skip navigation


Abstract Database

Register for Latest Research

Stay Informed
Register with NCJRS to receive NCJRS's biweekly e-newsletter JUSTINFO and additional periodic emails from NCJRS and the NCJRS federal sponsors that highlight the latest research published or sponsored by the Office of Justice Programs.

NCJRS Abstract

To download this abstract, check the box next to the NCJ number then click the "Back To Search Results" link. Then, click the "Download" button on the Search Results page. Also see the Obtain Documents page for direction on how to access resources online, via mail, through interlibrary loans, or in a local library.


NCJ Number: 250466 Find in a Library
Title: Graphical User Interface for Multi-Factorial Age-At-Death Estimation Method Using Fuzzy Integrals
Author(s): Daniel J. Wescott; Derek T. Anderson; Melissa Anderson
Date Published: December 2016
Page Count: 66
Sponsoring Agency: National Institute of Justice (NIJ)
Washington, DC 20531
Grant Number: 2011-DN-BX-K838
Sale Source: National Institute of Justice (NIJ)
US Department of Justice
Office of Justice Programs
810 Seventh Street NW
Washington, DC 20531
United States of America
Document: PDF
Type: Grants and Funding; Program/Project Description; Report (Grant Sponsored); Report (Study/Research); Research (Applied/Empirical)
Format: Document; Document (Online)
Language: English
Country: United States of America
Annotation: This research sought to develop a graphical user interface (GUI) that uses algorithms based on fuzzy integrals, which provide forensic scientists with a multifactorial age-at-death estimation, confidence in the estimation, informative graphs, and a standardized reproducible method to generate linguistic descriptions of the age-at-death estimation in medico-legal death investigations that involve skeletal remains.
Abstract: Fuzzy set theory is a mathematical framework in which to model different types of uncertainty (e.g., probabilities, possibilities, etc.), perform computation (e.g., fuzzy logic), and fuse different information to provide a confidence rating for some hypothesis. In the case of age-at-death, it is used to provide a set of confidences for each age tested, ranging from 1 to 110 years. The fuzzy integral is a function generator, which means it is a generic framework that can be used to produce a wealth of different aggregation operators based on the ”fuzzy” measure. In the current project, the fuzzy integral was used to provide a measure of strength of the hypothesis acquired by using (aggregating) distinct sources of information. The algorithm produces a decision about age-at-death using multiple interval-valued aging methods without requiring a population. The primary product of this project is a user-friendly GUI for providing multifactor age-at-death estimations. The GUI is freely available to forensic scientists in estimating age-at-death for a single skeleton, using the age-at-death methods that they prefer based on the bones and equipment available. Graphs and linguistic terms can then be used in case reports and court testimony. 11 figures, 74 references, and a list of sources that have reported these research methods and findings
Main Term(s): Forensic sciences
Index Term(s): Age determination; Death investigations; Investigative techniques; Mathematical modeling; NIJ final report; NIJ Resources; Probabilistic evidence
To cite this abstract, use the following link:

*A link to the full-text document is provided whenever possible. For documents not available online, a link to the publisher's website is provided. Tell us how you use the NCJRS Library and Abstracts Database - send us your feedback.