	∞	1429267

					144	40	211135
					131	20	816522
					130.1	26	7816
					126	09	925642
					116	09	77163
					89.1	09	12016
MDAI (hydrochloride)	C10H11NO2	FIU_0243	11.782	178.1	131	20	277158
					103	32	354760
					77.1	52	293751
					51.1	09	106209
Methedrone	C11H15N02	FIU_0010	6.32	194.1	176.1	œ	2593400
					161.1	20	1379942
					146	32	858946
					145.5	28	246777
					135.1	20	242611
					118.1	44	454903
					91.1	26	391925
					79.1	40	173533
					77.1	26	417317

					58.1	12	471655
MN-25	C26H37N3O3	FIU_0445	10.2	440.28349	353.3	28	78423
					261.2	24	267191
					217.1	36	48978
					176.1	36	71369
					174.1	40	47701
					137.2	36	39758
					114.1	40	504852
					95.2	52	66498
					81.2	09	186610
					70.2	09	68648
Naphyrone 1-naphthyl isomer	C19H23NO	FIU_0084	8.31	282.2	211.1	16	634288
					169	24	145025
					155	28	490281
					141.1	28	776045
					126.1	24	769882
					115	09	200937
					84.1	48	180376
					70.1	20	65982

					55.1	09	76564
N-methyl-2-AI	C10H13N	FIU_0317	5.98	148.1048	117.1	16	745779
					115.1	32	329754
					91.1	36	304108
					89.1	26	34377
					77.1	48	11083
					75.1	09	4363
					65.1	26	153680
					63.1	09	37007
					51.1	09	30733
Nor-Mephedrone (hydrochloride)	C10H13NO	FIU_0254	6.61	164.1	147.1	∞	201264
					130	36	687326
					119	16	207010
					103	52	110042
					91.1	36	150947
					77.1	09	301147
					65.1	26	103942
					51.1	09	81411

PB-22 6-hydroxyquinoline							
isomer	C23H22N2O2	FIU_0604	11.31	359.16813	214.1	24	411246
					158	40	6410
					144	44	199712
					130	26	4401
					126.7	09	65
					116	09	61074
					88	09	6384
					71.1	44	3062
Pentedrone (hydrochloride)	C12H17NO	FIU_0256	7:057	192.1	161.1	∞	510846
					144	32	430191
					132.1	16	772372
					130	40	459333
					117	32	336023
					91.1	28	1014627
					77.1	09	656771
					65.1	09	301127
					51.1	09	266623
UR-144 Degradant N-pentanoic acid metabolite	C21H27NO3	FIU_0646	10.48	342.19909	244.1	20	57216

						176.5	16	89
						144	36	23063
						116.1	09	8985
						101.1	36	6142
						83.1	36	7757
						59.1	26	4559
						55.1	26	23410
	Yangonin	C15H14O4	FIU_0465	9.95 259	259.08921	231.2	12	78628
						171.1	24	49168
						161.1	20	137944
						139.1	09	36375
						133.1	36	66535
						128.1	52	41466
						115.1	09	24714
						90.1	09	25123
						77.1	09	33963
						69.1	48	37128
14	(±)-CP 47,497	C21H34O2	FIU_0097	11.67	319.3	301.2	4	24031
						233.1	12	28527

	г	`
	1	֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֡֡֡֜֜֜֜
	ר	7
	1	7,7

					226.9	28	1494
					197.1	40	1428
					133	52	5222
					121	32	11495
					107	24	14007
					85.2	16	8095
					77.1	09	6563
					71.1	20	14290
					57.1	36	10199
(±)-JWH 018 N-(2- hydroxynentyl) metabolite	C24H23ND2	FIU 0469	10.63	358,17288	284.1	28	21416
					254.1	09	4621
					230.1	24	101702
					144.1	44	91478
					127.1	26	817309
					116.1	09	35208
					89.1	09	4593
					77.1	09	17714
					69.2	40	5432

C	ı	(
		ŕ	
7		,	

2,3-Dimethylethcathinone	C13H19NO	FIU_0345	7.83	206.14666	173.1	20	232208
					163.1	∞	558776
					160.2	16	148676
					158.8	20	268980
					158.1	32	367489
					145.1	24	90686
					144.1	36	101749
					115.1	09	89230
					91.1	26	85830
					77.1	09	71684
2,3- methylenedioxymethcathinone	C11H13NO3	FIU_0109	11.65	208.1	190.1	œ	430283
					160	12	2882810
					147	16	279464
					132.1	28	1466222
					117	40	633380
					91.1	40	420629
					77.1	26	222660
					65.1	09	497039

					58.1	36	115650
2-Fluoroethcathinone (hydrochloride)	C11H14FNO	FIU_0115	11.66	196.1	178.1	12	1092910
					151.1	œ	199124
					149.7	16	546160
					149.6	20	457069
					148	36	353858
					135	32	279012
					123.1	16	183850
					123	24	209992
					115	32	89959
					103	32	228837
					77.1	52	320695
					75.1	09	135381
2-methylmethcathinone	C11H15NO	FIU_0120	11.66	178.1	151.1	œ	211745
					145.1	20	722045
					144.1	32	511387
					130.1	32	55545
					119	20	74660
					103	48	55344

•	-	•
	3	5
		7

					91.1	40	107801
					77.1	09	166297
					65.1	26	73074
					58.1	32	31495
3,4-DHMA	C10H15N02	FIU_0305	4.27	182.11028	133.1	20	18576
					123	20	151527
					105.1	24	42300
					103	36	11144
					79.1	32	21121
					77.1	44	76833
					65.1	44	7688
					58.2	∞	5874
					51.1	09	58179
3-Fluoroethcathinone (HCl)	C11H14FNO	FIU_0129	11.65	196.1	150	16	892141
					149.6	20	467320
					135	32	410172
					123	24	203519
					108	52	95938
					103	32	252893

					95	48	95259
					77.1	52	320637
					75	09	149438
3-Fluoromethamphetamine (hydrochloride)	C10H14FN	FIU_0130	11.65	168.1	137	∞	805811
					109	20	2680962
					88	48	76510
					83.1	48	969544
					81	09	16842
					75.1	09	16683
					63.1	09	197604
					59.1	52	143123
					58.1	12	97914
					57.1	09	398762
4-MTA	C10H15NS	FIU_0294	7.76	182.09252	165.1	4	462929
					159.1	4	1653592
					137	20	126330
					137	20	126152
					122	40	45522

					122	36	43631
					121	26	38656
					121	25	32766
					118.2	20	38467
					118.1	20	39402
					117.1	16	154489
					117.1	16	152897
					115.1	48	55193
					115.1	44	55333
					91.1	26	84746
					91.1	52	89665
					78.1	26	23063
					78.1	52	25419
					65.1	09	32902
					65.1	09	31975
5-APDB	C11H15NO	FIU_0418	6.35	178.11536	161.1	∞	533807
					133.1	20	324650
					115.1	48	18506
					105.1	32	52434

					103.1	40	28649
					91.1	52	33821
					79.2	40	46977
					77.1	52	93973
					65.2	09	17851
					51.2	09	31531
5-fluoro ADB-PINACA	C19H27FN4O2	FIU_0707	10.31	363.2118	233.1	24	129299
					213	36	36452
					177	40	16380
					171	48	3884
					145	52	68238
					117	09	7985
					06	09	8331
					69.1	44	19585
5-fluoro MN-18	C23H22FN3O	FIU_0709	11.19	376.17469	233	16	292485
					213	28	81304
					185	32	5540
					177	32	28956
					171	40	7161

					93.1	09	50742
					91	09	7116
					81.1	09	14845
					79.1	09	45566
					77.1	09	8398
					69.1	09	4909
					67.1	09	18195
					55.1	09	6684
AB-CHMINACA	C20H28N4O2	FIU_0714	10.98	357.22123	352.1	4	83982
					340.1	4	104201
					324.1	12	94885
					312.1	12	98202
					253	28	82248
					241	28	115482
					144.9	48	69296
					116.9	09	4689
					97	44	7288
					06	09	1171
					69.1	26	3621

					55.1	09	35886
AB-PINACA N-(4-fluoropentyl) isomer	C18H25FN4O2	FIU_0723	9.99	349.19615	332.1	4	58625
					330.1	4	46751
					302.1	12	54078
					284.1	16	5199
					233	24	64428
					213	36	16674
					177	40	5870
					145	48	27110
					117	09	4245
					06	09	6314
					69.1	44	10836
ADB-PINACA isomer 2	C19H28N4O2	FIU_0735	10.88	345.22123	328.1	4	207429
					300.1	12	247452
					232.1	20	15493
					215.1	24	286784
					145	48	167539
					117	09	17974
					06	09	21948

					71.1	48	2332
AKB48 N-(4-hydroxypentyl) metabolite	C23H31N3O2	FIU_0741	11.31	382.24163	135	24	310963
					107	26	27265
					93	09	43090
					91	09	7644
					81.1	09	12013
					79	09	35986
					77	09	7698
					69.1	09	4118
					67.1	09	15021
					55.1	09	6471
AM2201 2'-naphthyl isomer	C24H22FNO	FIU_0027	11.17	360.2	232.1	24	463477
					163	œ	9356
					144	44	330566
					127	26	2216269
					116	09	146060
					105.1	40	5199
					89	09	24115

					77.1	09	53409
					69.1	44	27086
AM2201 6-hydroxyindole metabolite	C24H22FNO2	FIU_0630	10.27	376.16346	248.1	24	14665
					160	44	7817
					155.1	24	173975
					155	28	148864
					132	09	4293
					127	26	144520
					114.6	28	61
					77.1	09	2585
AM694	C20H19FINO	FIU_0169	10.66	436.1	309.1	20	515345
					292.1	32	119869
					234.1	32	327306
					232.1	36	206578
					230.9	28	3116193
					202.9	26	1565046
					144	26	150562
					104.9	09	89457
					104	09	216463

