U.S. flag

An official website of the United States government, Department of Justice.

NCJRS Virtual Library

The Virtual Library houses over 235,000 criminal justice resources, including all known OJP works.
Click here to search the NCJRS Virtual Library

Screening and Confirmation of MicroRNA Markers for Forensic Body Fluid Identification

NCJ Number
241105
Journal
Forensic Science International: Genetics Volume: 7 Issue: 1 Dated: January 2013 Pages: 116-123
Author(s)
Zheng Wang; Ji Zhang; Haibo Luo; Yi Ye; Jing Yan; Yiping Hou
Date Published
January 2013
Length
8 pages
Annotation
MicroRNAs (miRNAs, ~22 nucleotides) are small, non-protein coding RNAs that regulate gene expression at the post-transcriptional level. MiRNAs can express in a tissue-specific manner, and have been introduced to forensic body fluid identification. This study employed the qPCR-array (TaqMan() Array Human MicroRNA Cards) to screen the body fluid-specific miRNAs.
Abstract
Seven candidate miRNAs were identified as potentially body fluid-specific and could be used as forensically relevant body fluid markers: miR16 and miR486 for venous blood, miR888 and miR891a for semen, miR214 for menstrual blood, miR124a for vaginal secretions, and miR138-2 for saliva. The candidate miRNA markers were then validated via hydrolysis probes quantitative real-time polymerase chain reaction (TaqMan-qPCR). In addition, BestKeeper software was used to validate the expression stability of four genes, RNU44, RNU48, U6 and U6b, regularly used as reference genes (RGs) for studies involving forensic body fluids. The current study suggests that U6 could be used as a proper RG of miRNAs in forensic body fluid identification. The relative expression ratios (R) of miR486, miR888, miR214, miR16 and miR891a can differentiate the target body fluid from other body fluids that were tested in this study. The detection limit of TaqMan-qPCR of the five confirmed miRNA markers was 10pg of total RNA. The effect of time-wise degradation of blood stains and semen stains for 1 month under normal laboratory conditions was tested and did not significantly affect the detection results. Herein, this study proposes five body fluid-specific miRNAs for the forensic identification of venous blood, semen, and menstrual blood, of which miR486, miR888, and miR214 may be used as new markers for body fluid identification. Additional work remains necessary in search for suitable miRNA markers and stable RGs for forensic body fluid identification. (Published Abstract)