AM/694 3-iodo isomer C20HJ9FINO FIU_0031 11.24 436.1 232.2 28 487829 100.2 230.9 28 2194949 202.9 28 2194949 100.2 202.9 52 1261167 48 53916 10559 116167 100.2 202.9 22 1261167 48 53916 10559 105559 10559 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>76.1</th><th>09</th><th>805764</th></t<>						76.1	09	805764
230.9 28 2 202.9 52 11 144 48 148 48 130 60 115 60 116 60 105.2 56	AM694 3-iodo isomer	C20H19FINO	FIU_0031	11.24	436.1	232.2	32	48782
202.9 52 1 144 48 130 60 116 60 116 60 105.2 56 106.2 56 107.0 60						230.9	28	2194949
144 48 130 60 130 60 116 60 116 60 105.2 56 105.						202.9	52	1261167
130 60 116 60 105.2 56 106.2 56 107.2 60 108.2 60 109.1 48 109.1 48 109.1 12 109.1 12 109.1 109 109.1 109 109.1 109						144	48	53916
116 60 105.2 56 104 60 104 60 76.1 60 76.1 60 69.1 48 241.1 8 240.1 12 2 240.1 12 2 158.1 40 160 178.1 40 178.1 40 178.1 40 178.1 40 178.1 40						130	09	10259
105.2 56 105.2 56 104 60 76.1 60 76.1 60 69.1 48 69.1 48 241.1 8 241.1 8 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 40 116 60						116	09	17989
104 60 76.1 60 76.1 60 69.1 48 69.1 48 69.1 48 76.1 60 69.1 48 76.1 60						105.2	26	11374
76.1 60 C25H24N2O2 FIU_0615 11.48 385.18378 386.4 0 241.1 8 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 2 240.1 12 40 240.1 12 40 240.1 12 40 240.1 12 40 240.1 12 40 240.1 12 40 240.1 12 40 240.1 12 60						104	09	67662
69.1 48 C25H24N2O2 FIU_0615 11.48 385.18378 386.4 0 241.1 8 240.1 12 2 240.1 12 2 158.1 40 116 60 97.1 40						76.1	09	680805
C25H24N2O2 FIU_0615 11.48 385.18378 386.4 0 241.1 8 240.1 12 2 240.1 12 2 158.1 40 116 60 97.1 40						69.1	48	4334
40 40 60 60 60	BB-22	C25H24N2O2	FIU_0615	11.48	385.18378	386.4	0	7263
40 60 60 60 60						241.1	œ	5833
40 60 60 60						240.1	12	2845950
60 40 60						158.1	40	10635
60						144	44	1073268
60						116	09	180879
09						97.1	40	147856
						89.1	09	12550

C25H24N2O2
C25H24N2O2

					69.1	52	18503
					55.1	09	178525
BB-22 7-hydroxyisoquinoline isomer	C25H24N2O2	FIU_0624	11.56	385.18378	253.4	4	63
					240.2	24	280690
					156.4	09	65
					144	44	141992
					116	09	22255
					97.1	40	19553
					69.1	52	11222
					55.1	09	114145
bk-MDDMA (hydrochloride)	C12H15NO3	FIU_0171	11.75	222.1	177	12	497035
					149	20	540536
					147	20	1146862
					119	28	445349
					91.1	40	956948
					72.1	20	2079145
					70.1	52	111698
					65.1	09	793312

_	
Г	`

79344	82914	105095	4064	29015	5148	4998	3657	3774	3690	9192	7308	346061	630695	5282	224307	670223	6168	196515
32	26	16	40	36	48	52	09	09	28	09	09	12	16	4	12	24	4	40
58.1	57.1	193.2	137.1	123.1	95.1	81.1	79.1	77.1	69.2	67.2	55.2	387.3	347.3	287.2	221.1	181.1	175.1	111
		317.24023										404.3						
		11.27										11.71						
		FIU_0467										FIU_0177						
		C21H32O2										C25H41NO3						
		Cannabigerol										CB-25						

					83.1	28	92248
					71.1	36	113438
					69.1	40	94246
					58.1	24	2605479
					55.1	26	215424
HU-211	С25Н38О3	FIU_0188	12.12	387.3	261.1	12	49403
					243.1	16	129988
					201.1	24	42624
					147	20	11084
					133.1	24	17500
					105.1	52	12872
					95.1	20	13170
					85.1	24	91828
					71.1	24	175373
					57.1	36	117221
HU-311	C21H28O3	FIU_0190	11.73	329.2	314.2	12	11011
JW 642	C21H20F6N2O3	FIU_0444	10.87	463.13781	183.1	28	1162802
					168.1	09	138467
					165.1	26	137652

				155.1	48	129893
				155	24	4095481
				153.9	09	64958
				129.1	09	59785
				127.7	09	24063
				127.1	09	32187
				115.1	09	49317
				77.1	09	34529
JWH 016	C24H23NO	FIU_0196 11.439	342.2	214.1	24	531989
				158	40	317344
				155	24	1909915
				130.1	26	113829
				127	26	3720079
				103.1	09	42839
				101	09	26994
				77.1	09	154113
				57.1	44	31665
				51	09	6351

JWH 018 2'-naphthyl-N-(1,1-dimethylpropyl) isomer	C24H23NO	FIU_0035	11.59	342.2	144	36	1885405
					120.7	16	101
					116	09	691057
					101.1	09	5201
					89.1	09	136667
					77.1	09	27431
					71.1	32	60124
JWH 018 2'-naphthyl-N-(2,2- dimethylpropyl) isomer	C24H23NO	FIU_0038	11.65	342.2	272.1	24	20828
					214.1	24	512814
					155.1	28	581873
					144	36	652737
					127	26	3266340
					116	09	231221
					101	09	16327
					89.1	09	41230
					77.1	09	89445
					71.1	36	59576

JWH 018 N-(1-ethylpropyl) isomer	C24H23NO	FIU_0043	11.39	342.2	155	24	4929262
					127	26	3847552
JWH 018 N-(2,2- dimethylpropyl) isomer	C24H23NO	FIU_0045	11.43	342.2	214.2	24	4490
					155	24	108778
					144	32	0629
					127.1	26	36813
					116.1	09	2330
					77	09	1577
JWH 073 4-hydroxyindole metabolite	C23H21NO2	FIU_0501	11.25	344.15723	216.1	24	170177
					160	40	110347
					132.1	48	20566
					127	09	399774
					104.1	09	53011
					77.1	09	14907
					57.2	44	11146
JWH 073 4-methylnaphthyl analog	C24H23NO	FIU_0212	11.61	342.2	200.1	24	694343
					169	24	2523920

158 36 12256	155 24 1365619	144 40 411867	141 48 1687110	116.1 60 154476	115 60 923228	91.1 60 22355	89.1 60 32394	57.1 44 48839	214.1 24 1640497	185 24 3247995	36	36 36	36 1 36 1 40 9	36 36 1 36 40 9	36 1 36 1 40 9 52 44 13	36 13 36 1 36 1 52 52 60 13	36 13 36 14 40 9 52 52 60 13
				11		O)	ω	п)	372.2		15	115	15	13	13	133	1
									11.66								
									FIU_0056								
									C25H25NO2								
									JWH 081 3-methoxynaphthyl								
									JWH 081 3-n								

∞	
$^{\circ}$	

185.1 170 170 171 172 178 178 178 178 178 178 178 178 178 178	214.1	28 635460
C25H25NO2 FIU_0060 11.36 372.2	185.1	24 5748473
C25H25NO2 FIU_0060 11.36 372.2	185	24 2122887
1.1 C25H25NO2 FIU_0060 11.36 372.2	170	44 76497
1. C25H25NO2 FIU_0060 11.36 372.2	157	40 1304054
1. C25H25NO2 FIU_0060 11.36 372.2	144	44 490156
1. C25H25NO2 FIU_0060 11.36 372.2	142	60 69563
C25H25NO2 FIU_0060 11.36 372.2	129	48 885170
C25H25NO2 FIU_0060 11.36 372.2	128.5	60 1190426
C25H25NO2 FIU_0060 11.36 372.2	127	60 2758699
C25H25NO2 FIU_0060 11.36 372.2	116	60 181210
170	185	16 5080778
155	170	48 2856931
	155	48 60649
142	142	60 241953
141	141	40 112625
129	129	44 226009
127.7	127.7	60 206652

					127	09	592046
					115.1	09	54893
					114	09	437505
JWH 116	C26H27NO	FIU_0519	11.81	370.20926	242.2	24	222632
					172.1	40	128704
					157	26	14423
					155	28	2809704
					144.1	26	31195
					129.1	09	20172
					127.1	09	2328859
					124.6	26	150
					117.1	09	10398
					77.1	09	34622
JWH 210 2-ethylnaphthyl isomer	C26H27NO	FIU_0070	11.67	370.2	214.1	24	1724013
					183.1	24	2635884
JWH 210 8-ethylnaphthyl isomer	C26H27NO	FIU_0075	11.68	370.2	214.2	24	590695
					183.1	24	2452270
					165.1	36	407856

					155.1	44	1493220
					153.1	09	385078
					144.1	44	365853
					141.1	44	110114
					140.1	09	448160
					128.7	09	135692
					127.1	09	145653
JWH 307 5'-isomer	C26H24FNO	FIU_0548	11.33	386.18419	258.1	24	62268
					258.1	24	33273
					188.1	40	33942
					188	40	54009
					160	26	13896
					155.1	20	1703780
					140.9	44	111
					133	09	29733
					133	09	10846
					127.1	09	1223076
					101	09	18979
					77.1	09	104656

					77.1	09	17375
					75.1	09	3554
					51.1	09	5986
JWH 398 N-(4-hydroxypentyl) metabolite	C24H22CINO2	FIU_0551	10.9	392.13391	374.1	16	10095
					318.1	28	14989
					254.2	26	4877
					243.2	09	109
					189	24	660972
					186.1	12	20003
					161	26	407534
					144.1	44	12916
					126	09	61783
					69.1	40	14061
LY2183240 2'-isomer	C17H17N5O	FIU_0462	10.38	308.14331	192.1	16	5876
					167.1	16	141147
					165.1	09	16540
					152.1	99	12037
					87.1	12	42396

					72.2	36	183659
					59.2	20	7404
					56.1	09	5844
MAM2201 N-(4-hydroxypentyl) metabolite	C25H24FNO2	FIU_0640		10.45 390.17911	248.1	24	19106
					169.1	24	171349
					144	40	23459
					141.1	52	97499
					117.6	44	29
					115	09	27474
					87.1	40	2348
					67.1	44	4512
					59.1	09	2865
MAM2201 N-(5-chloropentyl) analog-d5	C25H19D5CINO	FIU_0642	11.38	11.38 395.18603	253.1	28	25431
					252	28	13307
					170	32	35394
					169.1	28	122216
					149.1	48	12245

					148.1	48	6692
					142.2	26	19661
					141.1	26	88035
					115.1	09	22900
					69.2	44	8188
MDA 77	C21H23N3O3	FIU_0242	11.78	366.2	355	∞	41
					337.1	12	85104
					207.3	48	110
					175	20	26462
					161	∞	456167
					119	16	21653
					105	20	5186463
					77.1	09	3741867
					51.1	09	161475
MDMA methylene homolog (hydrochloride)	C12H17NO2	FIU_0244	7.19	208.1	180	16	1054437
					177	12	241215
					147.1	16	237407
					135	20	1816798
					119.1	20	142294

			1	ŀ
	r	Š	7	
	v	•	١	
1	r	١	ſ	1

					105	40	108255
					91.1	36	184690
					79.1	36	185885
					77.1	48	798463
					55.1	28	79055
					51.1	09	625342
Methylphenidate	C14H19NO2	FIU_0758	7.15	234.14158	174.1	24	4008
					134.6	12	56
					129	40	3527
					128	26	3188
					115	26	2897
					91	09	7695
					84.1	16	370067
					67.1	26	5769
					65.1	09	2959
					56.1	26	78057
NM2201	C24H22FNO2	FIU_0635	11.35	376.16346	232.1	∞	165033
					179.7	20	99
					144	44	63532

					116	09	23804
					89.1	09	2949
					69.1	44	6403
NNEI 2'-naphthyl isomer	C24H24N2O	FIU_0448	11.35	357.18886	214.2	20	549904
					188.2	12	12488
					158.1	40	8189
					144.1	44	250574
					132.1	32	2227
					130.1	48	5579
					116.1	09	81782
					89.2	09	8571
					71.2	44	4211
					55.1	09	2750
Norsufentanil	C16H24N2O2	FIU_0255	7.841	277.2	245.1	∞	319177
					128.1	∞	1196540
					96.1	20	1657435
					94.1	40	150409
					81.1	48	172662
					80.1	09	118942

					77.1	09	98955
					69.2	40	84199
					68.1	48	108879
					67.1	44	260507
PB-22 4-hydroxyisoquinoline isomer	C23H22N2O2	FIU_0599	11.39	359.16813	214.1	16	2225963
					158	36	29863
					144	40	964732
					130.1	48	16363
					116	09	319712
					89.1	09	35401
					71.2	40	16900
					55.1	09	9593
(-)-CP 47,497	C21H34O2	FIU_0090	11.67	319.3	133	52	5390
					121	32	7826
					107	24	13752
					85.1	12	6450
					77.1	09	3998
					71.1	12	13494

<u></u>	
∞	
ന	

					57.1	20	9928
(+)-CP 55,940	C24H40O3	FIU_0093	11.68	377.3	211.3	12	104
					201.8	48	111
					149.1	12	2256
(±)3-epi CP 47,497-C8-homolog	С22Н36О2	FIU_0559	12.38	333.27153	257	20	1476
					227	28	1550
					199.3	44	106
					196.9	40	1519
					167	09	1339
					124.3	20	93
					71.2	12	5630
					57.2	20	2896
(±)5-epi CP 55,940	С24Н40О3	FIU_0096	11.67	377.3	359.3	0	14939
					233.1	4	6903
					219.3	∞	119
					215.1	12	6483
					158.2	09	147
					121.1	20	4204
					93.1	36	2085

((
()	(

389

1215109	20 2	151					
239844	20	164.1					
3108697	00	179.1	210.1	11.66	FIU_0122	C12H19NO2	3,4- Dimethoxymethamphetamine (HCI)
33380	09	51.1					
36873	09	63.1					
129437	52	65.1					
3350	09	74					
3814	09	75.1					
11406	44	77.1					
26626	48	89.1					
250680	32	91.1					
263781	24	115.1					
691352	12	117	134.1	11.66	FIU_0111	C9H11N	2-AI (HCI)
70798	28	56.1					
187981	09	57.1					
95812	09	59.1					
113071	09	63.1					
7712	09	81.1					

Ċ	7	۰
2	:	

181366	122021	150430	274328	295370	591332	167026	1194804	2267557	689317	1498141	785534	416705	394286	1697208	485438	317090	847141
20	24	32	40	40	09	09	16	∞	20	20	32	28	48	28	40	36	09
138.1	136	121	107	91.1	77.1	65.1	191	188.1	163.1	161	149	133	121	112.1	105.1	84.1	65.1
							262.2										
							6.65										
							FIU_0124										
							C15H19NO3										
							3',4'-Methylenedioxy-a- pyrrolidinobutiophenone (HCI)										

3-Ethylethcathinone (HCI)	C13H19NO	FIU_0126	11.65	206.2	160.1	16	940937
					159.1	20	1472649
					144.1	32	1749084
					131.7	20	382214
					130	44	353936
					117	36	179114
					105.1	32	347628
					91.1	26	208802
					77.1	09	519681
3-Methoxymethcathinone (hydrochloride)	C11H15NO2	FIU_0132	11.65	194.1	161.1	20	959356
					146	28	456167
					145.6	24	156949
					133.1	28	127138
					132.1	36	248485
					118	40	212382
					91.1	26	226803
					79.1	36	73823
					77.1	26	218110
4-APB	C11H13NO	FIU_0416	7.13 1	176.09971	131.1	16	408457

					129.1	24	14969
					116.1	32	22590
					115.1	48	38812
					103.1	36	18883
					91.1	32	96922
					77.2	48	109322
					65.2	09	40052
					51.2	09	43175
4-Bromomethcathinone	C10H12BrNO	FIU_0353	7.52 2	242.01023	145.1	16	467160
					144.1	40	289388
					132.1	20	29385
					131.1	48	19805
					128.1	09	21744
					104.1	40	19868
					103.1	26	31340
					78.2	09	25106
					77.1	09	46914
					58.2	09	8656
4-FA (4-fluoroamphetamine)	C9H12FN	FIU_0139	6.26	154.1	137	4	762528

					109	16	986151
					101.1	48	4093
					89.1	40	25518
					83	44	314664
					81	52	5921
					75.1	09	13231
					63.1	09	67353
					59.1	48	51592
					57.1	09	154673
4-Fluoromethamphetamine (hydrochloride)	C10H14FN	FIU_0142	11.69	168.1	137	∞	1278139
					109	20	2314861
					101	26	6381
					89.1	48	63120
					83	52	735154
					81	09	11987
					75.1	09	20924
					63.1	09	151872
					59.1	26	113028

					57.1	09	313974
4-Hydroxyamphetamine	C9H13NO	FIU_0292	7.82	152.09971	110.3	32	66
					107.1	16	189502
					91.1	44	7007
					79.1	32	18793
					77.1	40	76831
					65.1	09	8147
					55.1	48	8408
					53.2	52	4617
					51.1	26	28604
5-fluoro PB-22 7- hydroxyquinoline isomer	C23H21FN2O2	FIU_0588	10.66	377.15871	232.1	20	399667
					223.1	20	55
					212	40	3831
					158	40	3726
					144	44	187525
					130	26	3272
					116	09	63500
					88	09	6219
					69.1	48	13519

					61.1	09	2532
5-fluoro-THJ	C22H21FN4O	FIU_0711	11.56	377.16994	359.1	20	93066
					213.1	28	89616
					177	36	38771
					171	40	11608
					145	44	160772
					117	09	27113
					06	09	34529
					89.2	09	14289
					69.1	36	44434
5-IAI (hydrochloride)	C9H10IN	FIU_0153	11.72	260	242.9	12	124229
					159.5	48	91
					154.8	16	105
					116	28	327950
					115	26	262746
					88	09	10210
A-834735 degradant	C22H29NO2	FIU_0690	10.9	340.21983	242.1	20	1383090
					144	44	121338
					125	24	38316

					1 00	22	508813
					1.66	25	200013
					83.1	32	31822
					81.1	44	156458
					79.1	09	52332
					69.1	48	301286
					57.1	44	115133
					55.1	26	117964
AB-FUBINACA 2-fluorobenzyl isomer	C20H21FN4O2	FIU_0716	10.26	369.16485	109	09	74428
ADBICA	C20H29N3O2	FIU_0694	10.89	344.22598	327.1	4	294416
					299.2	12	8506
					214.1	20	366724
					158	40	4458
					144	44	136230
					130	52	3416
					121.1	28	74
					116	09	44077
					89	09	5325
AM1235	C24H21FN2O3	FIU_0160	11.16	405.2	277.1	24	436955
					231.1	40	42921

				172	26	12444
				155	28	694010
				144.1	56	8474
				143	56	208191
				127	09	562877
				115	09	15184
				69.1	40	39604
AM2201 N-(2-fluoropentyl) C24H22FNO FIL	FIU_0028	11.19	360.2	232.1	24	996175
				212.1	40	65149
				163.1	∞	55708
				155	28 1	1542918
				144	44	343227
				127	56 4	4007228
				116	09	134909
				105	40	29289
				77.1	09	115888
				69.1	44	74493
AM694 4-iodo isomer C20H19FINO FIL	FIU_0032	11.23	436.1	232.2	28	35373

					230.9	28	1773251
					202.9	26	832575
					144	26	37593
					130.1	09	4162
					116	09	12023
					104	09	177754
					76.1	09	457749
					75	09	1955
					50.1	09	11667
BB-22 3-carboxyindole metabolite	C16H19NO2	FIU_0616	10.9	10.9 258.14158	214.1	12	4904
					176	16	4751
					169.4	12	81
					158.1	12	56
					132	16	6106
					118	24	9732
					97.1	20	3226
					91	52	3165
					69.1	28	1686
					55.1	36	15064

isomer	C25H24N2O2	FIU_0625	11.61	385.18378	240.2	20	391274
					144	44	140304
					138.8	28	54
					116	09	22713
					97.1	40	23426
					69.2	25	12572
					55.1	09	127830
Cannabipiperidiethanone	C24H28N2O2	FIU_0247	8.336	377.2	280.1	16	232019
					229.1	16	571388
					144	40	86872
					121	24	1420122
					112.1	24	2979710
					98.1	40	1866851
					93.1	48	141629
					91.1	09	1054701
					70.1	09	576499
					58.1	09	697418
CP 47,497-C6-homolog	С20Н32О2	FIU_0566	14.52	305.24023	329.3	4	5428
					219.1	16	4943

5884	2547	3268	2973	316370	490294	6194	148115	13406	24279	11983	20287	23499	22820	7398	15306	10761	3868	24245
∞	20	12	20	4	16	48	44	26	09	12	16	12	16	16	26	24	52	28
175.1	107	71.2	57.1	119.1	91.1	77.1	65.1	63.1	51.1	271.1	229.1	215.1	151	133.1	91.1	85.1	79.1	71.2
				136.1048						415.3								
				6.37						11.74								
				FIU_0296						FIU_0189								
				C9H13N						C27H42O3								
				D-Amphetamine						HU-308								

7	_
C	Ξ
ē	7

					57.1	36	16073
JP104	C25H30N2O3	FIU_0192	10.878	407.2	390.2	4	38459
					212.1	∞	33233
					197	24	278416
					171.1	32	119934
					169.1	48	35209
					153	52	151802
					141.1	09	61728
					95.1	16	13345
1WH 007	C25H25NO	FIU_0193	11.73	356.2	228.1	24	449889
					158	40	303826
					144	44	3043
					130	09	08986
					127	26	3494643
					103.1	09	27864
					101	09	13402
					77.1	09	83629
					70.5	48	268
JWH 015	C23H21NO	FIU_0195 11.172	11.172	328.2	200.1	20	777955

					158	40	420150
					155	24	2581326
					130	26	189386
					128.2	09	21653
					127	48	4510605
					103	09	83019
					101	09	52107
					77.1	09	318626
					51.1	09	13237
JWH 018 2'-naphthyl isomer	C24H23NO	FIU_0034	11.75	342.2	272.1	16	2685647
					214.1	24	328459
					158	36	7347
					155	28	2429736
					144	40	206154
					130.1	52	5848
					127	09	1943403
					127	09	1515840
					116	09	88552
					101	09	8898

(٦
(

					89.1	09	16793
					77.1	09	50271
JWH 018 N-(1-methylbutyl) isomer	C24H23NO	FIU_0044	11.49	342.2	272.1	20	9613
					217	28	187
					214.1	20	30114
					155.1	24	39037
					144.1	36	76873
					127	48	277031
					116	09	32010
					101	09	2203
					89.1	09	9212
					77.1	09	11114
JWH 019 N-(3-fluorohexyl) isomer	C25H24FNO	FIU_0490	11.34	374.18419	246.1	24	101003
					241.2	48	311
					235.3	32	115
					234	44	96
					155	28	639768
					144	44	38027

	_	
	◹	
1	\subset	
	⇉	

					128.9	09	009
					127	09	556165
					116.1	09	15061
					55.1	26	35903
JWH 073 2-methylnaphthyl analog	C24H23NO	FIU_0211	11.37	342.2	200.1	24	2120190
					158	36	48654
					144	40	1439879
					141	44	2964161
					130.1	48	36665
					116.1	09	560384
					115	09	1398875
					89.1	09	117601
					57.1	44	171175
JWH 073 2'-naphthyl-N-(1- methylpropyl) isomer	C23H21NO	FIU_0050	11.44	328.2	155	28	450081
					127	52	1987
JWH 073 N-(1-methylpropyl) isomer	C23H21NO	FIU_0053	11.24	328.2	144.1	32	755
					127	48	2336

JWH 080	C24H23NO2	FIU_0513	11.35	358.17288	200.1	24	509551
					185.1	24	1681297
					157.1	44	656393
					144	44	305867
					142	26	269199
					128.2	09	165048
					127.1	09	468608
					116	09	121793
					114	09	217204
					57.2	48	32943
JWH 081	C25H25N02	FIU_0213	11.76	372.2	214.1	24	1254254
					185	28	4107559
					157	48	1494001
					144	44	762692
					142	09	674803
					129.2	26	59356
					128.1	09	348682
					127	09	970491
					116	09	222687

					114	09	391649
JWH 081 2-methoxynaphthyl	C25H25N02	FIU_0055	11.32	372.2	214.1	24	151975
					185.1	20	5629250
					170	48	687030
					155	48	29741
					144	44	126069
					142	26	1906954
					129	44	326360
					127	09	773441
					116	09	58571
					114	09	790815
JWH 081 6-methoxynaphthyl	C25H25NO2	FIU_0058	11.6	372.2	214.1	24	1625473
					157	44	1782476
					144	44	808030
					142	09	1017151
					129.2	26	27994
					128	09	179017
					127	09	154957

					116	09	237373
					114	09	157876
JWH 081 N-pentanoic acid metabolite	C25H23NO4	FIU_0517	10.42	402.16271	244.1	24	46305
					185.1	28	424044
					157.1	48	135914
					144	40	46203
					142	09	55310
					128.1	09	27248
					127	09	80740
					114.1	09	18875
					83.1	44	11446
					55.1	56	28615
JWH 122 3-methylnaphthyl isomer	C25H25NO	FIU_0062	11.77	356.2	169.1	20	2175
					141.1	44	1524
JWH 176	C25H24	FIU_0527	11.12	325.1878	268.1	20	8116
					255.2	12	50942
					254	16	11872
					253.1	40	18508

					240.2	40	8304
					239.1	26	10220
					218.7	∞	100
					141	36	12363
					117	24	3150
					115	09	6072
JWH 203 4-chlorophenyl isomer	C21H22CINO	FIU_0069	11.47	340.2	124.9	28	2654
JWH 250 5-hydroxyindole metabolite	C22H25NO3	FIU_0544	10.63	352.18344	216.1	24	29318
					204.1	16	44666
					160	40	42613
					146	44	29781
					131	40	23001
					121	20	573349
					93.1	36	52252
					91.1	09	326959
					77.1	09	20797
					65.1	09	25626
JWH 309 5'-isomer	C30H27NO	FIU_0549	11.81	11.81 418.20926	290.1	24	83642

					220.1	44	40195
					192.1	26	5214
					165.1	09	15594
					155	24	1635180
					127	09	1138691
					77.1	09	7997
JWH 398 2-chloronaphthyl isomer	C24H22CINO	FIU_0078	11.39	376.2	214.1	24	231019
					189	28	4982582
					161	26	3251333
					158	36	6216
					144	40	217358
					130	26	9879
					126	09	1124469
					116	09	83838
					106.1	24	9821
					89.1	09	13033
JWH 398 N-(5-hydroxypentyl) metabolite	C24H22CINO2	FIU_0552	10.87	10.87 392.13391	236.9	16	104

					230.2	28	7004
					189	20	465236
					161	52	267650
					144.1	48	11857
					126.1	09	41737
					69.1	44	4461
Ketazolam	C20H17CIN2O3	FIU_0239	10.29	369.1	285.1	12	280998
					257	32	16837
					241	52	8974
					228	36	14853
					222.1	40	22339
					193.1	48	43350
					180	40	7040
					154	40	40360
					105	32	8669
					91.1	26	13109
MAM2201 N-(2-fluoropentyl) isomer	C25H24FNO	FIU_0637	11.33	374.18419	232.1	24	71184
					212.1	44	5095
					169.1	24	233041

					144	48	22486
					141.1	48	161427
					115.9	09	8297
					115.1	09	60736
					69.1	44	5184
MAM2201 N-(5-chloropentyl) analog	C25H24CINO	FIU_0641	11.39	390.15464	248.1	24	43010
					212.1	40	2622
					169.1	28	174982
					144	48	25179
					141.1	26	115194
					116.1	09	7616
					115.1	09	33935
					69.1	40	8541
MDA 19	C21H23N3O2	FIU_0241	11.96	350.2	322.2	00	15488
					321.2	12	17301
					105	16	4002871
					77.1	09	2858803
					51.1	09	146489
Methoxetamine	C15H21NO2	FIU_0246	7.104	248.2	175.1	16	1256161

					159	24	205586
					121	28	1834341
					115	09	143861
					91.1	26	785339
					78.1	09	322780
					77.1	09	399226
					67.1	24	526201
					65.1	09	335234
Mitragynine	C23H30N2O4	FIU_0251	8.04	399.2	367.2	20	467367
					238.1	24	1026914
					226.1	24	1137626
					174.1	36	2745239
					159	26	1035371
					143.6	26	178496
					129	36	373236
					117	09	301729
					110.1	36	663958
					75.1	26	403343
PB-22 3-hydroxyquinoline isomer	C23H22N2O2	FIU_0598	11.57	359.16813	214.1	20	3192364

					158.1	36	40789
					144	44	1346827
					131.1	40	142
					130.1	26	29738
					116	09	427352
					89.1	09	51329
					71.2	40	22734
					55.1	09	11832
PB-22 N-(5-hydroxypentyl) metabolite	C23H22N2O3	FIU_0610	10.05 37	375.16304	230.1	∞	857722
					197.8	26	89
					144	44	393476
					130.1	40	4500
					116	09	100226
					89.1	09	8081
					87.1	36	6747
					69.1	44	117910
					67.1	52	5102
					57.1	52	3751
Pentylone (hydrochloride)	C13H17NO3	FIU_0257	7.182	236.1	218.1	∞	1222013

188.1 16 1722198	175 20 737605	160.1 24 353181	159 32 238298	135 24 346013	131.1 40 605366	86.1 16 491089	77.1 60 258434	65.1 60 373987	588 301.3 4 209	256.9 16 1614	226.9 28 1377	197 36 1552	194.8 56 99	167 52 1286	319.3 233.2 16 5304	175.1 4 6556	133.1 52 11635	
									FIU_0555 14.55 319.25588						FIU_0092 11.67 319			
									C21H34O2						C21H34O2			
									16 (-)-CP 47,497						(+)-CP 47,497			

					107.1	28	3166
					107	28	29911
					85.1	16	15021
					77.1	09	11302
					57.1	24	21782
(±)3-epi CP 47,497-C8-homolog	С22Н36О2	FIU_0095	11.68	333.3	193.1	0	17115
					175.1	4	12820
					141.1	4	30894
					107.1	24	45118
					107.1	20	6758
					85.1	12	42672
					81.1	36	7221
					79.1	09	9103
					77.1	09	8900
					57.1	20	48600
(±)-CP 55,940	C24H40O3	FIU_0099	11.67	377.3	359.3	0	11115
					233.1	∞	4667
					219.1	24	112
					215.3	12	4306

					175.1	4	181028
					149	20	1142
					121	16	5476
					106	26	264
					79.1	48	1847
					71.2	24	3674
					57.1	44	2241
(±)-epi CP 47,497	C21H34O2	FIU_0100	11.67	319.3	287	∞	2296
					257.1	16	2093
					226.9	28	1874
					197	40	1993
					193.1	0	30928
					175.1	4	9216
					127.1	4	60202
					107	28	3488
					107	20	71808
					85.1	12	27086
					81.1	28	10222
					79.1	09	14131

					77.1	09	14460
					71.2	16	5251
					71.1	12	104540
					57.2	24	3800
					57.1	20	68024
(±)-UR-144 N-(4- hydroxypentyl) metabolite	C21H29NO2	FIU_0644	10.79	328.21983	310.3	16	6376
					230.2	20	6965
					144.1	36	10728
					130.1	52	2681
					125.1	20	202233
					97.1	32	24631
					83.1	32	10543
					69.1	40	26954
					57.2	48	28668
					55.1	48	26750
(S)-(+)-JWH 073 N-(3- hydroxybutyl) metabolite	C23H21NO2	FIU_0512	10.31	344.15723	284.1	24	47787
					216.1	24	74270

					158	32	55357
					155.1	24	1562802
					144	44	36078
					141	24	10495
					130.1	48	47487
					127	26	1188832
					77.1	09	35611
					55.2	52	17134
1-(p-Fluorophenyl) piperazine (HCl)	C10H13FN2	FIU_0105	11.65	181.1	179.1	16	82769
					138	20	832868
					136	28	175034
					110.1	32	62902
					109	40	106281
					96	44	102483
					95	48	142506
					91.1	36	106754
					83.1	25	112263
					75.1	09	235458
2,3-MDMA	C11H15NO2	FIU_0359	6.82	6.82 194.11028	135	16	490752

					133.1	16	127405
					105.1	24	276094
					103.1	40	62415
					79.1	36	149327
					77.1	48	322564
					65.1	52	21005
					58.2	16	21083
					51.1	09	175635
2C-D	C11H17NO2	FIU_0104	N/A	196.1	179.1	∞	2288847
					164.1	16	913337
					149	28	465147
					119	20	169923
					117	24	160816
					115	32	124114
					103.1	44	59413
					91.1	40	462609
					77.1	26	359642
					65.1	09	181139
2-Ethylethcathinone (hydrochloride)	C13H19NO	FIU_0112	11.66	206.2	160.1	12	542020

					159.1	16	863271
					144.1	32	1027195
					132.1	20	219652
					131	24	167422
					130.1	44	210817
					128	44	117071
					91.1	09	129534
					77.1	09	269153
2-Fluoroisocathinone	C9H10FNO	FIU_0330	5.09	168.07464	135	24	4109
					113	40	65
					103.1	24	156217
					97.1	36	3077
					95	48	4765
					77.1	40	158993
					75.1	09	15704
					51.1	09	70381
2-Fluoromethamphetamine (hydrochloride)	C10H14FN	FIU_0116	11.66	168.1	137.1	∞	750768
					115	40	9398

					6	,	077777
					TOB	10	74/1668
					89.1	48	74142
					83.1	48	842629
					81.1	09	24256
					65.1	09	21162
					63.1	09	181237
					59.1	52	136619
					57.1	09	384207
2-Methoxyamphetamine	C10H15NO	FIU_0284	7.19 1	166.11536	149.1	4	544004
					121.1	16	593311
					115.1	40	19178
					93.1	20	45978
					91.1	28	368652
					78.2	48	52770
					77.1	36	47385
					65.2	48	180614
					63.2	09	19293
					51.2	09	26662
3-Methylmethcathinone (hydrochloride)	C11H15NO2	FIU_0134	11.65	194.1	177	0	2631

					59.1	12	2363
4-Ethylethcathinone (hydrochloride)	C13H19NO	FIU_0136	11.65	206.2	160.1	16	838944
					159.1	20	1315599
					144.1	32	1419213
					130	44	280770
					117	32	179624
					115	09	224469
					105.1	32	354534
					91.1	26	209305
					77.1	09	448597
4-Fluoroethcathinone (hydrochloride)	C11H14FNO	FIU_0140	11.63	196.1	178.1	12	2304538
					149.7	16	1223699
					149.6	20	966491
					148	36	780187
					135	28	526489
					123	24	369768
					115	32	171261
					103	36	442324

					77.1	52	563787
					75	09	224247
4-MTA	C10H15NS	FIU_0295	7.76	182.09252	165.1	4	473458
5-chloro AB-PINACA	C18H25CIN4O2	FIU_0702	10.34	365.1666	348.1	4	843149
					320.1	12	1045490
					249	24	783163
					213.1	36	355339
					193	40	33221
					171	48	43639
					145	48	393527
					117	09	52354
					06	09	58269
					69.1	48	138929
5-fluoro AB-PINACA	C18H25FN4O2	FIU_0704	9.93	349.19615	346.2	4	136707
					332.1	4	180571
					318.2	12	137353
					233	24	186686
					213	36	49839
					177	40	18735

					144.9	48	92353
					!		
					127	09	103
					117	09	13273
					06	09	9513
					69.1	40	26330
5-fluoro NNEI 2'-naphthyl isomer	C24H23FN2O	FIU_0438	10.9	375.17944	232.2	20	510890
					212.2	44	4725
					206.2	16	11018
					158.1	44	4467
					144.1	44	257722
					130	09	4555
					116.1	09	86151
					89.1	09	7960
					69.2	48	19567
					61.2	09	3191
5-methoxy MiPT	C15H22N2O	FIU_0156	6.49	247.2	174.1	16	1800810
					159	32	658412
					143	36	285289
					131.1	44	506709

					130	09	914787
					117.1	26	51664
					115	09	119428
					103	09	125276
					86.1	12	3771516
					77.1	09	87730
AB-PINACA	C18H26N4O2	FIU_0721	10.63	331.20558	314.1	4	96165
					286.1	12	105232
					215	28	128210
					144.9	48	67364
					117	09	8023
					06	09	11346
					88	09	5188
AB-PINACA N-(2-fluoropentyl) isomer	C18H25FN4O2	FIU_0722	10.26	349.19615	332.1	4	45912
					304.1	12	68529
					304.1	12	55983
					233	24	64244
					221.4	20	62
					145	48	24467

ADB-PINACA isomer 3	C19H28N4O2	FIU_0736	10.9	345.22123	344.2	4	153923
					328.2	4	239780
					316.1	12	150944
					300.2	12	223351
					215.1	24	330429
					145	48	178614
					117	09	19663
					06	09	24380
					71.1	44	2710
AKB48 N-(5-hydroxypentyl) metabolite	C23H31N3O2	FIU_0742	11.3	382.24163	135.1	24	355301
					107	26	30633
					93	09	47552
					91	09	7279
					81.1	09	14406
					79	09	41974
					77	09	7750
					69.1	09	4276
					67.1	09	16265

					55.1	09	9669
AM679	C20H20INO	FIU_0168	11.24	418.1	291.1	20	426471
					274.1	28	115007
					234.1	32	260697
					230.9	28	2973420
					214.1	32	173774
					202.9	52	1447955
					144	26	140632
					105.1	09	85309
					104	09	218400
					76.1	09	987934
BB-22 5-hydroxyquinoline isomer	e C25H24N2O2	FIU_0621	11.69 3	385.18378	240.2	20	210609
					144	44	84635
					116.1	09	11958
					97.1	40	12978
					69.1	48	7467
					55.2	09	72538
BB-22 6-hydroxyquinoline isomer	e C25H24N2O2	FIU_0623	11.65 3	385.18378	384.1	∞	1882

					240.2	24	235990
					144	48	110900
					116	09	16835
					97.1	44	15144
					69.1	52	9363
					55.1	09	92413
Buphedrone (hydrochloride)	C11H15NO	FIU_0173	11.73	178.1	132.1	16	429829
					131	24	068099
					130.1	36	455022
					117	28	97297
					103	52	81371
					91	24	369543
					77.1	26	372343
					65.1	26	112158
					51.1	09	178280
Cannabidiolic Acid	C22H30O4	FIU_0466	11.39	359.21441	341.2	∞	138494
					261.2	24	11869
					219.1	32	39872
					149	48	4109

					135.1	52	3856
					109.1	32	3523
					81.1	26	3798
					69.2	44	3921
					67.1	26	4007
					55.2	26	3881
Cannabidol	С21Н30О2	FIU_0175	11.41	315.2	193.1	20	125293
					135.1	16	49031
					123	36	74797
					107.1	28	29702
					93.1	24	50704
					91.1	26	27451
					81.1	40	29657
					77.1	09	38893
					69.1	36	29620
					67.1	09	26974
DiPT	C16H24N2	FIU_0753	7.12	245.19395	144	20	309287
					127.8	48	9431
					127	44	36728

					117	40	59920
					114.1	12	284873
					102.1	12	27627
					91	09	39868
					77.1	09	21887
					72.1	28	50462
					65	09	5835
EAM2201	C26H26FNO	FIU_0634	11.32	388.19984	232.1	28	44179
					183.1	28	144992
					160.1	œ	1887233
					155.1	44	43132
					153.9	09	18501
					144	44	23726
					132.1	16	1119025
					131.1	20	907831
					129.1	09	13014
					128	09	5573
					115.1	09	8554
					108.4	40	61

					77.1	09	5325
Ethcathinone (hydrochloride)	C11H15NO	FIU_0184	11.74	178.1	252.1	∞	839218
					130	32	796041
					117	32	465294
					105.1	24	465129
					103	48	142508
					79.1	40	179079
					77.1	26	689864
					51.1	09	282425
FUB-144	C23H24FNO	FIU_0658	11.33	350.18419	332.2	20	12241
					252.1	20	18632
					208.1	40	4827
					125.1	24	89402
					109.1	48	110712
					97.1	32	14949
					83.1	09	14134
					69.1	36	10200
					57.2	48	16244
					55.1	44	33068

IMMA	C23H23CIN2O4	FIU_0191	10.632	427.1	397.6	∞	99
					340	12	12250
					312.1	16	555767
					277.1	24	3331
					139	28	2351337
					111	09	1084533
					109.8	09	4498
					88.1	20	240661
					75.1	09	60717
					70.1	26	9866
Isopentedrone	C12H17NO	FIU_0336	7.44	192.13101	214.1	12	289064
					174.1	∞	373755
					161.1	∞	371548
					132.1	16	88082
					119.1	16	72124
					117.1	32	13888
					105.1	16	34044
					91.1	24	845878
					77.1	52	29178

					65.1	09	257167
JWH 011	C27H29NO	FIU_0194	12.019	384.2	286.1	20	249426
					256.1	20	178975
					158	36	870935
					155	28	4555479
					155	20	5487416
					130	09	257321
					128.2	09	17946
					127	09	3210086
					103.1	09	62054
					77.1	09	49903
					57.1	48	218834
JWH 018 2'-naphthyl-N-(1-ethylpropyl) isomer	C24H23NO	FIU_0033	11.61	342.2	272.1	20	117170
					214.1	20	332603
					155.1	24	4424907
					155	24	4123852
					144.1	36	1201002
					127	26	3278115
					116	09	537671

					101.1	09	14286
					89.1	09	125795
					77.1	09	86488
					71.2	36	13697
JWH 018 4-hydroxyindole metabolite	C24H23NO2	FIU_0476	11.47	358.17288	230.1	24	224326
					160.1	44	141597
					136.1	20	86
					132.1	26	23863
					127.1	09	534774
					119.1	44	163
					104.1	09	60611
					77.2	09	13686
JWH 018 6-methoxyindole analog	C25H25NO2	FIU_0198	11.57	372.2	244.1	24	263233
					174	40	132347
					159	26	29070
					155	24	5443132
					146	26	55362
					131	09	18367

					127	26	3835770
					119	09	34856
					77.1	09	79865
					73.1	24	2137
JWH 018 N-(1,1- dimethylpropyl) isomer	C24H23NO	FIU_0041	11.39	342.2	254.1	28	21268
					244.1	32	11555
					155.1	28	2726479
					144	32	1585954
					127	09	2405313
					116	09	574236
					89.1	09	121416
					77.1	09	40370
					71.1	32	76660
JWH 019 5-hydroxyindole metabolite	C25H25NO2	FIU_0488	11.12	372.18853	244.2	28	72139
					160.1	44	45091
					155	28	519271
					153.7	36	370
					132	09	16848

					127	26	437691
					77.1	09	6784
JWH 019 N-(4-fluorohexyl) isomer	C25H24FNO	FIU_0491	11.19	374.18419	354.2	20	101853
					284.1	24	41656
					246.1	24	231534
					226.1	32	41555
					155	28	1937388
					144	44	149535
					127	26	1647994
					116	09	62989
					61.1	26	13933
					55.1	25	71557
JWH 031 2'-isomer	C21H23NO	FIU_0498	11.79	306.17796	178.1	20	176562
					155	20	2752284
					155	16	1951093
					150.1	24	44705
					127	48	1152641
					108.1	32	42143
					94.1	36	80856

٢	۰,	۰
ï		
`	_	ď
5	_	Г

					80.1	36	47529
					77.1	09	80591
					66.1	09	45869
					55.1	36	21314
JWH 073 N-(1,1-dimethylethyl) isomer	C23H21NO	FIU_0052	11.23	328.2	272.1	16	1669
					155.1	20	2421
					155	24	2364
					144	32	1288
					126.9	26	1728
JWH 081 7-methoxynaphthyl	C25H25NO2	FIU_0059	11.34	372.2	185	20	4316320
					170	48	2352312
					155	48	43037
					142	09	196452
					141	44	91334
					129	44	200102
					128	09	176903
					127	09	512663
					115.1	09	45727

					114	09	366408
JWH 122 6-methylnaphthyl isomer	C25H25NO	FIU_0064	11.75	356.2	169.1	24	1376
					141.1	40	286
MAM2201	C25H24FNO	FIU_0240	11.262	374.2	232.1	24	1392578
					169	28	5181833
					144	44	955675
					141	52	3555141
					130	48	17112
					116.1	09	342788
					115	09	1394190
					91.1	09	27397
					89.1	09	51675
					69.1	40	67392
MAM2201 N-(3-fluoropentyl) isomer	C25H24FNO	FIU_0638	11.37	374.18419	240.5	12	54
					232.1	24	56398
					212.1	36	0929
					169.1	28	247286
					144	48	20148

					141.1	52	149963
					116	09	8178
					115.1	09	56336
					69.2	48	9073
Meconin	C10H1004	FIU_0245	7.326	195.1	162	20	505497
					151	24	175878
					133.6	28	188824
					105	40	229156
					79.1	24	265361
					78.1	40	175613
					77.1	44	684716
					65.1	26	164058
					51.1	09	300277
Mephedrone metabolite ((±)-Pseudoephedrine							
stereochemistry)	C11H17NO	FIU_0339	6.97	180.13101	162.1	∞	926545
					147.1	20	179253
					131.1	20	108754
					117.1	44	38440
					115.7	32	50051

					115.1	48	60206
					105.1	36	76106
					91.1	32	130880
					77.1	09	53499
					56.2	28	37194
methyl-1-(5-fluoropentyl)-1H- indole-3-Carboxylate	C15H18FNO2	FIU_0691	10.44	10.44 264.13216	232.1	16	182691
					212	12	14638
					144	28	80617
					132	20	35542
					130	40	49536
					117	44	35650
					116	48	33363
					88	09	26384
					77.1	09	15587
					69.1	24	10189
methyl-1-(cyclohexylmethyl)- 1H-indole-3-Carboxylate	C17H21NO2	FIU_0692	11.54	11.54 272.15723	240.1	16	279836
					190	16	174692

					176	16	159668
					144	24	287596
					132	20	75326
					130	36	70111
					117	44	74110
					116	48	83945
					97.1	20	61919
					55.1	36	398673
methyl-1-pentyl-1H-indole-3- Carboxylate	C15H19NO2	FIU_0693	11.16	11.16 246.14158	214.1	12	627235
					190	12	92756
					146.1	16	56859
					144	24	276000
					132	20	92899
					130	36	163052
					117	36	98496
					116	44	97392
					88	09	78764
					77.1	09	66247

Naphyrone (hydrochloride)	C19H23NO	FIU_0253	8.69	282.2	211.1	16	1840801
					155	28	927427
					141	24	3502131
					127	26	692483
					127	52	817886
					115	09	709417
					97.1	26	183118
					84.1	40	553901
					72.1	32	159245
					70.1	20	327611
					55.1	26	206401
PB-22 5-hydroxyquinoline isomer	C23H22N2O2	FIU_0602	11.35	359.16813	214.1	20	2104504
					191.2	28	111
					158	36	27308
					144	44	881828
					130.1	48	18855
					116	09	282413
					89.1	09	31523

					71.2	40	14579
					55.2	09	8309
PB-22 7-hydroxyquinoline isomer	C23H22N2O2	FIU_0606	11.26	359.16813	214.1	16	501342
					158	40	6355
					144	44	210202
					130	48	3891
					126.1	26	55
					116	09	99869
					89	09	7991
					71.1	36	3665
Phenazepam	C15H10BrCIN2O	FIU_0258	9:636	349	242	28	45458
					208.9	32	32583
					207.2	40	21438
					206.1	40	91010
					184	36	83160
					179.1	26	84484
					130	52	22823
					125	48	16533
					105	52	55953

					104.1	09	56184
Pyrovalerone	C16H23NO	FIU_0261	7.962	246.2	175.1	16	1636949
					126.1	28	1157605
					119	28	957692
					105.1	24	3033329
					91.1	48	1247783
					84.1	36	496208
					77.1	09	387889
					72.1	20	228273
					70.1	16	230108
					65.1	09	561876
RCS-8 3-methoxy isomer	C25H29NO2	FIU_0087	11.77	376.2	254.1	28	2784967
					228.1	16	1197165
					158	40	479159
					144	48	1545250
					132.1	28	960989
					121.1	24	5055167
					91.1	09	1083878
					69.1	52	1397720

Appendix 2. LOD, LOQ, and precision and bias values for all compounds in Mix 4 at three different concentration levels

			Low (Low (5 ppb)	Medium	Medium (20 ppb)	High (High (80 ppb)
Compound Name	LOD (ng/mL)	LOQ (ng/mL)	% CV	% Bias	AD %	% Bias	% CV	% Bias
Methiopropamine	0.006	0.017	5.0	9.0-	7.0	6.0-	8.2	0.7
3,4'-methylenedioxy-alpha-pyrrolidinopropiophenone	0.003	0.010	4.4	-1.5	6.0	-3.2	7.2	1.3
3,4-MDMA	0.009	0.027	4.4	0.5	7.4	-2.7	7.0	1.2
2-methylethcathinone	0.010	0.029	5.7	-3.9	8.8	-3.7	10.7	-2.9
6-APB	0.005	0.016	6.2	1.4	6.1	1.7	6.5	1.4
5-methoxy-a-ethyltryptamine	0.000	0.001	5.5	7.9	6.9	2.9	7.6	-0.7
acetyl fentanyl	0.002	0.005	3.9	-3.3	6.0	-3.9	7.3	-1.0
4-methoxy PCP	0.005	0.015	7.2	6.1	4.3	2.3	7.1	-0.8
butyryl fentanyl	0.007	0.022	5.9	-3.1	8.1	-0.7	9.4	9.0
25T2 NBOMe	0.001	0.004	4.0	-1.7	6.0	-0.7	6.9	-0.2
PB-22-N-(4	0.023	0.069	3.3	-4.2	5.4	-1.1	7.0	0.0
AB-PINACA-pentanoic acid metabolite	0.020	090.0	8.7	-7.7	7.4	-5.9	7.9	2.5
25G-NBOMe	0.002	0.005	3.1	-7.3	5.7	-8.3	10.5	4.5
Delorazepam	0.000	0.001	3.0	-5.5	5.4	3.6	6.4	0.8
JWH 203 N - (5-hydroxypentyl) metabolite	0.003	0.006	5.0	-0.5	5.5	-0.1	8.2	2.0
JWH 018 6-hydroxyindole metabolite	0.035	0.106	34.7	-38.5	49.1	47.8	33.3	-28.1
A-834735	0.006	0.017	5.3	-2.4	6.1	0.3	8.0	-1.0
XLR 12	0.001	0.002	7.3	-22.8	10.6	18.2	15.5	10.1
AM2201 N-(3-chloropentyl) isomer	0.001	0.002	4.4	-9.3	4.1	4.2	5.2	-0.2
BB-22 5-hydroxyisoqui	0.004	0.011	15.6	-29.6	8.8	3.2	6.1	-1.3
UR-144	0.004	0.011	8.6	-40.1	9.6	-4.3	9.6	-2.1

JWH 387	0.001	0.002	7.9	-44.4	7.5	-2.4	8.0	9.0
(+)-cann	0.003	0.010	12.1	-40.8	6.5	9.3	6.7	0.0
Boldenone Cypionate	0.003	0.010	7.7	-39.1	5.8	-9.0	9.9	6.6
CB-13	0.013	0.038	6.1	-49.7	19.5	-31.3	15.2	16.0

Appendix 3. LOD, LOQ. R² values and precision and bias values for all compounds in Mix 5 at three different concentration levels

			Low (Low (5 ppb)	Medium	Medium (20 ppb)	High (8	High (80 ppb)
Compound Name	LOD (ng/mL)	LOQ (ng/mL)	% CV	% Bias	% CV	% Bias	% CA	% Bias
Levamisole	0.014	0.042	11.2	1.1	7.3	-1.8	10.3	1.3
3-fluoromethcathinone	0.005	0.014	10.1	-24.0	4.7	-8.4	4.2	-13.3
Acetyl norfentanyl	0.006	0.018	12.8	-0.2	4.2	-4.9	2.5	0.3
2-methoxymethcathinone	0.010	0.030	10.3	-1.7	6.1	-4.9	13.3	-6.1
Pentedrone metabolite ((\pm)-Ephedrine stereochemistry)	0.005	0.014	10.7	-1.7	6.5	-6.3	12.5	-5.9
6-APDB	0.029	0.087	12.3	6.8	13.7	-10.0	1.8	2.3
4-methoxy-a-Pyrrolidinobutiophenone	0.015	0.044	8.2	-1.0	6.5	-4.9	11.5	8.0-
a-Ethylaminopentiophenone	0.019	0.057	8.4	-1.7	0.9	-7.4	6.7	-1.8
4-methyl-a-pyrrolidinobutiophenone	0.017	0.050	12.8	2.0	10.6	2.3	6.9	4.3
2C-I	0.011	0.033	11.1	6.8	7.2	-1.6	12.5	2.3
4-methyl-a-ethylaminopentiophenone	0.018	0.053	12.4	2.4	10.2	0.0	5.8	3.8
2C-E	0.019	0.058	11.3	10.8	9.9	4.7	8.2	1.8
4-fluoro PV8	0.025	0.075	7.6	4.3	9.0	-10.6	5.7	-1.2
25I-NBOMe 4-methoxy isomer	0.007	0.022	10.9	2.2	5.1	-4.2	2.4	-0.4
4-fluoro PV9	0.019	0.058	7.3	4.7	9.1	-10.7	28.6	-7.1
(±)-ORG 28611	0.032	0.097	10.8	2.5	4.7	-2.0	3.7	-0.3
ADB-PINACA N-(5-hydroxypentyl) metabolite	0.008	0.025	13.1	0.5	4.9	-4.4	3.5	0.4

JWH 193	0.006	0.018	10.7	1.5	7.4	0.4	4.2	-1.9
PB-22 N-(4-hydroxypentyl) metabolite	0.007	0.022	8.6	4.7	6.0	-1.8	1.2	0.0
5-fluoro ADBICA	0.012	0.036	12.7	2.5	9.2	-2.2	2.9	9.0-
PB-22 3-carboxyindole metabolite	0.007	0.022	6.6	1.1	7.7	-4.4	9.7	-1.0
5-fluoro PB-22 8-hydroxyisoquinoline isomer	0.006	0.017	9.7	4.1	6.4	-1.0	1.7	1.6
ADB-PINACA	0.007	0.020	14.1	3.0	10.0	-1.6	2.9	-0.8
JWH 210 5-hydroxyindole metabolite	0.020	090.0	12.0	8.7	5.5	-6.6	3.3	-0.5
BB-22 6-hydroxyisoquinoline isomer	0.008	0.024	11.2	10.1	5.0	-4.5	4.3	1.6
RCS-8 4-methoxy isomer	0.018	0.053	17.5	14.9	5.3	3.9	7.6	3.0
AKB48 N-(4-fluorobenzyl) analog	0.017	0.051	16.6	21.3	9.2	13.2	5.7	0.3
JWH 210	0.011	0.033	10.5	14.3	8.9	-2.0	5.5	3.4

Appendix 4. LOD, LOQ, and precision and bias values for all compounds in Mix 6 at three different concentration levels (LC-QqQ-MS)

			Low (5 nnh)	(duu S	Medi	Medium (20	High (80 nnh)	(quu ()
				L L L	ld	(qdd		(add a
Compound Name	TOD	00T	Λ.) 70	%	%	%	Λ.) 70	%
Compound Maine	(ng/mL)	(ng/mL)	/0 C V	Bias	CV	Bias	/0 C V	Bias
Mescaline	0.146	0.441	32.0	7.8	14.7	0.9	17.0	11.1
a-Pyrrolidinobutiothiophenone	0.053	0.159	14.3	-6.0	11.5	-12.6	14.3	1.8
3,4-EDMC	0.058	0.175	14.6	-6.4	10.8	-9.5	18.6	2.6
para-Methoxymethamphetamine	0.054	0.163	12.0	-8.4	18.8	-21.5	26.3	-13.2
2-methoxt Ketamine	0.040	0.122	11.7	-7.9	8.9	0.0	15.1	-5.4
3-Methoxyamphetamine	0.100	0.303	11.9	-20.8	5.1	-13.8	22.3	-18.5
2,5-DMMA	0.043	0.129	13.5	-3.4	8.9	-8.5	8.8	1.6
Pentedrone Metabolite ((+/-)-Psuedoephedrine								
stereochemistry)	0.038	0.114	11.3	-1.9	6.5	-5.6	14.0	-1.6
(+)-3,4-Methylenedioxy Pyrovalerone	0.035	0.105	7.3	-5.1	5.1	-5.4	8.7	2.2
3-Bromoamphetamine	0.041	0.124	11.8	-5.0	12.4	-6.4	20.8	-11.7
Propylhexdrine	0.040	0.121	11.6	-5.5	18.9	-14.0	22.4	-11.8

2C-TFM	0.037	0.114	8.8	-3.9	12.8	6.6-	14.8	-3.3
DOI	0.068	0.206	11.4	-5.8	9.5	-6.2	12.0	-3.0
2C-T-7	0.041	0.125	10.0	-2.7	9.2	-5.3	11.1	9.0-
Mepirapim	0.022	0.068	10.4	-2.5	6.6	-1.4	12.5	-6.3
MT-45	0.072	0.218	14.7	-0.4	13.2	14.6	19.3	7.3
AM1248 azepane isomer	0.014	0.044	8.5	-3.6	6.5	-6.0	8.3	0.5
I'-naphthoyl indole	0.051	0.153	11.4	-2.7	8.0	-5.8	11.1	4.4
(+/-) JWH 073 N-(3-hydroxybutyl) metabolite	0.039	0.118	10.3	-1.1	8.0	-0.4	9.8	6.0
5-fluoro PB-22 7-hydroxyisoquinoline isomer	0.038	0.115	8.6	0.1	5.8	-2.8	8.6	1.8
(+/-) WIN 55,212	0.031	0.093	11.7	1.4	10.4	4.5	8.0	7.8
UR-144 N-(2-hydroxypentyl) metabolite	0.032	0.095	14.0	-0.4	6.2	6.0-	8.1	3.2
PB-22 7-hydroxyisoquinoline isomer	0.042	0.127	13.4	-2.5	4.4	-2.1	5.8	0.4
JWH 251 4-methylphenyl isomer	0.045	0.137	20.1	0.7	12.5	4.8	9.2	1.2

Appendix 5. LOD, LOQ, and precision and bias values for all compounds in Mix 7 at three different concentration levels (LC-QqQ-MS)

			Low (Low (5 ppb)	Mediu	Medium (20 ppb)	High (80 ppb)	(qdd 0
Compound Name	LOD (ng/mL)	LOQ (ng/mL)	AD %	% Bias	% CV	% Bias	% CV	% Bias
Mescaline	0.146	0.441	32.0	7.8	14.7	6.0	17.0	11.1
a-Pyrrolidinobutiothiophenone	0.053	0.159	14.3	0.9-	11.5	-12.6	14.3	1.8
3,4-EDMC	0.058	0.175	14.6	-6.4	10.8	-9.5	18.6	2.6
para-Methoxymethamphetamine	0.054	0.163	12.0	-8.4	18.8	-21.5	26.3	-13.2
2-methoxt Ketamine	0.040	0.122	11.7	-7.9	8.9	0.0	15.1	-5.4
3-Methoxyamphetamine	0.100	0.303	11.9	-20.8	5.1	-13.8	22.3	-18.5
2,5-DMMA	0.043	0.129	13.5	-3.4	8.9	-8.5	8.8	1.6
Pentedrone Metabolite ((+/-)-Psuedoephedrine stereochemistry)	0.038	0.114	11.3	-1.9	6.5	-5.6	14.0	-1.6

(+)-3,4-Methylenedioxy Pyrovalerone	0.035	0.105	7.3	-5.1	5.1	-5.4	8.7	2.2
3-Bromoamphetamine	0.041	0.124	11.8	-5.0	12.4	-6.4	20.8	-11.7
Propylhexdrine	0.040	0.121	11.6	-5.5	18.9	-14.0	22.4	-11.8
2C-TFM	0.037	0.114	8.8	-3.9	12.8	6.6-	14.8	-3.3
DOI	0.068	0.206	11.4	-5.8	9.5	-6.2	12.0	-3.0
2C-T-7	0.041	0.125	10.0	-2.7	9.2	-5.3	11.1	9.0-
Mepirapim	0.022	0.068	10.4	-2.5	6.6	-1.4	12.5	-6.3
MT-45	0.072	0.218	14.7	-0.4	13.2	14.6	19.3	7.3
AM1248 azepane isomer	0.014	0.044	8.5	-3.6	6.5	-6.0	8.3	0.5
1'-naphthoyl indole	0.051	0.153	11.4	-2.7	8.0	-5.8	11.1	4.4
(+/-) JWH 073 N-(3-hydroxybutyl) metabolite	0.039	0.118	10.3	-1.1	8.0	-0.4	8.6	6.0
5-fluoro PB-22 7-hydroxyisoquinoline isomer	0.038	0.115	8.6	0.1	5.8	-2.8	8.6	1.8
(+/-) WIN 55,212	0.031	0.093	11.7	1.4	10.4	4.5	8.0	7.8
UR-144 N-(2-hydroxypentyl) metabolite	0.032	0.095	14.0	-0.4	6.2	6.0-	8.1	3.2
PB-22 7-hydroxyisoquinoline isomer	0.042	0.127	13.4	-2.5	4.4	-2.1	5.8	0.4
JWH 251 4-methylphenyl isomer	0.045	0.137	20.1	0.7	12.5	4.8	9.2	1.2

Appendix 6. LOD, LOQ, and precision and bias values for all compounds in Mix 7 at three different concentration levels (LC-QqQ-MS)

			Low (5 ppb)	(qdd s	Mediu	Medium (20 ppb)	High (80 ppb)	(qdd 0
Compound Name	(Tudgu)	LOQ (ng/mL)	% CV	% Bias	% CV	% Bias	% CA	% Bias
HMA	0.027	0.080	7.3	4.5	6.2	5.9	1.6	-1.3
MBZP	0.023	0.069	5.7	-2.9	6.0	-2.0	1.6	-1.2
Cathine	0.060	0.181	18.7	7.4	5.2	7.7	10.6	-5.6
N-methyl-2-AI	0.246	0.744	23.9	27.1	14.8	10.4	17.8	0.7
Methylenedioxy Provalerone Metabolite 2	0.109	0.332	3.2	-0.5	6.9	-0.1	2.7	-0.1
Mephedrone	0.065	0.197	7.8	-1.9	6.2	2.4	1.8	-2.7

4-Methoxyamphetamine	1.372	4.157	17.3	-7.7	8.1	-0.8	2.5	-1.9	
2C-T	0.026	0.078	6.5	2.6	5.7	5.7	2.3	-1.2	
3,4-Dimethylethcathinone	0.033	0.099	2.8	4.1	6.7	3.4	2.5	-1.4	
3C-P	0.046	0.139	7.0	4.1	4.6	6.3	2.2	-0.8	
2,3-Dichlorophenylpiperazine	0.297	0.900	4.6	-2.8	5.3	-0.9	1.4	-0.9	
25H-NBOMe	0.016	0.049	5.9	1.9	5.1	4.8	1.4	-0.9	
NRG-3	0.211	0.639	4.0	-1.5	6.3	3.4	4.5	-4.5	
Diclofensine	950.0	0.170	54.7	31.8	19.0	9.1	9.5	-2.4	
5-fluoro NNEI	0.107	0.324	4.9	-13.7	6.1	4.2	3.9	0.7	
FUB-PB-22	0.071	0.215	4.2	-5.6	4.8	10.9	2.5	-0.3	
AB-CHMINACA	0.110	0.334	9.0	-14.4	6.1	13.2	3.8	1.3	
AKB48 N-pentanoic acid metabolite	0.047	0.143	6.0	-8.6	4.9	7.8	4.2	0.0	
JWH 251 3-methylphenyl isomer	0.100	0.303	4.2	-1.7	6.4	3.2	3.2	-0.2	
UR-144 N-(2-chloropentyl) analog	0.020	0.062	8.5	-30.2	8.1	12.9	0.9	-0.9	
BB-22 4-hydroxyquinoline isomer	0.023	0.069	9.3	-46.7	14.6	-0.6	16.7	0.9	
Delta 9 THC	0.425	1.289	10.9	-46.6	9.6	-9.4	5.2	4.5	
JWH 018 2-hydroxyindole metabolite	0.083	0.251	20.5	-29.0	8.4	31.4	6.7	-0.7	

VITA

ASHLEY NICOLE KIMBLE

2010-2014	B.S., Forensic Chemistry York College of Pennsylvania York, Pennsylvania
2013-2014	Undergraduate Researcher Foy Research Group York College of Pennsylvania York, Pennsylvania
2014-2017	Teaching Assistant Florida International University Miami, Florida
2014-2017	M.S., Chemistry Florida International University Miami, Florida
2014-2019	Doctoral Student Florida International University Miami, Florida

PUBLICATIONS AND PRESENTATIONS

Kimble, A., Foy, G. (2014) Presumptive Blood Testing using X-Ray Fluorescence to Determine Iron Content. American Chemical Society National Meeting, March 2014, Dallas, TX.

Kimble A., Arroyo, L, DeCaprio, A.P. (2015) Triggered MRM Database for the Comprehensive Detection of Novel Psychoactive Substances by LC-QqQ-MS. Society of Forensic Toxicologists, October 2015, Atlanta, GA.

Kimble A., Arroyo, L, DeCaprio, A.P. (2016) *Triggered MRM Database for the Comprehensive Detection of Novel Psychoactive Substances by LC-QqQ-MS*. 5th Annual IFRI Forensic Science Symposium, March 2016, Miami, FL.

Arroyo L., DeCaprio, A.P., Gluodenis, T., Broomes, A., Eckberg, M., Kimble, A. and Seither, J. (2016) *Comprehensive Analytical Tools for the Identification of Emerging Drugs of Abuse*. National Institute for Standards and Technology Trace Evidence Data Workshop, July 2016, Gaithersburg, MD.

Kimble A., Arroyo, L, DeCaprio, A.P. (2017) *Method Validation Using Multiple Compound Mixtures for Screening/Confirmation of 800+ Novel Psychoactive Substances (NPS) by Liquid Chromatography/Triple Quadrupole/Mass Spectrometry (LC/QqQ/MS).* American Academy of Forensic Sciences, February 2017, New Orleans, LA.

Chenevert, J.M., Kimble A., DeCaprio A.P., (2018) Assessment of Incorporation of Amphetamine and Diazepam into Human Head Hair for Preparation of Hair Material. American Academy of Sciences, February 2018, Seattle, WA.

Kimble A., DeCaprio A.P. (2018) QuEChERS Extraction of Novel Psychoactive Substances from Biological Matrices. American Academy of Forensic Sciences, February 2018, Seattle, WA.

Kimble A., DeCaprio A.P. (2018) Solid Phase Extraction of Novel Psychoactive Substances from Biological Matrices. PittCon., February 2018, Orlando, FL.

Kimble A., DeCaprio A.P. (2019) Comparison of Multiple Extraction/Purification Methods for Novel Psychoactive Substances from Biological Matrices. American Academy of Forensic Sciences, February 2019, Baltimore, MD.